Newer
Older
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer."""
import math
import random
import torch.nn.functional as F
from apex.normalization.fused_layer_norm import FusedLayerNorm
from .initialize import get_model_parallel_world_size
from .layers import ColumnParallelLinear
from .layers import RowParallelLinear
from .mappings import gather_from_model_parallel_region
import deepspeed
from .random import checkpoint
from .random import get_cuda_rng_tracker
from .utils import split_tensor_along_last_dim
import torch.distributed as dist
class LayerNorm(FusedLayerNorm):
return super().forward(x / (x.abs().max().detach()/8))
class GPT2ParallelSelfAttention(torch.nn.Module):
"""Parallel self-attention layer for GPT2.
Self-attention layer takes input with size [b, s, h] where b is
the batch size, s is the sequence length, and h is the hidden size
and creates output of the same size.
Arguments:
hidden_size: total hidden size of the layer (h).
num_attention_heads: number of attention heads (n). Note that we
require n to be divisible by number of GPUs
used to parallelize the model. Also, we
require hidden size to be divisible by n.
dropout_prob: dropout probability for the attention scores.
init_method: weight initialization.
output_layer_init_method: output layer initialization. If None, use
`init_method`.
We use the following notation:
h: hidden_size
n: num_attention_heads
p: number of partitions
np: n/p
hp: h/p
hn: h/n
b: batch size
s: sequence length
"""
def __init__(self, hidden_size, num_attention_heads,
attention_dropout_prob, output_dropout_prob,
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
super(GPT2ParallelSelfAttention, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
# Per attention head and per partition values.
world_size = get_model_parallel_world_size()
self.hidden_size_per_partition = divide(hidden_size, world_size)
self.hidden_size_per_attention_head = divide(hidden_size,
num_attention_heads)
self.num_attention_heads_per_partition = divide(num_attention_heads,
world_size)
# Strided linear layer.
self.query_key_value = ColumnParallelLinear(hidden_size, 3*hidden_size,
stride=3,
gather_output=False,
init_method=init_method)
# Dropout. Note that for a single iteration, this layer will generate
# different outputs on different number of parallel partitions but
# on average it should not be partition dependent.
self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)
# Output.
self.dense = RowParallelLinear(hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method)
self.output_dropout = torch.nn.Dropout(output_dropout_prob)
if deepspeed.checkpointing.is_configured():
global get_cuda_rng_tracker, checkpoint
get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
checkpoint = deepspeed.checkpointing.checkpoint
def _transpose_for_scores(self, tensor):
"""Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
size [b, np, s, hn].
"""
new_tensor_shape = tensor.size()[:-1] + \
(self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head)
tensor = tensor.view(*new_tensor_shape)
return tensor.permute(0, 2, 1, 3)
def forward(self, hidden_states, mask, sparse_config, mem=None):
# hidden_states: [b, s, h]
# ltor_mask: [1, 1, s, s]
# Attention heads. [b, s, hp]
query_length = hidden_states.size(1)
# if mem is None:
mixed_raw_layer = self.query_key_value(hidden_states)
mixed_x_layer = torch.cat((mem, mixed_raw_layer), dim=1)
(mixed_query_layer,
mixed_key_layer,
mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
if sparse_config.sparse_type in ['standard', 'torch_1d']:
# Reshape and transpose [b, np, s, hn]
query_layer = self._transpose_for_scores(mixed_query_layer)
key_layer = self._transpose_for_scores(mixed_key_layer)
value_layer = self._transpose_for_scores(mixed_value_layer)
if sparse_config.sparse_type == 'standard':
context_layer = standard_attention(query_layer, key_layer, value_layer, mask, self.attention_dropout)
else:
context_layer = sparse_attention(query_layer, key_layer, value_layer, sparse_config.pivot_idx,
mask, sparse_config.query_window, sparse_config.key_window_times, self.attention_dropout)
# inference: context_layer = sparse_attention_inference(query_layer, key_layer, value_layer, pivot_idx)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + \
(self.hidden_size_per_partition,)
# [b, s, hp]
context_layer = context_layer.view(*new_context_layer_shape)
elif sparse_config.sparse_type == 'cuda_2d':
context_layer = sparse_attention_2d(mixed_query_layer, mixed_key_layer, mixed_value_layer, self.num_attention_heads_per_partition,
sparse_config.layout, mask, sparse_config.kernel_size, sparse_config.kernel_size2, attention_dropout=self.attention_dropout)
# Output. [b, s, h]
output = self.dense(context_layer)
output = self.output_dropout(output)
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@torch.jit.script
def gelu_impl(x):
"""OpenAI's gelu implementation."""
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
(1.0 + 0.044715 * x * x)))
def gelu(x):
return gelu_impl(x)
class GPT2ParallelMLP(torch.nn.Module):
"""MLP for GPT2.
MLP will take the input with h hidden state, project it to 4*h
hidden dimension, perform gelu transformation, and project the
state back into h hidden dimension. At the end, dropout is also
applied.
Arguments:
hidden_size: The hidden size of the self attention.
output_dropout_prob: dropout probability for the outputs
after self attention and final output.
init_method: initialization method used for the weights. Note
that all biases are initialized to zero and
layernorm weight are initialized to one.
output_layer_init_method: output layer initialization. If None,
use `init_method`.
"""
def __init__(self, hidden_size, output_dropout_prob, init_method,
output_layer_init_method=None):
super(GPT2ParallelMLP, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
# Project to 4h.
self.dense_h_to_4h = ColumnParallelLinear(hidden_size, 4*hidden_size,
gather_output=False,
init_method=init_method)
# Project back to h.
self.dense_4h_to_h = RowParallelLinear(
4*hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method)
self.dropout = torch.nn.Dropout(output_dropout_prob)
def forward(self, hidden_states):
# [b, s, 4hp]
intermediate_parallel = self.dense_h_to_4h(hidden_states)
intermediate_parallel = gelu(intermediate_parallel)
# [b, s, h]
output = self.dense_4h_to_h(intermediate_parallel)
output = self.dropout(output)
return output
class GPT2ParallelTransformerLayer(torch.nn.Module):
"""A single layer transformer for GPT2.
We use the following notation:
h: hidden size
n: number of attention heads
b: batch size
s: sequence length
Transformore layer takes input with size [b, s, h] and returns an
output of the same size.
Arguments:
hidden_size: The hidden size of the self attention.
num_attention_heads: number of attention head in the self
attention.
attention_dropout_prob: dropout probability of the attention
score in self attention.
output_dropout_prob: dropout probability for the outputs
after self attention and final output.
layernorm_epsilon: epsilon used in layernorm to avoid
division by zero.
init_method: initialization method used for the weights. Note
that all biases are initialized to zero and
layernorm weight are initialized to one.
output_layer_init_method: output layers (attention output and
mlp output) initialization. If None,
use `init_method`.
"""
def __init__(self,
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
layernorm_epsilon,
init_method,
output_layer_init_method=None,
sandwich_ln=True,
sparse_config=argparse.Namespace(sparse_type='standard')
):
super(GPT2ParallelTransformerLayer, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
# Layernorm on the input data.
self.input_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
# Self attention.
self.attention = GPT2ParallelSelfAttention(
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
init_method,
# Layernorm on the input data.
self.post_attention_layernorm = LayerNorm(hidden_size,
eps=layernorm_epsilon)
self.third_layernorm = LayerNorm(hidden_size,
eps=layernorm_epsilon)
self.fourth_layernorm = LayerNorm(hidden_size,
eps=layernorm_epsilon)
# MLP
self.mlp = GPT2ParallelMLP(
hidden_size,
output_dropout_prob,
init_method,
output_layer_init_method=output_layer_init_method)
self.sparse_config = sparse_config
def forward(self, hidden_states, ltor_mask, mem=None):
# hidden_states: [b, s, h]
# ltor_mask: [1, 1, s, s]
# Layer norm at the begining of the transformer layer.
layernorm_output1 = self.input_layernorm(hidden_states)
mem = self.input_layernorm(mem) if mem is not None else None
# Self attention.
attention_output, qkv = self.attention(layernorm_output1, ltor_mask, self.sparse_config, mem)
attention_output = self.third_layernorm(attention_output)
# Residual connection.
layernorm_input = hidden_states + attention_output
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Fourth LayerNorm
mlp_output = self.fourth_layernorm(mlp_output)
# Second residual connection.
output = layernorm_input + mlp_output
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def unscaled_init_method(sigma):
"""Init method based on N(0, sigma)."""
def init_(tensor):
return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)
return init_
def scaled_init_method(sigma, num_layers):
"""Init method based on N(0, sigma/sqrt(2*num_layers)."""
std = sigma / math.sqrt(2.0 * num_layers)
def init_(tensor):
return torch.nn.init.normal_(tensor, mean=0.0, std=std)
return init_
class GPT2ParallelTransformer(torch.nn.Module):
"""GPT-2 transformer.
This module takes input from embedding layer and it's output can
be used directly by a logit layer. It consists of L (num-layers)
blocks of:
layer norm
self attention
residual connection
layer norm
mlp
residual connection
followed by a final layer norm.
Arguments:
num_layers: Number of transformer layers.
hidden_size: The hidden size of the self attention.
num_attention_heads: number of attention head in the self
attention.
attention_dropout_prob: dropout probability of the attention
score in self attention.
output_dropout_prob: dropout probability for the outputs
after self attention and final output.
checkpoint_activations: if True, checkpoint activations.
checkpoint_num_layers: number of layers to checkpoint. This
is basically the chunk size in checkpoitning.
layernorm_epsilon: epsilon used in layernorm to avoid
division by zero.
init_method_std: standard deviation of the init method which has
the form N(0, std).
use_scaled_init_for_output_weights: If Ture use 1/sqrt(2*num_layers)
scaling for the output weights (
output of self attention and mlp).
"""
def __init__(self,
num_layers,
hidden_size,
num_attention_heads,
max_sequence_length,
max_memory_length,
embedding_dropout_prob,
attention_dropout_prob,
output_dropout_prob,
checkpoint_activations,
checkpoint_num_layers=1,
layernorm_epsilon=1.0e-5,
init_method_std=0.02,
use_scaled_init_for_output_weights=True,
sandwich_ln=True,
sparse_config=argparse.Namespace(sparse_type='standard')
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
):
super(GPT2ParallelTransformer, self).__init__()
# Store activation checkpoiting flag.
self.checkpoint_activations = checkpoint_activations
self.checkpoint_num_layers = checkpoint_num_layers
self.max_memory_length = max_memory_length
self.max_sequence_length = max_sequence_length
output_layer_init_method = None
if use_scaled_init_for_output_weights:
output_layer_init_method = scaled_init_method(init_method_std,
num_layers)
# Embeddings dropout
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
# Position embedding (serial).
self.position_embeddings = torch.nn.Embedding(max_sequence_length,
hidden_size)
# Initialize the position embeddings.
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
# TODO: after testing, this is not useful.
# self.img_type_embeddings = torch.nn.Parameter(torch.Tensor(64, hidden_size))
# torch.nn.init.normal_(self.img_type_embeddings, mean=0.0, std=init_method_std)
# self.txt_type_embeddings = torch.nn.Parameter(torch.Tensor(hidden_size))
# torch.nn.init.normal_(self.txt_type_embeddings, mean=0.0, std=init_method_std)
def get_layer(layer_id):
return GPT2ParallelTransformerLayer(
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
layernorm_epsilon,
unscaled_init_method(init_method_std),
output_layer_init_method=output_layer_init_method,
sandwich_ln=sandwich_ln,
sparse_config=sparse_config
)
# Transformer layers.
self.layers = torch.nn.ModuleList(
[get_layer(layer_id) for layer_id in range(num_layers)])
# Final layer norm before output.
self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
if deepspeed.checkpointing.is_configured():
global get_cuda_rng_tracker, checkpoint
get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
checkpoint = deepspeed.checkpointing.checkpoint
def forward(self, hidden_states, position_ids, attention_mask, *mems):
batch_size, query_length = hidden_states.size()[:2]
memory_length = mems[0].size(1) if mems else 0
key_length = query_length + memory_length
if isinstance(attention_mask, int) or attention_mask.numel() == 1:
# if given a int "sep", means the seperation of full attention part and single direction part
# attention mask is the beginning postion of B region, \in [0, query_len)
sep = attention_mask
# conventional transformer
def build_mask_matrix(query_length, key_length, sep):
m = torch.ones((1, query_length, key_length), device=hidden_states.device, dtype=hidden_states.dtype)
assert query_length <= key_length
m[0, :, -query_length:] = torch.tril(m[0, :, -query_length:])
m[0, :, :sep + (key_length - query_length)] = 1
m = m.unsqueeze(1)
return m
attention_mask = build_mask_matrix(query_length, key_length, sep)
# ===================== Image & Text Type Embedding ======================== #
# TODO: after testing, this is not useful.
# extend_len = (key_length + 63) // 64
# hidden_states = hidden_states + txt_indices_bool.unsqueeze(-1) * self.txt_type_embeddings.view(1, 1, -1) + \
# img_indices_bool.unsqueeze(-1) * self.img_type_embeddings.expand(extend_len, 64, -1).reshape(extend_len * 64, -1)[memory_length: key_length]
# ===================== END OF BLOCK ======================= #
position_embeddings = self.position_embeddings(position_ids)
hidden_states = hidden_states + position_embeddings
hidden_states = self.embedding_dropout(hidden_states)
def custom(start, end):
def custom_forward(*inputs):
layers_ = self.layers[start:end]
x_, mask, mems_ = inputs[0], inputs[1], inputs[1:]
for i, layer in enumerate(layers_):
mem_i_ = mems_[i] if mems_ else None
return x_
return custom_forward
attention_mask_saved = attention_mask
if self.checkpoint_activations:
l = 0
num_layers = len(self.layers)
chunk_length = self.checkpoint_num_layers
while l < num_layers:
if mems:
args += mems[l: l + chunk_length]
hidden_states = checkpoint(custom(l, l + chunk_length), *args)
l += chunk_length
else:
# Final layer norm.
output = self.final_layernorm(hidden_states)
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
mem_layers = self.update_mems(mem_layers, mems)
return (output, *mem_layers)
def update_mems(self, hiddens, mems):
memory_length = mems[0].size(1) if mems else 0
query_length = hiddens[0].size(1)
new_memory_length = min(self.max_memory_length, memory_length + query_length)
new_mems = []
with torch.no_grad():
for i in range(len(hiddens)):
if new_memory_length <= query_length:
new_mems.append(hiddens[i][:, -new_memory_length:])
else:
new_mems.append(torch.cat((mems[i][:, -new_memory_length+query_length:], hiddens[i]), dim=1))
return new_mems
def _chunk(x, w, times):
'''convert into overlapping chunkings. Chunk size = times * w, overlap size = w
Args:
x: [b, np, s, hn]
...
'''
s = x.size(2)
# x pad to [b, np, s+xx to k*w + w*(times-1), hn]
assert s % w == 0
npad = (times-1) * w
x = torch.nn.functional.pad(x, (0, 0, npad, 0), value=0)
x = x.view(x.size(0), x.size(1), x.size(2) // w, w, x.size(3))
chunk_size = list(x.size())
chunk_stride = list(x.stride())
chunk_size[2] = chunk_size[2] - times + 1
chunk_size[3] = w * times
return x.as_strided(size=chunk_size, stride=chunk_stride)
def standard_attention(query_layer, key_layer, value_layer, attention_mask, attention_dropout=None):
# We disable the PB-relax-Attention and only changes the order of computation, because it is enough for most of training.
# The implementation in the paper can be done very easily, if you really need it to train very deep transformers.
if len(attention_mask.shape) == 3:
attention_mask = attention_mask.unsqueeze(1)
# Raw attention scores. [b, np, s, s]
attention_scores = torch.matmul(query_layer / math.sqrt(query_layer.shape[-1]), key_layer.transpose(-1, -2))
# Apply the left to right attention mask.
attention_scores = torch.mul(attention_scores, attention_mask) - \
10000.0 * (1.0 - attention_mask)
# Attention probabilities. [b, np, s, s]
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
attention_probs = attention_dropout(attention_probs)
# Context layer.
# [b, np, s, hn]
context_layer = torch.matmul(attention_probs, value_layer)
return context_layer
def sparse_attention_1d(q, k, v, pivot_idx, pivot_attention_mask, query_window=128, key_window_times=6, attention_dropout=None):
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
''' Sparse Attention
Args:
q, k, v: inputs, [b, num_heads, s, hn], k is padded to n * query_window
pivot_idx: [b, num_pivots]
pivot_attention_mask: [b, s, num_pivots]
query_window: .
key_window_times: key_window = query_window * key_window_times
'''
b, n_head, s, hn = q.shape
b, n_piv = pivot_idx.shape
w = query_window
pivot_idx_dummy = pivot_idx.view(b, 1, n_piv, 1).expand(b, n_head, n_piv, hn)
# ===================== Pivot Attention ======================== #
pivot_k, pivot_v = torch.gather(k, 2, pivot_idx_dummy), torch.gather(v, 2, pivot_idx_dummy)
attention_scores = torch.matmul(q, pivot_k.transpose(-1, -2))
pivot_attention_mask = pivot_attention_mask.unsqueeze(1)
attention_scores_pivot = torch.mul(attention_scores, pivot_attention_mask / math.sqrt(hn)) - 10000.0 * (1.0 - pivot_attention_mask)
attention_scores_pivot = attention_scores_pivot + math.log(s // n_piv)
# ===================== Window Attention ======================= #
window_k = _chunk(k, query_window, key_window_times)
window_v = _chunk(v, query_window, key_window_times)
# window_k [b, n_head, s // w up int, w*times, hn]
if s % w == 0: # training # TODO args check
assert k.shape[2] == s
assert window_k.shape[2] == s // w
window_q = q.view(b, n_head, s // w, w, hn)
attention_scores = torch.matmul(window_q, window_k.transpose(-1, -2))
window_attention_mask = torch.ones((w, w * key_window_times), dtype=attention_scores.dtype, device=q.device).tril_(diagonal=w * (key_window_times - 1))
attention_scores_window = torch.mul(attention_scores, window_attention_mask / math.sqrt(hn)) - 10000.0 * (1.0 - window_attention_mask)
for t in range(1, key_window_times):
attention_scores_window[:, :, t - 1, :, :w * key_window_times - w * t] -= 10000.0
else:
raise ValueError('The seq_len must be exactly divided by window_size.')
# ===================== Joint Softmax ======================= #
attention_scores_window = attention_scores_window.view(b, n_head, s, w * key_window_times)
attention_scores = torch.cat((attention_scores_pivot, attention_scores_window), dim=-1)
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
attention_probs = attention_dropout(attention_probs)
context_layer = torch.matmul(attention_probs[..., :-w * key_window_times], pivot_v) + torch.einsum('bcgwk,bcgkh->bcgwh', attention_probs[..., -w * key_window_times:].view(b, n_head, s // w, w, w * key_window_times), window_v).view(b, n_head, s, hn)
return context_layer
# def sparse_attention_inference_1d(q, k, v, pivot_and_window_idx, **kwargs):
# '''the inference process of sparse attention.
# The Qs are in the same block, but seq_len mod window size might != 0.
# The Qs are the final tokens of Ks. the pivot_and_window_idx[-query_len] are Qs.
# '''
# b, n_head, sq, hn = q.shape
# sk = k.shape[2]
# _b, n_piv = pivot_and_window_idx.shape
# pivot_and_window_idx_dummy = pivot_and_window_idx.view(b, 1, n_piv, 1).expand(b, n_head, n_piv, hn)
# pivot_k, pivot_v = torch.gather(k, 2, pivot_and_window_idx_dummy), torch.gather(v, 2, pivot_and_window_idx_dummy)
# attention_scores = torch.matmul(q / math.sqrt(hn), pivot_k.transpose(-1, -2))
# if sq > 1:
# query_part_scores = attention_scores[:, :, -sq:, -sq:]
# m = torch.ones((sq, sq), device=q.device, dtype=q.dtype) * -10000.
# m.triu_(diagonal=1)
# query_part_scores += m
# attention_probs = torch.nn.Softmax(dim=-1)(attention_scores)
# context_layer = torch.matmul(attention_probs, pivot_v)
# return context_layer
def transpose_and_split(x, layout, n_head):
x = x.transpose(1, 2)
x = x.reshape(x.shape[0] * n_head, x.shape[1] // n_head, x.shape[2])
x_text = x[..., :layout[0]]
x0 = x[...,layout[1]:layout[2]].view(x.shape[0], x.shape[1], sqrt(layout[2] - layout[1]), -1).contiguous()
x1 = x[...,layout[2]:layout[3]].view(x.shape[0], x.shape[1], sqrt(layout[3] - layout[2]), -1).contiguous()
return x, x_text, x0, x1
def sparse_attention_2d(q, k, v, n_head, layout, attention_mask_text2d, kernel_size=9, kernel_size2=7, attention_dropout=None, **kwargs):
'''
q, k, v: [batch_size, 64+1024+4096, hidden_size]
n_head: int
layout: [endoftext/startofpad, startof0, startof1, endofall]
attention_mask_text2d: [batch_size, sq_len, endoftext]
'''
from .local_attention_function import f_similar, f_weighting
b, sq_len, hn = q.shape
alpha = sqrt((layout[3] - layout[2]) // (layout[2] - layout[1]))
q_all, q_text, q0, q1 = transpose_and_split(q, layout, n_head) # 0, 1 [batch * n_head, hn_per_head, h, w] text [batch * n_head, hn_per_head, endoftext]
k_all, k_text, k0, k1 = transpose_and_split(k, layout, n_head)
v_all, v_text, v0, v1 = transpose_and_split(v, layout, n_head)
# import pdb; pdb.set_trace()
# all to text
scores_all_to_text = torch.einsum('bhi,bhj->bij', q_all, k_text).view(b, n_head, layout[3], layout[0]) * attention_mask_text2d - 10000.0 * (1.0 - attention_mask_text2d)
scores_all_to_text = scores_all_to_text.view(b*n_head, layout[3], layout[0])
# 0 to 0
scores_0_to_0 = f_similar(q0, k0, kernel_size, kernel_size, True)
# 1 to 1
scores_1_to_1 = f_similar(q1, k1, kernel_size, kernel_size, True)
# 1 to 0
scores_1_to_0 = f_similar(q1, k0, kernel_size2, kernel_size2, False) # [batch * n_head, 2h, 2w, kernel_size2**2]
# softmax
probs_text = F.softmax(scores_all_to_text[:, :layout[0]], dim=-1) # [batch * n_head, seq_text, seq_text]
scores_0 = torch.cat(
(scores_all_to_text[:, layout[1]:layout[2]],
scores_0_to_0.view(b * n_head, layout[2]-layout[1], scores_0_to_0.shape[-1])),
dim=-1)
probs_0 = F.softmax(scores_0, dim=-1) #
scores_1 = torch.cat(
(scores_all_to_text[:, layout[2]:layout[3]],
scores_1_to_0.view(scores_1_to_0.shape[0], -1, scores_1_to_0.shape[3]),
scores_1_to_1.view(scores_1_to_1.shape[0], -1, scores_1_to_1.shape[3])),
dim=-1)
probs_1 = F.softmax(scores_1, dim=-1)
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
probs_0 = attention_dropout(probs_0)
probs_1 = attention_dropout(probs_1)
# weighting
pad = torch.zeros(layout[1], device=q.device, dtype=q.dtype)
probs_all_to_text = torch.cat((
probs_text,
pad[-layout[0]:].expand(b*n_head, layout[1]-layout[0], layout[0]),
probs_0[:, :, :layout[0]],
probs_1[:, :, :layout[0]]
), dim=1)
context_all_to_text = torch.einsum('bhij,bhcj->bihc',
probs_all_to_text.view(b, n_head, probs_all_to_text.shape[1], probs_all_to_text.shape[2]),
v_text.view(b, n_head, v_text.shape[1], v_text.shape[2])).reshape(b, -1, hn)
context_0_to_0 = f_weighting(v0, probs_0[..., layout[0]:].view_as(scores_0_to_0).contiguous(), kernel_size, kernel_size, True)
context_1_to_0 = f_weighting(v0, probs_1[:, :, layout[0]:layout[0]+scores_1_to_0.shape[-1]].view_as(scores_1_to_0).contiguous(), kernel_size2, kernel_size2, False)
context_1_to_1 = f_weighting(v1, probs_1[:, :, -scores_1_to_1.shape[-1]:].view_as(scores_1_to_1).contiguous(), kernel_size, kernel_size, True)
context_all_to_01 =torch.cat(
(
pad.expand(b*n_head, hn//n_head, layout[1]),
context_0_to_0.view(b*n_head, hn//n_head, layout[2]-layout[1]),
(context_1_to_0 + context_1_to_1).view(b*n_head, hn//n_head, layout[3]-layout[2])
), dim=-1).view(b, hn, -1).transpose(1, 2)
return context_all_to_text + context_all_to_01