Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Semantic Router
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
mirrored_repos
MachineLearning
aurelio-labs
Semantic Router
Commits
417a2b21
Unverified
Commit
417a2b21
authored
1 year ago
by
Siraj R Aizlewood
Browse files
Options
Downloads
Patches
Plain Diff
Removed Unused Splitter and Created New Splitter Module
parent
6ab55848
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
semantic_router/splitters/consecutive_sim.py
+0
-99
0 additions, 99 deletions
semantic_router/splitters/consecutive_sim.py
semantic_router/splitters/running_avg_sim.py
+55
-0
55 additions, 0 deletions
semantic_router/splitters/running_avg_sim.py
with
55 additions
and
99 deletions
semantic_router/splitters/consecutive_sim.py
+
0
−
99
View file @
417a2b21
...
@@ -44,103 +44,4 @@ class ConsecutiveSimSplitter(BaseSplitter):
...
@@ -44,103 +44,4 @@ class ConsecutiveSimSplitter(BaseSplitter):
curr_split_start_idx
=
idx
curr_split_start_idx
=
idx
curr_split_num
+=
1
curr_split_num
+=
1
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:])))
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:])))
return
splits
class
ConsecutiveAvgSimSplitter
(
BaseSplitter
):
def
__init__
(
self
,
encoder
:
BaseEncoder
,
name
:
str
=
"
consecutive_similarity_splitter
"
,
similarity_threshold
:
float
=
0.45
,
drop_threshold
:
float
=
0.1
# Additional parameter to control the drop threshold
):
super
().
__init__
(
name
=
name
,
similarity_threshold
=
similarity_threshold
,
encoder
=
encoder
)
def
__call__
(
self
,
docs
:
List
[
str
],
drop_threshold
):
doc_embeds
=
self
.
encoder
(
docs
)
norm_embeds
=
doc_embeds
/
np
.
linalg
.
norm
(
doc_embeds
,
axis
=
1
,
keepdims
=
True
)
sim_matrix
=
np
.
matmul
(
norm_embeds
,
norm_embeds
.
T
)
total_docs
=
len
(
docs
)
splits
=
[]
curr_split_start_idx
=
0
# Calculate similarity scores between consecutive documents
sim_scores
=
[
sim_matrix
[
i
][
i
+
1
]
for
i
in
range
(
total_docs
-
1
)]
# Calculate running average of similarity scores
running_avg
=
[
np
.
mean
(
sim_scores
[:
i
+
1
])
for
i
in
range
(
len
(
sim_scores
))]
for
idx
,
curr_sim_score
in
enumerate
(
sim_scores
):
# Check for a significant drop in similarity compared to the running average
if
idx
>
0
and
(
running_avg
[
idx
-
1
]
-
curr_sim_score
)
>
drop_threshold
:
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:
idx
+
1
]),
# Include current doc in the split
is_triggered
=
True
,
triggered_score
=
curr_sim_score
,
)
)
curr_split_start_idx
=
idx
+
1
# Update the start index for the next split
# Add the last split
if
curr_split_start_idx
<
total_docs
:
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:])))
return
splits
class
ConsecutiveAvgSimSplitter2
(
BaseSplitter
):
def
__init__
(
self
,
encoder
:
BaseEncoder
,
name
:
str
=
"
consecutive_similarity_splitter
"
,
similarity_threshold
:
float
=
0.45
,
drop_threshold
:
float
=
0.1
# Additional parameter to control the drop threshold
):
super
().
__init__
(
name
=
name
,
similarity_threshold
=
similarity_threshold
,
encoder
=
encoder
)
def
__call__
(
self
,
docs
:
List
[
str
],
drop_threshold
):
doc_embeds
=
self
.
encoder
(
docs
)
norm_embeds
=
doc_embeds
/
np
.
linalg
.
norm
(
doc_embeds
,
axis
=
1
,
keepdims
=
True
)
sim_matrix
=
np
.
matmul
(
norm_embeds
,
norm_embeds
.
T
)
total_docs
=
len
(
docs
)
splits
=
[]
curr_split_start_idx
=
0
# Initialize an empty list to store similarity scores for the current topic segment
segment_sim_scores
=
[]
for
idx
in
range
(
total_docs
-
1
):
curr_sim_score
=
sim_matrix
[
idx
][
idx
+
1
]
segment_sim_scores
.
append
(
curr_sim_score
)
# Calculate running average of similarity scores for the current segment
running_avg
=
np
.
mean
(
segment_sim_scores
)
# Check for a significant drop in similarity compared to the running average
if
idx
>
0
and
(
running_avg
-
curr_sim_score
)
>
drop_threshold
:
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:
idx
+
1
]),
# Include current doc in the split
is_triggered
=
True
,
triggered_score
=
curr_sim_score
,
)
)
curr_split_start_idx
=
idx
+
1
# Reset the similarity scores for the new segment
segment_sim_scores
=
[
curr_sim_score
]
# Add the last split
if
curr_split_start_idx
<
total_docs
:
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:])))
return
splits
return
splits
\ No newline at end of file
This diff is collapsed.
Click to expand it.
semantic_router/splitters/running_avg_sim.py
0 → 100644
+
55
−
0
View file @
417a2b21
from
typing
import
List
from
semantic_router.splitters.base
import
BaseSplitter
from
semantic_router.encoders
import
BaseEncoder
import
numpy
as
np
from
semantic_router.schema
import
DocumentSplit
class
RunningAvgSimSplitter
(
BaseSplitter
):
def
__init__
(
self
,
encoder
:
BaseEncoder
,
name
:
str
=
"
consecutive_similarity_splitter
"
,
similarity_threshold
:
float
=
0.04
,
):
super
().
__init__
(
name
=
name
,
similarity_threshold
=
similarity_threshold
,
encoder
=
encoder
)
def
__call__
(
self
,
docs
:
List
[
str
]):
doc_embeds
=
self
.
encoder
(
docs
)
norm_embeds
=
doc_embeds
/
np
.
linalg
.
norm
(
doc_embeds
,
axis
=
1
,
keepdims
=
True
)
sim_matrix
=
np
.
matmul
(
norm_embeds
,
norm_embeds
.
T
)
total_docs
=
len
(
docs
)
splits
=
[]
curr_split_start_idx
=
0
# Initialize an empty list to store similarity scores for the current topic segment
segment_sim_scores
=
[]
for
idx
in
range
(
total_docs
-
1
):
curr_sim_score
=
sim_matrix
[
idx
][
idx
+
1
]
segment_sim_scores
.
append
(
curr_sim_score
)
# Calculate running average of similarity scores for the current segment
running_avg
=
np
.
mean
(
segment_sim_scores
)
# Check for a significant drop in similarity compared to the running average
if
idx
>
0
and
(
running_avg
-
curr_sim_score
)
>
self
.
similarity_threshold
:
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:
idx
+
1
]),
# Include current doc in the split
is_triggered
=
True
,
triggered_score
=
curr_sim_score
,
)
)
curr_split_start_idx
=
idx
+
1
# Reset the similarity scores for the new segment
segment_sim_scores
=
[
curr_sim_score
]
# Add the last split
if
curr_split_start_idx
<
total_docs
:
splits
.
append
(
DocumentSplit
(
docs
=
list
(
docs
[
curr_split_start_idx
:])))
return
splits
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment