Skip to content
Snippets Groups Projects
Commit f5e0ebdb authored by sekyonda's avatar sekyonda
Browse files

Update Llama2_Gradio.ipynb

parent bc2d45aa
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id:47a9adb3 tags: %% Cell type:markdown id:47a9adb3 tags:
## This demo app shows how to query Llama 2 using the Gradio UI. ## This demo app shows how to query Llama 2 using the Gradio UI.
Since we are using Replicate in this example, you will need to replace `<your replicate api token>` with your API token. Since we are using Replicate in this example, you will need to replace `<your replicate api token>` with your API token.
To get the Replicate token: To get the Replicate token:
- You will need to first sign in with Replicate with your github account - You will need to first sign in with Replicate with your github account
- Then create a free API token [here](https://replicate.com/account/api-tokens) that you can use for a while. - Then create a free API token [here](https://replicate.com/account/api-tokens) that you can use for a while.
**Note** After the free trial ends, you will need to enter billing info to continue to use Llama2 hosted on Replicate. **Note** After the free trial ends, you will need to enter billing info to continue to use Llama2 hosted on Replicate.
To tun this example: To run this example:
- Set up your Replicate API token and enter it in place of `<your replicate api token>` - Set up your Replicate API token and enter it in place of `<your replicate api token>`
- Run the notebook - Run the notebook
- Enter your question and click Submit - Enter your question and click Submit
In the notebook or a browser with URL http://127.0.0.1:7860 you should see a UI with your answer. In the notebook or a browser with URL http://127.0.0.1:7860 you should see a UI with your answer.
%% Cell type:code id:928041cc tags: %% Cell type:code id:928041cc tags:
``` python ``` python
from langchain.schema import AIMessage, HumanMessage from langchain.schema import AIMessage, HumanMessage
import gradio as gr import gradio as gr
from langchain.llms import Replicate from langchain.llms import Replicate
import os import os
os.environ["REPLICATE_API_TOKEN"] = "<your replicate api token>" os.environ["REPLICATE_API_TOKEN"] = "<your replicate api token>"
llama2_13b_chat = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d" llama2_13b_chat = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d"
llm = Replicate( llm = Replicate(
model=llama2_13b_chat, model=llama2_13b_chat,
model_kwargs={"temperature": 0.01, "top_p": 1, "max_new_tokens":500} model_kwargs={"temperature": 0.01, "top_p": 1, "max_new_tokens":500}
) )
def predict(message, history): def predict(message, history):
history_langchain_format = [] history_langchain_format = []
for human, ai in history: for human, ai in history:
history_langchain_format.append(HumanMessage(content=human)) history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai)) history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=message)) history_langchain_format.append(HumanMessage(content=message))
gpt_response = llm(message) #history_langchain_format) gpt_response = llm(message) #history_langchain_format)
return gpt_response#.content return gpt_response#.content
gr.ChatInterface(predict).launch() gr.ChatInterface(predict).launch()
``` ```
%% Output %% Output
Init param `input` is deprecated, please use `model_kwargs` instead. Init param `input` is deprecated, please use `model_kwargs` instead.
Running on local URL: http://127.0.0.1:7860 Running on local URL: http://127.0.0.1:7860
To create a public link, set `share=True` in `launch()`. To create a public link, set `share=True` in `launch()`.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment