# Finetuning LLaMa + Text-to-SQL This walkthrough shows you how to fine-tune LLaMa-7B on a Text-to-SQL dataset, and then use it for inference against any database of structured data using LlamaIndex. This code is taken and adapted from the Modal `doppel-bot` repo: https://github.com/modal-labs/doppel-bot. ### Stack - LlamaIndex - Modal - Hugging Face datasets - OpenLLaMa - Peft ### Steps for running Please see the notebook (TODO) for full instructions. In the meantime you can run each step individually as below: Loading data: `modal run src.load_data_sql` Finetuning: `modal run --detach src.finetune_sql` Inference: `modal run src.inference_sql_llamaindex::main --query "Which city has the highest population?" --sqlite-file-path "nbs/cities.db"` (Optional) Downloading model weights: `modal run src.download_weights --output-dir out_model`