Skip to content
Snippets Groups Projects
index.js 5.44 KiB
Newer Older
  • Learn to ignore specific revisions
  • const { NativeEmbedder } = require("../../EmbeddingEngines/native");
    
    const {
      handleDefaultStreamResponseV2,
    } = require("../../helpers/chat/responses");
    
    const { MODEL_MAP } = require("../modelMap");
    
      constructor(embedder = null, modelPreference = null) {
    
        if (!process.env.OPEN_AI_KEY) throw new Error("No OpenAI API key was set.");
    
        const { OpenAI: OpenAIApi } = require("openai");
    
        this.openai = new OpenAIApi({
    
          apiKey: process.env.OPEN_AI_KEY,
        });
    
        this.model = modelPreference || process.env.OPEN_MODEL_PREF || "gpt-4o";
    
        this.limits = {
          history: this.promptWindowLimit() * 0.15,
          system: this.promptWindowLimit() * 0.15,
          user: this.promptWindowLimit() * 0.7,
        };
    
        this.embedder = embedder ?? new NativeEmbedder();
    
        this.defaultTemp = 0.7;
    
      /**
       * Check if the model is an o1 model.
       * @returns {boolean}
       */
      get isO1Model() {
        return this.model.startsWith("o1");
      }
    
    
      #appendContext(contextTexts = []) {
        if (!contextTexts || !contextTexts.length) return "";
        return (
          "\nContext:\n" +
          contextTexts
            .map((text, i) => {
              return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
            })
            .join("")
        );
      }
    
    
      streamingEnabled() {
    
        if (this.isO1Model) return false;
    
        return "streamGetChatCompletion" in this;
    
      static promptWindowLimit(modelName) {
        return MODEL_MAP.openai[modelName] ?? 4_096;
      }
    
    
        return MODEL_MAP.openai[this.model] ?? 4_096;
    
    timothycarambat's avatar
    timothycarambat committed
      }
    
      // Short circuit if name has 'gpt' since we now fetch models from OpenAI API
      // via the user API key, so the model must be relevant and real.
      // and if somehow it is not, chat will fail but that is caught.
      // we don't want to hit the OpenAI api every chat because it will get spammed
      // and introduce latency for no reason.
    
      async isValidChatCompletionModel(modelName = "") {
    
        const isPreset = modelName.toLowerCase().includes("gpt");
    
        const model = await this.openai.models
          .retrieve(modelName)
          .then((modelObj) => modelObj)
    
          .catch(() => null);
        return !!model;
    
      /**
       * Generates appropriate content array for a message + attachments.
       * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
       * @returns {string|object[]}
       */
      #generateContent({ userPrompt, attachments = [] }) {
        if (!attachments.length) {
          return userPrompt;
        }
    
        const content = [{ type: "text", text: userPrompt }];
        for (let attachment of attachments) {
          content.push({
            type: "image_url",
            image_url: {
              url: attachment.contentString,
              detail: "high",
            },
          });
        }
        return content.flat();
      }
    
      /**
       * Construct the user prompt for this model.
       * @param {{attachments: import("../../helpers").Attachment[]}} param0
       * @returns
       */
    
      constructPrompt({
        systemPrompt = "",
        contextTexts = [],
        chatHistory = [],
        userPrompt = "",
    
        attachments = [], // This is the specific attachment for only this prompt
    
        // o1 Models do not support the "system" role
        // in order to combat this, we can use the "user" role as a replacement for now
        // https://community.openai.com/t/o1-models-do-not-support-system-role-in-chat-completion/953880
    
        const prompt = {
    
          role: this.isO1Model ? "user" : "system",
    
          content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
    
        return [
          prompt,
          ...chatHistory,
          {
            role: "user",
            content: this.#generateContent({ userPrompt, attachments }),
          },
        ];
    
      async getChatCompletion(messages = null, { temperature = 0.7 }) {
    
        if (!(await this.isValidChatCompletionModel(this.model)))
    
            `OpenAI chat: ${this.model} is not valid for chat completion!`
    
        const result = await this.openai.chat.completions
          .create({
    
            temperature: this.isO1Model ? 1 : temperature, // o1 models only accept temperature 1
    
            throw new Error(e.message);
    
        if (!result.hasOwnProperty("choices") || result.choices.length === 0)
          return null;
        return result.choices[0].message.content;
    
      async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
        if (!(await this.isValidChatCompletionModel(this.model)))
          throw new Error(
            `OpenAI chat: ${this.model} is not valid for chat completion!`
          );
    
    
        const streamRequest = await this.openai.chat.completions.create({
          model: this.model,
          stream: true,
          messages,
    
          temperature: this.isO1Model ? 1 : temperature, // o1 models only accept temperature 1
    
      handleStream(response, stream, responseProps) {
    
        return handleDefaultStreamResponseV2(response, stream, responseProps);
    
      // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
      async embedTextInput(textInput) {
        return await this.embedder.embedTextInput(textInput);
      }
      async embedChunks(textChunks = []) {
        return await this.embedder.embedChunks(textChunks);
      }
    
    
      async compressMessages(promptArgs = {}, rawHistory = []) {
        const { messageArrayCompressor } = require("../../helpers/chat");
        const messageArray = this.constructPrompt(promptArgs);
        return await messageArrayCompressor(this, messageArray, rawHistory);
      }
    
    timothycarambat's avatar
    timothycarambat committed
    }
    
    module.exports = {
    
    timothycarambat's avatar
    timothycarambat committed
    };