Newer
Older
Tuan Anh Nguyen Dang (Tadashi_Cin)
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Setup local LLMs & Embedding models
## Prepare local models
#### NOTE
In the case of using Docker image, please replace `http://localhost` with `http://host.docker.internal` to correctly communicate with service on the host machine. See [more detail](https://stackoverflow.com/questions/31324981/how-to-access-host-port-from-docker-container).
### Ollama OpenAI compatible server (recommended)
Install [ollama](https://github.com/ollama/ollama) and start the application.
Pull your model (e.g):
```
ollama pull llama3.1:8b
ollama pull nomic-embed-text
```
Setup LLM and Embedding model on Resources tab with type OpenAI. Set these model parameters to connect to Ollama:
```
api_key: ollama
base_url: http://localhost:11434/v1/
model: gemma2:2b (for llm) | nomic-embed-text (for embedding)
```

### oobabooga/text-generation-webui OpenAI compatible server
Install [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui/).
Follow the setup guide to download your models (GGUF, HF).
Also take a look at [OpenAI compatible server](https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API) for detail instructions.
Here is a short version
```
# install sentence-transformer for embeddings creation
pip install sentence_transformers
# change to text-generation-webui src dir
python server.py --api
```
Use the `Models` tab to download new model and press Load.
Setup LLM and Embedding model on Resources tab with type OpenAI. Set these model parameters to connect to `text-generation-webui`:
```
api_key: dummy
base_url: http://localhost:5000/v1/
model: any
```
### llama-cpp-python server (LLM only)
See [llama-cpp-python OpenAI server](https://llama-cpp-python.readthedocs.io/en/latest/server/).
Download any GGUF model weight on HuggingFace or other source. Place it somewhere on your local machine.
Run
```
LOCAL_MODEL=<path/to/GGUF> python scripts/serve_local.py
```
Setup LLM model on Resources tab with type OpenAI. Set these model parameters to connect to `llama-cpp-python`:
```
api_key: dummy
base_url: http://localhost:8000/v1/
model: model_name
```
## Use local models for RAG
- Set default LLM and Embedding model to a local variant.

- Set embedding model for the File Collection to a local model (e.g: `ollama`)

- Go to Retrieval settings and choose LLM relevant scoring model as a local model (e.g: `ollama`). Or, you can choose to disable this feature if your machine cannot handle a lot of parallel LLM requests at the same time.

You are set! Start a new conversation to test your local RAG pipeline.