Newer
Older
# Adapted from https://huggingface.co/THUDM/glm-4v-9b
# This has support for the GLM 4v model
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
from tqdm import tqdm
def generate_response(queries, model_path):
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
for k in tqdm(queries):
query = queries[k]['question']
image = Image.open(queries[k]["figure_path"]).convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat mode
inputs = inputs.to(device)
gen_kwargs = {"max_length": 2500, "do_sample": False, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
res = tokenizer.decode(outputs[0]).replace(' <|endoftext|>', '')
queries[k]['response'] = res