diff --git a/recipes/finetuning/singlegpu_finetuning.md b/recipes/finetuning/singlegpu_finetuning.md index 81bf58764d48f6b28e69a0beea977c15189f44fd..cdfc0393b48ad67d71efc356d396d7bd4d336efe 100644 --- a/recipes/finetuning/singlegpu_finetuning.md +++ b/recipes/finetuning/singlegpu_finetuning.md @@ -16,7 +16,7 @@ To run fine-tuning on a single GPU, we will make use of two packages: ## How to run it? ```bash -python -m finetuning.py --use_peft --peft_method lora --quantization --use_fp16 --model_name /path_of_model_folder/8B --output_dir Path/to/save/PEFT/model +python finetuning.py --use_peft --peft_method lora --quantization --use_fp16 --model_name /path_of_model_folder/8B --output_dir Path/to/save/PEFT/model ``` The args used in the command above are: @@ -34,7 +34,7 @@ Currently 3 open source datasets are supported that can be found in [Datasets co * `grammar_dataset` : use this [notebook](../../src/llama_recipes/datasets/grammar_dataset/grammar_dataset_process.ipynb) to pull and process the Jfleg and C4 200M datasets for grammar checking. -* `alpaca_dataset` : to get this open source data please download the `aplaca.json` to `dataset` folder. +* `alpaca_dataset` : to get this open source data please download the `alpaca.json` to `dataset` folder. ```bash @@ -46,7 +46,7 @@ wget -P ../../src/llama_recipes/datasets https://raw.githubusercontent.com/tatsu to run with each of the datasets set the `dataset` flag in the command as shown below: ```bash -# grammer_dataset +# grammar_dataset python -m finetuning.py --use_peft --peft_method lora --quantization --dataset grammar_dataset --model_name /path_of_model_folder/8B --output_dir Path/to/save/PEFT/model