Skip to content
Snippets Groups Projects
Unverified Commit 0ae69d46 authored by Pedro Torruella's avatar Pedro Torruella Committed by GitHub
Browse files

Update vertex.ipynb - updating title (#11726)

parent a3491cfd
Branches
Tags
No related merge requests found
%% Cell type:markdown id:9dced1fd-2db9-4b4e-88f5-bd65563ec1a6 tags: %% Cell type:markdown id:9dced1fd-2db9-4b4e-88f5-bd65563ec1a6 tags:
# Getting Started # Vertex AI
## Installing Vertex AI ## Installing Vertex AI
To Install Vertex AI you need to follow the following steps To Install Vertex AI you need to follow the following steps
* Install Vertex Cloud SDK (https://googleapis.dev/python/aiplatform/latest/index.html) * Install Vertex Cloud SDK (https://googleapis.dev/python/aiplatform/latest/index.html)
* Setup your Default Project, credentials, region * Setup your Default Project, credentials, region
# Basic auth example for service account # Basic auth example for service account
%% Cell type:code id:e25b1ac2 tags: %% Cell type:code id:e25b1ac2 tags:
``` python ``` python
%pip install llama-index-llms-vertex %pip install llama-index-llms-vertex
``` ```
%% Cell type:code id:3d42f4996210bdc7 tags: %% Cell type:code id:3d42f4996210bdc7 tags:
``` python ``` python
from llama_index.llms.vertex import Vertex from llama_index.llms.vertex import Vertex
from google.oauth2 import service_account from google.oauth2 import service_account
filename = "vertex-407108-37495ce6c303.json" filename = "vertex-407108-37495ce6c303.json"
credentials: service_account.Credentials = ( credentials: service_account.Credentials = (
service_account.Credentials.from_service_account_file(filename) service_account.Credentials.from_service_account_file(filename)
) )
Vertex( Vertex(
model="text-bison", project=credentials.project_id, credentials=credentials model="text-bison", project=credentials.project_id, credentials=credentials
) )
``` ```
%% Cell type:markdown id:119bbfb7d84a593d tags: %% Cell type:markdown id:119bbfb7d84a593d tags:
## Basic Usage ## Basic Usage
Basic call to the text-bison model Basic call to the text-bison model
%% Cell type:code id:bf7deb10-28fe-41f2-abda-283162e9f35b tags: %% Cell type:code id:bf7deb10-28fe-41f2-abda-283162e9f35b tags:
``` python ``` python
from llama_index.llms.vertex import Vertex from llama_index.llms.vertex import Vertex
from llama_index.core.llms import ChatMessage, MessageRole from llama_index.core.llms import ChatMessage, MessageRole
llm = Vertex(model="text-bison", temperature=0, additional_kwargs={}) llm = Vertex(model="text-bison", temperature=0, additional_kwargs={})
llm.complete("Hello this is a sample text").text llm.complete("Hello this is a sample text").text
``` ```
%% Output %% Output
' ```\nHello this is a sample text\n```' ' ```\nHello this is a sample text\n```'
%% Cell type:markdown id:c3afe813-a5cb-4175-bf9c-5484b2da0a9b tags: %% Cell type:markdown id:c3afe813-a5cb-4175-bf9c-5484b2da0a9b tags:
## Async Usage ## Async Usage
### Async ### Async
%% Cell type:code id:7916602b-4f97-43bb-85a9-ac683bc962f3 tags: %% Cell type:code id:7916602b-4f97-43bb-85a9-ac683bc962f3 tags:
``` python ``` python
(await llm.acomplete("hello")).text (await llm.acomplete("hello")).text
``` ```
%% Output %% Output
' Hello! How can I help you?' ' Hello! How can I help you?'
%% Cell type:markdown id:2cfd0b78-b779-4390-96f7-99ff60087786 tags: %% Cell type:markdown id:2cfd0b78-b779-4390-96f7-99ff60087786 tags:
# Streaming Usage # Streaming Usage
### Streaming ### Streaming
%% Cell type:code id:ef4765c5-ec6a-4109-8453-c9f76396d572 tags: %% Cell type:code id:ef4765c5-ec6a-4109-8453-c9f76396d572 tags:
``` python ``` python
list(llm.stream_complete("hello"))[-1].text list(llm.stream_complete("hello"))[-1].text
``` ```
%% Output %% Output
' Hello! How can I help you?' ' Hello! How can I help you?'
%% Cell type:markdown id:ce5d9453-6465-489e-b205-a25a3da37dde tags: %% Cell type:markdown id:ce5d9453-6465-489e-b205-a25a3da37dde tags:
# Chat Usage # Chat Usage
### chat generation ### chat generation
%% Cell type:code id:2b8861d4-a151-4a5d-8a6f-d24e284009c3 tags: %% Cell type:code id:2b8861d4-a151-4a5d-8a6f-d24e284009c3 tags:
``` python ``` python
chat = Vertex(model="chat-bison") chat = Vertex(model="chat-bison")
messages = [ messages = [
ChatMessage(role=MessageRole.SYSTEM, content="Reply everything in french"), ChatMessage(role=MessageRole.SYSTEM, content="Reply everything in french"),
ChatMessage(role=MessageRole.USER, content="Hello"), ChatMessage(role=MessageRole.USER, content="Hello"),
] ]
``` ```
%% Cell type:code id:f2286016-9d58-468d-a9a2-571ad90066ad tags: %% Cell type:code id:f2286016-9d58-468d-a9a2-571ad90066ad tags:
``` python ``` python
chat.chat(messages=messages).message.content chat.chat(messages=messages).message.content
``` ```
%% Output %% Output
' Bonjour! Comment vas-tu?' ' Bonjour! Comment vas-tu?'
%% Cell type:markdown id:b830d59e-12f6-4ef7-b1ce-e71408ae3cbb tags: %% Cell type:markdown id:b830d59e-12f6-4ef7-b1ce-e71408ae3cbb tags:
# Async Chat # Async Chat
### Asynchronous chat response ### Asynchronous chat response
%% Cell type:code id:2920968a-9566-4964-b468-9a5899f42e61 tags: %% Cell type:code id:2920968a-9566-4964-b468-9a5899f42e61 tags:
``` python ``` python
(await chat.achat(messages=messages)).message.content (await chat.achat(messages=messages)).message.content
``` ```
%% Output %% Output
' Bonjour! Comment vas-tu?' ' Bonjour! Comment vas-tu?'
%% Cell type:markdown id:632585b4-f146-492c-bb16-30e8b64e2d52 tags: %% Cell type:markdown id:632585b4-f146-492c-bb16-30e8b64e2d52 tags:
# Streaming Chat # Streaming Chat
### streaming chat response ### streaming chat response
%% Cell type:code id:9ee22376-317a-4bda-a20e-5d54f88503f7 tags: %% Cell type:code id:9ee22376-317a-4bda-a20e-5d54f88503f7 tags:
``` python ``` python
list(chat.stream_chat(messages=messages))[-1].message.content list(chat.stream_chat(messages=messages))[-1].message.content
``` ```
%% Output %% Output
' Bonjour! Comment vas-tu?' ' Bonjour! Comment vas-tu?'
%% Cell type:markdown id:e24abcf3278f5ee6 tags: %% Cell type:markdown id:e24abcf3278f5ee6 tags:
# Gemini Models # Gemini Models
Calling Google Gemini Models using Vertex AI is fully supported. Calling Google Gemini Models using Vertex AI is fully supported.
### Gemini Pro ### Gemini Pro
%% Cell type:code id:2b900308342b19be tags: %% Cell type:code id:2b900308342b19be tags:
``` python ``` python
llm = Vertex( llm = Vertex(
model="gemini-pro", project=credentials.project_id, credentials=credentials model="gemini-pro", project=credentials.project_id, credentials=credentials
) )
llm.complete("Hello Gemini").text llm.complete("Hello Gemini").text
``` ```
%% Cell type:markdown id:b840065e0312fd46 tags: %% Cell type:markdown id:b840065e0312fd46 tags:
### Gemini Pro Vision ### Gemini Pro Vision
%% Cell type:code id:1a9f12769bdeca6f tags: %% Cell type:code id:1a9f12769bdeca6f tags:
``` python ``` python
history = [ history = [
ChatMessage( ChatMessage(
role="user", role="user",
content=[ content=[
{"type": "text", "text": "Explain what is in the image below:"}, {"type": "text", "text": "Explain what is in the image below:"},
{ {
"type": "image_url", "type": "image_url",
"image_url": "", "image_url": "",
}, },
], ],
), ),
] ]
llm = Vertex( llm = Vertex(
model="gemini-pro-vision", model="gemini-pro-vision",
project=credentials.project_id, project=credentials.project_id,
credentials=credentials, credentials=credentials,
) )
llm.chat(history).message.content llm.chat(history).message.content
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment