import { Document, VectorStoreIndex, storageContextFromDefaults, } from "llamaindex"; import essay from "./essay"; async function main() { // Create Document object with essay const document = new Document({ text: essay }); // Split text and create embeddings. Store them in a VectorStoreIndex // persist the vector store automatically with the storage context const storageContext = await storageContextFromDefaults({ persistDir: "./storage", }); const index = await VectorStoreIndex.fromDocuments([document], { storageContext, }); // Query the index const queryEngine = index.asQueryEngine(); const response = await queryEngine.query( "What did the author do in college?" ); // Output response console.log(response.toString()); // load the index const secondStorageContext = await storageContextFromDefaults({ persistDir: "./storage", }); const loadedIndex = await VectorStoreIndex.init({ storageContext: secondStorageContext, }); const loadedQueryEngine = loadedIndex.asQueryEngine(); const loadedResponse = await loadedQueryEngine.query( "What did the author do growing up?" ); console.log(loadedResponse.toString()); } main().catch(console.error);