Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Llama Recipes
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mirrored_repos
MachineLearning
meta-llama
Llama Recipes
Commits
3d887ea4
Commit
3d887ea4
authored
1 year ago
by
Hamid Shojanazeri
Browse files
Options
Downloads
Patches
Plain Diff
update with active memory and removing rank0 for eval score
parent
bedb96b7
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
utils/memory_utils.py
+1
-0
1 addition, 0 deletions
utils/memory_utils.py
utils/train_utils.py
+2
-2
2 additions, 2 deletions
utils/train_utils.py
with
3 additions
and
2 deletions
utils/memory_utils.py
+
1
−
0
View file @
3d887ea4
...
@@ -51,6 +51,7 @@ class MemoryTrace:
...
@@ -51,6 +51,7 @@ class MemoryTrace:
self
.
peak
=
byte2gb
(
torch
.
cuda
.
max_memory_allocated
())
self
.
peak
=
byte2gb
(
torch
.
cuda
.
max_memory_allocated
())
cuda_info
=
torch
.
cuda
.
memory_stats
()
cuda_info
=
torch
.
cuda
.
memory_stats
()
self
.
cuda_malloc_retires
=
cuda_info
.
get
(
"
num_alloc_retries
"
,
0
)
self
.
cuda_malloc_retires
=
cuda_info
.
get
(
"
num_alloc_retries
"
,
0
)
self
.
peak_active_gb
=
byte2gb
(
cuda_info
[
"
active_bytes.all.peak
"
])
self
.
m_cuda_ooms
=
cuda_info
.
get
(
"
num_ooms
"
,
0
)
self
.
m_cuda_ooms
=
cuda_info
.
get
(
"
num_ooms
"
,
0
)
self
.
used
=
byte2gb
(
self
.
end
-
self
.
begin
)
self
.
used
=
byte2gb
(
self
.
end
-
self
.
begin
)
self
.
peaked
=
byte2gb
(
self
.
peak
-
self
.
begin
)
self
.
peaked
=
byte2gb
(
self
.
peak
-
self
.
begin
)
...
...
This diff is collapsed.
Click to expand it.
utils/train_utils.py
+
2
−
2
View file @
3d887ea4
...
@@ -78,7 +78,6 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
...
@@ -78,7 +78,6 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
model
.
train
()
model
.
train
()
total_loss
=
0.0
total_loss
=
0.0
data_set_len
=
0
data_set_len
=
0
for
step
,
batch
in
enumerate
(
tqdm
(
train_dataloader
,
colour
=
"
blue
"
,
desc
=
f
"
Training Epoch
{
epoch
}
"
)):
for
step
,
batch
in
enumerate
(
tqdm
(
train_dataloader
,
colour
=
"
blue
"
,
desc
=
f
"
Training Epoch
{
epoch
}
"
)):
for
key
in
batch
.
keys
():
for
key
in
batch
.
keys
():
if
train_config
.
enable_fsdp
:
if
train_config
.
enable_fsdp
:
...
@@ -116,6 +115,7 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
...
@@ -116,6 +115,7 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
print
(
f
"
Max CUDA memory allocated was
{
memtrace
.
peak
}
GB
"
)
print
(
f
"
Max CUDA memory allocated was
{
memtrace
.
peak
}
GB
"
)
print
(
f
"
Max CUDA memory reserved was
{
memtrace
.
max_reserved
}
GB
"
)
print
(
f
"
Max CUDA memory reserved was
{
memtrace
.
max_reserved
}
GB
"
)
print
(
f
"
Peak active CUDA memory was
{
memtrace
.
peak_active_gb
}
GB
"
)
print
(
f
"
Cuda Malloc retires :
{
memtrace
.
cuda_malloc_retires
}
"
)
print
(
f
"
Cuda Malloc retires :
{
memtrace
.
cuda_malloc_retires
}
"
)
print
(
f
"
CPU Total Peak Memory consumed during the train (max):
{
memtrace
.
cpu_peaked
+
memtrace
.
cpu_begin
}
GB
"
)
print
(
f
"
CPU Total Peak Memory consumed during the train (max):
{
memtrace
.
cpu_peaked
+
memtrace
.
cpu_begin
}
GB
"
)
...
@@ -151,7 +151,7 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
...
@@ -151,7 +151,7 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
)
)
if
local_rank
==
0
and
eval_epoch_loss
<
best_val_loss
:
if
eval_epoch_loss
<
best_val_loss
:
best_val_loss
=
eval_epoch_loss
best_val_loss
=
eval_epoch_loss
print
(
f
"
best eval loss on epoch
{
epoch
}
is
{
best_val_loss
}
"
)
print
(
f
"
best eval loss on epoch
{
epoch
}
is
{
best_val_loss
}
"
)
val_loss
.
append
(
best_val_loss
)
val_loss
.
append
(
best_val_loss
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment