Skip to content
Snippets Groups Projects
learning_rates.py 3.42 KiB
Newer Older
  • Learn to ignore specific revisions
  • Ming Ding's avatar
    Ming Ding committed
    # coding=utf-8
    # Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    """PyTorch DataLoader for TFRecords"""
    
    import torch
    from torch.optim.lr_scheduler import _LRScheduler
    import math
    
    class AnnealingLR(_LRScheduler):
        """Anneals the learning rate from start to zero along a cosine curve."""
    
        DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None']
    
        def __init__(self, optimizer, start_lr, warmup_iter, num_iters, decay_style=None, last_iter=-1, decay_ratio=0.5):
            assert warmup_iter <= num_iters
            self.optimizer = optimizer
            self.start_lr = start_lr
            self.warmup_iter = warmup_iter
            self.num_iters = last_iter + 1
            self.end_iter = num_iters
            self.decay_style = decay_style.lower() if isinstance(decay_style, str) else None
            self.decay_ratio = 1 / decay_ratio
            self.step(self.num_iters)
            if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
                print(f'learning rate decaying style {self.decay_style}, ratio {self.decay_ratio}')
    
        def get_lr(self):
            # https://openreview.net/pdf?id=BJYwwY9ll pg. 4
            if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter:
                return float(self.start_lr) * self.num_iters / self.warmup_iter
            else:
                if self.decay_style == self.DECAY_STYLES[0]:
                    return self.start_lr*((self.end_iter-(self.num_iters-self.warmup_iter))/self.end_iter)
                elif self.decay_style == self.DECAY_STYLES[1]:
                    decay_step_ratio = min(1.0, (self.num_iters - self.warmup_iter) / self.end_iter)
                    return self.start_lr / self.decay_ratio * (
                            (math.cos(math.pi * decay_step_ratio) + 1) * (self.decay_ratio - 1) / 2 + 1)
                elif self.decay_style == self.DECAY_STYLES[2]:
                    #TODO: implement exponential decay
                    return self.start_lr
                else:
                    return self.start_lr
    
        def step(self, step_num=None):
            if step_num is None:
                step_num = self.num_iters + 1
            self.num_iters = step_num
            new_lr = self.get_lr()
            for group in self.optimizer.param_groups:
                group['lr'] = new_lr
    
        def state_dict(self):
            sd = {
                    # 'start_lr': self.start_lr,
                    'warmup_iter': self.warmup_iter,
                    'num_iters': self.num_iters,
                    'decay_style': self.decay_style,
                    'end_iter': self.end_iter,
                    'decay_ratio': self.decay_ratio
            }
            return sd
    
        def load_state_dict(self, sd):
            # self.start_lr = sd['start_lr']
            self.warmup_iter = sd['warmup_iter']
            self.num_iters = sd['num_iters']
            # self.end_iter = sd['end_iter']
            self.decay_style = sd['decay_style']
            if 'decay_ratio' in sd:
                self.decay_ratio = sd['decay_ratio']
            self.step(self.num_iters)