diff --git a/llama_index/vector_stores/cogsearch.py b/llama_index/vector_stores/cogsearch.py index ed5e5a41387fa94f1e366d3668e89832c0df1d20..fe4cf203fedc4fac17f94b5064b52a77589a63c0 100644 --- a/llama_index/vector_stores/cogsearch.py +++ b/llama_index/vector_stores/cogsearch.py @@ -627,12 +627,12 @@ class AzureQueryResultSearchBase: class AzureQueryResultSearchDefault(AzureQueryResultSearchBase): def _create_query_vector(self) -> Optional[List[Any]]: """Query vector store.""" - from azure.search.documents.models import Vector + from azure.search.documents.models import VectorizedQuery if not self._query.query_embedding: raise ValueError("Query missing embedding") - vector = Vector( + vector = VectorizedQuery( value=self._query.query_embedding, k=self._query.similarity_top_k, fields=self._field_mapping["embedding"], @@ -666,13 +666,13 @@ class AzureQueryResultSearchHybrid( class AzureQueryResultSearchSemanticHybrid(AzureQueryResultSearchHybrid): def _create_query_vector(self) -> Optional[List[Any]]: """Query vector store.""" - from azure.search.documents.models import Vector + from azure.search.documents.models import VectorizedQuery if not self._query.query_embedding: raise ValueError("Query missing embedding") # k is set to 50 to align with the number of accept document in azure semantic reranking model. # https://learn.microsoft.com/en-us/azure/search/semantic-search-overview - vector = Vector( + vector = VectorizedQuery( value=self._query.query_embedding, k=50, fields=self._field_mapping["embedding"],