import os import json import argparse import numpy as np from metrics import ( qa_f1_score, rouge_zh_score, qa_f1_zh_score, rouge_score, classification_score, retrieval_score, retrieval_zh_score, count_score, code_sim_score, ) dataset2metric = { "narrativeqa": qa_f1_score, "qasper": qa_f1_score, "multifieldqa_en": qa_f1_score, "multifieldqa_zh": qa_f1_zh_score, "hotpotqa": qa_f1_score, "2wikimqa": qa_f1_score, "musique": qa_f1_score, "dureader": rouge_zh_score, "gov_report": rouge_score, "qmsum": rouge_score, "multi_news": rouge_score, "vcsum": rouge_zh_score, "trec": classification_score, "triviaqa": qa_f1_score, "samsum": rouge_score, "lsht": classification_score, "passage_retrieval_en": retrieval_score, "passage_count": count_score, "passage_retrieval_zh": retrieval_zh_score, "lcc": code_sim_score, "repobench-p": code_sim_score, } def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default=None) parser.add_argument('--e', action='store_true', help="Evaluate on LongBench-E") return parser.parse_args(args) def scorer_e(dataset, predictions, answers, lengths, all_classes): scores = {"0-4k": [], "4-8k": [], "8k+": []} for (prediction, ground_truths, length) in zip(predictions, answers, lengths): score = 0. if dataset in ["trec", "triviaqa", "samsum", "lsht"]: prediction = prediction.lstrip('\n').split('\n')[0] for ground_truth in ground_truths: score = max(score, dataset2metric[dataset](prediction, ground_truth, all_classes=all_classes)) if length < 4000: scores["0-4k"].append(score) elif length < 8000: scores["4-8k"].append(score) else: scores["8k+"].append(score) for key in scores.keys(): scores[key] = round(100 * np.mean(scores[key]), 2) return scores def scorer(dataset, predictions, answers, all_classes): total_score = 0. for (prediction, ground_truths) in zip(predictions, answers): score = 0. if dataset in ["trec", "triviaqa", "samsum", "lsht"]: prediction = prediction.lstrip('\n').split('\n')[0] for ground_truth in ground_truths: score = max(score, dataset2metric[dataset](prediction, ground_truth, all_classes=all_classes)) total_score += score return round(100 * total_score / len(predictions), 2) if __name__ == '__main__': args = parse_args() scores = dict() if args.e: path = f"pred_e/{args.model}/" else: path = f"pred/{args.model}/" all_files = os.listdir(path) print("Evaluating on:", all_files) for filename in all_files: if not filename.endswith("jsonl"): continue predictions, answers, lengths = [], [], [] dataset = filename.split('.')[0] with open(f"{path}{filename}", "r", encoding="utf-8") as f: for line in f: data = json.loads(line) predictions.append(data["pred"]) answers.append(data["answers"]) all_classes = data["all_classes"] if "length" in data: lengths.append(data["length"]) if args.e: score = scorer_e(dataset, predictions, answers, lengths, all_classes) else: score = scorer(dataset, predictions, answers, all_classes) scores[dataset] = score if args.e: out_path = f"pred_e/{args.model}/result.json" else: out_path = f"pred/{args.model}/result.json" with open(out_path, "w") as f: json.dump(scores, f, ensure_ascii=False, indent=4)