From 2ef62a93bb8316b837d744a7895d3bb5df5171ef Mon Sep 17 00:00:00 2001 From: Tasmiyah Iqbal <tasmay@users.noreply.github.com> Date: Tue, 25 Jun 2024 14:16:41 -0400 Subject: [PATCH] feat: added support for embeddings via HuggingFace Inference API (#929) --- .changeset/funny-pugs-hide.md | 6 +++ examples/huggingface/embeddingApi.ts | 51 ++++++++++++++++++ .../src/embeddings/HuggingFaceEmbedding.ts | 53 +++++++++++++++++++ packages/llamaindex/src/embeddings/index.ts | 1 + 4 files changed, 111 insertions(+) create mode 100644 .changeset/funny-pugs-hide.md create mode 100644 examples/huggingface/embeddingApi.ts diff --git a/.changeset/funny-pugs-hide.md b/.changeset/funny-pugs-hide.md new file mode 100644 index 000000000..992e553a3 --- /dev/null +++ b/.changeset/funny-pugs-hide.md @@ -0,0 +1,6 @@ +--- +"llamaindex": patch +"@llamaindex/examples": patch +--- + +feat: added support for embeddings via HuggingFace Inference API diff --git a/examples/huggingface/embeddingApi.ts b/examples/huggingface/embeddingApi.ts new file mode 100644 index 000000000..a89df2703 --- /dev/null +++ b/examples/huggingface/embeddingApi.ts @@ -0,0 +1,51 @@ +import fs from "node:fs/promises"; + +import { + Document, + HuggingFaceInferenceAPI, + HuggingFaceInferenceAPIEmbedding, + Settings, + VectorStoreIndex, +} from "llamaindex"; + +if (!process.env.HUGGING_FACE_TOKEN) { + throw new Error("Please set the HUGGING_FACE_TOKEN environment variable."); +} + +// Update embed model with HuggingFaceAPIEmbedding +Settings.embedModel = new HuggingFaceInferenceAPIEmbedding({ + model: "mixedbread-ai/mxbai-embed-large-v1", + accessToken: process.env.HUGGING_FACE_TOKEN, +}); +// Omit this if you want to use OpenAI LLM as default otherwise set to your preferred LLM +Settings.llm = new HuggingFaceInferenceAPI({ + model: "meta-llama/Meta-Llama-3-8B-Instruct", + accessToken: process.env.HUGGING_FACE_TOKEN, +}); + +async function main() { + // Load essay from abramov.txt in Node + const path = "node_modules/llamaindex/examples/abramov.txt"; + + const essay = await fs.readFile(path, "utf-8"); + + // Create Document object with essay + const document = new Document({ text: essay, id_: path }); + + // Split text and create embeddings. Store them in a VectorStoreIndex + const index = await VectorStoreIndex.fromDocuments([document]); + + // Query the index + const queryEngine = index.asQueryEngine(); + const stream = await queryEngine.query({ + query: "What did the author do in college?", + stream: true, + }); + + // Output response + for await (const chunk of stream) { + process.stdout.write(chunk.response); + } +} + +main().catch(console.error); diff --git a/packages/llamaindex/src/embeddings/HuggingFaceEmbedding.ts b/packages/llamaindex/src/embeddings/HuggingFaceEmbedding.ts index dce8b0208..59771d3d3 100644 --- a/packages/llamaindex/src/embeddings/HuggingFaceEmbedding.ts +++ b/packages/llamaindex/src/embeddings/HuggingFaceEmbedding.ts @@ -1,3 +1,4 @@ +import { HfInference } from "@huggingface/inference"; import { lazyLoadTransformers } from "../internal/deps/transformers.js"; import { BaseEmbedding } from "./types.js"; @@ -46,3 +47,55 @@ export class HuggingFaceEmbedding extends BaseEmbedding { return Array.from(output.data); } } + +// Workaround to get the Options type from @huggingface/inference@2.7.0 +type HfInferenceOptions = ConstructorParameters<typeof HfInference>[1]; + +export type HFConfig = HfInferenceOptions & { + model: string; + accessToken: string; + endpoint?: string; +}; + +/** + * Uses feature extraction from Hugging Face's Inference API to generate embeddings. + * + * Set the `model` and `accessToken` parameter in the constructor, e.g.: + * ``` + * new HuggingFaceInferenceAPIEmbedding({ + * model: HuggingFaceEmbeddingModelType.XENOVA_ALL_MPNET_BASE_V2, + * accessToken: "<your-access-token>" + * }); + * ``` + * + * @extends BaseEmbedding + */ +export class HuggingFaceInferenceAPIEmbedding extends BaseEmbedding { + model: string; + hf: HfInference; + + constructor(init: HFConfig) { + super(); + const { model, accessToken, endpoint, ...hfInferenceOpts } = init; + + this.hf = new HfInference(accessToken, hfInferenceOpts); + this.model = model; + if (endpoint) this.hf.endpoint(endpoint); + } + + async getTextEmbedding(text: string): Promise<number[]> { + const res = await this.hf.featureExtraction({ + model: this.model, + inputs: text, + }); + return res as number[]; + } + + async getTextEmbeddings(texts: string[]): Promise<Array<number[]>> { + const res = await this.hf.featureExtraction({ + model: this.model, + inputs: texts, + }); + return res as number[][]; + } +} diff --git a/packages/llamaindex/src/embeddings/index.ts b/packages/llamaindex/src/embeddings/index.ts index 012ce5307..59ffb661d 100644 --- a/packages/llamaindex/src/embeddings/index.ts +++ b/packages/llamaindex/src/embeddings/index.ts @@ -1,6 +1,7 @@ export { DeepInfraEmbedding } from "./DeepInfraEmbedding.js"; export { FireworksEmbedding } from "./fireworks.js"; export * from "./GeminiEmbedding.js"; +export { HuggingFaceInferenceAPIEmbedding } from "./HuggingFaceEmbedding.js"; export * from "./JinaAIEmbedding.js"; export * from "./MistralAIEmbedding.js"; export * from "./MultiModalEmbedding.js"; -- GitLab