Skip to content
Snippets Groups Projects
Commit cd3a72ec authored by Hamid Shojanazeri's avatar Hamid Shojanazeri
Browse files

fix format and missing packages

parent 636fd00d
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
![Meta---Logo@1x.jpg]() ![Meta---Logo@1x.jpg]()
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# **Getting to know Llama 2: Everything you need to start building** # **Getting to know Llama 2: Everything you need to start building**
Our goal in this session is to provide a guided tour of Llama 2, including understanding different Llama 2 models, how and where to access them, Generative AI and Chatbot architectures, prompt engineering, RAG (Retrieval Augmented Generation), Fine-tuning and more. All this is implemented with a starter code for you to take it and use it in your Llama 2 projects. Our goal in this session is to provide a guided tour of Llama 2, including understanding different Llama 2 models, how and where to access them, Generative AI and Chatbot architectures, prompt engineering, RAG (Retrieval Augmented Generation), Fine-tuning and more. All this is implemented with a starter code for you to take it and use it in your Llama 2 projects.
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
##**0 - Prerequisites** ##**0 - Prerequisites**
* Basic understanding of Large Language Models * Basic understanding of Large Language Models
* Basic understanding of Python * Basic understanding of Python
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
%pip install matplotlib
%pip install ipywidgets
```
%% Output
Requirement already satisfied: matplotlib in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (3.8.0)
Requirement already satisfied: contourpy>=1.0.1 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (1.1.1)
Requirement already satisfied: cycler>=0.10 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (4.42.1)
Requirement already satisfied: kiwisolver>=1.0.1 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (1.4.5)
Requirement already satisfied: numpy<2,>=1.21 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (1.25.2)
Requirement already satisfied: packaging>=20.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (23.1)
Requirement already satisfied: pillow>=6.2.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (9.3.0)
Requirement already satisfied: pyparsing>=2.3.1 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (3.1.1)
Requirement already satisfied: python-dateutil>=2.7 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from matplotlib) (2.8.2)
Requirement already satisfied: six>=1.5 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)
Note: you may need to restart the kernel to use updated packages.
Collecting ipywidgets
Obtaining dependency information for ipywidgets from https://files.pythonhosted.org/packages/4a/0e/57ed498fafbc60419a9332d872e929879ceba2d73cb11d284d7112472b3e/ipywidgets-8.1.1-py3-none-any.whl.metadata
Downloading ipywidgets-8.1.1-py3-none-any.whl.metadata (2.4 kB)
Requirement already satisfied: comm>=0.1.3 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipywidgets) (0.1.4)
Requirement already satisfied: ipython>=6.1.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipywidgets) (8.15.0)
Requirement already satisfied: traitlets>=4.3.1 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipywidgets) (5.10.0)
Collecting widgetsnbextension~=4.0.9 (from ipywidgets)
Obtaining dependency information for widgetsnbextension~=4.0.9 from https://files.pythonhosted.org/packages/29/03/107d96077c4befed191f7ad1a12c7b52a8f9d2778a5836d59f9855c105f6/widgetsnbextension-4.0.9-py3-none-any.whl.metadata
Downloading widgetsnbextension-4.0.9-py3-none-any.whl.metadata (1.6 kB)
Collecting jupyterlab-widgets~=3.0.9 (from ipywidgets)
Obtaining dependency information for jupyterlab-widgets~=3.0.9 from https://files.pythonhosted.org/packages/e8/05/0ebab152288693b5ec7b339aab857362947031143b282853b4c2dd4b5b40/jupyterlab_widgets-3.0.9-py3-none-any.whl.metadata
Downloading jupyterlab_widgets-3.0.9-py3-none-any.whl.metadata (4.1 kB)
Requirement already satisfied: backcall in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.2.0)
Requirement already satisfied: decorator in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (5.1.1)
Requirement already satisfied: jedi>=0.16 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.19.0)
Requirement already satisfied: matplotlib-inline in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.1.6)
Requirement already satisfied: pickleshare in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.7.5)
Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (3.0.39)
Requirement already satisfied: pygments>=2.4.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (2.16.1)
Requirement already satisfied: stack-data in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (0.6.2)
Requirement already satisfied: exceptiongroup in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (1.1.3)
Requirement already satisfied: pexpect>4.3 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from ipython>=6.1.0->ipywidgets) (4.8.0)
Requirement already satisfied: parso<0.9.0,>=0.8.3 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.3)
Requirement already satisfied: ptyprocess>=0.5 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from pexpect>4.3->ipython>=6.1.0->ipywidgets) (0.7.0)
Requirement already satisfied: wcwidth in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=6.1.0->ipywidgets) (0.2.6)
Requirement already satisfied: executing>=1.2.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (1.2.0)
Requirement already satisfied: asttokens>=2.1.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (2.4.0)
Requirement already satisfied: pure-eval in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from stack-data->ipython>=6.1.0->ipywidgets) (0.2.2)
Requirement already satisfied: six>=1.12.0 in /data/home/hamidnazeri/miniconda/envs/llama-package/lib/python3.10/site-packages (from asttokens>=2.1.0->stack-data->ipython>=6.1.0->ipywidgets) (1.16.0)
Downloading ipywidgets-8.1.1-py3-none-any.whl (139 kB)
 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 139.4/139.4 kB 2.5 MB/s eta 0:00:00ta 0:00:01
[?25hDownloading jupyterlab_widgets-3.0.9-py3-none-any.whl (214 kB)
 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 214.9/214.9 kB 5.2 MB/s eta 0:00:00ta 0:00:01
[?25hDownloading widgetsnbextension-4.0.9-py3-none-any.whl (2.3 MB)
 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.3/2.3 MB 24.0 MB/s eta 0:00:00:00:01
[?25hInstalling collected packages: widgetsnbextension, jupyterlab-widgets, ipywidgets
Successfully installed ipywidgets-8.1.1 jupyterlab-widgets-3.0.9 widgetsnbextension-4.0.9
Note: you may need to restart the kernel to use updated packages.
%% Cell type:code id: tags:
```
# presentation layer code # presentation layer code
import base64 import base64
from IPython.display import Image, display from IPython.display import Image, display
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import ipywidgets as widgets
from IPython.display import display, Markdown
def mm(graph): def mm(graph):
graphbytes = graph.encode("ascii") graphbytes = graph.encode("ascii")
base64_bytes = base64.b64encode(graphbytes) base64_bytes = base64.b64encode(graphbytes)
base64_string = base64_bytes.decode("ascii") base64_string = base64_bytes.decode("ascii")
display(Image(url="https://mermaid.ink/img/" + base64_string)) display(Image(url="https://mermaid.ink/img/" + base64_string))
def genai_app_arch(): def genai_app_arch():
mm(""" mm("""
flowchart TD flowchart TD
A[Users] --> B(Applications e.g. mobile, web) A[Users] --> B(Applications e.g. mobile, web)
B --> |Hosted API|C(Platforms e.g. Custom, HuggingFace, Replicate) B --> |Hosted API|C(Platforms e.g. Custom, HuggingFace, Replicate)
B -- optional --> E(Frameworks e.g. LangChain) B -- optional --> E(Frameworks e.g. LangChain)
C-->|User Input|D[Llama 2] C-->|User Input|D[Llama 2]
D-->|Model Output|C D-->|Model Output|C
E --> C E --> C
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
def rag_arch(): def rag_arch():
mm(""" mm("""
flowchart TD flowchart TD
A[User Prompts] --> B(Frameworks e.g. LangChain) A[User Prompts] --> B(Frameworks e.g. LangChain)
B <--> |Database, Docs, XLS|C[fa:fa-database External Data] B <--> |Database, Docs, XLS|C[fa:fa-database External Data]
B -->|API|D[Llama 2] B -->|API|D[Llama 2]
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
def llama2_family(): def llama2_family():
mm(""" mm("""
graph LR; graph LR;
llama-2 --> llama-2-7b llama-2 --> llama-2-7b
llama-2 --> llama-2-13b llama-2 --> llama-2-13b
llama-2 --> llama-2-70b llama-2 --> llama-2-70b
llama-2-7b --> llama-2-7b-chat llama-2-7b --> llama-2-7b-chat
llama-2-13b --> llama-2-13b-chat llama-2-13b --> llama-2-13b-chat
llama-2-70b --> llama-2-70b-chat llama-2-70b --> llama-2-70b-chat
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
def apps_and_llms(): def apps_and_llms():
mm(""" mm("""
graph LR; graph LR;
users --> apps users --> apps
apps --> frameworks apps --> frameworks
frameworks --> platforms frameworks --> platforms
platforms --> Llama 2 platforms --> Llama 2
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
import ipywidgets as widgets
from IPython.display import display, Markdown
# Create a text widget # Create a text widget
API_KEY = widgets.Password( API_KEY = widgets.Password(
value='', value='',
placeholder='', placeholder='',
description='API_KEY:', description='API_KEY:',
disabled=False disabled=False
) )
def md(t): def md(t):
display(Markdown(t)) display(Markdown(t))
def bot_arch(): def bot_arch():
mm(""" mm("""
graph LR; graph LR;
user --> prompt user --> prompt
prompt --> i_safety prompt --> i_safety
i_safety --> context i_safety --> context
context --> Llama_2 context --> Llama_2
Llama_2 --> output Llama_2 --> output
output --> o_safety output --> o_safety
i_safety --> memory i_safety --> memory
o_safety --> memory o_safety --> memory
memory --> context memory --> context
o_safety --> user o_safety --> user
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
def fine_tuned_arch(): def fine_tuned_arch():
mm(""" mm("""
graph LR; graph LR;
Custom_Dataset --> Pre-trained_Llama Custom_Dataset --> Pre-trained_Llama
Pre-trained_Llama --> Fine-tuned_Llama Pre-trained_Llama --> Fine-tuned_Llama
Fine-tuned_Llama --> RLHF Fine-tuned_Llama --> RLHF
RLHF --> |Loss:Cross-Entropy|Fine-tuned_Llama RLHF --> |Loss:Cross-Entropy|Fine-tuned_Llama
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
def load_data_faiss_arch(): def load_data_faiss_arch():
mm(""" mm("""
graph LR; graph LR;
documents --> textsplitter documents --> textsplitter
textsplitter --> embeddings textsplitter --> embeddings
embeddings --> vectorstore embeddings --> vectorstore
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
def mem_context(): def mem_context():
mm(""" mm("""
graph LR graph LR
context(text) context(text)
user_prompt --> context user_prompt --> context
instruction --> context instruction --> context
examples --> context examples --> context
memory --> context memory --> context
context --> tokenizer context --> tokenizer
tokenizer --> embeddings tokenizer --> embeddings
embeddings --> LLM embeddings --> LLM
classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms; classDef default fill:#CCE6FF,stroke:#84BCF5,textColor:#1C2B33,fontFamily:trebuchet ms;
""") """)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
##**1 - Understanding Llama 2** ## **1 - Understanding Llama 2**
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **1.1 - What is Llama 2?** ### **1.1 - What is Llama 2?**
* State of the art (SOTA), Open Source LLM * State of the art (SOTA), Open Source LLM
* 7B, 13B, 70B * 7B, 13B, 70B
* Pretrained + Chat * Pretrained + Chat
* Choosing model: Size, Quality, Cost, Speed * Choosing model: Size, Quality, Cost, Speed
* [Research paper](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) * [Research paper](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)
* [Responsible use guide](https://ai.meta.com/llama/responsible-use-guide/) * [Responsible use guide](https://ai.meta.com/llama/responsible-use-guide/)
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
llama2_family() llama2_family()
``` ```
%% Output
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
###**1.2 - Accessing Llama 2** ### **1.2 - Accessing Llama 2**
* Download + Self Host (on-premise) * Download + Self Host (on-premise)
* Hosted API Platform (e.g. Replicate) * Hosted API Platform (e.g. Replicate)
* Hosted Container Platform (e.g. Azure, AWS, GCP) * Hosted Container Platform (e.g. Azure, AWS, GCP)
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **1.3 - Use Cases of Llama 2** ### **1.3 - Use Cases of Llama 2**
* Content Generation * Content Generation
* Chatbots * Chatbots
* Summarization * Summarization
* Programming (e.g. Code Llama) * Programming (e.g. Code Llama)
* and many more... * and many more...
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
##**2 - Using Llama 2** ## **2 - Using Llama 2**
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **2.1 - Install dependencies** ### **2.1 - Install dependencies**
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# Install dependencies and initialize # Install dependencies and initialize
%pip install -qU \ %pip install -qU \
replicate \ replicate \
langchain \ langchain \
sentence_transformers \ sentence_transformers \
pdf2image \ pdf2image \
pdfminer \ pdfminer \
pdfminer.six \ pdfminer.six \
unstructured \ unstructured \
faiss-gpu faiss-gpu
``` ```
%% Output
Note: you may need to restart the kernel to use updated packages.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# model we will use throughout the notebook # model we will use throughout the notebook
llama2_13b = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d" llama2_13b = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d"
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# We will use Replicate hosted cloud environment # We will use Replicate hosted cloud environment
# Obtain Replicate API key → https://replicate.com/account/api-tokens) # Obtain Replicate API key → https://replicate.com/account/api-tokens)
# Find the model to use → we will use [`llama-2-13b-chat`](https://replicate.com/lucataco/llama-2-13b-chat) # Find the model to use → we will use [`llama-2-13b-chat`](https://replicate.com/lucataco/llama-2-13b-chat)
# enter your replicate api token # enter your replicate api token
from getpass import getpass from getpass import getpass
import os import os
REPLICATE_API_TOKEN = getpass() REPLICATE_API_TOKEN = getpass()
REPLICATE_API_TOKEN = "r8_BllHLsEknCEcXvgyektqHMN4BrzOHe83CGxHz"
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
# alternatively, you can also store the tokens in environment variables and load it here # alternatively, you can also store the tokens in environment variables and load it here
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# we will use replicate's hosted api # we will use replicate's hosted api
import replicate import replicate
# text completion with input prompt # text completion with input prompt
def Completion(prompt): def Completion(prompt):
output = replicate.run( output = replicate.run(
llama2_13b, llama2_13b,
input={"prompt": prompt, "max_new_tokens":1000} input={"prompt": prompt, "max_new_tokens":1000}
) )
return "".join(output) return "".join(output)
# chat completion with input prompt and system prompt # chat completion with input prompt and system prompt
def ChatCompletion(prompt, system_prompt=None): def ChatCompletion(prompt, system_prompt=None):
output = replicate.run( output = replicate.run(
llama2_13b, llama2_13b,
input={"system_prompt": system_prompt, input={"system_prompt": system_prompt,
"prompt": prompt, "prompt": prompt,
"max_new_tokens":1000} "max_new_tokens":1000}
) )
return "".join(output) return "".join(output)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **2.2 - Basic completion** ### **2.2 - Basic completion**
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
output = Completion(prompt="The typical color of a llama is: ") output = Completion(prompt="The typical color of a llama is: ")
md(output) md(output)
``` ```
%% Output
---------------------------------------------------------------------------
ReplicateError Traceback (most recent call last)
/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb Cell 18 line 1
----> <a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=0'>1</a> output = Completion(prompt="The typical color of a llama is: ")
<a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=1'>2</a> md(output)
/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb Cell 18 line 6
<a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=4'>5</a> def Completion(prompt):
----> <a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=5'>6</a> output = replicate.run(
<a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=6'>7</a> llama2_13b,
<a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=7'>8</a> input={"prompt": prompt, "max_new_tokens":1000}
<a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=8'>9</a> )
<a href='vscode-notebook-cell://ssh-remote%2Bpytorch/data/home/hamidnazeri/llama-package/llama-recipes/examples/Getting_to_know_Llama.ipynb#X22sdnNjb2RlLXJlbW90ZQ%3D%3D?line=9'>10</a> return "".join(output)
File ~/miniconda/envs/llama-package/lib/python3.10/site-packages/replicate/client.py:138, in Client.run(self, model_version, **kwargs)
134 raise ReplicateError(
135 f"Invalid model_version: {model_version}. Expected format: owner/name:version"
136 )
137 model = self.models.get(m.group("model"))
--> 138 version = model.versions.get(m.group("version"))
139 prediction = self.predictions.create(version=version, **kwargs)
140 # Return an iterator of the output
File ~/miniconda/envs/llama-package/lib/python3.10/site-packages/replicate/version.py:89, in VersionCollection.get(self, id)
80 def get(self, id: str) -> Version:
81 """
82 Get a specific model version.
83
(...)
87 The model version.
88 """
---> 89 resp = self._client._request(
90 "GET", f"/v1/models/{self._model.username}/{self._model.name}/versions/{id}"
91 )
92 return self.prepare_model(resp.json())
File ~/miniconda/envs/llama-package/lib/python3.10/site-packages/replicate/client.py:80, in Client._request(self, method, path, **kwargs)
78 if 400 <= resp.status_code < 600:
79 try:
---> 80 raise ReplicateError(resp.json()["detail"])
81 except (JSONDecodeError, KeyError):
82 pass
ReplicateError: Incorrect authentication token. Learn how to authenticate and get your API token here: https://replicate.com/docs/reference/http#authentication
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **2.3 - System prompts** ### **2.3 - System prompts**
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
output = ChatCompletion( output = ChatCompletion(
prompt="The typical color of a llama is: ", prompt="The typical color of a llama is: ",
system_prompt="respond with only one word" system_prompt="respond with only one word"
) )
md(output) md(output)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **2.4 - Response formats** ### **2.4 - Response formats**
* Can support different formatted outputs e.g. text, JSON, etc. * Can support different formatted outputs e.g. text, JSON, etc.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
output = ChatCompletion( output = ChatCompletion(
prompt="The typical color of a llama is: ", prompt="The typical color of a llama is: ",
system_prompt="response in json format" system_prompt="response in json format"
) )
md(output) md(output)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## **3 - Gen AI Application Architecture** ## **3 - Gen AI Application Architecture**
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
genai_app_arch() genai_app_arch()
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
##4 - **Chatbot Architecture** ##4 - **Chatbot Architecture**
* User Prompts * User Prompts
* Input Safety * Input Safety
* Llama 2 * Llama 2
* Output Safety * Output Safety
* Memory & Context * Memory & Context
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
bot_arch() bot_arch()
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **4.1 - Chat conversation** ### **4.1 - Chat conversation**
* LLMs are stateless * LLMs are stateless
* Single Turn * Single Turn
* Multi Turn (Memory) * Multi Turn (Memory)
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# example of single turn chat # example of single turn chat
prompt_chat = "What is the average lifespan of a Llama?" prompt_chat = "What is the average lifespan of a Llama?"
output = ChatCompletion(prompt=prompt_chat, system_prompt="answer the last question in few words") output = ChatCompletion(prompt=prompt_chat, system_prompt="answer the last question in few words")
md(output) md(output)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# example without previous context. LLM's are stateless and cannot understand "they" without previous context # example without previous context. LLM's are stateless and cannot understand "they" without previous context
prompt_chat = "What animal family are they?" prompt_chat = "What animal family are they?"
output = ChatCompletion(prompt=prompt_chat, system_prompt="answer the last question in few words") output = ChatCompletion(prompt=prompt_chat, system_prompt="answer the last question in few words")
md(output) md(output)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
Chat app requires us to send in previous context to LLM to get in valid responses. Below is an example of Multi-turn chat. Chat app requires us to send in previous context to LLM to get in valid responses. Below is an example of Multi-turn chat.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# example of multi-turn chat, with storing previous context # example of multi-turn chat, with storing previous context
prompt_chat = """ prompt_chat = """
User: What is the average lifespan of a Llama? User: What is the average lifespan of a Llama?
Assistant: Sure! The average lifespan of a llama is around 20-30 years. Assistant: Sure! The average lifespan of a llama is around 20-30 years.
User: What animal family are they? User: What animal family are they?
""" """
output = ChatCompletion(prompt=prompt_chat, system_prompt="answer the last question") output = ChatCompletion(prompt=prompt_chat, system_prompt="answer the last question")
md(output) md(output)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **4.2 - Prompt Engineering** ### **4.2 - Prompt Engineering**
Prompt engineering refers to the science of designing effective prompts to get desired responses. Prompt engineering refers to the science of designing effective prompts to get desired responses.
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### **4.2.1 - In-Context Learning (e.g. Zero-shot, Few-shot)** #### **4.2.1 - In-Context Learning (e.g. Zero-shot, Few-shot)**
* In-context learning - specific method of prompt engineering where demonstration of task are provided as part of prompt. * In-context learning - specific method of prompt engineering where demonstration of task are provided as part of prompt.
1. Zero-shot learning - model is performing tasks without any 1. Zero-shot learning - model is performing tasks without any
input examples. input examples.
2. Few or “N-Shot” Learning - model is performing and behaving based on input examples in user's prompt. 2. Few or “N-Shot” Learning - model is performing and behaving based on input examples in user's prompt.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# Zero-shot example. To get positive/negative/neutral sentiment, we need to give examples in the prompt # Zero-shot example. To get positive/negative/neutral sentiment, we need to give examples in the prompt
prompt = ''' prompt = '''
Classify: I saw a Gecko. Classify: I saw a Gecko.
Sentiment: ? Sentiment: ?
''' '''
output = ChatCompletion(prompt, system_prompt="one word response") output = ChatCompletion(prompt, system_prompt="one word response")
md(output) md(output)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# By giving examples to Llama, it understands the expected output format. # By giving examples to Llama, it understands the expected output format.
prompt = ''' prompt = '''
Classify: I love Llamas! Classify: I love Llamas!
Sentiment: Positive Sentiment: Positive
Classify: I dont like Snakes. Classify: I dont like Snakes.
Sentiment: Negative Sentiment: Negative
Classify: I saw a Gecko. Classify: I saw a Gecko.
Sentiment:''' Sentiment:'''
output = ChatCompletion(prompt, system_prompt="One word response") output = ChatCompletion(prompt, system_prompt="One word response")
md(output) md(output)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# another zero-shot learning # another zero-shot learning
prompt = ''' prompt = '''
QUESTION: Vicuna? QUESTION: Vicuna?
ANSWER:''' ANSWER:'''
output = ChatCompletion(prompt, system_prompt="one word response") output = ChatCompletion(prompt, system_prompt="one word response")
md(output) md(output)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# Another few-shot learning example with formatted prompt. # Another few-shot learning example with formatted prompt.
prompt = ''' prompt = '''
QUESTION: Llama? QUESTION: Llama?
ANSWER: Yes ANSWER: Yes
QUESTION: Alpaca? QUESTION: Alpaca?
ANSWER: Yes ANSWER: Yes
QUESTION: Rabbit? QUESTION: Rabbit?
ANSWER: No ANSWER: No
QUESTION: Vicuna? QUESTION: Vicuna?
ANSWER:''' ANSWER:'''
output = ChatCompletion(prompt, system_prompt="one word response") output = ChatCompletion(prompt, system_prompt="one word response")
md(output) md(output)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### **4.2.2 - Chain of Thought** #### **4.2.2 - Chain of Thought**
* "chain of thought" or a coherent sequence of ideas is crucial for generating meaningful and contextually relevant responses * "chain of thought" or a coherent sequence of ideas is crucial for generating meaningful and contextually relevant responses
* Hallucination on word problems * Hallucination on word problems
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# Standard prompting # Standard prompting
prompt = ''' prompt = '''
Llama started with 5 tennis balls. It buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does Llama have now? Llama started with 5 tennis balls. It buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does Llama have now?
''' '''
output = ChatCompletion(prompt, system_prompt="provide short answer") output = ChatCompletion(prompt, system_prompt="provide short answer")
md(output) md(output)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# Chain-Of-Thought prompting # Chain-Of-Thought prompting
prompt = ''' prompt = '''
Llama started with 5 tennis balls. It buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does Llama have now? Llama started with 5 tennis balls. It buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does Llama have now?
Let's think step by step. Let's think step by step.
''' '''
output = ChatCompletion(prompt, system_prompt="provide short answer") output = ChatCompletion(prompt, system_prompt="provide short answer")
md(output) md(output)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
### **4.3 - Retrieval Augmented Generation (RAG)** ### **4.3 - Retrieval Augmented Generation (RAG)**
* Prompt Eng Limitations (Knowledge cutoff & lack of specialized data) * Prompt Eng Limitations (Knowledge cutoff & lack of specialized data)
* Langchain * Langchain
Retrieval Augmented Generation(RAG) allows us to retrieve snippets of information from external data sources and augment it to the user's prompt to get tailored responses from Llama 2. Retrieval Augmented Generation(RAG) allows us to retrieve snippets of information from external data sources and augment it to the user's prompt to get tailored responses from Llama 2.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
rag_arch() rag_arch()
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### **4.3.1 - LangChain** #### **4.3.1 - LangChain**
LangChain is a framework that helps make it easier to implement RAG. LangChain is a framework that helps make it easier to implement RAG.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# langchain setup # langchain setup
from langchain.llms import Replicate from langchain.llms import Replicate
# Use the Llama 2 model hosted on Replicate # Use the Llama 2 model hosted on Replicate
# Temperature: Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value # Temperature: Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value
# top_p: When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens # top_p: When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens
# max_new_tokens: Maximum number of tokens to generate. A word is generally 2-3 tokens # max_new_tokens: Maximum number of tokens to generate. A word is generally 2-3 tokens
llama_model = Replicate( llama_model = Replicate(
model=llama2_13b, model=llama2_13b,
model_kwargs={"temperature": 0.75,"top_p": 1, "max_new_tokens":1000} model_kwargs={"temperature": 0.75,"top_p": 1, "max_new_tokens":1000}
) )
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# Step 1: load the external data source. In our case, we will load Meta’s “Responsible Use Guide” pdf document. # Step 1: load the external data source. In our case, we will load Meta’s “Responsible Use Guide” pdf document.
from langchain.document_loaders import OnlinePDFLoader from langchain.document_loaders import OnlinePDFLoader
loader = OnlinePDFLoader("https://ai.meta.com/static-resource/responsible-use-guide/") loader = OnlinePDFLoader("https://ai.meta.com/static-resource/responsible-use-guide/")
documents = loader.load() documents = loader.load()
# Step 2: Get text splits from document # Step 2: Get text splits from document
from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
all_splits = text_splitter.split_documents(documents) all_splits = text_splitter.split_documents(documents)
# Step 3: Use the embedding model # Step 3: Use the embedding model
from langchain.vectorstores import FAISS from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings from langchain.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2" # embedding model model_name = "sentence-transformers/all-mpnet-base-v2" # embedding model
model_kwargs = {"device": "cpu"} model_kwargs = {"device": "cpu"}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
# Step 4: Use vector store to store embeddings # Step 4: Use vector store to store embeddings
vectorstore = FAISS.from_documents(all_splits, embeddings) vectorstore = FAISS.from_documents(all_splits, embeddings)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### **4.3.2 - LangChain Q&A Retriever** #### **4.3.2 - LangChain Q&A Retriever**
* ConversationalRetrievalChain * ConversationalRetrievalChain
* Query the Source documents * Query the Source documents
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# Query against your own data # Query against your own data
from langchain.chains import ConversationalRetrievalChain from langchain.chains import ConversationalRetrievalChain
chain = ConversationalRetrievalChain.from_llm(llama_model, vectorstore.as_retriever(), return_source_documents=True) chain = ConversationalRetrievalChain.from_llm(llama_model, vectorstore.as_retriever(), return_source_documents=True)
chat_history = [] chat_history = []
query = "How is Meta approaching open science in two short sentences?" query = "How is Meta approaching open science in two short sentences?"
result = chain({"question": query, "chat_history": chat_history}) result = chain({"question": query, "chat_history": chat_history})
md(result['answer']) md(result['answer'])
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
# This time your previous question and answer will be included as a chat history which will enable the ability # This time your previous question and answer will be included as a chat history which will enable the ability
# to ask follow up questions. # to ask follow up questions.
chat_history = [(query, result["answer"])] chat_history = [(query, result["answer"])]
query = "How is it benefiting the world?" query = "How is it benefiting the world?"
result = chain({"question": query, "chat_history": chat_history}) result = chain({"question": query, "chat_history": chat_history})
md(result['answer']) md(result['answer'])
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## **5 - Fine-Tuning Models** ## **5 - Fine-Tuning Models**
* Limitatons of Prompt Eng and RAG * Limitatons of Prompt Eng and RAG
* Fine-Tuning Arch * Fine-Tuning Arch
* Types (PEFT, LoRA, QLoRA) * Types (PEFT, LoRA, QLoRA)
* Using PyTorch for Pre-Training & Fine-Tuning * Using PyTorch for Pre-Training & Fine-Tuning
* Evals + Quality * Evals + Quality
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` ```
fine_tuned_arch() fine_tuned_arch()
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## **6 - Responsible AI** ## **6 - Responsible AI**
* Power + Responsibility * Power + Responsibility
* Hallucinations * Hallucinations
* Input & Output Safety * Input & Output Safety
* Red-teaming (simulating real-world cyber attackers) * Red-teaming (simulating real-world cyber attackers)
* [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/) * [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/)
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
##**7 - Conclusion** ##**7 - Conclusion**
* Active research on LLMs and Llama * Active research on LLMs and Llama
* Leverage the power of Llama and its open community * Leverage the power of Llama and its open community
* Safety and responsible use is paramount! * Safety and responsible use is paramount!
* Call-To-Action * Call-To-Action
* [Replicate Free Credits](https://replicate.fyi/connect2023) for Connect attendees! * [Replicate Free Credits](https://replicate.fyi/connect2023) for Connect attendees!
* This notebook is available through Llama Github recipes * This notebook is available through Llama Github recipes
* Use Llama in your projects and give us feedback * Use Llama in your projects and give us feedback
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### **Resources** #### **Resources**
- [GitHub - Llama 2](https://github.com/facebookresearch/llama) - [GitHub - Llama 2](https://github.com/facebookresearch/llama)
- [Github - LLama 2 Recipes](https://github.com/facebookresearch/llama-recipes) - [Github - LLama 2 Recipes](https://github.com/facebookresearch/llama-recipes)
- [Llama 2](https://ai.meta.com/llama/) - [Llama 2](https://ai.meta.com/llama/)
- [Research Paper](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/) - [Research Paper](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/)
- [Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) - [Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md)
- [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/) - [Responsible Use Guide](https://ai.meta.com/llama/responsible-use-guide/)
- [Acceptable Use Policy](https://ai.meta.com/llama/use-policy/) - [Acceptable Use Policy](https://ai.meta.com/llama/use-policy/)
- [Replicate](https://replicate.com/meta/) - [Replicate](https://replicate.com/meta/)
- [LangChain](https://www.langchain.com/) - [LangChain](https://www.langchain.com/)
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
#### **Authors & Contact** #### **Authors & Contact**
* asangani@meta.com, [Amit Sangani | LinkedIn](https://www.linkedin.com/in/amitsangani/) * asangani@meta.com, [Amit Sangani | LinkedIn](https://www.linkedin.com/in/amitsangani/)
* mohsena@meta.com, [Mohsen Agsen | LinkedIn](https://www.linkedin.com/in/mohsen-agsen-62a9791/) * mohsena@meta.com, [Mohsen Agsen | LinkedIn](https://www.linkedin.com/in/mohsen-agsen-62a9791/)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment