Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SwissArmyTransformer
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mirrored_repos
MachineLearning
thukeg
SwissArmyTransformer
Commits
34990eea
Commit
34990eea
authored
3 years ago
by
Ming Ding
Browse files
Options
Downloads
Patches
Plain Diff
sparse 2d and cache qkv
parent
8abd84d6
No related branches found
No related tags found
No related merge requests found
Changes
4
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
mpu/local_attention_function.py
+149
-0
149 additions, 0 deletions
mpu/local_attention_function.py
mpu/sparse_transformer.py
+164
-237
164 additions, 237 deletions
mpu/sparse_transformer.py
mpu/utils.py
+4
-0
4 additions, 0 deletions
mpu/utils.py
test_sparse_attention.py
+169
-0
169 additions, 0 deletions
test_sparse_attention.py
with
486 additions
and
237 deletions
mpu/local_attention_function.py
0 → 100644
+
149
−
0
View file @
34990eea
import
torch
from
torch
import
nn
import
torch.nn.functional
as
F
from
torch.autograd
import
Function
from
torch.autograd.function
import
once_differentiable
from
localAttention
import
(
similar_forward
,
similar_backward
,
weighting_forward
,
weighting_backward_ori
,
weighting_backward_weight
)
__all__
=
[
'
f_similar
'
,
'
f_weighting
'
,
'
LocalAttention
'
,
'
TorchLocalAttention
'
]
class
similarFunction
(
Function
):
@staticmethod
def
forward
(
ctx
,
x_ori
,
x_loc
,
kH
,
kW
,
casual_mask
=
False
):
ctx
.
save_for_backward
(
x_ori
,
x_loc
)
ctx
.
kHW
=
(
kH
,
kW
)
ctx
.
casual_mask
=
casual_mask
output
=
similar_forward
(
x_ori
,
x_loc
,
kH
,
kW
,
casual_mask
)
return
output
@staticmethod
#@once_differentiable
def
backward
(
ctx
,
grad_outputs
):
x_ori
,
x_loc
=
ctx
.
saved_tensors
kH
,
kW
=
ctx
.
kHW
casual_mask
=
ctx
.
casual_mask
grad_ori
=
similar_backward
(
x_ori
,
x_loc
,
grad_outputs
,
kH
,
kW
,
True
,
casual_mask
)
grad_loc
=
similar_backward
(
x_ori
,
x_loc
,
grad_outputs
,
kH
,
kW
,
False
,
casual_mask
)
return
grad_ori
,
grad_loc
,
None
,
None
,
None
class
weightingFunction
(
Function
):
@staticmethod
def
forward
(
ctx
,
x_ori
,
x_weight
,
kH
,
kW
,
casual_mask
=
False
):
ctx
.
save_for_backward
(
x_ori
,
x_weight
)
ctx
.
kHW
=
(
kH
,
kW
)
ctx
.
casual_mask
=
casual_mask
output
=
weighting_forward
(
x_ori
,
x_weight
,
kH
,
kW
,
casual_mask
)
return
output
@staticmethod
#@once_differentiable
def
backward
(
ctx
,
grad_outputs
):
x_ori
,
x_weight
=
ctx
.
saved_tensors
kH
,
kW
=
ctx
.
kHW
casual_mask
=
ctx
.
casual_mask
grad_ori
=
weighting_backward_ori
(
x_ori
,
x_weight
,
grad_outputs
,
kH
,
kW
,
casual_mask
)
grad_weight
=
weighting_backward_weight
(
x_ori
,
x_weight
,
grad_outputs
,
kH
,
kW
,
casual_mask
)
return
grad_ori
,
grad_weight
,
None
,
None
,
None
f_similar
=
similarFunction
.
apply
f_weighting
=
weightingFunction
.
apply
class
LocalAttention
(
nn
.
Module
):
def
__init__
(
self
,
inp_channels
,
out_channels
,
kH
,
kW
):
super
(
LocalAttention
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
inp_channels
,
out_channels
,
kernel_size
=
1
,
bias
=
False
)
self
.
conv2
=
nn
.
Conv2d
(
inp_channels
,
out_channels
,
kernel_size
=
1
,
bias
=
False
)
self
.
conv3
=
nn
.
Conv2d
(
inp_channels
,
out_channels
,
kernel_size
=
1
,
bias
=
False
)
self
.
kH
=
kH
self
.
kW
=
kW
def
forward
(
self
,
x
):
x1
=
self
.
conv1
(
x
)
x2
=
self
.
conv2
(
x
)
x3
=
self
.
conv3
(
x
)
weight
=
f_similar
(
x1
,
x2
,
self
.
kH
,
self
.
kW
)
weight
=
F
.
softmax
(
weight
,
-
1
)
out
=
f_weighting
(
x3
,
weight
,
self
.
kH
,
self
.
kW
)
return
out
class
TorchLocalAttention
(
nn
.
Module
):
def
__init__
(
self
,
inp_channels
,
out_channels
,
kH
,
kW
):
super
(
TorchLocalAttention
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
inp_channels
,
out_channels
,
kernel_size
=
1
,
bias
=
False
)
self
.
conv2
=
nn
.
Conv2d
(
inp_channels
,
out_channels
,
kernel_size
=
1
,
bias
=
False
)
self
.
conv3
=
nn
.
Conv2d
(
inp_channels
,
out_channels
,
kernel_size
=
1
,
bias
=
False
)
self
.
kH
=
kH
self
.
kW
=
kW
@staticmethod
def
f_similar
(
x_theta
,
x_phi
,
kh
,
kw
,
casual_mask
=
False
):
n
,
c
,
h
,
w
=
x_theta
.
size
()
# (N, inter_channels, H, W)
pad
=
(
kh
//
2
,
kw
//
2
)
x_theta
=
x_theta
.
permute
(
0
,
2
,
3
,
1
).
contiguous
()
x_theta
=
x_theta
.
view
(
n
*
h
*
w
,
1
,
c
)
x_phi
=
F
.
unfold
(
x_phi
,
kernel_size
=
(
kh
,
kw
),
stride
=
1
,
padding
=
pad
)
x_phi
=
x_phi
.
contiguous
().
view
(
n
,
c
,
kh
*
kw
,
h
*
w
)
x_phi
=
x_phi
.
permute
(
0
,
3
,
1
,
2
).
contiguous
()
x_phi
=
x_phi
.
view
(
n
*
h
*
w
,
c
,
kh
*
kw
)
out
=
x_theta
@
x_phi
out
=
out
.
view
(
n
,
h
,
w
,
kh
*
kw
)
if
casual_mask
:
out
=
out
[...,
:
kh
*
kw
//
2
+
1
]
return
out
@staticmethod
def
f_weighting
(
x_theta
,
x_phi
,
kh
,
kw
,
casual_mask
=
False
):
n
,
c
,
h
,
w
=
x_theta
.
size
()
# (N, inter_channels, H, W)
pad
=
(
kh
//
2
,
kw
//
2
)
x_theta
=
F
.
unfold
(
x_theta
,
kernel_size
=
(
kh
,
kw
),
stride
=
1
,
padding
=
pad
)
x_theta
=
x_theta
.
permute
(
0
,
2
,
1
).
contiguous
()
x_theta
=
x_theta
.
view
(
n
*
h
*
w
,
c
,
kh
*
kw
)
if
casual_mask
:
x_theta
=
x_theta
[...,
:
kh
*
kw
//
2
+
1
]
x_phi
=
x_phi
.
view
(
n
*
h
*
w
,
kh
*
kw
//
2
+
1
,
1
)
else
:
x_phi
=
x_phi
.
view
(
n
*
h
*
w
,
kh
*
kw
,
1
)
out
=
torch
.
matmul
(
x_theta
,
x_phi
)
out
=
out
.
squeeze
(
-
1
)
out
=
out
.
view
(
n
,
h
,
w
,
c
)
out
=
out
.
permute
(
0
,
3
,
1
,
2
).
contiguous
()
return
out
def
forward
(
self
,
x
):
x1
=
self
.
conv1
(
x
)
x2
=
self
.
conv2
(
x
)
x3
=
self
.
conv3
(
x
)
weight
=
self
.
f_similar
(
x1
,
x2
,
self
.
kH
,
self
.
kW
)
weight
=
F
.
softmax
(
weight
,
-
1
)
out
=
self
.
f_weighting
(
x3
,
weight
,
self
.
kH
,
self
.
kW
)
return
out
if
__name__
==
'
__main__
'
:
b
,
c
,
h
,
w
=
8
,
3
,
32
,
32
kH
,
kW
=
5
,
5
x
=
torch
.
rand
(
b
,
c
,
h
,
w
).
cuda
()
m
=
LocalAttention
(
c
,
c
,
kH
,
kW
)
m
.
cuda
()
y
=
m
(
x
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
mpu/sparse_transformer.py
+
164
−
237
View file @
34990eea
This diff is collapsed.
Click to expand it.
mpu/utils.py
+
4
−
0
View file @
34990eea
...
@@ -15,6 +15,7 @@
...
@@ -15,6 +15,7 @@
import
torch
import
torch
import
math
def
ensure_divisibility
(
numerator
,
denominator
):
def
ensure_divisibility
(
numerator
,
denominator
):
...
@@ -78,3 +79,6 @@ def split_out_sums(x, BLOCK_SIZE=32, all_ret=False):
...
@@ -78,3 +79,6 @@ def split_out_sums(x, BLOCK_SIZE=32, all_ret=False):
return
oris
.
reshape
(
b
,
-
1
,
*
rs
),
sums
.
reshape
(
b
,
-
1
,
*
rs
)
return
oris
.
reshape
(
b
,
-
1
,
*
rs
),
sums
.
reshape
(
b
,
-
1
,
*
rs
)
else
:
else
:
return
sums
.
reshape
(
b
,
-
1
,
*
rs
)
return
sums
.
reshape
(
b
,
-
1
,
*
rs
)
def
sqrt
(
x
):
return
int
(
math
.
sqrt
(
x
)
+
1e-4
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
test_sparse_attention.py
0 → 100644
+
169
−
0
View file @
34990eea
import
math
import
random
from
tqdm
import
tqdm
import
torch
import
numpy
as
np
from
mpu.sparse_transformer
import
standard_attention
,
sparse_attention_1d
,
sparse_attention_2d
def
test_sparse_attention_1d
():
s
,
w
,
times
=
4096
+
128
,
128
,
2
num_pivot
=
768
b
=
2
g
=
s
//
w
q
,
k
,
v
=
raw
=
torch
.
rand
(
3
,
b
,
16
,
s
,
64
,
dtype
=
torch
.
float
,
device
=
'
cuda
'
,
requires_grad
=
True
)
q1
,
k1
,
v1
=
raw1
=
torch
.
tensor
(
raw
.
cpu
().
detach
().
numpy
(),
dtype
=
torch
.
float
,
device
=
'
cuda
'
,
requires_grad
=
True
)
txt_indices
=
[
torch
.
arange
(
0
,
128
,
dtype
=
torch
.
long
,
device
=
'
cuda
'
),
torch
.
arange
(
0
,
22
,
dtype
=
torch
.
long
,
device
=
'
cuda
'
)]
img_indices
=
[
torch
.
arange
(
128
,
s
,
dtype
=
torch
.
long
,
device
=
'
cuda
'
),
torch
.
arange
(
22
,
s
,
dtype
=
torch
.
long
,
device
=
'
cuda
'
)]
pivot_idx
=
torch
.
stack
([
torch
.
cat
((
text_idx
,
img_indices
[
i
][
torch
.
tensor
(
random
.
sample
(
range
(
len
(
img_indices
[
i
])
-
times
*
w
),
k
=
num_pivot
-
len
(
text_idx
)),
dtype
=
torch
.
long
,
device
=
text_idx
.
device
)
]
),
dim
=
0
)
for
i
,
text_idx
in
enumerate
(
txt_indices
)
])
# -times * w to verify inference
tmp
=
torch
.
ones
((
g
-
times
+
1
,
w
,
w
),
device
=
'
cuda
'
,
dtype
=
torch
.
long
)
tmp
=
torch
.
tril
(
1
-
torch
.
block_diag
(
*
tmp
))
rmask
=
torch
.
nn
.
functional
.
pad
(
tmp
,
(
0
,
(
times
-
1
)
*
w
,
(
times
-
1
)
*
w
,
0
))
# pad (left, right, top, bottom)
pivot_attention_mask
=
rmask
.
expand
(
b
,
s
,
s
).
gather
(
dim
=-
1
,
index
=
pivot_idx
.
unsqueeze
(
1
).
expand
(
b
,
s
,
num_pivot
))
real_mask
=
torch
.
ones
((
b
,
s
,
s
),
device
=
'
cuda
'
,
dtype
=
torch
.
long
)
-
rmask
for
i
in
range
(
b
):
real_mask
[
i
][:,
pivot_idx
[
i
]]
=
1
real_mask
[
i
].
tril_
()
# test inference
# q_part = q[..., -1:, :]
# r0 = standard_attention(q, k, v, real_mask)
# r0 = r0[..., -1:, :]
# pw_idx = torch.cat((pivot_idx, torch.arange(s-times*w, s, device='cuda', dtype=torch.long).expand(b, -1)), dim=-1)
# r1 = sparse_attention_inference(q_part, k, v, pw_idx)
# print(( (r1-r0).abs() / (r1.abs()+r0.abs())).max())
import
time
r0
=
standard_attention
(
q1
,
k1
,
v1
,
real_mask
)
torch
.
cuda
.
synchronize
()
t0
=
time
.
time
()
r1
=
standard_attention
(
q1
,
k1
,
v1
,
real_mask
)
torch
.
cuda
.
synchronize
()
t1
=
time
.
time
()
r2
=
sparse_attention
(
q
,
k
,
v
,
pivot_idx
,
pivot_attention_mask
,
w
,
times
)
torch
.
cuda
.
synchronize
()
t2
=
time
.
time
()
print
(
'
times: standard
'
,
t1
-
t0
,
'
sparse
'
,
t2
-
t1
)
print
((
(
r1
-
r2
).
abs
()
/
(
r1
.
abs
()
+
r2
.
abs
())).
max
())
raw
.
retain_grad
()
l2
=
r2
.
mean
()
l1
=
r1
.
mean
()
l2
.
backward
()
l1
.
backward
()
g1
=
raw1
.
grad
g2
=
raw
.
grad
print
(
(
g1
-
g2
).
abs
().
max
())
# import pdb; pdb.set_trace()
def
test_sparse_attention_2d
():
dtype
=
torch
.
float
device
=
'
cuda
'
b
,
n_head
,
hn
=
1
,
40
,
2560
h
=
w
=
32
layout
=
[
10
,
10
,
10
+
h
*
w
,
10
+
h
*
w
*
5
]
k1
=
9
k2
=
7
qkv
=
torch
.
rand
(
3
,
b
,
layout
[
-
1
],
hn
,
dtype
=
dtype
,
device
=
device
)
qkv2
=
qkv
.
clone
()
qkv
.
requires_grad_
()
qkv2
.
requires_grad_
()
mask
=
torch
.
zeros
(
b
,
layout
[
-
1
],
layout
[
-
1
],
dtype
=
dtype
,
device
=
device
)
m
=
mask
[
0
]
for
i
in
range
(
layout
[
1
]):
m
[
i
,
:
i
+
1
]
=
1
m
[
layout
[
1
]:,
:
layout
[
0
]]
=
1
for
i
in
tqdm
(
range
(
layout
[
1
],
layout
[
2
])):
x
=
(
i
-
layout
[
1
])
//
w
y
=
(
i
-
layout
[
1
])
%
w
lx
=
max
(
0
,
x
-
k1
//
2
)
ly
=
max
(
0
,
y
-
k1
//
2
)
rx
=
min
(
h
-
1
,
x
+
k1
//
2
)
ry
=
min
(
w
-
1
,
y
+
k1
//
2
)
m
[
i
,
layout
[
1
]:
layout
[
2
]].
view
(
h
,
w
)[
lx
:
x
,
ly
:
ry
+
1
]
=
1
m
[
i
,
layout
[
1
]:
layout
[
2
]].
view
(
h
,
w
)[
x
,
ly
:
y
+
1
]
=
1
for
i
in
tqdm
(
range
(
layout
[
2
],
layout
[
3
])):
x
=
(
i
-
layout
[
2
])
//
(
2
*
w
)
y
=
(
i
-
layout
[
2
])
%
(
2
*
w
)
lx
=
max
(
0
,
x
-
k1
//
2
)
ly
=
max
(
0
,
y
-
k1
//
2
)
rx
=
min
(
2
*
h
-
1
,
x
+
k1
//
2
)
ry
=
min
(
2
*
w
-
1
,
y
+
k1
//
2
)
m
[
i
,
layout
[
2
]:
layout
[
3
]].
view
(
h
*
2
,
w
*
2
)[
lx
:
x
,
ly
:
ry
+
1
]
=
1
m
[
i
,
layout
[
2
]:
layout
[
3
]].
view
(
h
*
2
,
w
*
2
)[
x
,
ly
:
y
+
1
]
=
1
x
=
x
//
2
y
=
y
//
2
lx
=
max
(
0
,
x
-
k2
//
2
)
ly
=
max
(
0
,
y
-
k2
//
2
)
rx
=
min
(
h
-
1
,
x
+
k2
//
2
)
ry
=
min
(
w
-
1
,
y
+
k2
//
2
)
m
[
i
,
layout
[
1
]:
layout
[
2
]].
view
(
h
,
w
)[
lx
:
rx
+
1
,
ly
:
ry
+
1
]
=
1
# mask[1:] = mask[0]
# mask[1][layout[1]:, layout[0]-1] = 0
print
(
'
finish making mask...
'
)
import
time
torch
.
cuda
.
synchronize
()
t0
=
time
.
time
()
qkv_tmp
=
qkv
.
view
(
3
,
b
,
layout
[
-
1
],
n_head
,
hn
//
n_head
).
permute
(
0
,
1
,
3
,
2
,
4
).
contiguous
()
r1
=
standard_attention
(
*
qkv_tmp
,
mask
.
unsqueeze
(
1
)).
transpose
(
1
,
2
).
reshape
(
b
,
layout
[
3
],
hn
)
torch
.
cuda
.
synchronize
()
t1
=
time
.
time
()
r2
=
sparse_attention_2d
(
*
qkv2
,
n_head
,
layout
,
mask
[...,:
layout
[
0
]].
unsqueeze
(
1
),
kernel_size
=
k1
,
kernel_size2
=
k2
)
torch
.
cuda
.
synchronize
()
t2
=
time
.
time
()
print
(
'
times: standard
'
,
t1
-
t0
,
'
sparse
'
,
t2
-
t1
)
print
((
(
r1
[:,:
layout
[
0
]]
-
r2
[:,:
layout
[
0
]]).
abs
()
/
(
r1
[:,:
layout
[
0
]].
abs
()
+
r2
[:,:
layout
[
0
]].
abs
())).
max
())
print
((
(
r1
[:,
layout
[
1
]:]
-
r2
[:,
layout
[
1
]:]).
abs
()
/
(
r1
[:,
layout
[
1
]:].
abs
()
+
r2
[:,
layout
[
1
]:].
abs
())).
max
())
qkv
.
retain_grad
()
l2
=
r2
[:,
layout
[
1
]:].
mean
()
l1
=
r1
[:,
layout
[
1
]:].
mean
()
l2
.
backward
()
l1
.
backward
()
g1
=
qkv
.
grad
g2
=
qkv2
.
grad
print
(
(
g1
-
g2
).
abs
().
max
())
# import pdb;pdb.set_trace()
def
seed_torch
(
seed
=
1029
):
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
torch
.
manual_seed
(
seed
)
torch
.
cuda
.
manual_seed
(
seed
)
torch
.
cuda
.
manual_seed_all
(
seed
)
# if you are using multi-GPU.
torch
.
backends
.
cudnn
.
benchmark
=
False
torch
.
backends
.
cudnn
.
deterministic
=
True
torch
.
backends
.
cudnn
.
enabled
=
False
if
__name__
==
'
__main__
'
:
seed_torch
()
torch
.
backends
.
cuda
.
matmul
.
allow_tf32
=
False
test_sparse_attention_2d
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment