Skip to content
Snippets Groups Projects
Commit 6747cbc9 authored by zwcolin's avatar zwcolin
Browse files

update authors' official implementation of minicpm-v2.6 evaluation code

parent 091caa89
No related branches found
No related tags found
No related merge requests found
# Adapted from https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5
# Part of V2.6 implementation is adapted directly from the authors
# This has support for MiniCPM V2 and V2.5, and V2.6
from transformers import AutoModel, AutoTokenizer
from tqdm import tqdm
from PIL import Image
import torch
import random
import numpy as np
import math
def generate_response(queries, model_path):
def generate_response(queries, model_path, use_cot=False, random_upsize=False, seed=0):
if use_cot or random_upsize:
assert "MiniCPM-V2_6" in model_path, "cot and upsize functionalities are provided by the paper's authors"
if random_upsize:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# sdpa attn impl for v2.6, default for 2 and 2.5
if "MiniCPM-V-2_6" in model_path:
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation='sdpa')
......@@ -40,16 +51,26 @@ def generate_response(queries, model_path):
temperature=0.0,
top_p=1.0,
)
# for 2.6
# for 2.6 (code is adapted from authors directly)
elif model_path.endswith("MiniCPM-V-2_6"):
msgs = [{'role': 'user', 'content': [image, query]}]
if random_upsize:
img_width, img_height = image.width, image.height
if (img_width * img_height) < (1344 * 1344):
ratio = math.sqrt((1344 * 1344) / (img_width * img_height))
max_img_width = int(img_width * ratio)
new_img_width = random.randint(img_width, max_img_width)
new_img_height = int(new_img_width / img_width * img_height)
image = image.resize((new_img_width, new_img_height))
system_cot_prompt = '''Based on the following image, please first give your understanding of the following question, then perform careful reasoning, and finally give the final answer.'''
msgs = [{'role': 'user', 'content': [image, query] if not use_cot else [system_cot_prompt, image, query]}]
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
max_inp_length=8192,
sampling=False,
temperature=0.0,
top_p=1.0,
max_new_tokens=2048,
num_beams=3
)
else:
raise NotImplementedError(f"Model path {model_path} not supported")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment