Expected results on XSUM (Rouge-2 score, ther higher the better) from the above scripts on Llama-2/3 models. The sequence length of inputs are ~2k. Here we constrains the size of KV cache, allowing only n KVs to be write/read after the prefilling stage. n ranges from **64** to **full** where we maintain all the KV pairs. With 128 KVs, the performance can be matched as the full baseline (~2k KVs) while performance degradation is observed with 64 KVs. Also, maintaining a smaller KV cache reduces the I/O cost of KVs, thus we can achieve better throughput.
Expected results on XSUM (Rouge-2 score, the higher the better) from the above scripts on Llama-2/3 models. The sequence length of inputs are ~2k. Here we constrains the size of KV cache, allowing only n KVs to be write/read after the prefilling stage. n ranges from **64** to **full** where we maintain all the KV pairs. With 128 KVs, the performance can be matched as the full baseline (~2k KVs) while performance degradation is observed with 64 KVs. Also, maintaining a smaller KV cache reduces the I/O cost of KVs, thus we can achieve better throughput.