-
Huu Le (Lee) authoredHuu Le (Lee) authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
questions.ts 24.30 KiB
import { execSync } from "child_process";
import ciInfo from "ci-info";
import fs from "fs";
import got from "got";
import ora from "ora";
import path from "path";
import { blue, green, red } from "picocolors";
import prompts from "prompts";
import { InstallAppArgs } from "./create-app";
import {
FileSourceConfig,
TemplateDataSourceType,
TemplateFramework,
} from "./helpers";
import { COMMUNITY_OWNER, COMMUNITY_REPO } from "./helpers/constant";
import { templatesDir } from "./helpers/dir";
import { getAvailableLlamapackOptions } from "./helpers/llama-pack";
import { getProjectOptions } from "./helpers/repo";
import { supportedTools, toolsRequireConfig } from "./helpers/tools";
const OPENAI_API_URL = "https://api.openai.com/v1";
export type QuestionArgs = Omit<
InstallAppArgs,
"appPath" | "packageManager"
> & {
files?: string;
llamaParse?: boolean;
listServerModels?: boolean;
};
const supportedContextFileTypes = [
".pdf",
".doc",
".docx",
".xls",
".xlsx",
".csv",
];
const MACOS_FILE_SELECTION_SCRIPT = `
osascript -l JavaScript -e '
a = Application.currentApplication();
a.includeStandardAdditions = true;
a.chooseFile({ withPrompt: "Please select files to process:", multipleSelectionsAllowed: true }).map(file => file.toString())
'`;
const MACOS_FOLDER_SELECTION_SCRIPT = `
osascript -l JavaScript -e '
a = Application.currentApplication();
a.includeStandardAdditions = true;
a.chooseFolder({ withPrompt: "Please select folders to process:", multipleSelectionsAllowed: true }).map(folder => folder.toString())
'`;
const WINDOWS_FILE_SELECTION_SCRIPT = `
Add-Type -AssemblyName System.Windows.Forms
$openFileDialog = New-Object System.Windows.Forms.OpenFileDialog
$openFileDialog.InitialDirectory = [Environment]::GetFolderPath('Desktop')
$openFileDialog.Multiselect = $true
$result = $openFileDialog.ShowDialog()
if ($result -eq 'OK') {
$openFileDialog.FileNames
}
`;
const WINDOWS_FOLDER_SELECTION_SCRIPT = `
Add-Type -AssemblyName System.windows.forms
$folderBrowser = New-Object System.Windows.Forms.FolderBrowserDialog
$dialogResult = $folderBrowser.ShowDialog()
if ($dialogResult -eq [System.Windows.Forms.DialogResult]::OK)
{
$folderBrowser.SelectedPath
}
`;
const defaults: QuestionArgs = {
template: "streaming",
framework: "nextjs",
engine: "simple",
ui: "html",
eslint: true,
frontend: false,
openAiKey: "",
llamaCloudKey: "",
model: "gpt-3.5-turbo",
embeddingModel: "text-embedding-ada-002",
communityProjectConfig: undefined,
llamapack: "",
postInstallAction: "dependencies",
dataSource: {
type: "none",
config: {},
},
tools: [],
};
const handlers = {
onCancel: () => {
console.error("Exiting.");
process.exit(1);
},
};
const getVectorDbChoices = (framework: TemplateFramework) => {
const choices = [
{
title: "No, just store the data in the file system",
value: "none",
},
{ title: "MongoDB", value: "mongo" },
{ title: "PostgreSQL", value: "pg" },
{ title: "Pinecone", value: "pinecone" },
{ title: "Milvus", value: "milvus" },
];
const vectordbLang = framework === "fastapi" ? "python" : "typescript";
const compPath = path.join(templatesDir, "components");
const vectordbPath = path.join(compPath, "vectordbs", vectordbLang);
const availableChoices = fs
.readdirSync(vectordbPath)
.filter((file) => fs.statSync(path.join(vectordbPath, file)).isDirectory());
const displayedChoices = choices.filter((choice) =>
availableChoices.includes(choice.value),
);
return displayedChoices;
};
const getDataSourceChoices = (framework: TemplateFramework) => {
const choices = [
{
title: "No data, just a simple chat",
value: "simple",
},
{ title: "Use an example PDF", value: "exampleFile" },
];
if (process.platform === "win32" || process.platform === "darwin") {
choices.push({
title: `Use local files (${supportedContextFileTypes.join(", ")})`,
value: "localFile",
});
choices.push({
title:
process.platform === "win32"
? "Use a local folder"
: "Use local folders",
value: "localFolder",
});
}
if (framework === "fastapi") {
choices.push({
title: "Use website content (requires Chrome)",
value: "web",
});
}
return choices;
};
const selectLocalContextData = async (type: TemplateDataSourceType) => {
try {
let selectedPath: string = "";
let execScript: string;
let execOpts: any = {};
switch (process.platform) {
case "win32": // Windows
execScript =
type === "file"
? WINDOWS_FILE_SELECTION_SCRIPT
: WINDOWS_FOLDER_SELECTION_SCRIPT;
execOpts = { shell: "powershell.exe" };
break;
case "darwin": // MacOS
execScript =
type === "file"
? MACOS_FILE_SELECTION_SCRIPT
: MACOS_FOLDER_SELECTION_SCRIPT;
break;
default: // Unsupported OS
console.log(red("Unsupported OS error!"));
process.exit(1);
}
selectedPath = execSync(execScript, execOpts).toString().trim();
const paths =
process.platform === "win32"
? selectedPath.split("\r\n")
: selectedPath.split(", ");
for (const p of paths) {
if (
type == "file" &&
!supportedContextFileTypes.includes(path.extname(p))
) {
console.log(
red(
`Please select a supported file type: ${supportedContextFileTypes}`,
),
);
process.exit(1);
}
}
return paths;
} catch (error) {
console.log(
red(
"Got an error when trying to select local context data! Please try again or select another data source option.",
),
);
process.exit(1);
}
};
export const onPromptState = (state: any) => {
if (state.aborted) {
// If we don't re-enable the terminal cursor before exiting
// the program, the cursor will remain hidden
process.stdout.write("\x1B[?25h");
process.stdout.write("\n");
process.exit(1);
}
};
const getAvailableModelChoices = async (
selectEmbedding: boolean,
apiKey?: string,
listServerModels?: boolean,
) => {
const defaultLLMModels = [
"gpt-3.5-turbo-0125",
"gpt-4-turbo-preview",
"gpt-4",
"gpt-4-vision-preview",
];
const defaultEmbeddingModels = [
"text-embedding-ada-002",
"text-embedding-3-small",
"text-embedding-3-large",
];
const isLLMModels = (model_id: string) => {
return model_id.startsWith("gpt");
};
const isEmbeddingModel = (model_id: string) => {
return (
model_id.includes("embedding") ||
defaultEmbeddingModels.includes(model_id)
);
};
if (apiKey && listServerModels) {
const spinner = ora("Fetching available models").start();
try {
const response = await got(`${OPENAI_API_URL}/models`, {
headers: {
Authorization: "Bearer " + apiKey,
},
timeout: 5000,
responseType: "json",
});
const data: any = await response.body;
spinner.stop();
return data.data
.filter((model: any) =>
selectEmbedding ? isEmbeddingModel(model.id) : isLLMModels(model.id),
)
.map((el: any) => {
return {
title: el.id,
value: el.id,
};
});
} catch (error) {
spinner.stop();
if ((error as any).response?.statusCode === 401) {
console.log(
red(
"Invalid OpenAI API key provided! Please provide a valid key and try again!",
),
);
} else {
console.log(red("Request failed: " + error));
}
process.exit(1);
}
} else {
const data = selectEmbedding ? defaultEmbeddingModels : defaultLLMModels;
return data.map((model) => ({
title: model,
value: model,
}));
}
};
export const askQuestions = async (
program: QuestionArgs,
preferences: QuestionArgs,
) => {
const getPrefOrDefault = <K extends keyof QuestionArgs>(
field: K,
): QuestionArgs[K] => preferences[field] ?? defaults[field];
// Ask for next action after installation
async function askPostInstallAction() {
if (program.postInstallAction === undefined) {
if (ciInfo.isCI) {
program.postInstallAction = getPrefOrDefault("postInstallAction");
} else {
const actionChoices = [
{
title: "Just generate code (~1 sec)",
value: "none",
},
{
title: "Start in VSCode (~1 sec)",
value: "VSCode",
},
{
title: "Generate code and install dependencies (~2 min)",
value: "dependencies",
},
];
const openAiKeyConfigured =
program.openAiKey || process.env["OPENAI_API_KEY"];
// If using LlamaParse, require LlamaCloud API key
const llamaCloudKeyConfigured = (
program.dataSource?.config as FileSourceConfig
)?.useLlamaParse
? program.llamaCloudKey || process.env["LLAMA_CLOUD_API_KEY"]
: true;
const hasVectorDb = program.vectorDb && program.vectorDb !== "none";
// Can run the app if all tools do not require configuration
if (
!hasVectorDb &&
openAiKeyConfigured &&
llamaCloudKeyConfigured &&
!toolsRequireConfig(program.tools) &&
!program.llamapack
) {
actionChoices.push({
title:
"Generate code, install dependencies, and run the app (~2 min)",
value: "runApp",
});
}
const { action } = await prompts(
{
type: "select",
name: "action",
message: "How would you like to proceed?",
choices: actionChoices,
initial: 1,
},
handlers,
);
program.postInstallAction = action;
}
}
}
if (!program.template) {
if (ciInfo.isCI) {
program.template = getPrefOrDefault("template");
} else {
const styledRepo = blue(
`https://github.com/${COMMUNITY_OWNER}/${COMMUNITY_REPO}`,
);
const { template } = await prompts(
{
type: "select",
name: "template",
message: "Which template would you like to use?",
choices: [
{ title: "Chat without streaming", value: "simple" },
{ title: "Chat with streaming", value: "streaming" },
{
title: `Community template from ${styledRepo}`,
value: "community",
},
{
title: "Example using a LlamaPack",
value: "llamapack",
},
],
initial: 1,
},
handlers,
);
program.template = template;
preferences.template = template;
}
}
if (program.template === "community") {
const projectOptions = await getProjectOptions(
COMMUNITY_OWNER,
COMMUNITY_REPO,
);
const { communityProjectConfig } = await prompts(
{
type: "select",
name: "communityProjectConfig",
message: "Select community template",
choices: projectOptions.map(({ title, value }) => ({
title,
value: JSON.stringify(value), // serialize value to string in terminal
})),
initial: 0,
},
handlers,
);
const projectConfig = JSON.parse(communityProjectConfig);
program.communityProjectConfig = projectConfig;
preferences.communityProjectConfig = projectConfig;
return; // early return - no further questions needed for community projects
}
if (program.template === "llamapack") {
const availableLlamaPacks = await getAvailableLlamapackOptions();
const { llamapack } = await prompts(
{
type: "select",
name: "llamapack",
message: "Select LlamaPack",
choices: availableLlamaPacks.map((pack) => ({
title: pack.name,
value: pack.folderPath,
})),
initial: 0,
},
handlers,
);
program.llamapack = llamapack;
preferences.llamapack = llamapack;
await askPostInstallAction();
return; // early return - no further questions needed for llamapack projects
}
if (!program.framework) {
if (ciInfo.isCI) {
program.framework = getPrefOrDefault("framework");
} else {
const choices = [
{ title: "Express", value: "express" },
{ title: "FastAPI (Python)", value: "fastapi" },
];
if (program.template === "streaming") {
// allow NextJS only for streaming template
choices.unshift({ title: "NextJS", value: "nextjs" });
}
const { framework } = await prompts(
{
type: "select",
name: "framework",
message: "Which framework would you like to use?",
choices,
initial: 0,
},
handlers,
);
program.framework = framework;
preferences.framework = framework;
}
}
if (
program.template === "streaming" &&
(program.framework === "express" || program.framework === "fastapi")
) {
// if a backend-only framework is selected, ask whether we should create a frontend
// (only for streaming backends)
if (program.frontend === undefined) {
if (ciInfo.isCI) {
program.frontend = getPrefOrDefault("frontend");
} else {
const styledNextJS = blue("NextJS");
const styledBackend = green(
program.framework === "express"
? "Express "
: program.framework === "fastapi"
? "FastAPI (Python) "
: "",
);
const { frontend } = await prompts({
onState: onPromptState,
type: "toggle",
name: "frontend",
message: `Would you like to generate a ${styledNextJS} frontend for your ${styledBackend}backend?`,
initial: getPrefOrDefault("frontend"),
active: "Yes",
inactive: "No",
});
program.frontend = Boolean(frontend);
preferences.frontend = Boolean(frontend);
}
}
} else {
program.frontend = false;
}
if (program.framework === "nextjs" || program.frontend) {
if (!program.ui) {
if (ciInfo.isCI) {
program.ui = getPrefOrDefault("ui");
} else {
const { ui } = await prompts(
{
type: "select",
name: "ui",
message: "Which UI would you like to use?",
choices: [
{ title: "Just HTML", value: "html" },
{ title: "Shadcn", value: "shadcn" },
],
initial: 0,
},
handlers,
);
program.ui = ui;
preferences.ui = ui;
}
}
}
if (program.framework === "express" || program.framework === "nextjs") {
if (!program.observability) {
if (ciInfo.isCI) {
program.observability = getPrefOrDefault("observability");
} else {
const { observability } = await prompts(
{
type: "select",
name: "observability",
message: "Would you like to set up observability?",
choices: [
{ title: "No", value: "none" },
{ title: "OpenTelemetry", value: "opentelemetry" },
],
initial: 0,
},
handlers,
);
program.observability = observability;
preferences.observability = observability;
}
}
}
if (!program.openAiKey) {
const { key } = await prompts(
{
type: "text",
name: "key",
message: program.listServerModels
? "Please provide your OpenAI API key (or reuse OPENAI_API_KEY env variable):"
: "Please provide your OpenAI API key (leave blank to skip):",
validate: (value: string) => {
if (program.listServerModels && !value) {
if (process.env.OPENAI_API_KEY) {
return true;
}
return "OpenAI API key is required";
}
return true;
},
},
handlers,
);
program.openAiKey = key || process.env.OPENAI_API_KEY;
preferences.openAiKey = key || process.env.OPENAI_API_KEY;
}
if (!program.model) {
if (ciInfo.isCI) {
program.model = getPrefOrDefault("model");
} else {
const { model } = await prompts(
{
type: "select",
name: "model",
message: "Which model would you like to use?",
choices: await getAvailableModelChoices(
false,
program.openAiKey,
program.listServerModels,
),
initial: 0,
},
handlers,
);
program.model = model;
preferences.model = model;
}
}
if (!program.embeddingModel && program.framework === "fastapi") {
if (ciInfo.isCI) {
program.embeddingModel = getPrefOrDefault("embeddingModel");
} else {
const { embeddingModel } = await prompts(
{
type: "select",
name: "embeddingModel",
message: "Which embedding model would you like to use?",
choices: await getAvailableModelChoices(
true,
program.openAiKey,
program.listServerModels,
),
initial: 0,
},
handlers,
);
program.embeddingModel = embeddingModel;
preferences.embeddingModel = embeddingModel;
}
}
if (program.files) {
// If user specified files option, then the program should use context engine
program.engine == "context";
if (!fs.existsSync(program.files)) {
console.log("File or folder not found");
process.exit(1);
} else {
program.dataSource = {
type: fs.lstatSync(program.files).isDirectory() ? "folder" : "file",
config: {
paths: program.files.split(","),
},
};
}
}
if (!program.engine) {
if (ciInfo.isCI) {
program.engine = getPrefOrDefault("engine");
} else {
const { dataSource } = await prompts(
{
type: "select",
name: "dataSource",
message: "Which data source would you like to use?",
choices: getDataSourceChoices(program.framework),
initial: 1,
},
handlers,
);
// Initialize with default config
program.dataSource = getPrefOrDefault("dataSource");
if (program.dataSource) {
switch (dataSource) {
case "simple":
program.engine = "simple";
program.dataSource = { type: "none", config: {} };
break;
case "exampleFile":
program.engine = "context";
// Treat example as a folder data source with no config
program.dataSource = { type: "folder", config: {} };
break;
case "localFile":
program.engine = "context";
program.dataSource = {
type: "file",
config: {
paths: await selectLocalContextData("file"),
},
};
break;
case "localFolder":
program.engine = "context";
program.dataSource = {
type: "folder",
config: {
paths: await selectLocalContextData("folder"),
},
};
break;
case "web":
program.engine = "context";
program.dataSource.type = "web";
break;
}
}
}
} else if (!program.dataSource) {
// Handle a case when engine is specified but dataSource is not
if (program.engine === "context") {
program.dataSource = {
type: "folder",
config: {},
};
} else if (program.engine === "simple") {
program.dataSource = {
type: "none",
config: {},
};
}
}
if (
program.dataSource?.type === "file" ||
program.dataSource?.type === "folder"
) {
if (ciInfo.isCI) {
program.llamaCloudKey = getPrefOrDefault("llamaCloudKey");
} else {
const dataSourceConfig = program.dataSource.config as FileSourceConfig;
dataSourceConfig.useLlamaParse = program.llamaParse;
// Is pdf file selected as data source or is it a folder data source
const askingLlamaParse =
dataSourceConfig.useLlamaParse === undefined &&
(program.dataSource.type === "folder" ||
(program.dataSource.type === "file" &&
dataSourceConfig.paths?.some((p) => path.extname(p) === ".pdf")));
// Ask if user wants to use LlamaParse
if (askingLlamaParse) {
const { useLlamaParse } = await prompts(
{
type: "toggle",
name: "useLlamaParse",
message:
"Would you like to use LlamaParse (improved parser for RAG - requires API key)?",
initial: true,
active: "yes",
inactive: "no",
},
handlers,
);
dataSourceConfig.useLlamaParse = useLlamaParse;
program.dataSource.config = dataSourceConfig;
}
// Ask for LlamaCloud API key
if (
dataSourceConfig.useLlamaParse &&
program.llamaCloudKey === undefined
) {
const { llamaCloudKey } = await prompts(
{
type: "text",
name: "llamaCloudKey",
message:
"Please provide your LlamaIndex Cloud API key (leave blank to skip):",
},
handlers,
);
program.llamaCloudKey = llamaCloudKey;
}
}
}
if (program.dataSource?.type === "web" && program.framework === "fastapi") {
let { baseUrl } = await prompts(
{
type: "text",
name: "baseUrl",
message: "Please provide base URL of the website:",
initial: "https://www.llamaindex.ai",
},
handlers,
);
try {
if (!baseUrl.includes("://")) {
baseUrl = `https://${baseUrl}`;
}
const checkUrl = new URL(baseUrl);
if (checkUrl.protocol !== "https:" && checkUrl.protocol !== "http:") {
throw new Error("Invalid protocol");
}
} catch (error) {
console.log(
red(
"Invalid URL provided! Please provide a valid URL (e.g. https://www.llamaindex.ai)",
),
);
process.exit(1);
}
program.dataSource.config = {
baseUrl: baseUrl,
depth: 1,
};
}
if (program.engine !== "simple" && !program.vectorDb) {
if (ciInfo.isCI) {
program.vectorDb = getPrefOrDefault("vectorDb");
} else {
const { vectorDb } = await prompts(
{
type: "select",
name: "vectorDb",
message: "Would you like to use a vector database?",
choices: getVectorDbChoices(program.framework),
initial: 0,
},
handlers,
);
program.vectorDb = vectorDb;
preferences.vectorDb = vectorDb;
}
}
if (
!program.tools &&
program.framework === "fastapi" &&
program.engine === "context"
) {
if (ciInfo.isCI) {
program.tools = getPrefOrDefault("tools");
} else {
const toolChoices = supportedTools.map((tool) => ({
title: tool.display,
value: tool.name,
}));
const { toolsName } = await prompts({
type: "multiselect",
name: "toolsName",
message:
"Would you like to build an agent using tools? If so, select the tools here, otherwise just press enter",
choices: toolChoices,
});
const tools = toolsName?.map((tool: string) =>
supportedTools.find((t) => t.name === tool),
);
program.tools = tools;
preferences.tools = tools;
}
}
if (program.framework !== "fastapi" && program.eslint === undefined) {
if (ciInfo.isCI) {
program.eslint = getPrefOrDefault("eslint");
} else {
const styledEslint = blue("ESLint");
const { eslint } = await prompts({
onState: onPromptState,
type: "toggle",
name: "eslint",
message: `Would you like to use ${styledEslint}?`,
initial: getPrefOrDefault("eslint"),
active: "Yes",
inactive: "No",
});
program.eslint = Boolean(eslint);
preferences.eslint = Boolean(eslint);
}
}
await askPostInstallAction();
// TODO: consider using zod to validate the input (doesn't work like this as not every option is required)
// templateUISchema.parse(program.ui);
// templateEngineSchema.parse(program.engine);
// templateFrameworkSchema.parse(program.framework);
// templateTypeSchema.parse(program.template);``
};