-
Eustache Le Bihan authoredEustache Le Bihan authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
s2s_pipeline.py 25.83 KiB
import logging
import socket
import threading
from threading import Thread, Event
from queue import Queue
from time import perf_counter
import sys
import os
from pathlib import Path
from dataclasses import dataclass, field
from copy import copy
import multiprocessing
import numpy as np
import soundfile as sf
import torch
from nltk.tokenize import sent_tokenize
from rich.console import Console
from transformers import (
AutoModelForCausalLM,
AutoModelForSpeechSeq2Seq,
AutoProcessor,
AutoTokenizer,
pipeline,
TextIteratorStreamer,
HfArgumentParser
)
from parler_tts import (
ParlerTTSForConditionalGeneration,
ParlerTTSStreamer,
)
from utils import (
VADIterator,
int2float,
)
# caching allows ~50% compilation time reduction
# see https://docs.google.com/document/d/1y5CRfMLdwEoF1nTk9q8qEu1mgMUuUtvhklPKJ2emLU8/edit#heading=h.o2asbxsrp1ma
CURRENT_DIR = Path(__file__).resolve().parent
os.environ["TORCHINDUCTOR_CACHE_DIR"] = os.path.join(CURRENT_DIR, "tmp")
torch._inductor.config.fx_graph_cache = True
# mind about this parameter ! should be >= 2 * number of compiled models
torch._dynamo.config.cache_size_limit = 15
console = Console()
@dataclass
class ModuleArguments:
log_level: str = field(
default="info",
metadata={
"help": "Provide logging level. Example --log_level debug, default=warning."
}
)
class ThreadManager:
def __init__(self, handlers):
self.handlers = handlers
self.threads = []
def start(self):
for handler in self.handlers:
thread = threading.Thread(target=handler.run)
self.threads.append(thread)
thread.start()
def stop(self):
for handler in self.handlers:
handler.stop_event.set()
for thread in self.threads:
thread.join()
pipeline_start = None
class BaseHandler:
def __init__(self, stop_event, queue_in, queue_out, setup_args=(), setup_kwargs={}):
self.stop_event = stop_event
self.queue_in = queue_in
self.queue_out = queue_out
self.setup(*setup_args, **setup_kwargs)
self._times = []
def setup(self):
pass
def process(self):
raise NotImplementedError
def run(self):
while not self.stop_event.is_set():
input = self.queue_in.get()
if isinstance(input, bytes) and input == b'END':
# sentinelle signal to avoid queue deadlock
logger.debug("Stopping thread")
break
start_time = perf_counter()
for output in self.process(input):
self._times.append(perf_counter() - start_time)
logger.debug(f"{self.__class__.__name__}: {self.last_time: .3f} s")
self.queue_out.put(output)
start_time = perf_counter()
self.cleanup()
self.queue_out.put(b'END')
@property
def last_time(self):
return self._times[-1]
def cleanup(self):
pass
@dataclass
class SocketReceiverArguments:
recv_host: str = field(
default="localhost",
metadata={
"help": "The host IP ddress for the socket connection. Default is '0.0.0.0' which binds to all "
"available interfaces on the host machine."
}
)
recv_port: int = field(
default=12345,
metadata={
"help": "The port number on which the socket server listens. Default is 12346."
}
)
chunk_size: int = field(
default=1024,
metadata={
"help": "The size of each data chunk to be sent or received over the socket. Default is 1024 bytes."
}
)
class SocketReceiver:
def __init__(
self,
stop_event,
queue_out,
should_listen,
host='0.0.0.0',
port=12345,
chunk_size=1024
):
self.stop_event = stop_event
self.queue_out = queue_out
self.should_listen = should_listen
self.chunk_size=chunk_size
self.host = host
self.port = port
def receive_full_chunk(self, conn, chunk_size):
data = b''
while len(data) < chunk_size:
packet = conn.recv(chunk_size - len(data))
if not packet:
# connection closed
return None
data += packet
return data
def run(self):
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind((self.host, self.port))
self.socket.listen(1)
self.conn, _ = self.socket.accept()
logger.debug("receiver connected")
self.should_listen.set()
while not self.stop_event.is_set():
audio_chunk = self.receive_full_chunk(self.conn, self.chunk_size)
if audio_chunk is None:
# connection closed
self.queue_out.put(b'END')
break
if self.should_listen.is_set():
self.queue_out.put(audio_chunk)
self.conn.close()
logger.debug("Receiver closed")
@dataclass
class SocketSenderArguments:
send_host: str = field(
default="localhost",
metadata={
"help": "The host IP address for the socket connection. Default is '0.0.0.0' which binds to all "
"available interfaces on the host machine."
}
)
send_port: int = field(
default=12346,
metadata={
"help": "The port number on which the socket server listens. Default is 12346."
}
)
class SocketSender:
def __init__(
self,
stop_event,
queue_in,
host='0.0.0.0',
port=12346
):
self.stop_event = stop_event
self.queue_in = queue_in
self.host = host
self.port = port
def run(self):
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind((self.host, self.port))
self.socket.listen(1)
self.conn, _ = self.socket.accept()
logger.debug("sender connected")
while not self.stop_event.is_set():
audio_chunk = self.queue_in.get()
self.conn.sendall(audio_chunk)
if isinstance(audio_chunk, bytes) and audio_chunk == b'END':
break
self.conn.close()
logger.debug("Sender closed")
@dataclass
class VADHandlerArguments:
thresh: float = field(
default=0.3,
metadata={
"help": "The threshold value for voice activity detection (VAD). Values typically range from 0 to 1, with higher values requiring higher confidence in speech detection."
}
)
sample_rate: int = field(
default=16000,
metadata={
"help": "The sample rate of the audio in Hertz. Default is 16000 Hz, which is a common setting for voice audio."
}
)
min_silence_ms: int = field(
default=250,
metadata={
"help": "Minimum length of silence intervals to be used for segmenting speech. Measured in milliseconds. Default is 1000 ms."
}
)
min_speech_ms: int = field(
default=500,
metadata={
"help": "Minimum length of speech segments to be considered valid speech. Measured in milliseconds. Default is 500 ms."
}
)
max_speech_ms: float = field(
default=float('inf'),
metadata={
"help": "Maximum length of continuous speech before forcing a split. Default is infinite, allowing for uninterrupted speech segments."
}
)
speech_pad_ms: int = field(
default=30,
metadata={
"help": "Amount of padding added to the beginning and end of detected speech segments. Measured in milliseconds. Default is 30 ms."
}
)
class VADHandler(BaseHandler):
def setup(
self,
should_listen,
thresh=0.3,
sample_rate=16000,
min_silence_ms=1000,
min_speech_ms=500,
max_speech_ms=float('inf'),
speech_pad_ms=30,
):
self._should_listen = should_listen
self._sample_rate = sample_rate
self._min_silence_ms = min_silence_ms
self._min_speech_ms = min_speech_ms
self._max_speech_ms = max_speech_ms
self.model, _ = torch.hub.load('snakers4/silero-vad', 'silero_vad')
self.iterator = VADIterator(
self.model,
threshold=thresh,
sampling_rate=sample_rate,
min_silence_duration_ms=min_silence_ms,
speech_pad_ms=speech_pad_ms,
)
def process(self, audio_chunk):
audio_int16 = np.frombuffer(audio_chunk, dtype=np.int16)
audio_float32 = int2float(audio_int16)
vad_output = self.iterator(torch.from_numpy(audio_float32))
if vad_output is not None:
logger.debug("VAD: end of speech detected")
array = torch.cat(vad_output).cpu().numpy()
duration_ms = len(array) / self._sample_rate * 1000
if duration_ms < self._min_speech_ms or duration_ms > self._max_speech_ms:
logger.debug(f"audio input of duration: {len(array) / self._sample_rate}s, skipping")
else:
self._should_listen.clear()
logger.debug("Stop listening")
yield array
@dataclass
class WhisperSTTHandlerArguments:
stt_model_name: str = field(
default="distil-whisper/distil-large-v3",
metadata={
"help": "The pretrained Whisper model to use. Default is 'distil-whisper/distil-large-v3'."
}
)
stt_device: str = field(
default="cuda",
metadata={
"help": "The device type on which the model will run. Default is 'cuda' for GPU acceleration."
}
)
stt_torch_dtype: str = field(
default="float16",
metadata={
"help": "The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision)."
}
)
stt_compile_mode: str = field(
default=None,
metadata={
"help": "Compile mode for torch compile. Either 'default', 'reduce-overhead' and 'max-autotune'. Default is None (no compilation)"
}
)
stt_gen_max_new_tokens: int = field(
default=128,
metadata={
"help": "The maximum number of new tokens to generate. Default is 128."
}
)
stt_gen_num_beams: int = field(
default=1,
metadata={
"help": "The number of beams for beam search. Default is 1, implying greedy decoding."
}
)
stt_gen_return_timestamps: bool = field(
default=False,
metadata={
"help": "Whether to return timestamps with transcriptions. Default is False."
}
)
stt_gen_task: str = field(
default="transcribe",
metadata={
"help": "The task to perform, typically 'transcribe' for transcription. Default is 'transcribe'."
}
)
stt_gen_language: str = field(
default="en",
metadata={
"help": "The language of the speech to transcribe. Default is 'en' for English."
}
)
class WhisperSTTHandler(BaseHandler):
def setup(
self,
model_name="distil-whisper/distil-large-v3",
device="cuda",
torch_dtype="float16",
compile_mode=None,
gen_kwargs={}
):
self.compile_mode=compile_mode
self.processor = AutoProcessor.from_pretrained(model_name)
self.device = device
self.torch_dtype = getattr(torch, torch_dtype)
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_name,
torch_dtype=self.torch_dtype,
).to(device)
self.gen_kwargs = gen_kwargs
# compile
if self.compile_mode:
self.model.generation_config.cache_implementation = "static"
self.model.forward = torch.compile(self.model.forward, mode=self.compile_mode, fullgraph=True)
self.warmup()
def prepare_model_inputs(self, spoken_prompt):
input_features = self.processor(
spoken_prompt, sampling_rate=16000, return_tensors="pt"
).input_features
input_features = input_features.to(self.device, dtype=self.torch_dtype)
return input_features
def warmup(self):
# 2 warmup steps for no compile or compile mode with CUDA graphs capture
n_steps = 1 if self.compile_mode == "default" else 2
logger.debug(f"Warming up {self.__class__.__name__}")
dummy_input = torch.randn(
(1, self.model.config.num_mel_bins, 3000),
dtype=self.torch_dtype,
device=self.device
)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_event.record()
for _ in range(n_steps):
_ = self.model.generate(dummy_input, **self.gen_kwargs)
end_event.record()
torch.cuda.synchronize()
logger.debug(f"{self.__class__.__name__}: warmed up! time: {start_event.elapsed_time(end_event) * 1e-3:.3f} s")
def process(self, spoken_prompt):
global pipeline_start
pipeline_start = perf_counter()
input_features = self.processor(
spoken_prompt, sampling_rate=16000, return_tensors="pt"
).input_features
input_features = input_features.to(self.device, dtype=self.torch_dtype)
logger.debug("infering whisper...")
pred_ids = self.model.generate(input_features, **self.gen_kwargs)
pred_text = self.processor.batch_decode(
pred_ids, skip_special_tokens=True,
decode_with_timestamps=False
)[0]
logger.debug("finished whisper inference")
console.print(f"[yellow]USER: {pred_text}")
yield pred_text
@dataclass
class LanguageModelHandlerArguments:
lm_model_name: str = field(
default="microsoft/Phi-3-mini-4k-instruct",
metadata={
"help": "The pretrained language model to use. Default is 'microsoft/Phi-3-mini-4k-instruct'."
}
)
lm_device: str = field(
default="cuda",
metadata={
"help": "The device type on which the model will run. Default is 'cuda' for GPU acceleration."
}
)
lm_torch_dtype: str = field(
default="float16",
metadata={
"help": "The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision)."
}
)
user_role: str = field(
default="user",
metadata={
"help": "Role assigned to the user in the chat context. Default is 'user'."
}
)
init_chat_role: str = field(
default=None,
metadata={
"help": "Initial role for setting up the chat context. Default is 'system'."
}
)
init_chat_prompt: str = field(
default="You are a helpful AI assistant.",
metadata={
"help": "The initial chat prompt to establish context for the language model. Default is 'You are a helpful AI assistant.'"
}
)
lm_gen_max_new_tokens: int = field(
default=128,
metadata={"help": "Maximum number of new tokens to generate in a single completion. Default is 128."}
)
lm_gen_temperature: float = field(
default=0.0,
metadata={"help": "Controls the randomness of the output. Set to 0.0 for deterministic (repeatable) outputs. Default is 0.0."}
)
lm_gen_do_sample: bool = field(
default=False,
metadata={"help": "Whether to use sampling; set this to False for deterministic outputs. Default is False."}
)
class LanguageModelHandler(BaseHandler):
def setup(
self,
model_name="microsoft/Phi-3-mini-4k-instruct",
device="cuda",
torch_dtype="float16",
gen_kwargs={},
user_role="user",
init_chat_role=None,
init_chat_prompt="You are a helpful AI assistant.",
):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True
).to(device)
self.pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
)
self.streamer = TextIteratorStreamer(
self.tokenizer,
skip_prompt=True,
skip_special_tokens=True,
)
self.chat = []
if init_chat_role:
if not init_chat_prompt:
raise ValueError(f"An initial promt needs to be specified when setting init_chat_role.")
self.chat.append(
{"role": init_chat_role, "content": init_chat_prompt}
)
self.gen_kwargs = {
"streamer": self.streamer,
"return_full_text": False,
**gen_kwargs
}
self.user_role = user_role
def process(self, prompt):
self.chat.append(
{"role": self.user_role, "content": prompt}
)
thread = Thread(target=self.pipe, args=(self.chat,), kwargs=self.gen_kwargs)
thread.start()
generated_text, printable_text = "", ""
logger.debug("infering language model...")
for new_text in self.streamer:
generated_text += new_text
printable_text += new_text
sentences = sent_tokenize(printable_text)
if len(sentences) > 1:
yield(sentences[0])
printable_text = new_text
self.chat.append(
{"role": "assistant", "content": generated_text}
)
# don't forget last sentence
yield printable_text
@dataclass
class ParlerTTSHandlerArguments:
tts_model_name: str = field(
default="ylacombe/parler-tts-mini-jenny-30H",
metadata={
"help": "The pretrained TTS model to use. Default is 'ylacombe/parler-tts-mini-jenny-30H'."
}
)
tts_device: str = field(
default="cuda",
metadata={
"help": "The device type on which the model will run. Default is 'cuda' for GPU acceleration."
}
)
tts_torch_dtype: str = field(
default="float16",
metadata={
"help": "The PyTorch data type for the model and input tensors. One of `float32` (full-precision), `float16` or `bfloat16` (both half-precision)."
}
)
gen_kwargs: dict = field(
default_factory=dict,
metadata={
"help": "Additional keyword arguments to pass to the model's generate method. Use this to customize generation settings."
}
)
description: str = field(
default=(
"A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. "
"She speaks very fast."
),
metadata={
"help": "Description of the speaker's voice and speaking style to guide the TTS model."
}
)
play_steps_s: float = field(
default=0.2,
metadata={
"help": "The time interval in seconds for playing back the generated speech in steps. Default is 0.5 seconds."
}
)
class ParlerTTSHandler(BaseHandler):
def setup(
self,
should_listen,
model_name="ylacombe/parler-tts-mini-jenny-30H",
device="cuda",
torch_dtype="float16",
gen_kwargs={},
description=(
"A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. "
"She speaks very fast."
),
play_steps_s=0.5
):
torch_dtype = getattr(torch, torch_dtype)
self._should_listen = should_listen
self.description_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.prompt_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = ParlerTTSForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch_dtype
).to(device)
self.device = device
self.torch_dtype = torch_dtype
tokenized_description = self.description_tokenizer(description, return_tensors="pt")
input_ids = tokenized_description.input_ids.to(self.device)
attention_mask = tokenized_description.attention_mask.to(self.device)
self.gen_kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
**gen_kwargs
}
framerate = self.model.audio_encoder.config.frame_rate
self.play_steps = int(framerate * play_steps_s)
def process(self, lm_sentence):
console.print(f"[green]ASSISTANT: {lm_sentence}")
tokenized_prompt = self.prompt_tokenizer(lm_sentence, return_tensors="pt")
prompt_input_ids = tokenized_prompt.input_ids.to(self.device)
prompt_attention_mask = tokenized_prompt.attention_mask.to(self.device)
streamer = ParlerTTSStreamer(self.model, device=self.device, play_steps=self.play_steps)
tts_gen_kwargs = {
"prompt_input_ids": prompt_input_ids,
"prompt_attention_mask": prompt_attention_mask,
"streamer": streamer,
**self.gen_kwargs
}
torch.manual_seed(0)
thread = Thread(target=self.model.generate, kwargs=tts_gen_kwargs)
thread.start()
for i, audio_chunk in enumerate(streamer):
if i == 0:
logger.debug(f"time to first audio: {perf_counter() - pipeline_start:.3f}")
audio_chunk = np.int16(audio_chunk * 32767)
yield audio_chunk
self._should_listen.set()
def prepare_args(args, prefix):
gen_kwargs = {}
for key in copy(args.__dict__):
if key.startswith(prefix):
value = args.__dict__.pop(key)
new_key = key[len(prefix) + 1:] # Remove prefix and underscore
if new_key.startswith("gen_"):
gen_kwargs[new_key[4:]] = value # Remove 'gen_' and add to dict
else:
args.__dict__[new_key] = value
args.__dict__["gen_kwargs"] = gen_kwargs
def main():
parser = HfArgumentParser((
ModuleArguments,
SocketReceiverArguments,
SocketSenderArguments,
VADHandlerArguments,
WhisperSTTHandlerArguments,
LanguageModelHandlerArguments,
ParlerTTSHandlerArguments,
))
# 0. Parse CLI arguments
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# Parse configurations from a JSON file if specified
(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
language_model_handler_kwargs,
parler_tts_handler_kwargs,
) = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
# Parse arguments from command line if no JSON file is provided
(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
language_model_handler_kwargs,
parler_tts_handler_kwargs,
) = parser.parse_args_into_dataclasses()
global logger
logging.basicConfig(
level=module_kwargs.log_level.upper(),
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger = logging.getLogger(__name__)
# torch compile logs
if module_kwargs.log_level == "debug":
torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True)
prepare_args(whisper_stt_handler_kwargs, "stt")
prepare_args(language_model_handler_kwargs, "lm")
prepare_args(parler_tts_handler_kwargs, "tts")
stop_event = Event()
should_listen = Event()
recv_audio_chunks_queue = Queue()
send_audio_chunks_queue = Queue()
spoken_prompt_queue = Queue()
text_prompt_queue = Queue()
lm_response_queue = Queue()
vad = VADHandler(
stop_event,
queue_in=recv_audio_chunks_queue,
queue_out=spoken_prompt_queue,
setup_args=(should_listen,),
setup_kwargs=vars(vad_handler_kwargs),
)
stt = WhisperSTTHandler(
stop_event,
queue_in=spoken_prompt_queue,
queue_out=text_prompt_queue,
setup_kwargs=vars(whisper_stt_handler_kwargs),
)
lm = LanguageModelHandler(
stop_event,
queue_in=text_prompt_queue,
queue_out=lm_response_queue,
setup_kwargs=vars(language_model_handler_kwargs),
)
tts = ParlerTTSHandler(
stop_event,
queue_in=lm_response_queue,
queue_out=send_audio_chunks_queue,
setup_args=(should_listen,),
setup_kwargs=vars(parler_tts_handler_kwargs),
)
recv_handler = SocketReceiver(
stop_event,
recv_audio_chunks_queue,
should_listen,
host=socket_receiver_kwargs.recv_host,
port=socket_receiver_kwargs.recv_port,
chunk_size=socket_receiver_kwargs.chunk_size,
)
send_handler = SocketSender(
stop_event,
send_audio_chunks_queue,
host=socket_sender_kwargs.send_host,
port=socket_sender_kwargs.send_port,
)
try:
pipeline_manager = ThreadManager([vad, tts, lm, stt, recv_handler, send_handler])
pipeline_manager.start()
except KeyboardInterrupt:
pipeline_manager.stop()
if __name__ == "__main__":
main()