Newer
Older
# This has support for MiniCPM V2 and V2.5, and V2.6
from transformers import AutoModel, AutoTokenizer
from tqdm import tqdm
from PIL import Image
import torch
# sdpa attn impl for v2.6, default for 2 and 2.5
if "MiniCPM-V-2_6" in model_path:
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation='sdpa')
else:
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
for k in tqdm(queries):
query = queries[k]['question']
image = Image.open(queries[k]["figure_path"]).convert('RGB')
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
if model_path.endswith("MiniCPM-V-2"):
msgs = [{'role': 'user', 'content': query}]
res, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=False,
temperature=0.0,
top_p=1.0,
)
# for 2.5
elif model_path.endswith("MiniCPM-Llama3-V-2_5"):
msgs = [{'role': 'user', 'content': query}]
res = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
sampling=False,
temperature=0.0,
top_p=1.0,
)
# for 2.6
elif model_path.endswith("MiniCPM-V-2_6"):
msgs = [{'role': 'user', 'content': [image, query]}]
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
sampling=False,
temperature=0.0,
top_p=1.0,
)
else:
raise NotImplementedError(f"Model path {model_path} not supported")