Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# coding=utf-
# rewritten, Copyright (c) 2021, Ming Ding. All rights reserved.
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer."""
import math
import copy
import torch
import torch.nn.functional as F
from apex.normalization.fused_layer_norm import FusedLayerNorm
from .initialize import get_model_parallel_world_size
from .layers import ColumnParallelLinear, RowParallelLinear, VocabParallelEmbedding
from .mappings import gather_from_model_parallel_region, copy_to_model_parallel_region
import deepspeed
from .random import checkpoint
from .random import get_cuda_rng_tracker
from .utils import divide, sqrt, scaled_init_method, unscaled_init_method, gelu
from .utils import split_tensor_along_last_dim
class LayerNorm(FusedLayerNorm):
def __init__(self, *args, pb_relax=False, **kwargs):
super().__init__(*args, **kwargs)
self.pb_relax = pb_relax
def forward(self, x):
if not self.pb_relax:
return super().forward(x)
return super().forward(x / (x.abs().max().detach()/8))
def standard_attention(query_layer, key_layer, value_layer, attention_mask,
attention_dropout=None, log_attention_weights=None):
# We disable the PB-relax-Attention and only changes the order of computation, because it is enough for most of training.
# The implementation in the paper can be done very easily, if you really need it to train very deep transformers.
attention_scores = torch.matmul(
query_layer / math.sqrt(query_layer.shape[-1]),
key_layer.transpose(-1, -2)
)
if attention_mask.shape[-2] > 1: # if auto-regressive, skip
attention_scores = torch.mul(attention_scores, attention_mask) - \
10000.0 * (1.0 - attention_mask)
if log_attention_weights is not None:
attention_scores += log_attention_weights
attention_probs = F.softmax(attention_scores, dim=-1)
if attention_dropout is not None:
with get_cuda_rng_tracker().fork():
attention_probs = attention_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
return context_layer
class SelfAttention(torch.nn.Module):
def __init__(self, hidden_size, num_attention_heads,
attention_dropout_prob, output_dropout_prob,
init_method, layer_id, output_layer_init_method=None,
hooks={}):
super(SelfAttention, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
self.hooks = hooks
self.layer_id = layer_id
# Per attention head and per partition values.
world_size = get_model_parallel_world_size()
self.hidden_size_per_partition = divide(hidden_size, world_size)
self.hidden_size_per_attention_head = divide(hidden_size, num_attention_heads)
self.num_attention_heads_per_partition = divide(num_attention_heads, world_size)
# Strided linear layer.
self.query_key_value = ColumnParallelLinear(
hidden_size,
3*hidden_size,
stride=3,
gather_output=False,
init_method=init_method
)
self.attention_dropout = torch.nn.Dropout(attention_dropout_prob)
self.dense = RowParallelLinear(
hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method
)
self.output_dropout = torch.nn.Dropout(output_dropout_prob)
def _transpose_for_scores(self, tensor):
"""Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with
size [b, np, s, hn].
"""
new_tensor_shape = tensor.size()[:-1] + \
(self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head)
tensor = tensor.view(*new_tensor_shape)
return tensor.permute(0, 2, 1, 3)
def forward(self, hidden_states, mask, *other_tensors):
if 'attention_forward' in self.hooks:
return self.hooks['attention_forward'](hidden_states, mask, *other_tensors,layer_id=self.layer_id)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
else:
mixed_raw_layer = self.query_key_value(hidden_states)
(mixed_query_layer,
mixed_key_layer,
mixed_value_layer) = split_tensor_along_last_dim(mixed_raw_layer, 3)
dropout_fn = self.attention_dropout if self.training else None
query_layer = self._transpose_for_scores(mixed_query_layer)
key_layer = self._transpose_for_scores(mixed_key_layer)
value_layer = self._transpose_for_scores(mixed_value_layer)
context_layer = standard_attention(query_layer, key_layer, value_layer, mask, dropout_fn)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.view(*new_context_layer_shape)
output = self.dense(context_layer)
if self.training:
output = self.output_dropout(output)
return output, None
class MLP(torch.nn.Module):
def __init__(self, hidden_size, output_dropout_prob, init_method,
output_layer_init_method=None, hooks={}):
super(MLP, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
self.hooks = hooks
# Project to 4h.
self.dense_h_to_4h = ColumnParallelLinear(
hidden_size,
4*hidden_size,
gather_output=False,
init_method=init_method
)
# Project back to h.
self.dense_4h_to_h = RowParallelLinear(
4*hidden_size,
hidden_size,
input_is_parallel=True,
init_method=output_layer_init_method
)
self.dropout = torch.nn.Dropout(output_dropout_prob)
def forward(self, hidden_states, *other_tensors):
if 'mlp_forward' in self.hooks:
output = self.hooks['mlp_forward'](hidden_states, *other_tensors, layer_id=self.layer_id)
else:
intermediate_parallel = self.dense_h_to_4h(hidden_states)
intermediate_parallel = gelu(intermediate_parallel)
output = self.dense_4h_to_h(intermediate_parallel)
if self.training:
output = self.dropout(output)
return output
class BaseTransformerLayer(torch.nn.Module):
"""A single layer transformer for GPT2.
We use the following notation:
h: hidden size
n: number of attention heads
b: batch size
s: sequence length
Transformore layer takes input with size [b, s, h] and returns an
output of the same size.
Arguments:
hidden_size: The hidden size of the self attention.
num_attention_heads: number of attention head in the self
attention.
attention_dropout_prob: dropout probability of the attention
score in self attention.
output_dropout_prob: dropout probability for the outputs
after self attention and final output.
layernorm_epsilon: epsilon used in layernorm to avoid
division by zero.
init_method: initialization method used for the weights. Note
that all biases are initialized to zero and
layernorm weight are initialized to one.
output_layer_init_method: output layers (attention output and
mlp output) initialization. If None,
use `init_method`.
"""
def __init__(
self,
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
layernorm_epsilon,
init_method,
layer_id,
output_layer_init_method=None,
sandwich_ln=True,
hooks={}
):
super(BaseTransformerLayer, self).__init__()
# Set output layer initialization if not provided.
if output_layer_init_method is None:
output_layer_init_method = init_method
self.layer_id = layer_id
self.hooks = hooks
# Layernorm on the input data.
self.input_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
# Self attention.
self.attention = SelfAttention(
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
init_method,
layer_id,
output_layer_init_method=output_layer_init_method,
hooks=hooks
)
# Layernorm on the input data.
self.post_attention_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
self.sandwich_ln = sandwich_ln
if sandwich_ln:
self.third_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
self.fourth_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
# MLP
self.mlp = MLP(
hidden_size,
output_dropout_prob,
init_method,
output_layer_init_method=output_layer_init_method,
hooks=hooks
)
def forward(self, hidden_states, mask, *other_tensors):
'''
hidden_states: [batch, seq_len, hidden_size]
mask: [(1, 1), seq_len, seq_len]
'''
# Layer norm at the begining of the transformer layer.
layernorm_output1 = self.input_layernorm(hidden_states)
# Self attention.
attention_output, output_this_layer = self.attention(layernorm_output1, mask, *other_tensors)
# Third LayerNorm
if self.sandwich_ln:
attention_output = self.third_layernorm(attention_output)
# Residual connection.
layernorm_input = hidden_states + attention_output
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Fourth LayerNorm
if self.sandwich_ln:
mlp_output = self.fourth_layernorm(mlp_output, *other_tensors)
# Second residual connection.
output = layernorm_input + mlp_output
return output, output_this_layer # temporally, output_this_layer is only from attention
class BaseTransformer(torch.nn.Module):
def __init__(self,
num_layers,
vocab_size,
hidden_size,
num_attention_heads,
max_sequence_length,
embedding_dropout_prob,
attention_dropout_prob,
output_dropout_prob,
checkpoint_activations,
checkpoint_num_layers=1,
layernorm_epsilon=1.0e-5,
init_method_std=0.02,
sandwich_ln=True,
parallel_output=True,
hooks={}
):
super(BaseTransformer, self).__init__()
if deepspeed.checkpointing.is_configured():
global get_cuda_rng_tracker, checkpoint
get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker
checkpoint = deepspeed.checkpointing.checkpoint
# recording parameters
self.parallel_output = parallel_output
self.checkpoint_activations = checkpoint_activations
self.checkpoint_num_layers = checkpoint_num_layers
self.max_sequence_length = max_sequence_length
self.hooks = copy.copy(hooks) # hooks will be updated each forward
# create embedding parameters
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
self.word_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size, init_method=unscaled_init_method(0.02))
self.position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size)
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std)
# create all layers
self.output_layer_init_method = scaled_init_method(init_method_std, num_layers)
self.init_method = unscaled_init_method(init_method_std)
def get_layer(layer_id):
return BaseTransformerLayer(
hidden_size,
num_attention_heads,
attention_dropout_prob,
output_dropout_prob,
layernorm_epsilon,
self.init_method,
layer_id,
output_layer_init_method=self.output_layer_init_method,
sandwich_ln=sandwich_ln,
hooks=hooks
)
self.layers = torch.nn.ModuleList(
[get_layer(layer_id) for layer_id in range(num_layers)])
# Final layer norm before output.
self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon)
def forward(self, input_ids, position_ids, attention_mask, *other_tensors):
# sanity check
assert len(input_ids.shape) == 2
batch_size, query_length = input_ids.shape
assert len(position_ids.shape) <= 2
assert position_ids.shape[-1] == query_length
assert len(attention_mask.shape) == 2 or \
len(attention_mask.shape) == 4 and attention_mask.shape[1] == 1
# embedding part
if 'word_embedding_forward' in self.hooks:
hidden_states = self.hooks['word_embedding_forward'](input_ids, *other_tensors)
else: # default
hidden_states = self.word_embeddings(input_ids)
if 'position_embedding_forward' in self.hooks:
position_embeddings = self.hooks['position_embedding_forward'](position_ids, *other_tensors)
else:
position_embeddings = self.position_embeddings(position_ids)
hidden_states = hidden_states + position_embeddings
hidden_states = self.embedding_dropout(hidden_states)
# define custom_forward for checkpointing
output_per_layers = []
if self.checkpoint_activations:
def custom(start, end):
def custom_forward(*inputs):
layers_ = self.layers[start:end]
x_, mask, *other_tensors = inputs[0], inputs[1], inputs[2:]
for i, layer in enumerate(layers_):
x_, output_this_layer = layer(x_, mask, *other_tensors)
output_per_layers.append(output_this_layer)
return x_
return custom_forward
l, num_layers = 0, len(self.layers)
chunk_length = self.checkpoint_num_layers
while l < num_layers:
args = [hidden_states, attention_mask, *other_tensors]
hidden_states = checkpoint(custom(l, l + chunk_length), *args)
l += chunk_length
else:
for i, layer in enumerate(self.layers):
args = [hidden_states, attention_mask, *other_tensors]
hidden_states, output_this_layer = layer(*args, *other_tensors)
output_per_layers.append(output_this_layer)
# Final layer norm.
logits = self.final_layernorm(hidden_states)
if 'final_forward' in self.hooks:
logits_parallel = self.hooks['final_forward'](logits, *other_tensors)
else:
logits_parallel = copy_to_model_parallel_region(logits)
logits_parallel = F.linear(logits_parallel, self.word_embeddings.weight)
if self.parallel_output:
return (logits_parallel, *output_per_layers)
return (gather_from_model_parallel_region(logits_parallel), *output_per_layers)