-
Thuc Pham authored
Co-authored-by:
Marcus Schiesser <mail@marcusschiesser.de>
Thuc Pham authoredCo-authored-by:
Marcus Schiesser <mail@marcusschiesser.de>
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
env-variables.ts 7.27 KiB
import fs from "fs/promises";
import path from "path";
import {
ModelConfig,
TemplateDataSource,
TemplateFramework,
TemplateVectorDB,
} from "./types";
type EnvVar = {
name?: string;
description?: string;
value?: string;
};
const renderEnvVar = (envVars: EnvVar[]): string => {
return envVars.reduce(
(prev, env) =>
prev +
(env.description
? `# ${env.description.replaceAll("\n", "\n# ")}\n`
: "") +
(env.name
? env.value
? `${env.name}=${env.value}\n\n`
: `# ${env.name}=\n\n`
: ""),
"",
);
};
const getVectorDBEnvs = (vectorDb?: TemplateVectorDB): EnvVar[] => {
if (!vectorDb) {
return [];
}
switch (vectorDb) {
case "mongo":
return [
{
name: "MONGO_URI",
description:
"For generating a connection URI, see https://docs.timescale.com/use-timescale/latest/services/create-a-service\nThe MongoDB connection URI.",
},
{
name: "MONGODB_DATABASE",
},
{
name: "MONGODB_VECTORS",
},
{
name: "MONGODB_VECTOR_INDEX",
},
];
case "pg":
return [
{
name: "PG_CONNECTION_STRING",
description:
"For generating a connection URI, see https://docs.timescale.com/use-timescale/latest/services/create-a-service\nThe PostgreSQL connection string.",
},
];
case "pinecone":
return [
{
name: "PINECONE_API_KEY",
description:
"Configuration for Pinecone vector store\nThe Pinecone API key.",
},
{
name: "PINECONE_ENVIRONMENT",
},
{
name: "PINECONE_INDEX_NAME",
},
];
case "milvus":
return [
{
name: "MILVUS_ADDRESS",
description:
"The address of the Milvus server. Eg: http://localhost:19530",
value: "http://localhost:19530",
},
{
name: "MILVUS_COLLECTION",
description:
"The name of the Milvus collection to store the vectors.",
value: "llamacollection",
},
{
name: "MILVUS_USERNAME",
description: "The username to access the Milvus server.",
},
{
name: "MILVUS_PASSWORD",
description: "The password to access the Milvus server.",
},
];
case "astra":
return [
{
name: "ASTRA_DB_APPLICATION_TOKEN",
description: "The generated app token for your Astra database",
},
{
name: "ASTRA_DB_ENDPOINT",
description: "The API endpoint for your Astra database",
},
{
name: "ASTRA_DB_COLLECTION",
description: "The name of the collection in your Astra database",
},
];
case "qdrant":
return [
{
name: "QDRANT_URL",
description:
"The qualified REST URL of the Qdrant server. Eg: http://localhost:6333",
},
{
name: "QDRANT_COLLECTION",
description: "The name of Qdrant collection to use.",
},
{
name: "QDRANT_API_KEY",
description:
"Optional API key for authenticating requests to Qdrant.",
},
];
default:
return [];
}
};
const getModelEnvs = (modelConfig: ModelConfig): EnvVar[] => {
return [
{
name: "MODEL_PROVIDER",
description: "The provider for the AI models to use.",
value: modelConfig.provider,
},
{
name: "MODEL",
description: "The name of LLM model to use.",
value: modelConfig.model,
},
{
name: "EMBEDDING_MODEL",
description: "Name of the embedding model to use.",
value: modelConfig.embeddingModel,
},
{
name: "EMBEDDING_DIM",
description: "Dimension of the embedding model to use.",
value: modelConfig.dimensions.toString(),
},
...(modelConfig.provider === "openai"
? [
{
name: "OPENAI_API_KEY",
description: "The OpenAI API key to use.",
value: modelConfig.apiKey,
},
{
name: "LLM_TEMPERATURE",
description: "Temperature for sampling from the model.",
},
{
name: "LLM_MAX_TOKENS",
description: "Maximum number of tokens to generate.",
},
]
: []),
...(modelConfig.provider === "anthropic"
? [
{
name: "ANTHROPIC_API_KEY",
description: "The Anthropic API key to use.",
value: modelConfig.apiKey,
},
]
: []),
...(modelConfig.provider === "gemini"
? [
{
name: "GOOGLE_API_KEY",
description: "The Google API key to use.",
value: modelConfig.apiKey,
},
]
: []),
];
};
const getFrameworkEnvs = (
framework?: TemplateFramework,
port?: number,
): EnvVar[] => {
if (framework !== "fastapi") {
return [];
}
return [
{
name: "APP_HOST",
description: "The address to start the backend app.",
value: "0.0.0.0",
},
{
name: "APP_PORT",
description: "The port to start the backend app.",
value: port?.toString() || "8000",
},
// TODO: Once LlamaIndexTS supports string templates, move this to `getEngineEnvs`
{
name: "SYSTEM_PROMPT",
description: `Custom system prompt.
Example:
SYSTEM_PROMPT="
We have provided context information below.
---------------------
{context_str}
---------------------
Given this information, please answer the question: {query_str}
"`,
},
];
};
const getEngineEnvs = (): EnvVar[] => {
return [
{
name: "TOP_K",
description:
"The number of similar embeddings to return when retrieving documents.",
value: "3",
},
];
};
export const createBackendEnvFile = async (
root: string,
opts: {
llamaCloudKey?: string;
vectorDb?: TemplateVectorDB;
modelConfig: ModelConfig;
framework?: TemplateFramework;
dataSources?: TemplateDataSource[];
port?: number;
},
) => {
// Init env values
const envFileName = ".env";
const envVars: EnvVar[] = [
{
name: "LLAMA_CLOUD_API_KEY",
description: `The Llama Cloud API key.`,
value: opts.llamaCloudKey,
},
// Add model environment variables
...getModelEnvs(opts.modelConfig),
// Add engine environment variables
...getEngineEnvs(),
// Add vector database environment variables
...getVectorDBEnvs(opts.vectorDb),
...getFrameworkEnvs(opts.framework, opts.port),
];
// Render and write env file
const content = renderEnvVar(envVars);
await fs.writeFile(path.join(root, envFileName), content);
console.log(`Created '${envFileName}' file. Please check the settings.`);
};
export const createFrontendEnvFile = async (
root: string,
opts: {
customApiPath?: string;
},
) => {
const defaultFrontendEnvs = [
{
name: "NEXT_PUBLIC_CHAT_API",
description: "The backend API for chat endpoint.",
value: opts.customApiPath
? opts.customApiPath
: "http://localhost:8000/api/chat",
},
];
const content = renderEnvVar(defaultFrontendEnvs);
await fs.writeFile(path.join(root, ".env"), content);
};