Newer
Older
import os, json
from constants import DESCRIPTIVE_RESP_INST, DESCRIPTIVE_GRADING_PREFIX, \
DESCRIPTIVE_GRADING_QMAP, DESCRIPTIVE_GRADING_ICL
def get_rubric(qid):
instruction = None
if qid in [1]:
instruction = DESCRIPTIVE_GRADING_ICL['title']
if qid in [2, 3, 4, 5, 6, 7]:
instruction = DESCRIPTIVE_GRADING_ICL['ocr']
if qid in [8, 9, 10, 12, 14, 15, 17, 19]:
instruction = DESCRIPTIVE_GRADING_ICL['quant']
if qid in [11]:
instruction = DESCRIPTIVE_GRADING_ICL['bool']
if qid in [13]:
instruction = DESCRIPTIVE_GRADING_ICL['enum']
if qid in [16]:
instruction = DESCRIPTIVE_GRADING_ICL['trend']
if qid in [18]:
instruction = DESCRIPTIVE_GRADING_ICL['layout']
assert instruction is not None, f"Instruction for qid {qid} is not found."
return instruction
def get_descriptive_result_gpt(client, prompt, length, max_retries=10):
curr_retries = 0
max_tokens = 256
while curr_retries < max_retries:
try:
response = client.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt,
}
],
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
response_format={"type": "json_object"},
n=1,
max_tokens=max_tokens,
temperature=0,
top_p=1,
seed=42,
).choices[0].message.content
content = json.loads(response)
verify_grading_output(content, length)
break
except Exception as e:
print(f"Error: {e}")
# increase the max_tokens if the response is too long
if 'Unterminated string starting at' in str(e):
if max_tokens >= 1024:
print(f"Failed to get response for prompt: {prompt}")
content = build_dummy_output(length)
break
else:
max_tokens = min(1024, max_tokens * 2) # double the max_tokens
print(f"Retrying with max_tokens: {max_tokens}")
# otherwise, retry the request
curr_retries += 1
# if failed to get response, return dummy data
if curr_retries == max_retries:
print(f"Failed to get response for prompt: {prompt}")
content = build_dummy_output(length)
return content
def build_json_keys(length):
keys = []
# specify the keys for gpt-4o's json response
for i in range(1, length+1):
keys.append(f"extract_answer_T{i}")
keys.append(f"score_T{i}")
return str(keys)
def populate_grading_inputs(batch):
query = ""
for i, (_, response, answer) in enumerate(batch):
# index, response, answer
curr_query = "T{}:\nResponse {}: {}\nGround Truth {}: {}\n\n"\
.format(i+1, i+1, response, i+1, answer)
query += curr_query
return query
def verify_grading_output(data, length_data):
# check the integrity of keys and values
for i in range(1, length_data+1):
assert f"extract_answer_T{i}" in data, f"extract_answer_T{i} is not found in {d}"
assert f"score_T{i}" in data, f"score_T{i} is not found in {data}"
assert data[f"score_T{i}"] in [0, 1], f"score_T{i} is not in [0, 1]"
return True
def build_dummy_output(length_data):
# if failed to parse the response, return dummy data
data = {}
for i in range(1, length_data+1):
data[f"extract_answer_T{i}"] = "Failed to parse response"
data[f"score_T{i}"] = -1
return data
def preprocess_descriptive_grading_queries(input, resp, num_templates=19):
# group the responses based on the template id instead of figure id
groups = {i: [] for i in range(1, num_templates + 1)}
for _, data in input.items():
figure_id = data['figure_id']
qids = data['qids']
for i, qid in enumerate(qids):
# figure_id with question index
resp_key = f"{figure_id}_{i}"
response = resp[resp_key]['response']
answer = data['answers'][i]
groups[qid].append((resp_key, response, answer))
return groups
def build_descriptive_grading_queries(groups, nq_per_query=5):
queries = []
for qid, data in groups.items():
# batched evaluation based on number of questions per query (nq_per_query)
for i in range(0, len(data), nq_per_query):
# batch: list of tuples (resp_key, response, answer)
batch = data[i : i + nq_per_query]
# question based on the template id
question = DESCRIPTIVE_GRADING_QMAP[qid]
# build the json keys for GPT-4o's response
json_keys = build_json_keys(len(batch))
# populate batch size, question, and json keys spec
prefix = DESCRIPTIVE_GRADING_PREFIX\
.replace("<|NUM_TRIPLETS|>", str(len(batch)))\
.replace("<|OVERARCHING_QUESTION|>", question)\
.replace("<|JSON_KEYS|>", json_keys)
# add in-context grading example based on the template id
rubric_icl = get_rubric(qid)
# prompt + example + model responses
grading_query = prefix + rubric_icl + populate_grading_inputs(batch)
curr_query = {
'resp_keys': [d[0] for d in batch],
'grading_query': grading_query,
}
queries.append(curr_query)
return queries
def postprocess_descriptive_grading_queries(queries):
scores = {}
for query in queries:
# query contains resp_keys, grading_query, extract_answer and score
resp_keys = query['resp_keys']
for i, resp_key in enumerate(resp_keys):
# extract the answer and score for each response key
extracted_answer = query[f"extract_answer_T{i+1}"]
score = query[f"score_T{i+1}"]
# store the extracted answer and score
scores[resp_key] = {
'resp_id': resp_key,
'extracted_answer': extracted_answer,
'score': score,
}
return scores
def descriptive_query_helper(qid, subplot_loc):
if qid in [18, 19]:
# skip subplot location when asking about the layout of the subplots
return DESCRIPTIVE_RESP_INST[qid]
if isinstance(subplot_loc, list):
if subplot_loc[0] == 0:
# when there is only one subplot
prefix = "For the current plot, "
else:
# when there are multiple subplots
prefix = f"For the subplot at row {subplot_loc[0]} and column {subplot_loc[1]}, "
# when subplots do not form a grid
elif isinstance(subplot_loc, str):
prefix = f"For {subplot_loc}, "
else:
raise ValueError(f"Invalid subplot_loc: {subplot_loc}")
# return the question with the subplot location
return DESCRIPTIVE_RESP_INST[qid].format(prefix)
def build_descriptive_quries(data, image_dir):
queries = {}
for _, d in data.items():
figure_path = os.path.join(image_dir, f"{d['figure_id']}.jpg")
for i in range(len(d['qids'])):
# mapping from template id and subplot location to the question
question = descriptive_query_helper(d['qids'][i], d['subplot_loc'])
curr_query = {
'figure_id': d['figure_id'], # figure_id
'figure_path': figure_path, # figure_path (dropped later)
'subq_idx': i, # index of the (4) questions for the given figure
'qid': d['qids'][i], # template id
'question': question, # question content
}
queries[f"{d['figure_id']}_{i}"] = curr_query
return queries