import fs from "node:fs/promises"; import { HuggingFaceEmbedding } from "@llamaindex/huggingface"; import { Ollama } from "@llamaindex/ollama"; import { Document, Settings, VectorStoreIndex } from "llamaindex"; Settings.llm = new Ollama({ model: "mixtral:8x7b", }); Settings.embedModel = new HuggingFaceEmbedding({ modelType: "BAAI/bge-small-en-v1.5", }); async function main() { // Load essay from abramov.txt in Node const path = "node_modules/llamaindex/examples/abramov.txt"; const essay = await fs.readFile(path, "utf-8"); // Create Document object with essay const document = new Document({ text: essay, id_: path }); // Split text and create embeddings. Store them in a VectorStoreIndex const index = await VectorStoreIndex.fromDocuments([document]); // Query the index const queryEngine = index.asQueryEngine(); const response = await queryEngine.query({ query: "What did the author do in college?", }); // Output response console.log(response.toString()); } main().catch(console.error);