-
Marcus Schiesser authoredMarcus Schiesser authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
groq.ts 2.62 KiB
import ciInfo from "ci-info";
import prompts from "prompts";
import { ModelConfigParams } from ".";
import { questionHandlers, toChoice } from "../../questions";
const MODELS = ["llama3-8b", "llama3-70b", "mixtral-8x7b"];
const DEFAULT_MODEL = MODELS[0];
// Use huggingface embedding models for now as Groq doesn't support embedding models
enum HuggingFaceEmbeddingModelType {
XENOVA_ALL_MINILM_L6_V2 = "all-MiniLM-L6-v2",
XENOVA_ALL_MPNET_BASE_V2 = "all-mpnet-base-v2",
}
type ModelData = {
dimensions: number;
};
const EMBEDDING_MODELS: Record<HuggingFaceEmbeddingModelType, ModelData> = {
[HuggingFaceEmbeddingModelType.XENOVA_ALL_MINILM_L6_V2]: {
dimensions: 384,
},
[HuggingFaceEmbeddingModelType.XENOVA_ALL_MPNET_BASE_V2]: {
dimensions: 768,
},
};
const DEFAULT_EMBEDDING_MODEL = Object.keys(EMBEDDING_MODELS)[0];
const DEFAULT_DIMENSIONS = Object.values(EMBEDDING_MODELS)[0].dimensions;
type GroqQuestionsParams = {
apiKey?: string;
askModels: boolean;
};
export async function askGroqQuestions({
askModels,
apiKey,
}: GroqQuestionsParams): Promise<ModelConfigParams> {
const config: ModelConfigParams = {
apiKey,
model: DEFAULT_MODEL,
embeddingModel: DEFAULT_EMBEDDING_MODEL,
dimensions: DEFAULT_DIMENSIONS,
isConfigured(): boolean {
if (config.apiKey) {
return true;
}
if (process.env["GROQ_API_KEY"]) {
return true;
}
return false;
},
};
if (!config.apiKey) {
const { key } = await prompts(
{
type: "text",
name: "key",
message:
"Please provide your Groq API key (or leave blank to use GROQ_API_KEY env variable):",
},
questionHandlers,
);
config.apiKey = key || process.env.GROQ_API_KEY;
}
// use default model values in CI or if user should not be asked
const useDefaults = ciInfo.isCI || !askModels;
if (!useDefaults) {
const { model } = await prompts(
{
type: "select",
name: "model",
message: "Which LLM model would you like to use?",
choices: MODELS.map(toChoice),
initial: 0,
},
questionHandlers,
);
config.model = model;
const { embeddingModel } = await prompts(
{
type: "select",
name: "embeddingModel",
message: "Which embedding model would you like to use?",
choices: Object.keys(EMBEDDING_MODELS).map(toChoice),
initial: 0,
},
questionHandlers,
);
config.embeddingModel = embeddingModel;
config.dimensions =
EMBEDDING_MODELS[
embeddingModel as HuggingFaceEmbeddingModelType
].dimensions;
}
return config;
}