diff --git a/apps/docs/docs/examples/agent.mdx b/apps/docs/docs/examples/agent.mdx new file mode 100644 index 0000000000000000000000000000000000000000..2ebbf2e9bad2e43c82bef62cfd36950e3b3e49ea --- /dev/null +++ b/apps/docs/docs/examples/agent.mdx @@ -0,0 +1,85 @@ +# Agents + +A built-in agent that can take decisions and reasoning based on the tools provided to it. + +## OpenAI Agent + +```ts +import { FunctionTool, OpenAIAgent } from "llamaindex"; + +// Define a function to sum two numbers +function sumNumbers({ a, b }: { a: number; b: number }): number { + return a + b; +} + +// Define a function to divide two numbers +function divideNumbers({ a, b }: { a: number; b: number }): number { + return a / b; +} + +// Define the parameters of the sum function as a JSON schema +const sumJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The first number", + }, + b: { + type: "number", + description: "The second number", + }, + }, + required: ["a", "b"], +}; + +// Define the parameters of the divide function as a JSON schema +const divideJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The dividend to divide", + }, + b: { + type: "number", + description: "The divisor to divide by", + }, + }, + required: ["a", "b"], +}; + +async function main() { + // Create a function tool from the sum function + const sumFunctionTool = new FunctionTool(sumNumbers, { + name: "sumNumbers", + description: "Use this function to sum two numbers", + parameters: sumJSON, + }); + + // Create a function tool from the divide function + const divideFunctionTool = new FunctionTool(divideNumbers, { + name: "divideNumbers", + description: "Use this function to divide two numbers" + parameters: divideJSON, + }); + + // Create an OpenAIAgent with the function tools + const agent = new OpenAIAgent({ + tools: [sumFunctionTool, divideFunctionTool], + verbose: true, + }); + + // Chat with the agent + const response = await agent.chat({ + message: "How much is 5 + 5? then divide by 2", + }); + + // Print the response + console.log(String(response)); +} + +main().then(() => { + console.log("Done"); +}); +``` diff --git a/apps/docs/docs/modules/agent/_category_.yml b/apps/docs/docs/modules/agent/_category_.yml new file mode 100644 index 0000000000000000000000000000000000000000..549b74c5a136746cc283d3307172ae7f5cd42c38 --- /dev/null +++ b/apps/docs/docs/modules/agent/_category_.yml @@ -0,0 +1 @@ +label: "Agents" diff --git a/apps/docs/docs/modules/agent/index.md b/apps/docs/docs/modules/agent/index.md new file mode 100644 index 0000000000000000000000000000000000000000..28d9ff27b556689e41c16f5e8d3bbc9e1b7a4b5d --- /dev/null +++ b/apps/docs/docs/modules/agent/index.md @@ -0,0 +1,14 @@ +# Agents + +An “agent†is an automated reasoning and decision engine. It takes in a user input/query and can make internal decisions for executing that query in order to return the correct result. The key agent components can include, but are not limited to: + +- Breaking down a complex question into smaller ones +- Choosing an external Tool to use + coming up with parameters for calling the Tool +- Planning out a set of tasks +- Storing previously completed tasks in a memory module + +## Getting Started + +LlamaIndex.TS comes with a few built-in agents, but you can also create your own. The built-in agents include: + +- [OpenAI Agent](./openai.md) diff --git a/apps/docs/docs/modules/agent/openai.mdx b/apps/docs/docs/modules/agent/openai.mdx new file mode 100644 index 0000000000000000000000000000000000000000..084cea1c9bcb8679c668357468f261947de23ccf --- /dev/null +++ b/apps/docs/docs/modules/agent/openai.mdx @@ -0,0 +1,183 @@ +# OpenAI Agent + +OpenAI API that supports function calling, it’s never been easier to build your own agent! + +In this notebook tutorial, we showcase how to write your own OpenAI agent + +## Setup + +First, you need to install the `llamaindex` package. You can do this by running the following command in your terminal: + +```bash +pnpm i llamaindex +``` + +Then we can define a function to sum two numbers and another function to divide two numbers. + +```ts +function sumNumbers({ a, b }: { a: number; b: number }): number { + return a + b; +} + +// Define a function to divide two numbers +function divideNumbers({ a, b }: { a: number; b: number }): number { + return a / b; +} +``` + +## Create a function tool + +Now we can create a function tool from the sum function and another function tool from the divide function. + +For the parameters of the sum function, we can define a JSON schema. + +### JSON Schema + +```ts +const sumJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The first number", + }, + b: { + type: "number", + description: "The second number", + }, + }, + required: ["a", "b"], +}; + +const divideJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The dividend a to divide", + }, + b: { + type: "number", + description: "The divisor b to divide by", + }, + }, + required: ["a", "b"], +}; + +const sumFunctionTool = new FunctionTool(sumNumbers, { + name: "sumNumbers", + description: "Use this function to sum two numbers", + parameters: sumJSON, +}); + +const divideFunctionTool = new FunctionTool(divideNumbers, { + name: "divideNumbers", + description: "Use this function to divide two numbers", + parameters: divideJSON, +}); +``` + +## Create an OpenAIAgent + +Now we can create an OpenAIAgent with the function tools. + +```ts +const worker = new OpenAIAgent({ + tools: [sumFunctionTool, divideFunctionTool], + verbose: true, +}); +``` + +## Chat with the agent + +Now we can chat with the agent. + +```ts +const response = await worker.chat({ + message: "How much is 5 + 5? then divide by 2", +}); + +console.log(String(response)); +``` + +## Full code + +```ts +import { FunctionTool, OpenAIAgent } from "llamaindex"; + +// Define a function to sum two numbers +function sumNumbers({ a, b }: { a: number; b: number }): number { + return a + b; +} + +// Define a function to divide two numbers +function divideNumbers({ a, b }: { a: number; b: number }): number { + return a / b; +} + +// Define the parameters of the sum function as a JSON schema +const sumJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The first number", + }, + b: { + type: "number", + description: "The second number", + }, + }, + required: ["a", "b"], +}; + +// Define the parameters of the divide function as a JSON schema +const divideJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The argument a to divide", + }, + b: { + type: "number", + description: "The argument b to divide", + }, + }, + required: ["a", "b"], +}; + +async function main() { + // Create a function tool from the sum function + const sumFunctionTool = new FunctionTool(sumNumbers, { + name: "sumNumbers", + description: "Use this function to sum two numbers", + parameters: sumJSON, + }); + + // Create a function tool from the divide function + const divideFunctionTool = new FunctionTool(divideNumbers, { + name: "divideNumbers", + description: "Use this function to divide two numbers", + parameters: divideJSON, + }); + + // Create an OpenAIAgent with the function tools + const agent = new OpenAIAgent({ + tools: [sumFunctionTool, divideFunctionTool], + verbose: true, + }); + + // Chat with the agent + const response = await agent.chat({ + message: "How much is 5 + 5? then divide by 2", + }); + + // Print the response + console.log(String(response)); +} + +main().then(() => { + console.log("Done"); +}); +``` diff --git a/examples/agent/openai.ts b/examples/agent/openai.ts new file mode 100644 index 0000000000000000000000000000000000000000..58eb11a0aa9cd85df53af8a203e7b6aff299ef28 --- /dev/null +++ b/examples/agent/openai.ts @@ -0,0 +1,76 @@ +import { FunctionTool, OpenAIAgent } from "llamaindex"; + +// Define a function to sum two numbers +function sumNumbers({ a, b }: { a: number; b: number }): number { + return a + b; +} + +// Define a function to divide two numbers +function divideNumbers({ a, b }: { a: number; b: number }): number { + return a / b; +} + +// Define the parameters of the sum function as a JSON schema +const sumJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The first number", + }, + b: { + type: "number", + description: "The second number", + }, + }, + required: ["a", "b"], +}; + +const divideJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The dividend a to divide", + }, + b: { + type: "number", + description: "The divisor b to divide by", + }, + }, + required: ["a", "b"], +}; + +async function main() { + // Create a function tool from the sum function + const functionTool = new FunctionTool(sumNumbers, { + name: "sumNumbers", + description: "Use this function to sum two numbers", + parameters: sumJSON, + }); + + // Create a function tool from the divide function + const functionTool2 = new FunctionTool(divideNumbers, { + name: "divideNumbers", + description: "Use this function to divide two numbers", + parameters: divideJSON, + }); + + // Create an OpenAIAgent with the function tools + const agent = new OpenAIAgent({ + tools: [functionTool, functionTool2], + verbose: true, + }); + + // Chat with the agent + const response = await agent.chat({ + message: "How much is 5 + 5? then divide by 2", + }); + + // Print the response + console.log(String(response)); +} + +main().then(() => { + console.log("Done"); +}); diff --git a/packages/core/src/OutputParser.ts b/packages/core/src/OutputParser.ts index 2b09bb4b7823ddf52dd3162935f3da0050403b8e..de356f6a83aeca58ba91dd12ac00ffa1999cf79a 100644 --- a/packages/core/src/OutputParser.ts +++ b/packages/core/src/OutputParser.ts @@ -74,9 +74,6 @@ export class SubQuestionOutputParser { parse(output: string): StructuredOutput<SubQuestion[]> { const parsed = parseJsonMarkdown(output); - - // TODO add zod validation - return { rawOutput: output, parsedOutput: parsed }; } diff --git a/packages/core/src/Response.ts b/packages/core/src/Response.ts index 6f651587611d16af3c09db4eec59f72d9f5a4b19..5ae9514b77666000b306c7617d988b12dc7db88d 100644 --- a/packages/core/src/Response.ts +++ b/packages/core/src/Response.ts @@ -13,7 +13,7 @@ export class Response { this.sourceNodes = sourceNodes || []; } - getFormattedSources() { + protected _getFormattedSources() { throw new Error("Not implemented yet"); } diff --git a/packages/core/src/agent/index.ts b/packages/core/src/agent/index.ts new file mode 100644 index 0000000000000000000000000000000000000000..596146258fbfcd2782d3de29de100862ed882508 --- /dev/null +++ b/packages/core/src/agent/index.ts @@ -0,0 +1,2 @@ +export * from "./openai/base"; +export * from "./openai/worker"; diff --git a/packages/core/src/agent/openai/base.ts b/packages/core/src/agent/openai/base.ts new file mode 100644 index 0000000000000000000000000000000000000000..6581f5de024efe44c209b50f2225a232d2545fe3 --- /dev/null +++ b/packages/core/src/agent/openai/base.ts @@ -0,0 +1,55 @@ +import { CallbackManager } from "../../callbacks/CallbackManager"; +import { ChatMessage, OpenAI } from "../../llm"; +import { ObjectRetriever } from "../../objects/base"; +import { BaseTool } from "../../types"; +import { AgentRunner } from "../runner/base"; +import { OpenAIAgentWorker } from "./worker"; + +type OpenAIAgentParams = { + tools: BaseTool[]; + llm?: OpenAI; + memory?: any; + prefixMessages?: ChatMessage[]; + verbose?: boolean; + maxFunctionCalls?: number; + defaultToolChoice?: string; + callbackManager?: CallbackManager; + toolRetriever?: ObjectRetriever<BaseTool>; +}; + +/** + * An agent that uses OpenAI's API to generate text. + * + * @category OpenAI + */ +export class OpenAIAgent extends AgentRunner { + constructor({ + tools, + llm, + memory, + prefixMessages, + verbose, + maxFunctionCalls = 5, + defaultToolChoice = "auto", + callbackManager, + toolRetriever, + }: OpenAIAgentParams) { + const stepEngine = new OpenAIAgentWorker({ + tools, + callbackManager, + llm, + prefixMessages, + maxFunctionCalls, + toolRetriever, + verbose, + }); + + super({ + agentWorker: stepEngine, + memory, + callbackManager, + defaultToolChoice, + chatHistory: prefixMessages, + }); + } +} diff --git a/packages/core/src/agent/openai/types/chat.ts b/packages/core/src/agent/openai/types/chat.ts new file mode 100644 index 0000000000000000000000000000000000000000..afe92219808e0503886000257197cacf0833e7df --- /dev/null +++ b/packages/core/src/agent/openai/types/chat.ts @@ -0,0 +1,13 @@ +export type OpenAIToolCall = ChatCompletionMessageToolCall; + +export interface Function { + arguments: string; + name: string; + type: "function"; +} + +export interface ChatCompletionMessageToolCall { + id: string; + function: Function; + type: "function"; +} diff --git a/packages/core/src/agent/openai/utils.ts b/packages/core/src/agent/openai/utils.ts new file mode 100644 index 0000000000000000000000000000000000000000..fb2094b0e55e0a6db0d11c7acbaefcf2fcc4d269 --- /dev/null +++ b/packages/core/src/agent/openai/utils.ts @@ -0,0 +1,27 @@ +import { ToolMetadata } from "../../types"; + +export type OpenAIFunction = { + type: "function"; + function: ToolMetadata; +}; + +type OpenAiTool = { + name: string; + description: string; + parameters: ToolMetadata["parameters"]; +}; + +export const toOpenAiTool = ({ + name, + description, + parameters, +}: OpenAiTool): OpenAIFunction => { + return { + type: "function", + function: { + name: name, + description: description, + parameters, + }, + }; +}; diff --git a/packages/core/src/agent/openai/worker.ts b/packages/core/src/agent/openai/worker.ts new file mode 100644 index 0000000000000000000000000000000000000000..1119ca1c9e6bda6d2686d182375d915ae8321699 --- /dev/null +++ b/packages/core/src/agent/openai/worker.ts @@ -0,0 +1,405 @@ +// Assuming that the necessary interfaces and classes (like BaseTool, OpenAI, ChatMessage, CallbackManager, etc.) are defined elsewhere + +import { CallbackManager } from "../../callbacks/CallbackManager"; +import { AgentChatResponse, ChatResponseMode } from "../../engines/chat"; +import { randomUUID } from "../../env"; +import { + ChatMessage, + ChatResponse, + ChatResponseChunk, + OpenAI, +} from "../../llm"; +import { ChatMemoryBuffer } from "../../memory/ChatMemoryBuffer"; +import { ObjectRetriever } from "../../objects/base"; +import { ToolOutput } from "../../tools/types"; +import { callToolWithErrorHandling } from "../../tools/utils"; +import { BaseTool } from "../../types"; +import { AgentWorker, Task, TaskStep, TaskStepOutput } from "../types"; +import { addUserStepToMemory, getFunctionByName } from "../utils"; +import { OpenAIToolCall } from "./types/chat"; +import { toOpenAiTool } from "./utils"; + +const DEFAULT_MAX_FUNCTION_CALLS = 5; + +/** + * Call function. + * @param tools: tools + * @param toolCall: tool call + * @param verbose: verbose + * @returns: void + */ +async function callFunction( + tools: BaseTool[], + toolCall: OpenAIToolCall, + verbose: boolean = false, +): Promise<[ChatMessage, ToolOutput]> { + const id_ = toolCall.id; + const functionCall = toolCall.function; + const name = toolCall.function.name; + const argumentsStr = toolCall.function.arguments; + + if (verbose) { + console.log("=== Calling Function ==="); + console.log(`Calling function: ${name} with args: ${argumentsStr}`); + } + + const tool = getFunctionByName(tools, name); + const argumentDict = JSON.parse(argumentsStr); + + // Call tool + // Use default error message + const output = await callToolWithErrorHandling(tool, argumentDict, null); + + if (verbose) { + console.log(`Got output ${output}`); + console.log("=========================="); + } + + return [ + { + content: String(output), + role: "tool", + additionalKwargs: { + name, + tool_call_id: id_, + }, + }, + output, + ]; +} + +type OpenAIAgentWorkerParams = { + tools: BaseTool[]; + llm?: OpenAI; + prefixMessages?: ChatMessage[]; + verbose?: boolean; + maxFunctionCalls?: number; + callbackManager?: CallbackManager | undefined; + toolRetriever?: ObjectRetriever<BaseTool>; +}; + +type CallFunctionOutput = { + message: ChatMessage; + toolOutput: ToolOutput; +}; + +/** + * OpenAI agent worker. + * This class is responsible for running the agent. + */ +export class OpenAIAgentWorker implements AgentWorker { + private _llm: OpenAI; + private _verbose: boolean; + private _maxFunctionCalls: number; + + public prefixMessages: ChatMessage[]; + public callbackManager: CallbackManager | undefined; + + private _getTools: (input: string) => BaseTool[]; + + /** + * Initialize. + */ + constructor({ + tools, + llm, + prefixMessages, + verbose, + maxFunctionCalls = DEFAULT_MAX_FUNCTION_CALLS, + callbackManager, + toolRetriever, + }: OpenAIAgentWorkerParams) { + this._llm = llm ?? new OpenAI({ model: "gpt-3.5-turbo-0613" }); + this._verbose = verbose || false; + this._maxFunctionCalls = maxFunctionCalls; + this.prefixMessages = prefixMessages || []; + this.callbackManager = callbackManager || this._llm.callbackManager; + + if (tools.length > 0 && toolRetriever) { + throw new Error("Cannot specify both tools and tool_retriever"); + } else if (tools.length > 0) { + this._getTools = () => tools; + } else if (toolRetriever) { + // @ts-ignore + this._getTools = (message: string) => toolRetriever.retrieve(message); + } else { + this._getTools = () => []; + } + } + + /** + * Get all messages. + * @param task: task + * @returns: messages + */ + public getAllMessages(task: Task): ChatMessage[] { + return [ + ...this.prefixMessages, + ...task.memory.get(), + ...task.extraState.newMemory.get(), + ]; + } + + /** + * Get latest tool calls. + * @param task: task + * @returns: tool calls + */ + public getLatestToolCalls(task: Task): OpenAIToolCall[] | null { + const chatHistory: ChatMessage[] = task.extraState.newMemory.getAll(); + + if (chatHistory.length === 0) { + return null; + } + + return chatHistory[chatHistory.length - 1].additionalKwargs?.toolCalls; + } + + /** + * + * @param task + * @param openaiTools + * @param toolChoice + * @returns + */ + private _getLlmChatKwargs( + task: Task, + openaiTools: { [key: string]: any }[], + toolChoice: string | { [key: string]: any } = "auto", + ): { [key: string]: any } { + const llmChatKwargs: { [key: string]: any } = { + messages: this.getAllMessages(task), + }; + + if (openaiTools.length > 0) { + llmChatKwargs.tools = openaiTools; + llmChatKwargs.toolChoice = toolChoice; + } + + return llmChatKwargs; + } + + /** + * Process message. + * @param task: task + * @param chatResponse: chat response + * @returns: agent chat response + */ + private _processMessage( + task: Task, + chatResponse: ChatResponse, + ): AgentChatResponse | AsyncIterable<ChatResponseChunk> { + const aiMessage = chatResponse.message; + task.extraState.newMemory.put(aiMessage); + return new AgentChatResponse(aiMessage.content, task.extraState.sources); + } + + /** + * Get agent response. + * @param task: task + * @param mode: mode + * @param llmChatKwargs: llm chat kwargs + * @returns: agent chat response + */ + private async _getAgentResponse( + task: Task, + mode: ChatResponseMode, + llmChatKwargs: any, + ): Promise<AgentChatResponse> { + if (mode === ChatResponseMode.WAIT) { + const chatResponse = (await this._llm.chat({ + stream: false, + ...llmChatKwargs, + })) as unknown as ChatResponse; + + return this._processMessage(task, chatResponse) as AgentChatResponse; + } else { + throw new Error("Not implemented"); + } + } + + /** + * Call function. + * @param tools: tools + * @param toolCall: tool call + * @param memory: memory + * @param sources: sources + * @returns: void + */ + async callFunction( + tools: BaseTool[], + toolCall: OpenAIToolCall, + ): Promise<CallFunctionOutput> { + const functionCall = toolCall.function; + + if (!functionCall) { + throw new Error("Invalid tool_call object"); + } + + const functionMessage = await callFunction(tools, toolCall, this._verbose); + + const message = functionMessage[0]; + const toolOutput = functionMessage[1]; + + return { + message, + toolOutput, + }; + } + + /** + * Initialize step. + * @param task: task + * @param kwargs: kwargs + * @returns: task step + */ + initializeStep(task: Task, kwargs?: any): TaskStep { + const sources: ToolOutput[] = []; + + const newMemory = new ChatMemoryBuffer(); + + const taskState = { + sources, + nFunctionCalls: 0, + newMemory, + }; + + task.extraState = { + ...task.extraState, + ...taskState, + }; + + return new TaskStep(task.taskId, randomUUID(), task.input); + } + + /** + * Should continue. + * @param toolCalls: tool calls + * @param nFunctionCalls: number of function calls + * @returns: boolean + */ + private _shouldContinue( + toolCalls: OpenAIToolCall[] | null, + nFunctionCalls: number, + ): boolean { + if (nFunctionCalls > this._maxFunctionCalls) { + return false; + } + + if (toolCalls?.length === 0) { + return false; + } + + return true; + } + + /** + * Get tools. + * @param input: input + * @returns: tools + */ + getTools(input: string): BaseTool[] { + return this._getTools(input); + } + + private async _runStep( + step: TaskStep, + task: Task, + mode: ChatResponseMode = ChatResponseMode.WAIT, + toolChoice: string | { [key: string]: any } = "auto", + ): Promise<TaskStepOutput> { + const tools = this.getTools(task.input); + + if (step.input) { + addUserStepToMemory(step, task.extraState.newMemory, this._verbose); + } + + const openaiTools = tools.map((tool) => + toOpenAiTool({ + name: tool.metadata.name, + description: tool.metadata.description, + parameters: tool.metadata.parameters, + }), + ); + + const llmChatKwargs = this._getLlmChatKwargs(task, openaiTools, toolChoice); + + const agentChatResponse = await this._getAgentResponse( + task, + mode, + llmChatKwargs, + ); + + const latestToolCalls = this.getLatestToolCalls(task) || []; + + let isDone: boolean; + let newSteps: TaskStep[] = []; + + if ( + !this._shouldContinue(latestToolCalls, task.extraState.nFunctionCalls) + ) { + isDone = true; + newSteps = []; + } else { + isDone = false; + for (const toolCall of latestToolCalls) { + const { message, toolOutput } = await this.callFunction( + tools, + toolCall, + ); + + task.extraState.sources.push(toolOutput); + task.extraState.newMemory.put(message); + + task.extraState.nFunctionCalls += 1; + } + + newSteps = [step.getNextStep(randomUUID(), undefined)]; + } + + return new TaskStepOutput(agentChatResponse, step, newSteps, isDone); + } + + /** + * Run step. + * @param step: step + * @param task: task + * @param kwargs: kwargs + * @returns: task step output + */ + async runStep( + step: TaskStep, + task: Task, + kwargs?: any, + ): Promise<TaskStepOutput> { + const toolChoice = kwargs?.toolChoice || "auto"; + return this._runStep(step, task, ChatResponseMode.WAIT, toolChoice); + } + + /** + * Stream step. + * @param step: step + * @param task: task + * @param kwargs: kwargs + * @returns: task step output + */ + async streamStep( + step: TaskStep, + task: Task, + kwargs?: any, + ): Promise<TaskStepOutput> { + const toolChoice = kwargs?.toolChoice || "auto"; + return this._runStep(step, task, ChatResponseMode.STREAM, toolChoice); + } + + /** + * Finalize task. + * @param task: task + * @param kwargs: kwargs + * @returns: void + */ + finalizeTask(task: Task, kwargs?: any): void { + task.memory.set(task.memory.get().concat(task.extraState.newMemory.get())); + task.extraState.newMemory.reset(); + } +} diff --git a/packages/core/src/agent/runner/base.ts b/packages/core/src/agent/runner/base.ts new file mode 100644 index 0000000000000000000000000000000000000000..39e4d6379d7372935f57934e7bc0d05277c616ca --- /dev/null +++ b/packages/core/src/agent/runner/base.ts @@ -0,0 +1,343 @@ +import { randomUUID } from "crypto"; +import { CallbackManager } from "../../callbacks/CallbackManager"; +import { + AgentChatResponse, + ChatEngineAgentParams, + ChatResponseMode, +} from "../../engines/chat"; +import { ChatMessage, LLM } from "../../llm"; +import { ChatMemoryBuffer } from "../../memory/ChatMemoryBuffer"; +import { BaseMemory } from "../../memory/types"; +import { AgentWorker, Task, TaskStep, TaskStepOutput } from "../types"; +import { AgentState, BaseAgentRunner, TaskState } from "./types"; + +const validateStepFromArgs = ( + taskId: string, + input: string, + step?: any, + kwargs?: any, +): TaskStep | undefined => { + if (step) { + if (input) { + throw new Error("Cannot specify both `step` and `input`"); + } + return step; + } else { + return new TaskStep(taskId, step, input, kwargs); + } +}; + +type AgentRunnerParams = { + agentWorker: AgentWorker; + chatHistory?: ChatMessage[]; + state?: AgentState; + memory?: BaseMemory; + llm?: LLM; + callbackManager?: CallbackManager; + initTaskStateKwargs?: Record<string, any>; + deleteTaskOnFinish?: boolean; + defaultToolChoice?: string; +}; + +export class AgentRunner extends BaseAgentRunner { + agentWorker: AgentWorker; + state: AgentState; + memory: BaseMemory; + callbackManager: CallbackManager; + initTaskStateKwargs: Record<string, any>; + deleteTaskOnFinish: boolean; + defaultToolChoice: string; + + /** + * Creates an AgentRunner. + */ + constructor(params: AgentRunnerParams) { + super(); + + this.agentWorker = params.agentWorker; + this.state = params.state ?? new AgentState(); + this.memory = + params.memory ?? + new ChatMemoryBuffer({ + chatHistory: params.chatHistory, + }); + this.callbackManager = params.callbackManager ?? new CallbackManager(); + this.initTaskStateKwargs = params.initTaskStateKwargs ?? {}; + this.deleteTaskOnFinish = params.deleteTaskOnFinish ?? false; + this.defaultToolChoice = params.defaultToolChoice ?? "auto"; + } + + /** + * Creates a task. + * @param input + * @param kwargs + */ + createTask(input: string, kwargs?: any): Task { + let extraState; + + if (!this.initTaskStateKwargs) { + if (kwargs && "extraState" in kwargs) { + if (extraState) { + delete extraState["extraState"]; + } + } + } else { + if (kwargs && "extraState" in kwargs) { + throw new Error( + "Cannot specify both `extraState` and `initTaskStateKwargs`", + ); + } else { + extraState = this.initTaskStateKwargs; + } + } + + const task = new Task({ + taskId: randomUUID(), + input, + memory: this.memory, + extraState, + ...kwargs, + }); + + const initialStep = this.agentWorker.initializeStep(task); + + const taskState = new TaskState({ + task, + stepQueue: [initialStep], + }); + + this.state.taskDict[task.taskId] = taskState; + + return task; + } + + /** + * Deletes the task. + * @param taskId + */ + deleteTask(taskId: string): void { + delete this.state.taskDict[taskId]; + } + + /** + * Returns the list of tasks. + */ + listTasks(): Task[] { + return Object.values(this.state.taskDict).map( + (taskState) => taskState.task, + ); + } + + /** + * Returns the task. + */ + getTask(taskId: string): Task { + return this.state.taskDict[taskId].task; + } + + /** + * Returns the completed steps in the task. + * @param taskId + * @param kwargs + */ + getCompletedSteps(taskId: string): TaskStepOutput[] { + return this.state.taskDict[taskId].completedSteps; + } + + /** + * Returns the next steps in the task. + * @param taskId + * @param kwargs + */ + getUpcomingSteps(taskId: string, kwargs: any): TaskStep[] { + return this.state.taskDict[taskId].stepQueue; + } + + private async _runStep( + taskId: string, + step?: TaskStep, + mode: ChatResponseMode = ChatResponseMode.WAIT, + kwargs?: any, + ): Promise<TaskStepOutput> { + const task = this.state.getTask(taskId); + const curStep = step || this.state.getStepQueue(taskId).shift(); + + let curStepOutput; + + if (!curStep) { + throw new Error(`No step found for task ${taskId}`); + } + + if (mode === ChatResponseMode.WAIT) { + curStepOutput = await this.agentWorker.runStep(curStep, task, kwargs); + } else if (mode === ChatResponseMode.STREAM) { + curStepOutput = await this.agentWorker.streamStep(curStep, task, kwargs); + } else { + throw new Error(`Invalid mode: ${mode}`); + } + + const nextSteps = curStepOutput.nextSteps; + + this.state.addSteps(taskId, nextSteps); + this.state.addCompletedStep(taskId, [curStepOutput]); + + return curStepOutput; + } + + /** + * Runs the next step in the task. + * @param taskId + * @param kwargs + * @param step + * @returns + */ + async runStep( + taskId: string, + input: string, + step?: TaskStep, + kwargs: any = {}, + ): Promise<TaskStepOutput> { + const curStep = validateStepFromArgs(taskId, input, step, kwargs); + return this._runStep(taskId, curStep, ChatResponseMode.WAIT, kwargs); + } + + /** + * Runs the step and returns the response. + * @param taskId + * @param input + * @param step + * @param kwargs + */ + async streamStep( + taskId: string, + input: string, + step?: TaskStep, + kwargs?: any, + ): Promise<TaskStepOutput> { + const curStep = validateStepFromArgs(taskId, input, step, kwargs); + return this._runStep(taskId, curStep, ChatResponseMode.STREAM, kwargs); + } + + /** + * Finalizes the response and returns it. + * @param taskId + * @param kwargs + * @param stepOutput + * @returns + */ + async finalizeResponse( + taskId: string, + stepOutput: TaskStepOutput, + kwargs?: any, + ): Promise<AgentChatResponse> { + if (!stepOutput) { + stepOutput = + this.getCompletedSteps(taskId)[ + this.getCompletedSteps(taskId).length - 1 + ]; + } + if (!stepOutput.isLast) { + throw new Error( + "finalizeResponse can only be called on the last step output", + ); + } + + if (!(stepOutput.output instanceof AgentChatResponse)) { + throw new Error( + `When \`isLast\` is True, cur_step_output.output must be AGENT_CHAT_RESPONSE_TYPE: ${stepOutput.output}`, + ); + } + + this.agentWorker.finalizeTask(this.getTask(taskId), kwargs); + + if (this.deleteTaskOnFinish) { + this.deleteTask(taskId); + } + + return stepOutput.output; + } + + protected async _chat({ + message, + toolChoice, + }: ChatEngineAgentParams & { mode: ChatResponseMode }) { + const task = this.createTask(message as string); + + let resultOutput; + + while (true) { + const curStepOutput = await this._runStep(task.taskId); + + if (curStepOutput.isLast) { + resultOutput = curStepOutput; + break; + } + + toolChoice = "auto"; + } + + return this.finalizeResponse(task.taskId, resultOutput); + } + + /** + * Sends a message to the LLM and returns the response. + * @param message + * @param chatHistory + * @param toolChoice + * @returns + */ + public async chat({ + message, + chatHistory, + toolChoice, + }: ChatEngineAgentParams): Promise<AgentChatResponse> { + if (!toolChoice) { + toolChoice = this.defaultToolChoice; + } + + const chatResponse = await this._chat({ + message, + chatHistory, + toolChoice, + mode: ChatResponseMode.WAIT, + }); + + return chatResponse; + } + + protected _getPromptModules(): string[] { + return []; + } + + protected _getPrompts(): string[] { + return []; + } + + /** + * Resets the agent. + */ + reset(): void { + this.state = new AgentState(); + } + + getCompletedStep( + taskId: string, + stepId: string, + kwargs: any, + ): TaskStepOutput { + const completedSteps = this.getCompletedSteps(taskId); + for (const stepOutput of completedSteps) { + if (stepOutput.taskStep.stepId === stepId) { + return stepOutput; + } + } + + throw new Error(`Step ${stepId} not found in task ${taskId}`); + } + + /** + * Undoes the step. + * @param taskId + */ + undoStep(taskId: string): void {} +} diff --git a/packages/core/src/agent/runner/types.ts b/packages/core/src/agent/runner/types.ts new file mode 100644 index 0000000000000000000000000000000000000000..b4e7a2236a05e2bd486b2c2404a9aeb285138831 --- /dev/null +++ b/packages/core/src/agent/runner/types.ts @@ -0,0 +1,102 @@ +import { AgentChatResponse } from "../../engines/chat"; +import { BaseAgent, Task, TaskStep, TaskStepOutput } from "../types"; + +export class TaskState { + task!: Task; + stepQueue!: TaskStep[]; + completedSteps!: TaskStepOutput[]; + + constructor(init?: Partial<TaskState>) { + Object.assign(this, init); + } +} + +export abstract class BaseAgentRunner extends BaseAgent { + constructor(init?: Partial<BaseAgentRunner>) { + super(); + } + + abstract createTask(input: string, kwargs: any): Task; + abstract deleteTask(taskId: string): void; + abstract getTask(taskId: string, kwargs: any): Task; + abstract listTasks(kwargs: any): Task[]; + abstract getUpcomingSteps(taskId: string, kwargs: any): TaskStep[]; + abstract getCompletedSteps(taskId: string, kwargs: any): TaskStepOutput[]; + + getCompletedStep( + taskId: string, + stepId: string, + kwargs: any, + ): TaskStepOutput { + const completedSteps = this.getCompletedSteps(taskId, kwargs); + for (const stepOutput of completedSteps) { + if (stepOutput.taskStep.stepId === stepId) { + return stepOutput; + } + } + + throw new Error(`Step ${stepId} not found in task ${taskId}`); + } + + abstract runStep( + taskId: string, + input: string, + step: TaskStep, + kwargs: any, + ): Promise<TaskStepOutput>; + + abstract streamStep( + taskId: string, + input: string, + step: TaskStep, + kwargs?: any, + ): Promise<TaskStepOutput>; + + abstract finalizeResponse( + taskId: string, + stepOutput: TaskStepOutput, + kwargs?: any, + ): Promise<AgentChatResponse>; + + abstract undoStep(taskId: string): void; +} + +export class AgentState { + taskDict!: Record<string, TaskState>; + + constructor(init?: Partial<AgentState>) { + Object.assign(this, init); + + if (!this.taskDict) { + this.taskDict = {}; + } + } + + getTask(taskId: string): Task { + return this.taskDict[taskId].task; + } + + getCompletedSteps(taskId: string): TaskStepOutput[] { + return this.taskDict[taskId].completedSteps || []; + } + + getStepQueue(taskId: string): TaskStep[] { + return this.taskDict[taskId].stepQueue || []; + } + + addSteps(taskId: string, steps: TaskStep[]): void { + if (!this.taskDict[taskId].stepQueue) { + this.taskDict[taskId].stepQueue = []; + } + + this.taskDict[taskId].stepQueue.push(...steps); + } + + addCompletedStep(taskId: string, stepOutputs: TaskStepOutput[]): void { + if (!this.taskDict[taskId].completedSteps) { + this.taskDict[taskId].completedSteps = []; + } + + this.taskDict[taskId].completedSteps.push(...stepOutputs); + } +} diff --git a/packages/core/src/agent/types.ts b/packages/core/src/agent/types.ts new file mode 100644 index 0000000000000000000000000000000000000000..e862825f583acaf96e3b46036d1395ab48796b51 --- /dev/null +++ b/packages/core/src/agent/types.ts @@ -0,0 +1,181 @@ +import { AgentChatResponse, ChatEngineAgentParams } from "../engines/chat"; +import { QueryEngineParamsNonStreaming } from "../types"; + +export interface AgentWorker { + initializeStep(task: Task, kwargs?: any): TaskStep; + runStep(step: TaskStep, task: Task, kwargs?: any): Promise<TaskStepOutput>; + streamStep(step: TaskStep, task: Task, kwargs?: any): Promise<TaskStepOutput>; + finalizeTask(task: Task, kwargs?: any): void; +} + +interface BaseChatEngine { + chat(params: ChatEngineAgentParams): Promise<AgentChatResponse>; +} + +interface BaseQueryEngine { + query(params: QueryEngineParamsNonStreaming): Promise<AgentChatResponse>; +} + +/** + * BaseAgent is the base class for all agents. + */ +export abstract class BaseAgent implements BaseChatEngine, BaseQueryEngine { + protected _getPrompts(): string[] { + return []; + } + + protected _getPromptModules(): string[] { + return []; + } + + abstract chat(params: ChatEngineAgentParams): Promise<AgentChatResponse>; + abstract reset(): void; + + /** + * query is the main entrypoint for the agent. It takes a query and returns a response. + * @param params + * @returns + */ + async query( + params: QueryEngineParamsNonStreaming, + ): Promise<AgentChatResponse> { + // Handle non-streaming query + const agentResponse = await this.chat({ + message: params.query, + chatHistory: [], + }); + + return agentResponse; + } +} + +type TaskParams = { + taskId: string; + input: string; + memory: any; + extraState: Record<string, any>; +}; + +/** + * Task is a unit of work for the agent. + * @param taskId: taskId + */ +export class Task { + taskId: string; + input: string; + + memory: any; + extraState: Record<string, any>; + + constructor({ taskId, input, memory, extraState }: TaskParams) { + this.taskId = taskId; + this.input = input; + this.memory = memory; + this.extraState = extraState ?? {}; + } +} + +interface ITaskStep { + taskId: string; + stepId: string; + input?: string | null; + stepState: Record<string, any>; + nextSteps: Record<string, TaskStep>; + prevSteps: Record<string, TaskStep>; + isReady: boolean; + getNextStep( + stepId: string, + input?: string, + stepState?: Record<string, any>, + ): TaskStep; + linkStep(nextStep: TaskStep): void; +} + +/** + * TaskStep is a unit of work for the agent. + * @param taskId: taskId + * @param stepId: stepId + * @param input: input + * @param stepState: stepState + */ +export class TaskStep implements ITaskStep { + taskId: string; + stepId: string; + input?: string | null; + stepState: Record<string, any> = {}; + nextSteps: Record<string, TaskStep> = {}; + prevSteps: Record<string, TaskStep> = {}; + isReady: boolean = true; + + constructor( + taskId: string, + stepId: string, + input?: string | null, + stepState?: Record<string, any> | null, + ) { + this.taskId = taskId; + this.stepId = stepId; + this.input = input; + this.stepState = stepState ?? this.stepState; + } + + /* + * getNextStep is a function that returns the next step. + * @param stepId: stepId + * @param input: input + * @param stepState: stepState + * @returns: TaskStep + */ + getNextStep( + stepId: string, + input?: string, + stepState?: Record<string, unknown>, + ): TaskStep { + return new TaskStep( + this.taskId, + stepId, + input, + stepState ?? this.stepState, + ); + } + + /* + * linkStep is a function that links the next step. + * @param nextStep: nextStep + * @returns: void + */ + linkStep(nextStep: TaskStep): void { + this.nextSteps[nextStep.stepId] = nextStep; + nextStep.prevSteps[this.stepId] = this; + } +} + +/** + * TaskStepOutput is a unit of work for the agent. + * @param output: output + * @param taskStep: taskStep + * @param nextSteps: nextSteps + * @param isLast: isLast + */ +export class TaskStepOutput { + output: unknown; + taskStep: TaskStep; + nextSteps: TaskStep[]; + isLast: boolean; + + constructor( + output: unknown, + taskStep: TaskStep, + nextSteps: TaskStep[], + isLast: boolean = false, + ) { + this.output = output; + this.taskStep = taskStep; + this.nextSteps = nextSteps; + this.isLast = isLast; + } + + toString(): string { + return String(this.output); + } +} diff --git a/packages/core/src/agent/utils.ts b/packages/core/src/agent/utils.ts new file mode 100644 index 0000000000000000000000000000000000000000..4d6aa8098d884315030c15558f6adb2f138d34cf --- /dev/null +++ b/packages/core/src/agent/utils.ts @@ -0,0 +1,51 @@ +import { ChatMessage } from "../llm"; +import { ChatMemoryBuffer } from "../memory/ChatMemoryBuffer"; +import { BaseTool } from "../types"; +import { TaskStep } from "./types"; + +/** + * Adds the user's input to the memory. + * + * @param step - The step to add to the memory. + * @param memory - The memory to add the step to. + * @param verbose - Whether to print debug messages. + */ +export function addUserStepToMemory( + step: TaskStep, + memory: ChatMemoryBuffer, + verbose: boolean = false, +): void { + if (!step.input) { + return; + } + + const userMessage: ChatMessage = { + content: step.input, + role: "user", + }; + + memory.put(userMessage); + + if (verbose) { + console.log(`Added user message to memory!: ${userMessage.content}`); + } +} + +/** + * Get function by name. + * @param tools: tools + * @param name: name + * @returns: tool + */ +export function getFunctionByName(tools: BaseTool[], name: string): BaseTool { + const nameToTool: { [key: string]: BaseTool } = {}; + tools.forEach((tool) => { + nameToTool[tool.metadata.name] = tool; + }); + + if (!(name in nameToTool)) { + throw new Error(`Tool with name ${name} not found`); + } + + return nameToTool[name]; +} diff --git a/packages/core/src/engines/chat/types.ts b/packages/core/src/engines/chat/types.ts index 1d8c18378450d764a6df3168b1ffa64ae2871edc..f11329110e411327526ad51f209f4b5217689f1a 100644 --- a/packages/core/src/engines/chat/types.ts +++ b/packages/core/src/engines/chat/types.ts @@ -1,9 +1,10 @@ import { ChatHistory } from "../../ChatHistory"; -import { NodeWithScore } from "../../Node"; +import { BaseNode, NodeWithScore } from "../../Node"; import { Response } from "../../Response"; import { Event } from "../../callbacks/CallbackManager"; import { ChatMessage } from "../../llm"; import { MessageContent } from "../../llm/types"; +import { ToolOutput } from "../../tools/types"; /** * Represents the base parameters for ChatEngine. @@ -24,6 +25,10 @@ export interface ChatEngineParamsNonStreaming extends ChatEngineParamsBase { stream?: false | null; } +export interface ChatEngineAgentParams extends ChatEngineParamsBase { + toolChoice?: string | Record<string, any>; +} + /** * A ChatEngine is used to handle back and forth chats between the application and the LLM. */ @@ -52,3 +57,32 @@ export interface Context { export interface ContextGenerator { generate(message: string, parentEvent?: Event): Promise<Context>; } + +export enum ChatResponseMode { + WAIT = "wait", + STREAM = "stream", +} + +export class AgentChatResponse { + response: string; + sources: ToolOutput[]; + sourceNodes?: BaseNode[]; + + constructor( + response: string, + sources?: ToolOutput[], + sourceNodes?: BaseNode[], + ) { + this.response = response; + this.sources = sources || []; + this.sourceNodes = sourceNodes || []; + } + + protected _getFormattedSources() { + throw new Error("Not implemented yet"); + } + + toString() { + return this.response ?? ""; + } +} diff --git a/packages/core/src/index.ts b/packages/core/src/index.ts index 0d02cbc6e8de89d94e3335406b8d846509b9fb17..2c965e8c2bf6ba9a99acd8273450fbcd3f752095 100644 --- a/packages/core/src/index.ts +++ b/packages/core/src/index.ts @@ -9,6 +9,7 @@ export * from "./Response"; export * from "./Retriever"; export * from "./ServiceContext"; export * from "./TextSplitter"; +export * from "./agent"; export * from "./callbacks/CallbackManager"; export * from "./constants"; export * from "./embeddings"; @@ -33,4 +34,4 @@ export * from "./readers/base"; export * from "./selectors"; export * from "./storage"; export * from "./synthesizers"; -export type * from "./types"; +export * from "./tools"; diff --git a/packages/core/src/llm/LLM.ts b/packages/core/src/llm/LLM.ts index e543164ef933e92b8c5ede08cf11f07a4e578c44..29e975003e08971430cf0280e6994ee12265f9fe 100644 --- a/packages/core/src/llm/LLM.ts +++ b/packages/core/src/llm/LLM.ts @@ -77,7 +77,14 @@ export class OpenAI extends BaseLLM { maxTokens?: number; additionalChatOptions?: Omit< Partial<OpenAILLM.Chat.ChatCompletionCreateParams>, - "max_tokens" | "messages" | "model" | "temperature" | "top_p" | "stream" + | "max_tokens" + | "messages" + | "model" + | "temperature" + | "top_p" + | "stream" + | "tools" + | "toolChoice" >; // OpenAI session params @@ -179,7 +186,7 @@ export class OpenAI extends BaseLLM { mapMessageType( messageType: MessageType, - ): "user" | "assistant" | "system" | "function" { + ): "user" | "assistant" | "system" | "function" | "tool" { switch (messageType) { case "user": return "user"; @@ -189,11 +196,30 @@ export class OpenAI extends BaseLLM { return "system"; case "function": return "function"; + case "tool": + return "tool"; default: return "user"; } } + toOpenAIMessage(messages: ChatMessage[]) { + return messages.map((message) => { + const additionalKwargs = message.additionalKwargs ?? {}; + + if (message.additionalKwargs?.toolCalls) { + additionalKwargs.tool_calls = message.additionalKwargs.toolCalls; + delete additionalKwargs.toolCalls; + } + + return { + role: this.mapMessageType(message.role), + content: message.content, + ...additionalKwargs, + }; + }); + } + chat( params: LLMChatParamsStreaming, ): Promise<AsyncIterable<ChatResponseChunk>>; @@ -201,18 +227,15 @@ export class OpenAI extends BaseLLM { async chat( params: LLMChatParamsNonStreaming | LLMChatParamsStreaming, ): Promise<ChatResponse | AsyncIterable<ChatResponseChunk>> { - const { messages, parentEvent, stream } = params; - const baseRequestParams: OpenAILLM.Chat.ChatCompletionCreateParams = { + const { messages, parentEvent, stream, tools, toolChoice } = params; + + let baseRequestParams: OpenAILLM.Chat.ChatCompletionCreateParams = { model: this.model, temperature: this.temperature, max_tokens: this.maxTokens, - messages: messages.map( - (message) => - ({ - role: this.mapMessageType(message.role), - content: message.content, - }) as ChatCompletionMessageParam, - ), + tools: tools, + tool_choice: toolChoice, + messages: this.toOpenAIMessage(messages) as ChatCompletionMessageParam[], top_p: this.topP, ...this.additionalChatOptions, }; @@ -221,6 +244,7 @@ export class OpenAI extends BaseLLM { if (stream) { return this.streamChat(params); } + // Non-streaming const response = await this.session.openai.chat.completions.create({ ...baseRequestParams, @@ -228,8 +252,19 @@ export class OpenAI extends BaseLLM { }); const content = response.choices[0].message?.content ?? ""; + + const kwargsOutput: Record<string, any> = {}; + + if (response.choices[0].message?.tool_calls) { + kwargsOutput.toolCalls = response.choices[0].message.tool_calls; + } + return { - message: { content, role: response.choices[0].message.role }, + message: { + content, + role: response.choices[0].message.role, + additionalKwargs: kwargsOutput, + }, }; } diff --git a/packages/core/src/llm/types.ts b/packages/core/src/llm/types.ts index 97ead4a7541ed5f6aacb814f9c155fbfd6886863..305769f83d22f893fd6ea3aec411ccc0da927c96 100644 --- a/packages/core/src/llm/types.ts +++ b/packages/core/src/llm/types.ts @@ -39,17 +39,20 @@ export type MessageType = | "system" | "generic" | "function" - | "memory"; + | "memory" + | "tool"; export interface ChatMessage { // TODO: use MessageContent content: any; role: MessageType; + additionalKwargs?: Record<string, any>; } export interface ChatResponse { message: ChatMessage; raw?: Record<string, any>; + additionalKwargs?: Record<string, any>; } export interface ChatResponseChunk { @@ -74,6 +77,9 @@ export interface LLMChatParamsBase { messages: ChatMessage[]; parentEvent?: Event; extraParams?: Record<string, any>; + tools?: any; + toolChoice?: any; + additionalKwargs?: Record<string, any>; } export interface LLMChatParamsStreaming extends LLMChatParamsBase { diff --git a/packages/core/src/memory/ChatMemoryBuffer.ts b/packages/core/src/memory/ChatMemoryBuffer.ts new file mode 100644 index 0000000000000000000000000000000000000000..72036336b5394e98fec322adf72270b247a788da --- /dev/null +++ b/packages/core/src/memory/ChatMemoryBuffer.ts @@ -0,0 +1,119 @@ +import { ChatMessage } from "../llm"; +import { SimpleChatStore } from "../storage/chatStore/SimpleChatStore"; +import { BaseChatStore } from "../storage/chatStore/types"; +import { BaseMemory } from "./types"; + +type ChatMemoryBufferParams = { + tokenLimit?: number; + chatStore?: BaseChatStore; + chatStoreKey?: string; + chatHistory?: ChatMessage[]; +}; + +/** + * Chat memory buffer. + */ +export class ChatMemoryBuffer implements BaseMemory { + tokenLimit: number; + + chatStore: BaseChatStore; + chatStoreKey: string; + + /** + * Initialize. + */ + constructor(init?: Partial<ChatMemoryBufferParams>) { + this.tokenLimit = init?.tokenLimit ?? 3000; + this.chatStore = init?.chatStore ?? new SimpleChatStore(); + this.chatStoreKey = init?.chatStoreKey ?? "chat_history"; + + if (init?.chatHistory) { + this.chatStore.setMessages(this.chatStoreKey, init.chatHistory); + } + } + + /** + Get chat history. + @param initialTokenCount: number of tokens to start with + */ + get(initialTokenCount: number = 0): ChatMessage[] { + const chatHistory = this.getAll(); + + if (initialTokenCount > this.tokenLimit) { + throw new Error("Initial token count exceeds token limit"); + } + + let messageCount = chatHistory.length; + let tokenCount = + this._tokenCountForMessageCount(messageCount) + initialTokenCount; + + while (tokenCount > this.tokenLimit && messageCount > 1) { + messageCount -= 1; + if (chatHistory[-messageCount].role === "assistant") { + // we cannot have an assistant message at the start of the chat history + // if after removal of the first, we have an assistant message, + // we need to remove the assistant message too + messageCount -= 1; + } + + tokenCount = + this._tokenCountForMessageCount(messageCount) + initialTokenCount; + } + + // catch one message longer than token limit + if (tokenCount > this.tokenLimit || messageCount <= 0) { + return []; + } + + return chatHistory.slice(-messageCount); + } + + /** + * Get all chat history. + * @returns {ChatMessage[]} chat history + */ + getAll(): ChatMessage[] { + return this.chatStore.getMessages(this.chatStoreKey); + } + + /** + * Put chat history. + * @param message + */ + put(message: ChatMessage): void { + this.chatStore.addMessage(this.chatStoreKey, message); + } + + /** + * Set chat history. + * @param messages + */ + set(messages: ChatMessage[]): void { + this.chatStore.setMessages(this.chatStoreKey, messages); + } + + /** + * Reset chat history. + */ + reset(): void { + this.chatStore.deleteMessages(this.chatStoreKey); + } + + /** + * Get token count for message count. + * @param messageCount + * @returns {number} token count + */ + private _tokenCountForMessageCount(messageCount: number): number { + if (messageCount <= 0) { + return 0; + } + + const chatHistory = this.getAll(); + const msgStr = chatHistory + .slice(-messageCount) + .map((m) => m.content) + .join(" "); + return msgStr.split(" ").length; + } +} diff --git a/packages/core/src/memory/types.ts b/packages/core/src/memory/types.ts new file mode 100644 index 0000000000000000000000000000000000000000..2222599abb71d73c4f2355982ab07b005762fc90 --- /dev/null +++ b/packages/core/src/memory/types.ts @@ -0,0 +1,24 @@ +import { ChatMessage } from "../llm"; + +export interface BaseMemory { + /* + Get chat history. + */ + get(...args: any): ChatMessage[]; + /* + Get all chat history. + */ + getAll(): ChatMessage[]; + /* + Put chat history. + */ + put(message: ChatMessage): void; + /* + Set chat history. + */ + set(messages: ChatMessage[]): void; + /* + Reset chat history. + */ + reset(): void; +} diff --git a/packages/core/src/objects/base.ts b/packages/core/src/objects/base.ts new file mode 100644 index 0000000000000000000000000000000000000000..7adeb94902709556c8956ba4f8de43781ae79918 --- /dev/null +++ b/packages/core/src/objects/base.ts @@ -0,0 +1,80 @@ +import { BaseNode, TextNode } from "../Node"; +import { BaseRetriever } from "../Retriever"; + +// Assuming that necessary interfaces and classes (like OT, TextNode, BaseNode, etc.) are defined elsewhere +// Import statements (e.g., for TextNode, BaseNode) should be added based on your project's structure + +export abstract class BaseObjectNodeMapping<OT> { + // TypeScript doesn't support Python's classmethod directly, but we can use static methods as an alternative + abstract fromObjects<OT>( + objs: OT[], + ...args: any[] + ): BaseObjectNodeMapping<OT>; + + // Abstract methods in TypeScript + abstract objNodeMapping(): Record<any, any>; + abstract toNode(obj: OT): TextNode; + + // Concrete methods can be defined as usual + validateObject(obj: OT): void {} + + // Implementing the add object logic + addObj(obj: OT): void { + this.validateObject(obj); + this._addObj(obj); + } + + // Abstract method for internal add object logic + protected abstract _addObj(obj: OT): void; + + // Implementing toNodes method + toNodes(objs: OT[]): TextNode[] { + return objs.map((obj) => this.toNode(obj)); + } + + // Abstract method for internal from node logic + protected abstract _fromNode(node: BaseNode): OT; + + // Implementing fromNode method + fromNode(node: BaseNode): OT { + const obj = this._fromNode(node); + this.validateObject(obj); + return obj; + } + + // Abstract methods for persistence + abstract persist(persistDir: string, objNodeMappingFilename: string): void; +} + +// You will need to implement specific subclasses of BaseObjectNodeMapping as per your project requirements. + +type QueryType = string; + +export class ObjectRetriever<OT> { + private _retriever: BaseRetriever; + private _objectNodeMapping: BaseObjectNodeMapping<OT>; + + constructor( + retriever: BaseRetriever, + objectNodeMapping: BaseObjectNodeMapping<OT>, + ) { + this._retriever = retriever; + this._objectNodeMapping = objectNodeMapping; + } + + // In TypeScript, getters are defined like this. + get retriever(): BaseRetriever { + return this._retriever; + } + + // Translating the retrieve method + async retrieve(strOrQueryBundle: QueryType): Promise<OT[]> { + const nodes = await this._retriever.retrieve(strOrQueryBundle); + return nodes.map((node) => this._objectNodeMapping.fromNode(node.node)); + } + + // // Translating the _asQueryComponent method + // public asQueryComponent(kwargs: any): any { + // return new ObjectRetrieverComponent(this); + // } +} diff --git a/packages/core/src/storage/chatStore/SimpleChatStore.ts b/packages/core/src/storage/chatStore/SimpleChatStore.ts new file mode 100644 index 0000000000000000000000000000000000000000..b2b272bd7049eb34052dfad4251feb358f23e86c --- /dev/null +++ b/packages/core/src/storage/chatStore/SimpleChatStore.ts @@ -0,0 +1,92 @@ +import { ChatMessage } from "../../llm"; +import { BaseChatStore } from "./types"; + +/** + * Simple chat store. + */ +export class SimpleChatStore implements BaseChatStore { + store: { [key: string]: ChatMessage[] } = {}; + + /** + * Set messages. + * @param key: key + * @param messages: messages + * @returns: void + */ + public setMessages(key: string, messages: ChatMessage[]): void { + this.store[key] = messages; + } + + /** + * Get messages. + * @param key: key + * @returns: messages + */ + public getMessages(key: string): ChatMessage[] { + return this.store[key] || []; + } + + /** + * Add message. + * @param key: key + * @param message: message + * @returns: void + */ + public addMessage(key: string, message: ChatMessage): void { + this.store[key] = this.store[key] || []; + this.store[key].push(message); + } + + /** + * Delete messages. + * @param key: key + * @returns: messages + */ + public deleteMessages(key: string): ChatMessage[] | null { + if (!(key in this.store)) { + return null; + } + const messages = this.store[key]; + delete this.store[key]; + return messages; + } + + /** + * Delete message. + * @param key: key + * @param idx: idx + * @returns: message + */ + public deleteMessage(key: string, idx: number): ChatMessage | null { + if (!(key in this.store)) { + return null; + } + if (idx >= this.store[key].length) { + return null; + } + return this.store[key].splice(idx, 1)[0]; + } + + /** + * Delete last message. + * @param key: key + * @returns: message + */ + public deleteLastMessage(key: string): ChatMessage | null { + if (!(key in this.store)) { + return null; + } + + const lastMessage = this.store[key].pop(); + + return lastMessage || null; + } + + /** + * Get keys. + * @returns: keys + */ + public getKeys(): string[] { + return Object.keys(this.store); + } +} diff --git a/packages/core/src/storage/chatStore/types.ts b/packages/core/src/storage/chatStore/types.ts new file mode 100644 index 0000000000000000000000000000000000000000..a72a296d5055589dca44954bcdf932acc3c79489 --- /dev/null +++ b/packages/core/src/storage/chatStore/types.ts @@ -0,0 +1,11 @@ +import { ChatMessage } from "../../llm"; + +export interface BaseChatStore { + setMessages(key: string, messages: ChatMessage[]): void; + getMessages(key: string): ChatMessage[]; + addMessage(key: string, message: ChatMessage): void; + deleteMessages(key: string): ChatMessage[] | null; + deleteMessage(key: string, idx: number): ChatMessage | null; + deleteLastMessage(key: string): ChatMessage | null; + getKeys(): string[]; +} diff --git a/packages/core/src/storage/index.ts b/packages/core/src/storage/index.ts index ae372ead52586db82e40cc44bd6b5681e81ec72f..2dbc4fd1e80bd0ca9abd081bbf247c77f63de0f8 100644 --- a/packages/core/src/storage/index.ts +++ b/packages/core/src/storage/index.ts @@ -1,5 +1,7 @@ export * from "./FileSystem"; export * from "./StorageContext"; +export { SimpleChatStore } from "./chatStore/SimpleChatStore"; +export * from "./chatStore/types"; export * from "./constants"; export { SimpleDocumentStore } from "./docStore/SimpleDocumentStore"; export * from "./docStore/types"; diff --git a/packages/core/src/tests/MetadataExtractors.test.ts b/packages/core/src/tests/MetadataExtractors.test.ts index abc1b78ba6559e036c86bcf573442df4a6b4f685..e293f528d4d470ea4756663d8a0ea27728347104 100644 --- a/packages/core/src/tests/MetadataExtractors.test.ts +++ b/packages/core/src/tests/MetadataExtractors.test.ts @@ -50,6 +50,7 @@ describe("[MetadataExtractor]: Extractors should populate the metadata", () => { mockLlmGeneration({ languageModel, callbackManager }); const embedModel = new OpenAIEmbedding(); + mockEmbeddingModel(embedModel); serviceContext = serviceContextFromDefaults({ diff --git a/packages/core/src/tests/agent/OpenAIAgent.test.ts b/packages/core/src/tests/agent/OpenAIAgent.test.ts new file mode 100644 index 0000000000000000000000000000000000000000..071740a0a96b44ee250b58b3f6161adcdd4b58be --- /dev/null +++ b/packages/core/src/tests/agent/OpenAIAgent.test.ts @@ -0,0 +1,69 @@ +import { OpenAIAgent } from "../../agent"; +import { CallbackManager } from "../../callbacks/CallbackManager"; +import { OpenAI } from "../../llm"; +import { FunctionTool } from "../../tools"; +import { mockLlmToolCallGeneration } from "../utility/mockOpenAI"; + +// Define a function to sum two numbers +function sumNumbers({ a, b }: { a: number; b: number }): number { + return a + b; +} + +const sumJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The first number", + }, + b: { + type: "number", + description: "The second number", + }, + }, + required: ["a", "b"], +}; + +jest.mock("../../llm/open_ai", () => { + return { + getOpenAISession: jest.fn().mockImplementation(() => null), + }; +}); + +describe("OpenAIAgent", () => { + let openaiAgent: OpenAIAgent; + + beforeEach(() => { + const callbackManager = new CallbackManager({}); + + const languageModel = new OpenAI({ + model: "gpt-3.5-turbo", + callbackManager, + }); + + mockLlmToolCallGeneration({ + languageModel, + callbackManager, + }); + + const sumFunctionTool = new FunctionTool(sumNumbers, { + name: "sumNumbers", + description: "Use this function to sum two numbers", + parameters: sumJSON, + }); + + openaiAgent = new OpenAIAgent({ + tools: [sumFunctionTool], + llm: languageModel, + verbose: false, + }); + }); + + it("should be able to chat with agent", async () => { + const response = await openaiAgent.chat({ + message: "how much is 1 + 1?", + }); + + expect(String(response)).toEqual("The sum is 2"); + }); +}); diff --git a/packages/core/src/tests/agent/runner/AgentRunner.test.ts b/packages/core/src/tests/agent/runner/AgentRunner.test.ts new file mode 100644 index 0000000000000000000000000000000000000000..27702ad9e687ddb030aa135e1f71b01636942a9e --- /dev/null +++ b/packages/core/src/tests/agent/runner/AgentRunner.test.ts @@ -0,0 +1,99 @@ +import { OpenAIAgentWorker } from "../../../agent"; +import { AgentRunner } from "../../../agent/runner/base"; +import { CallbackManager } from "../../../callbacks/CallbackManager"; +import { OpenAI } from "../../../llm/LLM"; + +import { + DEFAULT_LLM_TEXT_OUTPUT, + mockLlmGeneration, +} from "../../utility/mockOpenAI"; + +jest.mock("../../../llm/open_ai", () => { + return { + getOpenAISession: jest.fn().mockImplementation(() => null), + }; +}); + +describe("Agent Runner", () => { + let agentRunner: AgentRunner; + + beforeEach(() => { + const callbackManager = new CallbackManager({}); + + const languageModel = new OpenAI({ + model: "gpt-3.5-turbo", + callbackManager, + }); + + mockLlmGeneration({ + languageModel, + callbackManager, + }); + + agentRunner = new AgentRunner({ + llm: languageModel, + agentWorker: new OpenAIAgentWorker({ + llm: languageModel, + tools: [], + verbose: false, + }), + }); + }); + + it("should be able to initialize a task", () => { + const task = agentRunner.createTask("hello world"); + + expect(task.input).toEqual("hello world"); + expect(task.taskId in agentRunner.state.taskDict).toEqual(true); + + expect(agentRunner.listTasks().length).toEqual(1); + }); + + it("should be able to run a step", async () => { + const task = agentRunner.createTask("hello world"); + + expect(agentRunner.getCompletedSteps(task.taskId)).toBeUndefined(); + + const stepOutput = await agentRunner.runStep(task.taskId, task.input); + + const completedSteps = agentRunner.getCompletedSteps(task.taskId); + + expect(completedSteps.length).toEqual(1); + + expect(stepOutput.isLast).toEqual(true); + }); + + it("should be able to finalize a task", async () => { + const task = agentRunner.createTask("hello world"); + + expect(agentRunner.getCompletedSteps(task.taskId)).toBeUndefined(); + + const stepOutput1 = await agentRunner.runStep(task.taskId, task.input); + + expect(stepOutput1.isLast).toEqual(true); + }); + + it("should be able to delete a task", () => { + const task = agentRunner.createTask("hello world"); + + expect(agentRunner.listTasks().length).toEqual(1); + + agentRunner.deleteTask(task.taskId); + + expect(agentRunner.listTasks().length).toEqual(0); + }); + + it("should be able to run a chat", async () => { + const response = await agentRunner.chat({ + message: "hello world", + }); + + expect(agentRunner.listTasks().length).toEqual(1); + + expect(response).toEqual({ + response: DEFAULT_LLM_TEXT_OUTPUT, + sourceNodes: [], + sources: [], + }); + }); +}); diff --git a/packages/core/src/tests/tools/Tools.test.ts b/packages/core/src/tests/tools/Tools.test.ts new file mode 100644 index 0000000000000000000000000000000000000000..767a8608a910b7b00e8eab2e999c5505d1d56a0c --- /dev/null +++ b/packages/core/src/tests/tools/Tools.test.ts @@ -0,0 +1,45 @@ +import { FunctionTool, ToolOutput } from "../../tools"; +import { callToolWithErrorHandling } from "../../tools/utils"; + +function sumNumbers({ a, b }: { a: number; b: number }): number { + return a + b; +} + +const sumJSON = { + type: "object", + properties: { + a: { + type: "number", + description: "The first number", + }, + b: { + type: "number", + description: "The second number", + }, + }, + required: ["a", "b"], +}; + +describe("Tools", () => { + it("should be able to call a tool with a common JSON", async () => { + const tool = new FunctionTool(sumNumbers, { + name: "sumNumbers", + description: "Use this function to sum two numbers", + parameters: sumJSON, + }); + + const response = await callToolWithErrorHandling(tool, { + a: 1, + b: 2, + }); + + expect(response).toEqual( + new ToolOutput( + response.content, + tool.metadata.name, + { a: 1, b: 2 }, + response.content, + ), + ); + }); +}); diff --git a/packages/core/src/tests/utility/mockOpenAI.ts b/packages/core/src/tests/utility/mockOpenAI.ts index e06053ed9384f0fffa29bebbaddc9965bc7b0bba..88961e3d52697968cdaa5e5cbb1fe0f3c2c22cf4 100644 --- a/packages/core/src/tests/utility/mockOpenAI.ts +++ b/packages/core/src/tests/utility/mockOpenAI.ts @@ -64,6 +64,26 @@ export function mockLlmGeneration({ ); } +export function mockLlmToolCallGeneration({ + languageModel, + callbackManager, +}: { + languageModel: OpenAI; + callbackManager: CallbackManager; +}) { + jest.spyOn(languageModel, "chat").mockImplementation( + () => + new Promise((resolve) => + resolve({ + message: { + content: "The sum is 2", + role: "assistant", + }, + }), + ), + ); +} + export function mockEmbeddingModel(embedModel: OpenAIEmbedding) { jest.spyOn(embedModel, "getTextEmbedding").mockImplementation(async (x) => { return new Promise((resolve) => { diff --git a/packages/core/src/tools/functionTool.ts b/packages/core/src/tools/functionTool.ts new file mode 100644 index 0000000000000000000000000000000000000000..f9114612929fb903c0fc379d91871a6258ef22a8 --- /dev/null +++ b/packages/core/src/tools/functionTool.ts @@ -0,0 +1,32 @@ +import { BaseTool, ToolMetadata } from "../types"; + +type Metadata = { + name: string; + description: string; + parameters: ToolMetadata["parameters"]; +}; + +export class FunctionTool<T = any> implements BaseTool { + private _fn: (...args: any[]) => any; + private _metadata: ToolMetadata; + + constructor(fn: (...args: any[]) => any, metadata: Metadata) { + this._fn = fn; + this._metadata = metadata as ToolMetadata; + } + + static fromDefaults<T = any>( + fn: (...args: any[]) => any, + metadata?: Metadata, + ): FunctionTool<T> { + return new FunctionTool(fn, metadata!); + } + + get metadata(): ToolMetadata { + return this._metadata; + } + + async call(...args: any[]): Promise<any> { + return this._fn(...args); + } +} diff --git a/packages/core/src/tools/index.ts b/packages/core/src/tools/index.ts new file mode 100644 index 0000000000000000000000000000000000000000..2c87cd60ed0fcfb23760ffa446e4ee0a59ddad35 --- /dev/null +++ b/packages/core/src/tools/index.ts @@ -0,0 +1,2 @@ +export * from "./functionTool"; +export * from "./types"; diff --git a/packages/core/src/tools/types.ts b/packages/core/src/tools/types.ts new file mode 100644 index 0000000000000000000000000000000000000000..f98f14f7275c3b2f69ef0aafc438aa3eb0167e6d --- /dev/null +++ b/packages/core/src/tools/types.ts @@ -0,0 +1,22 @@ +export class ToolOutput { + content: string; + toolName: string; + rawInput: any; + rawOutput: any; + + constructor( + content: string, + toolName: string, + rawInput: any, + rawOutput: any, + ) { + this.content = content; + this.toolName = toolName; + this.rawInput = rawInput; + this.rawOutput = rawOutput; + } + + toString(): string { + return this.content; + } +} diff --git a/packages/core/src/tools/utils.ts b/packages/core/src/tools/utils.ts new file mode 100644 index 0000000000000000000000000000000000000000..8bb8e76176505cff3c63c91b6b9581282b9c8552 --- /dev/null +++ b/packages/core/src/tools/utils.ts @@ -0,0 +1,33 @@ +import { BaseTool } from "../types"; +import { ToolOutput } from "./types"; + +/** + * Call tool with error handling. + * @param tool: tool + * @param inputDict: input dict + * @param errorMessage: error message + * @param raiseError: raise error + * @returns: tool output + */ +export async function callToolWithErrorHandling( + tool: BaseTool, + inputDict: { [key: string]: any }, + errorMessage: string | null = null, + raiseError: boolean = false, +): Promise<ToolOutput> { + try { + const value = await tool.call?.(inputDict); + return new ToolOutput(value, tool.metadata.name, inputDict, value); + } catch (e) { + if (raiseError) { + throw e; + } + errorMessage = errorMessage || `Error: ${e}`; + return new ToolOutput( + errorMessage, + tool.metadata.name, + { kwargs: inputDict }, + e, + ); + } +} diff --git a/packages/core/src/types.ts b/packages/core/src/types.ts index 3f8074980fbeef55fd7c964d78266529b5a7c89b..61dee2fb5cbedf34f85968b6894965bff8a25aec 100644 --- a/packages/core/src/types.ts +++ b/packages/core/src/types.ts @@ -1,7 +1,6 @@ /** * Top level types to avoid circular dependencies */ - import { Event } from "./callbacks/CallbackManager"; import { Response } from "./Response"; @@ -37,6 +36,7 @@ export interface BaseQueryEngine { * Simple Tool interface. Likely to change. */ export interface BaseTool { + call?: (...args: any[]) => any; metadata: ToolMetadata; } @@ -64,9 +64,17 @@ export interface StructuredOutput<T> { parsedOutput: T; } +export type ToolParameters = { + type: string | "object"; + properties: Record<string, { type: string; description?: string }>; + required?: string[]; +}; + export interface ToolMetadata { description: string; name: string; + parameters?: ToolParameters; + argsKwargs?: Record<string, any>; } export type ToolMetadataOnlyDescription = Pick<ToolMetadata, "description">; diff --git a/pnpm-lock.yaml b/pnpm-lock.yaml index c05fe2b3587c7fec1112e8daaf69779a7cfb34c2..88213f2c41282c89fd5dbd61b6a5fa99da42b1d6 100644 --- a/pnpm-lock.yaml +++ b/pnpm-lock.yaml @@ -599,7 +599,7 @@ packages: resolution: {integrity: sha512-qrSfCYxYQB5owCmGLbl8XRpX1ytXlpueOb0N0UmQwA073KZxejgQTzAmJezxvpwQD9uGtK2shHdi55QT+MbjIw==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 '@jridgewell/gen-mapping': 0.3.3 '@jridgewell/trace-mapping': 0.3.22 jsesc: 2.5.2 @@ -608,13 +608,13 @@ packages: resolution: {integrity: sha512-LvBTxu8bQSQkcyKOU+a1btnNFQ1dMAd0R6PyW3arXes06F6QLWLIrd681bxRPIXlrMGR3XYnW9JyML7dP3qgxg==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-builder-binary-assignment-operator-visitor@7.22.15: resolution: {integrity: sha512-QkBXwGgaoC2GtGZRoma6kv7Szfv06khvhFav67ZExau2RaXzy8MpHSMO2PNoP2XtmQphJQRHFfg77Bq731Yizw==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-compilation-targets@7.23.6: resolution: {integrity: sha512-9JB548GZoQVmzrFgp8o7KxdgkTGm6xs9DW0o/Pim72UDjzr5ObUQ6ZzYPqA+g9OTS2bBQoctLJrky0RDCAWRgQ==} @@ -677,25 +677,25 @@ packages: engines: {node: '>=6.9.0'} dependencies: '@babel/template': 7.23.9 - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-hoist-variables@7.22.5: resolution: {integrity: sha512-wGjk9QZVzvknA6yKIUURb8zY3grXCcOZt+/7Wcy8O2uctxhplmUPkOdlgoNhmdVee2c92JXbf1xpMtVNbfoxRw==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-member-expression-to-functions@7.23.0: resolution: {integrity: sha512-6gfrPwh7OuT6gZyJZvd6WbTfrqAo7vm4xCzAXOusKqq/vWdKXphTpj5klHKNmRUU6/QRGlBsyU9mAIPaWHlqJA==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-module-imports@7.22.15: resolution: {integrity: sha512-0pYVBnDKZO2fnSPCrgM/6WMc7eS20Fbok+0r88fp+YtWVLZrp4CkafFGIp+W0VKw4a22sgebPT99y+FDNMdP4w==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-module-transforms@7.23.3(@babel/core@7.23.9): resolution: {integrity: sha512-7bBs4ED9OmswdfDzpz4MpWgSrV7FXlc3zIagvLFjS5H+Mk7Snr21vQ6QwrsoCGMfNC4e4LQPdoULEt4ykz0SRQ==} @@ -714,7 +714,7 @@ packages: resolution: {integrity: sha512-HBwaojN0xFRx4yIvpwGqxiV2tUfl7401jlok564NgB9EHS1y6QT17FmKWm4ztqjeVdXLuC4fSvHc5ePpQjoTbw==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-plugin-utils@7.22.5: resolution: {integrity: sha512-uLls06UVKgFG9QD4OeFYLEGteMIAa5kpTPcFL28yuCIIzsf6ZyKZMllKVOCZFhiZ5ptnwX4mtKdWCBE/uT4amg==} @@ -752,13 +752,13 @@ packages: resolution: {integrity: sha512-tK14r66JZKiC43p8Ki33yLBVJKlQDFoA8GYN67lWCDCqoL6EMMSuM9b+Iff2jHaM/RRFYl7K+iiru7hbRqNx8Q==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-split-export-declaration@7.22.6: resolution: {integrity: sha512-AsUnxuLhRYsisFiaJwvp1QF+I3KjD5FOxut14q/GzovUe6orHLesW2C7d754kRm53h5gqrz6sFl6sxc4BVtE/g==} engines: {node: '>=6.9.0'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helper-string-parser@7.23.4: resolution: {integrity: sha512-803gmbQdqwdf4olxrX4AJyFBV/RTr3rSmOj0rKwesmzlfhYNDEs+/iOcznzpNWlJlIlTJC2QfPFcHB6DlzdVLQ==} @@ -778,7 +778,7 @@ packages: dependencies: '@babel/helper-function-name': 7.23.0 '@babel/template': 7.23.9 - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/helpers@7.23.9: resolution: {integrity: sha512-87ICKgU5t5SzOT7sBMfCOZQ2rHjRU+Pcb9BoILMYz600W6DkVRLFBPwQ18gwUVvggqXivaUakpnxWQGbpywbBQ==} @@ -1447,7 +1447,7 @@ packages: '@babel/helper-module-imports': 7.22.15 '@babel/helper-plugin-utils': 7.22.5 '@babel/plugin-syntax-jsx': 7.23.3(@babel/core@7.23.9) - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 /@babel/plugin-transform-react-pure-annotations@7.23.3(@babel/core@7.23.9): resolution: {integrity: sha512-qMFdSS+TUhB7Q/3HVPnEdYJDQIk57jkntAwSuz9xfSE4n+3I+vHYCli3HoHawN1Z3RfCz/y1zXA/JXjG6cVImQ==} @@ -1688,7 +1688,7 @@ packages: dependencies: '@babel/core': 7.23.9 '@babel/helper-plugin-utils': 7.22.5 - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 esutils: 2.0.3 /@babel/preset-react@7.23.3(@babel/core@7.23.9): @@ -1753,7 +1753,7 @@ packages: '@babel/helper-hoist-variables': 7.22.5 '@babel/helper-split-export-declaration': 7.22.6 '@babel/parser': 7.23.9 - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 debug: 4.3.4 globals: 11.12.0 transitivePeerDependencies: @@ -1766,7 +1766,6 @@ packages: '@babel/helper-string-parser': 7.23.4 '@babel/helper-validator-identifier': 7.22.20 to-fast-properties: 2.0.0 - dev: true /@babel/types@7.23.9: resolution: {integrity: sha512-dQjSq/7HaSjRM43FFGnv5keM2HsxpmyV1PfaSVm0nzzjwwTmjOe6J4bC8e3+pTEIgHaHj+1ZlLThRJ2auc/w1Q==} @@ -2931,11 +2930,11 @@ packages: engines: {node: '>=18'} dev: false - /@humanwhocodes/config-array@0.11.14: - resolution: {integrity: sha512-3T8LkOmg45BV5FICb15QQMsyUSWrQ8AygVfC7ZG32zOalnqrilm018ZVCw0eapXux8FtA33q8PSRSstjee3jSg==} + /@humanwhocodes/config-array@0.11.13: + resolution: {integrity: sha512-JSBDMiDKSzQVngfRjOdFXgFfklaXI4K9nLF49Auh21lmBWRLIK3+xTErTWD4KU54pb6coM6ESE7Awz/FNU3zgQ==} engines: {node: '>=10.10.0'} dependencies: - '@humanwhocodes/object-schema': 2.0.2 + '@humanwhocodes/object-schema': 2.0.1 debug: 4.3.4 minimatch: 3.1.2 transitivePeerDependencies: @@ -2945,8 +2944,8 @@ packages: resolution: {integrity: sha512-bxveV4V8v5Yb4ncFTT3rPSgZBOpCkjfK0y4oVVVJwIuDVBRMDXrPyXRL988i5ap9m9bnyEEjWfm5WkBmtffLfA==} engines: {node: '>=12.22'} - /@humanwhocodes/object-schema@2.0.2: - resolution: {integrity: sha512-6EwiSjwWYP7pTckG6I5eyFANjPhmPjUX9JRLUSfNPC7FX7zK9gyZAfUEaECL6ALTpGX5AjnBq3C9XmVWPitNpw==} + /@humanwhocodes/object-schema@2.0.1: + resolution: {integrity: sha512-dvuCeX5fC9dXgJn9t+X5atfmgQAzUOWqS1254Gh0m6i8wKd10ebXkfNKiRK+1GWi/yTvvLDHpoxLr0xxxeslWw==} /@isaacs/cliui@8.0.2: resolution: {integrity: sha512-O8jcjabXaleOG9DQ0+ARXWZBTfnP4WNAqzuiJK7ll44AmxGKv/J2M4TPjxjY3znBCfvBXFzucm1twdyFybFqEA==} @@ -3774,8 +3773,8 @@ packages: resolution: {integrity: sha512-TV7t8GKYaJWsn00tFDqBw8+Uqmr8A0fRU1tvTQhyZzGv0sJCGRQL3JGMI3ucuKo3XIZdUP+Lx7/gh2t3lewy7g==} engines: {node: '>=14.16'} - /@sinonjs/commons@3.0.1: - resolution: {integrity: sha512-K3mCHKQ9sVh8o1C9cxkwxaOmXoAMlDxC1mYyHrjqOWEcBjYr76t96zL2zlj5dUGZ3HSw240X1qgH3Mjf1yJWpQ==} + /@sinonjs/commons@3.0.0: + resolution: {integrity: sha512-jXBtWAF4vmdNmZgD5FoKsVLv3rPgDnLgPbU84LIJ3otV44vJlDRokVng5v8NFJdCf/da9legHcKaRuZs4L7faA==} dependencies: type-detect: 4.0.8 dev: true @@ -3783,7 +3782,7 @@ packages: /@sinonjs/fake-timers@10.3.0: resolution: {integrity: sha512-V4BG07kuYSUkTCSBHG8G8TNhM+F19jXFWnQtzj+we8DrkpSBCee9Z3Ms8yiGer/dlmhe35/Xdgyo3/0rQKg7YA==} dependencies: - '@sinonjs/commons': 3.0.1 + '@sinonjs/commons': 3.0.0 dev: true /@slorber/remark-comment@1.0.0: @@ -3927,7 +3926,7 @@ packages: resolution: {integrity: sha512-1hnUxxjd83EAxbL4a0JDJoD3Dao3hmjvyvyEV8PzWmLK3B9m9NPlW7GKjFyoWE8nM7HnXzPcmmSyOW8yOddSXw==} engines: {node: '>=10'} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 entities: 4.5.0 /@svgr/plugin-jsx@6.5.1(@svgr/core@6.5.1): @@ -4181,7 +4180,7 @@ packages: chalk: 2.4.2 commander: 10.0.1 execa: 5.1.1 - fast-glob: 3.3.2 + fast-glob: 3.3.1 fs-extra: 10.1.0 gradient-string: 2.0.2 inquirer: 8.2.6 @@ -4207,7 +4206,7 @@ packages: resolution: {integrity: sha512-qoQprZvz5wQFJwMDqeseRXWv3rqMvhgpbXFfVyWhbx9X47POIA6i/+dXefEmZKoAgOaTdaIgNSMqMIU61yRyzA==} dependencies: '@babel/parser': 7.23.9 - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 '@types/babel__generator': 7.6.8 '@types/babel__template': 7.4.4 '@types/babel__traverse': 7.20.5 @@ -4216,20 +4215,20 @@ packages: /@types/babel__generator@7.6.8: resolution: {integrity: sha512-ASsj+tpEDsEiFr1arWrlN6V3mdfjRMZt6LtK/Vp/kreFLnr5QH5+DhvD5nINYZXzwJvXeGq+05iUXcAzVrqWtw==} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 dev: true /@types/babel__template@7.4.4: resolution: {integrity: sha512-h/NUaSyG5EyxBIp8YRxo4RMe2/qQgvyowRwVMzhYhBCONbW8PUsg4lkFMrhgZhUe5z3L3MiLDuvyJ/CaPa2A8A==} dependencies: '@babel/parser': 7.23.9 - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 dev: true /@types/babel__traverse@7.20.5: resolution: {integrity: sha512-WXCyOcRtH37HAUkpXhUduaxdm82b4GSlyTqajXviN4EfiuPgNYR109xMCKvpl6zPIpua0DGlMEDCq+g8EdoheQ==} dependencies: - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 dev: true /@types/body-parser@1.19.5: @@ -5440,7 +5439,7 @@ packages: engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} dependencies: '@babel/template': 7.23.9 - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 '@types/babel__core': 7.20.5 '@types/babel__traverse': 7.20.5 dev: true @@ -6071,7 +6070,7 @@ packages: engines: {node: '>=18'} dependencies: slice-ansi: 5.0.0 - string-width: 7.1.0 + string-width: 7.0.0 dev: true /cli-width@3.0.0: @@ -6131,7 +6130,7 @@ packages: resolution: {integrity: sha512-jsayHP4Z1gKjXB+NsFhEKrM2dAN4XCpbHbhwzzYfFrVL/DYPw9D/ACob6EjbIiV47PSe3OcxJqX/b1V/T7XK3A==} engines: {node: '>=14.18.0'} dependencies: - rfdc: 1.3.1 + rfdc: 1.3.0 dev: false /collapse-white-space@2.1.0: @@ -6217,10 +6216,10 @@ packages: /commander@2.20.0: resolution: {integrity: sha512-7j2y+40w61zy6YC2iRNpUe/NwhNyoXrYpHMrSunaMG64nRnaf96zO/KMQR4OyN/UnE5KLyEBnKHd4aG3rskjpQ==} - dev: true /commander@2.20.3: resolution: {integrity: sha512-GpVkmM8vF2vQUkj2LvZmD35JxeJOLCwJ9cUkugyk2nuhbv3+mJvpLYYt+0+USMxE+oj+ey/lJEnhZw75x/OMcQ==} + dev: true /commander@5.1.0: resolution: {integrity: sha512-P0CysNDQ7rtVw4QIQtm+MRxV66vKFSvlsQvGYXZWR3qFU0jlMKHZZZgw8e+8DSah4UDKMqnknRDQz+xuQXQ/Zg==} @@ -7399,8 +7398,8 @@ packages: object-keys: 1.1.1 object.assign: 4.1.5 regexp.prototype.flags: 1.5.1 - safe-array-concat: 1.1.0 - safe-regex-test: 1.0.2 + safe-array-concat: 1.0.1 + safe-regex-test: 1.0.0 string.prototype.trim: 1.2.8 string.prototype.trimend: 1.0.7 string.prototype.trimstart: 1.0.7 @@ -7427,7 +7426,7 @@ packages: has-symbols: 1.0.3 internal-slot: 1.0.6 iterator.prototype: 1.1.2 - safe-array-concat: 1.1.0 + safe-array-concat: 1.0.1 dev: false /es-module-lexer@1.4.1: @@ -7773,7 +7772,7 @@ packages: '@eslint-community/regexpp': 4.10.0 '@eslint/eslintrc': 2.1.4 '@eslint/js': 8.56.0 - '@humanwhocodes/config-array': 0.11.14 + '@humanwhocodes/config-array': 0.11.13 '@humanwhocodes/module-importer': 1.0.1 '@nodelib/fs.walk': 1.2.8 '@ungap/structured-clone': 1.2.0 @@ -8681,7 +8680,7 @@ packages: '@types/glob': 7.2.0 array-union: 2.1.0 dir-glob: 3.0.1 - fast-glob: 3.3.2 + fast-glob: 3.3.1 glob: 7.2.3 ignore: 5.3.0 merge2: 1.4.1 @@ -10215,7 +10214,7 @@ packages: '@babel/generator': 7.23.6 '@babel/plugin-syntax-jsx': 7.23.3(@babel/core@7.23.9) '@babel/plugin-syntax-typescript': 7.23.3(@babel/core@7.23.9) - '@babel/types': 7.23.9 + '@babel/types': 7.23.6 '@jest/expect-utils': 29.7.0 '@jest/transform': 29.7.0 '@jest/types': 29.6.3 @@ -10535,7 +10534,7 @@ packages: colorette: 2.0.20 eventemitter3: 5.0.1 log-update: 6.0.0 - rfdc: 1.3.1 + rfdc: 1.3.0 wrap-ansi: 9.0.0 dev: true @@ -11616,7 +11615,7 @@ packages: engines: {node: '>=10.13.0'} hasBin: true dependencies: - commander: 2.20.3 + commander: 2.20.0 debug: 4.3.4 glob: 7.2.3 requirejs: 2.3.6 @@ -14050,8 +14049,8 @@ packages: resolution: {integrity: sha512-U9nH88a3fc/ekCF1l0/UP1IosiuIjyTh7hBvXVMHYgVcfGvt897Xguj2UOLDeI5BG2m7/uwyaLVT6fbtCwTyzw==} engines: {iojs: '>=1.0.0', node: '>=0.10.0'} - /rfdc@1.3.1: - resolution: {integrity: sha512-r5a3l5HzYlIC68TpmYKlxWjmOP6wiPJ1vWv2HeLhNsRZMrCkxeqxiHlQ21oXmQ4F3SiryXBHhAD7JZqvOJjFmg==} + /rfdc@1.3.0: + resolution: {integrity: sha512-V2hovdzFbOi77/WajaSMXk2OLm+xNIeQdMMuB7icj7bk6zi2F8GGAxigcnDFpJHbNyNcgyJDiP+8nOrY5cZGrA==} /rimraf@3.0.2: resolution: {integrity: sha512-JZkJMZkAGFFPP2YqXZXPbMlMBgsxzE8ILs4lMIX/2o0L9UBw9O/Y3o6wFw/i9YLapcUJWwqbi3kdxIPdC62TIA==} @@ -14165,8 +14164,8 @@ packages: tslib: 2.6.2 dev: true - /safe-array-concat@1.1.0: - resolution: {integrity: sha512-ZdQ0Jeb9Ofti4hbt5lX3T2JcAamT9hfzYU1MNB+z/jaEbB6wfFfPIR/zEORmZqobkCCJhSjodobH6WHNmJ97dg==} + /safe-array-concat@1.0.1: + resolution: {integrity: sha512-6XbUAseYE2KtOuGueyeobCySj9L4+66Tn6KQMOPQJrAJEowYKW/YR/MGJZl7FdydUdaFu4LYyDZjxf4/Nmo23Q==} engines: {node: '>=0.4'} dependencies: call-bind: 1.0.5 @@ -14182,15 +14181,6 @@ packages: /safe-regex-test@1.0.0: resolution: {integrity: sha512-JBUUzyOgEwXQY1NuPtvcj/qcBDbDmEvWufhlnXZIm75DEHp+afM1r1ujJpJsV/gSM4t59tpDyPi1sd6ZaPFfsA==} - dependencies: - call-bind: 1.0.2 - get-intrinsic: 1.2.0 - is-regex: 1.1.4 - dev: false - - /safe-regex-test@1.0.2: - resolution: {integrity: sha512-83S9w6eFq12BBIJYvjMux6/dkirb8+4zJRA9cxNBVb7Wq5fJBW+Xze48WqR8pxua7bDuAaaAxtVVd4Idjp1dBQ==} - engines: {node: '>= 0.4'} dependencies: call-bind: 1.0.5 get-intrinsic: 1.2.2 @@ -14209,7 +14199,7 @@ packages: engines: {node: '>=6.0.0'} hasBin: true dependencies: - commander: 2.20.3 + commander: 2.20.0 dev: true /sax@1.3.0: @@ -14661,14 +14651,14 @@ packages: spdx-license-ids: 3.0.16 dev: true - /spdx-exceptions@2.4.0: - resolution: {integrity: sha512-hcjppoJ68fhxA/cjbN4T8N6uCUejN8yFw69ttpqtBeCbF3u13n7mb31NB9jKwGTTWWnt9IbRA/mf1FprYS8wfw==} + /spdx-exceptions@2.3.0: + resolution: {integrity: sha512-/tTrYOC7PPI1nUAgx34hUpqXuyJG+DTHJTnIULG4rDygi4xu/tfgmq1e1cIRwRzwZgo4NLySi+ricLkZkw4i5A==} dev: true /spdx-expression-parse@3.0.1: resolution: {integrity: sha512-cbqHunsQWnJNE6KhVSMsMeH5H/L9EpymbzqTQ3uLwNCLZ1Q481oWaofqH7nO6V07xlXwY6PhQdQ2IedWx/ZK4Q==} dependencies: - spdx-exceptions: 2.4.0 + spdx-exceptions: 2.3.0 spdx-license-ids: 3.0.16 dev: true @@ -14756,8 +14746,8 @@ packages: engines: {node: '>=10.0.0'} dev: true - /streamx@2.15.6: - resolution: {integrity: sha512-q+vQL4AAz+FdfT137VF69Cc/APqUbxy+MDOImRrMvchJpigHj9GksgDU2LYbO9rx7RX6osWgxJB2WxhYv4SZAw==} + /streamx@2.15.5: + resolution: {integrity: sha512-9thPGMkKC2GctCzyCUjME3yR03x2xNo0GPKGkRw2UMYN+gqWa9uqpyNWhmsNCutU5zHmkUum0LsCRQTXUgUCAg==} dependencies: fast-fifo: 1.3.2 queue-tick: 1.0.1 @@ -14778,7 +14768,7 @@ packages: engines: {node: '>=14.18.0'} dependencies: codsen-utils: 1.6.3 - rfdc: 1.3.1 + rfdc: 1.3.0 dev: false /string-length@4.0.2: @@ -14823,8 +14813,8 @@ packages: emoji-regex: 9.2.2 strip-ansi: 7.1.0 - /string-width@7.1.0: - resolution: {integrity: sha512-SEIJCWiX7Kg4c129n48aDRwLbFb2LJmXXFrWBG4NGaRtMQ3myKPKbwrD1BKqQn74oCoNMBVrfDEr5M9YxCsrkw==} + /string-width@7.0.0: + resolution: {integrity: sha512-GPQHj7row82Hjo9hKZieKcHIhaAIKOJvFSIZXuCU9OASVZrMNUaZuz++SPVrBjnLsnk4k+z9f2EIypgxf2vNFw==} engines: {node: '>=18'} dependencies: emoji-regex: 10.3.0 @@ -15030,7 +15020,7 @@ packages: engines: {node: '>=6.0.0'} hasBin: true dependencies: - commander: 2.20.3 + commander: 2.20.0 debug: 4.3.4 transitivePeerDependencies: - supports-color @@ -15130,7 +15120,7 @@ packages: dependencies: b4a: 1.6.4 fast-fifo: 1.3.2 - streamx: 2.15.6 + streamx: 2.15.5 dev: false /tar@6.1.15: @@ -15212,7 +15202,7 @@ packages: dependencies: '@jridgewell/source-map': 0.3.5 acorn: 8.11.3 - commander: 2.20.3 + commander: 2.20.0 source-map-support: 0.5.21 /test-exclude@6.0.0: @@ -15729,7 +15719,7 @@ packages: /unbox-primitive@1.0.2: resolution: {integrity: sha512-61pPlCD9h51VoreyJ0BReideM3MDKMKnh6+V9L08331ipq6Q8OFXZYiqP6n/tbHx4s5I9uRhcye6BrbkizkBDw==} dependencies: - call-bind: 1.0.5 + call-bind: 1.0.2 has-bigints: 1.0.2 has-symbols: 1.0.3 which-boxed-primitive: 1.0.2 @@ -16437,7 +16427,7 @@ packages: engines: {node: '>=18'} dependencies: ansi-styles: 6.2.1 - string-width: 7.1.0 + string-width: 7.0.0 strip-ansi: 7.1.0 dev: true