diff --git a/docs/multi_gpu.md b/docs/multi_gpu.md index 1582b0bffad055470e4bb3c33ba052d945197ea2..8e1064cb0331b8e39a12d44e1d697a1279b37068 100644 --- a/docs/multi_gpu.md +++ b/docs/multi_gpu.md @@ -138,8 +138,9 @@ It lets us specify the training settings for everything from `model_name` to `da mixed_precision: bool=True val_batch_size: int=1 dataset = "samsum_dataset" - peft_method: str = "lora" # None,llama_adapter, prefix + peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP) use_peft: bool=False + from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint output_dir: str = "PATH/to/save/PEFT/model" freeze_layers: bool = False num_freeze_layers: int = 1 diff --git a/docs/single_gpu.md b/docs/single_gpu.md index 06c40be83721fc23313e065f08ff5db7efd9a83c..850d886ca428fa445e58c636d5bfefdd072fa466 100644 --- a/docs/single_gpu.md +++ b/docs/single_gpu.md @@ -94,8 +94,9 @@ It let us specify the training settings, everything from `model_name` to `datase mixed_precision: bool=True val_batch_size: int=1 dataset = "samsum_dataset" - peft_method: str = "lora" # None,llama_adapter, prefix + peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP) use_peft: bool=False + from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint output_dir: str = "PATH/to/save/PEFT/model" freeze_layers: bool = False num_freeze_layers: int = 1 @@ -112,6 +113,7 @@ It let us specify the training settings, everything from `model_name` to `datase flop_counter_start: int = 3 # The step to start profiling, default is 3, which means after 3 steps of warmup stage, the profiler will start to count flops. use_profiler: bool = False # Enable pytorch profiler, can not be used with flop counter at the same time. profiler_dir: str = "PATH/to/save/profiler/results" # will be used if using profiler + ``` * [Datasets config file](../src/llama_recipes/configs/datasets.py) provides the available options for datasets. diff --git a/recipes/finetuning/README.md b/recipes/finetuning/README.md index ca39535aea6b3cc3028f2ad6e1b8ae6c103fb798..f5b52a3ec1d5195cf681672e9f845b6a927dc3ad 100644 --- a/recipes/finetuning/README.md +++ b/recipes/finetuning/README.md @@ -48,8 +48,9 @@ It lets us specify the training settings for everything from `model_name` to `da mixed_precision: bool=True val_batch_size: int=1 dataset = "samsum_dataset" - peft_method: str = "lora" # None,llama_adapter, prefix + peft_method: str = "lora" # None, llama_adapter (Caution: llama_adapter is currently not supported with FSDP) use_peft: bool=False + from_peft_checkpoint: str="" # if not empty and use_peft=True, will load the peft checkpoint and resume the fine-tuning on that checkpoint output_dir: str = "PATH/to/save/PEFT/model" freeze_layers: bool = False num_freeze_layers: int = 1 @@ -66,6 +67,7 @@ It lets us specify the training settings for everything from `model_name` to `da flop_counter_start: int = 3 # The step to start profiling, default is 3, which means after 3 steps of warmup stage, the profiler will start to count flops. use_profiler: bool = False # Enable pytorch profiler, can not be used with flop counter at the same time. profiler_dir: str = "PATH/to/save/profiler/results" # will be used if using profiler + ``` * [Datasets config file](../../src/llama_recipes/configs/datasets.py) provides the available options for datasets.