Skip to content
Snippets Groups Projects
Commit 425e2bcc authored by Mike Fortman's avatar Mike Fortman
Browse files

Add docs

parent 37662518
No related branches found
No related tags found
No related merge requests found
# DataStax AstraDB Vector Store
Here are two sample scripts which work well with the sample data in the Astra Portal
## Prerequisites
- An Astra DB account. You can [create one here](https://astra.datastax.com/register).
- An Astra Vector Database
- An OpenAI API Key
## Setup
1. Set your env variables:
- `ASTRA_DB_ID`: Your Astra DB vector database id
- `ASTRA_DB_APPLICATION_TOKEN`: The generated app token for your Astra database
- `ASTRA_DB_REGION`: Your Astra DB database region
- `ASTRA_DB_NAMESPACE`: The existing Astra Namespace/Keyspace (if you don't set this it will default to `default_keyspace`)
- `OPENAI_API_KEY`: Your OpenAI key
2. `cd` Into the `examples` directory
3. run `pnpm i`
## Load the data
This sample loads the same dataset of movie reviews as the Astra Portal sample dataset. (Feel free to load the data in your the Astra Data Explorer to compare)
run `ts-node astradb/load`
## Use RAG to Query the data
Check out your data in the Astra Data Explorer and change the sample query as you see fit.
run `ts-node astradb/query`
...@@ -146,7 +146,6 @@ export class AstraDBVectorStore implements VectorStore { ...@@ -146,7 +146,6 @@ export class AstraDBVectorStore implements VectorStore {
const similarities: number[] = []; const similarities: number[] = [];
await cursor.forEach(async (doc: Record<string, any>) => { await cursor.forEach(async (doc: Record<string, any>) => {
// console.log(doc);
ids.push(doc._id); ids.push(doc._id);
similarities.push(doc.$similarity); similarities.push(doc.$similarity);
const node = metadataDictToNode({ const node = metadataDictToNode({
...@@ -155,12 +154,6 @@ export class AstraDBVectorStore implements VectorStore { ...@@ -155,12 +154,6 @@ export class AstraDBVectorStore implements VectorStore {
delete doc.$vector; delete doc.$vector;
node.setContent(JSON.stringify(doc)); node.setContent(JSON.stringify(doc));
nodes.push(node); nodes.push(node);
// nodes.push(new Document({
// id_: doc._id,
// text: doc.document,
// metadata: row.metadata,
// embedding: doc.$vector,
// }))
}); });
return { return {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment