Skip to content
Snippets Groups Projects
Commit 2739ee00 authored by Jeff Tang's avatar Jeff Tang
Browse files

some code and README update based on PR

parent 17140139
No related branches found
No related tags found
No related merge requests found
......@@ -301,7 +301,7 @@ Tool calling returned: [{'message_id': '1936ef72ad3f30e8', 'sender': 'gmagent_te
# TODOs
1. Port the app to using [Llama Stack](https://github.com/meta-llama/llama-stack) Agents API.
2. Improve the search, reply, forward, create email draft, and query about attachments to cover all listed and other examples in `functions_prompt.py`.
2. Improve the search, reply, forward, create email draft, and query about types of attachments.
3. Improve the fallback and error handling mechanism when the user asks don't lead to a correct function calling spec or the function calling fails.
4. Improve the user experience by showing progress when some Gmail search API calls take long (minutes) to complete.
5. Implement the async behavior of Gmagent - schedule an email to be sent later.
......@@ -311,17 +311,17 @@ Tool calling returned: [{'message_id': '1936ef72ad3f30e8', 'sender': 'gmagent_te
9. Introduce multiple-agent collaboration.
10. Implement the agent observability.
11. Compare different agent frameworks using Gmagent as the case study.
12. Productionize Gmagent.
12. Add and implement a test plan and productionize Gmagent.
# Resources
1. Lilian Weng's blog [LLM Powered Autonomous Agents](https://lilianweng.github.io/posts/2023-06-23-agent/)
2. Andrew Ng's posts [Agentic Design Patterns](https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/)
2. Andrew Ng's posts [Agentic Design Patterns](https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/) with basic [implementations from scratch](https://github.com/neural-maze/agentic_patterns).
3. LangChain's survey [State of AI Agents](https://www.langchain.com/stateofaiagents)
4. Deloitte's report [AI agents and multiagent systems](https://www2.deloitte.com/content/dam/Deloitte/us/Documents/consulting/us-ai-institute-generative-ai-agents-multiagent-systems.pdf)
5. Letta's blog [The AI agents stack](https://www.letta.com/blog/ai-agents-stack)
6. Microsoft's multi-agent system [Magentic-One](https://www.microsoft.com/en-us/research/articles/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks)
7. Amazon's [Multi-Agent Orchestrator framework](https://awslabs.github.io/multi-agent-orchestrator/)
8. Deeplearning.ai's [agent related courses](https://www.deeplearning.ai/courses/?courses_date_desc%5Bquery%5D=agents) (Meta, AWS, Microsoft, LangChain, LlamaIndex, crewAI, AutoGen) and some [lessons ported to using Llama](https://github.com/meta-llama/llama-recipes/tree/main/recipes/quickstart/agents/DeepLearningai_Course_Notebooks).
8. Deeplearning.ai's [agent related courses](https://www.deeplearning.ai/courses/?courses_date_desc%5Bquery%5D=agents) (Meta, AWS, Microsoft, LangChain, LlamaIndex, crewAI, AutoGen, Letta) and some [lessons ported to using Llama](https://github.com/meta-llama/llama-recipes/tree/main/recipes/quickstart/agents/DeepLearningai_Course_Notebooks).
9. Felicis's [The Agentic Web](https://www.felicis.com/insight/the-agentic-web)
10. A pretty complete [list of AI agents](https://github.com/e2b-dev/awesome-ai-agents), not including [/dev/agents](https://sdsa.ai/), a very new startup building the next-gen OS for AI agents, though.
......@@ -491,11 +491,11 @@ user_email = None
service = None
user_id = 'me'
def set_email_service(email):
def set_email_service(gmail):
global user_email
global service
user_email = email
user_email = gmail
service = authenticate_gmail(user_email)
class Agent:
......
......@@ -6,10 +6,12 @@ from functions_prompt import system_prompt
def main():
parser = argparse.ArgumentParser(description="Set email address")
parser.add_argument("--user_email", type=str, required=True, help="Your Gmail address")
parser.add_argument("--gmail", type=str, required=True, help="Your Gmail address")
args = parser.parse_args()
gmagent.set_email_service(args.user_email)
print(f"{args.gmail=}")
gmagent.set_email_service(args.gmail)
greeting = llama31("hello", "Your name is Gmagent, an assistant that can perform all Gmail related tasks for your user.")
agent_response = f"{greeting}\n\nYour ask: "
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment