Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
SwissArmyTransformer
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mirrored_repos
MachineLearning
thukeg
SwissArmyTransformer
Commits
7aee8e24
Commit
7aee8e24
authored
3 years ago
by
duzx16
Browse files
Options
Downloads
Patches
Plain Diff
Reformat code
parent
c761af73
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
SwissArmyTransformer/model/mixins.py
+21
-17
21 additions, 17 deletions
SwissArmyTransformer/model/mixins.py
with
21 additions
and
17 deletions
SwissArmyTransformer/model/mixins.py
+
21
−
17
View file @
7aee8e24
...
@@ -18,40 +18,44 @@ from SwissArmyTransformer.mpu.transformer import unscaled_init_method
...
@@ -18,40 +18,44 @@ from SwissArmyTransformer.mpu.transformer import unscaled_init_method
from
.base_model
import
BaseMixin
from
.base_model
import
BaseMixin
from
.cached_autoregressive_model
import
CachedAutoregressiveMixin
from
.cached_autoregressive_model
import
CachedAutoregressiveMixin
class
PositionEmbeddingMixin
(
BaseMixin
):
class
PositionEmbeddingMixin
(
BaseMixin
):
def
__init__
(
self
,
additional_sequence_length
,
hidden_size
,
def
__init__
(
self
,
additional_sequence_length
,
hidden_size
,
init_method_std
=
0.02
,
reinit_slice
=
slice
(
-
1024
,
None
)
init_method_std
=
0.02
,
reinit_slice
=
slice
(
-
1024
,
None
)
):
):
super
(
PositionEmbeddingMixin
,
self
).
__init__
()
super
(
PositionEmbeddingMixin
,
self
).
__init__
()
self
.
reinit_slice
=
reinit_slice
self
.
reinit_slice
=
reinit_slice
self
.
position_embeddings
=
torch
.
nn
.
Embedding
(
additional_sequence_length
,
hidden_size
)
self
.
position_embeddings
=
torch
.
nn
.
Embedding
(
additional_sequence_length
,
hidden_size
)
torch
.
nn
.
init
.
normal_
(
self
.
position_embeddings
.
weight
,
mean
=
0.0
,
std
=
init_method_std
)
torch
.
nn
.
init
.
normal_
(
self
.
position_embeddings
.
weight
,
mean
=
0.0
,
std
=
init_method_std
)
def
reinit
(
self
,
*
pre_mixins
):
def
reinit
(
self
,
*
pre_mixins
):
old_weights
=
self
.
transformer
.
position_embeddings
.
weight
.
data
[
self
.
reinit_slice
]
old_weights
=
self
.
transformer
.
position_embeddings
.
weight
.
data
[
self
.
reinit_slice
]
old_len
,
hidden_size
=
old_weights
.
shape
old_len
,
hidden_size
=
old_weights
.
shape
assert
hidden_size
==
self
.
position_embeddings
.
weight
.
shape
[
-
1
]
assert
hidden_size
==
self
.
position_embeddings
.
weight
.
shape
[
-
1
]
self
.
position_embeddings
.
weight
.
data
.
view
(
-
1
,
old_len
,
hidden_size
).
copy_
(
old_weights
)
self
.
position_embeddings
.
weight
.
data
.
view
(
-
1
,
old_len
,
hidden_size
).
copy_
(
old_weights
)
class
AttentionMixin
(
BaseMixin
):
class
AttentionMixin
(
BaseMixin
):
def
__init__
(
self
,
num_layers
,
def
__init__
(
self
,
num_layers
,
hidden_size
,
hidden_size
,
init_method
=
unscaled_init_method
(
0.02
),
init_method
=
unscaled_init_method
(
0.02
),
output_layer_init_method
=
unscaled_init_method
(
0.02
)
output_layer_init_method
=
unscaled_init_method
(
0.02
)
):
):
super
(
AttentionMixin
,
self
).
__init__
()
super
(
AttentionMixin
,
self
).
__init__
()
self
.
num_layers
=
num_layers
# replace attention in the LAST n layers
self
.
num_layers
=
num_layers
# replace attention in the LAST n layers
self
.
query_key_value
=
torch
.
nn
.
ModuleList
(
self
.
query_key_value
=
torch
.
nn
.
ModuleList
(
[
ColumnParallelLinear
(
hidden_size
,
3
*
hidden_size
,
stride
=
3
,
[
ColumnParallelLinear
(
hidden_size
,
3
*
hidden_size
,
stride
=
3
,
gather_output
=
False
,
init_method
=
init_method
)
gather_output
=
False
,
init_method
=
init_method
)
for
layer_id
in
range
(
num_layers
)
for
layer_id
in
range
(
num_layers
)
])
])
self
.
dense
=
torch
.
nn
.
ModuleList
(
self
.
dense
=
torch
.
nn
.
ModuleList
(
[
RowParallelLinear
(
hidden_size
,
[
RowParallelLinear
(
hidden_size
,
hidden_size
,
hidden_size
,
input_is_parallel
=
True
,
input_is_parallel
=
True
,
init_method
=
output_layer_init_method
)
init_method
=
output_layer_init_method
)
for
layer_id
in
range
(
num_layers
)
for
layer_id
in
range
(
num_layers
)
])
])
def
reinit
(
self
,
*
pre_mixins
):
def
reinit
(
self
,
*
pre_mixins
):
start_layer
=
len
(
self
.
transformer
.
layers
)
-
self
.
num_layers
start_layer
=
len
(
self
.
transformer
.
layers
)
-
self
.
num_layers
assert
start_layer
>=
0
assert
start_layer
>=
0
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment