From fbcc5be9187dfa413c14412507a46c30dc724f25 Mon Sep 17 00:00:00 2001 From: Jayant Verma <98758438+jayantverma2809@users.noreply.github.com> Date: Fri, 2 Feb 2024 03:26:58 +0530 Subject: [PATCH] Fixed ImportError - cannot import name 'Vector' from 'azure.search.documents.models' (#10399) --- llama_index/vector_stores/cogsearch.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/llama_index/vector_stores/cogsearch.py b/llama_index/vector_stores/cogsearch.py index ed5e5a413..fe4cf203f 100644 --- a/llama_index/vector_stores/cogsearch.py +++ b/llama_index/vector_stores/cogsearch.py @@ -627,12 +627,12 @@ class AzureQueryResultSearchBase: class AzureQueryResultSearchDefault(AzureQueryResultSearchBase): def _create_query_vector(self) -> Optional[List[Any]]: """Query vector store.""" - from azure.search.documents.models import Vector + from azure.search.documents.models import VectorizedQuery if not self._query.query_embedding: raise ValueError("Query missing embedding") - vector = Vector( + vector = VectorizedQuery( value=self._query.query_embedding, k=self._query.similarity_top_k, fields=self._field_mapping["embedding"], @@ -666,13 +666,13 @@ class AzureQueryResultSearchHybrid( class AzureQueryResultSearchSemanticHybrid(AzureQueryResultSearchHybrid): def _create_query_vector(self) -> Optional[List[Any]]: """Query vector store.""" - from azure.search.documents.models import Vector + from azure.search.documents.models import VectorizedQuery if not self._query.query_embedding: raise ValueError("Query missing embedding") # k is set to 50 to align with the number of accept document in azure semantic reranking model. # https://learn.microsoft.com/en-us/azure/search/semantic-search-overview - vector = Vector( + vector = VectorizedQuery( value=self._query.query_embedding, k=50, fields=self._field_mapping["embedding"], -- GitLab