Newer
Older
import os
import sys
from copy import copy
from pathlib import Path
from threading import Event
from VAD.vad_handler import VADHandler
from arguments_classes.chat_tts_arguments import ChatTTSHandlerArguments
from arguments_classes.language_model_arguments import LanguageModelHandlerArguments
from arguments_classes.mlx_language_model_arguments import (
MLXLanguageModelHandlerArguments,
)
from arguments_classes.module_arguments import ModuleArguments
from arguments_classes.paraformer_stt_arguments import ParaformerSTTHandlerArguments
from arguments_classes.parler_tts_arguments import ParlerTTSHandlerArguments
from arguments_classes.socket_receiver_arguments import SocketReceiverArguments
from arguments_classes.socket_sender_arguments import SocketSenderArguments
from arguments_classes.vad_arguments import VADHandlerArguments
from arguments_classes.whisper_stt_arguments import WhisperSTTHandlerArguments
from arguments_classes.melo_tts_arguments import MeloTTSHandlerArguments
from rich.console import Console
from transformers import (
from utils.thread_manager import ThreadManager
# Ensure that the necessary NLTK resources are available
try:
nltk.data.find("tokenizers/punkt_tab")
try:
nltk.data.find("tokenizers/averaged_perceptron_tagger_eng")
except (LookupError, OSError):
nltk.download("averaged_perceptron_tagger_eng")
# caching allows ~50% compilation time reduction
# see https://docs.google.com/document/d/1y5CRfMLdwEoF1nTk9q8qEu1mgMUuUtvhklPKJ2emLU8/edit#heading=h.o2asbxsrp1ma
CURRENT_DIR = Path(__file__).resolve().parent
os.environ["TORCHINDUCTOR_CACHE_DIR"] = os.path.join(CURRENT_DIR, "tmp")
logging.getLogger("numba").setLevel(logging.WARNING) # quiet down numba logs
"""
Rename arguments by removing the prefix and prepares the gen_kwargs.
"""
gen_kwargs = {}
for key in copy(args.__dict__):
if key.startswith(prefix):
value = args.__dict__.pop(key)
new_key = key[len(prefix) + 1 :] # Remove prefix and underscore
if new_key.startswith("gen_"):
gen_kwargs[new_key[4:]] = value # Remove 'gen_' and add to dict
else:
args.__dict__[new_key] = value
args.__dict__["gen_kwargs"] = gen_kwargs
parser = HfArgumentParser(
(
ModuleArguments,
SocketReceiverArguments,
SocketSenderArguments,
VADHandlerArguments,
WhisperSTTHandlerArguments,
ParaformerSTTHandlerArguments,
# Parse configurations from a JSON file if specified
return parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
# Parse arguments from command line if no JSON file is provided
return parser.parse_args_into_dataclasses()
def setup_logger(log_level):
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True)
def optimal_mac_settings(mac_optimal_settings: Optional[str], *handler_kwargs):
if mac_optimal_settings:
for kwargs in handler_kwargs:
if hasattr(kwargs, "device"):
kwargs.device = "mps"
if hasattr(kwargs, "mode"):
kwargs.mode = "local"
if hasattr(kwargs, "stt"):
kwargs.stt = "whisper-mlx"
if hasattr(kwargs, "llm"):
kwargs.llm = "mlx-lm"
if hasattr(kwargs, "tts"):
kwargs.tts = "melo"
if platform == "darwin":
if module_kwargs.device == "cuda":
raise ValueError(
"Cannot use CUDA on macOS. Please set the device to 'cpu' or 'mps'."
)
if module_kwargs.llm != "mlx-lm":
logger.warning(
"For macOS users, it is recommended to use mlx-lm. You can activate it by passing --llm mlx-lm."
)
if module_kwargs.tts != "melo":
logger.warning(
"If you experiences issues generating the voice, considering setting the tts to melo."
)
def overwrite_device_argument(common_device: Optional[str], *handler_kwargs):
if common_device:
for kwargs in handler_kwargs:
if hasattr(kwargs, "lm_device"):
kwargs.lm_device = common_device
if hasattr(kwargs, "tts_device"):
kwargs.tts_device = common_device
if hasattr(kwargs, "stt_device"):
kwargs.stt_device = common_device
if hasattr(kwargs, "paraformer_stt_device"):
kwargs.paraformer_stt_device = common_device
def prepare_all_args(
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
):
prepare_args(paraformer_stt_handler_kwargs, "paraformer_stt")
prepare_args(mlx_language_model_handler_kwargs, "mlx_lm")
prepare_args(chat_tts_handler_kwargs, "chat_tts")
def initialize_queues_and_events():
return {
"stop_event": Event(),
"should_listen": Event(),
"recv_audio_chunks_queue": Queue(),
"send_audio_chunks_queue": Queue(),
"spoken_prompt_queue": Queue(),
"text_prompt_queue": Queue(),
"lm_response_queue": Queue(),
}
def build_pipeline(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
stop_event = queues_and_events["stop_event"]
should_listen = queues_and_events["should_listen"]
recv_audio_chunks_queue = queues_and_events["recv_audio_chunks_queue"]
send_audio_chunks_queue = queues_and_events["send_audio_chunks_queue"]
spoken_prompt_queue = queues_and_events["spoken_prompt_queue"]
text_prompt_queue = queues_and_events["text_prompt_queue"]
lm_response_queue = queues_and_events["lm_response_queue"]
from connections.local_audio_streamer import LocalAudioStreamer
local_audio_streamer = LocalAudioStreamer(
input_queue=recv_audio_chunks_queue, output_queue=send_audio_chunks_queue
)
comms_handlers = [local_audio_streamer]
should_listen.set()
else:
from connections.socket_receiver import SocketReceiver
from connections.socket_sender import SocketSender
comms_handlers = [
SocketReceiver(
stop_event,
recv_audio_chunks_queue,
should_listen,
host=socket_receiver_kwargs.recv_host,
port=socket_receiver_kwargs.recv_port,
chunk_size=socket_receiver_kwargs.chunk_size,
),
SocketSender(
stop_event,
send_audio_chunks_queue,
host=socket_sender_kwargs.send_host,
port=socket_sender_kwargs.send_port,
),
]
vad = VADHandler(
stop_event,
queue_in=recv_audio_chunks_queue,
queue_out=spoken_prompt_queue,
setup_args=(should_listen,),
setup_kwargs=vars(vad_handler_kwargs),
)
stt = get_stt_handler(module_kwargs, stop_event, spoken_prompt_queue, text_prompt_queue, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs)
lm = get_llm_handler(module_kwargs, stop_event, text_prompt_queue, lm_response_queue, language_model_handler_kwargs, mlx_language_model_handler_kwargs)
tts = get_tts_handler(module_kwargs, stop_event, lm_response_queue, send_audio_chunks_queue, should_listen, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs)
return ThreadManager([*comms_handlers, vad, stt, lm, tts])
def get_stt_handler(module_kwargs, stop_event, spoken_prompt_queue, text_prompt_queue, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs):
if module_kwargs.stt == "whisper":
from STT.whisper_stt_handler import WhisperSTTHandler
stop_event,
queue_in=spoken_prompt_queue,
queue_out=text_prompt_queue,
setup_kwargs=vars(whisper_stt_handler_kwargs),
)
elif module_kwargs.stt == "whisper-mlx":
from STT.lightning_whisper_mlx_handler import LightningWhisperSTTHandler
stop_event,
queue_in=spoken_prompt_queue,
queue_out=text_prompt_queue,
setup_kwargs=vars(whisper_stt_handler_kwargs),
)
elif module_kwargs.stt == "paraformer":
from STT.paraformer_handler import ParaformerSTTHandler
stop_event,
queue_in=spoken_prompt_queue,
queue_out=text_prompt_queue,
setup_kwargs=vars(paraformer_stt_handler_kwargs),
raise ValueError("The STT should be either whisper, whisper-mlx, or paraformer.")
def get_llm_handler(module_kwargs, stop_event, text_prompt_queue, lm_response_queue, language_model_handler_kwargs, mlx_language_model_handler_kwargs):
if module_kwargs.llm == "transformers":
from LLM.language_model import LanguageModelHandler
stop_event,
queue_in=text_prompt_queue,
queue_out=lm_response_queue,
setup_kwargs=vars(language_model_handler_kwargs),
)
elif module_kwargs.llm == "mlx-lm":
from LLM.mlx_language_model import MLXLanguageModelHandler
stop_event,
queue_in=text_prompt_queue,
queue_out=lm_response_queue,
setup_kwargs=vars(mlx_language_model_handler_kwargs),
)
else:
raise ValueError("The LLM should be either transformers or mlx-lm")
def get_tts_handler(module_kwargs, stop_event, lm_response_queue, send_audio_chunks_queue, should_listen, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs):
if module_kwargs.tts == "parler":
from TTS.parler_handler import ParlerTTSHandler
stop_event,
queue_in=lm_response_queue,
queue_out=send_audio_chunks_queue,
setup_args=(should_listen,),
setup_kwargs=vars(parler_tts_handler_kwargs),
)
elif module_kwargs.tts == "melo":
from TTS.melo_handler import MeloTTSHandler
logger.error(
"Error importing MeloTTSHandler. You might need to run: python -m unidic download"
)
stop_event,
queue_in=lm_response_queue,
queue_out=send_audio_chunks_queue,
setup_args=(should_listen,),
elif module_kwargs.tts == "chatTTS":
try:
from TTS.chatTTS_handler import ChatTTSHandler
except RuntimeError as e:
logger.error("Error importing ChatTTSHandler")
stop_event,
queue_in=lm_response_queue,
queue_out=send_audio_chunks_queue,
setup_args=(should_listen,),
setup_kwargs=vars(chat_tts_handler_kwargs),
)
raise ValueError("The TTS should be either parler, melo or chatTTS")
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def main():
(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
) = parse_arguments()
setup_logger(module_kwargs.log_level)
optimal_mac_settings(
module_kwargs.local_mac_optimal_settings,
module_kwargs,
)
check_mac_settings(module_kwargs)
overwrite_device_argument(
module_kwargs.device,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
)
prepare_all_args(
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,
)
queues_and_events = initialize_queues_and_events()
pipeline_manager = build_pipeline(
module_kwargs,
socket_receiver_kwargs,
socket_sender_kwargs,
vad_handler_kwargs,
whisper_stt_handler_kwargs,
paraformer_stt_handler_kwargs,
language_model_handler_kwargs,
mlx_language_model_handler_kwargs,
parler_tts_handler_kwargs,
melo_tts_handler_kwargs,
chat_tts_handler_kwargs,