-
Bogdan Buduroiu authoredBogdan Buduroiu authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
test_linear.py 1.88 KiB
import numpy as np
import pytest
from semantic_router.linear import similarity_matrix, top_scores
@pytest.fixture
def ident_vector():
return np.identity(10)[0]
@pytest.fixture
def test_index():
return np.array([[3, 0, 0], [2, 1, 0], [0, 1, 0]])
def test_similarity_matrix__dimensionality():
"""Test that the similarity matrix is square."""
xq = np.random.random((10,)) # 10-dimensional embedding vector
index = np.random.random((100, 10))
S = similarity_matrix(xq, index)
assert S.shape == (100,)
def test_similarity_matrix__is_norm_max(ident_vector):
"""
Using identical vectors should yield a maximum similarity of 1
"""
index = np.repeat(np.atleast_2d(ident_vector), 3, axis=0)
sim = similarity_matrix(ident_vector, index)
assert sim.max() == 1.0
def test_similarity_matrix__is_norm_min(ident_vector):
"""
Using orthogonal vectors should yield a minimum similarity of 0
"""
orth_v = np.roll(np.atleast_2d(ident_vector), 1)
index = np.repeat(orth_v, 3, axis=0)
sim = similarity_matrix(ident_vector, index)
assert sim.min() == 0.0
def test_top_scores__is_sorted(test_index):
"""
Test that the top_scores function returns a sorted list of scores.
"""
xq = test_index[0] # should have max similarity
sim = similarity_matrix(xq, test_index)
_, idx = top_scores(sim, 3)
# Scores and indexes should be sorted ascending
assert np.array_equal(idx, np.array([2, 1, 0]))
def test_top_scores__scores(test_index):
"""
Test that for a known vector and a known index, the top_scores function
returns exactly the expected scores.
"""
xq = test_index[0] # should have max similarity
sim = similarity_matrix(xq, test_index)
scores, _ = top_scores(sim, 3)
# Scores and indexes should be sorted ascending
assert np.allclose(scores, np.array([0.0, 0.89442719, 1.0]))