from typing import List, Optional, Tuple import torch from torch import nn import math import transformers from transformers.models.llama.modeling_llama import apply_rotary_pos_emb from einops import rearrange from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func from flash_attn.bert_padding import unpad_input, pad_input def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel attention_mask: [bsz, q_len] """ bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) # [bsz, q_len, nh, hd] # [bsz, nh, q_len, hd] kv_seq_len = key_states.shape[-2] # assert past_key_value is None, "past_key_value is not supported" if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) # [bsz, nh, t, hd] # assert not output_attentions, "output_attentions is not supported" # assert not use_cache, "use_cache is not supported" if past_key_value is not None: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None # Flash attention codes from # https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/flash_attention.py # transform the data into the format required by flash attention # import pdb; pdb.set_trace() if query_states.shape[-2] == 1 or query_states.shape[-2] != key_states.shape[-2]: # decode token-by-token, do not use flash attention # in incremental state, do not use flash attention attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value qkv = torch.stack([query_states, key_states, value_states], dim=2) # [bsz, nh, 3, q_len, hd] qkv = qkv.transpose(1, 3) # [bsz, q_len, 3, nh, hd] # We have disabled _prepare_decoder_attention_mask in LlamaModel # the attention_mask should be the same as the key_padding_mask key_padding_mask = attention_mask if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = q_len cu_q_lens = torch.arange(0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device) output = flash_attn_varlen_qkvpacked_func( qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True ) output = rearrange(output, '(b s) ... -> b s ...', b=bsz) else: nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_q_lens, max_s = unpad_input(x, key_padding_mask) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_attn_varlen_qkvpacked_func( x_unpad, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, bsz, q_len), 'b s (h d) -> b s h d', h=nheads) attn_output = self.o_proj(rearrange(output, 'b s h d -> b s (h d)')) return attn_output, None, past_key_value # Disable the transformation of the attention mask in LlamaModel as the flash attention # requires the attention mask to be the same as the key_padding_mask def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # [bsz, seq_len] if input_shape[-1] > 1 and past_key_values_length == 0: # encode return attention_mask return transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length) def replace_llama_attn_with_flash_attn(): print('use FlashAttention') transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = _prepare_decoder_attention_mask transformers.models.llama.modeling_llama.LlamaAttention.forward = forward