-
longbench2 authoredlongbench2 authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
pred.py 7.06 KiB
import os, csv, json
import argparse
import time
from tqdm import tqdm
from datasets import load_dataset
import re
from openai import OpenAI
from transformers import AutoTokenizer
import tiktoken
import torch.multiprocessing as mp
model_map = json.loads(open('config/model2path.json', encoding='utf-8').read())
maxlen_map = json.loads(open('config/model2maxlen.json', encoding='utf-8').read())
URL = "http://127.0.0.1:8000/v1"
API_KEY = "token-abc123"
template_rag = open('prompts/0shot_rag.txt', encoding='utf-8').read()
template_no_context = open('prompts/0shot_no_context.txt', encoding='utf-8').read()
template_0shot = open('prompts/0shot.txt', encoding='utf-8').read()
template_0shot_cot = open('prompts/0shot_cot.txt', encoding='utf-8').read()
template_0shot_cot_ans = open('prompts/0shot_cot_ans.txt', encoding='utf-8').read()
def query_llm(prompt, model, tokenizer, client=None, temperature=0.5, max_new_tokens=128, stop=None):
# truncate
max_len = maxlen_map[model]
if model in model_map:
input_ids = tokenizer.encode(prompt)
if len(input_ids) > max_len:
input_ids = input_ids[:max_len//2] + input_ids[-max_len//2:]
prompt = tokenizer.decode(input_ids, skip_special_tokens=True)
else:
input_ids = tokenizer.encode(prompt, disallowed_special=())
if len(input_ids) > max_len:
input_ids = input_ids[:max_len//2] + input_ids[-max_len//2:]
prompt = tokenizer.decode(input_ids)
tries = 0
if model in model_map:
model = model_map[model]
while tries < 5:
tries += 1
try:
completion = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
max_tokens=max_new_tokens,
)
return completion.choices[0].message.content
except KeyboardInterrupt as e:
raise e
except Exception as e:
print("Error Occurs: \"%s\" Retry ..."%(str(e)))
time.sleep(1)
else:
print("Max tries. Failed.")
return ''
def extract_answer(response):
response = response.replace('*', '')
match = re.search(r'The correct answer is \(([A-D])\)', response)
if match:
return match.group(1)
else:
match = re.search(r'The correct answer is ([A-D])', response)
if match:
return match.group(1)
else:
return None
def get_pred(data, args, fout):
model = args.model
if "gpt" in model or "o1" in model:
tokenizer = tiktoken.encoding_for_model("gpt-4o-2024-08-06")
else:
tokenizer = AutoTokenizer.from_pretrained(model_map[model], trust_remote_code=True)
client = OpenAI(
base_url=URL,
api_key=API_KEY
)
for item in tqdm(data):
context = item['context']
if args.rag > 0:
template = template_rag
retrieved = item["retrieved_context"][:args.rag]
retrieved = sorted(retrieved, key=lambda x: x['c_idx'])
context = '\n\n'.join([f"Retrieved chunk {idx+1}: {x['content']}" for idx, x in enumerate(retrieved)])
elif args.no_context:
template = template_no_context
elif args.cot:
template = template_0shot_cot
else:
template = template_0shot
prompt = template.replace('$DOC$', context.strip()).replace('$Q$', item['question'].strip()).replace('$C_A$', item['choice_A'].strip()).replace('$C_B$', item['choice_B'].strip()).replace('$C_C$', item['choice_C'].strip()).replace('$C_D$', item['choice_D'].strip())
if args.cot:
output = query_llm(prompt, model, tokenizer, client, temperature=0.1, max_new_tokens=1024)
else:
output = query_llm(prompt, model, tokenizer, client, temperature=0.1, max_new_tokens=128)
if output == '':
continue
if args.cot: # extract answer
response = output.strip()
item['response_cot'] = response
prompt = template_0shot_cot_ans.replace('$DOC$', context.strip()).replace('$Q$', item['question'].strip()).replace('$C_A$', item['choice_A'].strip()).replace('$C_B$', item['choice_B'].strip()).replace('$C_C$', item['choice_C'].strip()).replace('$C_D$', item['choice_D'].strip()).replace('$COT$', response)
output = query_llm(prompt, model, tokenizer, client, temperature=0.1, max_new_tokens=128)
if output == '':
continue
response = output.strip()
item['response'] = response
item['pred'] = extract_answer(response)
item['judge'] = item['pred'] == item['answer']
item['context'] = context[:1000]
fout.write(json.dumps(item, ensure_ascii=False) + '\n')
fout.flush()
def main():
os.makedirs(args.save_dir, exist_ok=True)
print(args)
if args.rag > 0:
out_file = os.path.join(args.save_dir, args.model.split("/")[-1] + f"_rag_{str(args.rag)}.jsonl")
elif args.no_context:
out_file = os.path.join(args.save_dir, args.model.split("/")[-1] + "_no_context.jsonl")
elif args.cot:
out_file = os.path.join(args.save_dir, args.model.split("/")[-1] + "_cot.jsonl")
else:
out_file = os.path.join(args.save_dir, args.model.split("/")[-1] + ".jsonl")
dataset = load_dataset('THUDM/LongBench-v2', split='train') # dataset = json.load(open('data.json', 'r', encoding='utf-8'))
data_all = [{"_id": item["_id"], "domain": item["domain"], "sub_domain": item["sub_domain"], "difficulty": item["difficulty"], "length": item["length"], "question": item["question"], "choice_A": item["choice_A"], "choice_B": item["choice_B"], "choice_C": item["choice_C"], "choice_D": item["choice_D"], "answer": item["answer"], "context": item["context"]} for item in dataset]
# cache
has_data = {}
if os.path.exists(out_file):
with open(out_file, encoding='utf-8') as f:
has_data = {json.loads(line)["_id"]: 0 for line in f}
fout = open(out_file, 'a', encoding='utf-8')
data = []
for item in data_all:
if item["_id"] not in has_data:
data.append(item)
data_subsets = [data[i::args.n_proc] for i in range(args.n_proc)]
processes = []
for rank in range(args.n_proc):
p = mp.Process(target=get_pred, args=(data_subsets[rank], args, fout))
p.start()
processes.append(p)
for p in processes:
p.join()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", "-s", type=str, default="results")
parser.add_argument("--model", "-m", type=str, default="GLM-4-9B-Chat")
parser.add_argument("--cot", "-cot", action='store_true') # set to True if using COT
parser.add_argument("--no_context", "-nc", action='store_true') # set to True if using no context (directly measuring memorization)
parser.add_argument("--rag", "-rag", type=int, default=0) # set to 0 if RAG is not used, otherwise set to N when using top-N retrieved context
parser.add_argument("--n_proc", "-n", type=int, default=16)
args = parser.parse_args()
main()