Skip to content
Snippets Groups Projects
Commit 3ab633d0 authored by Luca Mannini's avatar Luca Mannini
Browse files

Fix for embeddings

parent 45ce5991
No related branches found
No related tags found
No related merge requests found
......@@ -17,3 +17,4 @@ mac.env
.coverage
.coverage.*
.pytest_cache
test.py
\ No newline at end of file
%% Cell type:markdown id: tags:
## Define LLMs
%% Cell type:code id: tags:
``` python
%reload_ext dotenv
%dotenv
```
%% Cell type:code id: tags:
``` python
# OpenAI
import os
import openai
from semantic_router.utils.logger import logger
# Docs # https://platform.openai.com/docs/guides/function-calling
def llm_openai(prompt: str, model: str = "gpt-4") -> str:
try:
logger.info(f"Calling {model} model")
response = openai.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": f"{prompt}"},
],
)
ai_message = response.choices[0].message.content
if not ai_message:
raise Exception("AI message is empty", ai_message)
logger.info(f"AI message: {ai_message}")
return ai_message
except Exception as e:
raise Exception("Failed to call OpenAI API", e)
```
%% Cell type:code id: tags:
``` python
# Mistral
import os
import requests
# Docs https://huggingface.co/docs/transformers/main_classes/text_generation
HF_API_TOKEN = os.environ["HF_API_TOKEN"]
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
def llm_mistral(prompt: str) -> str:
api_url = "https://z5t4cuhg21uxfmc3.us-east-1.aws.endpoints.huggingface.cloud/"
headers = {
"Authorization": f"Bearer {HF_API_TOKEN}",
"Content-Type": "application/json",
}
logger.info("Calling Mistral model")
response = requests.post(
api_url,
headers=headers,
json={
"inputs": f"You are a helpful assistant, user query: {prompt}",
"parameters": {
"max_new_tokens": 200,
"temperature": 0.1,
},
},
)
if response.status_code != 200:
raise Exception("Failed to call HuggingFace API", response.text)
ai_message = response.json()[0]["generated_text"]
if not ai_message:
raise Exception("AI message is empty", ai_message)
logger.info(f"AI message: {ai_message}")
return ai_message
```
%% Cell type:markdown id: tags:
### Now we need to generate config from function schema using LLM
%% Cell type:code id: tags:
``` python
import inspect
from typing import Any
def get_function_schema(function) -> dict[str, Any]:
schema = {
"name": function.__name__,
"description": str(inspect.getdoc(function)),
"signature": str(inspect.signature(function)),
"output": str(
inspect.signature(function).return_annotation,
),
}
return schema
```
%% Cell type:code id: tags:
``` python
import json
from semantic_router.utils.logger import logger
def generate_route(function) -> dict:
logger.info("Generating config...")
example_schema = {
"name": "get_weather",
"description": "Useful to get the weather in a specific location",
"signature": "(location: str) -> str",
"output": "<class 'str'>",
}
example_config = {
"name": "get_weather",
"utterances": [
"What is the weather like in SF?",
"What is the weather in Cyprus?",
"weather in London?",
"Tell me the weather in New York",
"what is the current weather in Paris?",
],
}
function_schema = get_function_schema(function)
prompt = f"""
You are a helpful assistant designed to output JSON.
Given the following function schema
{function_schema}
generate a routing config with the format:
{example_config}
For example:
Input: {example_schema}
Output: {example_config}
Input: {function_schema}
Output:
"""
ai_message = llm_openai(prompt)
ai_message = ai_message.replace("CONFIG:", "").replace("'", '"').strip().rstrip(",")
try:
route_config = json.loads(ai_message)
logger.info(f"Generated config: {route_config}")
return route_config
except json.JSONDecodeError as json_error:
logger.error(f"JSON parsing error {json_error}")
print(f"AI message: {ai_message}")
return {"error": "Failed to generate config"}
```
%% Cell type:markdown id: tags:
Extract function parameters using `Mistral` open-source model
%% Cell type:code id: tags:
``` python
def extract_parameters(query: str, function) -> dict:
logger.info("Extracting parameters...")
example_query = "How is the weather in Hawaii right now in International units?"
example_schema = {
"name": "get_weather",
"description": "Useful to get the weather in a specific location",
"signature": "(location: str, degree: str) -> str",
"output": "<class 'str'>",
}
example_parameters = {
"location": "London",
"degree": "Celsius",
}
prompt = f"""
You are a helpful assistant designed to output JSON.
Given the following function schema
{get_function_schema(function)}
and query
{query}
extract the parameters values from the query, in a valid JSON format.
Example:
Input:
query: {example_query}
schema: {example_schema}
Output:
parameters: {example_parameters}
Input:
query: {query}
schema: {get_function_schema(function)}
Output:
parameters:
"""
ai_message = llm_mistral(prompt)
ai_message = ai_message.replace("CONFIG:", "").replace("'", '"').strip().rstrip(",")
try:
parameters = json.loads(ai_message)
logger.info(f"Extracted parameters: {parameters}")
return parameters
except json.JSONDecodeError as json_error:
logger.error(f"JSON parsing error {json_error}")
return {"error": "Failed to extract parameters"}
```
%% Cell type:markdown id: tags:
Set up the routing layer
%% Cell type:code id: tags:
``` python
from semantic_router.schema import Route
from semantic_router.encoders import CohereEncoder, OpenAIEncoder
from semantic_router.layer import RouteLayer
from semantic_router.utils.logger import logger
def create_router(routes: list[dict]) -> RouteLayer:
logger.info("Creating route layer...")
encoder = OpenAIEncoder
```
%% Cell type:code id: tags:
``` python
from semantic_router.schema import Route
from semantic_router.encoders import CohereEncoder
from semantic_router.layer import RouteLayer
from semantic_router.utils.logger import logger
def create_router(routes: list[dict]) -> RouteLayer:
logger.info("Creating route layer...")
encoder = CohereEncoder()
encoder = OpenAIEncoder()
route_list: list[Route] = []
for route in routes:
if "name" in route and "utterances" in route:
print(f"Route: {route}")
route_list.append(Route(name=route["name"], utterances=route["utterances"]))
else:
logger.warning(f"Misconfigured route: {route}")
return RouteLayer(encoder=encoder, routes=route_list)
```
%% Cell type:markdown id: tags:
Set up calling functions
%% Cell type:code id: tags:
``` python
from typing import Callable
def call_function(function: Callable, parameters: dict[str, str]):
try:
return function(**parameters)
except TypeError as e:
logger.error(f"Error calling function: {e}")
def call_llm(query: str):
return llm_mistral(query)
def call(query: str, functions: list[Callable], router: RouteLayer):
function_name = router(query)
if not function_name:
logger.warning("No function found")
return call_llm(query)
for function in functions:
if function.__name__ == function_name:
parameters = extract_parameters(query, function)
print(f"parameters: {parameters}")
return call_function(function, parameters)
```
%% Cell type:markdown id: tags:
### Workflow
%% Cell type:code id: tags:
``` python
def get_time(location: str) -> str:
"""Useful to get the time in a specific location"""
print(f"Calling `get_time` function with location: {location}")
return "get_time"
def get_news(category: str, country: str) -> str:
"""Useful to get the news in a specific country"""
print(
f"Calling `get_news` function with category: {category} and country: {country}"
)
return "get_news"
# Registering functions to the router
route_get_time = generate_route(get_time)
route_get_news = generate_route(get_news)
routes = [route_get_time, route_get_news]
router = create_router(routes)
# Tools
tools = [get_time, get_news]
```
%% Cell type:code id: tags:
``` python
call(query="What is the time in Stockholm?", functions=tools, router=router)
call(query="What is the tech news in the Lithuania?", functions=tools, router=router)
call(query="Hi!", functions=tools, router=router)
```
def get_time(location: str) -> str:
"""Useful to get the time in a specific location"""
print(f"Calling `get_time` function with location: {location}")
return "get_time"
%% Output
2023-12-15 11:41:54 INFO semantic_router.utils.logger Extracting parameters...
2023-12-15 11:41:54 INFO semantic_router.utils.logger Calling Mistral model
2023-12-15 11:41:55 INFO semantic_router.utils.logger AI message:
{
'location': 'Stockholm'
}
2023-12-15 11:41:55 INFO semantic_router.utils.logger Extracted parameters: {'location': 'Stockholm'}
parameters: {'location': 'Stockholm'}
Calling `get_time` function with location: Stockholm
2023-12-15 11:41:55 INFO semantic_router.utils.logger Extracting parameters...
2023-12-15 11:41:55 INFO semantic_router.utils.logger Calling Mistral model
2023-12-15 11:41:56 INFO semantic_router.utils.logger AI message:
{
'category': 'tech',
'country': 'Lithuania'
}
2023-12-15 11:41:56 INFO semantic_router.utils.logger Extracted parameters: {'category': 'tech', 'country': 'Lithuania'}
parameters: {'category': 'tech', 'country': 'Lithuania'}
Calling `get_news` function with category: tech and country: Lithuania
2023-12-15 11:41:57 WARNING semantic_router.utils.logger No function found
2023-12-15 11:41:57 INFO semantic_router.utils.logger Calling Mistral model
2023-12-15 11:41:57 INFO semantic_router.utils.logger AI message: How can I help you today?
def get_news(category: str, country: str) -> str:
"""Useful to get the news in a specific country"""
print(
f"Calling `get_news` function with category: {category} and country: {country}"
)
return "get_news"
# Registering functions to the router
route_get_time = generate_route(get_time)
route_get_news = generate_route(get_news)
' How can I help you today?'
routes = [route_get_time, route_get_news]
router = create_router(routes)
# Tools
tools = [get_time, get_news]
```
%% Cell type:markdown id: tags:
call(query="What is the time in Stockholm?", functions=tools, router=router)
call(query="What is the tech news in the Lithuania?", functions=tools, router=router)
call(query="Hi!", functions=tools, router=router)
......
[tool.poetry]
name = "semantic-router"
version = "0.0.9"
version = "0.0.10"
description = "Super fast semantic router for AI decision making"
authors = [
"James Briggs <james@aurelio.ai>",
......
......@@ -3,7 +3,7 @@ from time import sleep
import openai
from openai import OpenAIError
from openai.types import CreateEmbeddingResponse
from semantic_router.encoders import BaseEncoder
from semantic_router.utils.logger import logger
......@@ -36,7 +36,7 @@ class OpenAIEncoder(BaseEncoder):
try:
logger.info(f"Encoding {len(docs)} documents...")
embeds = self.client.embeddings.create(input=docs, model=self.name)
if isinstance(embeds, dict) and "data" in embeds:
if "data" in embeds:
break
except OpenAIError as e:
sleep(2**j)
......
......@@ -71,6 +71,7 @@ class TestOpenAIEncoder:
)
with pytest.raises(ValueError) as e:
openai_encoder(["test document"])
assert "OpenAI API call failed. Error: Non-OpenAIError" in str(e.value)
def test_openai_encoder_call_successful_retry(self, openai_encoder, mocker):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment