import prompts from "prompts"; import { EXAMPLE_FILE } from "../helpers/datasources"; import { askModelConfig } from "../helpers/providers"; import { getTools } from "../helpers/tools"; import { ModelConfig, TemplateFramework } from "../helpers/types"; import { PureQuestionArgs, QuestionResults } from "./types"; import { askPostInstallAction, questionHandlers } from "./utils"; type AppType = "rag" | "code_artifact" | "multiagent" | "extractor"; type SimpleAnswers = { appType: AppType; language: TemplateFramework; useLlamaCloud: boolean; llamaCloudKey?: string; modelConfig: ModelConfig; }; export const askSimpleQuestions = async ( args: PureQuestionArgs, ): Promise<QuestionResults> => { const { appType } = await prompts( { type: "select", name: "appType", message: "What app do you want to build?", choices: [ { title: "Agentic RAG", value: "rag" }, { title: "Code Artifact Agent", value: "code_artifact" }, { title: "Multi-Agent Report Gen", value: "multiagent" }, { title: "Structured extraction", value: "extractor" }, ], }, questionHandlers, ); let language: TemplateFramework = "fastapi"; let llamaCloudKey = args.llamaCloudKey; let useLlamaCloud = false; if (appType !== "extractor") { const { language: newLanguage } = await prompts( { type: "select", name: "language", message: "What language do you want to use?", choices: [ { title: "Python (FastAPI)", value: "fastapi" }, { title: "Typescript (NextJS)", value: "nextjs" }, ], }, questionHandlers, ); language = newLanguage; const { useLlamaCloud: newUseLlamaCloud } = await prompts( { type: "toggle", name: "useLlamaCloud", message: "Do you want to use LlamaCloud services?", initial: false, active: "Yes", inactive: "No", hint: "see https://www.llamaindex.ai/enterprise for more info", }, questionHandlers, ); useLlamaCloud = newUseLlamaCloud; if (useLlamaCloud && !llamaCloudKey) { // Ask for LlamaCloud API key, if not set const { llamaCloudKey: newLlamaCloudKey } = await prompts( { type: "text", name: "llamaCloudKey", message: "Please provide your LlamaCloud API key (leave blank to skip):", }, questionHandlers, ); llamaCloudKey = newLlamaCloudKey || process.env.LLAMA_CLOUD_API_KEY; } } const modelConfig = await askModelConfig({ openAiKey: args.openAiKey, askModels: args.askModels ?? false, framework: language, }); const results = convertAnswers({ appType, language, useLlamaCloud, llamaCloudKey, modelConfig, }); results.postInstallAction = await askPostInstallAction(results); return results; }; const convertAnswers = (answers: SimpleAnswers): QuestionResults => { const lookup: Record< AppType, Pick<QuestionResults, "template" | "tools" | "frontend" | "dataSources"> > = { rag: { template: "streaming", tools: getTools(["duckduckgo"]), frontend: true, dataSources: [EXAMPLE_FILE], }, code_artifact: { template: "streaming", tools: getTools(["artifact"]), frontend: true, dataSources: [], }, multiagent: { template: "multiagent", tools: getTools([ "document_generator", "wikipedia.WikipediaToolSpec", "duckduckgo", "img_gen", ]), frontend: true, dataSources: [EXAMPLE_FILE], }, extractor: { template: "extractor", tools: [], frontend: false, dataSources: [EXAMPLE_FILE], }, }; const results = lookup[answers.appType]; return { framework: answers.language, ui: "shadcn", llamaCloudKey: answers.llamaCloudKey, useLlamaParse: answers.useLlamaCloud, llamapack: "", postInstallAction: "none", vectorDb: answers.useLlamaCloud ? "llamacloud" : "none", modelConfig: answers.modelConfig, observability: "none", ...results, frontend: answers.language === "nextjs" ? false : results.frontend, }; };