Skip to content
Snippets Groups Projects
Unverified Commit cc3d6190 authored by Timothy Carambat's avatar Timothy Carambat Committed by GitHub
Browse files

Add handling to reasoning models for Generic OpenAI connector (#3183)

* Add handling to resoning models for Generic OpenAI connector
resolves #3177

* linting
parent 4028b5a6
No related branches found
No related tags found
No related merge requests found
......@@ -3,8 +3,9 @@ const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
const {
handleDefaultStreamResponseV2,
formatChatHistory,
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
const { toValidNumber } = require("../../http");
......@@ -142,6 +143,21 @@ class GenericOpenAiLLM {
];
}
/**
* Parses and prepends reasoning from the response and returns the full text response.
* @param {Object} response
* @returns {string}
*/
#parseReasoningFromResponse({ message }) {
let textResponse = message?.content;
if (
!!message?.reasoning_content &&
message.reasoning_content.trim().length > 0
)
textResponse = `<think>${message.reasoning_content}</think>${textResponse}`;
return textResponse;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
......@@ -163,7 +179,7 @@ class GenericOpenAiLLM {
return null;
return {
textResponse: result.output.choices[0].message.content,
textResponse: this.#parseReasoningFromResponse(result.output.choices[0]),
metrics: {
prompt_tokens: result.output?.usage?.prompt_tokens || 0,
completion_tokens: result.output?.usage?.completion_tokens || 0,
......@@ -191,8 +207,141 @@ class GenericOpenAiLLM {
return measuredStreamRequest;
}
// TODO: This is a copy of the generic handleStream function in responses.js
// to specifically handle the DeepSeek reasoning model `reasoning_content` field.
// When or if ever possible, we should refactor this to be in the generic function.
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
const { uuid = uuidv4(), sources = [] } = responseProps;
let hasUsageMetrics = false;
let usage = {
completion_tokens: 0,
};
return new Promise(async (resolve) => {
let fullText = "";
let reasoningText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => {
stream?.endMeasurement(usage);
clientAbortedHandler(resolve, fullText);
};
response.on("close", handleAbort);
try {
for await (const chunk of stream) {
const message = chunk?.choices?.[0];
const token = message?.delta?.content;
const reasoningToken = message?.delta?.reasoning_content;
if (
chunk.hasOwnProperty("usage") && // exists
!!chunk.usage && // is not null
Object.values(chunk.usage).length > 0 // has values
) {
if (chunk.usage.hasOwnProperty("prompt_tokens")) {
usage.prompt_tokens = Number(chunk.usage.prompt_tokens);
}
if (chunk.usage.hasOwnProperty("completion_tokens")) {
hasUsageMetrics = true; // to stop estimating counter
usage.completion_tokens = Number(chunk.usage.completion_tokens);
}
}
// Reasoning models will always return the reasoning text before the token text.
if (reasoningToken) {
// If the reasoning text is empty (''), we need to initialize it
// and send the first chunk of reasoning text.
if (reasoningText.length === 0) {
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: `<think>${reasoningToken}`,
close: false,
error: false,
});
reasoningText += `<think>${reasoningToken}`;
continue;
} else {
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: reasoningToken,
close: false,
error: false,
});
reasoningText += reasoningToken;
}
}
// If the reasoning text is not empty, but the reasoning token is empty
// and the token text is not empty we need to close the reasoning text and begin sending the token text.
if (!!reasoningText && !reasoningToken && token) {
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: `</think>`,
close: false,
error: false,
});
fullText += `${reasoningText}</think>`;
reasoningText = "";
}
if (token) {
fullText += token;
// If we never saw a usage metric, we can estimate them by number of completion chunks
if (!hasUsageMetrics) usage.completion_tokens++;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: token,
close: false,
error: false,
});
}
if (
message?.hasOwnProperty("finish_reason") && // Got valid message and it is an object with finish_reason
message.finish_reason !== "" &&
message.finish_reason !== null
) {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
stream?.endMeasurement(usage);
resolve(fullText);
break; // Break streaming when a valid finish_reason is first encountered
}
}
} catch (e) {
console.log(`\x1b[43m\x1b[34m[STREAMING ERROR]\x1b[0m ${e.message}`);
writeResponseChunk(response, {
uuid,
type: "abort",
textResponse: null,
sources: [],
close: true,
error: e.message,
});
stream?.endMeasurement(usage);
resolve(fullText);
}
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment