Code owners
Assign users and groups as approvers for specific file changes. Learn more.
MixedbreadAIEmbeddings.ts 5.39 KiB
import { BaseEmbedding, type EmbeddingInfo } from "@llamaindex/core/embeddings";
import { getEnv } from "@llamaindex/env";
import { MixedbreadAI, MixedbreadAIClient } from "@mixedbread-ai/sdk";
type EmbeddingsRequestWithoutInput = Omit<
MixedbreadAI.EmbeddingsRequest,
"input"
>;
/**
* Interface extending EmbeddingsParams with additional
* parameters specific to the MixedbreadAIEmbeddings class.
*/
export interface MixedbreadAIEmbeddingsParams
extends Omit<EmbeddingsRequestWithoutInput, "model"> {
/**
* The model to use for generating embeddings.
* @default {"mixedbread-ai/mxbai-embed-large-v1"}
*/
model?: string;
/**
* The API key to use.
* @default {process.env.MXBAI_API_KEY}
*/
apiKey?: string;
/**
* The base URL for the API.
*/
baseUrl?: string;
/**
* The maximum number of documents to embed in a single request.
* @default {128}
*/
embedBatchSize?: number;
/**
* The embed info for the model.
*/
embedInfo?: EmbeddingInfo;
/**
* The maximum number of retries to attempt.
* @default {3}
*/
maxRetries?: number;
/**
* Timeouts for the request.
*/
timeoutInSeconds?: number;
}
/**
* Class for generating embeddings using the mixedbread ai API.
*
* This class leverages the model "mixedbread-ai/mxbai-embed-large-v1" to generate
* embeddings for text documents. The embeddings can be used for various NLP tasks
* such as similarity comparison, clustering, or as features in machine learning models.
*
* @example
* const mxbai = new MixedbreadAIEmbeddings({ apiKey: 'your-api-key' });
* const texts = ["Baking bread is fun", "I love baking"];
* const result = await mxbai.getTextEmbeddings(texts);
* console.log(result);
*
* @example
* const mxbai = new MixedbreadAIEmbeddings({
* apiKey: 'your-api-key',
* model: 'mixedbread-ai/mxbai-embed-large-v1',
* encodingFormat: MixedbreadAI.EncodingFormat.Binary,
* dimensions: 512,
* normalized: true,
* });
* const query = "Represent this sentence for searching relevant passages: Is baking bread fun?";
* const result = await mxbai.getTextEmbedding(query);
* console.log(result);
*/
export class MixedbreadAIEmbeddings extends BaseEmbedding {
requestParams: EmbeddingsRequestWithoutInput;
requestOptions: MixedbreadAIClient.RequestOptions;
private client: MixedbreadAIClient;
/**
* Constructor for MixedbreadAIEmbeddings.
* @param {Partial<MixedbreadAIEmbeddingsParams>} params - An optional object with properties to configure the instance.
* @throws {Error} If the API key is not provided or found in the environment variables.
* @throws {Error} If the batch size exceeds 256.
*/
constructor(params?: Partial<MixedbreadAIEmbeddingsParams>) {
super();
const apiKey = params?.apiKey ?? getEnv("MXBAI_API_KEY");
if (!apiKey) {
throw new Error(
"mixedbread ai API key not found. Either provide it in the constructor or set the 'MXBAI_API_KEY' environment variable.",
);
}
if (params?.embedBatchSize && params?.embedBatchSize > 256) {
throw new Error(
"The maximum batch size for mixedbread ai embeddings API is 256.",
);
}
this.embedBatchSize = params?.embedBatchSize ?? 128;
if (params?.embedInfo) {
this.embedInfo = params?.embedInfo;
}
this.requestParams = <EmbeddingsRequestWithoutInput>{
model: params?.model ?? "mixedbread-ai/mxbai-embed-large-v1",
normalized: params?.normalized,
dimensions: params?.dimensions,
encodingFormat: params?.encodingFormat,
truncationStrategy: params?.truncationStrategy,
prompt: params?.prompt,
};
this.requestOptions = {
timeoutInSeconds: params?.timeoutInSeconds,
maxRetries: params?.maxRetries ?? 3,
// Support for this already exists in the python sdk and will be added to the js sdk soon
// @ts-ignore
additionalHeaders: {
"user-agent": "@mixedbread-ai/llamaindex-ts-sdk",
},
};
this.client = new MixedbreadAIClient(
params?.baseUrl
? {
apiKey,
environment: params?.baseUrl,
}
: {
apiKey,
},
);
}
/**
* Generates an embedding for a single text.
* @param {string} text - A string to generate an embedding for.
* @returns {Promise<number[]>} A Promise that resolves to an array of numbers representing the embedding.
*
* @example
* const query = "Represent this sentence for searching relevant passages: Is baking bread fun?";
* const result = await mxbai.getTextEmbedding(text);
* console.log(result);
*/
async getTextEmbedding(text: string): Promise<number[]> {
return (await this.getTextEmbeddings([text]))[0]!;
}
/**
* Generates embeddings for an array of texts.
* @param {string[]} texts - An array of strings to generate embeddings for.
* @returns {Promise<Array<number[]>>} A Promise that resolves to an array of embeddings.
*
* @example
* const texts = ["Baking bread is fun", "I love baking"];
* const result = await mxbai.getTextEmbeddings(texts);
* console.log(result);
*/
getTextEmbeddings = async (texts: string[]): Promise<Array<number[]>> => {
if (texts.length === 0) {
return [];
}
const response = await this.client.embeddings(
{
...this.requestParams,
input: texts,
},
this.requestOptions,
);
return response.data.map((d) => d.embedding as number[]);
};
}