diff --git a/src/tests/datasets/test_custom_dataset.py b/src/tests/datasets/test_custom_dataset.py
index 7cf8abe3e553095459ce4d5797241d106f066ccb..af4243353b35bf9cda6344055d30afa97cc9c79e 100644
--- a/src/tests/datasets/test_custom_dataset.py
+++ b/src/tests/datasets/test_custom_dataset.py
@@ -37,7 +37,7 @@ def check_padded_entry(batch, tokenizer):
 @pytest.mark.skip_missing_tokenizer
 @patch('llama_recipes.finetuning.train')
 @patch('llama_recipes.finetuning.AutoTokenizer')
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_recipes.finetuning.AutoModel.from_pretrained')
 @patch('llama_recipes.finetuning.optim.AdamW')
 @patch('llama_recipes.finetuning.StepLR')
 def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
@@ -96,15 +96,17 @@ def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker,
 
 
 @patch('llama_recipes.finetuning.train')
-@patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
+@patch('llama_recipes.finetuning.AutoConfig.from_pretrained')
+@patch('llama_recipes.finetuning.AutoModel.from_pretrained')
 @patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')
 @patch('llama_recipes.finetuning.optim.AdamW')
 @patch('llama_recipes.finetuning.StepLR')
-def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker, llama_version):
+def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, get_config, train, mocker, llama_version):
     from llama_recipes.finetuning import main
 
     tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
+    get_config.return_value.model_type = "llama"
 
     kwargs = {
         "dataset": "custom_dataset",