From d2c51d8077af0cff7c48ef72731a1f895e981e20 Mon Sep 17 00:00:00 2001 From: Sanyam Bhutani <sanyambhutani@meta.com> Date: Thu, 9 Jan 2025 09:27:27 -0800 Subject: [PATCH] move readme --- README.md | 133 +++++--------------------------------------------- src/README.md | 118 +------------------------------------------- 2 files changed, 12 insertions(+), 239 deletions(-) diff --git a/README.md b/README.md index 459543d0..89a7e5cb 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# Llama Recipes: Examples to get started using the Llama models from Meta +# Llama Cookbook: The Official Guide to building with Llama Models <!-- markdown-link-check-disable --> > Note: We recently did a refactor of the repo, [archive-main](https://github.com/meta-llama/llama-recipes/tree/archive-main) is a snapshot branch from before the refactor @@ -45,132 +45,21 @@ A: We recently did a refactor of the repo, [archive-main](https://github.com/met A: Official [Llama models website](https://www.llama.com) -## Getting Started +## Contributing -These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system. +Please read [CONTRIBUTING.md](CONTRIBUTING.md) for details on our code of conduct, and the process for submitting pull requests to us. -### Prerequisites +## License +<!-- markdown-link-check-disable --> -#### PyTorch Nightlies -If you want to use PyTorch nightlies instead of the stable release, go to [this guide](https://pytorch.org/get-started/locally/) to retrieve the right `--extra-index-url URL` parameter for the `pip install` commands on your platform. +See the License file for Meta Llama 3.2 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/USE_POLICY.md) -### Installing -Llama-recipes provides a pip distribution for easy install and usage in other projects. Alternatively, it can be installed from source. +See the License file for Meta Llama 3.1 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) -> [!NOTE] -> Ensure you use the correct CUDA version (from `nvidia-smi`) when installing the PyTorch wheels. Here we are using 11.8 as `cu118`. -> H100 GPUs work better with CUDA >12.0 - -#### Install with pip -``` -pip install llama-recipes -``` - -#### Install with optional dependencies -Llama-recipes offers the installation of optional packages. There are three optional dependency groups. -To run the unit tests we can install the required dependencies with: -``` -pip install llama-recipes[tests] -``` -For the vLLM example we need additional requirements that can be installed with: -``` -pip install llama-recipes[vllm] -``` -To use the sensitive topics safety checker install with: -``` -pip install llama-recipes[auditnlg] -``` -Some recipes require the presence of langchain. To install the packages follow the recipe description or install with: -``` -pip install llama-recipes[langchain] -``` -Optional dependencies can also be combined with [option1,option2]. - -#### Install from source -To install from source e.g. for development use these commands. We're using hatchling as our build backend which requires an up-to-date pip as well as setuptools package. -``` -git clone git@github.com:meta-llama/llama-recipes.git -cd llama-recipes -pip install -U pip setuptools -pip install -e . -``` -For development and contributing to llama-recipes please install all optional dependencies: -``` -git clone git@github.com:meta-llama/llama-recipes.git -cd llama-recipes -pip install -U pip setuptools -pip install -e .[tests,auditnlg,vllm] -``` - - -### Getting the Llama models -You can find Llama models on Hugging Face hub [here](https://huggingface.co/meta-llama), **where models with `hf` in the name are already converted to Hugging Face checkpoints so no further conversion is needed**. The conversion step below is only for original model weights from Meta that are hosted on Hugging Face model hub as well. - -#### Model conversion to Hugging Face -If you have the model checkpoints downloaded from the Meta website, you can convert it to the Hugging Face format with: - -```bash -## Install Hugging Face Transformers from source -pip freeze | grep transformers ## verify it is version 4.45.0 or higher - -git clone git@github.com:huggingface/transformers.git -cd transformers -pip install protobuf -python src/transformers/models/llama/convert_llama_weights_to_hf.py \ - --input_dir /path/to/downloaded/llama/weights --model_size 3B --output_dir /output/path -``` - - - -## Repository Organization -Most of the code dealing with Llama usage is organized across 2 main folders: `recipes/` and `src/`. - -### `recipes/` - -Contains examples organized in folders by topic: -| Subfolder | Description | -|---|---| -[quickstart](./recipes/quickstart) | The "Hello World" of using Llama, start here if you are new to using Llama. -[use_cases](./recipes/use_cases)|Scripts showing common applications of Meta Llama3 -[3p_integrations](./recipes/3p_integrations)|Partner owned folder showing common applications of Meta Llama3 -[responsible_ai](./recipes/responsible_ai)|Scripts to use PurpleLlama for safeguarding model outputs -[experimental](./recipes/experimental)|Meta Llama implementations of experimental LLM techniques - -### `src/` - -Contains modules which support the example recipes: -| Subfolder | Description | -|---|---| -| [configs](src/llama_recipes/configs/) | Contains the configuration files for PEFT methods, FSDP, Datasets, Weights & Biases experiment tracking. | -| [datasets](src/llama_recipes/datasets/) | Contains individual scripts for each dataset to download and process. Note | -| [inference](src/llama_recipes/inference/) | Includes modules for inference for the fine-tuned models. | -| [model_checkpointing](src/llama_recipes/model_checkpointing/) | Contains FSDP checkpoint handlers. | -| [policies](src/llama_recipes/policies/) | Contains FSDP scripts to provide different policies, such as mixed precision, transformer wrapping policy and activation checkpointing along with any precision optimizer (used for running FSDP with pure bf16 mode). | -| [utils](src/llama_recipes/utils/) | Utility files for:<br/> - `train_utils.py` provides training/eval loop and more train utils.<br/> - `dataset_utils.py` to get preprocessed datasets.<br/> - `config_utils.py` to override the configs received from CLI.<br/> - `fsdp_utils.py` provides FSDP wrapping policy for PEFT methods.<br/> - `memory_utils.py` context manager to track different memory stats in train loop. | - - -## Supported Features -The recipes and modules in this repository support the following features: - -| Feature | | -| ---------------------------------------------- | - | -| HF support for inference | ✅ | -| HF support for finetuning | ✅ | -| PEFT | ✅ | -| Deferred initialization ( meta init) | ✅ | -| Low CPU mode for multi GPU | ✅ | -| Mixed precision | ✅ | -| Single node quantization | ✅ | -| Flash attention | ✅ | -| Activation checkpointing FSDP | ✅ | -| Hybrid Sharded Data Parallel (HSDP) | ✅ | -| Dataset packing & padding | ✅ | -| BF16 Optimizer (Pure BF16) | ✅ | -| Profiling & MFU tracking | ✅ | -| Gradient accumulation | ✅ | -| CPU offloading | ✅ | -| FSDP checkpoint conversion to HF for inference | ✅ | -| W&B experiment tracker | ✅ | +See the License file for Meta Llama 3 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3/USE_POLICY.md) + +See the License file for Meta Llama 2 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama2/USE_POLICY.md) +<!-- markdown-link-check-enable --> ## Contributing diff --git a/src/README.md b/src/README.md index 459543d0..5fad6150 100644 --- a/src/README.md +++ b/src/README.md @@ -1,50 +1,3 @@ -# Llama Recipes: Examples to get started using the Llama models from Meta -<!-- markdown-link-check-disable --> - -> Note: We recently did a refactor of the repo, [archive-main](https://github.com/meta-llama/llama-recipes/tree/archive-main) is a snapshot branch from before the refactor - -Welcome to the official repository for helping you get started with [inference](./getting-started/inference/), [fine-tuning](./getting-started/finetuning) and [end-to-end use-cases](./end-to-end-use-cases) of building with the Llama Model family. - -The examples cover the most popular community approaches, popular use-cases and the latest Llama 3.2 Vision and Llama 3.2 Text, in this repository. - -> [!TIP] -> Repository Structure: -> * [Start building with the Llama 3.2 models](./getting-started/) -> * [End to End Use cases with Llama model family](./end-to-end-use-cases) -> * [Examples of building with 3rd Party Llama Providers](./3p-integrations) -> * [Model Benchmarks](./benchmarks) - -> [!TIP] -> Get started with Llama 3.2 with these new recipes: -> * [Finetune Llama 3.2 Vision](./getting-started/finetuning/finetune_vision_model.md) -> * [Multimodal Inference with Llama 3.2 Vision](./getting-started/inference/local_inference/README.md#multimodal-inference) -> * [Inference on Llama Guard 1B + Multimodal inference on Llama Guard 11B-Vision](./end-to-end-use-cases/responsible_ai/llama_guard/llama_guard_text_and_vision_inference.ipynb) - -<!-- markdown-link-check-enable --> -> [!NOTE] -> Llama 3.2 follows the same prompt template as Llama 3.1, with a new special token `<|image|>` representing the input image for the multimodal models. -> -> More details on the prompt templates for image reasoning, tool-calling and code interpreter can be found [on the documentation website](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_2). - - -## Repository Structure: - -- [3P Integrations](./3p-integrations): Getting Started Recipes and End to End Use-Cases from various Llama providers -- [End to End Use Cases](./end-to-end-use-cases): As the name suggests, spanning various domains and applications -- [Getting Started](./getting-started/): Reference for inferencing, fine-tuning and RAG examples -- [Benchmarks](./benchmarks): Reference implementation for some benchmarks - - -## FAQ: - -- Q: Some links are broken/folders are missing: - -A: We recently did a refactor of the repo, [archive-main](https://github.com/meta-llama/llama-recipes/tree/archive-main) is a snapshot branch from before the refactor - -- Where can we find details about the latest models? - -A: Official [Llama models website](https://www.llama.com) - ## Getting Started These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system. @@ -118,73 +71,4 @@ cd transformers pip install protobuf python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 3B --output_dir /output/path -``` - - - -## Repository Organization -Most of the code dealing with Llama usage is organized across 2 main folders: `recipes/` and `src/`. - -### `recipes/` - -Contains examples organized in folders by topic: -| Subfolder | Description | -|---|---| -[quickstart](./recipes/quickstart) | The "Hello World" of using Llama, start here if you are new to using Llama. -[use_cases](./recipes/use_cases)|Scripts showing common applications of Meta Llama3 -[3p_integrations](./recipes/3p_integrations)|Partner owned folder showing common applications of Meta Llama3 -[responsible_ai](./recipes/responsible_ai)|Scripts to use PurpleLlama for safeguarding model outputs -[experimental](./recipes/experimental)|Meta Llama implementations of experimental LLM techniques - -### `src/` - -Contains modules which support the example recipes: -| Subfolder | Description | -|---|---| -| [configs](src/llama_recipes/configs/) | Contains the configuration files for PEFT methods, FSDP, Datasets, Weights & Biases experiment tracking. | -| [datasets](src/llama_recipes/datasets/) | Contains individual scripts for each dataset to download and process. Note | -| [inference](src/llama_recipes/inference/) | Includes modules for inference for the fine-tuned models. | -| [model_checkpointing](src/llama_recipes/model_checkpointing/) | Contains FSDP checkpoint handlers. | -| [policies](src/llama_recipes/policies/) | Contains FSDP scripts to provide different policies, such as mixed precision, transformer wrapping policy and activation checkpointing along with any precision optimizer (used for running FSDP with pure bf16 mode). | -| [utils](src/llama_recipes/utils/) | Utility files for:<br/> - `train_utils.py` provides training/eval loop and more train utils.<br/> - `dataset_utils.py` to get preprocessed datasets.<br/> - `config_utils.py` to override the configs received from CLI.<br/> - `fsdp_utils.py` provides FSDP wrapping policy for PEFT methods.<br/> - `memory_utils.py` context manager to track different memory stats in train loop. | - - -## Supported Features -The recipes and modules in this repository support the following features: - -| Feature | | -| ---------------------------------------------- | - | -| HF support for inference | ✅ | -| HF support for finetuning | ✅ | -| PEFT | ✅ | -| Deferred initialization ( meta init) | ✅ | -| Low CPU mode for multi GPU | ✅ | -| Mixed precision | ✅ | -| Single node quantization | ✅ | -| Flash attention | ✅ | -| Activation checkpointing FSDP | ✅ | -| Hybrid Sharded Data Parallel (HSDP) | ✅ | -| Dataset packing & padding | ✅ | -| BF16 Optimizer (Pure BF16) | ✅ | -| Profiling & MFU tracking | ✅ | -| Gradient accumulation | ✅ | -| CPU offloading | ✅ | -| FSDP checkpoint conversion to HF for inference | ✅ | -| W&B experiment tracker | ✅ | - - -## Contributing - -Please read [CONTRIBUTING.md](CONTRIBUTING.md) for details on our code of conduct, and the process for submitting pull requests to us. - -## License -<!-- markdown-link-check-disable --> - -See the License file for Meta Llama 3.2 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/USE_POLICY.md) - -See the License file for Meta Llama 3.1 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) - -See the License file for Meta Llama 3 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama3/USE_POLICY.md) - -See the License file for Meta Llama 2 [here](https://github.com/meta-llama/llama-models/blob/main/models/llama2/LICENSE) and Acceptable Use Policy [here](https://github.com/meta-llama/llama-models/blob/main/models/llama2/USE_POLICY.md) -<!-- markdown-link-check-enable --> +``` \ No newline at end of file -- GitLab