diff --git a/apps/docs/docs/introduction.md b/apps/docs/docs/introduction.md index 197604b08e73ef9cc59abf13d1b92f35ff9d6a28..46460100ded3ee32f8b4fb1830a6b85b49985404 100644 --- a/apps/docs/docs/introduction.md +++ b/apps/docs/docs/introduction.md @@ -21,7 +21,7 @@ LlamaIndex.TS handles several major use cases: - **Structured Data Extraction**: turning complex, unstructured and semi-structured data into uniform, programmatically accessible formats. - **Retrieval-Augmented Generation (RAG)**: answering queries across your internal data by providing LLMs with up-to-date, semantically relevant context including Question and Answer systems and chat bots. -- **Autonomous Agents**: building software that is capable of intelligently selecting and using tools to accomplish tasks in an interative, unsupervised manner. +- **Autonomous Agents**: building software that is capable of intelligently selecting and using tools to accomplish tasks in an interactive, unsupervised manner. ## ๐จโ๐ฉโ๐งโ๐ฆ Who is LlamaIndex for? diff --git a/apps/docs/docs/modules/chat_engine.md b/apps/docs/docs/modules/chat_engine.md index b118f95c4413f0bcf0bb0ab360f67b31c9e7d4e1..0b1eec4285d571586711242b8c6106a7ef3c5096 100644 --- a/apps/docs/docs/modules/chat_engine.md +++ b/apps/docs/docs/modules/chat_engine.md @@ -27,3 +27,4 @@ for await (const chunk of stream) { - [ContextChatEngine](../api/classes/ContextChatEngine.md) - [CondenseQuestionChatEngine](../api/classes/ContextChatEngine.md) +- [SimpleChatEngine](../api/classes/SimpleChatEngine.md) diff --git a/apps/docs/docs/modules/data_index.md b/apps/docs/docs/modules/data_index.md index 61212ebbc11c06f8c218997dc0e220a75b42bdb3..3e62824284a7bc7323a9cb670e2b0fc4bd49cff4 100644 --- a/apps/docs/docs/modules/data_index.md +++ b/apps/docs/docs/modules/data_index.md @@ -21,3 +21,4 @@ const index = await VectorStoreIndex.fromDocuments([document]); - [SummaryIndex](../api/classes/SummaryIndex.md) - [VectorStoreIndex](../api/classes/VectorStoreIndex.md) +- [KeywordTableIndex](../api/classes/KeywordTableIndex.md) diff --git a/apps/docs/docs/modules/embeddings/available_embeddings/mixedbreadai.md b/apps/docs/docs/modules/embeddings/available_embeddings/mixedbreadai.md index 70f723301d3fc2d245051bf8c1043e999788a545..1193ddc86031890c203af62e999c006fe13fe910 100644 --- a/apps/docs/docs/modules/embeddings/available_embeddings/mixedbreadai.md +++ b/apps/docs/docs/modules/embeddings/available_embeddings/mixedbreadai.md @@ -98,3 +98,7 @@ Use the `embedDocuments` method to generate embeddings for the texts. const result = await embeddings.embedDocuments(texts); console.log(result); // Perfectly customized embeddings, ready to serve. ``` + +## API Reference + +- [MixedbreadAIEmbeddings](../../../api/classes/MixedbreadAIEmbeddings.md) diff --git a/apps/docs/docs/modules/evaluation/index.md b/apps/docs/docs/modules/evaluation/index.md index db2f0d3553f3fdd97e666828fe51006fad7b2776..183cb4180523cd48cbb922abc821249c15a665e6 100644 --- a/apps/docs/docs/modules/evaluation/index.md +++ b/apps/docs/docs/modules/evaluation/index.md @@ -2,7 +2,7 @@ ## Concept -Evaluation and benchmarking are crucial concepts in LLM development. To improve the perfomance of an LLM app (RAG, agents) you must have a way to measure it. +Evaluation and benchmarking are crucial concepts in LLM development. To improve the performance of an LLM app (RAG, agents) you must have a way to measure it. LlamaIndex offers key modules to measure the quality of generated results. We also offer key modules to measure retrieval quality. diff --git a/apps/docs/docs/modules/ingestion_pipeline/transformations.md b/apps/docs/docs/modules/ingestion_pipeline/transformations.md index 8cc35c54a137e522db43e82ae3a3669c0082cf2e..4b6720edb65c93a9d86ceb5a7e848ea562ebfa92 100644 --- a/apps/docs/docs/modules/ingestion_pipeline/transformations.md +++ b/apps/docs/docs/modules/ingestion_pipeline/transformations.md @@ -36,7 +36,7 @@ main().catch(console.error); You can implement any transformation yourself by implementing the `TransformComponent`. -The following custom transformation will remove any special characters or punctutation in text. +The following custom transformation will remove any special characters or punctuation in text. ```ts import { TransformComponent, TextNode } from "llamaindex"; @@ -75,3 +75,7 @@ async function main() { main().catch(console.error); ``` + +## API Reference + +- [TransformComponent](../../api/classes/TransformComponent.md) diff --git a/apps/docs/docs/modules/llms/available_llms/deepseek.md b/apps/docs/docs/modules/llms/available_llms/deepseek.md index 83c0c0cfe32c9af7a41bb0c6030773f3201ef136..a57d10e9120b086717faba97a7d01a66954f961e 100644 --- a/apps/docs/docs/modules/llms/available_llms/deepseek.md +++ b/apps/docs/docs/modules/llms/available_llms/deepseek.md @@ -1,5 +1,7 @@ # DeepSeek LLM +[DeepSeek Platform](https://platform.deepseek.com/) + ## Usage ```ts @@ -45,6 +47,6 @@ Currently does not support function calling. [Currently does not support json-output param while still is very good at json generating.](https://platform.deepseek.com/api-docs/faq#does-your-api-support-json-output) -## API platform +## API Reference -- [DeepSeek platform](https://platform.deepseek.com/) +- [DeepSeekLLM](../../../api/classes/DeepSeekLLM.md) diff --git a/apps/docs/docs/modules/node_postprocessors/mixedbreadiai_reranker.md b/apps/docs/docs/modules/node_postprocessors/mixedbreadiai_reranker.md index de3ff410da2e8c8c8d8ba6e18a55545de452c5f6..09e789eaac59d9b93f1d2103202af4697ea8e3fc 100644 --- a/apps/docs/docs/modules/node_postprocessors/mixedbreadiai_reranker.md +++ b/apps/docs/docs/modules/node_postprocessors/mixedbreadiai_reranker.md @@ -163,3 +163,7 @@ Use the `rerank` method to reorder the documents based on the query. const result = await reranker.rerank(documents, query); console.log(result); // Perfectly customized results, ready to serve. ``` + +## API Reference + +- [MixedbreadAIReranker](../../api/classes/MixedbreadAIReranker.md) diff --git a/apps/docs/docs/modules/query_engines/index.md b/apps/docs/docs/modules/query_engines/index.md index acc5b81fcd31ccff18109dbdffa889a7fc5e20e4..f088e8866b0d753047ce865d8abacf1095f1fcbd 100644 --- a/apps/docs/docs/modules/query_engines/index.md +++ b/apps/docs/docs/modules/query_engines/index.md @@ -1,6 +1,6 @@ # QueryEngine -A query engine wraps a `Retriever` and a `ResponseSynthesizer` into a pipeline, that will use the query string to fetech nodes and then send them to the LLM to generate a response. +A query engine wraps a `Retriever` and a `ResponseSynthesizer` into a pipeline, that will use the query string to fetch nodes and then send them to the LLM to generate a response. ```typescript const queryEngine = index.asQueryEngine(); diff --git a/apps/docs/docs/modules/retriever.md b/apps/docs/docs/modules/retriever.md index a6e661b4579c362b0f3684c4309f8634699c342e..098fb5b0233683b46e72d40710cf30d02887af9d 100644 --- a/apps/docs/docs/modules/retriever.md +++ b/apps/docs/docs/modules/retriever.md @@ -4,7 +4,14 @@ sidebar_position: 5 # Retriever -A retriever in LlamaIndex is what is used to fetch `Node`s from an index using a query string. Aa `VectorIndexRetriever` will fetch the top-k most similar nodes. Meanwhile, a `SummaryIndexRetriever` will fetch all nodes no matter the query. +A retriever in LlamaIndex is what is used to fetch `Node`s from an index using a query string. + +- [VectorIndexRetriever](../api/classes/VectorIndexRetriever.md) will fetch the top-k most similar nodes. Ideal for dense retrieval to find most relevant nodes. +- [SummaryIndexRetriever](../api/classes/SummaryIndexRetriever.md) will fetch all nodes no matter the query. Ideal when complete context is necessary, e.g. analyzing large datasets. +- [SummaryIndexLLMRetriever](../api/classes/SummaryIndexLLMRetriever.md) utilizes an LLM to score and filter nodes based on relevancy to the query. +- [KeywordTableLLMRetriever](../api/classes/KeywordTableLLMRetriever.md) uses an LLM to extract keywords from the query and retrieve relevant nodes based on keyword matches. +- [KeywordTableSimpleRetriever](../api/classes/KeywordTableSimpleRetriever.md) uses a basic frequency-based approach to extract keywords and retrieve nodes. +- [KeywordTableRAKERetriever](../api/classes/KeywordTableRAKERetriever.md) uses the RAKE (Rapid Automatic Keyword Extraction) algorithm to extract keywords from the query, focusing on co-occurrence and context for keyword-based retrieval. ```typescript const retriever = vectorIndex.asRetriever({ @@ -14,9 +21,3 @@ const retriever = vectorIndex.asRetriever({ // Fetch nodes! const nodesWithScore = await retriever.retrieve({ query: "query string" }); ``` - -## API Reference - -- [SummaryIndexRetriever](../api/classes/SummaryIndexRetriever.md) -- [SummaryIndexLLMRetriever](../api/classes/SummaryIndexLLMRetriever.md) -- [VectorIndexRetriever](../api/classes/VectorIndexRetriever.md) diff --git a/packages/llamaindex/src/storage/vectorStore/MongoDBAtlasVectorStore.ts b/packages/llamaindex/src/storage/vectorStore/MongoDBAtlasVectorStore.ts index 059528960e0e8cda8c2b430f5ddae8899120ba67..66a4f7fa0b434c40ea4a92f30fd6468e382fd64d 100644 --- a/packages/llamaindex/src/storage/vectorStore/MongoDBAtlasVectorStore.ts +++ b/packages/llamaindex/src/storage/vectorStore/MongoDBAtlasVectorStore.ts @@ -129,9 +129,9 @@ export class MongoDBAtlasVectorSearch * Function to determine the number of candidates to retrieve for a given query. * In case your results are not good, you might tune this value. * - * {@link https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/|Run Vector Search Queries} + * {@link https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/ | Run Vector Search Queries} * - * {@link https://arxiv.org/abs/1603.09320|Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs} + * {@link https://arxiv.org/abs/1603.09320 | Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs} * * * Default: query.similarityTopK * 10