Skip to content
Snippets Groups Projects
Unverified Commit 556096be authored by Yushi Bai's avatar Yushi Bai Committed by GitHub
Browse files

Delete eval.py

parent 55bd6779
No related branches found
No related tags found
No related merge requests found
import os
import json
import argparse
import numpy as np
from metrics import (
qa_f1_score,
rouge_zh_score,
qa_f1_zh_score,
rouge_score,
classification_score,
retrieval_score,
retrieval_zh_score,
count_score,
code_sim_score,
)
dataset2metric = {
"narrativeqa": qa_f1_score,
"qasper": qa_f1_score,
"multifieldqa_en": qa_f1_score,
"multifieldqa_zh": qa_f1_zh_score,
"hotpotqa": qa_f1_score,
"2wikimqa": qa_f1_score,
"musique": qa_f1_score,
"dureader": rouge_zh_score,
"gov_report": rouge_score,
"qmsum": rouge_score,
"multi_news": rouge_score,
"vcsum": rouge_zh_score,
"trec": classification_score,
"triviaqa": qa_f1_score,
"samsum": rouge_score,
"lsht": classification_score,
"passage_retrieval_en": retrieval_score,
"passage_count": count_score,
"passage_retrieval_zh": retrieval_zh_score,
"lcc": code_sim_score,
"repobench-p": code_sim_score,
}
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default=None)
parser.add_argument('--e', action='store_true', help="Evaluate on LongBench-E")
return parser.parse_args(args)
def scorer_e(dataset, predictions, answers, lengths, all_classes):
scores = {"0-4k": [], "4-8k": [], "8k+": []}
for (prediction, ground_truths, length) in zip(predictions, answers, lengths):
score = 0.
if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
score = max(score, dataset2metric[dataset](prediction, ground_truth, all_classes=all_classes))
if length < 4000:
scores["0-4k"].append(score)
elif length < 8000:
scores["4-8k"].append(score)
else:
scores["8k+"].append(score)
for key in scores.keys():
scores[key] = round(100 * np.mean(scores[key]), 2)
return scores
def scorer(dataset, predictions, answers, all_classes):
total_score = 0.
for (prediction, ground_truths) in zip(predictions, answers):
score = 0.
if dataset in ["trec", "triviaqa", "samsum", "lsht"]:
prediction = prediction.lstrip('\n').split('\n')[0]
for ground_truth in ground_truths:
score = max(score, dataset2metric[dataset](prediction, ground_truth, all_classes=all_classes))
total_score += score
return round(100 * total_score / len(predictions), 2)
if __name__ == '__main__':
args = parse_args()
scores = dict()
if args.e:
path = f"pred_e/{args.model}/"
else:
path = f"pred/{args.model}/"
all_files = os.listdir(path)
print("Evaluating on:", all_files)
for filename in all_files:
if not filename.endswith("jsonl"):
continue
predictions, answers, lengths = [], [], []
dataset = filename.split('.')[0]
with open(f"{path}{filename}", "r", encoding="utf-8") as f:
for line in f:
data = json.loads(line)
predictions.append(data["pred"])
answers.append(data["answers"])
all_classes = data["all_classes"]
if "length" in data:
lengths.append(data["length"])
if args.e:
score = scorer_e(dataset, predictions, answers, lengths, all_classes)
else:
score = scorer(dataset, predictions, answers, all_classes)
scores[dataset] = score
if args.e:
out_path = f"pred_e/{args.model}/result.json"
else:
out_path = f"pred/{args.model}/result.json"
with open(out_path, "w") as f:
json.dump(scores, f, ensure_ascii=False, indent=4)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment