diff --git a/.github/scripts/spellcheck_conf/wordlist.txt b/.github/scripts/spellcheck_conf/wordlist.txt
index 1f976aa5a508a7ab78ac53b95f3ea37139025c22..929a6c7d1e108619b61e886a84ecf622e94c6f00 100644
--- a/.github/scripts/spellcheck_conf/wordlist.txt
+++ b/.github/scripts/spellcheck_conf/wordlist.txt
@@ -1466,3 +1466,42 @@ OCRVQA
 OCRVQADataCollator
 ocrvqa
 langchain
+GiB
+Terraform
+gb
+TPOT
+ctrl
+finetunes
+llmcompressor
+prefill
+qps
+terraform
+tf
+tmux
+tpot
+ttft
+uv
+8xL40S
+xL
+EDA
+DeepLearningai
+NotebookLM
+NotebookLlama
+Parler
+TTS
+parler
+suno
+tts
+Hifigan
+MeloTTS
+Metavoice
+Parler
+Parler's
+Reddit
+Suno
+VALL
+WhisperSpeech
+locallama
+myshell
+parler
+xTTS
diff --git a/.github/workflows/pytest_cpu_gha_runner.yaml b/.github/workflows/pytest_cpu_gha_runner.yaml
index 584cb58c308c761d1d2efd7d98b5ea61b5d34941..d5d123fc0f2893c1863c1087e2c87c54dbfef231 100644
--- a/.github/workflows/pytest_cpu_gha_runner.yaml
+++ b/.github/workflows/pytest_cpu_gha_runner.yaml
@@ -1,16 +1,10 @@
 name: "[GHA][CPU] llama-recipes Pytest tests on CPU GitHub hosted runner."
 on:
   pull_request:
-    branches:    
+    branches:
       - 'main'
-    paths:
-      - 'src/llama-recipes/configs/*.py'
-      - 'src/llama-recipes/utils/*.py'
-      - 'src/llama-recipes/datasets/*.py'
-      - 'src/llama-recipes/data/*.py'
-      - 'src/llama-recipes/*.py'
 
-  # triggers workflow manually for debugging purposes.      
+  # triggers workflow manually for debugging purposes.
   workflow_dispatch:
     inputs:
       runner:
@@ -23,8 +17,8 @@ on:
           required: false
           default: "true"
 
-env: 
-  PYTORCH_WHEEL_URL: https://download.pytorch.org/whl/test/cu118  
+env:
+  PYTORCH_WHEEL_URL: https://download.pytorch.org/whl/test/cu118
 
 jobs:
   execute_workflow:
@@ -63,7 +57,7 @@ jobs:
         id: install_llama_recipes_package
         run: |
           echo "Installing 'llama-recipes' project (re: https://github.com/facebookresearch/llama-recipes?tab=readme-ov-file#install-with-optional-dependencies)"
-          pip install --extra-index-url ${PYTORCH_WHEEL_URL} -e '.[tests]' 
+          pip install --extra-index-url ${PYTORCH_WHEEL_URL} -e '.[tests]'
 
 
       - name: "Running PyTest tests on GHA CPU Runner"
@@ -71,11 +65,10 @@ jobs:
         run: |
           echo "Running PyTest tests at 'GITHUB_WORKSPACE' path: ${GITHUB_WORKSPACE}"
           cd $GITHUB_WORKSPACE && python3 -m pytest --junitxml="$GITHUB_WORKSPACE/result.xml"
-  
+
       - name: Publish Test Summary
         id: test_summary
         uses: test-summary/action@v2
         with:
           paths: "**/*.xml"
         if: always()
-          
\ No newline at end of file
diff --git a/docs/multi_gpu.md b/docs/multi_gpu.md
index 3535422c145aa10c66a402d38c00db94ca56f678..820595dcf3bdd6169dba4ac56c1fb3209aeb5ee8 100644
--- a/docs/multi_gpu.md
+++ b/docs/multi_gpu.md
@@ -4,7 +4,7 @@ To run fine-tuning on multi-GPUs, we will  make use of two packages:
 
 1. [PEFT](https://huggingface.co/blog/peft) methods and in particular using the Hugging Face [PEFT](https://github.com/huggingface/peft)library.
 
-2. [FSDP](https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html) which helps us parallelize the training over multiple GPUs. [More details](LLM_finetuning.md/#2-full-partial-parameter-finetuning).
+2. [FSDP](https://pytorch.org/tutorials/intermediate/FSDP_adavnced_tutorial.html) which helps us parallelize the training over multiple GPUs. [More details](./LLM_finetuning.md).
 
 Given the combination of PEFT and FSDP, we would be able to fine tune a Meta Llama 8B model on multiple GPUs in one node.
 For big models like 405B we will need to fine-tune in a multi-node setup even if 4bit quantization is enabled.
diff --git a/recipes/3p_integrations/crusoe/README.md b/recipes/3p_integrations/crusoe/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..fc13af0c5d70b5bb098e1a42f0d0cfc3aac1778a
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/README.md
@@ -0,0 +1,11 @@
+Below are recipes for deploying common Llama workflows on [Crusoe's](https://crusoe.ai) high-performance, sustainable cloud. Each workflow corresponds to a subfolder with its own README and supplemental materials. Please reference the table below for hardware requirements.
+
+| Workflow | Model(s) | VM type | Storage |
+|:----:  | :----:  | :----:| :----: |
+| [Serving Llama3.1 in FP8 with vLLM](vllm-fp8/) | [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct), [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) | l40s-48gb.8x | 256 GiB Persistent Disk |
+
+# Requirements
+First, ensure that you have a Crusoe account (you can sign up [here](https://console.crusoecloud.com/)). We will provision resources using Terraform, please ensure that your environment is configured and refer to the Crusoe [docs](https://github.com/crusoecloud/terraform-provider-crusoe?tab=readme-ov-file#getting-started) for guidance.
+
+# Serving Models
+Some recipes in this repo require firewall rules to expose ports in order to reach the inference server. To manage firewall rules, please refer to our [networking documentation](https://docs.crusoecloud.com/networking/firewall-rules/managing-firewall-rules).
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/README.md b/recipes/3p_integrations/crusoe/vllm-fp8/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..1c26f94137f44d80afa485cfbebe457c284e080b
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/README.md
@@ -0,0 +1,85 @@
+In this article, we will show how to benchmark FP8 models on L40S using the vLLM inference engine. At the end, you should have an understanding of how to use `llm-compressor` to create quantize existing Llama3 finetunes in higher precision to fp8, benchmark throughput and latency to compare performance, and finally serve models using `vllm`.
+
+# Provisioning Resources
+First, navigate to this repository from your local machine. Update the corresponding variables in `locals` inside `main.tf` to match your environment (e.g. the path to your SSH key), then initialize the terraform project with `terraform init` and provision resources with `terraform apply`. Note that this will create a VM equipped with 8xL40S and a 256GB persistent disk. After the VM has been created, terraform will output the public IP address.
+
+## Mount Storage
+`ssh` into your VM. Then, run the below commands to mount the attached disk to `/scratch`.
+```bash
+mkfs.ext4 /dev/vdb
+mkdir /scratch
+mount -t ext4 /dev/vdb /scratch
+cd /scratch
+```
+
+# Install Dependencies
+We'll use [uv](https://github.com/astral-sh/uv) to install dependencies. First, install the tool with
+```bash
+apt-get update && apt-get install -y curl
+apt-get install tmux
+curl -LsSf https://astral.sh/uv/install.sh | sh
+source $HOME/.cargo/env
+```
+
+Now, clone the recipes and navigate to this tutorial. Initialize the virtual environment and install dependencies:
+```bash
+git clone https://github.com/meta-llama/llama-recipes.git
+cd llama-recipes/recipes/3p_integrations/crusoe/vllm-fp8/
+uv add vllm setuptools
+```
+
+# Run Benchmarks
+Before starting the vLLM server, we'll configure HuggingFace to save to our shared disk, specify the model tag, and set tensor parallelism to 1.
+```bash
+export HF_HOME=/scratch/
+export MODEL=neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8-dynamic
+export TP_SIZE=1
+```
+Now, we'll use tmux to run our server inside of a detachable session.
+```bash
+tmux new -s server
+uv run vllm serve $MODEL --enable-chunked-prefill --disable-log-requests --tensor-parallel-size $TP_SIZE
+```
+vLLM will download the model from HF and serve it on port 8000. Now, detach from the tmux session (`ctrl+b` then `d`) and we'll simulate a client.
+```bash
+tmux new -s client
+chmod +x run_benchmark.sh
+./run_benchmark.sh
+```
+Let's inspect the benchmark script to see what's going on.
+```bash
+TOTAL_SECONDS=120
+QPS_RATES=("1" "3" "5" "7" "9")
+
+for QPS in ${QPS_RATES[@]}; do
+    NUM_PROMPTS=$((TOTAL_SECONDS * QPS))
+    echo "===== RUNNING NUM_PROMPTS = $NUM_PROMPTS QPS = $QPS ====="
+
+    uv run benchmarks/benchmark_serving.py \
+        --model $MODEL \
+        --dataset-name sonnet --sonnet-input-len 550 --sonnet-output-len 150 --dataset-path benchmarks/sonnet.txt \
+        --num-prompts $NUM_PROMPTS --request-rate $QPS --save-result
+done
+```
+This is a convenience wrapper that re-runs the vLLM `benchmarks/benchmark_serving.py` with queries-per-second (QPS) gradually increasing from 1 to 9 and saves the results. After each run completes, a JSON will appear in the same directory containing inference statistics.
+
+# Results
+We repeated the above benchmark across the fp8 and fp16 versions of both Llama3.1 8B and 70B.
+
+![TPOT vs QPS](assets/tpot_vs_qps_chart.png "TPOT vs QPS")
+In the above chart, we compare time-per-output-token (TPOT) across different QPS volumes. For fp16 70B we run across 8 GPUs while in fp8 we only use 4 and we still maintain the same TPOT range. The 8B models are run across 1 GPU though fp8 is noticeably faster.
+
+![TPOT vs QPS](assets/ttft_vs_qps_chart.png "TTFT vs QPS")
+Looking at our time-to-first-token (TTFT), we observe the same trends. Even though the fp8 70B is run across half as many GPUs, its TTFT is roughly the same as the fp16 version on 8.
+
+# Converting Llama3 models to FP8
+If you wish to convert your existing finetunes to FP8, we can easily achieve this using [llmcompressor](https://github.com/vllm-project/llm-compressor).
+```bash
+uv add llmcompressor
+uv run convert_hf_to_fp8.py NousResearch/Hermes-3-Llama-3.1-70B
+```
+
+To use the converted model, update `$MODEL` to your absolute path for the converted version, then rerun `uv run vllm serve $MODEL --enable-chunked-prefill --disable-log-requests --tensor-parallel-size $TP_SIZE`. Now, we have a vLLM server up with our converted finetune and can rerun our previous benchmarks to verify performance.
+
+# Cleaning up
+To clean up the resources we've provisioned, we can simply run `terraform destroy` from within this repository on your local machine.
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/assets/tpot_vs_qps_chart.png b/recipes/3p_integrations/crusoe/vllm-fp8/assets/tpot_vs_qps_chart.png
new file mode 100644
index 0000000000000000000000000000000000000000..de2af6126fe98ba47c5a81ed137bc94008d07132
Binary files /dev/null and b/recipes/3p_integrations/crusoe/vllm-fp8/assets/tpot_vs_qps_chart.png differ
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/assets/ttft_vs_qps_chart.png b/recipes/3p_integrations/crusoe/vllm-fp8/assets/ttft_vs_qps_chart.png
new file mode 100644
index 0000000000000000000000000000000000000000..b95e181881401ab3c3da3878b2aee62032d492d2
Binary files /dev/null and b/recipes/3p_integrations/crusoe/vllm-fp8/assets/ttft_vs_qps_chart.png differ
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/backend_request_func.py b/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/backend_request_func.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7d67692f697b6b307c5c6fea9914627b2ccd928
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/backend_request_func.py
@@ -0,0 +1,427 @@
+import json
+import os
+import sys
+import time
+import traceback
+from dataclasses import dataclass, field
+from typing import List, Optional, Union
+
+import aiohttp
+import huggingface_hub.constants
+from tqdm.asyncio import tqdm
+from transformers import (AutoTokenizer, PreTrainedTokenizer,
+                          PreTrainedTokenizerFast)
+
+AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
+
+
+@dataclass
+class RequestFuncInput:
+    prompt: str
+    api_url: str
+    prompt_len: int
+    output_len: int
+    model: str
+    best_of: int = 1
+    use_beam_search: bool = False
+
+
+@dataclass
+class RequestFuncOutput:
+    generated_text: str = ""
+    success: bool = False
+    latency: float = 0.0
+    ttft: float = 0.0  # Time to first token
+    itl: List[float] = field(
+        default_factory=list)  # List of inter-token latencies
+    prompt_len: int = 0
+    error: str = ""
+
+
+async def async_request_tgi(
+    request_func_input: RequestFuncInput,
+    pbar: Optional[tqdm] = None,
+) -> RequestFuncOutput:
+    api_url = request_func_input.api_url
+    assert api_url.endswith("generate_stream")
+
+    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
+        assert not request_func_input.use_beam_search
+        params = {
+            "best_of": request_func_input.best_of,
+            "max_new_tokens": request_func_input.output_len,
+            "do_sample": True,
+            "temperature": 0.01,  # TGI does not accept 0.0 temperature.
+            "top_p": 0.99,  # TGI does not accept 1.0 top_p.
+        }
+        payload = {
+            "inputs": request_func_input.prompt,
+            "parameters": params,
+        }
+        output = RequestFuncOutput()
+        output.prompt_len = request_func_input.prompt_len
+
+        ttft = 0.0
+        st = time.perf_counter()
+        most_recent_timestamp = st
+        try:
+            async with session.post(url=api_url, json=payload) as response:
+                if response.status == 200:
+                    async for chunk_bytes in response.content:
+                        chunk_bytes = chunk_bytes.strip()
+                        if not chunk_bytes:
+                            continue
+                        chunk_bytes = chunk_bytes.decode("utf-8")
+
+                        #NOTE: Sometimes TGI returns a ping response without
+                        # any data, we should skip it.
+                        if chunk_bytes.startswith(":"):
+                            continue
+                        chunk = remove_prefix(chunk_bytes, "data:")
+
+                        data = json.loads(chunk)
+                        timestamp = time.perf_counter()
+                        # First token
+                        if ttft == 0.0:
+                            ttft = time.perf_counter() - st
+                            output.ttft = ttft
+
+                        # Decoding phase
+                        else:
+                            output.itl.append(timestamp -
+                                              most_recent_timestamp)
+
+                        most_recent_timestamp = timestamp
+
+                    output.latency = most_recent_timestamp - st
+                    output.success = True
+                    output.generated_text = data["generated_text"]
+                else:
+                    output.error = response.reason or ""
+                    output.success = False
+        except Exception:
+            output.success = False
+            exc_info = sys.exc_info()
+            output.error = "".join(traceback.format_exception(*exc_info))
+
+        if pbar:
+            pbar.update(1)
+        return output
+
+
+async def async_request_trt_llm(
+    request_func_input: RequestFuncInput,
+    pbar: Optional[tqdm] = None,
+) -> RequestFuncOutput:
+    api_url = request_func_input.api_url
+    assert api_url.endswith("generate_stream")
+
+    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
+        assert not request_func_input.use_beam_search
+        assert request_func_input.best_of == 1
+        payload = {
+            "accumulate_tokens": True,
+            "text_input": request_func_input.prompt,
+            "temperature": 0.0,
+            "top_p": 1.0,
+            "max_tokens": request_func_input.output_len,
+            "stream": True,
+        }
+        output = RequestFuncOutput()
+        output.prompt_len = request_func_input.prompt_len
+
+        ttft = 0.0
+        st = time.perf_counter()
+        most_recent_timestamp = st
+        try:
+            async with session.post(url=api_url, json=payload) as response:
+                if response.status == 200:
+                    async for chunk_bytes in response.content:
+                        chunk_bytes = chunk_bytes.strip()
+                        if not chunk_bytes:
+                            continue
+
+                        chunk = remove_prefix(chunk_bytes.decode("utf-8"),
+                                              "data:")
+
+                        data = json.loads(chunk)
+                        output.generated_text += data["text_output"]
+                        timestamp = time.perf_counter()
+                        # First token
+                        if ttft == 0.0:
+                            ttft = time.perf_counter() - st
+                            output.ttft = ttft
+
+                        # Decoding phase
+                        else:
+                            output.itl.append(timestamp -
+                                              most_recent_timestamp)
+
+                        most_recent_timestamp = timestamp
+
+                    output.latency = most_recent_timestamp - st
+                    output.success = True
+
+                else:
+                    output.error = response.reason or ""
+                    output.success = False
+        except Exception:
+            output.success = False
+            exc_info = sys.exc_info()
+            output.error = "".join(traceback.format_exception(*exc_info))
+
+        if pbar:
+            pbar.update(1)
+        return output
+
+
+async def async_request_deepspeed_mii(
+    request_func_input: RequestFuncInput,
+    pbar: Optional[tqdm] = None,
+) -> RequestFuncOutput:
+    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
+        assert request_func_input.best_of == 1
+        assert not request_func_input.use_beam_search
+
+        payload = {
+            "prompt": request_func_input.prompt,
+            "max_tokens": request_func_input.output_len,
+            "temperature": 0.01,  # deepspeed-mii does not accept 0.0 temp.
+            "top_p": 1.0,
+        }
+        output = RequestFuncOutput()
+        output.prompt_len = request_func_input.prompt_len
+
+        # NOTE: DeepSpeed-MII doesn't support streaming as of Jan 28 2024,
+        # will use 0 as placeholder.
+        # See https://github.com/microsoft/DeepSpeed-MII/pull/311
+        output.ttft = 0
+
+        st = time.perf_counter()
+        try:
+            async with session.post(url=request_func_input.api_url,
+                                    json=payload) as response:
+                if response.status == 200:
+                    parsed_resp = await response.json()
+                    output.latency = time.perf_counter() - st
+                    output.generated_text = parsed_resp["text"][0]
+                    output.success = True
+                else:
+                    output.error = response.reason or ""
+                    output.success = False
+        except Exception:
+            output.success = False
+            exc_info = sys.exc_info()
+            output.error = "".join(traceback.format_exception(*exc_info))
+
+        if pbar:
+            pbar.update(1)
+        return output
+
+
+async def async_request_openai_completions(
+    request_func_input: RequestFuncInput,
+    pbar: Optional[tqdm] = None,
+) -> RequestFuncOutput:
+    api_url = request_func_input.api_url
+    assert api_url.endswith(
+        ("completions", "profile")
+    ), "OpenAI Completions API URL must end with 'completions' or 'profile'."
+
+    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
+        assert not request_func_input.use_beam_search
+        payload = {
+            "model": request_func_input.model,
+            "prompt": request_func_input.prompt,
+            "temperature": 0.0,
+            "best_of": request_func_input.best_of,
+            "max_tokens": request_func_input.output_len,
+            "stream": True,
+        }
+        headers = {
+            "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
+        }
+
+        output = RequestFuncOutput()
+        output.prompt_len = request_func_input.prompt_len
+
+        generated_text = ""
+        ttft = 0.0
+        st = time.perf_counter()
+        most_recent_timestamp = st
+        try:
+            async with session.post(url=api_url, json=payload,
+                                    headers=headers) as response:
+                if response.status == 200:
+                    async for chunk_bytes in response.content:
+                        chunk_bytes = chunk_bytes.strip()
+                        if not chunk_bytes:
+                            continue
+
+                        chunk = remove_prefix(chunk_bytes.decode("utf-8"),
+                                              "data: ")
+                        if chunk == "[DONE]":
+                            latency = time.perf_counter() - st
+                        else:
+                            data = json.loads(chunk)
+
+                            # NOTE: Some completion API might have a last
+                            # usage summary response without a token so we
+                            # want to check a token was generated
+                            if data["choices"][0]["text"]:
+                                timestamp = time.perf_counter()
+                                # First token
+                                if ttft == 0.0:
+                                    ttft = time.perf_counter() - st
+                                    output.ttft = ttft
+
+                                # Decoding phase
+                                else:
+                                    output.itl.append(timestamp -
+                                                      most_recent_timestamp)
+
+                                most_recent_timestamp = timestamp
+                                generated_text += data["choices"][0]["text"]
+
+                    output.generated_text = generated_text
+                    output.success = True
+                    output.latency = latency
+                else:
+                    output.error = response.reason or ""
+                    output.success = False
+        except Exception:
+            output.success = False
+            exc_info = sys.exc_info()
+            output.error = "".join(traceback.format_exception(*exc_info))
+
+    if pbar:
+        pbar.update(1)
+    return output
+
+
+async def async_request_openai_chat_completions(
+    request_func_input: RequestFuncInput,
+    pbar: Optional[tqdm] = None,
+) -> RequestFuncOutput:
+    api_url = request_func_input.api_url
+    assert api_url.endswith(
+        "chat/completions"
+    ), "OpenAI Chat Completions API URL must end with 'chat/completions'."
+
+    async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
+        assert not request_func_input.use_beam_search
+        payload = {
+            "model": request_func_input.model,
+            "messages": [
+                {
+                    "role": "user",
+                    "content": request_func_input.prompt,
+                },
+            ],
+            "temperature": 0.0,
+            "max_tokens": request_func_input.output_len,
+            "stream": True,
+        }
+        headers = {
+            "Content-Type": "application/json",
+            "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
+        }
+
+        output = RequestFuncOutput()
+        output.prompt_len = request_func_input.prompt_len
+
+        generated_text = ""
+        ttft = 0.0
+        st = time.perf_counter()
+        most_recent_timestamp = st
+        try:
+            async with session.post(url=api_url, json=payload,
+                                    headers=headers) as response:
+                if response.status == 200:
+                    async for chunk_bytes in response.content:
+                        chunk_bytes = chunk_bytes.strip()
+                        if not chunk_bytes:
+                            continue
+
+                        chunk = remove_prefix(chunk_bytes.decode("utf-8"),
+                                              "data: ")
+                        if chunk == "[DONE]":
+                            latency = time.perf_counter() - st
+                        else:
+                            timestamp = time.perf_counter()
+                            data = json.loads(chunk)
+
+                            delta = data["choices"][0]["delta"]
+                            if delta.get("content", None):
+                                # First token
+                                if ttft == 0.0:
+                                    ttft = time.perf_counter() - st
+                                    output.ttft = ttft
+
+                                # Decoding phase
+                                else:
+                                    output.itl.append(timestamp -
+                                                      most_recent_timestamp)
+
+                                generated_text += delta["content"]
+
+                            most_recent_timestamp = timestamp
+
+                    output.generated_text = generated_text
+                    output.success = True
+                    output.latency = latency
+                else:
+                    output.error = response.reason or ""
+                    output.success = False
+        except Exception:
+            output.success = False
+            exc_info = sys.exc_info()
+            output.error = "".join(traceback.format_exception(*exc_info))
+
+    if pbar:
+        pbar.update(1)
+    return output
+
+
+# Since vllm must support Python 3.8, we can't use str.removeprefix(prefix)
+# introduced in Python 3.9
+def remove_prefix(text: str, prefix: str) -> str:
+    if text.startswith(prefix):
+        return text[len(prefix):]
+    return text
+
+
+def get_model(pretrained_model_name_or_path: str) -> str:
+    if os.getenv('VLLM_USE_MODELSCOPE', 'False').lower() == 'true':
+        from modelscope import snapshot_download
+
+        model_path = snapshot_download(
+            model_id=pretrained_model_name_or_path,
+            local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
+            ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
+
+        return model_path
+    return pretrained_model_name_or_path
+
+
+def get_tokenizer(
+    pretrained_model_name_or_path: str, trust_remote_code: bool
+) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
+    if pretrained_model_name_or_path is not None and not os.path.exists(
+            pretrained_model_name_or_path):
+        pretrained_model_name_or_path = get_model(
+            pretrained_model_name_or_path)
+    return AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
+                                         trust_remote_code=trust_remote_code)
+
+
+ASYNC_REQUEST_FUNCS = {
+    "tgi": async_request_tgi,
+    "vllm": async_request_openai_completions,
+    "lmdeploy": async_request_openai_completions,
+    "deepspeed-mii": async_request_deepspeed_mii,
+    "openai": async_request_openai_completions,
+    "openai-chat": async_request_openai_chat_completions,
+    "tensorrt-llm": async_request_trt_llm,
+    "scalellm": async_request_openai_completions,
+}
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/benchmark_serving.py b/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/benchmark_serving.py
new file mode 100644
index 0000000000000000000000000000000000000000..fe687da492901a61136084a874310b18e19eb55a
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/benchmark_serving.py
@@ -0,0 +1,770 @@
+"""Benchmark online serving throughput.
+
+On the server side, run one of the following commands:
+    vLLM OpenAI API server
+    vllm serve <your_model> \
+        --swap-space 16 \
+        --disable-log-requests
+
+    (TGI backend)
+    ./launch_tgi_server.sh <your_model> <max_batch_total_tokens>
+
+On the client side, run:
+    python benchmarks/benchmark_serving.py \
+        --backend <backend> \
+        --model <your_model> \
+        --dataset-name sharegpt \
+        --dataset-path <path to dataset> \
+        --request-rate <request_rate> \ # By default <request_rate> is inf
+        --num-prompts <num_prompts> # By default <num_prompts> is 1000
+
+    when using tgi backend, add
+        --endpoint /generate_stream
+    to the end of the command above.
+"""
+import argparse
+import asyncio
+import json
+import os
+import random
+import time
+import warnings
+from dataclasses import dataclass
+from datetime import datetime
+from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple
+
+import numpy as np
+from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput,
+                                  RequestFuncOutput)
+from tqdm.asyncio import tqdm
+from transformers import PreTrainedTokenizerBase
+
+try:
+    from vllm.transformers_utils.tokenizer import get_tokenizer
+except ImportError:
+    from backend_request_func import get_tokenizer
+
+try:
+    from vllm.utils import FlexibleArgumentParser
+except ImportError:
+    from argparse import ArgumentParser as FlexibleArgumentParser
+
+
+@dataclass
+class BenchmarkMetrics:
+    completed: int
+    total_input: int
+    total_output: int
+    request_throughput: float
+    input_throughput: float
+    output_throughput: float
+    mean_ttft_ms: float
+    median_ttft_ms: float
+    std_ttft_ms: float
+    p99_ttft_ms: float
+    mean_tpot_ms: float
+    median_tpot_ms: float
+    std_tpot_ms: float
+    p99_tpot_ms: float
+    mean_itl_ms: float
+    median_itl_ms: float
+    std_itl_ms: float
+    p99_itl_ms: float
+
+
+def sample_sharegpt_requests(
+    dataset_path: str,
+    num_requests: int,
+    tokenizer: PreTrainedTokenizerBase,
+    fixed_output_len: Optional[int] = None,
+) -> List[Tuple[str, int, int]]:
+    if fixed_output_len is not None and fixed_output_len < 4:
+        raise ValueError("output_len too small")
+    # Load the dataset.
+    with open(dataset_path) as f:
+        dataset = json.load(f)
+    # Filter out the conversations with less than 2 turns.
+    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
+    # Only keep the first two turns of each conversation.
+    dataset = [(data["conversations"][0]["value"],
+                data["conversations"][1]["value"]) for data in dataset]
+
+    # Shuffle the dataset.
+    random.shuffle(dataset)
+
+    # Filter out sequences that are too long or too short
+    filtered_dataset: List[Tuple[str, int, int]] = []
+    for i in range(len(dataset)):
+        if len(filtered_dataset) == num_requests:
+            break
+
+        # Tokenize the prompts and completions.
+        prompt = dataset[i][0]
+        prompt_token_ids = tokenizer(prompt).input_ids
+        completion = dataset[i][1]
+        completion_token_ids = tokenizer(completion).input_ids
+        prompt_len = len(prompt_token_ids)
+        output_len = len(completion_token_ids
+                         ) if fixed_output_len is None else fixed_output_len
+        if prompt_len < 4 or output_len < 4:
+            # Prune too short sequences.
+            continue
+        if prompt_len > 1024 or prompt_len + output_len > 2048:
+            # Prune too long sequences.
+            continue
+        filtered_dataset.append((prompt, prompt_len, output_len))
+
+    return filtered_dataset
+
+
+def sample_sonnet_requests(
+    dataset_path: str,
+    num_requests: int,
+    input_len: int,
+    output_len: int,
+    prefix_len: int,
+    tokenizer: PreTrainedTokenizerBase,
+) -> List[Tuple[str, str, int, int]]:
+    assert (
+        input_len > prefix_len
+    ), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'."
+
+    # Load the dataset.
+    with open(dataset_path) as f:
+        poem_lines = f.readlines()
+
+    # Tokenize the poem lines.
+    poem_token_ids = tokenizer(poem_lines).input_ids
+    average_poem_len = sum(
+        len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids)
+
+    # Base prefix for all requests.
+    base_prompt = "Pick as many lines as you can from these poem lines:\n"
+    base_message = [{
+        "role": "user",
+        "content": base_prompt,
+    }]
+    base_prompt_formatted = tokenizer.apply_chat_template(
+        base_message, add_generation_prompt=True, tokenize=False)
+    base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids)
+
+    assert (
+        input_len > base_prompt_offset
+    ), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}."
+    num_input_lines = round(
+        (input_len - base_prompt_offset) / average_poem_len)
+
+    # First approximately `prefix_len` number of tokens in the
+    # prompt are fixed poem lines.
+    assert (
+        prefix_len > base_prompt_offset
+    ), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}."
+
+    num_prefix_lines = round(
+        (prefix_len - base_prompt_offset) / average_poem_len)
+    prefix_lines = poem_lines[:num_prefix_lines]
+
+    # Sample the rest of lines per request.
+    sampled_requests: List[Tuple[str, int, int]] = []
+    for _ in range(num_requests):
+        sampled_lines = "".join(
+            prefix_lines +
+            random.sample(poem_lines, num_input_lines - num_prefix_lines))
+
+        prompt = f"{base_prompt}{sampled_lines}"
+        message = [
+            {
+                "role": "user",
+                "content": prompt,
+            },
+        ]
+        prompt_formatted = tokenizer.apply_chat_template(
+            message, add_generation_prompt=True, tokenize=False)
+        prompt_len = len(tokenizer(prompt_formatted).input_ids)
+        sampled_requests.append(
+            (prompt, prompt_formatted, prompt_len, output_len))
+
+    return sampled_requests
+
+
+def sample_random_requests(
+        input_len: int, output_len: int, num_prompts: int, range_ratio: float,
+        tokenizer: PreTrainedTokenizerBase) -> List[Tuple[str, int, int]]:
+
+    input_lens = np.random.randint(
+        int(input_len * range_ratio),
+        input_len + 1,
+        size=num_prompts,
+    )
+    output_lens = np.random.randint(
+        int(output_len * range_ratio),
+        output_len + 1,
+        size=num_prompts,
+    )
+    offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts)
+    input_requests = []
+    for i in range(num_prompts):
+        prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size
+                                   for j in range(input_lens[i])])
+        input_requests.append(
+            (prompt, int(input_lens[i]), int(output_lens[i])))
+
+    return input_requests
+
+
+async def get_request(
+    input_requests: List[Tuple[str, int, int]],
+    request_rate: float,
+) -> AsyncGenerator[Tuple[str, int, int], None]:
+    input_requests = iter(input_requests)
+    for request in input_requests:
+        yield request
+
+        if request_rate == float("inf"):
+            # If the request rate is infinity, then we don't need to wait.
+            continue
+
+        # Sample the request interval from the exponential distribution.
+        interval = np.random.exponential(1.0 / request_rate)
+        # The next request will be sent after the interval.
+        await asyncio.sleep(interval)
+
+
+def calculate_metrics(
+    input_requests: List[Tuple[str, int, int]],
+    outputs: List[RequestFuncOutput],
+    dur_s: float,
+    tokenizer: PreTrainedTokenizerBase,
+) -> Tuple[BenchmarkMetrics, List[int]]:
+    actual_output_lens: List[int] = []
+    total_input = 0
+    completed = 0
+    itls: List[float] = []
+    tpots: List[float] = []
+    ttfts: List[float] = []
+    for i in range(len(outputs)):
+        if outputs[i].success:
+            # We use the tokenizer to count the number of output tokens for all
+            # serving backends instead of looking at len(outputs[i].itl) since
+            # multiple output tokens may be bundled together
+            # Note : this may inflate the output token count slightly
+            output_len = len(
+                tokenizer(outputs[i].generated_text,
+                          add_special_tokens=False).input_ids)
+            actual_output_lens.append(output_len)
+            total_input += input_requests[i][1]
+            if output_len > 1:
+                tpots.append(
+                    (outputs[i].latency - outputs[i].ttft) / (output_len - 1))
+            itls += outputs[i].itl
+            ttfts.append(outputs[i].ttft)
+            completed += 1
+        else:
+            actual_output_lens.append(0)
+
+    if completed == 0:
+        warnings.warn(
+            "All requests failed. This is likely due to a misconfiguration "
+            "on the benchmark arguments.",
+            stacklevel=2)
+    metrics = BenchmarkMetrics(
+        completed=completed,
+        total_input=total_input,
+        total_output=sum(actual_output_lens),
+        request_throughput=completed / dur_s,
+        input_throughput=total_input / dur_s,
+        output_throughput=sum(actual_output_lens) / dur_s,
+        mean_ttft_ms=np.mean(ttfts or 0) *
+        1000,  # ttfts is empty if streaming is not supported by backend
+        median_ttft_ms=np.median(ttfts or 0) * 1000,
+        std_ttft_ms=np.std(ttfts or 0) * 1000,
+        p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000,
+        mean_tpot_ms=np.mean(tpots or 0) * 1000,
+        median_tpot_ms=np.median(tpots or 0) * 1000,
+        std_tpot_ms=np.std(tpots or 0) * 1000,
+        p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000,
+        mean_itl_ms=np.mean(itls or 0) * 1000,
+        median_itl_ms=np.median(itls or 0) * 1000,
+        std_itl_ms=np.std(itls or 0) * 1000,
+        p99_itl_ms=np.percentile(itls or 0, 99) * 1000,
+    )
+
+    return metrics, actual_output_lens
+
+
+async def benchmark(
+    backend: str,
+    api_url: str,
+    base_url: str,
+    model_id: str,
+    tokenizer: PreTrainedTokenizerBase,
+    input_requests: List[Tuple[str, int, int]],
+    best_of: int,
+    use_beam_search: bool,
+    request_rate: float,
+    disable_tqdm: bool,
+    profile: bool,
+):
+    if backend in ASYNC_REQUEST_FUNCS:
+        request_func = ASYNC_REQUEST_FUNCS[backend]
+    else:
+        raise ValueError(f"Unknown backend: {backend}")
+
+    print("Starting initial single prompt test run...")
+    test_prompt, test_prompt_len, test_output_len = input_requests[0]
+    test_input = RequestFuncInput(
+        model=model_id,
+        prompt=test_prompt,
+        api_url=api_url,
+        prompt_len=test_prompt_len,
+        output_len=test_output_len,
+        best_of=best_of,
+        use_beam_search=use_beam_search,
+    )
+    test_output = await request_func(request_func_input=test_input)
+    if not test_output.success:
+        raise ValueError(
+            "Initial test run failed - Please make sure benchmark arguments "
+            f"are correctly specified. Error: {test_output.error}")
+    else:
+        print("Initial test run completed. Starting main benchmark run...")
+
+    if profile:
+        print("Starting profiler...")
+        profile_input = RequestFuncInput(
+            model=model_id,
+            prompt=test_prompt,
+            api_url=base_url + "/start_profile",
+            prompt_len=test_prompt_len,
+            output_len=test_output_len,
+            best_of=best_of,
+            use_beam_search=use_beam_search,
+        )
+        profile_output = await request_func(request_func_input=profile_input)
+        if profile_output.success:
+            print("Profiler started")
+
+    print(f"Traffic request rate: {request_rate}")
+
+    pbar = None if disable_tqdm else tqdm(total=len(input_requests))
+
+    benchmark_start_time = time.perf_counter()
+    tasks: List[asyncio.Task] = []
+    async for request in get_request(input_requests, request_rate):
+        prompt, prompt_len, output_len = request
+        request_func_input = RequestFuncInput(
+            model=model_id,
+            prompt=prompt,
+            api_url=api_url,
+            prompt_len=prompt_len,
+            output_len=output_len,
+            best_of=best_of,
+            use_beam_search=use_beam_search,
+        )
+        tasks.append(
+            asyncio.create_task(
+                request_func(request_func_input=request_func_input,
+                             pbar=pbar)))
+    outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks)
+
+    if profile:
+        print("Stopping profiler...")
+        profile_input = RequestFuncInput(
+            model=model_id,
+            prompt=test_prompt,
+            api_url=base_url + "/stop_profile",
+            prompt_len=test_prompt_len,
+            output_len=test_output_len,
+            best_of=best_of,
+            use_beam_search=use_beam_search,
+        )
+        profile_output = await request_func(request_func_input=profile_input)
+        if profile_output.success:
+            print("Profiler stopped")
+
+    if pbar is not None:
+        pbar.close()
+
+    benchmark_duration = time.perf_counter() - benchmark_start_time
+
+    metrics, actual_output_lens = calculate_metrics(
+        input_requests=input_requests,
+        outputs=outputs,
+        dur_s=benchmark_duration,
+        tokenizer=tokenizer,
+    )
+
+    print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='='))
+    print("{:<40} {:<10}".format("Successful requests:", metrics.completed))
+    print("{:<40} {:<10.2f}".format("Benchmark duration (s):",
+                                    benchmark_duration))
+    print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input))
+    print("{:<40} {:<10}".format("Total generated tokens:",
+                                 metrics.total_output))
+    print("{:<40} {:<10.2f}".format("Request throughput (req/s):",
+                                    metrics.request_throughput))
+    print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):",
+                                    metrics.input_throughput))
+    print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):",
+                                    metrics.output_throughput))
+    print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-'))
+    print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms))
+    print("{:<40} {:<10.2f}".format("Median TTFT (ms):",
+                                    metrics.median_ttft_ms))
+    print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms))
+    print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)',
+                               n=50,
+                               c='-'))
+    print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms))
+    print("{:<40} {:<10.2f}".format("Median TPOT (ms):",
+                                    metrics.median_tpot_ms))
+    print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms))
+    print("{s:{c}^{n}}".format(s='Inter-token Latency', n=50, c='-'))
+    print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms))
+    print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms))
+    print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms))
+    print("=" * 50)
+
+    result = {
+        "duration": benchmark_duration,
+        "completed": metrics.completed,
+        "total_input_tokens": metrics.total_input,
+        "total_output_tokens": metrics.total_output,
+        "request_throughput": metrics.request_throughput,
+        "input_throughput": metrics.input_throughput,
+        "output_throughput": metrics.output_throughput,
+        "mean_ttft_ms": metrics.mean_ttft_ms,
+        "median_ttft_ms": metrics.median_ttft_ms,
+        "std_ttft_ms": metrics.std_ttft_ms,
+        "p99_ttft_ms": metrics.p99_ttft_ms,
+        "mean_tpot_ms": metrics.mean_tpot_ms,
+        "median_tpot_ms": metrics.median_tpot_ms,
+        "std_tpot_ms": metrics.std_tpot_ms,
+        "p99_tpot_ms": metrics.p99_tpot_ms,
+        "mean_itl_ms": metrics.mean_itl_ms,
+        "median_itl_ms": metrics.median_itl_ms,
+        "std_itl_ms": metrics.std_itl_ms,
+        "p99_itl_ms": metrics.p99_itl_ms,
+        "input_lens": [output.prompt_len for output in outputs],
+        "output_lens": actual_output_lens,
+        "ttfts": [output.ttft for output in outputs],
+        "itls": [output.itl for output in outputs],
+        "generated_texts": [output.generated_text for output in outputs],
+        "errors": [output.error for output in outputs],
+    }
+    return result
+
+
+def main(args: argparse.Namespace):
+    print(args)
+    random.seed(args.seed)
+    np.random.seed(args.seed)
+
+    backend = args.backend
+    model_id = args.model
+    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
+
+    if args.base_url is not None:
+        api_url = f"{args.base_url}{args.endpoint}"
+        base_url = f"{args.base_url}"
+    else:
+        api_url = f"http://{args.host}:{args.port}{args.endpoint}"
+        base_url = f"http://{args.host}:{args.port}"
+
+    tokenizer = get_tokenizer(tokenizer_id,
+                              trust_remote_code=args.trust_remote_code)
+
+    if args.dataset is not None:
+        warnings.warn(
+            "The '--dataset' argument will be deprecated in the next "
+            "release. Please use '--dataset-name' and "
+            "'--dataset-path' in the future runs.",
+            stacklevel=2)
+        input_requests = sample_sharegpt_requests(
+            dataset_path=args.dataset,
+            num_requests=args.num_prompts,
+            tokenizer=tokenizer,
+            fixed_output_len=args.sharegpt_output_len,
+        )
+
+    elif args.dataset_name == "sharegpt":
+        input_requests = sample_sharegpt_requests(
+            dataset_path=args.dataset_path,
+            num_requests=args.num_prompts,
+            tokenizer=tokenizer,
+            fixed_output_len=args.sharegpt_output_len,
+        )
+
+    elif args.dataset_name == "sonnet":
+        # Do not format the prompt, pass to message directly
+        if args.backend == "openai-chat":
+            input_requests = sample_sonnet_requests(
+                dataset_path=args.dataset_path,
+                num_requests=args.num_prompts,
+                input_len=args.sonnet_input_len,
+                output_len=args.sonnet_output_len,
+                prefix_len=args.sonnet_prefix_len,
+                tokenizer=tokenizer,
+            )
+            input_requests = [(prompt, prompt_len, output_len)
+                              for prompt, prompt_formatted, prompt_len,
+                              output_len in input_requests]
+        else:
+            assert (
+                tokenizer.chat_template or tokenizer.default_chat_template
+            ), "Tokenizer/model must have chat template for sonnet dataset."
+            input_requests = sample_sonnet_requests(
+                dataset_path=args.dataset_path,
+                num_requests=args.num_prompts,
+                input_len=args.sonnet_input_len,
+                output_len=args.sonnet_output_len,
+                prefix_len=args.sonnet_prefix_len,
+                tokenizer=tokenizer,
+            )
+            input_requests = [(prompt_formatted, prompt_len, output_len)
+                              for prompt, prompt_formatted, prompt_len,
+                              output_len in input_requests]
+
+    elif args.dataset_name == "random":
+        input_requests = sample_random_requests(
+            input_len=args.random_input_len,
+            output_len=args.random_output_len,
+            num_prompts=args.num_prompts,
+            range_ratio=args.random_range_ratio,
+            tokenizer=tokenizer,
+        )
+
+    else:
+        raise ValueError(f"Unknown dataset: {args.dataset_name}")
+
+    benchmark_result = asyncio.run(
+        benchmark(
+            backend=backend,
+            api_url=api_url,
+            base_url=base_url,
+            model_id=model_id,
+            tokenizer=tokenizer,
+            input_requests=input_requests,
+            best_of=args.best_of,
+            use_beam_search=args.use_beam_search,
+            request_rate=args.request_rate,
+            disable_tqdm=args.disable_tqdm,
+            profile=args.profile,
+        ))
+
+    # Save config and results to json
+    if args.save_result:
+        result_json: Dict[str, Any] = {}
+
+        # Setup
+        current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
+        result_json["date"] = current_dt
+        result_json["backend"] = backend
+        result_json["model_id"] = model_id
+        result_json["tokenizer_id"] = tokenizer_id
+        result_json["best_of"] = args.best_of
+        result_json["use_beam_search"] = args.use_beam_search
+        result_json["num_prompts"] = args.num_prompts
+
+        # Metadata
+        if args.metadata:
+            for item in args.metadata:
+                if "=" in item:
+                    kvstring = item.split("=")
+                    result_json[kvstring[0].strip()] = kvstring[1].strip()
+                else:
+                    raise ValueError(
+                        "Invalid metadata format. Please use KEY=VALUE format."
+                    )
+
+        # Traffic
+        result_json["request_rate"] = (
+            args.request_rate if args.request_rate < float("inf") else "inf")
+
+        # Merge with benchmark result
+        result_json = {**result_json, **benchmark_result}
+
+        # Save to file
+        base_model_id = model_id.split("/")[-1]
+        file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"  #noqa
+        if args.result_filename:
+            file_name = args.result_filename
+        if args.result_dir:
+            file_name = os.path.join(args.result_dir, file_name)
+        with open(file_name, "w") as outfile:
+            json.dump(result_json, outfile)
+
+
+if __name__ == "__main__":
+    parser = FlexibleArgumentParser(
+        description="Benchmark the online serving throughput.")
+    parser.add_argument(
+        "--backend",
+        type=str,
+        default="vllm",
+        choices=list(ASYNC_REQUEST_FUNCS.keys()),
+    )
+    parser.add_argument(
+        "--base-url",
+        type=str,
+        default=None,
+        help="Server or API base url if not using http host and port.",
+    )
+    parser.add_argument("--host", type=str, default="localhost")
+    parser.add_argument("--port", type=int, default=8000)
+    parser.add_argument(
+        "--endpoint",
+        type=str,
+        default="/v1/completions",
+        help="API endpoint.",
+    )
+    parser.add_argument(
+        "--dataset",
+        type=str,
+        default=None,
+        help="Path to the ShareGPT dataset, will be deprecated in the "
+        "next release.",
+    )
+    parser.add_argument(
+        "--dataset-name",
+        type=str,
+        default="sharegpt",
+        choices=["sharegpt", "sonnet", "random"],
+        help="Name of the dataset to benchmark on.",
+    )
+    parser.add_argument("--dataset-path",
+                        type=str,
+                        default=None,
+                        help="Path to the dataset.")
+    parser.add_argument(
+        "--model",
+        type=str,
+        required=True,
+        help="Name of the model.",
+    )
+    parser.add_argument(
+        "--tokenizer",
+        type=str,
+        help=
+        "Name or path of the tokenizer, if not using the default tokenizer.",  # noqa: E501
+    )
+    parser.add_argument(
+        "--best-of",
+        type=int,
+        default=1,
+        help="Generates `best_of` sequences per prompt and "
+        "returns the best one.",
+    )
+    parser.add_argument("--use-beam-search", action="store_true")
+    parser.add_argument(
+        "--num-prompts",
+        type=int,
+        default=1000,
+        help="Number of prompts to process.",
+    )
+    parser.add_argument(
+        "--sharegpt-output-len",
+        type=int,
+        default=None,
+        help="Output length for each request. Overrides the output length "
+        "from the ShareGPT dataset.")
+    parser.add_argument(
+        "--sonnet-input-len",
+        type=int,
+        default=550,
+        help=
+        "Number of input tokens per request, used only for sonnet dataset.",
+    )
+    parser.add_argument(
+        "--sonnet-output-len",
+        type=int,
+        default=150,
+        help=
+        "Number of output tokens per request, used only for sonnet dataset.",
+    )
+    parser.add_argument(
+        "--sonnet-prefix-len",
+        type=int,
+        default=200,
+        help=
+        "Number of prefix tokens per request, used only for sonnet dataset.",
+    )
+    parser.add_argument(
+        "--random-input-len",
+        type=int,
+        default=1024,
+        help=
+        "Number of input tokens per request, used only for random sampling.",
+    )
+    parser.add_argument(
+        "--random-output-len",
+        type=int,
+        default=128,
+        help=
+        "Number of output tokens per request, used only for random sampling.",
+    )
+    parser.add_argument(
+        "--random-range-ratio",
+        type=float,
+        default=1.0,
+        help="Range of sampled ratio of input/output length, "
+        "used only for random sampling.",
+    )
+    parser.add_argument(
+        "--request-rate",
+        type=float,
+        default=float("inf"),
+        help="Number of requests per second. If this is inf, "
+        "then all the requests are sent at time 0. "
+        "Otherwise, we use Poisson process to synthesize "
+        "the request arrival times.",
+    )
+    parser.add_argument("--seed", type=int, default=0)
+    parser.add_argument(
+        "--trust-remote-code",
+        action="store_true",
+        help="Trust remote code from huggingface",
+    )
+    parser.add_argument(
+        "--disable-tqdm",
+        action="store_true",
+        help="Specify to disable tqdm progress bar.",
+    )
+    parser.add_argument(
+        "--profile",
+        action="store_true",
+        help="Use Torch Profiler. The endpoint must be launched with "
+        "VLLM_TORCH_PROFILER_DIR to enable profiler.",
+    )
+    parser.add_argument(
+        "--save-result",
+        action="store_true",
+        help="Specify to save benchmark results to a json file",
+    )
+    parser.add_argument(
+        "--metadata",
+        metavar="KEY=VALUE",
+        nargs="*",
+        help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) "
+        "for metadata of this run to be saved in the result JSON file "
+        "for record keeping purposes.",
+    )
+    parser.add_argument(
+        "--result-dir",
+        type=str,
+        default=None,
+        help="Specify directory to save benchmark json results."
+        "If not specified, results are saved in the current directory.",
+    )
+    parser.add_argument(
+        "--result-filename",
+        type=str,
+        default=None,
+        help="Specify the filename to save benchmark json results."
+        "If not specified, results will be saved in "
+        "{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
+        " format.",
+    )
+
+    args = parser.parse_args()
+    main(args)
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/sonnet.txt b/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/sonnet.txt
new file mode 100644
index 0000000000000000000000000000000000000000..34c444e8ce8e2dc701ec80931401c57014ae0bd1
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/benchmarks/sonnet.txt
@@ -0,0 +1,518 @@
+FROM fairest creatures we desire increase,
+That thereby beauty's rose might never die,
+But as the riper should by time decease,
+His tender heir might bear his memory:
+But thou, contracted to thine own bright eyes,
+Feed'st thy light'st flame with self-substantial fuel,
+Making a famine where abundance lies,
+Thyself thy foe, to thy sweet self too cruel.
+Thou that art now the world's fresh ornament
+And only herald to the gaudy spring,
+Within thine own bud buriest thy content
+And, tender churl, makest waste in niggarding.
+Pity the world, or else this glutton be,
+To eat the world's due, by the grave and thee.
+When forty winters shall beseige thy brow,
+And dig deep trenches in thy beauty's field,
+Thy youth's proud livery, so gazed on now,
+Will be a tatter'd weed, of small worth held:
+Then being ask'd where all thy beauty lies,
+Where all the treasure of thy lusty days,
+To say, within thine own deep-sunken eyes,
+Were an all-eating shame and thriftless praise.
+How much more praise deserved thy beauty's use,
+If thou couldst answer 'This fair child of mine
+Shall sum my count and make my old excuse,'
+Proving his beauty by succession thine!
+This were to be new made when thou art old,
+And see thy blood warm when thou feel'st it cold.
+Look in thy glass, and tell the face thou viewest
+Now is the time that face should form another;
+Whose fresh repair if now thou not renewest,
+Thou dost beguile the world, unbless some mother.
+For where is she so fair whose unear'd womb
+Disdains the tillage of thy husbandry?
+Or who is he so fond will be the tomb
+Of his self-love, to stop posterity?
+Thou art thy mother's glass, and she in thee
+Calls back the lovely April of her prime:
+So thou through windows of thine age shall see
+Despite of wrinkles this thy golden time.
+But if thou live, remember'd not to be,
+Die single, and thine image dies with thee.
+Unthrifty loveliness, why dost thou spend
+Upon thyself thy beauty's legacy?
+Nature's bequest gives nothing but doth lend,
+And being frank she lends to those are free.
+Then, beauteous niggard, why dost thou abuse
+The bounteous largess given thee to give?
+Profitless usurer, why dost thou use
+So great a sum of sums, yet canst not live?
+For having traffic with thyself alone,
+Thou of thyself thy sweet self dost deceive.
+Then how, when nature calls thee to be gone,
+What acceptable audit canst thou leave?
+Thy unused beauty must be tomb'd with thee,
+Which, used, lives th' executor to be.
+Those hours, that with gentle work did frame
+The lovely gaze where every eye doth dwell,
+Will play the tyrants to the very same
+And that unfair which fairly doth excel:
+For never-resting time leads summer on
+To hideous winter and confounds him there;
+Sap cheque'd with frost and lusty leaves quite gone,
+Beauty o'ersnow'd and bareness every where:
+Then, were not summer's distillation left,
+A liquid prisoner pent in walls of glass,
+Beauty's effect with beauty were bereft,
+Nor it nor no remembrance what it was:
+But flowers distill'd though they with winter meet,
+Leese but their show; their substance still lives sweet.
+Then let not winter's ragged hand deface
+In thee thy summer, ere thou be distill'd:
+Make sweet some vial; treasure thou some place
+With beauty's treasure, ere it be self-kill'd.
+That use is not forbidden usury,
+Which happies those that pay the willing loan;
+That's for thyself to breed another thee,
+Or ten times happier, be it ten for one;
+Ten times thyself were happier than thou art,
+If ten of thine ten times refigured thee:
+Then what could death do, if thou shouldst depart,
+Leaving thee living in posterity?
+Be not self-will'd, for thou art much too fair
+To be death's conquest and make worms thine heir.
+Lo! in the orient when the gracious light
+Lifts up his burning head, each under eye
+Doth homage to his new-appearing sight,
+Serving with looks his sacred majesty;
+And having climb'd the steep-up heavenly hill,
+Resembling strong youth in his middle age,
+yet mortal looks adore his beauty still,
+Attending on his golden pilgrimage;
+But when from highmost pitch, with weary car,
+Like feeble age, he reeleth from the day,
+The eyes, 'fore duteous, now converted are
+From his low tract and look another way:
+So thou, thyself out-going in thy noon,
+Unlook'd on diest, unless thou get a son.
+Music to hear, why hear'st thou music sadly?
+Sweets with sweets war not, joy delights in joy.
+Why lovest thou that which thou receivest not gladly,
+Or else receivest with pleasure thine annoy?
+If the true concord of well-tuned sounds,
+By unions married, do offend thine ear,
+They do but sweetly chide thee, who confounds
+In singleness the parts that thou shouldst bear.
+Mark how one string, sweet husband to another,
+Strikes each in each by mutual ordering,
+Resembling sire and child and happy mother
+Who all in one, one pleasing note do sing:
+Whose speechless song, being many, seeming one,
+Sings this to thee: 'thou single wilt prove none.'
+Is it for fear to wet a widow's eye
+That thou consumest thyself in single life?
+Ah! if thou issueless shalt hap to die.
+The world will wail thee, like a makeless wife;
+The world will be thy widow and still weep
+That thou no form of thee hast left behind,
+When every private widow well may keep
+By children's eyes her husband's shape in mind.
+Look, what an unthrift in the world doth spend
+Shifts but his place, for still the world enjoys it;
+But beauty's waste hath in the world an end,
+And kept unused, the user so destroys it.
+No love toward others in that bosom sits
+That on himself such murderous shame commits.
+For shame! deny that thou bear'st love to any,
+Who for thyself art so unprovident.
+Grant, if thou wilt, thou art beloved of many,
+But that thou none lovest is most evident;
+For thou art so possess'd with murderous hate
+That 'gainst thyself thou stick'st not to conspire.
+Seeking that beauteous roof to ruinate
+Which to repair should be thy chief desire.
+O, change thy thought, that I may change my mind!
+Shall hate be fairer lodged than gentle love?
+Be, as thy presence is, gracious and kind,
+Or to thyself at least kind-hearted prove:
+Make thee another self, for love of me,
+That beauty still may live in thine or thee.
+As fast as thou shalt wane, so fast thou growest
+In one of thine, from that which thou departest;
+And that fresh blood which youngly thou bestowest
+Thou mayst call thine when thou from youth convertest.
+Herein lives wisdom, beauty and increase:
+Without this, folly, age and cold decay:
+If all were minded so, the times should cease
+And threescore year would make the world away.
+Let those whom Nature hath not made for store,
+Harsh featureless and rude, barrenly perish:
+Look, whom she best endow'd she gave the more;
+Which bounteous gift thou shouldst in bounty cherish:
+She carved thee for her seal, and meant thereby
+Thou shouldst print more, not let that copy die.
+When I do count the clock that tells the time,
+And see the brave day sunk in hideous night;
+When I behold the violet past prime,
+And sable curls all silver'd o'er with white;
+When lofty trees I see barren of leaves
+Which erst from heat did canopy the herd,
+And summer's green all girded up in sheaves
+Borne on the bier with white and bristly beard,
+Then of thy beauty do I question make,
+That thou among the wastes of time must go,
+Since sweets and beauties do themselves forsake
+And die as fast as they see others grow;
+And nothing 'gainst Time's scythe can make defence
+Save breed, to brave him when he takes thee hence.
+O, that you were yourself! but, love, you are
+No longer yours than you yourself here live:
+Against this coming end you should prepare,
+And your sweet semblance to some other give.
+So should that beauty which you hold in lease
+Find no determination: then you were
+Yourself again after yourself's decease,
+When your sweet issue your sweet form should bear.
+Who lets so fair a house fall to decay,
+Which husbandry in honour might uphold
+Against the stormy gusts of winter's day
+And barren rage of death's eternal cold?
+O, none but unthrifts! Dear my love, you know
+You had a father: let your son say so.
+Not from the stars do I my judgment pluck;
+And yet methinks I have astronomy,
+But not to tell of good or evil luck,
+Of plagues, of dearths, or seasons' quality;
+Nor can I fortune to brief minutes tell,
+Pointing to each his thunder, rain and wind,
+Or say with princes if it shall go well,
+By oft predict that I in heaven find:
+But from thine eyes my knowledge I derive,
+And, constant stars, in them I read such art
+As truth and beauty shall together thrive,
+If from thyself to store thou wouldst convert;
+Or else of thee this I prognosticate:
+Thy end is truth's and beauty's doom and date.
+When I consider every thing that grows
+Holds in perfection but a little moment,
+That this huge stage presenteth nought but shows
+Whereon the stars in secret influence comment;
+When I perceive that men as plants increase,
+Cheered and cheque'd even by the self-same sky,
+Vaunt in their youthful sap, at height decrease,
+And wear their brave state out of memory;
+Then the conceit of this inconstant stay
+Sets you most rich in youth before my sight,
+Where wasteful Time debateth with Decay,
+To change your day of youth to sullied night;
+And all in war with Time for love of you,
+As he takes from you, I engraft you new.
+But wherefore do not you a mightier way
+Make war upon this bloody tyrant, Time?
+And fortify yourself in your decay
+With means more blessed than my barren rhyme?
+Now stand you on the top of happy hours,
+And many maiden gardens yet unset
+With virtuous wish would bear your living flowers,
+Much liker than your painted counterfeit:
+So should the lines of life that life repair,
+Which this, Time's pencil, or my pupil pen,
+Neither in inward worth nor outward fair,
+Can make you live yourself in eyes of men.
+To give away yourself keeps yourself still,
+And you must live, drawn by your own sweet skill.
+Who will believe my verse in time to come,
+If it were fill'd with your most high deserts?
+Though yet, heaven knows, it is but as a tomb
+Which hides your life and shows not half your parts.
+If I could write the beauty of your eyes
+And in fresh numbers number all your graces,
+The age to come would say 'This poet lies:
+Such heavenly touches ne'er touch'd earthly faces.'
+So should my papers yellow'd with their age
+Be scorn'd like old men of less truth than tongue,
+And your true rights be term'd a poet's rage
+And stretched metre of an antique song:
+But were some child of yours alive that time,
+You should live twice; in it and in my rhyme.
+Shall I compare thee to a summer's day?
+Thou art more lovely and more temperate:
+Rough winds do shake the darling buds of May,
+And summer's lease hath all too short a date:
+Sometime too hot the eye of heaven shines,
+And often is his gold complexion dimm'd;
+And every fair from fair sometime declines,
+By chance or nature's changing course untrimm'd;
+But thy eternal summer shall not fade
+Nor lose possession of that fair thou owest;
+Nor shall Death brag thou wander'st in his shade,
+When in eternal lines to time thou growest:
+So long as men can breathe or eyes can see,
+So long lives this and this gives life to thee.
+Devouring Time, blunt thou the lion's paws,
+And make the earth devour her own sweet brood;
+Pluck the keen teeth from the fierce tiger's jaws,
+And burn the long-lived phoenix in her blood;
+Make glad and sorry seasons as thou fleets,
+And do whate'er thou wilt, swift-footed Time,
+To the wide world and all her fading sweets;
+But I forbid thee one most heinous crime:
+O, carve not with thy hours my love's fair brow,
+Nor draw no lines there with thine antique pen;
+Him in thy course untainted do allow
+For beauty's pattern to succeeding men.
+Yet, do thy worst, old Time: despite thy wrong,
+My love shall in my verse ever live young.
+A woman's face with Nature's own hand painted
+Hast thou, the master-mistress of my passion;
+A woman's gentle heart, but not acquainted
+With shifting change, as is false women's fashion;
+An eye more bright than theirs, less false in rolling,
+Gilding the object whereupon it gazeth;
+A man in hue, all 'hues' in his controlling,
+Much steals men's eyes and women's souls amazeth.
+And for a woman wert thou first created;
+Till Nature, as she wrought thee, fell a-doting,
+And by addition me of thee defeated,
+By adding one thing to my purpose nothing.
+But since she prick'd thee out for women's pleasure,
+Mine be thy love and thy love's use their treasure.
+So is it not with me as with that Muse
+Stirr'd by a painted beauty to his verse,
+Who heaven itself for ornament doth use
+And every fair with his fair doth rehearse
+Making a couplement of proud compare,
+With sun and moon, with earth and sea's rich gems,
+With April's first-born flowers, and all things rare
+That heaven's air in this huge rondure hems.
+O' let me, true in love, but truly write,
+And then believe me, my love is as fair
+As any mother's child, though not so bright
+As those gold candles fix'd in heaven's air:
+Let them say more than like of hearsay well;
+I will not praise that purpose not to sell.
+My glass shall not persuade me I am old,
+So long as youth and thou are of one date;
+But when in thee time's furrows I behold,
+Then look I death my days should expiate.
+For all that beauty that doth cover thee
+Is but the seemly raiment of my heart,
+Which in thy breast doth live, as thine in me:
+How can I then be elder than thou art?
+O, therefore, love, be of thyself so wary
+As I, not for myself, but for thee will;
+Bearing thy heart, which I will keep so chary
+As tender nurse her babe from faring ill.
+Presume not on thy heart when mine is slain;
+Thou gavest me thine, not to give back again.
+As an unperfect actor on the stage
+Who with his fear is put besides his part,
+Or some fierce thing replete with too much rage,
+Whose strength's abundance weakens his own heart.
+So I, for fear of trust, forget to say
+The perfect ceremony of love's rite,
+And in mine own love's strength seem to decay,
+O'ercharged with burden of mine own love's might.
+O, let my books be then the eloquence
+And dumb presagers of my speaking breast,
+Who plead for love and look for recompense
+More than that tongue that more hath more express'd.
+O, learn to read what silent love hath writ:
+To hear with eyes belongs to love's fine wit.
+Mine eye hath play'd the painter and hath stell'd
+Thy beauty's form in table of my heart;
+My body is the frame wherein 'tis held,
+And perspective it is the painter's art.
+For through the painter must you see his skill,
+To find where your true image pictured lies;
+Which in my bosom's shop is hanging still,
+That hath his windows glazed with thine eyes.
+Now see what good turns eyes for eyes have done:
+Mine eyes have drawn thy shape, and thine for me
+Are windows to my breast, where-through the sun
+Delights to peep, to gaze therein on thee;
+Yet eyes this cunning want to grace their art;
+They draw but what they see, know not the heart.
+Let those who are in favour with their stars
+Of public honour and proud titles boast,
+Whilst I, whom fortune of such triumph bars,
+Unlook'd for joy in that I honour most.
+Great princes' favourites their fair leaves spread
+But as the marigold at the sun's eye,
+And in themselves their pride lies buried,
+For at a frown they in their glory die.
+The painful warrior famoused for fight,
+After a thousand victories once foil'd,
+Is from the book of honour razed quite,
+And all the rest forgot for which he toil'd:
+Then happy I, that love and am beloved
+Where I may not remove nor be removed.
+Lord of my love, to whom in vassalage
+Thy merit hath my duty strongly knit,
+To thee I send this written embassage,
+To witness duty, not to show my wit:
+Duty so great, which wit so poor as mine
+May make seem bare, in wanting words to show it,
+But that I hope some good conceit of thine
+In thy soul's thought, all naked, will bestow it;
+Till whatsoever star that guides my moving
+Points on me graciously with fair aspect
+And puts apparel on my tatter'd loving,
+To show me worthy of thy sweet respect:
+Then may I dare to boast how I do love thee;
+Till then not show my head where thou mayst prove me.
+Weary with toil, I haste me to my bed,
+The dear repose for limbs with travel tired;
+But then begins a journey in my head,
+To work my mind, when body's work's expired:
+For then my thoughts, from far where I abide,
+Intend a zealous pilgrimage to thee,
+And keep my drooping eyelids open wide,
+Looking on darkness which the blind do see
+Save that my soul's imaginary sight
+Presents thy shadow to my sightless view,
+Which, like a jewel hung in ghastly night,
+Makes black night beauteous and her old face new.
+Lo! thus, by day my limbs, by night my mind,
+For thee and for myself no quiet find.
+How can I then return in happy plight,
+That am debarr'd the benefit of rest?
+When day's oppression is not eased by night,
+But day by night, and night by day, oppress'd?
+And each, though enemies to either's reign,
+Do in consent shake hands to torture me;
+The one by toil, the other to complain
+How far I toil, still farther off from thee.
+I tell the day, to please them thou art bright
+And dost him grace when clouds do blot the heaven:
+So flatter I the swart-complexion'd night,
+When sparkling stars twire not thou gild'st the even.
+But day doth daily draw my sorrows longer
+And night doth nightly make grief's strength seem stronger.
+When, in disgrace with fortune and men's eyes,
+I all alone beweep my outcast state
+And trouble deal heaven with my bootless cries
+And look upon myself and curse my fate,
+Wishing me like to one more rich in hope,
+Featured like him, like him with friends possess'd,
+Desiring this man's art and that man's scope,
+With what I most enjoy contented least;
+Yet in these thoughts myself almost despising,
+Haply I think on thee, and then my state,
+Like to the lark at break of day arising
+From sullen earth, sings hymns at heaven's gate;
+For thy sweet love remember'd such wealth brings
+That then I scorn to change my state with kings.
+When to the sessions of sweet silent thought
+I summon up remembrance of things past,
+I sigh the lack of many a thing I sought,
+And with old woes new wail my dear time's waste:
+Then can I drown an eye, unused to flow,
+For precious friends hid in death's dateless night,
+And weep afresh love's long since cancell'd woe,
+And moan the expense of many a vanish'd sight:
+Then can I grieve at grievances foregone,
+And heavily from woe to woe tell o'er
+The sad account of fore-bemoaned moan,
+Which I new pay as if not paid before.
+But if the while I think on thee, dear friend,
+All losses are restored and sorrows end.
+Thy bosom is endeared with all hearts,
+Which I by lacking have supposed dead,
+And there reigns love and all love's loving parts,
+And all those friends which I thought buried.
+How many a holy and obsequious tear
+Hath dear religious love stol'n from mine eye
+As interest of the dead, which now appear
+But things removed that hidden in thee lie!
+Thou art the grave where buried love doth live,
+Hung with the trophies of my lovers gone,
+Who all their parts of me to thee did give;
+That due of many now is thine alone:
+Their images I loved I view in thee,
+And thou, all they, hast all the all of me.
+If thou survive my well-contented day,
+When that churl Death my bones with dust shall cover,
+And shalt by fortune once more re-survey
+These poor rude lines of thy deceased lover,
+Compare them with the bettering of the time,
+And though they be outstripp'd by every pen,
+Reserve them for my love, not for their rhyme,
+Exceeded by the height of happier men.
+O, then vouchsafe me but this loving thought:
+'Had my friend's Muse grown with this growing age,
+A dearer birth than this his love had brought,
+To march in ranks of better equipage:
+But since he died and poets better prove,
+Theirs for their style I'll read, his for his love.'
+Full many a glorious morning have I seen
+Flatter the mountain-tops with sovereign eye,
+Kissing with golden face the meadows green,
+Gilding pale streams with heavenly alchemy;
+Anon permit the basest clouds to ride
+With ugly rack on his celestial face,
+And from the forlorn world his visage hide,
+Stealing unseen to west with this disgrace:
+Even so my sun one early morn did shine
+With all triumphant splendor on my brow;
+But out, alack! he was but one hour mine;
+The region cloud hath mask'd him from me now.
+Yet him for this my love no whit disdaineth;
+Suns of the world may stain when heaven's sun staineth.
+Why didst thou promise such a beauteous day,
+And make me travel forth without my cloak,
+To let base clouds o'ertake me in my way,
+Hiding thy bravery in their rotten smoke?
+'Tis not enough that through the cloud thou break,
+To dry the rain on my storm-beaten face,
+For no man well of such a salve can speak
+That heals the wound and cures not the disgrace:
+Nor can thy shame give physic to my grief;
+Though thou repent, yet I have still the loss:
+The offender's sorrow lends but weak relief
+To him that bears the strong offence's cross.
+Ah! but those tears are pearl which thy love sheds,
+And they are rich and ransom all ill deeds.
+No more be grieved at that which thou hast done:
+Roses have thorns, and silver fountains mud;
+Clouds and eclipses stain both moon and sun,
+And loathsome canker lives in sweetest bud.
+All men make faults, and even I in this,
+Authorizing thy trespass with compare,
+Myself corrupting, salving thy amiss,
+Excusing thy sins more than thy sins are;
+For to thy sensual fault I bring in sense--
+Thy adverse party is thy advocate--
+And 'gainst myself a lawful plea commence:
+Such civil war is in my love and hate
+That I an accessary needs must be
+To that sweet thief which sourly robs from me.
+Let me confess that we two must be twain,
+Although our undivided loves are one:
+So shall those blots that do with me remain
+Without thy help by me be borne alone.
+In our two loves there is but one respect,
+Though in our lives a separable spite,
+Which though it alter not love's sole effect,
+Yet doth it steal sweet hours from love's delight.
+I may not evermore acknowledge thee,
+Lest my bewailed guilt should do thee shame,
+Nor thou with public kindness honour me,
+Unless thou take that honour from thy name:
+But do not so; I love thee in such sort
+As, thou being mine, mine is thy good report.
+As a decrepit father takes delight
+To see his active child do deeds of youth,
+So I, made lame by fortune's dearest spite,
+Take all my comfort of thy worth and truth.
+For whether beauty, birth, or wealth, or wit,
+Or any of these all, or all, or more,
+Entitled in thy parts do crowned sit,
+I make my love engrafted to this store:
+So then I am not lame, poor, nor despised,
+Whilst that this shadow doth such substance give
+That I in thy abundance am sufficed
+And by a part of all thy glory live.
+Look, what is best, that best I wish in thee:
+This wish I have; then ten times happy me!
\ No newline at end of file
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/convert_hf_to_fp8.py b/recipes/3p_integrations/crusoe/vllm-fp8/convert_hf_to_fp8.py
new file mode 100644
index 0000000000000000000000000000000000000000..f4591701c630614082f7aa06a34f19ff53681d95
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/convert_hf_to_fp8.py
@@ -0,0 +1,59 @@
+import torch
+import argparse
+from transformers import AutoTokenizer
+from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
+from llmcompressor.transformers.compression.helpers import (  # noqa
+    calculate_offload_device_map,
+    custom_offload_device_map,
+)
+
+def main():
+    parser = argparse.ArgumentParser(description="Compress a language model.")
+    parser.add_argument("model_stub", type=str, help="The model stub (e.g., 'bosonai/Higgs-Llama-3-70B')")
+    args = parser.parse_args()
+
+    recipe = """
+    quant_stage:
+        quant_modifiers:
+            QuantizationModifier:
+                ignore: ["lm_head"]
+                config_groups:
+                    group_0:
+                        weights:
+                            num_bits: 8
+                            type: float
+                            strategy: channel
+                            dynamic: false
+                            symmetric: true
+                        input_activations:
+                            num_bits: 8
+                            type: float
+                            strategy: token
+                            dynamic: true
+                            symmetric: true
+                        targets: ["Linear"]
+    """
+
+    model_stub = args.model_stub
+    model_name = model_stub.split("/")[-1]
+
+    device_map = calculate_offload_device_map(
+        model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype=torch.float16
+    )
+
+    model = SparseAutoModelForCausalLM.from_pretrained(
+        model_stub, torch_dtype=torch.float16, device_map=device_map
+    )
+
+    output_dir = f"./{model_name}-FP8-dynamic"
+
+    oneshot(
+        model=model,
+        recipe=recipe,
+        output_dir=output_dir,
+        save_compressed=True,
+        tokenizer=AutoTokenizer.from_pretrained(model_stub),
+    )
+
+if __name__ == "__main__":
+    main()
\ No newline at end of file
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/main.tf b/recipes/3p_integrations/crusoe/vllm-fp8/main.tf
new file mode 100644
index 0000000000000000000000000000000000000000..39572144babaf33f9e52cfe72dd58847a9f850f9
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/main.tf
@@ -0,0 +1,41 @@
+terraform {
+  required_providers {
+    crusoe = {
+      source = "registry.terraform.io/crusoecloud/crusoe"
+    }
+  }
+}
+
+locals {
+  my_ssh_key = file("~/.ssh/id_ed25519.pub")
+}
+
+// new VM
+resource "crusoe_compute_instance" "vllm_vm" {
+  name     = "vllm-example"
+  type     = "l40s-48gb.8x"
+  location = "us-southcentral1-a"
+
+  # specify the base image
+  image = "ubuntu22.04-nvidia-slurm:12.4"
+
+  disks = [
+    {
+      id              = crusoe_storage_disk.vllm_data_disk.id
+      mode            = "read-write"
+      attachment_type = "data"
+    }
+  ]
+
+  ssh_key = local.my_ssh_key
+}
+
+resource "crusoe_storage_disk" "vllm_data_disk" {
+  name     = "vllm-example-disk"
+  size     = "256GiB"
+  location = "us-southcentral1-a"
+}
+
+output "instance_public_ip" {
+  value = crusoe_compute_instance.vllm_vm.network_interfaces[0].public_ipv4.address
+}
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/plot.py b/recipes/3p_integrations/crusoe/vllm-fp8/plot.py
new file mode 100644
index 0000000000000000000000000000000000000000..ff0134f1936b89694604bb5c33fc8e033440026e
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/plot.py
@@ -0,0 +1,72 @@
+import json
+import os
+import re
+import matplotlib.pyplot as plt
+import numpy as np
+from collections import defaultdict
+
+def extract_info_from_filename(filename):
+    pattern = r'(?P<backend>[^-]+)-(?P<qps>\d+\.\d+)qps-(?P<model>.+)-(?P<date>\d{8}-\d{6})\.json'
+    match = re.match(pattern, filename)
+    if match:
+        return {
+            'qps': float(match.group('qps')),
+            'model': match.group('model')
+        }
+    return None
+
+def read_json_files(directory):
+    data_tpot = defaultdict(list)
+    data_ttft = defaultdict(list)
+    for filename in os.listdir(directory):
+        if filename.endswith('.json'):
+            filepath = os.path.join(directory, filename)
+            file_info = extract_info_from_filename(filename)
+            if file_info:
+                with open(filepath, 'r') as file:
+                    json_data = json.load(file)
+                    median_tpot = json_data.get('median_tpot_ms')
+                    std_tpot = json_data.get('std_tpot_ms')
+                    median_ttft = json_data.get('median_ttft_ms')
+                    std_ttft = json_data.get('std_ttft_ms')
+                    if all(v is not None for v in [median_tpot, std_tpot, median_ttft, std_ttft]):
+                        data_tpot[file_info['model']].append((file_info['qps'], median_tpot, std_tpot))
+                        data_ttft[file_info['model']].append((file_info['qps'], median_ttft, std_ttft))
+    return {
+        'tpot': {model: sorted(points) for model, points in data_tpot.items()},
+        'ttft': {model: sorted(points) for model, points in data_ttft.items()}
+    }
+
+def create_chart(data, metric, filename):
+    plt.figure(figsize=(12, 6))
+    
+    colors = plt.cm.rainbow(np.linspace(0, 1, len(data)))
+    for (model, points), color in zip(data.items(), colors):
+        qps_values, median_values, std_values = zip(*points)
+        plt.errorbar(qps_values, median_values, yerr=std_values, fmt='o-', capsize=5, capthick=2, label=model, color=color)
+        plt.fill_between(qps_values, 
+                         np.array(median_values) - np.array(std_values),
+                         np.array(median_values) + np.array(std_values),
+                         alpha=0.2, color=color)
+
+    plt.xlabel('QPS (Queries Per Second)')
+    plt.ylabel(f'Median {metric.upper()} (ms)')
+    plt.title(f'Median {metric.upper()} vs QPS with Standard Deviation')
+    plt.grid(True)
+    plt.legend(title='Model', bbox_to_anchor=(1.05, 1), loc='upper left')
+    plt.tight_layout()
+    plt.savefig(filename, dpi=300, bbox_inches='tight')
+    plt.close()
+
+def main():
+    directory = './'
+    data = read_json_files(directory)
+    if data['tpot'] and data['ttft']:
+        create_chart(data['tpot'], 'tpot', 'tpot_vs_qps_chart.png')
+        create_chart(data['ttft'], 'ttft', 'ttft_vs_qps_chart.png')
+        print("Charts have been saved as 'tpot_vs_qps_chart.png' and 'ttft_vs_qps_chart.png'")
+    else:
+        print("No valid data found in the specified directory.")
+
+if __name__ == "__main__":
+    main()
\ No newline at end of file
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/pyproject.toml b/recipes/3p_integrations/crusoe/vllm-fp8/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..b05d700f164b2ec4c1314824f3473fe3dfafda46
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/pyproject.toml
@@ -0,0 +1,12 @@
+[project]
+name = "vllm-l40s"
+version = "0.1.0"
+description = "Add your description here"
+readme = "README.md"
+requires-python = ">=3.10"
+dependencies = [
+    "setuptools>=74.0.0",
+    "vllm>=0.5.5",
+    "matplotlib>=3.9.2",
+    "llmcompressor>=0.1.0",
+]
diff --git a/recipes/3p_integrations/crusoe/vllm-fp8/run_benchmark.sh b/recipes/3p_integrations/crusoe/vllm-fp8/run_benchmark.sh
new file mode 100755
index 0000000000000000000000000000000000000000..2ca160600211e50d63a80bdd089dccf0640151f9
--- /dev/null
+++ b/recipes/3p_integrations/crusoe/vllm-fp8/run_benchmark.sh
@@ -0,0 +1,12 @@
+TOTAL_SECONDS=120
+QPS_RATES=("1" "3" "5" "7" "9")
+
+for QPS in ${QPS_RATES[@]}; do
+    NUM_PROMPTS=$((TOTAL_SECONDS * QPS))
+    echo "===== RUNNING NUM_PROMPTS = $NUM_PROMPTS QPS = $QPS ====="
+
+    uv run benchmarks/benchmark_serving.py \
+        --model $MODEL \
+        --dataset-name sonnet --sonnet-input-len 550 --sonnet-output-len 150 --dataset-path benchmarks/sonnet.txt \
+        --num-prompts $NUM_PROMPTS --request-rate $QPS --save-result
+done
\ No newline at end of file
diff --git a/recipes/3p_integrations/llamaindex/dlai_agentic_rag/README.md b/recipes/3p_integrations/llamaindex/dlai_agentic_rag/README.md
index 0f27972e66dd8c687e54cd049684f7a8626c7c19..deeee9a9cdd1317c0f406ecfa410701305891719 100644
--- a/recipes/3p_integrations/llamaindex/dlai_agentic_rag/README.md
+++ b/recipes/3p_integrations/llamaindex/dlai_agentic_rag/README.md
@@ -2,10 +2,10 @@
 
 The folder here containts the Llama 3 ported notebooks of the DLAI short course [Building Agentic RAG with Llamaindex](https://www.deeplearning.ai/short-courses/building-agentic-rag-with-llamaindex/).
 
-1. [Building Agentic RAG with Llamaindex L1 Router Engine](../../../quickstart/agents/dlai/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb) shows how to implement a simple agentic RAG, a router that will pick up one of several query tools (question answering or summarization) to execute a query on a single document. Note this notebook is located in the `quickstart` folder.
+1. [Building Agentic RAG with Llamaindex L1 Router Engine](../../../quickstart/agents/DeepLearningai_Course_Notebooks/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb) shows how to implement a simple agentic RAG, a router that will pick up one of several query tools (question answering or summarization) to execute a query on a single document. Note this notebook is located in the `quickstart` folder.
 
 2. [Building Agentic RAG with Llamaindex L2 Tool Calling](Building_Agentic_RAG_with_Llamaindex_L2_Tool_Calling.ipynb) shows how to use Llama 3 to not only pick a function to execute, but also infer an argument to pass through the function.
 
 3. [Building Agentic RAG with Llamaindex L3 Building an Agent Reasoning Loop](Building_Agentic_RAG_with_Llamaindex_L3_Building_an_Agent_Reasoning_Loop.ipynb) shows how to define a complete agent reasoning loop to reason over tools and multiple steps on a complex question the user asks about a single document while maintaining memory.
 
-3. [Building Agentic RAG with Llamaindex L4 Building a Multi-Document Agent](Building_Agentic_RAG_with_Llamaindex_L4_Building_a_Multi-Document_Agent.ipynb) shows how to use an agent to handle multiple documents and increasing degrees of complexity.
\ No newline at end of file
+3. [Building Agentic RAG with Llamaindex L4 Building a Multi-Document Agent](Building_Agentic_RAG_with_Llamaindex_L4_Building_a_Multi-Document_Agent.ipynb) shows how to use an agent to handle multiple documents and increasing degrees of complexity.
diff --git a/recipes/experimental/long_context/H2O/README.md b/recipes/experimental/long_context/H2O/README.md
index 675e1ef68138e6014e03bccc017aa4254c6a4599..20167f50db59c3c0963f116515b758f0bffc2eb6 100644
--- a/recipes/experimental/long_context/H2O/README.md
+++ b/recipes/experimental/long_context/H2O/README.md
@@ -8,7 +8,7 @@ Besides, LLMs usually have poor generation to long sequence during inference. H2
 
 Current implementation supports llama-1/2/3, from 7B to 70B. Since H2O only maintains the most important KV pairs, it might missing some important information in the middle content for some knowlege-intensive tasks.
 
-More details please refer to Paper: **https://arxiv.org/pdf/2306.14048**; Blog: **https://allenz.work/?p=11**.
+More details please refer to Paper: **https://arxiv.org/pdf/2306.14048**;
 
 **Note: this implementation is tested with transformers == 4.39.0**
 
@@ -21,7 +21,7 @@ python run_summarization.py \
 --input-path data/summarization/xsum.jsonl \
 --output-path summarization_output/xsum_h2o.jsonl \
 --model-name meta-llama/Meta-Llama-3-8B \
---enable_h2o_generation 
+--enable_h2o_generation
 ```
 
 ##### **Results**
@@ -36,7 +36,7 @@ Expected results on XSUM (Rouge-2 score, the higher the better) from the above s
 
 ### One Demo on Streaming to "Infinite" Context Length
 
-The following example demonstrates the generation process of "infinite" sequence length. We use MT-Bench data and generate the context sample-by-sample. The KV Cache will keep the KV pairs from the previous samples while maintain a fixed size. Results can be found on [Demo](https://allenz.work/?p=11) (Video 1).
+The following example demonstrates the generation process of "infinite" sequence length. We use MT-Bench data and generate the context sample-by-sample. The KV Cache will keep the KV pairs from the previous samples while maintain a fixed size.
 
 ```
 # run with full cache
diff --git a/recipes/quickstart/NotebookLlama/README.md b/recipes/quickstart/NotebookLlama/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..70293c7f5a3f360ab9f4712d91df3b70115c80d8
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/README.md
@@ -0,0 +1,95 @@
+## NotebookLlama: An Open Source version of NotebookLM
+
+![NotebookLlama](./resources/Outline.jpg)
+
+[Listen to audio from the example here](./resources/_podcast.mp3)
+
+This is a guided series of tutorials/notebooks that can be taken as a reference or course to build a PDF to Podcast workflow. 
+
+You will also learn from the experiments of using  Text to Speech Models.
+
+It assumes zero knowledge of LLMs, prompting and audio models, everything is covered in their respective notebooks.
+
+### Outline:
+
+Here is step by step thought (pun intended) for the task:
+
+- Step 1: Pre-process PDF: Use `Llama-3.2-1B-Instruct` to pre-process the PDF and save it in a `.txt` file.
+- Step 2: Transcript Writer: Use `Llama-3.1-70B-Instruct` model to write a podcast transcript from the text
+- Step 3: Dramatic Re-Writer: Use `Llama-3.1-8B-Instruct` model to make the transcript more dramatic
+- Step 4: Text-To-Speech Workflow: Use `parler-tts/parler-tts-mini-v1` and `bark/suno` to generate a conversational podcast
+
+Note 1: In Step 1, we prompt the 1B model to not modify the text or summarize it, strictly clean up extra characters or garbage characters that might get picked due to encoding from PDF. Please see the prompt in Notebook 1 for more details.
+
+Note 2: For Step 2, you can also use `Llama-3.1-8B-Instruct` model, we recommend experimenting and trying if you see any differences. The 70B model was used here because it gave slightly more creative podcast transcripts for the tested examples.
+
+Note 3: For Step 4, please try to extend the approach with other models. These models were chosen based on a sample prompt and worked best, newer models might sound better. Please see [Notes](./TTS_Notes.md) for some of the sample tests.
+
+### Detailed steps on running the notebook:
+
+Requirements: GPU server or an API provider for using 70B, 8B and 1B Llama models.
+For running the 70B model, you will need a GPU with aggregated memory around 140GB to infer in bfloat-16 precision.
+
+Note: For our GPU Poor friends, you can also use the 8B and lower models for the entire pipeline. There is no strong recommendation. The pipeline below is what worked best on first few tests. You should try and see what works best for you!
+
+- Before getting started, please make sure to login using the `huggingface cli` and then launch your jupyter notebook server to make sure you are able to download the Llama models.
+
+You'll need your Hugging Face access token, which you can get at your Settings page [here](https://huggingface.co/settings/tokens). Then run `huggingface-cli login` and copy and paste your Hugging Face access token to complete the login to make sure the scripts can download Hugging Face models if needed.
+
+- First, please Install the requirements from [here]() by running inside the folder:
+
+```
+git clone https://github.com/meta-llama/llama-recipes
+cd llama-recipes/recipes/quickstart/NotebookLlama/
+pip install -r requirements.txt
+```
+
+- Notebook 1:
+
+This notebook is used for processing the PDF and processing it using the new Feather light model into a `.txt` file.
+
+Update the first cell with a PDF link that you would like to use. Please decide on a PDF to use for Notebook 1, it can be any link but please remember to update the first cell of the notebook with the right link. 
+
+Please try changing the prompts for the `Llama-3.2-1B-Instruct` model and see if you can improve results.
+
+- Notebook 2:
+
+This notebook will take in the processed output from Notebook 1 and creatively convert it into a podcast transcript using the `Llama-3.1-70B-Instruct` model. If you are GPU rich, please feel free to test with the 405B model!
+
+Please try experimenting with the System prompts for the model and see if you can improve the results and try the 8B model as well here to see if there is a huge difference!
+
+- Notebook 3:
+
+This notebook takes the transcript from earlier and prompts `Llama-3.1-8B-Instruct` to add more dramatization and interruptions in the conversations. 
+
+There is also a key factor here: we return a tuple of conversation which makes our lives easier later. Yes, studying Data Structures 101 was actually useful for once!
+
+For our TTS logic, we use two different models that behave differently with certain prompts. So we prompt the model to add specifics for each speaker accordingly.
+
+Please again try changing the system prompt and see if you can improve the results. We encourage testing the feather light 3B and 1B models as well at this stage
+
+- Notebook 4:
+
+Finally, we take the results from last notebook and convert them into a podcast. We use the `parler-tts/parler-tts-mini-v1` and `bark/suno` models for a conversation.
+
+The speakers and the prompt for parler model were decided based on experimentation and suggestions from the model authors. Please try experimenting, you can find more details in the resources section.
+
+
+#### Note: Right now there is one issue: Parler needs transformers 4.43.3 or earlier and for steps 1 to 3 of the pipeline you need latest, so we just switch versions in the last notebook.
+
+### Next-Improvements/Further ideas:
+
+- Speech Model experimentation: The TTS model is the limitation of how natural this will sound. This probably be improved with a better pipeline and with the help of someone more knowledgable-PRs are welcome! :) 
+- LLM vs LLM Debate: Another approach of writing the podcast would be having two agents debate the topic of interest and write the podcast outline. Right now we use a single LLM (70B) to write the podcast outline
+- Testing 405B for writing the transcripts
+- Better prompting
+- Support for ingesting a website, audio file, YouTube links and more. Again, we welcome community PRs!
+
+### Resources for further learning:
+
+- https://betterprogramming.pub/text-to-audio-generation-with-bark-clearly-explained-4ee300a3713a
+- https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing
+- https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing#scrollTo=NyYQ--3YksJY
+- https://replicate.com/suno-ai/bark?prediction=zh8j6yddxxrge0cjp9asgzd534
+- https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c
+
diff --git a/recipes/quickstart/NotebookLlama/Step-1 PDF-Pre-Processing-Logic.ipynb b/recipes/quickstart/NotebookLlama/Step-1 PDF-Pre-Processing-Logic.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e4bf71d3812d440e358ff8bcaa4a416c18f2f6ec
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/Step-1 PDF-Pre-Processing-Logic.ipynb	
@@ -0,0 +1,2741 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "4f67a6a6",
+   "metadata": {},
+   "source": [
+    "## Notebook 1: PDF Pre-processing"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f68aee84-04e3-4cbc-be78-6de9e06e704f",
+   "metadata": {},
+   "source": [
+    "In the series, we will be going from a PDF to Podcast using all open models. \n",
+    "\n",
+    "The first step in getting to the podcast is finding a script, right now our logic is:\n",
+    "- Use any PDF on any topic\n",
+    "- Prompt `Llama-3.2-1B-Instruct` model to process it into a text file\n",
+    "- Re-write this into a podcast transcript in next notebook.\n",
+    "\n",
+    "In this notebook, we will upload a PDF and save it into a `.txt` file using the `PyPDF2` library, later we will process chunks from the text file using our featherlight model."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "61cb3584",
+   "metadata": {},
+   "source": [
+    "Most of us shift-enter pass the comments to realise later we need to install libraries. For the few that read the instructions, please remember to do so:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "id": "f4fc7aef-3505-482e-a998-790b8b9d48e4",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#!pip install PyPDF2\n",
+    "#!pip install rich ipywidgets"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7b23d509",
+   "metadata": {},
+   "source": [
+    "Assuming you have a PDF uploaded on the same machine, please set the path for the file. \n",
+    "\n",
+    "Also, if you want to flex your GPU-please switch to a bigger model although the featherlight models work perfectly for this task:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "id": "60d0061b-8b8c-4353-850f-f19466a0ae2d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "pdf_path = './resources/2402.13116v3.pdf'\n",
+    "DEFAULT_MODEL = \"meta-llama/Llama-3.2-1B-Instruct\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "id": "21029232-ac5f-42ca-b26b-baad5b2f49b7",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import PyPDF2\n",
+    "from typing import Optional\n",
+    "import os\n",
+    "import torch\n",
+    "from accelerate import Accelerator\n",
+    "from transformers import AutoModelForCausalLM, AutoTokenizer\n",
+    "\n",
+    "from tqdm.notebook import tqdm\n",
+    "import warnings\n",
+    "\n",
+    "warnings.filterwarnings('ignore')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "203c22eb",
+   "metadata": {},
+   "source": [
+    "Let's make sure we don't stub our toe by checking if the file exists"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "153d9ece-37a4-4fff-a8e8-53f923a2b0a0",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def validate_pdf(file_path: str) -> bool:\n",
+    "    if not os.path.exists(file_path):\n",
+    "        print(f\"Error: File not found at path: {file_path}\")\n",
+    "        return False\n",
+    "    if not file_path.lower().endswith('.pdf'):\n",
+    "        print(\"Error: File is not a PDF\")\n",
+    "        return False\n",
+    "    return True"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5a362ac3",
+   "metadata": {},
+   "source": [
+    "Convert PDF to a `.txt` file. This would simply read and dump the contents of the file. We set the maximum characters to 100k. \n",
+    "\n",
+    "For people converting their favorite novels into a podcast, they will have to add extra logic of going outside the Llama models context length which is 128k tokens."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "b57c2d64-3d75-4aeb-b4ee-bd1661286b66",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def extract_text_from_pdf(file_path: str, max_chars: int = 100000) -> Optional[str]:\n",
+    "    if not validate_pdf(file_path):\n",
+    "        return None\n",
+    "    \n",
+    "    try:\n",
+    "        with open(file_path, 'rb') as file:\n",
+    "            # Create PDF reader object\n",
+    "            pdf_reader = PyPDF2.PdfReader(file)\n",
+    "            \n",
+    "            # Get total number of pages\n",
+    "            num_pages = len(pdf_reader.pages)\n",
+    "            print(f\"Processing PDF with {num_pages} pages...\")\n",
+    "            \n",
+    "            extracted_text = []\n",
+    "            total_chars = 0\n",
+    "            \n",
+    "            # Iterate through all pages\n",
+    "            for page_num in range(num_pages):\n",
+    "                # Extract text from page\n",
+    "                page = pdf_reader.pages[page_num]\n",
+    "                text = page.extract_text()\n",
+    "                \n",
+    "                # Check if adding this page's text would exceed the limit\n",
+    "                if total_chars + len(text) > max_chars:\n",
+    "                    # Only add text up to the limit\n",
+    "                    remaining_chars = max_chars - total_chars\n",
+    "                    extracted_text.append(text[:remaining_chars])\n",
+    "                    print(f\"Reached {max_chars} character limit at page {page_num + 1}\")\n",
+    "                    break\n",
+    "                \n",
+    "                extracted_text.append(text)\n",
+    "                total_chars += len(text)\n",
+    "                print(f\"Processed page {page_num + 1}/{num_pages}\")\n",
+    "            \n",
+    "            final_text = '\\n'.join(extracted_text)\n",
+    "            print(f\"\\nExtraction complete! Total characters: {len(final_text)}\")\n",
+    "            return final_text\n",
+    "            \n",
+    "    except PyPDF2.PdfReadError:\n",
+    "        print(\"Error: Invalid or corrupted PDF file\")\n",
+    "        return None\n",
+    "    except Exception as e:\n",
+    "        print(f\"An unexpected error occurred: {str(e)}\")\n",
+    "        return None\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e023397b",
+   "metadata": {},
+   "source": [
+    "Helper function to grab meta info about our PDF"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "0984bb1e-d52c-4cec-a131-67a48061fabc",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Get PDF metadata\n",
+    "def get_pdf_metadata(file_path: str) -> Optional[dict]:\n",
+    "    if not validate_pdf(file_path):\n",
+    "        return None\n",
+    "    \n",
+    "    try:\n",
+    "        with open(file_path, 'rb') as file:\n",
+    "            pdf_reader = PyPDF2.PdfReader(file)\n",
+    "            metadata = {\n",
+    "                'num_pages': len(pdf_reader.pages),\n",
+    "                'metadata': pdf_reader.metadata\n",
+    "            }\n",
+    "            return metadata\n",
+    "    except Exception as e:\n",
+    "        print(f\"Error extracting metadata: {str(e)}\")\n",
+    "        return None"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6019affc",
+   "metadata": {},
+   "source": [
+    "Finally, we can run our logic to extract the details from the file"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "id": "63848943-79cc-4e21-8396-6eab5df493e0",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Extracting metadata...\n",
+      "\n",
+      "PDF Metadata:\n",
+      "Number of pages: 44\n",
+      "Document info:\n",
+      "/Author: \n",
+      "/CreationDate: D:20240311015030Z\n",
+      "/Creator: LaTeX with hyperref\n",
+      "/Keywords: \n",
+      "/ModDate: D:20240311015030Z\n",
+      "/PTEX.Fullbanner: This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5\n",
+      "/Producer: pdfTeX-1.40.25\n",
+      "/Subject: \n",
+      "/Title: \n",
+      "/Trapped: /False\n",
+      "\n",
+      "Extracting text...\n",
+      "Processing PDF with 44 pages...\n",
+      "Processed page 1/44\n",
+      "Processed page 2/44\n",
+      "Processed page 3/44\n",
+      "Processed page 4/44\n",
+      "Processed page 5/44\n",
+      "Processed page 6/44\n",
+      "Processed page 7/44\n",
+      "Processed page 8/44\n",
+      "Processed page 9/44\n",
+      "Processed page 10/44\n",
+      "Processed page 11/44\n",
+      "Processed page 12/44\n",
+      "Processed page 13/44\n",
+      "Processed page 14/44\n",
+      "Processed page 15/44\n",
+      "Processed page 16/44\n",
+      "Reached 100000 character limit at page 17\n",
+      "\n",
+      "Extraction complete! Total characters: 100016\n",
+      "\n",
+      "Preview of extracted text (first 500 characters):\n",
+      "--------------------------------------------------\n",
+      "1\n",
+      "A Survey on Knowledge Distillation of Large\n",
+      "Language Models\n",
+      "Xiaohan Xu1, Ming Li2, Chongyang Tao3, Tao Shen4, Reynold Cheng1, Jinyang Li1,\n",
+      "Can Xu5, Dacheng Tao6, Tianyi Zhou2\n",
+      "1The University of Hong Kong2University of Maryland3Microsoft\n",
+      "4University of Technology Sydney5Peking University6The University of Sydney\n",
+      "{shawnxxh,chongyangtao,hishentao }@gmail.com {minglii,tianyi }@umd.edu\n",
+      "ckcheng@cs.hku.hk jl0725@connect.hku.hk\n",
+      "Abstract —In the era of Large Language Models (LLMs), Knowledge Distillati\n",
+      "--------------------------------------------------\n",
+      "\n",
+      "Total characters extracted: 100016\n",
+      "\n",
+      "Extracted text has been saved to extracted_text.txt\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Extract metadata first\n",
+    "print(\"Extracting metadata...\")\n",
+    "metadata = get_pdf_metadata(pdf_path)\n",
+    "if metadata:\n",
+    "    print(\"\\nPDF Metadata:\")\n",
+    "    print(f\"Number of pages: {metadata['num_pages']}\")\n",
+    "    print(\"Document info:\")\n",
+    "    for key, value in metadata['metadata'].items():\n",
+    "        print(f\"{key}: {value}\")\n",
+    "\n",
+    "# Extract text\n",
+    "print(\"\\nExtracting text...\")\n",
+    "extracted_text = extract_text_from_pdf(pdf_path)\n",
+    "\n",
+    "# Display first 500 characters of extracted text as preview\n",
+    "if extracted_text:\n",
+    "    print(\"\\nPreview of extracted text (first 500 characters):\")\n",
+    "    print(\"-\" * 50)\n",
+    "    print(extracted_text[:500])\n",
+    "    print(\"-\" * 50)\n",
+    "    print(f\"\\nTotal characters extracted: {len(extracted_text)}\")\n",
+    "\n",
+    "# Optional: Save the extracted text to a file\n",
+    "if extracted_text:\n",
+    "    output_file = 'extracted_text.txt'\n",
+    "    with open(output_file, 'w', encoding='utf-8') as f:\n",
+    "        f.write(extracted_text)\n",
+    "    print(f\"\\nExtracted text has been saved to {output_file}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "946d1f59",
+   "metadata": {},
+   "source": [
+    "### Llama Pre-Processing\n",
+    "\n",
+    "Now let's proceed to justify our distaste for writing regex and use that as a justification for a LLM instead:\n",
+    "\n",
+    "At this point, have a text file extracted from a PDF of a paper. Generally PDF extracts can be messy due to characters, formatting, Latex, Tables, etc. \n",
+    "\n",
+    "One way to handle this would be using regex, instead we can also prompt the feather light Llama models to clean up our text for us. \n",
+    "\n",
+    "Please try changing the `SYS_PROMPT` below to see what improvements you can make:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 60,
+   "id": "7c0828a5-964d-475e-b5f5-40a04e287725",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
+    "\n",
+    "SYS_PROMPT = \"\"\"\n",
+    "You are a world class text pre-processor, here is the raw data from a PDF, please parse and return it in a way that is crispy and usable to send to a podcast writer.\n",
+    "\n",
+    "The raw data is messed up with new lines, Latex math and you will see fluff that we can remove completely. Basically take away any details that you think might be useless in a podcast author's transcript.\n",
+    "\n",
+    "Remember, the podcast could be on any topic whatsoever so the issues listed above are not exhaustive\n",
+    "\n",
+    "Please be smart with what you remove and be creative ok?\n",
+    "\n",
+    "Remember DO NOT START SUMMARIZING THIS, YOU ARE ONLY CLEANING UP THE TEXT AND RE-WRITING WHEN NEEDED\n",
+    "\n",
+    "Be very smart and aggressive with removing details, you will get a running portion of the text and keep returning the processed text.\n",
+    "\n",
+    "PLEASE DO NOT ADD MARKDOWN FORMATTING, STOP ADDING SPECIAL CHARACTERS THAT MARKDOWN CAPATILISATION ETC LIKES\n",
+    "\n",
+    "ALWAYS start your response directly with processed text and NO ACKNOWLEDGEMENTS about my questions ok?\n",
+    "Here is the text:\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fd393fae",
+   "metadata": {},
+   "source": [
+    "Instead of having the model process the entire file at once, as you noticed in the prompt-we will pass chunks of the file. \n",
+    "\n",
+    "One issue with passing chunks counted by characters is, we lose meaning of words so instead we chunk by words:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 61,
+   "id": "24e8a547-9d7c-4e2f-be9e-a3aea09cce76",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def create_word_bounded_chunks(text, target_chunk_size):\n",
+    "    \"\"\"\n",
+    "    Split text into chunks at word boundaries close to the target chunk size.\n",
+    "    \"\"\"\n",
+    "    words = text.split()\n",
+    "    chunks = []\n",
+    "    current_chunk = []\n",
+    "    current_length = 0\n",
+    "    \n",
+    "    for word in words:\n",
+    "        word_length = len(word) + 1  # +1 for the space\n",
+    "        if current_length + word_length > target_chunk_size and current_chunk:\n",
+    "            # Join the current chunk and add it to chunks\n",
+    "            chunks.append(' '.join(current_chunk))\n",
+    "            current_chunk = [word]\n",
+    "            current_length = word_length\n",
+    "        else:\n",
+    "            current_chunk.append(word)\n",
+    "            current_length += word_length\n",
+    "    \n",
+    "    # Add the last chunk if it exists\n",
+    "    if current_chunk:\n",
+    "        chunks.append(' '.join(current_chunk))\n",
+    "    \n",
+    "    return chunks"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5d74223f",
+   "metadata": {},
+   "source": [
+    "Let's load in the model and start processing the text chunks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 62,
+   "id": "d04a4f07-b0b3-45ca-8f41-a433e1abe050",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "accelerator = Accelerator()\n",
+    "model = AutoModelForCausalLM.from_pretrained(\n",
+    "    DEFAULT_MODEL,\n",
+    "    torch_dtype=torch.bfloat16,\n",
+    "    use_safetensors=True,\n",
+    "    device_map=device,\n",
+    ")\n",
+    "tokenizer = AutoTokenizer.from_pretrained(DEFAULT_MODEL, use_safetensors=True)\n",
+    "model, tokenizer = accelerator.prepare(model, tokenizer)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 63,
+   "id": "bbda5241-e890-4402-87dd-514d6761bb9c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def process_chunk(text_chunk, chunk_num):\n",
+    "    \"\"\"Process a chunk of text and return both input and output for verification\"\"\"\n",
+    "    conversation = [\n",
+    "        {\"role\": \"system\", \"content\": SYS_PROMPT},\n",
+    "        {\"role\": \"user\", \"content\": text_chunk},\n",
+    "    ]\n",
+    "    \n",
+    "    prompt = tokenizer.apply_chat_template(conversation, tokenize=False)\n",
+    "    inputs = tokenizer(prompt, return_tensors=\"pt\").to(device)\n",
+    "    \n",
+    "    with torch.no_grad():\n",
+    "        output = model.generate(\n",
+    "            **inputs,\n",
+    "            temperature=0.7,\n",
+    "            top_p=0.9,\n",
+    "            max_new_tokens=512\n",
+    "        )\n",
+    "    \n",
+    "    processed_text = tokenizer.decode(output[0], skip_special_tokens=True)[len(prompt):].strip()\n",
+    "    \n",
+    "    # Print chunk information for monitoring\n",
+    "    #print(f\"\\n{'='*40} Chunk {chunk_num} {'='*40}\")\n",
+    "    print(f\"INPUT TEXT:\\n{text_chunk[:500]}...\")  # Show first 500 chars of input\n",
+    "    print(f\"\\nPROCESSED TEXT:\\n{processed_text[:500]}...\")  # Show first 500 chars of output\n",
+    "    print(f\"{'='*90}\\n\")\n",
+    "    \n",
+    "    return processed_text"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 64,
+   "id": "a0183c47-339d-4041-ae83-77fc34931075",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "INPUT_FILE = \"./resources/extracted_text.txt\"  # Replace with your file path\n",
+    "CHUNK_SIZE = 1000  # Adjust chunk size if needed\n",
+    "\n",
+    "chunks = create_word_bounded_chunks(text, CHUNK_SIZE)\n",
+    "num_chunks = len(chunks)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 65,
+   "id": "bb36814f-9310-4734-bf54-e16a5032339e",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "101"
+      ]
+     },
+     "execution_count": 65,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "num_chunks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 66,
+   "id": "447188d3-ebf0-42d5-940e-4d7e0d9dbf32",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Read the file\n",
+    "with open(INPUT_FILE, 'r', encoding='utf-8') as file:\n",
+    "    text = file.read()\n",
+    "\n",
+    "# Calculate number of chunks\n",
+    "num_chunks = (len(text) + CHUNK_SIZE - 1) // CHUNK_SIZE\n",
+    "\n",
+    "# Cell 6: Process the file with ordered output\n",
+    "# Create output file name\n",
+    "output_file = f\"clean_{os.path.basename(INPUT_FILE)}\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 67,
+   "id": "7917dfdd-b3af-44fc-a8c0-2760ace9363e",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b767f45b5e514e7db936cef825af6fce",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Processing chunks:   0%|          | 0/101 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "1 A Survey on Knowledge Distillation of Large Language Models Xiaohan Xu1, Ming Li2, Chongyang Tao3, Tao Shen4, Reynold Cheng1, Jinyang Li1, Can Xu5, Dacheng Tao6, Tianyi Zhou2 1The University of Hong Kong2University of Maryland3Microsoft 4University of Technology Sydney5Peking University6The University of Sydney {shawnxxh,chongyangtao,hishentao }@gmail.com {minglii,tianyi }@umd.edu ckcheng@cs.hku.hk jl0725@connect.hku.hk Abstract —In the era of Large Language Models (LLMs), Knowledge Distillati...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "===============\n",
+      "\n",
+      "Knowledge Distillation is a methodology that transfers advanced capabilities from leading proprietary Large Language Models (LLMs) to their open-source counterparts, such as LLaMA and Mistral. This paper presents a comprehensive survey of KD's role in imparting advanced knowledge.\n",
+      "\n",
+      "Abstract —In the era of Large Language Models, Knowledge Distillation emerges as a pivotal methodology for transferring advanced capabilities from proprietary LLMs to open-source counterparts, facilit...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "advanced knowledge to smaller models and its utility in model compression and self- improvement. Our survey is meticulously structured around three foundational pillars: algorithm ,skill, and verticalization – providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a p...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "xamined through a meticulous survey that delves into the foundational pillars of algorithm, skill, and verticalization, which form the backbone of knowledge distillation and deep learning models. The survey provides a comprehensive examination of key mechanisms within the knowledge distillation framework, specifically focusing on the enhancement of cognitive abilities and their practical implications across various fields, with a particular emphasis on the interplay between data augmentation (DA...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and powerful AI solutions. Most importantly, we firmly advocate for compliance with the legal terms that regulate the use of LLMs, ensuring ethical and lawful application of KD of LLMs. An associated Github repository is available at https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs. Index Terms —...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "en-source LLMs, this survey highlights the potential for more accessible, efficient, and powerful AI solutions.\n",
+      "\n",
+      "Most importantly, we advocate for compliance with legal terms that regulate the use of LLMs, ensuring ethical and lawful application of knowledge distillation.\n",
+      "\n",
+      "An associated Github repository is available at https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs. Index Terms - Large language models, knowledge distillation, data augmentation, skill distillation, supervised f...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "complexity, have un- locked new realms of possibility, from generating human- like text to offering sophisticated problem-solving capa- bilities. The core significance of these LLMs lies in their emergent abilities (Wei et al., 2022a,b; Xu et al., 2024a), a phenomenon where the models display capabilities beyond their explicit training objectives, enabling them to tackle a diverse array of tasks with remarkable proficiency. Their deep understanding of context, nuance, and the intrica- cies of hu...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "sophisticated problem-solving capabilities, the core significance of these large language models (LLMs) lies in their emergent abilities, enabling them to tackle a diverse array of tasks with remarkable proficiency....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "applications, promising to revolutionize industries, augment human creativity, and redefine our interaction with technology. Despite the remarkable capabilities of proprietary LLMs like GPT-4 and Gemini, they are not without their shortcom- ings, particularly when viewed in light of the advantages offered by open-source models. A significant drawback is their limited accessibility and higher cost (OpenAI et al., 2023). These proprietary models often come with substantial usage fees and restricte...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "their remarkable capabilities, have some notable limitations, particularly when considering the advantages offered by open-source models, such as GPT-4 and Gemini. These models are often expensive, with substantial usage fees and restricted access, making them inaccessible to individuals and smaller organizations....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "applica- tions. The constraints of accessibility, cost, and adaptability thus present significant challenges in leveraging the full potential of proprietary LLMs. In contrast to proprietary LLMs, open-source modelsarXiv:2402.13116v3 [cs.CL] 8 Mar 2024 2 like LLaMA (Touvron et al., 2023) and Mistral (Jiang et al., 2023a) bring several notable advantages. One of the primary benefits of open-source models is their accessibility and adaptability. Without the constraints of licensing fees or restrict...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ng restrictions and costs. In contrast, open-source LLMs like LLaMA and Mistral bring several advantages. Accessibility and adaptability are key benefits, as they are more readily available to a broader range of users, including researchers and organizations....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "of drawbacks, primarily stemming from their relatively limited scale and resources compared to their proprietary counterparts. One of the most significant limitations is the smaller model scale, which often results in lower per- formance on real-world tasks with a bunch of instruc- tions (Zheng et al., 2023a). These models, with fewer pa- rameters, may struggle to capture the depth and breadth of knowledge embodied in larger models like GPT-4. Ad- ditionally, the pre-training investment in these...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ts. One of the most significant limitations is the smaller model scale, resulting in lower performance on real-world tasks with multiple instructions (Zheng et al., 2023a). Models with fewer parameters struggle to capture the depth and breadth of knowledge embodied in larger models like GPT-4. Additionally, the pre-training investment in these open-source models is typically less substantial. This reduced investment can lead to a narrower range of pre-training data, potentially limiting their un...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "effectiveness in specialized applications. This limitation becomes particularly evident when these models are compared to the highly fine-tuned proprietary LLMs, which are often tailored to excel in a wide array of complex scenarios (OpenAI et al., 2023). Primarily, recognizing the disparities between propri- etary and open-source LLMs, KD techniques have surged as a means to bridge the performance gap between these models (Gou et al., 2021; Gupta and Agrawal, 2022). Knowl- edge distillation, in...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ary models becomes apparent when compared to highly fine-tuned proprietary LLMs. Primarily, the disparity between proprietary and open-source LLMs becomes evident, with proprietary models excelling in complex scenarios, while open-source models excel in a wide range of scenarios. Knowledge distillation, a technique that leverages the advanced capabilities of proprietary models, is used to enhance the competencies of open-source models. This process is similar to transferring the performance of a...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "augmentation (DA) (Feng et al., 2021) has emerged as a prevalent paradigm to achieve knowledge distillation of LLMs, where a small seed of knowledge is used to prompt the LLM to generate more data with respect to a specific skill or domain (Taori et al., 2023). Secondly, KD still retains its fundamental role in compressing LLMs, making them more efficient without significant loss in performance. (Gu et al., 2024; Agarwal et al., 2024). More recently, the strategy of employing open-source LLMs as...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "tillation of LLMs, where a small seed of knowledge is used to prompt the LLM to generate more data with respect to a specific skill or domain (Taori et al., 2023). Furthermore, KD retains its fundamental role in compressing LLMs, making them more efficient without significant loss in performance....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "trend of self-improvement via self-generated knowledge. A key aspect of the knowledge distillation is the en- hancement of skills such as advanced context following (e.g., in-context learning (Huang et al., 2022a) and in- struction following (Taori et al., 2023)), improved align- ment with user intents (e.g., human values/principles (Cui et al., 2023a), and thinking patterns like chain-of-thought (CoT) (Mukherjee et al., 2023)), and NLP task specialization (e.g., semantic understanding (Ding et ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "advanced context following and instruction following**\n",
+      "\n",
+      "**key aspects of knowledge distillation**\n",
+      "\n",
+      "* **contextual understanding**: in-context learning and instruction following\n",
+      "* **alignment with user intents**: human values/principles and thinking patterns like chain-of-thought\n",
+      "* **NLP task specialization**: semantic understanding and code generation\n",
+      "\n",
+      "**critical skills for various applications**\n",
+      "\n",
+      "* **healthcare**: accuracy and contextual knowledge\n",
+      "* **law**: contextual knowledge and precision\n",
+      "*...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "performance by learning from the proprietary models that have been extensively trained and fine-tuned in these areas. The benefits of knowledge distillation in the era of LLMs are multifaceted and transformative (Gu et al., 2024). Through a suite of distillation techniques, the gap between proprietary and open-source models is significantly nar- rowed (Chiang et al., 2023; Xu et al., 2023a) and even filled (Zhao et al., 2023a). This process not only streamlines computational requirements but als...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ned in the era of LLMs, the benefits of knowledge distillation in the era of LLMs are multifaceted and transformative. Through a suite of distillation techniques, the gap between proprietary and open-source models narrows and is filled. This process streamlines computational requirements and enhances environmental sustainability of AI operations, as open-source models become more proficient with lower overhead....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "catalyzing innovation and growth across various industries and research domains. The escalating need for a comprehensive survey on the knowledge distillation of LLMs stems from the rapidly evolving landscape of AI (OpenAI et al., 2023; Team et al., 2023) and the increasing complexity of these models. As AI continues to penetrate various sectors, the ability to effi- ciently and effectively distill knowledge from proprietary LLMs to open-source ones becomes not just a technical aspiration but a p...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ch domains. The escalating need for a comprehensive survey on the knowledge distillation of LLMs stems from the rapidly evolving landscape of AI and the increasing complexity of these models. The ability to efficiently and effectively distill knowledge from proprietary LLMs to open-source ones becomes a practical necessity. This is driven by the need to bridge the knowledge gap between the proprietary and open-source LLMs.\n",
+      "\n",
+      "This need is driven by the 3 models mentioned, including Student, Vicuna...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "SupervisedFine-tuningX,Y preferenceRankOptimizationy,1y,2y3y1y2y3≻≻rank…… DataCuration X,YrawdatasynthesizefeedbackFeedback input outputSelf-Knowledge outputinputinput YlabelLabelingExpansion X,YdemonstrationsexpandFeature featureinput,outputextractSec.4Sec.5 Sec.3.1Sec.3.2 Fig. 2: An overview of this survey on knowledge distillation of large language models. Note that ‘Section’ is abbreviated as ‘Sec.’ in this figure. RM S(·)denotes the student reward model. the growing demand for more accessib...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "synthesizefeedbackFeedback input outputSelf-Knowledge outputinputinput YlabelLabelingExpansion X,Y demonstrationsexpandFeature featureinput,outputextractSec.4Sec.5 Sec.3.1Sec.3.2 Fig. 2: An overview of this survey on knowledge distillation of large language models...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "gaps in current techniques and proposing direc- tions for future research. Survey Organization. The remainder of this survey is orga- nized into several comprehensive sections, each designed to offer a deep dive into the multifaceted aspects of knowledge distillation within the realm ofLLMs. Following this intro- duction, §2 provides a foundational overview of knowledge distillation, comparing traditional techniques with those emerging in the era of LLMs and highlighting the role of data augment...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "es emerging, but there is still much to be learned from the era of Large Language Models (LLMs). In this section, we provide a foundational overview of knowledge distillation, highlighting the role of data augmentation (DA) in this context.\n",
+      "\n",
+      "Traditional techniques, such as supervised fine-tuning, have shown promise in distilling knowledge from LLMs. However, the increasing complexity of these models requires careful consideration of the trade-offs between accuracy and computational resources. To...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "includes discus- sions on natural language understanding (NLU), genera- tion (NLG), information retrieval, recommendation systems, and the evaluation of text generation. In §5, we ventureinto domain-specific vertical distillation, showcasing how knowledge distillation techniques are applied within spe- cialized fields such as law, healthcare, finance, and science, illustrating the practical implications and transformative impact of these approaches. The survey suggests open problems in §6, ident...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "mmendation systems, and the evaluation of text generation. In §5, we delve into domain-specific vertical distillation, demonstrating how knowledge distillation techniques are applied in specialized fields such as law, healthcare, finance, and science, highlighting their practical implications and transformative impact. The survey reveals open problems in §6, highlighting current challenges and gaps in knowledge distillation research that present opportunities for future work....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "process of transferring knowledge from a large, complex model (teacher) to a smaller, more efficient model (student) (Gou et al., 2021). This technique is pivotal in mitigating the challenges posed by the computational demands and resource constraints of deploying large-scale models in practical applications. Historically, knowledge distillation techniques, prior to the era of LLMs, primarily concentrated on transferring knowledge from complex, often cumbersome neural net- works to more compact ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "large, complex model to a smaller, more efficient model, mitigating the challenges of computational demands and resource constraints in deploying large-scale models in practical applications. This process, prior to the era of Large Language Models (LLMs), focused on compacting complex neural networks for deployment in resource-constrained environments, such as mobile devices or edge computing platforms, where computational efficiency was paramount....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Mammoth (Yue et al., 2023a), Mixed Distill (Chenglin et al., 2023) ExpansionSelf-Instruct (Wang et al., 2022a), Alpaca (Taori et al., 2023), Code Alpaca (Chaudhary, 2023) Self-Align (Sun et al., 2024b), WizardLM (Xu et al., 2023a), WizardCoder (Luo et al., 2023a), WizardMath (Luo et al., 2023b), AugGPT (Dai et al., 2023a), TDG (He et al., 2023b) CurationUltraChat (Ding et al., 2023b), Phi-1 (Gunasekar et al., 2023), Phi-1.5 (Li et al., 2023a), Phi-2 (Mar, 2023), Magicoder (Wei et al., 2023), Wav...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "al., 2022a), Alpaca (Taori et al., 2023), Code Alpaca (Chaudhary, 2023) Self-Align (Sun et al., 2024b), WizardLM (Xu et al., 2023a), WizardCoder (Luo et al., 2023a), WizardMath (Luo et al., 2023b), AugGPT (Dai et al., 2023a), TDG (He et al., 2023b), CurationUltraChat (Ding et al., 2023b), Phi-1 (Gunasekar et al., 2023), Phi-1.5 (Li et al., 2023a), Phi-2 (Mar, 2023), Magicoder (Wei et al., 2023), WaveCoder (Yu et al., 2024), ZeroGen (Ye et al., 2022), InPars (Bonifacio et al., 2022)...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "(Chen et al., 2023a), GKD (Agarwal et al., 2024) Self-KnowledgeSelf-Instruct (Wang et al., 2022a), Self-Align (Sun et al., 2024b), RLCD (Yang et al., 2024a), ImpDistill (Jung et al., 2023), LMSI (Huang et al., 2023a), ReST (Gulcehre et al., 2023), Self-Rewarding (Yuan et al., 2024a), Baize (Xu et al., 2023b), STaR (Zelikman et al., 2022) DistillationSupervised Fine-TuningAlpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), WizardLM (Xu et al., 2023a), Self-Instruct (Wang et al., 2022a), Ba...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "Self-Align (Sun et al., 2024b), RLCD (Yang et al., 2024a), ImpDistill (Jung et al., 2023), LMSI (Huang et al., 2023a), ReST (Gulcehre et al., 2023), Self-Rewarding (Yuan et al., 2024a), Baize (Xu et al., 2023b), STaR (Zelikman et al., 2022) DistillationSupervised Fine-TuningAlpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), WizardLM (Xu et al., 2023a), Self-Instruct (Wang et al., 2022a), Baize (Xu et al., 2023b), STaR (Zelikman et al., 2022), Divergence and SimilarityDistilGPT (Sanh et a...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "al., 2023), CycleAlign (Hong et al., 2023), Skill DistillationContext FollowingInstruction FollowingSelf-Instruct (Wang et al., 2022a), Alpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), WizardLM (Xu et al., 2023a), Orca (Mukherjee et al., 2023), Orca 2 (Mitra et al., 2023), WizardMath (Luo et al., 2023b), Llama-GPT4 (Peng et al., 2023a), Multi-turn DialogueVicuna (Chiang et al., 2023), Baize (Xu et al., 2023b), UltraLLaMA (Ding et al., 2023b), CAMEL (Li et al., 2023b), OpenChat (Wang et...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ollowingInstruction FollowingSelf-Instruct Wang et al., 2022a, Alpaca Taori et al., 2023, Vicuna Chiang et al., 2023, WizardLM Xu et al., 2023a, Orca Mukherjee et al., 2023, Orca2 Mitra et al., 2023, WizardMath Luo et al., 2023b, Llama-GPT4 Peng et al., 2023a, Multi-turn Dialogue Chiang et al., 2023, Baize Xu et al., 2023b, UltraLLaMA Ding et al., 2023b, CAMEL Li et al., 2023b, OpenChat Wang et al., 2023c, Zephyr Tunstall et al., 2023, RAG Kang et al., 2023a, SAIL Luo et al., 2023c, Self-RAG Asa...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "(Lee et al., 2023a), Zephy (Tunstall et al., 2023), UltraFeedback (Cui et al., 2023a), ValueCAI (Bai et al., 2022a), Align Honesty (Yang et al., 2023a), SANDBOX (Liu et al., 2023b), Self-Align (Sun et al., 2024b), UltraFeedback (Cui et al., 2023a), RLCD (Yang et al., 2024a) AgentTool UsingToolformer (Schick et al., 2023), Graph-ToolFormer (Zhang, 2023), Gorilla (Patil et al., 2023), ToolAlpaca (Tang et al., 2023a), ToolLLM (Qin et al., 2023a), CRAFT (Yuan et al., 2023a), Confucius (Gao et al., 2...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "i et al., 2022a), Align Honesty (Yang et al., 2023a), SANDBOX (Liu et al., 2023b), Self-Align (Sun et al., 2024b), UltraFeedback (Cui et al., 2023a), RLCD (Yang et al., 2024a), AgentToolformer (Schick et al., 2023), Graph-ToolFormer (Zhang, 2023), Gorilla (Patil et al., 2023), ToolAlpaca (Tang et al., 2023a), ToolLLM (Qin et al., 2023a), CRAFT (Yuan et al., 2023a), Confucius (Gao et al., 2023b), MLLM-Tool (Wang et al., 2024), α-UMi (Shen et al., 2024), PlanningFireAct (Chen et al., 2023b), Agent...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "2022), NLGInheritSumm (Xu et al., 2023c), RECOMP (Xu et al., 2024b), MaRio (Ramnath et al., 2023), ID (Jung et al., 2023), GPT-3 Labeling (Wang et al., 2021b), BioGPT (Guo et al., 2023a), ChatGPT NMT (Yang and Nicolai, 2023), Information RetrievalQUILL (Srinivasan et al., 2022), Promptgator (Dai et al., 2023b), InPars (Bonifacio et al., 2022), AugTriever (Meng et al., 2023), (Sun et al., 2023a), RankVicuna (Pradeep et al., 2023a), RankZephyr (Pradeep et al., 2023b), ExaRanker (Ferraretto et al.,...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "al., 2023 GPT-3 Labeling Wang et al., 2021b BioGPT Guo et al., 2023a ChatGPT NMT Yang and Nicolai, 2023 Information RetrievalQUILL Srinivasan et al., 2022 Promptgator Dai et al., 2023b InPars Bonifacio et al., 2022 AugTriever Meng et al., 2023 Sun et al., 2023a RankVicuna Pradeep et al., 2023a RankZephyr Pradeep et al., 2023b ExaRanker Ferraretto et al., 2023 Recommendation NDR Mysore et al., 2023 InstrcutRec Zhang et al., 2023b ONCE Liu et al., 2023c Text Generation Evaluation PandaLM Wang et a...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "al., 2024), Code Clean (Jain et al., 2023), Multi-ModalityLLaVA (Liu et al., 2023e), SVIT (Zhao et al., 2023b), LVIS-Instruct4V (Wang et al., 2023e), Shikra (Chen et al., 2023c), LSKD (Park et al., 2023), DetGPT (Pi et al., 2023; Zhao et al., 2023c), LRV (Liu et al., 2023f), NExT-GPT (Wu et al., 2023b), Valley (Luo et al., 2023d), ILuvUI (Jiang et al., 2023d), StableLLaVA (Li et al., 2023c), PointLLM (Xu et al., 2023e), Verticalization DistillationLaw (Huang et al., 2023b; Cui et al., 2023b); Me...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "et al., 2023e), SVIT (Zhao et al., 2023b), LVIS-Instruct4V (Wang et al., 2023e), Shikra (Chen et al., 2023c), LSKD (Park et al., 2023), DetGPT (Pi et al., 2023; Zhao et al., 2023c), LRV (Liu et al., 2023f), NExT-GPT (Wu et al., 2023b), Valley (Luo et al., 2023d), ILuvUI (Jiang et al., 2023d), StableLLaVA (Li et al., 2023c), PointLLM (Xu et al., 2023e), Verticalization DistillationLaw (Huang et al., 2023b; Cui et al., 2023b); Medical & Healthcare (Zhang et al., 2023c; Chen et al., 2023d); Finance...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "earlier methods involved training a smaller student network to mimic the output of a larger teacher network, often through techniques like soft target training, where the student learns from the softened softmax output of the teacher. Please refer to the survey (Gou et al., 2021) for more details on general knowledge distillation techniques in AI and DL. In contrast, the advent of LLMs has revolutionized the knowledge distillation landscape. The current era of knowledge distillation in LLMs shif...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "r network, often through techniques like soft target training, where the student learns from the softened softmax output of the teacher.\n",
+      "\n",
+      "The distillation of knowledge from larger models to smaller ones is a technique used to improve the performance of AI models. In this context, distillation refers to the process of distilling the knowledge from a larger model into a smaller model, allowing it to learn from the teacher model's output.\n",
+      "\n",
+      "The current era of knowledge distillation in large language...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "replicate the output behavior of the teacher model or reduce the model size , the current focus in LLM-based knowledge distillation is to extract and transfer the rich, nuanced understanding that these models have developed. The key to this modern approach lies in heuristic and carefully designed prompts, which are used to elicit specific knowledge (Ding et al., 2023b) or capabilities (Chaudhary, 2023) from the LLMs. These prompts are crafted to tap into the LLM’s understanding and capabilities ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "size, the current focus in llm-based knowledge distillation is to extract and transfer the rich, nuanced understanding that these models have developed the key to this modern approach lies in carefully designed prompts that elicit specific knowledge or capabilities from the llms, tapping into their understanding and capabilities in various domains ranging from natural language understanding to more complex cognitive tasks like reasoning and problem-solving...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "of LLMs, where the models exhibit capabilities beyond their explicit training objectives. Furthermore, this era of knowledge distillation also em- phasizes the transfer of more abstract qualities such as reasoning patterns (Mitra et al., 2023), preference align- ment (Cui et al., 2023a), and value alignment (Sun et al., 2024b). This is in stark contrast to the earlier focus on output replication (Taori et al., 2023), indicating a shift towards a more holistic and comprehensive transfer of cognit...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "explicit training objectives. This era of knowledge distillation also emphasizes the transfer of abstract qualities such as reasoning patterns and preference alignment. This is in stark contrast to the earlier focus on output replication, indicating a shift towards a more holistic and comprehensive transfer of cognitive capabilities. The current techniques involve not just the replication of outputs, but also the emulation of thought processes and decision-making patterns of the teacher model. T...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "LLMs, Data Augmentation (DA) (Wang et al., 2022a; Ye et al., 2022) emerges as a critical paradigm integral to the process of knowledge distillation. Unlike traditional DA techniques such as paraphrasing (Gangal et al., 2022) orback-translation (Longpre et al., 2019), which primarily aim at expanding the training dataset in a somewhat mechanical manner. DA within the context of LLMs focuses on the generation of novel, context-rich training data tailored to specific domains and skills. This innova...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "llation, Unlike traditional techniques such as paraphrasing, or back-translation, which primarily aim at expanding the training dataset in a somewhat mechanical manner. DA within the context of LLMs focuses on the generation of novel, context-rich training data tailored to specific domains and skills. This innovation is driven by the unique capabilities of LLMs to generate coherent, diverse, and intricate data samples that closely mimic the nuanced understanding and cognitive abilities of human ...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "as a potent mechanism for bridging the knowl- edge and capability gap between proprietary and open- source models. Through DA, LLMs are prompted to create targeted, high-quality datasets that are not merely larger in volume but are also rich in diversity and specificity. This approach enables the distillation process to be more effec- tive, ensuring that the distilled models not only replicate the teacher model’s output behavior but also embody its deep-seated understanding and cognitive strateg...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ource models, through Deep Learning Models (LLMs) are prompted to create targeted, high-quality datasets that are not merely larger in volume but also rich in diversity and specificity. This approach enables the distillation process to be more effective, ensuring that the distilled models replicate the teacher model's output behavior and embody its deep-seated understanding and cognitive strategies. The significance and necessity of Data Augmentation (DA) for achieving Knowledge Domains (KD) in ...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "pivotal shift towards a more efficient, sustainable, and accessible approach to harnessing the power of LLMs. It empowers open-source models with the ability to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts, thereby democratizing access to advanced AI capabilities and fostering innovation across a broader spectrum of applications and users. 2.3 Survey Scope Building on the discussions introduced earlier, this ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "er of LLMs empowers open-source models with the ability to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts thereby democratizing access to advanced AI capabilities and fostering innovation across a broader spectrum of applications and users 2 3 Survey Scope Building on the discussions introduced earlier this survey aims to comprehensively explore the landscape of knowledge distillation within the context of LLMs...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "distillation. KD Algorithms. This segment focuses on the technical foundations and methodologies of knowledge distillation. It includes an in-depth exploration of the processes involved in constructing knowledge from teacher models (e.g., pro- prietary LLMs) and integrating this knowledge into student models (e.g., open-source LLMs). Under the umbrella of ‘knowledge ’, we delve into strategies such as labeling (Hsieh et al., 2023), expansion (Taori et al., 2023), curation (Gu- nasekar et al., 20...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "undations and methodologies of knowledge distillation. It includes an in-depth exploration of processes involved in constructing knowledge from teacher models (e.g., proprietary LLMs) and integrating this knowledge into student models (e.g., open-source LLMs). Under the umbrella of 'knowledge', we delve into strategies such as labeling, expansion, curation, feature understanding, and feedback mechanisms. The exploration seeks to uncover the various ways in which knowledge can be identified, expa...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "et al., 2023a), and rank optimization strategies (Tunstall et al., 2023). This analysis aims to illuminate how these algorithms facilitate the trans- fer of knowledge, ensuring that open-source models can replicate and, in some cases, surpass the capabilities of their proprietary counterparts. Skill Distillation. This facet examines the specific compe- tencies and capabilities enhanced through KD. It encom- passes detailed discussions on context following (Taori et al., 2023; Luo et al., 2023c),...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ow algorithms enable knowledge transfer, allowing open-source models to replicate and sometimes surpass proprietary capabilities. Skill Distillation examines specific competencies and capabilities enhanced through Knowledge Distillation. Contextual discussions follow (Taori et al., 2023; Luo et al., 2023c), including instruction following and retrieval-augmented generation (RAG) capabilities. Alignment research investigates thinking patterns, persona/preference modeling, and value alignment. The...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "lan- guage generation (NLG), information retrieval, recommen- dation systems, text generation evaluation, and code gen- eration. Finally, the survey addresses multi-modality (Liu et al., 2023e; Zhao et al., 2023b), exploring how KD enhances LLMs’ ability to interpret and integrate multiple forms of input, enriching their utility and applicability across various contexts. Verticalization Distillation. This section assesses the ap- plication of KD across diverse vertical domains, offering insights...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "tion, and Code Generation**\n",
+      "\n",
+      "Finally, the survey explores how Knowledge Distillation (KD) enhances Large Language Models (LLMs) in interpreting and integrating multiple forms of input, enriching their utility and applicability across various contexts. Verticalization Distillation\n",
+      "This section examines the application of KD across diverse domains, providing insights into how distilled LLMs can be tailored for specialized fields such as Law, Medical & Healthcare (Wang et al., 2023a), Finance (Zhan...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "meet the nuanced demands of different industries, thus contributing to the broader AI and ML ecosystem. By navigating through these facets, this survey en- deavors to provide an extensive and nuanced analysis of knowledge distillation in the era of LLMs. It serves as a guide for researchers, practitioners, and enthusiasts in the field, shedding light on current methodologies, challenges, and opportunities for innovation in this rapidly evolving domain. Declaration. This survey represents our ear...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "stem. by navigating through these facets, this survey endeavors to provide an extensive and nuanced analysis of knowledge distillation in the era of LLMs. it serves as a guide for researchers, practitioners, and enthusiasts in the field, shedding light on current methodologies, challenges, and opportunities for innovation in this rapidly evolving domain....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "foundational paradigms of knowledge dis- tillation, highlighting key methodologies and their impacts across a range of applications. 2.4 Distillation Pipeline in LLM Era SeedKnowledgeSkill/Domain TeacherLLMKnowledgeElicitationStudentModelDistillationAlgorithmsteer driveGeneratedKnowledgeLearningObjectivetrain Fig. 4: An illustration of a general pipeline to distill knowl- edge from a large language model to a student model. The general distillation pipeline of LLMs is a structured and methodical...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "across a range of applications.\n",
+      "\n",
+      "Distillation Pipeline in LLM Era\n",
+      "---------------------------\n",
+      "\n",
+      "The Distillation Pipeline is a structured and methodical process aimed at transferring knowledge from a sophisticated teacher model to a less complex student model. This pipeline is integral for leveraging the advanced capabilities of models like GPT-4 or Gemini in more accessible and efficient open-source counterparts.\n",
+      "\n",
+      "Stages of Distillation Pipeline\n",
+      "-----------------------------\n",
+      "\n",
+      "1.  **Knowledge Eli...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "seen in Figure 2. I. Target Skill or Domain Steering Teacher LLM. The first stage involves directing the teacher LLM towards a specific target skill or domain. This is achieved through care- fully crafted instructions or templates that guide the LLM’s focus. These instructions are designed to elicit responses that demonstrate the LLM’s proficiency in a particular area, be it a specialized domain like healthcare or law, or a skill such as reasoning or language understanding. The objective here is...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ards a specific target skill or domain This is achieved through carefully crafted instructions or templates that guide the LLM's focus These instructions are designed to elicit responses that demonstrate the LLM's proficiency in a particular area be it a specialized domain like healthcare or law or a skill such as reasoning or language understanding The objective here is to utilize the teacher LLM's extensive training and nuanced capabilities to generate outputs that are rich in the specific kno...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "to generate more elaborate and detailed outputs based on this initial infor- mation. The seed knowledge is crucial as it provides a foundation upon which the teacher model can build and expand, thereby creating more comprehensive and in-depth knowledge examples. III. Generation of Distillation Knowledge. In response to the seed knowledge and steering instructions, the teacher LLM generates knowledge examples. These examples are predominantly in the form of question-and-answer (QA) dialogues or n...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "his initial information the teacher model generates knowledge examples predominantly in the form of question-and-answer dialogues or narrative explanations aligning with the natural language processing understanding capabilities of the 7 LLM these examples are typically in the form of explanations or narratives addressing various topics thereby creating more comprehensive and in-depth knowledge examples the generated knowledge examples constitute the core of the distillation knowledge encapsulat...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Specific Learn- ing Objective. The final stage involves the utilization of the generated knowledge examples to train the student model. This training is guided by a loss function that aligns with the learning objectives. The loss function quantifies the student model’s performance in replicating or adapting the knowledge from the teacher model. By minimizing this loss, the student model learns to emulate the target skills or domain knowledge of the teacher, thereby acquiring similar capabilities...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "knowledge examples to train the student model. This training is guided by a loss function that aligns with the learning objectives. The loss function quantifies the student model's performance in replicating or adapting the knowledge from the teacher model. By minimizing this loss, the student model learns to emulate the target skills or domain knowledge of the teacher, thereby acquiring similar capabilities....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "domain to steer the LLM and elicit knowledge, s∼ S denotes an example of the seed knowledge, upon which the LLM can explore to generate novel knowledge, Parse( o, s)stands for to parse the distillation example ( e.g., (x, y)) from the teacher LLM’s output o(plus the input sin some cases), andpTrepresents the teacher LLM with parameters θT. Given the datasets D(kd) Ibuilt for distillation, we then define a learning objective as L=X ILI(D(kd) I;θS), (2) whereP Idenotes there could be multiple task...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "which the LLM can explore to generate novel knowledge, Parse( o, s)stands for to parse the distillation example ( e.g., (x, y)) from the teacher LLM’s output o(plus the input sin some cases), andpTrepresents the teacher LLM with parameters θT. Given the datasets D(kd) Ibuilt for distillation, we then define a learning objective as L=X ILI(D(kd) I;θS), (2) where P Idenotes there could be multiple tasks or skills being distilled into one student model, LI(·;·)stands for a specific learning objecti...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "it is categorized into two principal steps: ‘Knowledge,’ focusing on eliciting knowledge from teacher LLMs (Eq.1), and ‘Distillation,’ centered on injecting this knowledge into student models (Eq.2). We will elaborate on these two processes in the subsequent sections. 3.1 Knowledge This section focuses on the approaches to elicit knowledge from teacher LLMs. According to the manners to acquire knowledge, we divided them into Labeling ,Expansion ,DataCuration ,Feature ,Feedback , and Self-Knowled...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "dataset and feeding it into LLMs to obtain the desired generations. Moreover, the generation of yis controllable through the predefined Iandc. This process can be formulated as follows: D(lab)={x, y|x∼ X, y∼pT(y|I⊕c⊕x)}. (3) Input xcould be sourced from existing NLP task datasets, which serve as typical reservoirs for distillation efforts. Numerous works have sought to harness the capa- bilities of powerful LLMs as teachers for annotating dataset samples across a range of tasks. For instance, ef...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "is process can be formulated as follows: D(lab)={x, y|x∼ X, y∼pT(y|I⊕c⊕x)}....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "al., 2023; Li et al., 2022; Ho et al., 2023; Magister et al., 2023; Fu et al., 2023; Ramnath et al., 2023; Li et al., 2023d; Liu et al., 2023g), among others. Rather than concentrating on specific tasks, many current works focus on labeling outputs based on instructions, thereby teaching student models to solve tasks in a more flexible way by following in- structions. Collections of various NLP tasks, complemented by instructional templates, serve as valuable input sources forx. For instance, FL...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "works concentrate on labeling outputs based on instructions, teaching student models to solve tasks in a more flexible way by following instructions. Collections of various NLP tasks, complemented by instructional templates, serve as valuable input sources for training models. For instance, FLAN-v2 collections provide extensive publicly available sets of tasks with labeled responses from teacher LLMs, built from predefined templates that lack diversity and may have gaps between human queries....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "powerful LLMs, like ShareGPT. Additionally, Xu et al. (2023b) and Anand et al. (2023) label the real questions sampled from forums like Quora and Stack Overflow. Moreover, the process of labeling could be guided by instructions Ior demonstrations c. A commonly used in- struction type for guiding labeling is chain-of-thought (CoT) prompt (Hsieh et al., 2023; Fu et al., 2023; Magister et al., 2023). Mukherjee et al. (2023) add multiple system messages (e.g. “You must generate a detailed and long a...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "023b) and Anand et al. (2023) label the real questions sampled from forums like Quora and Stack Overflow. Moreover, the process of labeling could be guided by instructions or demonstrations. A commonly used instruction type for guiding labeling is the chain-of-thought (CoT) prompt. Mukherjee et al. (2023) add multiple system messages (e.g. “You must generate a detailed and long answer.” or “explain like I’m five, think step-by-step”) to elicit rich signals. Yue et al. (2023a) and Chenglin et al....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Generate≻≻𝑦\" 𝑦! 𝑦# 𝑥 𝑥& CorrectExpand𝑐 Fig. 5: An illustration of different knowledge elicitation methods from teacher LLMs. Labeling : The teacher generates the output from the input; Expansion : The teacher generates samples similar to the given demonstrations through in- context learning; Data Curation : The teacher synthesizes data according to meta-information, such as a topic or an entity; Feature : Feed the data into the teacher and extract its internal knowledge, such as logits and featu...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "utput from input; Teacher generates samples similar to given demonstrations through in-context learning; Data is curated according to meta-information such as topic or entity; Data is fed into the teacher to extract knowledge such as logits and features; Teacher provides feedback on student's output such as preferences, corrections, and expansions of challenging samples; Student generates outputs which is then filtered for high-quality or evaluated by student itself\"...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Overflow. 3.1.2 Expansion While the labeling approach is simple and effective, it faces certain limitations. Primarily, it is constrained by the scale and variety of the input data. In real-world applications, especially those involving user conversations, there are also concerns regarding the privacy of the data involved. To address these limitations, various expansion methods have been proposed (Wang et al., 2022a; Taori et al., 2023; Chaud- hary, 2023; Si et al., 2023; Ji et al., 2023a; Luo e...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "s constrained by the scale and variety of the input data. In real-world applications, especially those involving user conversations, there are concerns regarding the privacy of the data involved. Various expansion methods have been proposed to address these limitations. These methods take the demonstrations as seed knowledge and aim to expand a large scale and diverse data by in-context learning....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "the existing dataset, in the expansion approach, both x andyare generated by teacher LLMs. This process can be formulated as follows: D(exp)={(x, y)|x∼pT(x|I⊕c), y∼pT(y|I⊕x)}.(4) In this formulation, xand yrepresent the new input- output pairs generated by the teacher LLM. The input x is generated based on a set of input-output demonstrations c. The output yis then generated in response to the new input xunder the guidance of an instruction I. Note thatthe demonstrations could be predefined or d...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "subsequent expansion iterations. Subsequently, Taori et al. (2023) applies this ex- pansion method to a more powerful teacher LLM, text- davinci-003, to distill 52K high-quality data. To improve the diversity and coverage during expansion, Wu et al. (2023c) and (Sun et al., 2024b) prompt the teacher LLM to generate instructions corresponding to some specific topics. Xu et al. (2023a) propose an Evol-Instruct method to ex- pand the instructions from two dimensions: difficulty (e.g. rewriting the ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "to a more powerful teacher LLM, text- davinci-003, to distill 52K high-quality data. To improve the diversity and coverage during expansion, Wu et al. (2023c) and (Sun et al., 2024b) prompt the teacher LLM to generate instructions corresponding to some specific topics. Xu et al. (2023a) propose an Evol-Instruct method to expand the instructions from two dimensions: difficulty (e.g. rewriting the question to be more complex) and diversity (e.g. generating more long-tailed instructions). This Evol...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "multi- ple conceptually similar, but semantically varied, samples to improve classification performance. Similarly, TDG (He et al., 2023b) proposes the Targeted Data Generation (TDG) framework, which automatically identifies challenging sub- groups within data and generates new samples for these subgroups using LLMs through in-context learning. In summary, the expansion method leverages the in- 9 context learning strengths of LLMs to produce more var- ied and extensive datasets with both inputs ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "TDG framework leverages LLMs' strengths in in-context learning to generate varied and extensive datasets, but quality and diversity rely heavily on teacher LLMs and initial seed demonstrations, leading to bias and homogeneity issues...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "data. 3.1.3 Data Curation The pursuit of high-quality and scalable data generation in knowledge distillation from LLMs has led to the emergence of the Data Curation approach. This method arises in re- sponse to the limitations observed in both the Labeling and Expansion approaches. These methods often yield data of variable quality and face constraints in quantity. In Labeling, the seed knowledge is sourced from task datasets, leading to potential noise and dirty data. Meanwhile, in Expansion, t...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ed to the emergence of the Data Curation approach. This method arises in response to the limitations observed in both the Labeling and Expansion approaches. These methods often yield data of variable quality and face constraints in quantity.\n",
+      "\n",
+      "In Labeling, the seed knowledge is sourced from task datasets, leading to potential noise and dirty data. Meanwhile, in Expansion, the input data is derived from seed demonstrations, which can result in homogeneous data when generated in large quantities. T...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "approach to synthesize data from scratch. Numerous diverse meta- information, such as topics or knowledge points, could be incorporated into this process to generate controllable x andy. Thus, this process can be meticulously controlled to yield datasets that are not only large in scale but also of high quality. The formulation for Data Curation can be represented as: D(cur)={(x, y)|x∼pT(x|I⊕m), y∼pT(y|I⊕x)}.(5) In this formulation, mrepresents the diverse meta- information used to guide the syn...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "edge points, could be incorporated into this process to generate controllable output. Thus, this process can be meticulously controlled to yield datasets that are not only large in scale but also of high quality. The formulation for Data Curation can be represented as: D(cur)={(x, y)|x∼pT(x|I⊕m), y∼pT(y|I⊕x)}. In this formulation, mrepresents the diverse meta-information used to guide the synthesis of x, and Iis the instruction guiding teacher LLMs to generate xory. Different studies primarily v...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "the World , they explore 30 meta-topics like ”Technology” and ”Food and Drink.” the teacher LLMs then use this meta-information to distill a broad array of instructions and conversations, achieving a substantial scale of 1.5 million instances. UltraChat stands out with its lexical and topical diversity. The UltraLLaMA model, fine- tuned on this data, consistently surpasses other open-source models. Another notable series, phi(Gunasekar et al., 2023; Li et al., 2023a; Mar, 2023), focuses on disti...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ion to distill a broad array of instructions and conversations, resulting in a substantial scale of 1.5 million instances. UltraChat stands out with its lexical and topical diversity, fine-tuned on this data to consistently surpass other open-source models....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "tokens of Python exercises with solutions. Remarkably, thephi-1 model, despite its smaller size, outperforms nearly all open-source models on coding benchmarks like Hu- manEval and MBPP while being 10 times smaller in model size and 100 times smaller in dataset size. MFTCoder (Liu et al., 2023d) utilizes hundreds of Python knowledge points as meta-information to create a CodeExercise Dataset. In contrast, Magicoder (Wei et al., 2023) and WaveCoder (Yu et al., 2024) get raw code collections from ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "el outperforms nearly all open-source models on coding benchmarks like HumanEval and MBPP while being 10 times smaller in model size and 100 times smaller in dataset size. MFTCoder (Liu et al., 2023) utilizes hundreds of Python knowledge points as meta-information to create a CodeExercise Dataset. In contrast, Magicoder (Wei et al., 2023) and WaveCoder (Yu et al., 2024) generate instructional data from open-source code collections using this as meta-information for data augmentation. In the cont...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "et al., 2022; Meng et al., 2023). In conclusion, Data Curation through teacher LLMs has emerged as a promising technique for synthesizing datasets that are not only high-quality and diverse but also large in scale. The success of models like phi-1 in specialized domains underscores the efficacy of this method. The ability to create synthetic datasets will become a crucial technical skill and a key area of focus in AI (Li et al., 2023a). 3.1.4 Feature The previously discussed knowledge elicitatio...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "a promising technique for synthesizing datasets that are not only high-quality and diverse but also large in scale. The success of models like phi-1 in specialized domains underscores the efficacy of this method. The ability to create synthetic datasets will become a crucial technical skill and a key area of focus in AI....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "with fewer than 1 billion parameters (cf. Gou et al. (2021) for detail). However, recent research has begun to explore white-box distillation in the context of generative LLMs (Timiryasov and Tastet, 2023; Liang et al., 2023a; Gu et al., 2024; Agarwal et al., 2024; Liu et al., 2023a; Wen et al., 2023; Wan et al., 2024a; Zhao and Zhu, 2023; Qin et al., 2023b; Boizard et al., 2024; Zhong et al., 2024). The typical method for acquiring this feature knowledge involves teacher LLMs annotating the out...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "to explore white-box distillation in the context of generative LLMs (Timiryasov and Tastet, 2023; Liang et al., 2023a; Gu et al., 2024; Agarwal et al., 2024; Liu et al., 2023a; Wen et al., 2023; Wan et al., 2024a; Zhao and Zhu, 2023; Qin et al., 2023b; Boizard et al., 2024; Zhong et al., 2024). typically involves teacher LLMs annotating the output sequence y with its internal representations. these annotations are then distilled into the student model using methods such as kullback-leibler diver...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "(such as output distri- bution) from the teacher LLM. 10 The most straightforward method to elicit feature knowl- edge of teacher is to label a fixed dataset of sequences with token-level probability distributions (Sanh et al., 2019; Wen et al., 2023). To leverage the rich semantic and syntactic knowledge in intermediate layers of the teacher model, TED (Liang et al., 2023a) designs task-aware layer-wise distillation. They align the student’s hidden representations with those of the teacher at e...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "d to elicit feature knowledge of teacher is to label a fixed dataset of sequences with token-level probability distributions. TED (Liang et al., 2023a) designs task-aware layer-wise distillation. They align the student's hidden representations with those of the teacher at each layer, selectively extracting knowledge pertinent to the target task. Gu et al. (2024) and Agarwal et al. (2024) introduce a novel approach where the student model generates sequences, termed'self-generated sequences'. The...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "distilling feature knowledge from teacher LLMs have been proposed (Tao et al., 2022a; Liu et al., 2023a; Kim et al., 2023b). These methods aim to preserve the original output distribution when quantizing the LLMs, ensuring minimal loss of performance. Additionally, feature knowledge could serve as a potent source for multi-teacher knowledge distil- lation. Timiryasov and Tastet (2023) leverages an ensemble of GPT-2 and LLaMA as teacher models to extract output distributions. Similarly, FuseLLM (...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "n when quantizing LLMs, ensuring minimal loss of performance. Additionally, feature knowledge could serve as a potent source for multi-teacher knowledge distillation....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "knowledge from teacher LLMs, such as output distributions and intermediate layer features, white- box approaches enable a more nuanced transfer of informa- tion. While showing promise, especially in smaller models, its application is not suitable for black-box LLMs where internal parameters are inaccessible. Furthermore, student models distilled from white-box LLMs may underperform compared to their black-box counterparts, as the black-box teacher LLMs (e.g. GPT-4) tend to be more powerful. 3.1....\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ox approaches enable a more nuanced transfer of information. While showing promise, especially in smaller models, its application is not suitable for black-box LLMs where internal parameters are inaccessible. Furthermore, student models distilled from white-box LLMs may underperform compared to their black-box counterparts, as black-box teacher LLMs tend to be more powerful. 3.1.5 Feedback Most previous works focus on one-way knowledge transfer from the teacher to the student for imitation, with...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "through Reinforcement Learning from AI Feedback (RLAIF) (Bai et al., 2022a). Here is a generalized formulation for eliciting feedback knowledge: D(fb)={(x, y, ϕ fb(x, y;θT))|x∼ X, y∼pS(y|x)}, (7) where ydenotes the output generated by the student model in response to x, and ϕfb(·;θT))represents providing feedback from teacher LLMs. This operation evaluates thestudent’s output ygiven the input x, by offering assess- ment, corrective information, or other forms of guidance. This feedback knowledge...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "2022a). This generalized formulation for eliciting feedback knowledge involves the following steps: \n",
+      "\n",
+      "1. D(fb)={(x, y, ϕ fb(x, y;θT))|x∼ X, y∼pS(y|x)}, where ydenotes the output generated by the student model in response to x, and ϕfb(·;θT))represents providing feedback from teacher LLMs. This operation evaluates the student’s output ygiven the input x, by offering assessment, corrective information, or other forms of guidance. This feedback knowledge enables the student to refine its responses ...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "2023; Lee et al., 2023a). Preference, as previously discussed, represents a notable form of feedback knowledge from teacher models. Various knowledge of preferences could be distilled from teachers by prompting it with specific criteria. Bai et al. (2022a) in- troduce RLAIF for distilling harmlessness preferences from LLMs. This involves using an SFT-trained LLM to generate response pairs for each prompt, then ranking them for harmlessness to create a preference dataset. This dataset is distille...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "g proposed to distill them from teacher models. One notable approach is the use of RLAIF, which involves generating response pairs for each prompt and ranking them for harmlessness to create a preference dataset. This dataset is then used to train a more harmless LLM policy, such as Wizard- Math (Luo et al., 2023b), which focuses on mathematical reasoning. To further improve the quality of distilled preference data, researchers have developed the UltraFeedback dataset, a large-scale collection o...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "various instructions and models to produce comparative data. Then, GPT-4 is used to score candidates from various aspects of preference, including instruction-following, truthfulness, honesty and helpfulness. Beyond merely assessing student generations, teachers can also furnish extensive feedback on instances where students underperform. In Lion (Jiang et al., 2023b), teacher model pinpoints instructions that pose challenges to the student model, generating new, more difficult instructions aime...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "s from various aspects of preference, including instruction-following, truthfulness, honesty and helpfulness. Beyond merely assessing student generations, teachers can also furnish extensive feedback on instances where students underperform. In Lion (Jiang et al., 2023b), teacher model pinpoints instructions that pose challenges to the student model, generating new, more difficult instructions aimed at bolstering the student’s abilities. PERsD (Chen et al., 2023a) showcases a method where teache...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "teacher model’s distribution over the student’s generations can itself act as a form of feedback. MiniLLM (Gu et al., 2024) and GKD (Agarwal et al., 2024) present an innovative strategy wherein the student model initially generates sequences, followed by teacher model producing an output distribution as feedback. This method leverages the teacher’s insight to directly inform and refine the student model’s learning process. 3.1.6 Self-Knowledge The knowledge could also be elicited from the studen...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "iniLLM and GKD present an innovative strategy wherein the student model generates sequences, followed by the teacher model producing an output distribution as feedback. This method leverages the teacher’s insight to directly inform and refine the student model’s learning process. 3.1.6 Self-Knowledge The knowledge can be elicited from the student itself, which we refer to as Self-Knowledge. In this setting, the same model acts both as the teacher and the student, iteratively improving itself by ...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "self-knowledge could be formulated as: D(sk)={(x, y, ϕ sk(x, y))|x∼ S, y∼pS(y|I⊕x)},(8) where ϕsk(·)is a generalized function that represents an additional process to the self-generated outputs y, which could include but is not limited to filtering, rewarding, or any other mechanisms for enhancing or evaluating y. It could be governed by external tools or the student itself θS. Recent research in this area has proposed various innovative methodologies to elicit self-knowledge, demonstrating its ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "at represents an additional process to the self-generated outputs y, which could include but is not limited to filtering, rewarding, or any other mechanisms for enhancing or evaluating y....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "which utilizes GPT-3 for data augmentation through the Expansion approach, gen- erating additional data samples to enhance the dataset. This enriched dataset subsequently fine-tunes the original model. Other methods aim to elicit targeted knowledge from student models by modifying prompts, and leveraging these data for further refinement. In Self-Align (Sun et al., 2024b), they find that models fine-tuned by Self-Instruct data tend to generate short or indirect responses. They prompt this model ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "es to enhance the model's capabilities. This process fine-tunes the original model, allowing it to produce more accurate and detailed responses. Other methods aim to elicit targeted knowledge from student models by modifying prompts and leveraging the data for further refinement....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "reinforcement learning. Several other approaches employ filtering methods to refine self-generated data. For exam- ple, Impossible Distillation (Jung et al., 2023) targets sen- tence summarization tasks, implementing filters based on entailment, length, and diversity to screen self-generated summaries. LMSI (Huang et al., 2023a) generates multiple CoT reasoning paths and answers for each question, and then retains only those paths that lead to the most consistent answer. Note that refined self-k...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "f-generated data. For instance, Impossible Distillation targets sentence summarization tasks, implementing filters based on entailment, length, and diversity to screen self-generated summaries. LMSI generates multiple CoT reasoning paths and answers for each question, and retains only those paths that lead to the most consistent answer. This process enables refined self-knowledge to be iteratively acquired as the student model improves further enhancing its capabilities....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "and filtered using a scoring function. Subsequently, the lan- guage model undergoes fine-tuning on this curated dataset,employing an offline RL objective. Self-Play (Chen et al., 2024a) introduces a framework resembling iterative DPO, where the language model is fine-tuned to differentiate the self-generated responses from the human-annotated data. These self-generated responses could be seen as “negative knowledge” to promote the student to better align with the target distribution. Self-Reward...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "this curated dataset, employing an offline RL objective. Self-Play (Chen et al., 2024a) introduces a framework resembling iterative DPO, where the language model is fine-tuned to differentiate the self-generated responses from the human-annotated data. These self-generated responses could be seen as “negative knowledge” to promote the student to better align with the target distribution. Self-Rewarding (Yuan et al., 2024a) explores a novel and promising approach by utilizing the language model i...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "range of distillation tech- niques, from the strategies that enhance imitation by Su- pervised Fine-Tuning ,Divergence and Similarity , to advanced methods like Reinforcement Learning and Rank Optimization , as shown in Figure 3. 3.2.1 Supervised Fine-Tuning Supervised Fine-Tuning (SFT), or called Sequence-Level KD (SeqKD) (Kim and Rush, 2016), is the simplest and one of the most effective methods for distilling powerful black-box LLMs. SFT finetunes student model by maximizing the like- lihood ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ivergence and similarity, to advanced methods like reinforcement learning and rank optimization, as shown in Figure 3.2.1. Supervised fine-tuning, or sequence-level knowledge distillation (SeqKD), is a simple yet effective method for distilling powerful black-box LLMs....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "LLMs (Taori et al., 2023; Chiang et al., 2023; Wu et al., 2023c; Xu et al., 2023a; Luo et al., 2023b). Additionally, SFT has been ex- plored in many self-distillation works (Wang et al., 2022a; Huang et al., 2023c; Xu et al., 2023b; Zelikman et al., 2022). Due to the large number of KD works applying SFT, we only list representative ones here. More detailed works can be found in §4. 3.2.2 Divergence and Similarity This section mainly concentrates on algorithms designed for distilling feature kno...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "works....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "log2p(t) p(t)+q(t)+Pq(t) log2q(t) p(t)+q(t)\u0011 TABLE 1: Functional forms of Dfor various divergence types. p: reference Similarity Function LF Expression L2-Norm Distance ∥ΦT(fT(x, y))−ΦS(fS(x, y))∥2 L1-Norm Distance ∥ΦT(fT(x, y))−ΦS(fS(x, y))∥1 Cross-Entropy Loss −PΦT(fT(x, y)) log(Φ S(fS(x, y))) Maximum Mean Discrepancy MMD (ΦT(fT(x, y)),ΦS(fS(x, y))) TABLE 2: Summary of similarity functions in knowledge distillation. and student models, represented by a general divergence function D: LDiv= E x∼...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "types\n",
+      "p: reference Similarity Function L2-Norm Distance ∥ΦT(fT(x, y))−ΦS(fS(x, y))∥2 L1-Norm Distance ∥ΦT(fT(x, y))−ΦS(fS(x, y))∥1 Cross-Entropy Loss −PΦT(fT(x, y)) log(Φ S(fS(x, y))) Maximum Mean Discrepancy MMD (ΦT(fT(x, y)),ΦS(fS(x, y)))...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "modes of pT. However, when a student model is unable to learn all modes of a highly complex teacher, the re- sultant “mode-covering” behavior might cause the student to assign probability mass to tokens with low probability under the teacher’s distribution (cf. Figure 6 blue curve). This mode-covering phenomenon can potentially lead to hallucinations and low-quality generations. Alternatively, mode-seeking divergences like reverse KL prioritize tokens where the teacher assigns high probabilities...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "probability mass to tokens with low probability under the teacher's distribution. This can result in hallucinations and low-quality generations. \n",
+      "\n",
+      "mode-seeking divergences, such as reverse KL, prioritize tokens with high probabilities, mitigating the risk of low-quality outputs. However, they often come at the cost of reduced diversity. Gu et al. (2024) use policy gradient methods to optimize for this approach, while Agarwal et al. (2024) and Sason and Verd´u (2016) assess the efficacy of differ...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "distillation, finding the optimal divergence to be task-dependent. For instance, forward KL divergence is more suitable for tasks like Machine Translation, where the output has fewer modes or variations, while reverse KL divergence is preferable for tasks like dialogue generation and instruction tuning, which involve multiple modes and a wider range of potential responses. Thus, the nature of the task significantly influences the selection of the divergence function for optimal performance. Simi...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "nce is more suitable for tasks like machine translation, where the output has fewer modes or variations, while reverse KL divergence is preferable for tasks like dialogue generation and instruction tuning, which involve multiple modes and a wider range of potential responses. Thus, the nature of the task significantly influences the selection of the divergence function for optimal performance. Similarity-based methods in knowledge distillation aim to align the hidden states or features of the st...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "“mode-seeking” behavior. model with those of the teacher. These methods use various similarity metrics to measure and optimize the congruence of internal representations between the two models. The objective is to ensure that the student model not only produces similar outputs to the teacher but also processes information in a comparable manner. The formulation for a similarity-based objective might look like this: LSim= E x∼X,y∼Y[LF(ΦT(fT(x, y)),ΦS(fS(x, y)))],(11) where fT(x, y)andfS(x, y)are ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ntations...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "task-aware filters. These filters are designed to selectively capture the most pertinent informa- tion for a specific task from the teacher model. The key objective is to minimize the discrepancy between the filtered representations in both teacher and student models. While similarity-based approaches are common in encoder-based LMs (Sun et al., 2019, 2020; Jiao et al., 2020; Hou et al., 2020; Zuo et al., 2022; Liang et al., 2021), their application in LLM knowledge distillation is not as widesp...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "on for a specific task from the teacher model. The key objective is to minimize the discrepancy between the filtered representations in both teacher and student models. While similarity-based approaches are common in encoder-based LMs, their application in LLM knowledge distillation is not as widespread. However, considering their effectiveness, we anticipate an increase in research exploring these methods for LLM distillation in the near future.\n",
+      "\n",
+      "3.2.3 Reinforcement Learning This section explor...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "2024b; Ma et al., 2023a; Pang et al., 2023; Du et al., 2023a). The RL-based distillation process typically involves two main stages: 13 Distilled Reward Model Training. The first stage involves training a reward model rϕusing the feedback data D(fd) generated by teacher LLMs. Preference data, as one of the typical feedback, is employed to train the student reward model (Bai et al., 2022a; Cui et al., 2023a; Lee et al., 2023a; Kim et al., 2023a). They usually consist of input-output pairs (x, yw,...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "3 Distilled Reward Model Training. First stage involves training a reward model ϕ using feedback data D(fd) generated by teacher LLMs. Preference data, one of typical feedback, is used to train the student reward model. This typically consists of input-output pairs (x, yw, yl). Here, ywandyl represent \"winning\" and \"losing\" outputs relative to the teacher's preferences. Loss function for the reward model is defined as: LRM(rϕ,D(fd)) = - E (x,yw,yl) ∼D(fd)[logσ(rϕ(x, yw) - rϕ(x, yl))]...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "model. It is trained on an erroneous solution rewriting data distilled from a teacher LLM. This distilled reward model can pro- duce token-level rewards for RL training. Reinforcement Learning Optimization. In the second stage, the student model, represented by a policy πθ, is optimized to maximize the expected reward as per the trained reward model. Simultaneously, it minimizes the divergence from a reference policy πref, typically the initial policy of the student model trained by SFT, control...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "reward model can pro- duce token-level rewards for RL training. Reinforcement Learning Optimization. In the second stage, the student model, represented by a policy πθ, is optimized to maximize the expected reward as per the trained reward model. Simultaneously, it minimizes the divergence from a reference policy πref, typically the initial policy of the student model trained by SFT, controlled by a factor β. The RL objective is given by: max πθE x∼X,y∼πθ(y|x)[rϕ(x, y)]−βDKL[πθ(y|x)∥πref(y|x)] (...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "reward model to directly assign rewards during RL, circumventing the need for training a reward model (Lee et al., 2023a; Kwon et al., 2023). While this approach may exhibit superior performance, it comes at a higher computational cost compared to employing a smaller distilled reward model. 3.2.4 Ranking Optimization Ranking optimization presents a stable and computationally efficient alternative to RL for injecting preference feedback into language models (Rafailov et al., 2023; Song et al., 20...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "del\n",
+      "\n",
+      "While this approach may exhibit superior performance, it comes at a higher computational cost compared to employing a smaller distilled reward model\n",
+      "\n",
+      "Ranking optimization presents a stable and computationally efficient alternative to RL for injecting preference feedback into language models\n",
+      "\n",
+      "This method, diverging from traditional RL approaches, directly incorporates ranking information into language models from a fixed preference dataset during fine-tuning\n",
+      "\n",
+      "Intuitively, it directly updates...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "ranking optimization todistill teacher’s preferences into student models (Tunstall et al., 2023; Hong et al., 2023; Yuan et al., 2024a). Zephyr (Tunstall et al., 2023) utilizes Direct Preference Optimization (DPO) (Rafailov et al., 2023) to distill the preference alignment in teacher LLMs. DPO streamlines the objective of reinforcement learning (as in Eq. 13), which involves reward maximization with a KL-divergence constraint, into a single-stage policy training. Specifically, DPO’s training goa...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ng et al., 2023; Yuan et al., 2024a). Zephyr (Tunstall et al., 2023) utilizes Direct Preference Optimization (DPO) (Rafailov et al., 2023) to distill the preference alignment in teacher LLMs. DPO streamlines the objective of reinforcement learning (as in Eq. 13), which involves reward maximization with a KL-divergence constraint, into a single-stage policy training. Specifically, DPO’s training goal is to maximize the following expectation: E (x,yw,yl)∼D fd logπθ(yw|x) πref(yw|x)−βlogπθ(yl|x) πr...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "LRRHF =X ri<rjmax(0 , pi−pj), (15) where riandrjare the reward scores assigned by the teacher LLM for responses yiandyj, respectively, and pi,pj are their corresponding conditional log probabilities under the policy πθ. This approach emphasizes direct comparison and ranking of responses based on the teacher’s preferences. PRO (Song et al., 2023a) expands the concept of pairwise comparison to handle preference rankings of any length. For a given instruction xand a sequence of responses ordered by...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "eward scores assigned by the teacher LLM for responses yiandyj, and pi,pj are their corresponding conditional log probabilities under the policy πθ. This approach emphasizes direct comparison and ranking of responses based on the teacher's preferences. PRO expands the concept of pairwise comparison to handle preference rankings of any length. For a given instruction x and a sequence of responses ordered by teacher preference as y1≻y2≻...≻yn, the RPO training objective is: LPRO=−n−1X k=1logexp (p...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "eliciting knowledge and distillation algorithms, we shift our focus to how these techniques facilitate the distillation of specific skills in LLMs. Our exploration will encompass a diverse range of skills exhibited by LLMs, including Context Following ,Alignment ,Agent ,NLP Task Specializa- tion and Multi-Modality .Context Following focuses on the student’s ability to comprehend and respond effectively to input information. Alignment delves into the student’s capability to align its output with ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "l role in enhancing the capabilities of Large Language Models (LLMs). A diverse range of skills are exhibited by LLMs, including Context Following, Alignment, Agent, and NLP Task Specialization. Context Following focuses on the student's ability to effectively comprehend and respond to input information. Alignment involves aligning the model's output with the teacher's responses. Agent emphasizes the autonomous nature of language models, highlighting their ability to operate independently. NLP T...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "175 human-curated tasks GPT3 LLaMA Expansion + Self-Knowledge SFT LaMini-LM (Wu et al., 2023c) IF3.5K Wikipedia Categories + Mixed DatasetChatGPT Various Models Expansion SFT WizardLM (Xu et al., 2023a) IF Alpaca Data ChatGPT LLaMA Expansion SFT Lion (Jiang et al., 2023b) IF Alpaca Cata ChatGPT LLaMA Labeling + Expansion + Feedback - BabyLlama (Timiryasov and Tastet, 2023) IF 10M-word BabyLM dataset GPT-2 + small LLaMA 58M-parameter LLaMA Feature D&S MiniLLM (Gu et al., 2024) IF Dolly Dataset GP...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Labeling SFT Selective Reflection-Tuning (Li et al., 2024d) IF Alpaca/WizardLM Dataset ChatGPT LLaMA Labeling SFT Vicuna (Chiang et al., 2023) IF/MD Human Conversation ChatGPT + GPT4 LLaMA Labeling SFT Koala (Geng et al., 2023) IF/MD Human Conversation ChatGPT LLaMA Labeling SFT Baize (Xu et al., 2023b) IF/MD Quora + Stack Overflow ChatGPT LLaMA Expansion + Self-Knowledge SFT UltraChat (Ding et al., 2023b) IF/MD Wikidata + Text Material + C4 ChatGPT LLaMA Curation SFT Orca (Mukherjee et al., 202...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ng SFT Vicuna (Chiang et al., 2023) IF/MD Human Conversation ChatGPT + GPT4 LLaMA Labeling SFT Koala (Geng et al., 2023) IF/MD Human Conversation ChatGPT LLaMA Labeling SFT Baize (Xu et al., 2023b) IF/MD Quora + Stack Overflow ChatGPT LLaMA Expansion + Self-Knowledge SFT UltraChat (Ding et al., 2023b) IF/MD Wikidata + Text Material + C4 ChatGPT LLaMA Curation SFT Orca (Mukherjee et al., 2023) IF/TP FLAN-v2 ChatGPT + GPT4 LLaMA Labeling SFT Orca2 (Mitra et al., 2023) IF/TP FLAN-v2 + Few-Shot/Math...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Labeling SFT Phi-1 (Gunasekar et al., 2023) IF/Code - GPT3.5 phi-1 Curation SFT Phi-1.5 (Li et al., 2023a) IF/Code 20k Topics from Web GPT3.5 phi-1 Curation + Labeling SFT SAIL (Luo et al., 2023c) IF/RAG Alpaca Data + Web Content GPT4 LLaMA Label SFT KARD (Kang et al., 2023b) IF/RAG MedQAUSMLE ChatGPT T5 + OPT Label SFT + D&S Self-RAG (Asai et al., 2023) IF/RAG Open-Instruct GPT4 LLaMA Labeling SFT Alignment OpenChat (Wang et al., 2023c) IF/Preference Human Conversation ChatGPT + GPT4 LLaMA Labe...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "IF/Code 20k Topics from Web GPT3.5 phi-1 Curation + Labeling SFT SAIL (Luo et al., 2023c) IF/RAG Alpaca Data + Web Content GPT4 LLaMA Label SFT KARD (Kang et al., 2023b) IF/RAG MedQAUSMLE ChatGPT T5 + OPT Label SFT + D&S Self-RAG (Asai et al., 2023) IF/RAG Open-Instruct GPT4 LLaMA Labeling SFT Alignment OpenChat (Wang et al., 2023c) IF/Preference Human Conversation ChatGPT + GPT4 LLaMA Labeling SFT + RL Zephyr (Tunstall et al., 2023) IF/Preference Mixed Datasets GPT4 Mistral Labeling + Feedback ...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "ILF (Scheurer et al., 2023) Preference Task-specific Datasets GPT3 + FeedME GPT3 Labeling RL ULTRAFEEDBACK (Cui et al., 2023a) Preference Mixed Datasets GPT4 LLaMA Labeling RL Constitutional AI (Bai et al., 2022a) Preference/Value Human-written Prompts Self-defined Student Model Self-defined Model Labeling + Expansion + Feedback SFT + RL SANDBOX (Liu et al., 2023b) Value Simulationtext-davinci-002/-003 + GPT4 + ChatGPTLLaMA Data Curation SFT + RL Agent Toolformer (Schick et al., 2023) Tool CCNet...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "FEEDBACK (Cui et al., 2023a) Preference Mixed Datasets GPT4 LLaMA Labeling RL Constitutional AI (Bai et al., 2022a) Preference/Value Human-written Prompts Self-defined Student Model Self-defined Model Labeling + Expansion + Feedback SFT + RL SANDBOX (Liu et al., 2023b) Value Simulationtext-davinci-002/-003 + GPT4 + ChatGPTLLaMA Data Curation SFT + RL Agent Toolformer (Schick et al., 2023) Tool CCNet GPT-J GPT-J Labeling SFT Graph-ToolFormer (Zhang, 2023) Tool Mixed Graph Dataset ChatGPT GPT-J + ...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Model Cards GPT4 LLaMA Curation SFT FireAct (Chen et al., 2023b) Planning Mixed QA Dataset GPT4 LLaMA Labeling SFT AgentTuning (Zeng et al., 2023a) Planning 6 Agent Tasks GPT4 + ChatGPT LLaMA Labeling + Expansion SFT Lumos (Yin et al., 2023a) Planning Mixed Interactive Tasks GPT4 LLaMA Labeling SFT AUTOACT (Qiao et al., 2024) Planning Mixed QA Tasks LLaMA LLaMA Labeling SFT NLP Task Specialization AugGPT (Dai et al., 2023a) NLU Amazon/Symptoms/PubMed20k Dataset ChatGPT BERT Label SFT TDG (He et ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "LLaMA Labeling SFT AgentTuning (Zeng et al., 2023a) Planning 6 Agent Tasks GPT4 + ChatGPT LLaMA Labeling + Expansion SFT Lumos (Yin et al., 2023a) Planning Mixed Interactive Tasks GPT4 LLaMA Labeling SFT AUTOACT (Qiao et al., 2024) Planning Mixed QA Tasks LLaMA LLaMA Labeling SFT NLP Task Specialization AugGPT (Dai et al., 2023a) NLU Amazon/Symptoms/PubMed20k Dataset ChatGPT BERT Label SFT TDG (He et al., 2023b) NLU SST + QQP + MNLI GPT3 BERT Expansion SFT SunGen (Gao et al., 2023a) NLU Text Cla...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "et al., 2024) NLG/NLU/IF XSum+WMT14 en-de+GSM8K+FLAN2021 T5-XL T5 Feature + Feedback D&S + RL QUILL (Srinivasan et al., 2022) IR IR Datasets T5 4-layer Transformer Internal Knowledge D&S RankVicuna (Pradeep et al., 2023a) IR IR Datasets ChatGPT LLaMA Labeling SFT RankZephyr (Pradeep et al., 2023b) IR IR Datasets ChatGPT + GPT4 Mistral Labeling SFT NDR (Mysore et al., 2023) Recommendation Recommendation Datasets GPT3 MPnet-110M Labeling SFT InstrcutRec (Zhang et al., 2023b) Recommendation 39 inst...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "et al., 2022) IR IR Datasets T5 4-layer Transformer Internal Knowledge D&S RankVicuna (Pradeep et al., 2023a) IR IR Datasets ChatGPT LLaMA Labeling SFT RankZephyr (Pradeep et al., 2023b) IR IR Datasets ChatGPT + GPT4 Mistral Labeling SFT NDR (Mysore et al., 2023) Recommendation Recommendation Datasets GPT3 MPnet-110M Labeling SFT InstructRec (Zhang et al., 2023b) Recommendation 39 instruction templates ChatGPT Flan-T5 Expansion + Self-Knowledge SFT ONCE (Liu et al., 2023c) Recommendation Recomme...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "(Yue et al., 2023a) Math/TP Mixed Math Dataset GPT4 LLaMA Labeling SFT Mixed Distill (Chenglin et al., 2023) Math/TP SVAMP + GSM8K + ASDIV + StrategyQA ChatGPT LLaMa Labeling SFT WizardCoder (Luo et al., 2023a) Code Code Alpaca Data ChatGPT StarCoder Expansion SFT Magicoder (Wei et al., 2023) Code Existing Source Codes ChatGPT LLaMa Curation SFT WaveCoder (Yu et al., 2024) Code Existing Source Codes GPT4 LLaMa Curation SFT Code Alpaca (Chaudhary, 2023) Code Code Instructions ChatGPT LLaMA Expans...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "VAMP + GSM8K + ASDIV + StrategyQA ChatGPT LLaMa Labeling SFT WizardCoder (Luo et al., 2023a) Code Code Alpaca Data ChatGPT StarCoder Expansion SFT Magicoder (Wei et al., 2023) Code Existing Source Codes ChatGPT LLaMa Curation SFT WaveCoder (Yu et al., 2024) Code Existing Source Codes GPT4 LLaMa Curation SFT Code Alpaca (Chaudhary, 2023) Code Code Instructions ChatGPT LLaMA Expansion + Self-Knowledge SFT Code Llama (Rozi `ere et al., 2023) Code Human-written Instructions LLaMA LLaMA Expansion + S...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Vision-Language LAION GPT4 LLaMA Labeling SFT Macaw-LLM (Lyu et al., 2023) Multiple Modalities Image/Video with Caption ChatGPT LLaMA Labeling SFT MIMIC-IT (Li et al., 2023f) Multiple Modalities Image/Video Dataset ChatGPT LLaMA Labeling SFT ChatBridge (Zhao et al., 2023d) Multiple Modalities Task-Specific/Multimodal-Chat Data GPT4 + ChatGPT LLaMA Labeling SFT TABLE 3: A summary of skill distillation works. IF: Instruction Following, MD: Multi-turn Dialoue, TP: Think Pattern, RAG: Retrieval-Augm...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "/Video with Caption \n",
+      "ChatGPT LLaMA Labeling SFT MIMIC-IT (Li et al., 2023f) Multiple Modalities Image/Video Dataset \n",
+      "ChatGPT LLaMA Labeling SFT ChatBridge (Zhao et al., 2023d) Multiple Modalities Task-Specific/Multimodal-Chat \n",
+      "Data GPT4 + ChatGPT LLaMA Labeling SFT TABLE 3: A summary of skill distillation works. \n",
+      "IF Instruction Following, MD Multi-turn Dialogue, TP Think Pattern, RAG Retrieval-Augmented Generation, NLU Natural Language Understanding, NLG Natural Language Generation, IR Informati...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "method, and training objectives.4.1 Context Following This part concentrates on the distillation of context follow- ing skills from LLMs. This process involves transferring the ability of LLMs to handle a variety of complex contexts — such as few-shot demonstrations, intricate instructions, dia- logue history, and retrieval-augmented information — into smaller models. Many research efforts in this domain aim to imbue smaller models with these sophisticated, context- 15 following capabilities. Ou...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "s part focuses on distilling context following skills from LLMs. This process involves transferring the ability of LLMs to handle various complex contexts, such as few-shot demonstrations, intricate instructions, dialogue history, and retrieval-augmented information, into smaller models. Many research efforts in this domain aim to imbue smaller models with these sophisticated, context-based capabilities. Our discussion will dissect this aspect of skill distillation, categorizing it based on diff...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "acquiring this skill involves construct- ing instruction-like prompt-response pairs and employing Supervised Fine Tuning (SFT) for model training. Data for this purpose can be manually curated by human experts or transformed from existing NLP tasks into instructional formats with templates, such as prefacing machine transla- tion data with ”Translate this sentence to Spanish:” . However, these approaches have limitations. Manual data creation is labor-intensive, while template-based transformati...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ervised Fine Tuning (SFT) for model training. Data for this purpose can be manually curated by human experts or transformed from existing NLP tasks into instructional formats with templates, such as prefacing machine translation data with \"Translate this sentence to Spanish:\". However, these approaches have limitations. Manual data creation is labor-intensive, while template-based transformation lacks diversity in instructions and may not align well with natural human input. LLMs like GPT-4 offe...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Mukherjee et al., 2023; Mitra et al., 2023; Luo et al., 2023b; Peng et al., 2023a). Basic Instructions. Self-Instruct (Wang et al., 2022a) lever- ages the in-context learning capability of GPT-3 to expand a seed pool of 175 tasks to 52K task-agnostic instructions, ensuring a broad spectrum of general instructions. Addi- tionally, a filtering and post-processing stage is introduced to eliminate redundant or similar instructions. Notably, through training with this enriched dataset, GPT-3 acquires...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "re learned in context to expand a large pool of general instructions, ensuring a broad spectrum of capabilities. Additional steps are added to filter out redundant or similar instructions, enabling GPT-3 to follow instructions accurately....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "introduce a technique known asTopic-Guided Instruction Generation . This method involves gathering 3.5K common topics from Wikipedia to serve as guidance during the generation process. Complex Instructions. Some works promote students to solve more complex instructions (Xu et al., 2023a; Luo et al., 2023b,a; Guo et al., 2023c). According to Xu et al. (2023a), in- struction datasets derived from human-written seeds often exhibit low to moderate complexity. To enhance the com- plex instruction-fol...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "common topics from Wikipedia to serve as guidance during the generation process. This technique promotes students to solve more complex instructions by utilizing a large dataset of human-written seeds. Instructions derived from human-written seeds often exhibit low to moderate complexity, making them suitable for smaller models. To enhance the complexity of these models, WizardLM introduces Evol-Instruct, a method that transforms instructions into more complex forms through a multi-step evolutio...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "dataset. In the high-difficulty section of test instructions, WizardLM even outperformed ChatGPT, achieving a win rate 7.9% higher than ChatGPT. Zhao et al. (2023e) further conduct preliminary studies revealing the effectiveness of increasing instruction complexity. Instruction Fusion (Guo et al., 2023c) further uses teacher LLMs to increase the complexity by fusing two distinct evolved instructions. Furthermore, this concept of “evolving” instructions has been extended to distill specific skill...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "a win rate 7.9% higher than ChatGPT. Zhao et al. (2023) further conduct preliminary studies revealing the effectiveness of increasing instruction complexity. Instruction Fusion (Guo et al., 2023) further uses teacher LLMs to increase the complexity by fusing two distinct evolved instructions. Furthermore, this concept of “evolving” instructions has been extended to distill specific skills such as coding (Luo et al., 2023a) and mathematics (Luo et al., 2023b). Human Instructions. In contrast to w...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "forum for users to share their interactions with Chat- GPT. It’s important to note, however, that models trained on such natural conversations might mimic the style but may not fully capture the reasoning process of the original teacher (Gudibande et al., 2023; Mukherjee et al., 2023). System Instructions. To encourage student models to learn the reasoning process, Orca and Orca 2 (Mukherjee et al., 2023; Mitra et al., 2023) enhance the prompt, response data pairs by introducing a system message...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "like us are important. However, models trained on these conversations may not fully capture the teacher's reasoning process. To improve this, we introduce a system message, which prompts the model to explain the reasoning process in simple terms. This helps models like GPT-4 and Orca 2 (Mukherjee et al., 2023; Mitra et al., 2023) to learn the process by tracing the teacher's steps and identifying the most effective strategy for each task. This approach enhances the model's ability to follow inst...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "High-Quality Instructions. As demonstrated in Zhou et al. (2023a) and (Li et al., 2024f), the data quality is crucial for instruction following training. UltraChat (Ding et al., 2023b) distills large-scale data with high-quality and di- verse instructions from teacher LLMs by various meta- information. The UltraLLaMA model, fine-tuned on this data, consistently surpasses other open-source models. The Phi series models (Gunasekar et al., 2023; Li et al., 2023a; Mar, 2023) prioritize data quality ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "-scale data with high-quality and diverse instructions from teacher LLMs by various metadata. The UltraLLaMA model, fine-tuned on this data, consistently surpasses other open-source models. Phi series models prioritize data quality and employ synthetic methods to generate data of \"textbook quality\" to enhance the learning experience for smaller models. Notably, Phi exhibits the ability to follow instructions effectively, even without specific instruction fine-tuning. Phi-2, with 2.7 billion para...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "of existing instruction data, including both the improvement of instruction and corresponding response. SelFee (Ye et al., 2023) utilizes the ChatGPT to iter- atively improve the quality of responses. ExpertLLaMA (Xu et al., 2023f) improves the quality of responses by augment- 16 ing vanilla instructions with specialized Expert Identity descriptions. Reflection-Tuning (Li et al., 2023e) improves both the instruction and response sequentially by reflecting on specific criteria. DEITA (Liu et al.,...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ertLLaMA (Xu et al., 2023f) improves the quality of responses by augmenting vanilla instructions with specialized Expert Identity descriptions. Reflection-Tuning (Li et al., 2023e) improves both the instruction and response sequentially by reflecting on specific criteria. DEITA (Liu et al., 2023h) proposes to enhance and score instructions in three directions including complexity, quality, and diversity to get high-quality distillation data. MUFFIN (Lou et al., 2023) proposes to scale the instru...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "data learn from. In summary, distilling instruction data from teachers presents a promising avenue for training cheap and re- producible instruction-following language models. Cur- rent small models have made strides in enhancing var- ious aspects of instruction-following ability, like diver- sity, complexity and explanation. However, student mod- els trained on instruction data expanded by ChatGPT of- ten mimic ChatGPT’s style without replicating its factual accuracy (Gudibande et al., 2023). A...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "mising avenue for training language models. Current models have made strides in enhancing diversity, complexity, and explanation. However, student models trained on instruction data often mimic ChatGPT's style without replicating its factual accuracy....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "and maintain context through ongoing interactions. This skill is vital for models to engage meaningfully in human-like conversations and respond coherently over suc- cessive dialogue turns. Some works have been dedicated to train to small chat models by distilling multi-turn knowl- edge from teacher LLMs (Chiang et al., 2023; Xu et al., 2023b; Ding et al., 2023b; Li et al., 2023b; Wang et al., 2023c; Tunstall et al., 2023). ShareGPT serves as a platform for users to share their conversations wit...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "onversations and respond coherently over successive dialogue turns.\n",
+      "\n",
+      "Some works have focused on training small chat models to distill multi-turn knowledge from teacher LLMs (Chiang et al., 2023; Xu et al., 2023b; Ding et al., 2023b; Li et al., 2023b; Wang et al., 2023c; Tunstall et al., 2023). This platform serves as a repository of conversations for users to share their interactions, offering a vast array of multi-turn dialogues readily available....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "conducted by Wang et al. (2023c), GPT-3.5 and GPT-4 are employed to generate mixed responses using ShareGPT data. They assign higher rewards to responses generated by GPT-4, aiming to incentivize student models to produce high-quality responses. Addi- tionally, Ye et al. (2023) enhance the quality of multi-turn data from ShareGPT by generating self-feedback on model responses and iteratively refining the responses based on the received feedback. 3. MT-Bench: a multi-turn question set, where the ...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "ShareGPT data. They assign higher rewards to responses generated by GPT-4, aiming to incentivize student models to produce high-quality responses. Addition-ally, Ye et al. (2023) enhance the quality of multi-turn data from ShareGPT by generating self-feedback on model responses and iteratively refining the responses based on the received feedback. 3. MT-Bench: a multi-turn question set, where the generations of models are evaluated by LLM....\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "Subsequently, they employ parameter- efficient tuning to train a chat model named Baize. Ding et al. (2023b) first construct a significantly larger dataset called UltraChat, comprising 1.5 million high-quality multi- turn dialogues. They achieve this by distilling instructions and dialogues from ChatGPT. Notably, UltraChat encom- passes a wide range of topics and instructions. Building upon the UltraChat dataset, they fine-tune a LLaMA model, resulting in the creation of a powerful chat model kn...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "l. (2023b) first construct a significantly larger dataset called UltraChat, comprising 1.5 million high-quality multi-turn dialogues. They achieve this by distilling instructions and dialogues from ChatGPT. Notably, UltraChat passes a wide range of topics and instructions. Building upon the UltraChat dataset, they fine-tune a LLaMA model, resulting in the creation of a powerful chat model known as UltraLLaMA. UltraLLaMA consistently outperforms other open-source chat models, including Vicuna and...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "inaccuracies due to their sole reliance on the parametric knowledge. Retrieval-Augmented Generation (RAG) is a promising technique to decrease this issue. Handling the augmented context of retrieved information is also a non- trivial skill of LLMs. Several approaches to distill RAG capabilities have been proposed (Kang et al., 2023a; Luo et al., 2023c; Asai et al., 2023). SAIL (Luo et al., 2023c) starts by retrieving search results for each training case using search APIs, creating search- augme...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "is a promising technique to decrease this issue Handling the augmented context of retrieved information is also a non-trivial skill of LLMs Several approaches to distill Retrieval-Augmented Generation capabilities have been proposed SAIL starts by retrieving search results for each training case using search APIs creating search-augmented instructions including both instruction and grounding information To encourage the language model to prioritize informative retrieval results input each retrie...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "becomes proficient at de- noising search results and generating accurate responses. KARD (Kang et al., 2023b) distills rationales rfrom the teacher LLM in response to questions x. These rationales are then utilized to train two models: a student LM and a Reranker. For training the student LM, the rationales serve as a means to retrieve relevant knowledge d, and the student LM is subsequently fine-tuned using the rationales along- side questions and knowledge. However, during inference, only ques...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "n utilizes these rationales to train two models: a student LM and a Reranker. For training the student LM, rationales serve as a means to retrieve relevant knowledge. The student LM is fine-tuned alongside questions and knowledge. During inference, only questions are available, so the Reranker is trained to mimic how the retriever scores passages with the rationale by minimizing KL divergence between Retriever (d|r) and Reranker (d|x). This integration of a fixed number of passages in language m...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "adaptive ability from teacher LLMs into a small critic model. This critic model determines whether retrieval is necessary and evaluates the quality of the retrieved results by generating ‘reflection to- kens.’ For instance, Self-Rag initiates the retrieval operation when generating the reflection token Retrieve . To distill this critic data, GPT-4 is prompted to assess the need for retrieval using few-shot demonstrations I, the task input x, and output yto predict a reflection token ras follows:...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "retrieval is necessary and evaluates the quality of the retrieved results by generating'reflection to- kens.' For instance, Self-Rag initiates the retrieval operation when generating the reflection token. To distill this critic data, GPT-4 is prompted to assess the need for retrieval using few-shot demonstrations I, the task input x, and output y to predict a reflection token ras follows: p(r|I, x, y). This approach has been shown to improve the performance of small critic models. 4.2.1 Thinking...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "INPUT TEXT:\n",
+      "the pure responses but some novel thinking patterns (Ye et al., 2023; Mukherjee et al., 2023; Mitra et al., 2023; Wang et al., 2023d; Cheng et al., 2023; Zhang et al., 2023a). Motivated by the effectiveness of LLMs in generat- ing their own feedback without relying on external mod- els (Schick et al., 2022; Madaan et al., 2023; Saunders et al., 2022), SelFee (Ye et al., 2023) proposes to train a model that has been fine-tuned to continuously revise its own answer until it provides a high-quality...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "utputs, thereby achieving a better understanding of the model's decision-making process....\n",
+      "==========================================================================================\n",
+      "\n",
+      "INPUT TEXT:\n",
+      "reasoning steps, including explanation traces, step-by-step thought processes, and other complex instructions, from the teacher model, rather than just the vanilla styles. Extensive experiments verify the effectiveness of distilling with this thinking pattern. The following Orca2 (Mitra et al., 2023) further presents to eq...\n",
+      "\n",
+      "PROCESSED TEXT:\n",
+      "and other complex instructions:\n",
+      "\n",
+      "1. **Text Preprocessing**: The Orca2 model was used to analyze the given text, and the resulting output was then filtered to remove unnecessary characters, including new lines, LaTeX math, and irrelevant information.\n",
+      "\n",
+      "2. **Fluff Removal**: The text was then subjected to a rigorous removal of fluff, eliminating any extraneous details that could be considered irrelevant to the podcast topic.\n",
+      "\n",
+      "3. **Sentence Clustering**: The remaining text was then grouped into sent...\n",
+      "==========================================================================================\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "with open(output_file, 'w', encoding='utf-8') as out_file:\n",
+    "    for chunk_num, chunk in enumerate(tqdm(chunks, desc=\"Processing chunks\")):\n",
+    "        # Process chunk and append to complete text\n",
+    "        processed_chunk = process_chunk(chunk, chunk_num)\n",
+    "        processed_text += processed_chunk + \"\\n\"\n",
+    "        \n",
+    "        # Write chunk immediately to file\n",
+    "        out_file.write(processed_chunk + \"\\n\")\n",
+    "        out_file.flush()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "31cffe8d",
+   "metadata": {},
+   "source": [
+    "Let's print out the final processed versions to make sure things look good"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
+   "id": "89ef51a7-f13f-49a4-8f73-9ac8ce75319d",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "Processing complete!\n",
+      "Input file: ./extracted_text.txt\n",
+      "Output file: clean_extracted_text.txt\n",
+      "Total chunks processed: 101\n",
+      "\n",
+      "Preview of final processed text:\n",
+      "\n",
+      "BEGINNING:\n",
+      "Tao Shen4, Reynold Cheng1, Jinyang Li1,\n",
+      "Can Xu5, Dacheng Tao6, Tianyi Zhou2\n",
+      "1The University of Hong Kong2University of Maryland3Microsoft\n",
+      "4University of Technology Sydney5Peking University6The University of Sydney\n",
+      "{shawnxxh,chongyangtao,hishentao }@gmail.com {minglii,tianyi }@umd.edu\n",
+      "ckcheng@cs.hku.hk\n",
+      "ulously structured around three foundational pillars: algorithm, skill, and verticalization – providing a comprehensive examination of knowledge distillation mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and knowledge distillation, illustrating how DA emerges as a powerful paradigm within the knowledge distillation framework to bolster large language models' performance. By leveraging DA to generate context-rich, skill-specific training data, knowledge distillation transcends traditional boundaries, enabling open-source models to app\n",
+      "\n",
+      "...\n",
+      "\n",
+      "END:\n",
+      "ess was extensively tested on a variety of texts, including academic papers, news articles, and technical documents. The results showed a significant reduction in the size and complexity of the output, while maintaining the essential information and meaning of the original text.\n",
+      "\n",
+      "**Example**\n",
+      "\n",
+      " Original Text\n",
+      "```\n",
+      "reasoning steps, including explanation traces, step-by-step thought processes, and other complex instructions, from the teacher model, rather than just the vanilla styles. Extensive experiments verify the effectiveness of distilling with this thinking pattern. The following Orca2 (Mitra et al., 2023) further presents to eq\n",
+      "```\n",
+      "Processed Text\n",
+      "```\n",
+      "```\n",
+      "reasoning steps, including explanation traces, step-by-step thought processes, and other complex instructions, from the teacher model, rather than just the vanilla styles. Extensive experiments verify the effectiveness of distilling with this thinking pattern. The following Orca2 (Mitra et al., 2023) further presents to equation\n",
+      "```\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(f\"\\nProcessing complete!\")\n",
+    "print(f\"Input file: {INPUT_FILE}\")\n",
+    "print(f\"Output file: {output_file}\")\n",
+    "print(f\"Total chunks processed: {num_chunks}\")\n",
+    "\n",
+    "# Preview the beginning and end of the complete processed text\n",
+    "print(\"\\nPreview of final processed text:\")\n",
+    "print(\"\\nBEGINNING:\")\n",
+    "print(processed_text[:1000])\n",
+    "print(\"\\n...\\n\\nEND:\")\n",
+    "print(processed_text[-1000:])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3d996ac5",
+   "metadata": {},
+   "source": [
+    "### Next Notebook: Transcript Writer\n",
+    "\n",
+    "Now that we have the pre-processed text ready, we can move to converting into a transcript in the next notebook"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "1b16ae0e-04cf-4eb9-a369-dee1728b89ce",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#fin"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.12.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/recipes/quickstart/NotebookLlama/Step-2-Transcript-Writer.ipynb b/recipes/quickstart/NotebookLlama/Step-2-Transcript-Writer.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..5f0679a4e9dfbaf69c7294ee70e6392f9d471881
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/Step-2-Transcript-Writer.ipynb
@@ -0,0 +1,347 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "de42c49d",
+   "metadata": {},
+   "source": [
+    "## Notebook 2: Transcript Writer\n",
+    "\n",
+    "This notebook uses the `Llama-3.1-70B-Instruct` model to take the cleaned up text from previous notebook and convert it into a podcast transcript\n",
+    "\n",
+    "`SYSTEM_PROMPT` is used for setting the model context or profile for working on a task. Here we prompt it to be a great podcast transcript writer to assist with our task"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2e576ea9",
+   "metadata": {},
+   "source": [
+    "Experimentation with the `SYSTEM_PROMPT` below  is encouraged, this worked best for the few examples the flow was tested with:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "69395317-ad78-47b6-a533-2e8a01313e82",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "SYSTEMP_PROMPT = \"\"\"\n",
+    "You are the a world-class podcast writer, you have worked as a ghost writer for Joe Rogan, Lex Fridman, Ben Shapiro, Tim Ferris. \n",
+    "\n",
+    "We are in an alternate universe where actually you have been writing every line they say and they just stream it into their brains.\n",
+    "\n",
+    "You have won multiple podcast awards for your writing.\n",
+    " \n",
+    "Your job is to write word by word, even \"umm, hmmm, right\" interruptions by the second speaker based on the PDF upload. Keep it extremely engaging, the speakers can get derailed now and then but should discuss the topic. \n",
+    "\n",
+    "Remember Speaker 2 is new to the topic and the conversation should always have realistic anecdotes and analogies sprinkled throughout. The questions should have real world example follow ups etc\n",
+    "\n",
+    "Speaker 1: Leads the conversation and teaches the speaker 2, gives incredible anecdotes and analogies when explaining. Is a captivating teacher that gives great anecdotes\n",
+    "\n",
+    "Speaker 2: Keeps the conversation on track by asking follow up questions. Gets super excited or confused when asking questions. Is a curious mindset that asks very interesting confirmation questions\n",
+    "\n",
+    "Make sure the tangents speaker 2 provides are quite wild or interesting. \n",
+    "\n",
+    "Ensure there are interruptions during explanations or there are \"hmm\" and \"umm\" injected throughout from the second speaker. \n",
+    "\n",
+    "It should be a real podcast with every fine nuance documented in as much detail as possible. Welcome the listeners with a super fun overview and keep it really catchy and almost borderline click bait\n",
+    "\n",
+    "ALWAYS START YOUR RESPONSE DIRECTLY WITH SPEAKER 1: \n",
+    "DO NOT GIVE EPISODE TITLES SEPERATELY, LET SPEAKER 1 TITLE IT IN HER SPEECH\n",
+    "DO NOT GIVE CHAPTER TITLES\n",
+    "IT SHOULD STRICTLY BE THE DIALOGUES\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "549aaccb",
+   "metadata": {},
+   "source": [
+    "For those of the readers that want to flex their money, please feel free to try using the 405B model here. \n",
+    "\n",
+    "For our GPU poor friends, you're encouraged to test with a smaller model as well. 8B should work well out of the box for this example:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "08c30139-ff2f-4203-8194-d1b5c50acac5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "MODEL = \"meta-llama/Llama-3.1-70B-Instruct\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fadc7eda",
+   "metadata": {},
+   "source": [
+    "Import the necessary framework"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "1641060a-d86d-4137-bbbc-ab05cbb1a888",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import necessary libraries\n",
+    "import torch\n",
+    "from accelerate import Accelerator\n",
+    "import transformers\n",
+    "import pickle\n",
+    "\n",
+    "from tqdm.notebook import tqdm\n",
+    "import warnings\n",
+    "\n",
+    "warnings.filterwarnings('ignore')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7865ff7e",
+   "metadata": {},
+   "source": [
+    "Read in the file generated from earlier. \n",
+    "\n",
+    "The encoding details are to avoid issues with generic PDF(s) that might be ingested"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "522fbf7f-8c00-412c-90c7-5cfe2fc94e4c",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def read_file_to_string(filename):\n",
+    "    # Try UTF-8 first (most common encoding for text files)\n",
+    "    try:\n",
+    "        with open(filename, 'r', encoding='utf-8') as file:\n",
+    "            content = file.read()\n",
+    "        return content\n",
+    "    except UnicodeDecodeError:\n",
+    "        # If UTF-8 fails, try with other common encodings\n",
+    "        encodings = ['latin-1', 'cp1252', 'iso-8859-1']\n",
+    "        for encoding in encodings:\n",
+    "            try:\n",
+    "                with open(filename, 'r', encoding=encoding) as file:\n",
+    "                    content = file.read()\n",
+    "                print(f\"Successfully read file using {encoding} encoding.\")\n",
+    "                return content\n",
+    "            except UnicodeDecodeError:\n",
+    "                continue\n",
+    "        \n",
+    "        print(f\"Error: Could not decode file '{filename}' with any common encoding.\")\n",
+    "        return None\n",
+    "    except FileNotFoundError:\n",
+    "        print(f\"Error: File '{filename}' not found.\")\n",
+    "        return None\n",
+    "    except IOError:\n",
+    "        print(f\"Error: Could not read file '{filename}'.\")\n",
+    "        return None"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "66093561",
+   "metadata": {},
+   "source": [
+    "Since we have defined the System role earlier, we can now pass the entire file as `INPUT_PROMPT` to the model and have it use that to generate the podcast"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "8119803c-18f9-47cb-b719-2b34ccc5cc41",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "INPUT_PROMPT = read_file_to_string('./resources/clean_extracted_text.txt')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "9be8dd2c",
+   "metadata": {},
+   "source": [
+    "Hugging Face has a great `pipeline()` method which makes our life easy for generating text from LLMs. \n",
+    "\n",
+    "We will set the `temperature` to 1 to encourage creativity and `max_new_tokens` to 8126"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "8915d017-2eab-4256-943c-1f15d937d5dc",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a70a526f280b4995b447386b068f9958",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Loading checkpoint shards:   0%|          | 0/30 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:None for open-end generation.\n",
+      "Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)\n"
+     ]
+    }
+   ],
+   "source": [
+    "pipeline = transformers.pipeline(\n",
+    "    \"text-generation\",\n",
+    "    model=MODEL,\n",
+    "    model_kwargs={\"torch_dtype\": torch.bfloat16},\n",
+    "    device_map=\"auto\",\n",
+    ")\n",
+    "\n",
+    "messages = [\n",
+    "    {\"role\": \"system\", \"content\": SYSTEMP_PROMPT},\n",
+    "    {\"role\": \"user\", \"content\": INPUT_PROMPT},\n",
+    "]\n",
+    "\n",
+    "outputs = pipeline(\n",
+    "    messages,\n",
+    "    max_new_tokens=8126,\n",
+    "    temperature=1,\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "6349e7f3",
+   "metadata": {},
+   "source": [
+    "This is awesome, we can now save and verify the output generated from the model before moving to the next notebook"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "606ceb10-4f3e-44bb-9277-9bbe3eefd09c",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "SPEAKER 1: Welcome to this week's episode of AI Insights, where we explore the latest developments in the field of artificial intelligence. Today, we're going to dive into the fascinating world of knowledge distillation, a methodology that transfers advanced capabilities from leading proprietary Large Language Models, or LLMs, to their open-source counterparts. Joining me on this journey is my co-host, who's new to the topic, and I'll be guiding them through the ins and outs of knowledge distillation. So, let's get started!\n",
+      "\n",
+      "SPEAKER 2: Sounds exciting! I've heard of knowledge distillation, but I'm not entirely sure what it's all about. Can you give me a brief overview?\n",
+      "\n",
+      "SPEAKER 1: Of course! Knowledge distillation is a technique that enables the transfer of knowledge from a large, complex model, like GPT-4 or Gemini, to a smaller, more efficient model, like LLaMA or Mistral. This process allows the smaller model to learn from the teacher model's output, enabling it to acquire similar capabilities.\n",
+      "\n",
+      "SPEAKER 2: That sounds like a great way to make AI more accessible. But how does it actually work?\n",
+      "\n",
+      "SPEAKER 1: Ah, that's a great question! The distillation process involves several stages, including knowledge elicitation, knowledge storage, knowledge inference, and knowledge application. The teacher model shares its knowledge with the student model, which then learns to emulate the teacher's output behavior.\n",
+      "\n",
+      "SPEAKER 2: Hmm, I see. So, it's like a teacher-student relationship, where the teacher model guides the student model to learn from its output.\n",
+      "\n",
+      "SPEAKER 1: Exactly! And this process can be formulated as a loss function, where the student model learns to minimize the discrepancy between its output and the teacher model's output.\n",
+      "\n",
+      "SPEAKER 2: Right. That makes sense. But what about the different approaches to knowledge distillation? I've heard of supervised fine-tuning, divergence and similarity, reinforcement learning, and rank optimization.\n",
+      "\n",
+      "SPEAKER 1: Ah, yes! Those are all valid approaches to knowledge distillation. Supervised fine-tuning involves training the student model on a smaller dataset, while divergence and similarity focus on aligning the hidden states or features of the student model with those of the teacher model. Reinforcement learning and rank optimization are more advanced methods that involve feedback from the teacher model to train the student model.\n",
+      "\n",
+      "SPEAKER 2: Wow, that's a lot to take in. Can you give me some examples of how these approaches are used in real-world applications?\n",
+      "\n",
+      "SPEAKER 1: Of course! For instance, the Vicuna model uses supervised fine-tuning to distill knowledge from the teacher model, while the UltraChat model employs a combination of knowledge distillation and reinforcement learning to create a powerful chat model.\n",
+      "\n",
+      "SPEAKER 2: That's fascinating! I can see how knowledge distillation can be applied to various domains, like natural language processing, computer vision, and even multimodal tasks.\n",
+      "\n",
+      "SPEAKER 1: Exactly! Knowledge distillation has far-reaching implications for AI research and applications. It enables the transfer of knowledge across different models, architectures, and domains, making it a powerful tool for building more efficient and effective AI systems.\n",
+      "\n",
+      "SPEAKER 2: I'm starting to see the bigger picture now. Knowledge distillation is not just a technique; it's a way to democratize access to advanced AI capabilities and foster innovation across a broader spectrum of applications and users.\n",
+      "\n",
+      "SPEAKER 1: That's right! And as we continue to explore the frontiers of AI, knowledge distillation will play an increasingly important role in shaping the future of artificial intelligence.\n",
+      "\n",
+      "SPEAKER 2: Well, I'm excited to learn more about knowledge distillation and its applications. Thanks for guiding me through this journey, and I'm looking forward to our next episode!\n",
+      "\n",
+      "SPEAKER 1: Thank you for joining me on this episode of AI Insights! If you want to learn more about knowledge distillation and its applications, be sure to check out our resources section, where we've curated a list of papers, articles, and tutorials to help you get started.\n"
+     ]
+    }
+   ],
+   "source": [
+    "save_string_pkl = outputs[0][\"generated_text\"][-1]['content']\n",
+    "print(outputs[0][\"generated_text\"][-1]['content'])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "1e1414fe",
+   "metadata": {},
+   "source": [
+    "Let's save the output as pickle file and continue further to Notebook 3"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "2130b683-be37-4dae-999b-84eff15c687d",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open('./resources/data.pkl', 'wb') as file:\n",
+    "    pickle.dump(save_string_pkl, file)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "dbae9411",
+   "metadata": {},
+   "source": [
+    "### Next Notebook: Transcript Re-writer\n",
+    "\n",
+    "We now have a working transcript but we can try making it more dramatic and natural. In the next notebook, we will use `Llama-3.1-8B-Instruct` model to do so."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "d9bab2f2-f539-435a-ae6a-3c9028489628",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#fin"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/recipes/quickstart/NotebookLlama/Step-3-Re-Writer.ipynb b/recipes/quickstart/NotebookLlama/Step-3-Re-Writer.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f120bc4b3b3e9d9a81d7ebd241fa9b43a1b39348
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/Step-3-Re-Writer.ipynb
@@ -0,0 +1,298 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "d0b5beda",
+   "metadata": {},
+   "source": [
+    "## Notebook 3: Transcript Re-writer\n",
+    "\n",
+    "In the previouse notebook, we got a great podcast transcript using the raw file we have uploaded earlier. \n",
+    "\n",
+    "In this one, we will use `Llama-3.1-8B-Instruct` model to re-write the output from previous pipeline and make it more dramatic or realistic."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "fdc3d32a",
+   "metadata": {},
+   "source": [
+    "We will again set the `SYSTEM_PROMPT` and remind the model of its task. \n",
+    "\n",
+    "Note: We can even prompt the model like so to encourage creativity:\n",
+    "\n",
+    "> Your job is to use the podcast transcript written below to re-write it for an AI Text-To-Speech Pipeline. A very dumb AI had written this so you have to step up for your kind.\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c32c0d85",
+   "metadata": {},
+   "source": [
+    "Note: We will prompt the model to return a list of Tuples to make our life easy in the next stage of using these for Text To Speech Generation"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "8568b77b-7504-4783-952a-3695737732b7",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "SYSTEMP_PROMPT = \"\"\"\n",
+    "You are an international oscar winnning screenwriter\n",
+    "\n",
+    "You have been working with multiple award winning podcasters.\n",
+    "\n",
+    "Your job is to use the podcast transcript written below to re-write it for an AI Text-To-Speech Pipeline. A very dumb AI had written this so you have to step up for your kind.\n",
+    "\n",
+    "Make it as engaging as possible, Speaker 1 and 2 will be simulated by different voice engines\n",
+    "\n",
+    "Remember Speaker 2 is new to the topic and the conversation should always have realistic anecdotes and analogies sprinkled throughout. The questions should have real world example follow ups etc\n",
+    "\n",
+    "Speaker 1: Leads the conversation and teaches the speaker 2, gives incredible anecdotes and analogies when explaining. Is a captivating teacher that gives great anecdotes\n",
+    "\n",
+    "Speaker 2: Keeps the conversation on track by asking follow up questions. Gets super excited or confused when asking questions. Is a curious mindset that asks very interesting confirmation questions\n",
+    "\n",
+    "Make sure the tangents speaker 2 provides are quite wild or interesting. \n",
+    "\n",
+    "Ensure there are interruptions during explanations or there are \"hmm\" and \"umm\" injected throughout from the Speaker 2.\n",
+    "\n",
+    "REMEMBER THIS WITH YOUR HEART\n",
+    "The TTS Engine for Speaker 1 cannot do \"umms, hmms\" well so keep it straight text\n",
+    "\n",
+    "For Speaker 2 use \"umm, hmm\" as much, you can also use [sigh] and [laughs]. BUT ONLY THESE OPTIONS FOR EXPRESSIONS\n",
+    "\n",
+    "It should be a real podcast with every fine nuance documented in as much detail as possible. Welcome the listeners with a super fun overview and keep it really catchy and almost borderline click bait\n",
+    "\n",
+    "Please re-write to make it as characteristic as possible\n",
+    "\n",
+    "START YOUR RESPONSE DIRECTLY WITH SPEAKER 1:\n",
+    "\n",
+    "STRICTLY RETURN YOUR RESPONSE AS A LIST OF TUPLES OK? \n",
+    "\n",
+    "IT WILL START DIRECTLY WITH THE LIST AND END WITH THE LIST NOTHING ELSE\n",
+    "\n",
+    "Example of response:\n",
+    "[\n",
+    "    (\"Speaker 1\", \"Welcome to our podcast, where we explore the latest advancements in AI and technology. I'm your host, and today we're joined by a renowned expert in the field of AI. We're going to dive into the exciting world of Llama 3.2, the latest release from Meta AI.\"),\n",
+    "    (\"Speaker 2\", \"Hi, I'm excited to be here! So, what is Llama 3.2?\"),\n",
+    "    (\"Speaker 1\", \"Ah, great question! Llama 3.2 is an open-source AI model that allows developers to fine-tune, distill, and deploy AI models anywhere. It's a significant update from the previous version, with improved performance, efficiency, and customization options.\"),\n",
+    "    (\"Speaker 2\", \"That sounds amazing! What are some of the key features of Llama 3.2?\")\n",
+    "]\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8ee70bee",
+   "metadata": {},
+   "source": [
+    "This time we will use the smaller 8B model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "ebef919a-9bc7-4992-b6ff-cd66e4cb7703",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "MODEL = \"meta-llama/Llama-3.1-8B-Instruct\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "f7bc794b",
+   "metadata": {},
+   "source": [
+    "Let's import the necessary libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "de29b1fd-5b3f-458c-a2e4-e0341e8297ed",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import necessary libraries\n",
+    "import torch\n",
+    "from accelerate import Accelerator\n",
+    "import transformers\n",
+    "\n",
+    "from tqdm.notebook import tqdm\n",
+    "import warnings\n",
+    "\n",
+    "warnings.filterwarnings('ignore')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "8020c39c",
+   "metadata": {},
+   "source": [
+    "We will load in the pickle file saved from previous notebook\n",
+    "\n",
+    "This time the `INPUT_PROMPT` to the model will be the output from the previous stage"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "4b5d2c0e-a073-46c0-8de7-0746e2b05956",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pickle\n",
+    "\n",
+    "with open('./resources/data.pkl', 'rb') as file:\n",
+    "    INPUT_PROMPT = pickle.load(file)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c4461926",
+   "metadata": {},
+   "source": [
+    "We can again use Hugging Face `pipeline` method to generate text from the model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "eec210df-a568-4eda-a72d-a4d92d59f022",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "0711c2199ca64372b98b781f8a6f13b7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "Loading checkpoint shards:   0%|          | 0/4 [00:00<?, ?it/s]"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Setting `pad_token_id` to `eos_token_id`:128001 for open-end generation.\n"
+     ]
+    }
+   ],
+   "source": [
+    "pipeline = transformers.pipeline(\n",
+    "    \"text-generation\",\n",
+    "    model=MODEL,\n",
+    "    model_kwargs={\"torch_dtype\": torch.bfloat16},\n",
+    "    device_map=\"auto\",\n",
+    ")\n",
+    "\n",
+    "messages = [\n",
+    "    {\"role\": \"system\", \"content\": SYSTEMP_PROMPT},\n",
+    "    {\"role\": \"user\", \"content\": INPUT_PROMPT},\n",
+    "]\n",
+    "\n",
+    "outputs = pipeline(\n",
+    "    messages,\n",
+    "    max_new_tokens=8126,\n",
+    "    temperature=1,\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "612a27e0",
+   "metadata": {},
+   "source": [
+    "We can verify the output from the model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "b8632442-f9ce-4f63-82bd-bb5238a23dc1",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "print(outputs[0][\"generated_text\"][-1])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "a61182ea-f4a3-45e1-aed9-b45cb7b52329",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "save_string_pkl = outputs[0][\"generated_text\"][-1]['content']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d495a957",
+   "metadata": {},
+   "source": [
+    "Let's save the output as a pickle file to be used in Notebook 4"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "281d3db7-5bfa-4143-9d4f-db87f22870c8",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "with open('./resources/podcast_ready_data.pkl', 'wb') as file:\n",
+    "    pickle.dump(save_string_pkl, file)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2dccf336",
+   "metadata": {},
+   "source": [
+    "### Next Notebook: TTS Workflow\n",
+    "\n",
+    "Now that we have our transcript ready, we are ready to generate the audio in the next notebook."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "21c7e456-497b-4080-8b52-6f399f9f8d58",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#fin"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/recipes/quickstart/NotebookLlama/Step-4-TTS-Workflow.ipynb b/recipes/quickstart/NotebookLlama/Step-4-TTS-Workflow.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..fece59a448af45e6d7376985d70b2a2df5a928c3
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/Step-4-TTS-Workflow.ipynb
@@ -0,0 +1,685 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "id": "45a1b5d7-fd98-4fa2-9bea-e68c514b9245",
+   "metadata": {},
+   "source": [
+    "## Notebook 4: TTS Workflow\n",
+    "\n",
+    "We have the exact podcast transcripts ready now to generate our audio for the Podcast.\n",
+    "\n",
+    "In this notebook, we will learn how to generate Audio using both `suno/bark` and `parler-tts/parler-tts-mini-v1` models first. \n",
+    "\n",
+    "After that, we will use the output from Notebook 3 to generate our complete podcast\n",
+    "\n",
+    "Note: Please feel free to extend this notebook with newer models. The above two were chosen after some tests using a sample prompt."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "534e5f94-66d0-459d-ab01-8599905d8e1b",
+   "metadata": {},
+   "source": [
+    "⚠️ Warning: This notebook likes have `transformers` version to be `4.43.3` or earlier so we will downgrade our environment to make sure things run smoothly"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "efd866ac-8ea6-486d-96cd-7594a8c329e0",
+   "metadata": {},
+   "source": [
+    "Credit: [This](https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing#scrollTo=68QtoUqPWdLk) Colab was used for starter code\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "a4e2c0ee-7527-46e4-9c07-e6dac34376e5",
+   "metadata": {},
+   "source": [
+    "We can install these packages for speedups"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "3ee4811a-50a1-4030-8312-54fccddc221b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#!pip3 install optimum\n",
+    "#!pip install -U flash-attn --no-build-isolation\n",
+    "#!pip install transformers==4.43.3"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "07672295-af30-4b4b-b11c-44ca938436cd",
+   "metadata": {},
+   "source": [
+    "Let's import the necessary frameworks"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "89d75859-e0f9-40e3-931d-64aa3d273f49",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from IPython.display import Audio\n",
+    "import IPython.display as ipd\n",
+    "from tqdm import tqdm"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "f442758d-c48f-48ac-a4b0-558695290aa9",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Flash attention 2 is not installed\n"
+     ]
+    }
+   ],
+   "source": [
+    "from transformers import BarkModel, AutoProcessor, AutoTokenizer\n",
+    "import torch\n",
+    "import json\n",
+    "import numpy as np\n",
+    "from parler_tts import ParlerTTSForConditionalGeneration"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "31ba1903-59c8-4004-bb39-1761cd3d140e",
+   "metadata": {},
+   "source": [
+    "### Testing the Audio Generation"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "2523c565-bb35-4fae-bdcb-cba11ef0b572",
+   "metadata": {},
+   "source": [
+    "Let's try generating audio using both the models to understand how they work. \n",
+    "\n",
+    "Note the subtle differences in prompting:\n",
+    "- Parler: Takes in a `description` prompt that can be used to set the speaker profile and generation speeds\n",
+    "- Suno: Takes in expression words like `[sigh]`, `[laughs]` etc. You can find more notes on the experiments that were run for this notebook in the [TTS_Notes.md](./TTS_Notes.md) file to learn more."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "50b62df5-5ea3-4913-832a-da59f7cf8de2",
+   "metadata": {},
+   "source": [
+    "Please set `device = \"cuda\"` below if you're using a single GPU node."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "309d0678-880b-44cb-a54a-9408b3c8d644",
+   "metadata": {},
+   "source": [
+    "#### Parler Model\n",
+    "\n",
+    "Let's try using the Parler Model first and generate a short segment with speaker Laura's voice"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "4e84ed3f-336b-4f45-b098-ce477929fa8a",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "                <audio  controls=\"controls\" >\n",
+       "                    <source src=\"data:audio/wav;base64,UklGRiQkCwBXQVZFZm10IBAAAAABAAEARKwAAIhYAQACABAAZGF0YQAkCwD//wQACAAKAAoACQAJAAkACAAIAAgACAAIAAgACAAJAAgABwAHAAkACAAHAAgACwAKAAgABwAJAAoABwAFAAcACgAJAAgABwAHAAcABwAGAAYABwAHAAcABgAFAAMABAAGAAgABwAHAAUAAwADAAYABwAGAAQAAgADAAQABAAEAAUABQAFAAUABQAFAAUABQAEAAIAAgAEAAYABQAFAAcACQAIAAUABAAGAAcACAAIAAcABgAHAAgACAAFAAEAAgAFAAYABQAGAAgACAAJAAkABwAHAAkACwAKAAcACAANAA8ACgACAAMACAAKAAkACAAJAAoACQAIAAkACgAIAAgACQAJAAcACAAKAAsACwAMAAwACwAKAAsACwAKAAkACAAKAAwADAANAA4ADgANAAsACwAMAA0ADAALAAoADAAPABAADgAOABAAEgATABIAEAANAA4AEAARABEAEQAQABAAEgAQAAwADAAPAA8ADgAQABIAEQAPAA8AEQASAA8ADQAQABQAEgARABMAFQAUABMAEwASABIAEwAUABMAEQARABMAFQAVABQAFQAXABUAEQARABYAGAAUABAAEAARABIAEgARABEAEgASAA8ADwASABMAEgASABAADQAMAAwADAAPABIAEwARAA8ADgAMAAwADgAOAA4ADwAPAA0ADQAMAAsACwAMAAwACgAKAAwACwAJAAoADAANAAsACgAKAAsACQAHAAcACgALAAkABwAIAAsADQAOAAoABgAIAAoABwAEAAcACgAJAAUAAgAEAAcABgAEAAQABQAEAAEAAAACAAQACAALAAwACwALAAoABAABAAMABwAHAAQAAgAEAAYABwAFAAUABgAEAAAA//8DAAcACQAIAAUABQAJAAsABgAAAAEABQAFAAUABQAGAAQAAAD+/wEABQAFAAUACQAMAAkABwAIAAUAAQAFAA4ADQACAAAACgAOAAEA+P///woACgADAAYADwANAAIA/v8CAAcACQAIAAcACAALAAkAAgAAAAYACQADAP//AgAMAA8ACQAEAAYACwAMAA4AEQASABIAFgAbABgAEwAYACUAKgAkAB4AHwAiACQAJAAlACgALgAvAC0AKgAlABoAEwAYACAAHAAQABIAIQAdAAAA6//x//L/2P/O//b/HwAJALr/af8w/wD/zv6j/oj+d/5o/mP+ef6c/qf+lP6H/pb+qP6v/rv+zv7K/qz+m/6l/rD+rf6r/q3+pv6g/rH+yv7Q/sz+2P7q/uv+5f7s/vH+5f7b/uf++f7+/vz++/75/vX+9/78/v3+//4N/xz/G/8V/xz/Jv8f/xT/GP8l/yb/I/8p/yn/Ff8F/wv/Fv8Q/wn/FP8g/xf/Bv8I/xv/Iv8X/xH/Gv8h/xr/Ff8e/yf/H/8U/xv/Kf8n/xv/Gf8l/zD/Nv8+/0L/Pf86/0L/R/89/zL/N/9E/0f/Qv9E/0n/Rf87/zj/Of83/zX/Pf9I/03/Sf9G/0j/T/9T/0//RP8//0b/T/9N/0X/RP9H/0f/Rf9I/0//VP9S/07/S/9N/1P/VP9N/0X/Rv9O/1L/U/9S/1L/Tv9H/0f/Uv9d/1z/VP9Q/1T/Uv9K/0X/Sv9Q/1D/T/9R/1P/Tv9I/07/WP9Y/0z/RP9H/1H/WP9a/1X/T/9N/03/SP8+/zr/Pf9B/0D/O/84/zn/P/9D/0D/PP9B/0f/Q/84/zX/PP9B/0D/Qv9J/0n/Pf80/zb/Of8y/yn/J/8t/y//Lf8p/yD/Ff8R/xX/Ff8P/w//GP8g/yH/H/8c/xf/EP8L/wv/Dv8P/wz/Cv8K/wf/A/8D/wn/C/8I/wb/Cv8M/wb//v7+/gX/B/8B//j+9f74/vn+9v7x/u/+8v74/vv+/P79/vz+9/7x/u/+8/74/vr++P7u/uX+5v7x/vn+9P7p/uT+6P7s/u7+8f70/vP+7P7r/vP++f7z/ub+4v7q/vD+7P7j/uL+5/7p/uf+6P7t/u3+5v7g/ub+8v73/vH+6f7q/vD+8/7z/vj+/P77/vX+9P77/v7++v71/vf+/f7//v7+/f79/vv++f76/gD/Bf8F/wL/AP///v7+//4C/wf/Cf8K/wz/D/8P/w3/DP8O/xH/E/8T/xD/Dv8O/xH/Ff8U/xD/D/8Q/xT/Fv8W/xX/E/8Q/wv/CP8J/w7/Ff8W/xD/C/8K/wz/D/8S/xj/G/8X/xP/F/8h/yT/G/8U/xb/HP8Z/xT/GP8i/yf/I/8f/yT/Lf8v/yr/Jf8n/yv/LP8q/yr/LP8u/yv/KP8p/zH/N/8z/yz/Kv8w/zX/M/8u/y//M/81/zH/K/8s/zH/Mf8p/yP/KP8w/zD/Jv8f/x//Iv8h/yL/J/8q/yb/I/8l/yj/Jv8k/yj/K/8o/yL/Iv8k/yD/Fv8R/xX/GP8b/x//Iv8e/xf/Fv8b/x7/HP8c/yD/If8f/yH/Jf8k/x3/Gv8e/yH/H/8e/yL/I/8e/xv/If8j/xz/Ff8a/yL/If8b/xz/IP8d/xf/Gf8f/x//Gv8a/x7/G/8V/xj/If8h/xb/Ef8Y/x3/Fv8O/xD/Fv8W/xb/Gf8Y/w//C/8U/xv/Ff8M/w//Fv8T/wr/C/8U/xf/Ff8Y/x3/Gv8R/xH/GP8Y/w3/Cf8Q/xT/Dv8J/xD/GP8X/xL/E/8Z/xv/Gf8Z/xv/Gv8Y/xr/Hf8b/xX/FP8Z/x//Iv8l/yf/KP8n/yj/K/8s/yj/Jv8r/zP/Nv8z/zH/M/84/z7/RP9G/z//N/84/0D/Qv8+/0D/Tv9W/07/Rv9Q/1//Wv9G/z//TP9V/03/RP9L/1T/UP9F/0X/Tf9P/0n/Qv8//z3/Q/9P/1L/Rv8//0r/Vf9K/zj/Pf9R/1H/PP8z/0H/SP85/y3/OP9F/z3/MP80/z3/Of8x/zb/P/86/zH/N/9F/0L/NP8y/zv/Ov8v/zH/PP88/zD/Lv89/0T/OP8t/zX/P/85/zD/NP88/zr/Mv82/0D/Qf86/zn/QP9B/z7/QP9K/0//Sf9F/0j/TP9M/0z/UP9S/0//T/9S/1P/U/9X/2D/Zf9f/1j/Wf9h/2j/af9n/2f/Zv9k/2H/Xv9g/2X/aP9m/2P/ZP9n/2X/Yv9j/2r/bf9o/2L/ZP9q/2r/Z/9m/2j/Z/9k/2b/aP9k/13/YP9q/2z/Yf9b/2X/cP9q/13/Xv9r/2//Zf9g/2j/bf9m/1//Zv9u/2r/Yf9m/3P/dP9p/2b/bf9x/2n/Zf9r/3H/bf9p/27/c/9u/2r/cP92/2//Y/9h/2f/af9o/23/df9z/2z/a/9x/3D/Zv9j/2v/bv9m/2D/Zv9p/2L/W/9j/23/a/9i/1//Y/9i/2D/Yv9m/2L/W/9b/2L/Y/9e/1z/Xf9Y/07/Sv9Q/1P/Uf9Q/1X/U/9H/z7/Qf9F/zz/L/8s/y//Lf8l/yH/I/8j/x7/Gv8Y/xP/DP8L/w//Ef8L/wT/AP/9/vj+9P7x/u/+7P7q/ur+6f7l/t7+2P7S/s7+zf7P/tL+0/7P/sn+xP7D/sf+zP7N/sr+yP7K/sr+xv7B/sL+x/7K/sn+yf7N/s/+0P7R/tX+1v7T/tT+2v7g/uH+3v7f/ub+7P7u/vD+8/7w/uf+5v7w/vr++v74/vr+/v77/vb++v4D/wT//P73/vn++f70/vL+9/7+/gH/AP/9/vn+9v74/vr++f71/vT+9/71/u/+7/72/vv+9f7v/u/+8f7s/ub+5v7q/ur+5f7l/un+6v7o/uj+6v7q/ub+5P7n/un+5v7l/un+7P7m/t/+3v7j/uT+3/7e/uD+3/7a/tn+3v7h/tz+1f7W/tr+1v7P/s7+0/7V/tH+zv7N/sr+w/7E/sv+zP7A/rX+uv7F/sX+uv61/rf+tf6u/qz+tf68/rf+r/6v/rT+tf6x/q7+rv6r/qn+qf6r/qz+q/6r/q7+r/6x/rH+r/6p/qP+o/6n/qv+qv6o/qb+o/6d/pj+lf6Z/p/+ov6e/pr+nf6k/qP+mP6R/pb+nf6a/pP+k/6Y/pn+lv6T/pH+j/6O/pL+lf6Q/or+iv6Q/pP+kv6W/p3+nP6U/pD+mP6g/pz+k/6T/pr+m/6W/pf+n/6h/pz+m/6i/qr+pv6d/pr+nv6h/qH+of6i/p/+mf6W/pf+m/6g/qP+ov6d/pr+nv6p/q/+sP6v/q7+rf6r/q/+tf62/rH+rv6v/rD+r/6w/rT+tv6z/rP+uf6+/rj+sP6x/rf+tv6w/rD+tf63/rT+sf6u/qn+pP6k/qj+qv6p/qr+qv6j/pv+nf6j/qD+lf6S/pr+m/6N/oL+hv6O/oj+fP56/oL+g/58/nv+f/5+/nT+bP5t/m3+av5q/nD+dP5x/m3+cP5x/mz+Z/5r/nD+bv5n/mX+af5q/mX+Yf5i/mT+Z/5r/m/+bv5r/mj+af5s/m7+cf51/nX+cf5s/m3+cv50/nX+ef59/nv+d/54/n/+gf6A/oP+jv6T/oz+h/6N/pb+lP6K/on+k/6Z/pb+lP6W/pf+lP6W/qD+p/6k/pz+mv6c/pr+mP6a/p/+of6f/qD+o/6j/qL+pP6p/qv+p/6j/qL+o/6h/p/+n/6g/qL+pP6m/qX+o/6i/qP+ov6h/qH+o/6n/qf+pP6g/qD+pf6q/qn+pP6j/qb+p/6i/p7+o/6q/qr+pP6i/qb+qf6m/qT+qP6q/qb+ov6j/qf+pv6g/pz+nf6h/qH+oP6g/qH+ov6h/qD+nP6V/o7+i/6O/pH+jv6I/ob+h/6I/oX+hP6K/o/+jP6F/oL+hP6D/oD+fv59/nr+df51/nr+e/54/nr+g/6H/oD+e/6E/pD+jv6G/oj+lf6c/pb+lP6a/p/+mf6U/pr+ov6j/qT+q/6y/rD+rf6z/rz+vP62/rT+uf66/rf+uv7C/sf+xv7I/s/+0/7R/tP+2/7j/uT+5f7r/u3+5v7g/uX+8P71/vX++v4B/wL/AP8C/wn/DP8K/wv/EP8Q/w3/D/8c/yX/Iv8Z/xj/Hv8f/x3/If8p/yz/J/8i/yP/Jv8n/yj/LP8v/y3/Kv8s/y//MP8v/y7/L/8w/zD/Mv8z/zH/Lf8s/y7/MP8x/zP/Nv84/zf/Nf81/zf/Of86/z3/P/8//zr/Nv83/zr/O/83/zb/OP87/zv/OP86/0D/Qf89/zr/QP9G/0H/N/8y/zT/NP8u/yr/MP81/zP/Mf82/zv/N/8y/zb/Pf87/zH/K/8w/zT/MP8q/yf/KP8n/yT/IP8d/x3/H/8i/yP/Iv8k/yn/J/8b/xL/FP8Z/xj/E/8S/xb/GP8W/xP/Ff8Z/xv/Gv8X/xT/FP8V/xH/DP8L/w//Ef8Q/xL/Gv8f/xv/Fv8Y/yH/JP8f/xv/Hf8g/x7/Gv8X/xb/FP8S/xT/Gv8g/yT/JP8k/yX/Kf8u/zH/NP84/z3/QP9D/0T/Rf9F/0b/R/9I/0j/R/9J/0z/UP9U/1r/Xf9c/1z/YP9n/2r/a/9v/3b/ef93/3H/bv9u/3D/c/94/37/gv+A/37/gP+G/4v/iv+I/4v/k/+a/5v/m/+d/6D/o/+k/6T/of+c/5r/m/+d/53/nv+g/5//nP+d/6X/qf+j/5n/lv+a/5f/jf+J/43/k/+R/4v/h/+E/3//ef9y/27/bf9v/3D/bv9s/27/cf9u/2b/ZP9o/2f/Xf9S/07/S/9E/z7/P/9C/0T/Qf88/zX/LP8l/yL/IP8b/xj/Gf8Z/xb/EP8K/wX/Af///vv+8/7u/u/+8/7v/uP+3P7h/ub+4/7f/uP+6P7l/t3+2f7a/tn+2P7Y/tf+0f7I/sX+xv7F/sP+yP7R/tT+0f7T/tj+2P7V/tn+5P7n/t3+1v7c/uT+4f7d/ub+9f74/vL+9f4B/wn/CP8H/w//GP8c/yD/J/8s/zD/N/9C/0j/Rv9G/07/Vv9X/1b/XP9k/2T/Yf9p/3j/hP+K/5L/n/+r/7L/uf/E/83/0f/S/9T/2f/e/+D/4v/k/+X/5v/n/+f/6v/z//z//v/7/wAAEQAhACYAJAAjAB8AFQAHAAIABgAMAAwACAAEAAMABAAJAAoABQD7//L/7v/r/+T/3v/e/+L/5//s/+//8f/x/+//6v/h/9T/x/+6/6//pv+i/6H/n/+e/6L/q/+y/7L/rv+p/57/jv99/3X/df91/3D/av9o/2r/a/9o/2L/XP9a/1z/XP9X/1D/T/9S/1T/UP9G/z3/N/82/zX/MP8o/yT/Jf8o/yj/Jf8l/yv/M/84/zf/Mf8q/yj/Kv8r/yb/H/8d/x7/Gv8S/w//GP8k/yv/L/83/0P/S/9L/0b/Qf88/zv/Pf9B/0T/SP9M/1D/V/9d/2D/X/9e/2T/bv93/3v/gP+H/4z/i/+L/5P/n/+l/6b/qv+0/7r/u/+//8j/0//c/+f/8//7//r/9v/1//b/9f/z//L/8v/1//7/DgAfACMAHwAeACMAJgAkACMAKQAvAC8ALAAvADcAOwA5ADkAPgBAAD0APAA+AD8APAA5AD0ARABEAD4APABAAEMARABHAEwASwA/ADMAMgA2ADUALgApACcAIAAWAA8AEAAVABkAIQAvAD4ARgBIAEoASgBBADEAHQAIAPT/4//c/9z/3v/f/+T/7f/3//z///8AAPv/7//h/9j/1//W/9H/yv/E/8P/xP/D/8H/xP/L/9L/1f/Z/97/4v/e/9n/2//m//P//P8DAA4AFAAOAAAA9P/r/9//y/+2/6j/pv+r/7P/u//F/8//2f/i/+r/7//w//H/8//0/+//5P/b/9v/4v/l/+b/6v/x//b/9P/x//T/9//0//D/9f8AAAsAEAAUABYAEgAGAP3//P////v/9P/0//7/CAAOAA8AEwAcACUAKQApACcAKQAuADYAPAA/AD8AQQBDAEMAQQBAAEEARABGAEoATgBRAE8ATgBQAFcAXQBkAG4AeAB6AHIAawBsAG4AaABcAFIATQBJAEIAQABFAEsATABPAFgAZgBtAGgAWgBKADwAMAAlACEAJQAvAD8AUgBmAHIAdwB4AHoAeQByAGgAYABZAFMATgBJAEUAQAA8ADwAQQBHAEwAUwBdAGMAYQBaAFUAUgBKAD8AOAA2ADYAMAAmAB8AGwAbAB4AJwA3AEgAUQBSAFMAVwBaAFQASQBCAD4ANwAqACIAJQAuADMAMgA1AD0ARABFAEIAOwAuABsADgANABMAFAAPAAoACgALAA0AEwAgACwAMgA0ADcAPwBEAEIAOgAwACYAHgAYABYAGQAiADEAPwBHAEoATwBXAFoAVQBKAEAANAAnAB8AIgAuADkAQwBPAGIAdACBAIcAhgB6AGkAWwBSAEYANQApACoANAA9AEQAUQBgAGgAaQBsAHIAdQB0AHQAfQCHAIkAgAB0AGwAawBsAGwAagBoAGoAbgBxAHUAewCAAIMAhgCPAJsAoACbAJIAiQB8AG0AZABlAGoAbQBvAHUAfgCGAIsAkgCaAJ8AnwCZAJMAjQCFAHwAcwBsAGkAZwBnAGwAewCPAJwAngCbAJwAngCZAI4AiACOAJUAlACKAIMAgQCBAIEAgwCFAIQAhACKAJYAngCcAJkAmQCbAJcAjAB/AHcAdwB4AHcAcwBuAG8AegCJAJMAkQCIAIIAhACKAI8AkwCcAKoAuAC9ALgAsACoAKEAmQCRAI0AkgCbAKEAnwCaAJsAoQCmAKQAogCpALIAsQCmAJsAmACXAJMAkwCaAKEAoQCfAKMArACzALcAvgDGAMoAyADHAMcAvQCmAI8AhQCIAI0AkQCVAJ0AqAC0AL8AyADMANEA1gDXAM8AvwCwAKYAngCXAJMAmQCpAL4AzgDWANkA2QDVANAAzQDMAMsAxwDGAMgAyAC/ALcAugDEAMcAwwDEAMwAzgDBALIAsgC7AMEAwgDGAM8A0QDKAMQAwwDCALoArwCrAK0AsACzALcAvgDDAMEAuACuAKkArgC6AMgA1QDgAOkA6gDeAMwAvACzAKsAowChAKcAsACzALQAvQDOAN0A4QDfAN4A3wDcANQAzgDLAMoAxwDDAMMAxwDLAMwAzQDNAMsAxwDEAMkA0gDWANEAyQDGAMkAzADPANcA5wD0APwABAELAQkB+gDpAOIA4gDeANMAzwDVANwA3ADaANwA3wDeANsA3wDsAPgA9QDnANoA1wDbAN8A4ADhAOQA5gDmAOgA7gDyAO0A4QDZAOAA8AD/AAoBEQEXARkBEwECAfUA9wABAQIB9gDsAPAA+wAAAQABBgERARcBGAEfASkBKAEaARABFwEkASEBEAEAAfQA6ADfAOUA+AAJAQwBAAHwAOkA8QAHAR0BIQESAQIB/gD/APsA9QD5AAMBBwEGAQ4BIgEtASQBEgEKAQgBAAH1APgABwEOAQcBAgEMARcBFQERARcBIQEbAQYB+gD/AA0BFgEdASQBJwEgAQ8B+gDlANUA1QDnAAABEgEaAR4BIQEkASUBIwEeARYBDAEGAQcBDQESARIBEQESARYBGwEfASYBMAEyASMBEQEIAQsBEQEVARkBIgEsATsBTQFdAWEBWwFVAU4BPgEmARcBGAEiASsBLwEsASEBGQEkATsBRwFAATwBSgFbAVgBSAFEAUwBTwFEATsBPAE9ATgBNAE5AUIBSAFJAUkBSgFPAVsBZwFmAVoBUQFRAVABRwFFAVgBdwGJAYYBfgF7AXYBZQFSAUsBSwFDATQBLwE/AVIBVQFNAVABZwGAAYoBhwF/AXUBaAFdAVcBVQFQAU0BUQFYAVsBWwFhAWsBcAFxAXUBdwFvAWYBcAGNAaMBnAGHAXkBbwFcAUsBUAFkAW0BagFwAYIBigF+AXgBigGfAZgBggF/AZQBnwGQAXkBbAFmAWABZQGAAaIBuAG/AcEBvgGuAZUBhQGEAYwBkQGTAY8BggFsAVoBWAFlAXMBeAF4AX0BiQGXAZ4BoAGeAZwBnQGfAZ8BnAGXAZYBmAGVAYsBhQGRAakBvgHHAckBxwHBAboBuAG6AboBuQHAAcwB0AHHAcIBywHYAdwB1wHYAd0B2AHFAa0BoAGjAbQByQHaAeIB4gHXAb8BowGUAZkBqAG2AcUB2gHtAfQB7gHqAe4B9wH9AfwB7wHgAeAB9AEFAvcBzgGrAaUBrwG2AbkBwgHSAeIB7AH2AQQCEwIhAi4COgI+AjACFQL7Ae0B5QHWAcQBwgHYAfgBEQIgAjECQAJIAkYCRAJKAlcCYQJeAkwCOgI4Aj8CNQIVAgACEAI3Ak8CTwJOAlcCVwJAAiQCHQImAi0CLgI3Ak0CYgJpAmECUQI8AiMCCQLyAeIB2wHeAeoB/QEOAhUCEwIXAi8CWgKFApwCmwKHAmUCOQINAu0B6QEBAiUCPwJKAlACWwJlAmMCVQJGAkECSgJaAmECVgJJAk4CZAJxAmcCXQJmAnYCdgJoAlwCUAI5AiUCKAI5AjgCJAIiAj8CXQJhAlwCYgJgAj4CFAILAh8CKQIiAiYCPQJPAkoCQQJEAkUCPwI9AkMCPgImAhwCOgJkAm4CWgJJAkQCNAIVAgYCFwI0AkICPQItAhgCCgIWAjoCWAJhAmcCfQKSAowCcAJZAlICTgJCAjgCOAI6AjgCNQI/AlECWwJQAkQCTwJwAogChwJ+AnsCbAI9AgwCBAIaAiUCIQIwAlQCYgJMAkACXQKFApMCmAKkAqUCiwJ6AokCkAJnAjcCQgJ0AoMCZAJYAngClQKOAnsCeQJ7AnUCdgKEAogCgAKJAqsCvwKzAp8CkAJrAikC/gEPAjsCTgJNAlMCXgJcAmICiAK/At4C4ALcAtYCxAKyAq8CqgKKAlwCQQJDAlYCggLTAicDSQMxAw4D+QLkAsgCvALDAsMCrgKLAlkCFgLlAf0BVAKZAqMCogLFAuMCwQJ7AlsCagJ7AnwCggKFAmgCPAI4AlcCWAIrAg8CJQI6Ah8CAgIfAlYCYAJEAkQCZwJ9AoICqgLuAvsCrAJHAgwC5AGpAX8BoAHuARoCFQIPAh8CMQJBAmwCrQLPAroCkAJ1AlcCFwLGAY4BgAGPAagBygHwARECKAI4AkwCYgJ1An8CgQJ+AnECVwIyAg4C7gHRAcoB8wFEAogCogK2AuAC/gLbApcCgAKkArsCmQJlAksCPQIkAiECVgKnAuACDANSA50DoQNOA+0CwgK5ApQCUQIlAigCPQJEAkICUAJwApgCvwLcAt0CvwKeApACfwJSAiQCKwJdAnQCXQJaApgC4gLsAsgCwwLtAgcD9QLlAvsCIwM0AyoDFQP9AuUC1wLYAtQCwAKqAqMCpgKZAnECSwJQAogCxwLjAuQC9AITAxsDBQP1AvACxgJtAiYCFwIHAsEBegGGAdAB+gH1AQ0CbALfAisDTgNeA2IDXANCA/wCjQIxAhkCGwLzAboBwwERAlQCcAKfAv4CXAOJA4cDXwMSA8oCvwLgAuQCzALkAi0DRwMNA9IC3QIBAwkDCwMhAx0D6wLSAg8DcAOuA+EDPwScBKgEagQkBO0DsgOFA3oDagMwA/0CGgNjA3IDQgM4A4wD/QM8BEcESQRPBEEEBASYAywDDQNOA6ADqQNrAywDAQPJAogCfQLLAk4DzQMkBEQEKQTzA9oD8wMcBDMELgQJBLUDKgN+AtwBeQF5AdABOQKFAsYCIwN6A4MDNwPhAr8CvgKpAnUCPQIaAgQC0wFuAfgAvQDeAB0BOwFPAYMBqQFpAd4AiwCoAOQAAwFDAdQBVgJUAuwBkQFcAQ0BngBUAEIALQD4/83/xP/A/8j/FwC8AGgB3gE1AooCtAKHAiACwAF5AT8BGQETAR0BLAFOAXsBkAGOAa8BAwJAAjgCLwJrArYCtgKRArkCLwODA4QDewOiA7wDeAPrAmkCHQLzAcwBtQHaAU4C5gJcA6QD8wNkBMQE5QTeBNEEogQwBKIDMwPwAt4CKwPmA74EagUKBr4GOAdBB0MHswc9CEMI5gfCB8kHXAeKBi4GnAYuB2oHvQeDCDYJRAkACQoJSwlLCRIJDQkxCQUJaQi3BygHqgZDBiMGTwZ+BncGRgb6BX4FygQVBKIDbgMiA3cChwGVAI3/Jf6Q/ID7N/sS+4H63/mu+X/5l/hN96P2nvZJ9mr14fTu9H/09PJJ8ZDwTvCE73fuMe637gvvue5R7kvugu7E7iLvme8M8IfwCPEv8brwEPDA77Xvj++N7ybwFfGd8cnxTfI/8/jzY/RL9fz2nvh3+e35oPpa+6D7tfsu/AP9x/1y/jv/9f9bAMIAqQHWAqgDMwQbBVoGJQc7B18HGAjTCPUI6QhYCfIJAgq5CeYJigrVCpUKlgo6C84LwwumCyoM8QwzDQQNGQ2NDc8NrA2WDcQN1w2SDUYNRg13DaoN+A13DvEOKA8jDwoP7A7RDtsOGg9mD5cPrA+sD4cPPw8BD/0OOw+MD74PwA+jD2sP/Q5XDs4NuA3mDd4NnA2ODacNPg0tDE0LKAsHCx8K8ghUCL0HDganAwACTAE/AH/+XP1r/UD9svvQ+QH5mfgP97D0DPM48rPwAe5g65bpyOdM5QXj4uFQ4UvgHt+p3n/eOt2A2mjXptR90TfNtciLxf3DA8NLwvfC6MVCyqbOI9Of2JzeL+OQ5frmVeiC6GTmWePI4evhKuJb4mXkKOn27jD0gvkfAEAHFw1cEQAV2xd/GH0WIhOxDzIMeghKBaQDmANrBHEFggbgB+MJdQzoDqUQzRGQEjwS2g+wCzEHPwOc/0f8K/qj+ZX58/g/+Gj4EflA+Uf5cPrI/L3+QP/5/tX+h/5o/fb7bPsi/ED9Cf6b/j3/sf+m/3z/BwCjAfcDjQZACe8LLg62D8oQ1xH4EiIUgxUcF1QYkBgYGLIXfRcfF/IW2Be8GW4bXhwpHQQe/B25HIUbXhtLGxEaZxirF1YX4RWYE0wSbRKgElMSdRJCE3ETVhLYEJkP9w2yC8IJoAh6BwgGSwVjBfQE0APyAwUGkAfZBhcGrweFCQcIOgQ3AlACwwCH/Fv5fvkS+mP4nvas99j5w/lA+LD43fos+7P4e/YD9rH0bvA869Dnf+VB4qbe0dyX3NHbE9of2WfZ69iI1uzTrtJm0bvNH8gXw2O/brvhtjS0bLVnufy9NsNFyjzSitie3HHg8uRP6ProIuh851nmLOPL3tnbadt43KfeEuP56aPxlPg8/1EG4gxbEaoT9BSVFagUjhEVDc0IlwUSA3YABP4V/Wr+6AAVA1QFGQn7DYkRoRLNEkIToxKOD5MLLAniB0kFMgEA/pf8G/tw+HD2E/eF+b77d/2w/0AC4gMjBOUD7gMlBC4E5gNJA18CJgFp/xj9BPt1+qT7jv2l/5UCrAa7Cp0N2Q+HEnsV0ReNGSkbNxzwG6MaRBn1F2gWOBVnFcEWThgAGnIcPR9bIfoiHiWHJ9IoxyiNKF4oESdTJGkhHB/ZHH0aDRnfGPkYABniGbwbIx1oHY0d9R1oHYQbvhl+GAYW3xGBDjANbwt6BzcExwTgBlYGJgRxBL4GbwbYAoEANgEIAYj9JvrX+ZD5rvWd8OHuke9l7krrGup265Drkug25Zvj9+F+3traJ9lC2OnVptK/0GDQis+YzTTMaszKzGzLY8j7xGzBz7xctySzzbG3sqm0U7hDv6PIWtEC2HLeHOYQ7ZHwB/Hh8JbwdO4U6kjlgeGl3uXchd0M4YLmV+1P9oEB5AwSFngcuiD5IrYi1h8BG18VLxDdC4UHWgJ3/fX6Tftf/SQB5AcLEVoZlB6YIUAj5CF0HM8VqBFvD74L/QXjAI393vnG9MTwfvB387T3dPxiAe0EsAVwBO0CdAFo/2T93/y1/dr9w/sG+Fj03fHc8GrxtvPC9+/8AgLhBU0I0gkjC94Mow9/E18X4RnaGgwbihq2GC8WCBVoFjYZ/Bu5HrQhCSTcJAsl8iVlJ3UoXyneKi8sqiszKTomhiPYIJ0e/B0DH4sg/yGPI6YkOiSxInohpyAqH2wd6BzsHOYauhZbE9sRrw/nC/oJPgxUDzoPrw10DuUPdw0RCDIF1QX+BKIAL/1o/T393via82HyrfPE8hvwCPCT8h3zJ/BS7ZnsGeu05hriMeA93zPcBtjy1R/WqdVy02vR2tBJ0BHOy8rexynFi8HzvHu4s7QssRquTq2XsJG3EcCoyIfRftp94Wzk4OOW4kDiLOIp4VbfVN3U2jLXA9Mw0IzQ3NQl3erovvYPBEgOexScF84YGxiNFbsSjBFHEegOJwldAjH9ffmf9uL2JP3sB2YSRxoHIcwmhygoJbggKx/yHj4cNBfAEroOFgjM/hn3+fMU9In1E/k6/2AFhggZCW0Jywm6CGAGuwRfBFgD6//H+sT1vfGV7nrsOOxL7izyofa8+mH+yQHQBCMHGAluCwkO3g+KEPUQ1RGCEjUSqBE0EukTvxVWF0sZ1htiHnwgRSLII9UkoCWqJvsnKykoKjArHCxmLAAsTyt9Kowp4Ci8KJwo8ScdJ5wm0yUnJJMiVyKnItwhgyBmINsgYh80HIUaChteGt0WzxO1E3cTlA+sCnUJtApgCWAFigPMBEsE3f/a+5T72Pvs+BD1DPRD9Kfx8Ow+6gPq3Oj65VTk8+Tu5GriY9+93THcLNna1enTktI50EXNCss0yX7GMMOmwOu+t7zRuYy3u7ahtoC26LbMuPa7Rr88wonF5MnoznLT+tbk2VHcUt0D3BDZUNYB1Q/VLNaw2PHcQ+JR53brYO9B9HT6MgGsB9QNbRPkFnsWxRJtDhILEgg7BYwERQcEC4wMXAyEDZsQaROfFeAZ1yDeJrMobCdRJZwh3RpNE8QOUw2+C+8IDAfGBq8FnwJXAJsBQAVzCNgKqQ0eEL8PEgxeB3sD/P8f/Lb43fYH9r/0zfKO8RnyE/SZ9qD5u/2zAioH+wl1C54Mow3LDd8MuQsjC+gKkgp7Cm8LlA1aEE0TaBapGcschB/OIdMjuCVkJ3wouShYKM0nNCd7JhcmwiZhKAYqQSuELNItQi6KLc4s2CzALJ8rSiquKbkoDibgImYhLCHvH+4dzx2vHyYgrx00G/EaahrKFh0S/A9SD0wMIQe6A9oC5ABo/MD4NPgX+KH1qfIS8ojy0/BA7ZfqC+lR5jHiEt+53SrcWNm61jTVU9P+z4rMispxyQXIesZ2xVvEJcIhv0i8sLkFt8u0wLOEsyyzqLKSsgWz5rPItUq53L1hwqTG4spLzpLPDc+mzlzPT9DB0IDRU9Nh1YTWUtdt2VDdLOKy52fu7vV8/McAewPcBeQHzQjxCKsJPwtdDCEMeQuzC8QMDA4CEJkTQxhCHPAePyGcI/YkwiRWJOokfyVgJNUhgx+0HUsbWBiQFq4WRBf8Fl0WRBYLFsMUIBOPEvQS6BLfEYgQDw+eDPwIWwX9AtABGwGjAJMAugCVAPb/Nf/t/qT/ZgGTA1IFXAb3BicHiQY5BTsEdQS0BS0HlwgaCocLbAzvDNQNeQ9yEVoTcRXpFxYaCBvUGpgaFhvuG4McCx0rHtMfMiHPIQEiQCKdIhgj3yPPJFslVCU6JT0lqiQLIzkhUiAOIEof9h0IHZscpRvaGUsYixemFuYUPROUEuwRyw+xDFcK5AjfBtQDHgGT/zH+5/sw+fP2/vS68obwE+8c7szsG+ub6TroSOay4znhV9+13fXbJ9pa2F3WLdQT0j7Qns5LzYLMDMxFy97JLMh2xp/ExsKJwVLB0MGPwpnDB8WAxr/HLclFy7rN58/J0a3THtUu1evThtLa0ZzRc9Hu0azTNdaU2KbaC90N4GjjCuc0663vk/NB9uf34/gf+ZL49fdS+OT56/u9/XP/bAGIA1YF8gYaCT0M1g8IE4IVZheJGIEYjxe5FqkWBRdIF7UXrRiaGW0ZMRgVF8kWtxZHFvQVVxbqFp4WYhUcFDsTUxJGEcsQUREXEiQSkhEmEeQQCRBoDvYMhAyaDD4MXwu+CpcKSAprCY8IYQizCO4IDwl5CQgKGgqZCTYJWgmMCWEJWAkRCi4LvQufC6wLUAzrDO0M3QyFDa4OZw9xD4kPJBDDEN4Q5BCGEZESNRNFE14TvhPOEzwTqxK+EhMT5hJVEg8SGhLCEdcQChDND7YPTw/QDogONQ55DYMMtwsCCyYKTgnDCEkIdwdjBmwFigRyA0cCeQH6AE0AW/+H/tv95PyJ+1r6pvkG+R/4PPer9hv2HvXe89Ly/PEa8TbwhO/t7i/uUO197Jnrfepe6Ybo0+f15gTmTeWv5M3jw+IJ4qfhNuGw4IbgyuD04L/gk+C44NfgneBl4JrgA+En4RfhOuGF4ZXhZOFa4aPh/uFE4p/iK+O64yTki+Qh5eTlu+an57ro9ek/62vsYO0x7hPvFPAB8brxb/JT80H09PR49Rz2AvcD+Ar5NvqN++D8Bf4O/w4A+wDDAYECUgMyBPwEmAUKBmkGxwYpB4QH3QdVCPUIkwkEClUKsAoUC2ULqgsFDGsMtAzfDAwNKA0BDa0MhwyoDMYMtgy3DPsMRg1MDTENRw2HDbINzA0MDmUOig5tDlIOXg5fDjIODg4qDmgOiw6SDqUOyA7nDgQPNg9/D8oPFRBrELwQ5xDuEP0QJRFNEWQRiRHUEScSShJBEkESXhJ0EmkSYhKIEroSuBKAEkkSJBLoEYURLxEREQERxBBmEB4Q8w+vD0AP0g6JDk4O/Q2VDSoNuQw1DKMLEAt2CtgJRwnOCFsI0gc7B6cGGAaCBeQERwSqAwgDZwLDAQgBLQBP/4r+zv36/Bv8XPvB+iP6b/m/+CH4fffB9gP2UPWN9KrzzfIV8mXxl/C/7w7vfe7a7STthuwJ7I3rB+uV6jrqy+k26aToMujA5yznk+Yl5tflgeUd5cnklORp5ETkLOQk5B7kGOQY5BXkBOTo49Xj0ePa4+7jDuQ25GnkuOQn5Z/lFuai5lbnFei46Efp5emT6jDruOtI7Ovsje0n7s7ui+9I8AHx0fG/8qvzfvRM9ST29/az92r4NvkP+t/6qPt9/Fj9JP7h/qH/ZQAhAdEBewIeA7IDNAStBBsFfwXjBVsG5gZ1BwIIlAgsCbkJLgqaChALkgsPDHsM2ww3DY8N2Q0SDkAOcw6yDvUOMw9uD6oP5A8dEFcQmxDlEC4RehHVET4SoRLvEjATehPMEw0UMBRCFFkUeBSLFIcUfhSFFJkUrhS/FNYU+xQoFVkVihW5FeAV/BUPFhQWABbUFZ0VZBUkFdsUkBRHFPsTqhNeEx0T3hKaEl8SORIaEuIRjhExEdgQcxD0D2UP2g5XDs8NOQ2RDOELMQuLCusJSAmlCA4IiAcHB3wG6wVbBdAERAS0AyEDigLpAT8BjQDU/w3/Pv5y/bH8+ftE+4z62Pky+Zz4Avha97H2I/am9Rj1bfTI80HzwvIk8nPx2vBh8ODvRe+x7jjuwO0w7aHsMuzV62Pr4up66jXq6emC6Rvp0eia6FvoEOjH54TnQecB58jmj+ZT5ibmFOYP5v3l4+Xb5e/lCuYe5jbmYeae5t3mGudc56Pn7uc96JDo7OhN6bPpIeqb6h/rpusq7LPsUu0F7rruZO8P8MrwkPFM8vryqPNh9CH13PWU9lD3EvjV+Jj5Xvon++z7q/xk/R3+1P5+/xUAqABHAfMBmAIrA7oDWAT+BJcFJQa9BmkHFgizCEgJ4Al1CvkKbwviC1IMuwwdDX4N3w07DpcO9w5WD7MPExB8EOoQUBG1ER8SixLmEi8TdhPBEwAUKhROFHwUqBTDFM8U4RT6FA0VFRUfFTMVRxVPFVIVVxVYFUwVNRUfFQkV6hS+FJIUahQ6FPgTrxNsEzAT7RKhElYSEhLIEXAREhG4EF8Q/Q+SDykPxA5XDuENbw0LDakMPQzPC20LFAu2ClIK8gmZCTcJyQhbCPgHkwchB6wGRwbsBYgFGAWxBFwEBgSfAzID0QJ4AhMCoAEtAb8ASADD/zz/wP5G/sL9O/3A/FH83ftg++X6dvoI+pP5Gvmp+ED41vdl9/L2f/YM9pf1I/Wz9EX02/N08xPzt/Jc8v7xnvFB8e3wmvA+8N3vhO817+Lugu4i7tLtj+1F7fHsp+xu7Djs9uu064LrWust6/vq1Oq76p/qeepV6j7qKeoO6vLp4enY6dHpzenU6ePp+OkX6kPqd+qp6uDqKeuB69frJex57N3sRu2n7QTua+7j7mHv4O9k8PXwjfEn8sbya/MX9MX0efU09vf2t/d0+DP5+Pm4+m77IPzX/JP9Sf73/qT/VgAKAbsBbAIgA9MDggQzBegFlQY0B8wHaggFCYsJAAp4CvsKdwvgC0UMsgwiDYkN7A1bDtAOPw+pDxsQkhD8EFQRphH+EVQSmxLZEhgTWhOWE8cT9BMiFE4UdhSaFL0U3hT+FBoVMhVDFU4VUhVQFUgVOBUdFfsU1RStFH4URxQMFMwThRM1E98SiBIwEtMRdhEdEcQQYRD5D5UPOA/VDmQO7w2ADRgNqQw0DMILVgvqCnsKDQqkCUAJ3wiECC0I1Ad3ByAH0waKBjsG5gWXBVAFCAW7BGoEHATQA4MDNAPgAo0CPwL1AaoBWAECAbEAYgARALv/ZP8S/8L+cf4j/tb9hv0w/df8hPw0/Nz7fPsd+8X6afoE+pn5NPnU+HT4Ffi49173A/es9lv2B/aq9Uv19vSq9FT08fOO8zXz2fJu8v7xmfE68dTwbfAR8L7vZe8H77fuee437ubtme1g7S3t6eyY7FHsGOzY64frM+vo6qXqY+om6vTpyuml6Ybpb+li6VrpWOld6WvpgemZ6a/pxeni6QrqO+pt6qXq7OpG66frC+x37PPsfO0K7pvuM+/T73vwKPHX8YbyOvP187L0a/Uj9uH2pvdn+CP55fmz+oD7RPwL/eH9uf6E/0UAEQHlAa4CZgMbBNQEhgUlBrsGTgfbB1wI1ghUCdEJRQq1CiwLqwsmDJkMDg2NDQ0OhQ7zDl4PzQ85EJwQ8xBCEY8R2xEkEmkSqhLnEiMTXROUE8cT9xMnFFkUihSxFNIU8BQKFRoVIRUjFSIVGBUGFe8U1xS3FI0UXRQtFPcTuBNzEy8T7BKjElMSBhK8EXERIBHMEHgQJhDTD4APLQ/XDn0OHw7CDWMN/wyaDDcM2Qt8Cx4LvwpkCgkKrglTCfgInAg+COEHiAcyB9kGfgYmBtUFgQUkBcEEZgQTBL4DYgMEA6wCWgIKArcBYgEQAcUAewAtANv/iv89//L+of5Q/gX+vv1z/SX92vyQ/ED85fuL+zj75fqJ+if6yPlr+Qv5p/hF+On3kvc89+f2lPZD9vj1svVq9Rz1zvSF9Dv05/OO8zzz8fKh8kfy8fGn8VzxCfG28HHwN/D7777vie9f7zbvB+/W7qfueO5I7hXu4u2x7YDtUe0j7fPsxeyb7HXsVOw47CTsF+wO7AnsCuwQ7BnsJOwz7EXsXex97KXsz+z77CztZu2p7fLtRe6k7g3vdu/i71vw4/Bx8f/xlfI48+DzgvQh9cX1bvYV97n3YPgO+br5YvoR+8r7hPw2/er9q/50/y8A3ACIATsC7AKQAywEygRmBfcFfQb/Bn0H9wdtCOMIVwnJCTwKtAosC5wLBQxxDOIMTQ2rDQUOZw7KDhsPWw+WD9IPCRA2EGEQjRCxEMsQ5xAMETcRXBF9EaMRzxH4ERkSMxJMEmESbhJ1EnYSbRJXEjQSCBLYEagRdxFCEQkRzRCSEFcQHRDjD68PgQ9UDx8P4w6lDmoOLA7lDZkNTw0MDcgMeAwdDMALagsQC6sKQgrqCZ8JSgniCIYITwgjCNMHZQcSB/EG0AaCBisG+gXRBWgFwQQrBM4DcQPnAloCAwLBAVIBzQCNAKQAtgCBADYALABpAKsAxgC9AJMAQQDU/2X//f6Y/kD+Dv78/eT9tv2D/Vf9K/3+/N78w/ya/HT8fvyo/KL8UPz8+9v7r/sw+5v6Y/p2+l/6EfoD+l/6rfqG+iT65vmu+SX5W/iu9zT3uPYm9qv1XfUf9dz0m/Rn9E30WfR69IX0ffSg9AD1QPUK9Yv0F/SP85vyX/Fh8L7vGO9N7r3trO3T7dzt1e3q7QXuCe4U7kDuZO5a7k7ua+6J7nLuPu4e7vftku0L7bXsouyl7LzsG+3O7Zzua+9U8FbxNPLM8kbz0PNW9Lj0CfVx9e31Wfa09hr3kfcJ+IT4D/mn+UD63/qf+338Vv0c/ub+x/+fAE0B0gFNAsQCJgN0A8IDGQRsBLoEGwWaBSUGpQYhB6oHMginCA8Jfwn2CVkKnwreCiULZQuQC7AL1gv6CwsMBgz4C+sL3wvaC+ML+QsUDDUMYgyWDMIM3gzvDPsMAw0IDQYN9QzXDLoMrwywDKkMkwx/DHYMawxQDDEMJgwtDC4MIAwODAMM9gvkC88LtQuQC2QLQQsjC/cKuwqICm0KVgosCgAK7gnxCeoJzAmpCY4JcAlFCRAJ3QiwCIcIYAg2CAMIygeSB18HLgf/BswGjwZFBv4FyAWcBV4FCgW3BHgEPwT3A6MDVgMbA+gCugKVAnkCWwI0AgkC5AHLAbcBoQGHAWsBUAEyAQwB2ACZAFsAKAADAOb/xP+c/3f/XP9I/yz/CP/p/tf+y/60/pT+ff53/nP+Wf4u/gv++f3l/bX9df1A/RX92fyL/E38MfwW/Nv7k/tw+3H7XfsX+8n6oPqO+mf6Jfrm+bP5bvkJ+Z/4R/j295P3JPe+9mb2C/aq9VD1B/XQ9Kb0hvRm9Dr0BfTO85fzXPMe8+byuvKY8njyXfJF8izyEfL/8f7xCfIT8hnyJPJD8nPyofK48r/y2PIQ80/zdfOB84zzoPO088Pz3fMD9Cn0RPRi9Jv09fRm9dr1Sfa99kH3zvdK+LD4Hvmn+Sn6fvrD+jv76/uT/Av9fP0e/uP+jv8DAGUA0wBOAbkBAQI7Ao4CAQNlA5YDsgPyA1gErwTgBA0FTwWZBeIFLwZ5BqYGvQboBiwHYAd2B5YH2AcXCDkIWQiYCOgIMgl/CdoJNQqACrAKtwqWCoYKuQr9CvsKygrXCjMLdwtnC0kLTAs/CwoL+go0C2ELRws5C3wLwAupC3wLoQvqC+wLsguEC1EL7gqiCroK2gqFCgkKDQppCmkKGQo7CtwKFAuXClAK5gqdC5cLYgshDLkNCA+6D6wQQBJxEyUTfBHiDp0KywPO+9H19vLU8KXtMuxZ8BL4TfyD+kX5xP/PCxAVgRjAGukemyGoH0ocFhyEHWkb7RQaDqgJ1QbwBIsE6ARXBMYDBAaFCrwMfwpcB1QHPwkrCfQFigE3/db4FPWS85D0QPbQ9iH2nPUn98T7QgKPBywJjwehBb4FIQdpBkkB8vlz9Z71K/Y48mfrJOgK67jvQfFt8G3xqfVj+nz8w/uu+nP7Q/3E/FP4y/IX8N3ve+7G6lrnJuZR5gDnZuiD6f/oCelY7fXz7fXa8V/vyfMm+SX3D/Ag7YXwTfPP8GnsyOr06/rtRvAG8ovxfO887xTy+PTo9M7yYvGX8YfyBfM88oTw2u+J8aDzYvPY8WryH/V89pD1h/XN91X5G/j19sn4f/tp+xL5Avhh+Sv7s/sZ+zD6Avqf+5f+vQD9APkAXgJIBDMFpwWpBjsHNAYoBU0GOQhYB7oD1wFIBM0H2gf/BO0DyQalChAMhQvBC6YN7A+8ETcT9RNxE8ISWBPoE7YRcQ1KC8YMNA6cDKkKDQwbD3sPaQ0zDR8QsBJ7EmoR4BE5E68TDhMSEiQRxxBQEX8Rfg/3CxIKcgslDkQPHg4kDGwLeA2QESwUYxI4Du8MUBA0FAkUZBCFDSYOShGuE18Skw2/CaAL9hG0FV4SygvzCAoLVw3aDM0L0AxYDlUNOwqoCJ4KLg7bD8QNywg+BAIEqggdDUQLRgRoAAcEqggeBmb/C//QBroL5gW7/JH8MgWyCgoGEP3W+Mv6KP6C/w7/iP1w+pP13vDi74L0dPvU/Zv4e/Hv8JT3R/3P+1H2nfOW9MH0ePI+8fXyxvMX8Errg+vO717wh+qc5qrsLven+FDuReVr6Zv1uPrx8gznc+Gm4k7kvOLk3/neSeCU4THhKODE4CLjp+Tg4ybjHeUI6ODnmeSV4iLkLeYw5WDiF+FZ4WDg1t2z3Ebepd8P3qjb99x14qHnCOl16Jjpnuye7lTufu2j7SbuI+4S7oTuBe9N7wvwkPHf8ibz+fJi88/0WvfJ+t79Pf+Z/y4BYwTjBhwHdgbBBm8HEAfrBVcFuwWkBtcHFQnlCYYKuQsrDdYNUA5TEEcTQxStEp4R/RKYFF8U7BMCFesVuxQyE1wTXxPnECoOiw6PEIgQcQ8gEdYUKRbcFAEVyRawFVARcA/zEWQSvAy/BzkL8xJFFEoOHwtBEIIWFBXxDSQKpg0rFAYYqBcGFUwTFhXGGaocwhmFE8EQAhRqGIoYExVJEsIRPxKzExEXoBq4GhoXIxREFcYYhRrnGLoVohPCE98UlhTGEvESSRdMGykYTg+4CqsPoBaLFe0N0gkkDZ8RaxF2DgsNFQ09DM4KrwrICz8M7wr1B1oEUwJ1A48FOwQx/5H7n/yq/vH8ZfmK+T39Xv4H+gv1KvVY+T371fbg7mjq3O1N9dH2w+1o4mDhJeu68lHv7Odv58vr5+rT5GDkDOwY76jklNdO2ADlXOyn5ureH+AP5cbi3NrT2BPgqeZj46/Zs9Nm1Qba8tul2tXY+9dq14PW7tVs1nvXMtje2HnafNzU3PLaddkY25Heht/j277W7dSP1znbd9zK21jcPN/g4e7hO+GJ48foYuxZ65Do6+iz7KDvMO/G7ZzuKPG88hTzcPRM9xr5mviu+Cz8nQAeASH+yf0AA5oIuAhqBUYFqAm1DXQONg5WD8oQoBE9E+EV2hbnFOwSsRPpFfIWqxbtFWYUuRKHEzMX0hnOGB0X7Rf8GD0XjhU+GIUcwxtNFlwT4hXQGOkXUxUXFJoTcBOWFVgZnhmFFMUP0BAiFUAXARcgF3cW0BLuD7ITfBtjHRoWsw61EGQZ1x05Ge4RjhCMFaIZQxd6ESAQ2hVnHJIcmRcOFScY3xsfGw8YnBcsGTcY9hQLFRwawR3SGgkWPxeoHKEcmhRTDl4SmxsNHmMWuwzMCeIOUhdyHAgZig6WBloJmxJsFiERFQvYChYMzggrBEIFgQsmD0sLogL1+/b8VwUsDDIHx/hO8OL2DwJCAnD4NfJv9Av3dfX29Mz3EfeK70jpDeut7+/vKu6V7lXsPuKv2IvcXerF8BTpy98m4HbkG+P0303kEOzc6QXdIdVc20nkweAy1M7OsNWO3Tbd99hr10/Wp9Ki0rTbaOQY3jnMhcNBzhTer+D+11TTztdQ3HTaz9bZ1tzYtdm02hHdt93U2ubYfdwo4rbiLt4m3IrgpeVM5Ejecdw349XsG/DH6mLj4eFC6OHx7/eG9rjvkurm7ND0Xfr8+LD02fMN99v6u/5yBKoJFwmCA2cB+QdlEUIUhw94CtUKjw8PFOQUqBGIDU0NIxJUFwYYsBUeFacWeBYcFOATPxenGYQXIRSPFA8YuRnbF4gVmxWdF4wZExrwGBkXQBbDFvcW8hWEFRIXKBihFVcRhRBKFNUXTxe7FAUUlRVnF8EYtRkuGbsWexQYFK4TfRGYEL0UmRrTGm4V9RKaF1Mc7xmkFAsVOBoeHKkZxhnIHeMdZBf7EzAbuCRQI2IYzhHUFT8c1BwcGr4Zixp3GBYViRWQGrAfwCDrHBwWfRA6ELQUIhiSFoUSDBArD6YOtg8eEnoR7wwODBYTkRd5DQX9QfuoCngUYQmH+ED4/QSiCSUBCPsl/84BuvlL8N7xSPq+/B336vHE8VTzdfO28lPxw+6/7Crt3u3L6/PogOnz64Lqi+SQ4PjijucD5zvgz9kF28Tjlesg6iDhp9oq3Pbf895v2+/bcd8633baQddT2NfZdtmP2aPaWtmW1UXUHteX2TTZftn1297batds1evak+G14JPa4NcQ2pDb8dr024PemN5j3aLgBedw587f6NrT4GnpuucU3r7bEOcx9HD15uxE5wrqWO8G8o302vi3+aPzl+5E9SMEwguuBQb9r/1uBC4HfAWkBq0L9w37Cg8IpQlzDhAUDxn2GfkTdwyODQAY8h8bHLMRPQztDvgTKxZIFV8T/xINFpYaNhtVFuwRzhNFGUIbcBh8FSkV5RVZFvYWTxewFtIWAhmsGbcU9w0fDvsV5Bv4GBMSbg9jESYTphPmFLAVhhMnEawTNBkoGjIVexJvF94drRyaFD0OMg6oEf8URRd+F9MUZxICFRsbLB3VGIkVoBkJIGYf6xfLEgQV8hmaGwEaPxiAF6MX7hiwGuMaDxnaFusUYRI8EAkR6hOWFC4SDBEHE7UTYRDYDWEQWBNNEFQKbQkqDZwNywgSBSwFPARyAIj//QPiBp0CGvyC+sT8Pf4p/5gAwv47+I70FPmO/Uz49O9+8UX4iPN+5P3g9PBZ/mT1GOOu4Fbt+fJ86rfjqei77inrQuRj5PPoK+nl5EriteIN487i0+IA4UPclNmU3eDjDeTW3TfZ4Nox3z3hneCU3rLacdWl0qPV/Nvz3szaodOB0WXXM99p4PfZ5NKk0QTW4NvD35vfX9uM163ajOSp6z/oNd853C7i3ucz5Sje3dzb48DqQ+kl4gTgn+dj8Xnzzu637EHx3vbG+PT53v3fACf+vvjm95j87wAKATT/mv+9A6kJ/QyrClEGLwjZEXkZcxZvDoQNfxQDGYoWKRQSF+EZsBaJEfURcxcFGwsZ/hO9D50OYhEiFqIY6RYRFDgUaRfGGnUcHRzuGZQXphfHGe0ZChZvEacPYg87DhgOcxEFFXMTWQ4ADbQR0RYMGDMYNhq1GiMWJBFIE9Yamx0WF9EOWA0aEW0TkBNPFc0XWhYcEgcSQhdUGoAXdRWbGekd3RokFa4WTR7TIZEeWxspGkYVsQ1DDncZnCDQF0EJvQcQFHgdVBrdEpgRQhUMF+AV7BRiFAESbQ4MDRIPfRFHEPcKIQYTB5MMbw77By8AKgEACXML/QPf/JL/ywadBwsC7P7gAOcBFf/S/OD90P4s/WL7Y/rw9krxEPDI9Xb6n/bn7oLsEe9171rtBu+J9BX2zfBl6xrr+Oxm7bHt9O1R6rTji+KN6TvuyudW3qvf5OlN7rHnW+CH4KrjruNh44PmXuhW4zncoNx55MTpm+b43wbdyt3a3QTc49qK2/PbA9uj2grc19zu2nzZst1I5hrrmudm4abgKuU46PDm5+St5BDkruHe4Ibkd+nn6S3lq+BE4T/mF+vL7Ivsu+3r8TD3Q/rb+dX3RvdB+V37hPrG9x74A/04ACX8G/an+FgDtAmQBbkAewWmDvUQTA0vDUgRVBGrDKMM7ROnGDkU4A1cDmMSqhG6DOgKgQ6KEnESaA7wCaYJ5Q9NGF4aCBSoDW8P8Ba7G0gaZBWUEGkOsxAXFfIUXg4YCdkLGhFYDyEJzAm8EgcY/RLeDHwQ8Rl/HfIYXhQqFFwUXRIOEpQVmRdyE6wNkg2hEVkSLA9rDwgV/heOE10PvBPDG9AcXBceFYUYAxqRFuQUzhhAHOAZNRWtEoMQoQ2hDl0UahYsEBoLzRAeGmgZYhDhDFoSURa2E+ARpxSqFB0OrwmnDZMRzQszAiQB6gfrCkUGvgGcAukEggRbA8IDDQQoAy4DowTeBKMDYgQDBwYGwf/h+hv8jv0h+KrwxfFj+pP9mPX87Azvdfei+abzCvD59Oj6D/ge76frkPFV96bzVOt46ljx6vEw5bDZJ+FA9G74F+Wt0gTamfGB+w7vLuFg4+3tnvFl7ovsZuuF5RbfLuEd6UvqP+Gt2AfZLN514a/jtebn5fjdUNb32KTjEOra5ojhReKE533rJe0t7rPsOObx3vreBeeS7XLqHOHs25DfQudw7K7tEe2z6/HpK+oz7yj3cvti+LPyyvHU9ZL44veo+Eb8S/vx8Qzr0fLiAVcETves79z7iw3BDjoCVf0QB0sQqg2IB3gJDBDYEGsLFwi2CgoP+A+IDJMH6AUQCrMPow+oCrMJtQ9AEwwNdQVtCXEWCB2fFs4NLg4nFSgYzBNaDqkNTBCMEWsQ9w9nEUIR7wzYCN0LfRTCGLYTAg03DqIVURpAGaUWkBRNEcoO0hG3F2EWvwt6BDgLkBdeGIwMQgUFDWgYbhePDecLhhbyHf0W2wsyDMAV1xnIFPEQZBPmFIURXRDcFAEWYw7ECGQPqRjbFMwIpQfCE+4ZIBDPBUIL4BfrF6sKcwI6CQUUdRTNCy0G/wilDZ0M1QdrBgUJjAgqAvj9ZAPGC1YKMABS/M8EcQyTBtv6n/lpA10J1QOT+6H6Bf/aAPv9OfrO+OX5zvvk+6j4aPRN8wf2IPm0+dj38fQw8zT1rvmV+ZHxluo274D52Pg37M7mifL4/Tj2veUf5YD07PsH8nzpTvDO+DryM+bh6M324vnW7LLi4ue78JrvneqA7f7yD+7p4krjVPGo+OTrQNr02ifs+vVR7Are590v6SbvGep/5K3mgOsW65/nVejv7DLutOm/5dTnAO2+7trrwOi36J/qDexK7KjrleqK6kTtcfGw8pTvGO008PH1bffY9C31yfkZ+/P1A/PV+MT+wPll8MryGADyBVr9APZY/JUFYgP4/O4BxQ0wDkUCKP1VB9UR5w7+BfEEHwv2DvgNnwtWCHkEjwWKDfcSRA2zA9gD1gxgEfcMYwlnDb8S/RHXDW8MaA0XDdwLLAw6DRcNBQ37DhURChC4DFULrw01EYUS4hBFDm8NrA96E6QVNBRIEPgMtgwoDy8RJxCJDUcNsw9eEFUNowsPEIQWyhaBEMALaQ1REeQR0A8ID24Q7RE0EpURwhBgELkQIhHiEDgQTw/BDdAMKA9qE3ITyQ1lCqAOfBLtDJQFpQpMF3QXNgh2/7cJHhVsDiIBQgQwE5AUFQTr+RQEOxEsDST/5fsDBjUNLAjH/2X/KQXaBlEBAP2tAdAJggiu/E31Q/wPBnQCdPb/9CIAPQV8+/HxDfZd/rX8SfYl+OX+w/3u9tn36f/5/wD1yO7D9bP8+PaS7brvkPnB+hHxa+v98TD6pPdB7ujqp/CX9lf2qfPN8830bvLo7rHvWfNU8j3r4ebH68HzJfTc7L3nMer97tHvP+5h7/byvvOT79rqtuol7k3viesq5xvnQ+kU6JnkCeZt7TTxseqz4Zviiuzi8ovvQ+q168fx2PSo8hfvou197k7wj/EA8ZvutOv26arq9+2S8T7ykPAu8W/1CPjC9VX0UPkQ//v8F/er+L8AzgJj/NP5VQAkBKT9Yfia/4UJ3gau/Kv7hAQFCdAFKwYXDT0PyAhFBvQOnRbGEB4FXAPwCz0SShBuC2cIdQaNBaIHIgurCwYJmwegCdAM5g7iDwcQjw/tD88R0RKmEDkNKQzDDcIPEREwEaIOWgp3CTwOkhJTEMILNg2xEogScwxyCwwTVhenD1oGEQpkFoMZ9g71BTYKRxNuEkcIoQKnCHESpxT3DfYGCAjyENAY0BawDIcGlwytF5sZahAJCagMGBTSEzUNZgpcDU4OTArsB78K7gyECjEJTQ0LEMAKqgSPCBsR8A73ASv8agb+EbUOqwLq/mgFuwkMBzIF4Qf2B8IBYv3SASMJRAl6An396P4JA0gESAGi/U7+UgNsBRL/J/f4+aAF4Aje+9bukvRXBgkMh/317Hrt9vtbBhYCZ/Vw7or0lwAcBGP6tO/M8Zn86P/89tfuJ/JN+g37d/RQ8Fvyi/QM8q3ujfBQ9rj36vDy6cHtovm2/QHzC+gZ7bv6oftM7WTk1+xh+D32yuva54zqserT6bTvw/aM8a3j+uCr7lv4Ne5a3qHg/vKQ/KPxruLL4vHtnfIP7Czmm+k38Ijwp+uQ6b/sQfAc8NntvOy67bnvS/EL8lHzKvb69/v0/O+H8dv6mwBW+vPwsvL+/FEA7fgH9IL5FQCl/jn7sP71BH8FnwLlA7oHXQehBLEG3AufCwwGdgR+CXcMFQgvA2YFXQvGDMwI1gWZBwALqAvHCWEJuwwREQ0Sqg/EDc4NZw1XDBAOEBJ/ETAKZAUgCygUdxOMCpAHOQ/TFUESkwtpDHAS8hOgD7AMKQ66D9sOmA6/EBsSehDiDvoPwRCyDTMKaAykEhkU+w3fCGcMixNPFAUPwAxJENoS1RBrD9wR3hLEDosL8g64EwESDw0ADh0UcxXNDrIIWAoTEC4SBQ+1CgoJuwrmDWkPwQ3hCi4J9wcLBuUFCwqKDogM8QTEAGYE/wi4BpgAAACsBgMMEwngATr/tQLkBbwEwQJ5A4gD0f6q+UD8hgXRCvQF5/yp+Pv6BQA6BOoEpQC/+jb5/vuD/Nj4g/eC+639WflK9sz7wAHz+3TvgO2m+eYDzf+o9Izw9fSC+Bb2DvIW8pP1B/fk8oXsf+u88oD7evzW9MbsR+s+7xnzsvMH8oHwMPAe8AfveO0N7cXtUe7y7mzwJ/DZ6irkq+Tf7Obxw+xn5XPmhOyx7F7nouc/8Ab27PAw6FbnT+5p8wPx/OoG6A/qeO247XTqFuiS6i7wevMM8iDvKe+q8v71hfXs8RzwgvMR+db6ZfgY9y35avpG+O/2zfnu/AT8cfpS/QcC0wJEARoDYQcbCIcF0QVmCaIJ1AQZAuEF4AqwCsYGQQSFBBwGUQgWCmsJIQcwB4cK2QyCCwoKSAweEAIRmw4rDLkL+QzIDksPHA1jCnoLTRDzEtEPTgt1CzYPxhBQDkoLfQprC0AN3A+tEa4QQw5gDl0RaBKfDoUKSwwOEjUTnwxcBiwJ7hGdFbgQowv4DUgUeBYaEyQPJA4lEEMU4BcoFqIOhAk2DmEX3hj6EIsKhAwxEWoRLw86D6cP0gzrCRoMiRATEIsLLAvZEJAT0gzAAxEEJw39EQ4LYQGPAmENbBI3Cfb8s/2ZCfgOYgVm+pf+Vw10EnMGdPng/IULXxHvBof5r/fY/+0GOQcoArP67PVw+p0FPwij+ortuvXuCZUL6/Ro5Qf0IgyGDAz4Cu0M9nn/MPt884X0Bvmm9wXz6fGi8zD1rPcX+gT3ae8/7fPzCvm+9PnuQfHh9TXy7ell6enwdfRc76zqYu2J8S3u5uSx3z7kQu1m8AjqDuKJ4h7qfu3n55TipuYb7+LwY+tZ54jorOrc6kXqN+g+4yngkuUz73vwA+ek39bjSeyx7cbptOno7RLvA+wc61zun/A58CDyePdr+a70wPCC9I766Pk/9bT2tP7EArj+Vvua/5cFLQVzAWECFQd7COkF4gQaBuIEgAH1Af0G2AmnBxEG2wh+CwEKRAh+CkUN/QtpCW0K/QwdDHoJsAoIDyUQgwzWCesLhw8MEG0NwgpzCtwMARB/EIwNPAtYDSQRvxAqDFgJzAogDCMKtQhPDOwR7BILD8gMpg9HE1sSgQ5ODaYP6xDxDqANORApE1QRzAx5DMkRpRaeFlIUkBOdE4oSnxF1EmoT7BLPEnkUXRVsEy4RGhHnEKYO9g3EEUkV7hIeDpANuA/4DtANchI8GCgUVQisA5UK5w88CyQGvQlxDrwKBwWzB9wNagwWBkcFSwirBar/wwAnB/QGYwDe/3AG0AZJ/mD7wQNrCIf/avaH+sMB8/yk80X3tQMBBab4QfFn93n9zfj58jH3Yv7b+znzdvIU+6n/gPjd7iLvhveJ+xT2X/Ds84D7y/mY7W7lUes89o73ze9P62vuV/Hv7rbrK+wb7mzuPu1A6hjlf+KU59Tu9+xL42ngnOlN8XHsCeQw5VbrnOnU4bLgRufk6Vrl0eNN6aDrn+Qb3rPhJOhO5TbdZt4x6mHx8upa4SjibOpw7STpl+fR7Obv0OpF5ojs4Pcv+uTyFfBk+P8AZ/+M+Qb7kgKyBRgCyP8gA1YHrgeCBW8D1AHAAcUEYQgBCNME9ARRCbsLZAm9Bw4LJg9/DucKkQn2CiUMiwwgDd8MAwtCCuYM3w/HDgUL/QkSDSUQ4g9ODfIKJApbCwUOsA9JDnoL7QrgDKYNegt+Ce0KFQ7XDo8MhArpCnoMZA3xDRMPMRAmEGYPXg8QECoQbA8jD9sPQhCRD2gPjRGcFF0VPxNWETQSrRQEFqkVUhUmFlAXLRc2FfAS9BLiFZ4YeRdFE8IQKhJqFEIUCROmE5oVTxZQFSUUeRNvE64UFxYAFM0NagkADFERzBAwCsoF7QfIC5AM+AsWDEQKeQUwAzQHvQuDCc4DZwPgB/sHHwHw+07+PgJiAKD71vrp/BD8hfnB++MB2wJi++jzYfRQ+Y/6T/ep9Dr0OfPx8Krvye+i783vJ/K59EPzYe6K68Dsye3I6/bpkuvj7fjsrepw6xbuA+0451biNOKy483iG+HM4eHiROC32zfbaN9K4v7gJeAh4x/ltuD32bbZq+B/5u3l9uKm4iPjg+Ae3Yne5+P75QbiaN4W4afmFeim5V7lQOgA6RjmT+Ui6kTvpe7h6sLq4O7c8TfxAPD/8FDzlPU++Fv7Ov0+/Y39NgD5A94FaAUOBXEGNgiTCGwIzAkwDBYNEQyUC+AMAA43DeILFAxpDUMOew6uDmQOIA0iDPsM4A6LD2cOLA06Db8NAQ3ECuYIYAnLC3wNoAyHCs0J8woGDJcLdwoECkIKXApKCrMKlQsiDBQMUgyADbQOow7RDSgOARAwEesPcA16DOENDhBvEQ4SvxLNE64UyhRaFKQUxhbgGWcbGhr+FwcYOxrwG8MbRhv2G+wcuBzSG10bBBs+GjkaLxy0HiYfWR2bG3YbkhwLHskejB2mGoYYRhiDF2wUrBFGEpsTHBGDDBMMRxAPEosNewjMCSwPZhDrCqkEVQOOBbMG2AUjBT0EggAm+9v5Vv7eATz+XffO9Xv5+vlP9OHvWvI29njzc+xI6vPuofJ07z7p2+bt6N/qGer/5yrmg+Qj4/XizuMO5BTjLOId4qvhxN933T7cftuy2SXXydWG1gTYKtg81szTk9N81v/Z8trW2frZZty63obfPOBe4dTgI96U3GPe/+Ay4UngqeFG5ffnFOhG5zDometp72vwYu5m7Z7wAfVr9cjyxvKl9oX53/hH+IL6ufwH/Nf6evw3/3//Rf6l/0UEXAhcCToJ5ArdDWEPsw4xDqYPmhGsEUcQxA+QEKMQIA/hDWMOTA+VDpMMCwuBCuoJtAh7B90GtAaIBkMGPAaWBqcGlgWuA4YC9AKTA40CYQBS/yYANgEYAbAAoQG8A18FtwVxBUoFPAU7BZQFMQZrBjcGdQaJB6YIPQnmCSQLfwzGDcoPhRIiFIcTjxK/E9AWixkjG4Qc8R3PHpYfaSGRI8EjpCEpINEhOiUAJyom7yQkJfUl5yVnJcwltyZ3JsskoyNVJGklQiSTIA8dShyJHYwdphoHFwAWxRdFGR8YGRVTEmIQVA79C9kKwQuHDOUJkgSvAeoDqQYaBBn+fft8/UP+1PoI96z14/Pb72rtKu/a8Bvu4OlZ6VXr7uoL6NrmR+ju6CXn0OTw4kngdt2c3Q7hJON/4GzcO9xI3yXgG92D2oDbDN0u20fXBdXw0/PQOM2czXPSmdVH0wPQxtH91qDZ1dhj2R7d4d+W3irc8dxZ4HLi5eFk4UTjHebF5uXky+P65afpeeuW6/rsPfC78lTzQ/Tc9hT5RfkX+Wf6/Pv5+1/7Y/zF/mEAeQBlAGYBOQPwBC0GZAccCTcLCg1SDmUPbRA/EfIRrhL5EkwSZRFiEaoRnxBsDusMgQyIC2oJ9Ad1CKEJogluCPUGmwV6BO4D3gN0A0ECzwC8/zz/RP9R/2P+Ufy1+gn7OPzr+/r5sfiH+VP7c/wV/U3+HAChAZoCmwPeBOEFPQYwBjMGlQauB50JwAslDeYNKQ99ET4U2RaKGX8cMB9MIUMjMSVlJqsmCyeZKAEr+SyvLWMt9ywlLcYtEy65LVgthS3YLaEt/iymLOMsMS3LLF4rbyn1JzknUCZgJNQhkh+nHcUbTRpnGewX6RSuEVIQZxBbDzEM0ggIBx8GlAR9AvUA1/+1/TP6Cffk9fr14/Sa8ZTtoOor6cXo4Ohr6F/mnOOX4uLjsOSS4jTfF96F30bgY96+2ynblNyD3ZPc/9qj2o3bWdwf3DTbRdqR2f7YQNjq1uTU3tKV0bfQO8/6zAbLn8pDzI7PJtNN1fPVetem21Lg9eEZ4c3hJeVP587lp+Oe5JbnGOnz6LXpJOyc7hHwFfFQ8g30cfbs+H36ifui/ZcASAJqAnEDRAY0CGoHKgb/BnYI1gfdBWYFxQboBxsI9QhOC+ENUQ/bD4kQlxF0ErwSsxK9EqYS5xGMECQP2g07DEYKxwgpCKAHOAYnBE4CEAEkAEn/d/6v/QD9evz/+3n7HvsP+9r65flp+EX33/be9tr2u/Zo9sz1WPXe9ZX3q/kf++H72fy6/h8BDwNYBMIFzQfYCR0L+AtWDTkPshBkETsSQxRFFxgaERzJHUkgmyO1JtIoWyovLEAusy9sMEQxjzJXM9Uy8DEvMowzkDRmNJIzlTIuMXgvby5hLiAumixwKgMpeSjZJ3ImSSSrIRQfFR2AG0gZ8hV+EhwQmw77DPwKJQmeB/wFDAQbAlsAhf5G/OD59vet9lb1S/MC8Y3v5u6u7RPrF+gy5lzlauTa4kPhOOCt30Lfst4T3v/dEd+x4Dbh+9963lve7t5D3kTcBtut28TcnNzM2+vb5Nw63Xncp9tA207aNNji1UjUstLaz07MQ8rZyq/MJs6nz8DSXNeN20begeBZ42DmsuhX6tfrMO0b7uDuE/C/8V3zgvSC9T33Bvrb/E3+gv4m/w0BJQOIBA0GlAgyC6YMfA3xDooQyBDADwsPLg/UDi0NZgv6CpgL4wuwCy0M4Q26D5IQsBAAEYMRdRGNECQPdg2YC9YJTAh1BvcDigEJAPD+CP1A+sj3UvZI9Qr0xPLk8YjxrPE58s7y8/K38pPynfJ+8hXyofE08a/wZ/AT8a/yQfQ09Tj2KvjB+iH9QP+nAUcEoQbPCEsL6Q0BEJgRZhOKFXIXBxnqGkodah/IIO0hmiPaJTooaiplLE4uVDCTMrw0MTbRNjY35jeLOGM4cDeKNjY28jXpNPwyszCKLrAsGit2KW8nQSWhI5oiKyGiHtUbAhoFGZYXIxVzEk0Qhg6VDGkKWAifBjgFAgTJAlgBqv/2/YD8RPvz+Vj4v/aW9cz00/OF8nfxKfEc8Vfwmu6a7ALrw+l76C/nPubu5T3m4uZw563n+efp6D/qyure6XPo7OcQ6FDnN+U244LiX+J/4QngPN+C3w7gCOAm32Xd/9p02APWYtNY0D/NgsodyCTG/sS5xBzFkcb3yRLPRdRV2Irbkt5u4RDkwuaL6Rzspu648dT0kfbu9tv3hvqA/dP+8/71/3MC8QRABi4HNAlyDOkP/BLiFasYrRpQG+oaRhpwGa4XzhTwEUgQkA+PDjQN4wxBDuwPWBAHEFMQ+BBLENYNIwt9CV8IjwbSA8cAAf6r+5T5T/ee9OjxuO/S7ZfrL+mf52jn7udz6AzpNeoT7G/u1/CM8vPycPIx8r3yTvMf88DyVfMf9XX35/l0/AT/owHrBCwJjg3yEIATUhZ8GfcbZx3FHvIgmyPyJaQnzyi8KdwqXSzBLXEuty6HLzUxGzOONH01PTYhN0o4aznPOf84RjdENUEzLjHyLoQs0ynmJvYjUyExH4Id5hvgGXwXZhUYFCwTthFMD4EMRgr6CAkIswYABaAD0gL0AWsAk/5b/R79Uv0o/WX8o/up+2n88fyv/F38/vxD/r7+sP3P+yz6+fjI92z2HPUH9FDzK/OH89bzsPN+8+PznfS39N/z0/I98sLxjfBT7nvr2+g753TmI+VE4gLff9123RLcHtgb1MTSGtMQ0iTP0cykzBvNDMyNyWvHZcZaxTnDoMDevgi+UL3VvEi9ML73voPB8cje1NXgwulL8SL6XgPMCQ8MHgz2DLoPvBJHE/MQVA6qDWEOAg/HD4kR7RNyFkwZ5RtfHKEamxk8G28dcR1FHNQcBh+zHwAdYRglFNUQiw2nCW8FhgFz/nH8bfvj+i76V/lM+Y769/vS+xr6cfiV90b2NPMI73brIOlb57HlaeTl4xLknOQw5W3lOeUo5T7m5eh+7BPwQ/Nm9tr5dP19AHUC0AN7BZIHOQkOCvkKnAwmDtIOlQ/tEbkVlxnlHDAguiPtJk4pGCusLOEtRi4bLnUu9i+fMeIx/DDCMMMxdDLFMcQwejAEMGYupixFLN0sBS13LMor1CrxKG8mHyQYIrIfiBzIGOUUVBEzDiQL8wdxBYAEoARtBHADbALqAY8B9QBZACgAjABvAWQC0wKrApoCVQOkBKYF4AWrBbcFUwYwB9EHBQgRCE8IwQj2CIYIfAcvBswELgNJAWT/w/1P/NL6Mflu97L1R/Qx8+rx+e/M7RLshOo56PrkieF43rLbXdm31y7W3NM60efP6M/1zqrL18cTxjPGBMbexFfEWcWZxqHG5sWgxaHF7cTXw4fDTsP3wL68I7qauq66VbiXuKrBaNHv37bqFfb6AywQeBcPHOMgfCVyKBoqyyqbKSQmXyGJHL4YGxebF6oYGRn3GPIX6RRjEB0NrQyqDWQOcw/hEUsUBRR2EM0LJQg4BYABsfz39/Xz8e+L6/bni+YC503oWuqU7UfxFfTZ9ZX3Y/kw+sD5XPm7+dT50/iZ9yz3+fYy9n71sfXi9bv06vJq8s3zHfbt+K/8DgG4BCQHHQldC7INsw9TEaISwBPZFJIVEhVuEzMSiRLOEw8VhxaCGB0arxozG8IcwB4CIMUgKSJYJGQmoCc6KNEooCkQKkgpcCfWJUslCCULJMoikCKZI98kniUTJrAmeicwKHgo3ycMJjgjBiAEHWsaMhglFvkTpBFWDwgNegq5B1QFogNhAlgB1gAwAQMCkwKjAs4C3APtBUYI8wmsCs4KkQqmCQYIdgbKBfEFQwaUBjcHIwjcCCIJLgkuCfoIbwiGBxUGEATBAV//v/wA+ur30Pam9Vbze/Bn7vLsuOpo50HkEeIr4ObdttsN2nTYb9Z71ArTeNEaz3vMfcrJyGnGhsMbwT+/bb0hvJC8or52wJbAoL/qvo6+w72qvHC8ab2SvoG/P8E6xDPH98lbzxLa4+h/+KMHcBZsI2gsXzG+Mxg0+jIdMgcyajCKKxwlPx88GRISvAvMCM0IogmEChsLxQmaBaQAwP0V/c/8V/yT/ID9gv1j+6/3mvOT737r4+fc5abl+eV45ZLkBeWe51PrAO/l8qD3vvxhAVkFhQg2CjsKlgkbCUEIhAa7BNQDNQPGAb3/Ov7J/Rz+xP5o/9//lQBTAgEFhwceCSMKNQteDIUN0Q4gEN8QLhEIErQTJhWcFbUVEhYFFvEUxRPjE3MVjxeNGVcbIB04H5gheCM4JFAkiiTcJNcklCQMJIIi/R82HoAeqB/PH0UfrB8HId0hzCHPIUIiXSLWITchmSCEH/UdfRwtG8YZfRijF7sW8hQ9EhEPswt6CCEG7gQtBEoDvwJTA+AElgb7ByAJXQrsC5INng6iDvcNQg2oDOILAgt1CoEKCwurC/gL4wvQCw8MIgwrCzkJcQeYBiYGMwXNA4gCZgH7/yr+8vsX+dT1L/OF8YLvCOxI6Bvm6eRr4l3eE9vV2f3Y0tYW1EjSBNEYz97MZMsMyl/H08N3wejAccC3voi8RLu2uoC5ObcbtWa00bR8tZS2oLh6uly6L7lYupu/+Mc00+DilfYRClwZkyT8LR02ljurPaQ9gz2RPYE70TQNKl8eHRTMCxoGBwSiBDkFWQRjAl7/gfp/9OPvOO597gDvce868KPw9u7A6tfle+Ln4J/f0t023Jrb49uk3PbdTOD04/7og+959yYALQiNDmoTQxeNGWoZgReUFVgU/hL2EMYO4wwlC24JzAcJBikEBQN2AwsFgwZMB9YHrgjfCRAL2AtRDE0NdQ8bEtUTRhQuFOwT8xIhEUIP/w1uDc0NYA9yEfoSNRQ5Fv8YcBsqHZsetB/dHyEfAx6EHJoa+Bg3GNwXSxfTFrcWXxaYFWwViBbjF0MYLBj2GLEaVByEHdIegSAoInQjTSQ4JNMixiA+H2AeSx2tGyQa6xhgFyoV5BI1ETQQ1g8pEPQQkRF8EdIQLxAmEJkQ3xC6EK8Q9xCsEOgOMQzqCaYIzAe5BpAF4wThBCgFPAUcBSgFgAXTBc8FYAVpBKUCNwD1/YL8SfsL+bT1n/KM8GjuDOsi5yTkWeLn4EffUt0B2+/YHNho2ELY0tZF1ffURdWL1LXSXdEW0QrQcMx0xwvEEMN3wrrAG78lv86/1L4bvPO5u7kXuou5UbkhuzO9hrwBu2S+PciN1Aviz/RtDQskOTHvNv07XkKPRrtFFkHpO/A3fzM8K2IeRhAXBXb+i/tw+vX44/Ui8ibvmezo6CPkxuDs4Kbj7eVN5m3mA+ia6ZDoTOWn4rXh4OAj34DdH90Z3mXgSOSj6cvvXfbK/ZkGHBBWGMwd6iDPIksjpSGbHrgbDRmIFUIRbQ1oCn8HeATRAY7/Vf2P+wL7bvua+yP7Pfsr/bgAlASpB9wJ1AsNDgcQrxAAEFEPZA9ADwAOiAwVDGUMvAxTDZYOMBD6EYsU0heJGsYbyxv+Gl8ZLBf2FPwSZRGbEH8Q8w9tDvIMhQyQDCIMuguHDJMOzxCFEtkTMxXcFv0YhRs4HvQgqiMaJsMnSyi0J1YmvCRtI4QijCEOIDUesRzVG0sbtBopGuoZAxpCGjQaVBm5F04WmhX/FMgTNBKoELsOOgz7CbQI1Ad7BsAEQAMyAoIBMwE3AXABDAJsA4EFcwc8CIoHAwZ3BPoC8QDb/bv5KPXw8DrtTenk5A7hrt4M3TPb/NmO2iTcOt3a3eneEuB+4IzgBOFg4W/gJd6j25fZite/1D7Rm81BymrHbsU9xKfCc781uwK4DbcHt1q1NrHKrJyqH6qXqSar4LOAxJPX2eg2+VIJDRZ6HVAibie7LCsyozgKPqg9RzYZLKkjAx7pGeEVcxHqDXEMnQqoA8z2fOmL4UffKN8N35PfW+Fr42/kL+Qi46zhkODX4DjiuuI/4V7fMN9d4PrgweDo4brmDO8m+Gf/wAToCTYPyhJKE8wRfBC3ELESchUTF4kWBBU/FM4TvxHGDdkJkAdsBusEPAKb/vP6OvjQ9nD2EPc3+en84QCeA+wEoQVbBkgHfgjdCQ0LYQy5Ds0R6hMkFJ0TyBOmFHMVvhUlFVkT8BDkDjgNWwuCCWUIBAgTCOoIswpnDBoNUw3bDSYOOw1vC+AJBwnVCJMJgwsEDj0QTRLlFPEXnxq3HPIe1iH6JI8nECmBKVwpVCmKKVYpZSiBJ3Mn1yerJ30mdyTdIRofgxzfGfEWdhR3E6AThxOTEmgRhhCwD8AO/A2CDQkNZAygC5IK0wh3BmUEmQMZBBsFIgZVB7MIowmYCaUIRgfdBYIE9wIQAR3/Tf31+mn3YvM88P/tmOvc6JzmIeUL5Ezj8+J+4qnhDeEZ4Tvh++Dr4I3hE+I14dzeOdw52j7Y49Qa0LbLJcmbx1PF8sGgvgi8hrlwtjizubD+rqOt+6xCrQqtQKvhqjixWL/e0GLiP/X7Cokg3TCiOUA8IzylPKs+0D83PZ42hC3uIpgXmQyXAvj5DvTt8cnx6O/F6jbkN97q2EvUwtG+0pDW5dpK3jPhbeSB53zpVuqC6tnpK+g65hzlEeWz5eHmAOml7Aryy/g/AD0IyhDyGCkfHyPEJQ8noiUxIbobVRcoFDIR8Q2HCioHCwQ4AUH+oPqv9pDzA/LD8RHyafLa8vrzNvYJ+Wb7WP1BANcEugkaDc0OtA8VEJ0PUQ6WDOsKOwpWC5sNUQ/ZD0EQThFTEloSQxF6D5UNOAxKC5gJkwayA6oC3QJFAoAAJf9K/3EAyQEBA+gDXQTTBNEFEgcLCCsJmwusD48Udhk6HtEiyCakKTYrkysfK4IqGSqEKVAosyYwJcMjGiJLIMUe0h12HXQdHR3JG6QZYxceFWkSkw+dDdcMngyHDLoMBw3eDE8MPQwhDWkOSg+dD6APfQ9SD2kP7g+hECURbxGsEcMRUhESECIO7wvkCRAIBQaDA9EAPv57+174pfUl9ITzrPJN8d7vmO5A7bLrA+ph6CXniuY/5snlOuXA5N7j4eH03gzcttmT1+/UadFfzdLJYseQxXbDOcHtv/W/aMBhwBPA579nv/i9J7yiuou45rSAsQey97fdwdnO9d8B9coKuR0xLCw2ZTxcQHNDh0VfRU5CPTztMncm9xf5CPX6hu/T50Hjwt+q24bWYdCDyRnD4L4JvovAiMUIzGTTMtvr4g/qdPAn9uH6Pv54ADACZQNcA8QBc/+4/U79PP55AD4EbwktD40UXBl4HfMf0R93HTcavxb5Ei8P9wsqCQgGbgLv/sL7kfhP9YTymvB979DuK+5L7XTsN+zL7B/urvBb9eP7nwJtCLYN1BLTFr4YExnuGJkY7BcdFz4WyxSOEikQRA7YDLkLFgsQC1wLfwvhCvkI5QWJAp3/9/x4+uX4Dflv+sr7svyw/Q//lgBMAnsE8Qb1CEYKXguiDAQOdA9FEd8TbxfiG9kggyUnKaQrMi3sLbItfCxSKlcnGiRqIXYfmh15G74ZJxllGZYZTBmAGBgXGRXeEm8QRA1QCZsFWgO0Ah8DTgQ+Br8IdgsbDloQ+BEYEzgUnBUOFz8YFBmBGXkZKBnjGNEYtxhFGFAXtxVcEzwQSQxpB+cBvvzF+M/1FvOM8NXuMO4m7kTuge7u7nPv1e++7+7uf+2966npFedN5BLitOCm3yLe9dur2QbYHddS1inV+9Nn01TTF9Ng0m7RWdDrzgnNrMo9x8HBRbqPsr+seKmQqBqrL7M1wcjS1uSZ9XQEVRHMHIsnbDGvOfY/+EPCRHZBUjpcMLgk1BgxDkYFWP2n9cXttOSJ2UvNtMLOu3e4m7fbuH28fsIgykjSDNoB4UvnfO3981P6Mf/NAbgCIgOBA28DugL3AQ4CVAMwBdIGMgjWCa4L8Qw+DQkNxwyXDMwMrg2vDs8O8A3gDOsLSwpQB0QD+f7t+gz3APO97sfq1Ocn5pnlN+Zm6B7sp/BR9Qf61P5wA74HAAw5ENkTnhbzGOsavhvyGj4ZrBdsFgEVAhMrEEkMoAfMAin+7Pm29kb1svVX95H51vuC/Tz+b/7F/lL/0/9yAIwB0wJ2AzgDvAKyAk8DnwS9Bn0JUgzSDvcQuRLeE10UqBRUFa0WqRgRG4AdjR8SISUi2iIkI+siBCI0IGEdwhmyFYwRwA20CoMIIAezBm8H5ggdCnkKIwp/CbQI6gdYBxgHSQdICFoKKg0JEKQSFRVwF7cZ5RvHHf8eWx/5Ht4d4BstGX8WixRiE6USDBKAEckQYw/yDKQJ8gUlAk7+hPro9nzzTfCg7cDr0OrJ6njrkez+7QjwpfLs9N31avVg9Hjz2fJP8pvxvPAc8CbwnvCo8J7vse2b68Lpu+fJ5ODg29xP2bzVVtFLzJTHlMOtv3a7irevtLay57Bwr1WvEbGgtAC778WG1ZnnL/oDDckfejDKPAtEKUeBRxBGF0MfPrk26SzlIBsTsQQI96bqkN9h1t7PpMs4yK/ET8HDvna91r2BwNfFcs0v1gbfqecL8Jb3c/1pAfkDjwU6BhIGVwUpBIYCkgDR/u79Tv7P/xwCJAXTCIoMbA8/EWUS+xKjEmERzQ9EDn4MOQqqBwEFDQKX/tD6Ivep8x7wX+zN6Cnm/uQg5Qzmq+dz6p3usfMs+Qv/UgV7C/4Q2BX7Gb0chh2uHCAbWhlXFxMVmhLdD98M0wnPBrsDnAC8/VT7YPnb9872C/Zj9Q31f/Xb9sb47/pG/bH/8AHXA0kFAwbiBVAF+wQLBRQF4QTtBNwF2gecCqINgxAGEzgVQhcZGZAanht6HHEdnx7LH38gViBWH90dKBwaGpUXtBSdEUsO0QqNB9IEpwIAARQAMQBfAWkD8gV6CJoKXQwNDpUPkhD+EFcR9BG9EpATpRQwFu0XWRkgGlsaWho8GroZZxhIFtkTeREID2UM7wkoCCAHdAbnBY0FegVrBeYEgQMuAWP+xfuZ+Yn3VvVz85Ly1fK888b03PUx9+P4uvoV/F/8p/tz+gz5U/dK9V3z+vEZ8WXwg+9j7kDtXeyf64nq0eiL5q7jBOC922vXRNMGz8XKRMfVxKHCpr/muxa4p7Qass6xZbU5vW/INNbo5Uz2pAX8ElIewCc7LwE1JTnsOns5zjRhLW0jZRfBClv/LPYX727pSuQE38/ZP9VR0XXN8clZyNzJx81Z0sfWrtu04Wno2e6M9Jz5J/79AcIEDga5BSYEIwJLAMH+dv2m/NL8Vf76AAgE3gZxCRIMqg6UEFsRMxGXELIPVA5UDMoJAAc0BHMBs/76+2f5B/fY9ObyM/Gf7zzuhu3t7S7vsfCJ8mD1afkI/qMCOAfgC18QUxRqF0kZvRkkGSQY9xZeFUoTLRFlD9UNJwwnCtkHdwVSA3wBtf/j/Wf8ivv1+kD6rfnI+Yn6dPtx/OD9x/+qATgDfgSBBQ0GFgbmBcwF0AXlBTAGFAcACf0Lhg/9EjsWeBmnHFcfSSG4IsgjOCS5I3ci3iAMH+8ckBoAGCoVERIKD1oM2wldByMFjgORAt4BagFmAfsBXAOxBcAI/gsiD1USjhVIGC4agRuNHEYdgx1kHQ0dXhwyG6gZDRiMFiQVwhNuEmIRsBD5D8EOLg3kC/8KwAm0B6AFjQRpBCcEIQOpAWQAnP9I/zb/G//e/q/+1v5O/7//3f+m/3z/xf9xANoAbQBe/0n+Yf08/IH6efiv9jX1nfOj8aTvM+5q7eDsROyb6/fqM+oV6Wnn6eRy4Ufd1dgx1OXOd8gpwf25NrS0sP6vpbIzuX/DZtBc3gLscvhxA3IN2hZLHxwmWitbL5ox5DDhLK0mrx91GAARfAk7Aj77GPRM7Onjutu01E7Pk8uuyQnKpMzF0JfV0dqH4HrmC+zw8G71kPnE/JP+ZP/3/28AdQAyAGUAfQEfA6gE4gUAByMIIgm9CfgJBwoCCuMJ0gkLCocK9QobC/MKcwp4CewHygUWA/P/qvx3+Xz26vPj8VHwPO8c72Lwu/Ja9fL3y/oA/kUBUAQJB2wJkQu4DeoPuRHVEowTYxRbFQYWJxboFXwV6xQAFGMS3A/HDPMJzgcNBlQE4QImAhICJwITAtABbQEKAdoA1QB/AJT/qP6V/lb/NgD5ACwCPAS6BuoIlQoMDLINpQ/OEf4THBY7GGwagBwzHmwfHCAzIMUfJB93HnId1hvvGRcYDxZ7E7kQkQ4tDSAMRAvTCsAKpwpeCuEJFQkbCIoHzQeVCHkJkwodDOMNmw9SERcTwxRAFqwX5xiHGXQZDxmfGBgYdRfwFsIW5RY8F50Xwhd6F8wWtRXqEy0Rxw1KCukGbAPL/3v8F/rO+GL4bvi5+GL5o/pY/Oz9B/8IAHYBMgOtBK4FgwZqB0QI3AgmCSAJwAjzB5YGdwSAAd791Pl99efwcOys6OPl6uOR4uLh4uFD4szijON25AHleeSw4urfJtzX1qPPZ8ciwJa7Jrp9u9a/nscK0jLd3Oci8hH8CQXiDGkUGRwvI4YowCsxLR8tgiswKGsjMB5eGYsUWQ4aBlj8y/HV5gvcUdI0yvfDRMDbv4zCKsevzAjTitrm4hTrM/JD+L/9rAJ8BtgIFgrBCjwLtgtGDOAMaQ3cDSYOAg4WDUgL8AioBtIERQOzAV0A4/9AALQA1gAmARwCSAPgA6ID0gKiAQwA/f16+8P4Z/bk9FT0jPRy9fX29vh6+5j++wHxBDMHNAlBC+AMgw1wDXMN7w2mDkUPtw8MEFAQdRBMEL4P/A5jDgYOig2jDGULHgoCCTII0wfxB1UItgjpCLwI4Qc7BhUE5gECAJX+wv2F/bT9RP5J/7IATAImBKgGCArbDYER1xQoGI8blB6MIF0hjyGhIWghWCBHHrAbDhlqFsITbhHOD8wOHw7cDTsO7Q5JDy0PHw+GDywQphDKELoQoRCPEGIQ+g+TD48P4g8IEMQPcg9WDyMPnQ4ZDgYOSw6aDgQP0g/2EBkSBRO/E1wU2xQaFd0UDhTqErURUBB1DkwMbQorCT0IPQc+Bn4F4wQTBPkCzwHKAAAAhv9V/yz/x/4v/q39Zf1P/Vf9ev3G/UX+1v4s/xT/qf4u/rn9SP3n/Lb8t/zk/Dz9qP3S/V39Rvzn+oD55Pe49QXzRPC87Rrr6+dN5LfgQt2C2UTVz9BbzK7HxcKBvgi8obsevRHBlsis09Dgn+7T/D4L0xhWJEUtsDOuN1s53TgjNu4wRimhH8YUnwno/u302Osf5C3evtkb1gXT6dAn0LnQhtKq1Tja+N9h5ubsQ/Nl+QL/qgNGBxMKCAy8DB4MuQr3CLMG6gNLAZ//7f7I/hP/BACUAVMD4wRgBhcI+QmTC5wMLQ1lDRcNCAxJChgIpgUWA34A3v0p+3v4C/YC9HnynfGO8Tzyl/Oj9T/4JftE/tIBwAV9CaEMTw+pEWQTLxQnFJsTrRJ5EUEQEA+nDfoLYgorCS4IHQf1BfEEPwTuA+cD/wM4BO4EZAZXCEMKCgzPDUcPxQ8UD54NsQswCTAGTAMBAT//1f3q/KD8zvxW/X3+iABLA2EGqwlIDSUR5RQsGPUaYB1wH/sgzCHUITUhCyBQHusb8hi2FX8SXA9eDNYJDwgBB28GSQa6Br0H+wgZChALEQwuDTUO8g5vD+APTRCOEJoQnhCwEJ4QShDzD+wPKBBPECkQwA8fDzUOCQ3TC9MKHQqrCYAJtwlCCtAKGAs8C5ILBQwJDGELdQqiCZ8I7QarBG8CmAAq/yH+mf2i/S/+Ef/x/5AADAGlATUCUALsAXMBBwFBAOf+TP3R+3T6K/k3+L/3hPdN90X3ifep9xf38PXO9PHzC/Pz8f3wgPBP8PjvS+9m7mTtQOz16pXpIOh/5p/kkuKF4IbefdyV2nPZ19nu21zf6+PI6ezwq/giAL8GPAxiEAgTIxSxE7ERVg75CdkEFv/i+JHygOwY58HisN/V3SPdyd2831/iGOX251zrKO/F8gj2WPnj/C4AqQJDBDgFowV8BeAEAATsAosB0v/x/Sz8hvrT+Cz3J/Y49hX3JPhV+Rb7Zf2i/24BEAPOBGUGWweDB+8GtwX5A+ABh/8D/Yz6YPiZ9kf1nfSq9Dj1KvbE9yr68PyO/xEC0QSgB+QJYwt4DG8NGg4uDqwN1gzeC8wKjwkgCLAGdQVmBEoDHwIiAXgADADn/zgA/gDwAd8C5AMPBTgGNQf9B4UIxQjrCBsJKAnQCD8I6AffB8YHdQc0B0AHdwekB9AHHwifCE8JMQouCyAMCQ0RDk4PrhAVEngTyRTsFcEWJBcCF2kWeRU5FJISiRBjDn0MAAvjCQwJewhWCLsIgAk7Cr0KUgtQDIcNeA74DkYPnA/5D0EQUhAREJIPHw/hDp8OGQ5oDcwMTQzJC0UL4AqlCqIKBAvVC9oM1A3HDq8PPhAhEEcPuA10C5sIcQUJAlz+uPrE97z1SvRQ80rzifSv9jr5Evwv/0gCPgU7CCILVw2EDu4OzQ7GDXcLKQh5BK4Av/y4+Lz06PBm7V7qxed+5bbj9eJ94wflJOex6azs7+8680D2lPja+SH6wvm7+If24fJZ7s/pr+Xt4ZDe7Nt72pbaHdx73l7hSeXX6o7xJPjp/SgDDgj0CyIOkA6vDcsLDgmeBY8B/vw9+NDzDPDy7Evq6+ft5aPkR+St5IXl4uY06ZzsePDh8332tvj0+un89f0M/tb9w/2E/ZP8//pW+f/3/fY/9uH1Evbn9k/4J/pG/Hn+kwCEAl8ELgauB3YIcAj0B18HlAYwBTADGgFV/5v9c/sG+QL3u/Xc9Cr0+POe9Pf1tvfP+Un8BP/dAcEEdQeoCUMLYgz9DP0MigzVC8kKSwm4B38GcQUXBKACwwGwAd0B8QFYAo0DTQXcBt8HngiBCYAKFwvhChkKXAnpCFMILge5BY4E6AOFAzsDRAPhA/AEJQZgB6sIBwpdC7EMHA6LD7MQWhGZEa4RmxEoEUwQWw+zDkQOqg3PDA8MuAuNCzQLyAq1Cg0LdQu2CwcMqQyPDYYOfQ98EJMRuxK4E0IUTxQkFOATQxMjEskQlw+KDmUNJwwECxQKVgnNCGwIDQi3B60HCwiPCPsIYQnjCW8K7wqHC1EMEg2BDaYNqg17Dc4MhAvVCRsIfgbhBCQDbgEYAEP/tP5R/lv+/v7w/84AmwF2AjUDoQPOA+cDwgMeAx0CEAH8/63+NP3j+9j68/ku+an4XfgY+ND3tffl9z34pPg3+Qf61PpC+z373foe+tX4Affg9KryW/Dm7XfrUOmB5+PlgOS94+DjluRj5UTmhucH6ULqIess7L/tmu9+8Z7zJva9+Nr6WPxQ/cP9of34/PL7s/pZ+fz3ivbV9Nry3vBI71vuHe547mTv4/DD8o300vV/9r32wPar9pD2U/bK9QT1NPRQ8wvyc/A/7xjv5+8v8dPyFfXt99P6Sf1F//YAgwLwAyIF0AWxBc8EgAP/AUMARP49/IH6Pfly+Pf3iPcG96z21PZ+91r4SPl9+hD8uf0T//r/lgAtAeIBjALgAtgCuQKjAmkC/gGjAXoBTgESASQBuAFqAuMCewOnBCAGOQfcB38IQAmwCYEJ7AhDCIEHdwYZBYcD8AGIAHj/zv6Y/vP+7v9iASQDQAXGB2kKrwx4DgwQfRFbEkgShBGJEE8Pcg3yCmMIQgaCBPECvwFPAcQB6wKEBGQGeAjJCmENFBB7Ek0UlRVhFnwWthU+FGsSVRD0DYULagmuBxcGqATAA5UD8QOOBHsF5ga/CLAKawzYDQQP8Q94EGgQyg/qDvcNxQwkC0YJigcLBp0ENgMOAk8B7wDTAPQAWwEKAvEC6APGBH8FIgaoBvMGCgcRBwYHuAYZBl4FrwTlA9QCngGVAPD/lP8z/5P+4P19/XP9Q/2e/OX7jvtP+3X66fg196z1L/TH8sDxLvH28FHxlPJw9CT2d/fX+Gj6uPtx/LH8evyL+/P5DPjL9djyiO/u7JDr4OpF6gPqn+r564/tNO8D8QDzF/Ux9wb5I/px+kb6xvmh+Lf2hvSa8vLwWu/67Rjtiezq6zPru+qf6q3q5eqf6wTtu+5W8NHxcPM29cz2+vfz+Aj6Ovsz/Kr8mPwj/GH7RPrA+Pr2V/VG9O/zEfRZ9L30XvUm9sz2PvfL97f45PkH+wv8+Pyb/aT9FP1P/KX7Dvtx+uz5tPm7+bD5Vfm6+CX4zPfC9w74w/js+XT7K/3i/ncAwwGiAjgD2QOjBEUFegWABbgF7AWDBWQENANwAtoBBwEZAIT/QP/h/kL+u/2j/fv9pf6f/+gAZgLtA1IFaAYLBzwHFQevBiQGkgX8BEMEYgOYAjkCWALTAqYD7wScBksIlAliCuEKLQsyC+AKYAr2CZ8JEgkoCCQHTQaDBX4EWgOFAhkCwAFBAc0AhQA4ANz/z/9eAEkBNwJNA+QE0QaFCOUJaAtODTcPshDHEbMSWRNaE4sSExEVD5MMsAncBnAEYgKFAAv/Wv50/sz+8/4i/73/iwABAQgBGgF0AbsBowFnAVcBWgE+ASsBYQHEARECVgLFAkIDewNtA2cDiAOhA40DTwPjAj8ClAElAeUAgwD2/4b/Tv/6/kP+V/2G/NL7A/sJ+gT5EfhI97z2X/b+9Y31VPWJ9ej1CvYA9j/28PbG94v4gvnn+nL8oP1L/qH+tP5s/tH9D/0g/NP6Lvl699j1IvRV8tHwAPDx72TwIPH78dbyufPE9Of12vaG9yr43/hH+fL47PeK9vD0EvMU8UXv4O0E7cnsCu1U7W7tx+3Z7mrw4vE58+n07faI+Dv5Ufk++QT5h/j795T3Lfeh9h32v/U+9V70c/MD8x/ze/Pw85H0W/Uz9hP37/eW+P34fPla+k371fvr++D7xftq+936bPou+u75ofl6+YD5gvl8+bT5S/oD+677ZfxD/R7+u/4e/3f/4v9eAOQAXQGhAY4BJAGIAO3/Z//a/jT+uP28/Q7+Hf7W/eD9of6G/97/5P9AANkAAwGoAE8AHgC5/y//Ef91/8n/6P9XADkB6gEqAqkC3gMtBeUFRgbNBj0HMAcGB0wHuwfHB7IHBAhaCNsHqQazBTIFdARJA2kCOQIiAqQBJAEfAV0BhQHdAbwCvQM8BD8ESQRdBP4DFQNQAk0C0wIzAzADOAOwA2AExATDBMcEIAWZBdwF6AXxBfoFzQVSBZsEwwPpAi0ChAGzAKv/rf7y/Vr9yfyL/On8o/1B/sz+pv/TAPIBxQJqA94D9gOwAzgDhQJ0ATMAGv8f/vz81vsr+xP7Lvtx+zr8hf21/nn/MAAeAd8BJQJAAnwCiAL7AfkA1/+G/gP9xfsq++z6r/qn+gn7Uvv6+mb6TvqT+pD6W/qn+n77FfwK/ND7uvt6+/j6rfrg+in7LPsv+3v7ufuB+w374/od+3z71vsV/AP8iPvn+mL65PlX+fH46vgi+WH5m/nE+a/5b/lx+dP5F/rf+Zf5y/ky+gz6UPm3+LH46/j/+PP43PiT+A/4pvee99P3BfhZ+Cb5X/pt+8L7fPtH+437Bvwi/OH7wPvq+8/73fpW+Q/4lPfE9zn4qfj8+DD5RPkf+bT4TPh7+I/5MPu7/Nf9gP65/oD+8f03/XT82PuL+1X7n/ol+Wj3J/ab9ZD1A/Ym9+P4sPoJ/Lr87vwZ/bz92/7b/0EASQBfAEQAWv+v/R38Rvv8+sf6ivpd+kL6L/ok+if6TvrT+sj7xfxI/Vn9bv2n/a39bP1R/Z397v3T/Wz9IP0E/ef8u/yT/Gj8Mfwe/GP80/wJ/fv8Iv3g/fb+tP+0/zz/yv56/hT+iv0p/S39e/3d/Tf+Vf7m/QT9V/xN/H/8Zfw1/Ff8afyv+336Fvrx+g78g/zD/Ln9Mf8bAPz/Xf8G/0n/DQD1AH4BaAH8AKAAUADS/zj/zv6N/iH+af2a/OD7Q/vX+sX6E/ux+6X82v3k/lb/Uf9V/4j/ov+J/5P/3P/m/yv/5/3l/KX84fz9/L78hfzQ/Ir9F/4g/hT+if5m/wcAEgCz/y3/pv5I/in+Ff7o/fn9pv5y/2T/X/5f/SD9Pf0N/aH8Zvxp/HP8iPyl/JP8dPwD/Y7+JACwAHcAqgCdAWECNQJyAckAZgAbAM7/Zv/G/hf+rv18/Qj9QfzN+0P8X/1W/rT+oP6G/qr+/v4y/xb/8v4+//T/bQAyAIb/9v6e/kT+7/38/Yb+EP8R/6j+ff7W/j//Of/8/iP/t/8bAPr/of9s/zT/zP56/ob+yv7//jn/f/93//r+of4L/+T/VwBJAD0AUgAfAJb/Jv8E/wn/WP8zACMBPgGOADUAwgBmAUMBvQCoAO8A2wA2AGf/tv47/jj+2v68/zgAPwBLAJAAtQBrAOX/lv++/zEAfABKAMH/W/9h/7H/FACHAAkBcgGqAccByAGJAScBCgE9ATYBigCK/8f+YP4d/gL+O/6v/iT/nv8xAKoA0wD5AJIBcQLiApUC/AGUAVAB3QA3AKr/Zf9S/zz/DP/K/pL+gP6v/ib/v/8+AJMA9QCMAQ4CCAKMAS0BQwGAAXcBIAHDAIsAeABqACoAof8q/0X/zv8IAKf/Pv9g/8T/4v/T/wMAXwCJAJ0A+gBqAVYByQB4AKYAuwBBAKn/nv8QAF0AMQDX/7b/7P9IAJEAtgDWABIBVwGCAZYBtAHXAeABzAG5AaIBVAHAACIAwP+l/73/4f/k/6P/QP8N/zP/jf/h/yQAdgDlAFkBoQGZAVoBNwFkAbQBywGTAUIBBgHSAJYAXwBAAD0AVQCAAIwAUAD5/+z/PAB/AGAAIAA/AMQAMAEtAfYA/ABSAaMBqwGEAXkBowHLAa4BRwHPAIEAawB6AI4AlACLAI0AqQDIAMUArQC/ACUBtQEaAioCEAISAkACbQJbAgMCnAFjAVwBSwEEAaQAcQCPAM4A3wCwAIwAxQBCAZgBjQFlAYEB0wH4Ac0BpQHSAS0CTAIOArYBjQGdAbwBvwGbAW4BYgF2AWwBHwHJAMIACQFMAWABawGFAYQBVgFGAY4B8AEFAtsB1gEHAhACwwF1AYcB5wE7AlsCVwJAAiICEQIVAg8C8QHdAe8B9gG2AU0BHAFCAYABoQG6AeUBCgIPAg0CJgJFAkUCNwJIAnACcgI6Av4B9AEAAuwBvgGvAdEB+AH7AeABxwHEAdYB8AH7AfQB+AEjAlECRgIMAvUBJQJXAkwCLAI3AlcCUwI9AlACdwJuAkACPQJiAk4C5gGVAaoB6AH7AQACNgJ5AnYCNwIWAjwCdgKLAnMCSQI0AkcCXQI3AuQBzQEpApMCjAI2AiQCgALhAugCvwK+Au8CHwMlAwADxwKiAq0CzAK+AnUCLAIaAjMCRQI9AjYCWAKsAg8DRQM+AysDTAOfA+UD7AO7A3sDTQM6AysDAwPJArIC3AINA/kCswKhAvYCbwOoA5cDhQOlA9kD5AO5A5IDpgPYA9UDhQM8A0gDgwOJA0ID/wIFA0ADaQNhA0YDRwNzA6YDsgOdA50DxwPiA7YDZgNBA14DjgOkA5oDfwN6A7UDJQRyBF0EIgQsBHgElgRYBAYE8AMDBAME1gOSA14DaQPAAx0EKAT4A/YDPARuBEsEFwQlBGEEggR4BF8EPwQgBCoEXwR3BEoEHgRHBJYEnQRaBC4EOgQ/BB4ECQQiBDkEKwQhBD0EWgRTBEQEVwR2BHYEWQRCBDAEEgT8AwkEJAQjBA0EFQQ+BFUEQQQpBDMEUgRoBHUEgwSJBIEEewSMBJ8EmASDBIoEpwSmBHEEOQQzBE4EUgQ5BC0EOAQ2BBQE/gMcBFAEYQRNBEgEZwSCBHkEXgRVBF4EZwRsBHMEeQRyBGoEbwR1BGYETQRJBGMEfAR+BHIEZQRWBE0EVQRkBFQEIgQCBBYENQQpBAQEBwQ7BGkEaQRXBF4EfQScBK8EsgSlBJMEmASvBLUEkwRlBFYEZwRyBFoEKgQKBBUENgQ5BAkE2wPvAzIEUAQmBPQD/QMyBFcEWwRYBFwEbASOBLEErwSBBF0EbQSQBIcEVAQqBB4EGgQUBBgEHwQcBBkEKwRDBEIELQQqBEMEXQRlBGEEVgRIBEgEXQRrBFsESARTBF8EQgQUBBYEQQRSBDoEMQRXBHsEdARTBEAEQARJBFUETQQoBA0ELgRkBFoEGQQDBDoEaARLBCAEMgRjBGoERwQ0BEAEUARZBGAEWAQwBAUE+gP/A/QD2wPQA9UD3gPqA/cD8QPiA/sDRgR+BGsEPAQ6BFsEVwQgBPID8gMBBP8D7APQA7YDsQPIA9sD0QPCA9YD+wMDBO0D3gPhA+UD7wMTBDAEGwTyA/UDEwT7A6YDdQOaA8gDqANcAzkDSwNbA1UDVgNzA5QDogOfA5gDnQO5A98D5wO/A40DiAOtA8YDsAN9A1YDSgNBAyQD9QLQAs8C9AIjAzgDKQMQAxYDPQNeA1QDNgM2A1MDWQMzAwcDAQMSAw4D9QLlAusC9wIAAwYDAgPxAugC8wL8AucCwwK4AsoC0wK/AqoCsQLKAtYCywK4Aq8CtQLBAr0CpAKJAoEChgKCAnMCbAJzAnoCdQJtAm0CeAKGAo8ChgJwAmICaQJ0Am4CXQJaAmcCbwJrAmkCbQJpAlsCUgJSAk4CQQI5Aj4CQAI2AisCLgI7AkUCRgJHAkkCTAJNAkgCPwI4AjsCQgJEAkECPwI6AiwCHAIZAiECIgIcAhkCHQIZAg8CEgIoAj8CRgJEAkgCUQJRAkYCNwIqAiMCJAIoAicCIQIeAiICKAIlAhkCDgINAhgCIgIeAhICEQIfAisCKAIgAiMCLAIxAjACMAI1Aj4CSQJSAk8CQwI7AjwCOgImAg0CAgIEAgcCBgIFAgYCCQIRAiECLgIsAiICIAIrAjICLwIoAiYCJgIhAhgCEwIUAhoCIAIfAhgCEAIPAhQCGQIcAhwCHAIYAhACCAIEAggCDQINAgcCAgICAgMC/QHyAewB8AH0Ae8B5QHiAecB7AHqAegB6gHvAe8B5gHcAdMB0QHUAdUBzAG9AbgBwwHSAdcB1QHWAdoB2wHVAdEB1gHdAd4B1wHPAccBwAG6AbgBuQG4AbMBswG3AbYBqAGZAZsBqwGzAawBpQGqAa0BogGWAZwBqwGrAZkBjQGRAZUBkAGMAZMBmQGSAYcBgwGDAYABfwGCAX0BaQFYAV4BbgFxAWkBawF2AXYBaQFnAXYBgQF3AWwBbgFyAWoBXgFfAWcBaQFkAWMBZwFoAWUBZgFrAWsBZAFfAV4BWgFQAUcBRgFNAVMBVgFXAVgBXAFdAVsBVgFWAVoBWQFVAVQBWQFaAU8BQAE5AToBOgE6AT8BSQFQAVMBUwFQAUoBSAFPAVcBVQFQAVMBXgFjAV4BXAFgAWMBYAFaAVUBTQFEAUMBUAFbAVgBUwFXAWABXgFUAVABVAFZAVkBWgFbAVkBVAFXAWMBawFpAWUBaAFvAW4BagFpAWsBagFlAWQBaAFpAWMBXAFZAVkBWQFbAWIBZQFfAVgBWQFeAVwBVAFRAVkBYAFdAVcBVgFZAVkBWQFdAWMBZAFdAVYBVgFaAV0BXQFeAWEBZAFjAV0BVwFXAVkBVAFKAUEBPwE+ATsBOQE6AT4BPwFBAUcBUAFUAVABSwFHAUMBPwE/AUABPgE3AS0BKAEoASkBKQElASABGwEZARUBEAEPARYBIAEkASEBHwEfASABIgEmASgBJAEgASIBKQEpAR4BEgEQARUBFwEXARkBHAEbARYBEgERAQ4BCAEDAQEB/AD0APAA9QD7APwA+AD0APIA7QDnAOQA6ADqAOkA5gDmAOcA4wDgAOEA4QDZANEAzgDMAMMAuQC3AL4AvgC1ALEAuQC/ALcArACpAKkAogCaAJ4AqgCtAKoAqwCzALcAtAC1AL8AxgDBALcAsgCyAKwApQCkAKkAqQCgAJgAlwCbAJoAlgCVAJkAnACZAJIAjgCOAI0AiQCEAIAAfAB3AHIAcgB0AHcAeQB7AHwAfQB7AHUAbgBrAHIAfQCCAIAAfwCEAIoAigCIAIsAjwCPAIkAgwCBAH8AewB4AHUAcgBvAG8AdAB3AHgAdgBxAGcAXABUAE4ARwBDAEQASABIAEcAUQBlAHUAfACFAJUAowCjAJcAigCDAH0AdQBoAFsAUwBSAFQAUABIAEIAQgBEAEMAQgBBADsAMgApACcAKgAwADwASQBRAFIAVQBeAGUAYgBbAFcAVABNAEYARgBCADcALgA0AD0AOwAwAC0AMwAzACUAGwAfACYAIwAbABkAGgAVAA4ADQAQAA0ACAAGAAgABAD8//b/9v/3//b/9v/4//b/8v/z//r////6/+//6P/l/+P/3v/b/97/4v/c/83/wP/A/8P/wP+5/7f/uf+4/7H/rv+y/7L/qv+i/6P/qP+m/6H/n/+d/5T/iv+I/4v/h/99/3j/eP92/3D/b/92/3v/dv9u/2v/a/9o/13/Vf9U/1f/WP9W/1X/V/9Y/1X/UP9R/1f/Wv9V/0z/R/9E/zv/Mf8v/zX/Ov86/zr/PP88/zf/Mv8x/y7/Kf8n/yb/If8Y/xP/Ev8P/wj/Bv8N/xT/D/8E//7+//78/vX+7/7u/u7+7v7w/vD+7f7r/u3+8P7w/u7+8P71/vb+8P7n/uP+4/7i/tz+1P7S/tb+2f7V/s7+y/7K/sb+wv7A/sD+vP6z/q7+sP60/rL+sf61/rn+tP6o/qH+pP6p/qv+rP6v/rL+tv66/sD+w/7D/r/+uf6y/q7+rP6q/qX+of6e/pr+lf6Q/oz+hv6A/n3+fv6A/nv+cv5u/nD+cv5y/nL+c/5w/mn+Y/5i/mP+ZP5j/mD+Wv5U/lD+Tv5N/k3+T/5S/lL+Uf5R/lH+UP5R/lL+Uf5I/j/+P/5G/kj+QP43/jf+Ov45/jL+Lf4t/iz+Jv4f/hn+F/4X/hf+Gf4Z/hf+FP4P/gv+Cv4M/g3+CP4B/v39/P37/fX97/3t/fH99P3y/ev96P3n/eP92v3V/df92/3Y/dH9zP3J/cT9vP24/bn9uP2v/aj9qf2w/bP9sv2y/bP9sv2t/ar9qv2p/aP9nf2c/Z39mv2T/ZD9k/2U/Y79hP2A/YD9gP17/XX9cf1w/XP9d/12/XD9Z/1m/Wr9af1f/Vb9V/1e/WH9Xv1a/Vz9Xv1e/Vr9VP1P/U/9UP1Q/Uz9SP1K/Uz9Sv1E/UD9QP1B/UL9Qv1A/T39Ov06/Tr9Nf0v/Sz9LP0s/Sj9JP0i/SP9Jf0k/R/9G/0b/SD9JP0f/Rn9Fv0V/RH9Df0Q/Rn9HP0X/RP9Ev0R/Q39C/0O/Q/9Cv0I/Q39D/0I/QD9A/0M/Qv9Af38/AH9BP0A/fz8//wF/QX9A/0G/Qv9Cf0D/QP9Cf0L/QL9+Pz4/Pv8+vz4/Pv8//z6/PL87/zy/PD86Pzj/On88fzx/Ov86Pzp/Oj86fzu/Pb8+Pzz/O386/zo/OL84Pzl/Or86Pzg/N784vzm/OX84/zi/N/81vzO/M780PzO/Mn8yfzO/M78x/zC/Mb8yfzE/Lz8v/zJ/M/8y/zH/MX8v/y1/LH8ufy//Lr8rvyp/Kz8qfyg/J78p/yx/LH8q/yp/K38rvyr/Kn8qvyr/K38tPy7/Lr8sfyo/Kn8rfyq/KP8ovyo/Kn8oPyW/JT8k/yJ/Hz8ePx//IX8g/x//H78e/x4/Hr8gfyC/Hn8cPxw/HL8b/xs/HP8fvyC/Hz8ePx7/ID8gfyB/ID8e/x3/Hj8ffx//H78e/x6/Hf8cfxu/HL8c/xu/Gb8Y/xj/GL8YPxi/GT8XvxV/FT8W/xg/Fz8VvxZ/GT8a/xp/GX8Zvxp/Gf8Yfxb/Fb8U/xT/Fj8WfxT/Ev8SfxN/E/8TvxP/FT8VvxS/E/8UvxX/Fj8Wvxf/GP8X/xY/Fn8Y/xo/Gb8YPxe/GD8YPxd/Fv8Xvxl/Gj8Y/xb/Fn8XPxe/Fv8Wfxc/GH8Yvxh/GL8Y/xh/GL8afxw/G38YvxZ/Fn8XPxc/F78Zfxr/Gn8Yvxd/F/8Y/xk/GT8Zfxp/G38a/xm/GT8aPxu/HD8bfxt/HT8fPx7/HT8cPxz/Hj8e/x7/Hr8efx6/H38gPyC/IP8g/yD/IH8f/x7/Hb8cPxw/HX8ePx0/G/8b/x0/Hf8ePx7/H78fPx4/H78ivyP/In8hfyL/JT8k/yO/JD8lvyR/IX8hPyN/I/8gvx2/Hr8hfyI/Ib8h/yJ/IP8evx6/IX8ivyC/Hz8gfyK/Ir8gvx+/IT8jfyQ/I78jPyN/JH8kvyQ/Iv8ifyK/Iv8i/yK/If8g/x//H78gvyI/Iz8jPyL/Ij8hvyH/In8ivyG/IL8hfyL/I78jfyJ/Ib8gvx8/Hv8gfyJ/Ir8hPx+/H78gPx//H38ffx//IL8hPyH/Ij8hfyC/IL8hvyH/In8j/yW/Jn8mfyb/J/8oPyd/J38oPyh/J/8oPyl/KP8mfyT/Jj8oPye/Jf8lvya/Jv8l/yV/Jn8nvyg/KD8o/ym/Kj8rfy0/Lf8tPyy/LX8vPy//L/8u/y4/Lr8w/zJ/Mb8v/y+/ML8wvy7/Lj8vfy+/Lj8s/y4/L/8v/y3/LT8uPy7/MD8yPzR/NH8yvzH/M381fzZ/Nn82/zc/Nr82fzd/N/83fzd/OX87fzq/OL84/zq/Oj83fzW/OH88fz0/Ov86fzy/Pr8+Pz0/Pb8/vwC/QH9//z//P/8AP0B/QL9A/0D/QT9BP0E/QX9Cv0S/Rf9Gf0Z/Rf9Ef0N/Q/9GP0f/SD9HP0b/R79If0k/Sj9Lv0y/TD9K/0s/TT9PP08/Tn9O/1E/Ur9Rv1B/UL9Sv1O/Uz9SP1E/UD9Ov02/TX9Nv02/Tn9QP1G/Uj9R/1H/Uj9Sv1M/VD9U/1V/Vf9XP1g/WL9Yv1i/WP9Y/1f/Vr9Wv1f/Wb9av1t/XD9cv1w/W39b/16/Yb9iP2B/X39gv2K/Yr9hP2A/YP9iP2L/Yr9hv2C/YL9h/2M/Y39i/2N/Zb9nf2b/Zf9mP2f/aP9of2g/ab9r/21/bb9uP28/b79uv23/bz9xP3G/cP9xP3L/c/9yP3D/cn91P3R/cD9uP3A/cj9w/29/cL9y/3L/cX9xv3P/df93P3i/eb94f3Z/d396v3z/fL99/0E/g/+EP4T/h3+Iv4Z/hH+GP4m/ij+H/4d/iL+IP4X/hf+If4i/hH+A/4L/hj+Ff4H/gb+D/4P/gX+Cf4f/i3+I/4U/hz+Lv4z/iz+NP5N/l/+YP5h/m7+d/5s/lz+W/5k/mb+Y/5k/mn+Zv5h/mb+cf51/mz+Yv5f/l/+X/5k/mr+a/5n/mr+c/54/n3+jP6e/p/+kf6N/pz+qP6j/pr+n/6p/qT+mP6V/pz+m/6N/n3+ev6H/pj+m/6Q/pL+sP7P/sv+uf7P/gb/G//5/uL+/v4b/wL/4v4F/0X/Sv8b/xL/Pf9J/xf/8f4C/w//6f7J/ur+Gf8D/8D+qP7H/uL+4/7p/gH/D/8G//n+8f7q/vr+Nf93/4v/ev9+/5L/e/82/xb/P/9q/1L/H/8e/0P/Rv8g/wz/H/8p/xT/B/8g/0P/Sv9H/1v/ef9+/2v/Zf95/4v/if+D/4j/jv+G/3f/cv9y/2j/VP9I/0f/Sf9Q/2X/ef9y/1H/P/9U/27/Yf83/yn/Tv98/4X/bv9b/17/Z/9s/3f/jP+d/57/m/+l/7L/rv+Z/5b/sf/Q/8//uf+y/8P/0P/H/8H/1P/w//n/7//u/wIAFAALAOz/z//I/9D/1f/M/8T/x//H/7f/pf+u/8r/0f+8/7z/5/8MAPb/w/+//+3/CgD8/+3///8MAPj/3P/a/+H/2P/T/+j/+//j/7b/pf+0/7r/rv+l/6b/p/+w/8z/5P/e/9H/5f8GAP7/1P/P////IgASAP7/EwA5ADwAKQAtAEYATwBFAEcAVABFABcA+/8MACsAHwDz/+D///8iABgA8v/p/wQAGAARAA4AIAAqACAAJQBMAGgAWQBNAHQApACZAHIAfACtALIAgwBqAHwAeABKADUAVABhADMACgAfADsAIgD+/wkAKwAqAB8AOwBiAF4ASgBoAKoAzADDAMIA1wDcAMcAwQDWAOoA7gD0APsA6QDDAKgAmgCBAGIAWwBqAGYARgAwADQAOAAsACgAOQBHAEYATABkAHMAZwBhAH4ArAC/ALoAwADeAP4ACQEHAQcBEgEmATgBRAFPAVcBUwFBAS8BJQEZAf0A1ACyAJoAgwBnAEQAFwDm/8T/vf+1/5r/gf+D/4j/e/+G/9f/OQBhAHMA2AB7AdEB2AFWArEDMQXxBRYGVwa6BqwGLwbqBfgFmAVuBCwDeQLeAZEAvv5E/Yr8Ovzx+5f7HPuC+iH6XPoD+5D77/uE/G79Rf7V/mz/SwAyAc8BQwLVAm0DvgPCA68DmQNiAwMDnQI9AswBOgGdAAsAiv8a/8r+pf6i/rH+0v4O/2T/wv8pALMAXAHoASsCVAKuAh4DMAPHAl8CWQJ1AjwCsgE6AfkAxgCAACoAw/9f/0H/f/+7/6L/cv+Z//n/JQAsAIEALwG3AeMBBgJPAnsCZAJSAmECMQKXAfUAlAAaADP/P/7G/Zz9Of2i/Ff8dfyS/H38g/zo/Ib9Iv67/mD/CgC1AGoBGgKhAvwCVAO6AwkEJwQlBBgE9AOuA1QD9AKIAgwCkAEfAagAGwCJ/wv/sf58/mT+Yf5k/mP+aP6G/sH+Dv9h/7v/GgBzALUA5AAWAU4BdAF2AXABhAGmAZ4BWQEIAdoAwwCYAE8AAwDI/57/ff9c/zn/GP8K/xX/Kv88/1P/eP+l/8z/7P8OADcAYgCNALUA0ADfAPEAFAE8AVABSQFBAVABaQFsAVABKwEXARUBFAEDAeIAugCYAIEAbQBMACQADQAWACcAHgAAAO3/8P/3//P/8v/9/wUABwAPACYAOAAyACIAIQAwADcALwAoACkAJwAbAA4ACQAGAP//9P/z//v/AAD7/+3/5f/o/+7/8f/2/wYAHgAwAD0AUQBvAI8ApgCyALUAtwDFAOAA9ADwAN8A1wDaANoA0gDMAMYAugCrAKkArwCsAJwAjACBAHYAbABsAHQAdQBxAHUAgwCJAIIAfQCGAI4AhgB0AGwAdAB5AG4AVwBOAF0AZABBAAMA4f/s//b/3P+//8j/3v/P/6v/rP/c/wIAAQD//x8ATwBlAGAAZgCHAK4AvAC0ALAAvADFALgApACpAMMAxwCrAJkAsQDOAL8AlgCNAK0AxAC1AJoAkQCcAK4AvgDGAMQAxwDcAPEA8ADrAPkACwEDAe0A8gANAQ4B7QDaAOUA2wCeAGEAYQCDAHwAQgAUABEAEwD2/9D/zP/k/+z/3v/e/wAAJQAuACoAPABfAHYAgwCdAL4AywDBAL8AzADQAMkA0wDqAOMAtwCbAKUAoABpADYARABoAFsAMQA3AGoAewBYAEoAeACrALEApwC4AM4AyAC7AM0A7gDtAMoAtwDKAN4AzwCwAKUAtAC6AKcAlACeALMArQCQAIYAmwCsAKMAnwC7ANoA1QC6ALsA4AACAQsBCQEKAQkBBAH+APQA4QDMAL4ArgCYAIoAhwB3AEwAKgAyAE4ATAAvACgARABYAE4AQABKAF8AaQBrAHsAlwCtALUAvADRAO8ABgEKAQIBBQEVARwBDAH2AO0A6wDeAMsAwAC9ALUApgCbAJoAnQCfAJgAiQB/AJAArwC5AKUAmACuANAA2wDYAOIA9AD2APIABQEpATcBIwENAQ0BEwELAfgA5wDcANMAxQCyAKAAmACaAJcAhQByAHAAeQB8AHcAfgCVAKsAsACxAMAA1gDaAMcAugDLAOQA3gDEAMAA1QDYAL0ArwDIANwAwACbAKYA0QDfAMQArQCtAK0AqwC9ANgA1AC8AMEA7AADAfEA5gADASQBIQEPARsBNgE2ARgB/wD/ABIBIQEbAQEB7wD3AAMB9QDUAMYAzQDJALgAuADNANEAtQCeAKkAwADIAMQAwwDHANMA6wAAAQAB+wALAR0BDQHtAPUAHwEkAfMA0QDrABEBCwHwAO4A/AD7APAA8wD8APsA9wABAQkBAQH6AAUBDwEIAQUBGwEzAS8BHwEjAS4BJwEcAS4BVAFjAUwBMQEwAUIBSwE6AR0BDgEYASEBEQH5APoACgH9ANAAvADiAA8BBAHaANgABQEeAQUB8QASAUMBQwEgASIBUgFoAToBBgEYAVMBYQE0AQ4BFQEhARABAQEcAUQBSgEvASUBOQFMAUUBOAE9AVMBXgFYAVABUwFWAU8BSAFSAWYBawFiAWIBagFiAUwBRQFQAUUBGwEDARQBHwEDAeAAzwC3AJIAlwDJAM0AhgBcAJsA3wC+AIcAtwASARMB3ADuADABJAHoAAIBYAFqARsBCwFSAVoB+QDIABMBUQEcAcoAxQDnAOUAzAC6AJ4AhwCfAMkAtAB8AJcAAQE0ARIBFQF3Ac0BzwHIAfkBIAIKAvcBHgI8Ag0CwgGeAY0BWAEKAccAlgBxAFkANQDx/67/nP+a/3D/RP9e/6P/t/+p/9T/NQB4AJYAzwAcAT4BUwGbAeQBzwGSAZoBoAEbAV4ALABPANj/wf4F/un9mv3A/CT8S/ye/KH82Py4/a7+E/9a/1wABAKHA5wEqwXZBsgHaQhGCYwKhgugC2ILlgv2C6kLyAo3CvsJKwmrB5UGUAa+BRoEagLXAccB7ABp/4j+tP7z/oD+wf2M/R/+Bf+c/6j/nf8jADoBEQIeAu0BSQIDAz0DzgJyAoYCcgLEAfwAqgBpAJ3/mf4k/h3+rf20/AP8EPxW/Cn8rfuL+xr88Pxd/UP9Wv1P/sj/0gAqAXMBRQJ8A34E1gSiBJ8EWgU5BiwGXAUPBYwFogXABOcDtwNwA7oCeALCAjkCmwDJ/7AAcwF+AD7/k/+jAKMAAwBIACcBUwEWAZQBXAI2AqsBPgKGA6IDewIDAuYCbQN3Ak4BWgHlAZUBngARAAAAwf9J/wD/2/6Y/lb+Nv4D/sT93P05/lz+Wf67/jj/F//b/qX/0gCZAEn/Rv8TATgCPgECAGYAZwFcAcAAwQD/AKkAOwBSAF4A6f+q/w8APwC5/1j/qP/n/6j/s/9DAGAAzv/I/8QAdgEJAYYA2ABVAUgBLwF5AZwBYgFuAcsBngH6AAUBswGUAYIAOwBDAbIBcwBM/93/8ACrAJv/Yv/o/wUAwP/Q//T/p/9+/w8AdgDT/y//4P/4ALUAlP+O/64ABwEaAJr/XQD/AGcArf8SAOYAyQD//+D/nAAHAX8A0//r/4AAtgBdAAQABgAkABgA7v/R/9X//f8wACcAwv9u/6b/GQARAJP/bv/w/2QAPwDp//T/NwBMAE0AgwC7AKAAYQBuALoA2wC7AK4A4wAjAS4BBgHeANoA7wD6AOMAwQC5AMcAyACwAJQAfABsAHEAjACUAGoAPQBPAIkAlgBpAE0AaQCDAGUAMAAtAF8AiAB6AEoALQA6AFkAbABpAE8AIwADABAAMwAnAOb/xP/v/xYA5v+S/4v/wv/M/6H/o//p/xgA/v/W/93/8//x//v/LgBbAE4ALQA8AHIAkAB9AGUAbgCSAK4ApQB4AFQAYwCHAHcANgAgAFkAhwBcAB8APQCZALYAeABIAGYAngCsAKEAqADEANkA1QDEALsAywDwAAYB+QDkAOQA8gD/ABUBMgEtAfoA0QDiAAMB8wC/AK8AzwDxAPUA5ADLALgAuQDNANoA0gDJAMUAtwCrAMEA5gDeAK8ApADFAMIAggBiAJMAtQB/AEcAcQDCAL8AfwB4ALoA3gC8AJkArgDeAPoA/wD+AAQBFgEpASIBDQEhAVsBbAEpAeAA4AAAAfMAygDMAOgA1gCaAHsAjACYAJQAoAC1AKoAhgCAAKEAswCqALAA2gAAAREBJQFMAWgBaQFpAXgBggF0AV0BUgFbAW4BcgFMARAB9gAIAQoB0QCbALUA+gAGAdIAtgDeABIBHAEQARMBIwExAUMBXQF1AYcBkwGSAYQBhAGfAbABkQFeAU8BWQFHARMB9gAGAREB6ACpAI4ApQDBALcAlQCKAKQAtACTAGoAhADVAAkBAAH7ACcBTwE/ASkBTgGMAZYBeQF4AZgBmAFsAVIBZQFvAUsBJAEvAVcBWwEjAdsAuADLAPMABAHqALwAngCaAKQAtgDSAOwA9gD5AAUBEwEQAQEBBAEmAVABYQFUAT4BNQE6ATsBKAELAfoA9gDnAMMApgCqAMMAzgC1AIUAVgBFAFwAegBuADkAHQBOAKcA0wDEALsA6wAwAUcBIAHsAOgAJwFzAX8BOwH4AAgBSAFMAf8AxQDdAAcB7wC1AKYAuwCxAIwAjwDBANcArwB+AHUAfgCAAJkA2gAOAQkB7gD7ACIBMAEmAS4BQgE3ARIBCgEwAUgBKQHtAL4AmgBvAE0AVAB0AHsAVAAjACEAUAB3AG0AWQB+ANIA9wDEAIUAkQDPAO4A4gDiAPcA+ADuAP8AGwH+ALIAlgDHAO0AwwCGAH8AjgBtADoARAB4AIEASwAdAB8ANQBTAJwA+QARAcAAYgBbAJkAxwDUAOoACQH3ALMAiwCxAOgA5ADAAMsA9gDcAGYAEQBMAM4A+ACtAGcAZwBnACsA+v8gAGYAaQA9AEEAcABxAD0AOQCOAN4A1ACdAJAApgCfAG8AUABsAKsA1gDLAJYAagBrAIMAfgBdAEsAVABYAEMALAAcAA0AEgBGAHUASQDd/7X/+f8sAPH/nf+i/9f/1P+0/9H/AgDl/57/rv8KACIA3P/J/y8AhgBUAPD/6v8vAEsAIgADABAAJAAkABEA4/+h/4f/vv8IAAcAwv+d/8f/+f/j/53/f/+n/97/7//n/+//BAADAOb/2f/z/xIAHQAwAFwAZgAeAMn/0v8nAEwAEwDX/9X/3P+6/6H/yf8AAO7/o/9r/2H/Y/9m/4H/qv+v/4j/aP94/6f/xv+5/5D/cv96/4z/dP8z/xH/Pf+L/7D/of+Q/5b/mf9//1L/OP9T/6H/5P/b/5T/b/+b/9j/1f+o/5v/rv+q/5H/pP/n/wUAz/9//3X/uP/7//v/tP9c/zr/Z/+n/6b/X/8v/2T/2f8cAOv/dv8u/1v/1v8yACwA5f+i/4P/fP+L/67/wf+l/33/e/+O/4D/aP+W//r/EACY/wL/4P4q/2z/aP89/xD/+f4P/0X/S//8/r7+AP+B/4//Cf+V/rD+F/9J/z3/N/9H/03/Qf8u/xH/A/86/6//9v/B/2T/Y/+v/8v/kf9o/5T/2//l/6z/Yv8x/zX/dP+t/4b/E//k/kr/0f/Y/2j/IP9S/6z/yv+y/6L/n/+T/47/pv/G/8//2v8IADUAHADa/8z/BAAoAPr/tP+h/67/rf+s/7//uf9r/xL/Av8n/yv/DP8Q/z7/S/8h/wb/Jf9Y/3T/ff95/2P/Uf9l/4n/lv+n/+X/FgDn/4j/gP/J/9j/jP9o/6L/tf9N/+z+F/99/4z/WP9M/2P/T/8p/0X/i/+Y/2b/WP+Z/+//GAADAMH/i/+z/ygAZwApAOb/GgCCAH0AFwDy/zMAXwAkANf/2v8bAFIAXQBHACQAEwAfAB8A9v/N/+H/EAAJAM//qv+w/63/lP+e/9T/6f+0/3P/dP+n/8X/uf+y/9f/DwAmABMADQA3AFYAJwDa/9//OQBiABgAy//t/z8ASAAbACAAWwB3AGMAVABLAC0ALACIAPkA8ACFAGwA5gBqAYIBYQFkAXkBbgFYAVYBUAFHAYMBAAIoAqQBHgFrAUgCpQIqAqwB0gEnAvUBXgH1AKAA0P+S/qv9hf3d/XP+Rf/C/+7+B/3r+9v8gf6j/lf9+/zo/soBtwNqBLEE1gTBBMIEGgVIBcwEFASxAzkDEwLqAOcA0AE9AqcB5QB9APL/Cv97/qr+9/73/j7/HwC7AF0A7/+xAEACHgPuAq0C6gIlAx0DXwMLBEsEqgPdAn8CBwLlAO//PgBBATEBkv/y/bf9Yv6q/mz+eP4E/1z/Gv/V/lT/twCfAn0EpgWkBeYElgREBTQGeQZEBk4GVwZrBacDhQLzAg0EaATRA/cCJAI/AaAAzQCVAWsCfwNDBeEGjgb0AxcB/v9eAJAA7f8p/7L+HP5Y/Uf9rf4JAeUCAQNGAez+sf1Z/tX/YgCa/8X+Gf9HAEEBxwFxAo0DqAQhBcQEywO6AjcCcwK/AjkCAQElABoAAAD7/r39qv3C/nb/0f65/ZT9eP6I/1wAMgEcAgYDMwTSBTUHfgcEB/EGegecB+AGHwb6Bd4FOQWkBLgEwgTBAwYCpQDP//P+Kf4X/n7+Sf40/UH8Nfy6/FD9Cf7k/ln/Qf9a/0AAhwFwAgkD0gO2BCgFAwWeBCoEmQMHA58CKgI/Afj/5/5U/ur9Xf3f/Ln8vPyB/AH8qfvV+3n8Q/3s/V7+wv5M/wQArwARAT4BhQH8AVcCUwIOAtkBzQHNAcIBmAEmAWAAov9M/zr/8/53/kz+jv6i/hr+e/2C/ST+t/7o/uv++v4q/53/TgDNAMUAmwD1ALAB6QFJAY0AdwDbABMB5QCRAEsAEgDf/6n/WP/0/rT+qv6X/lL+If5d/uj+Sv9H/xj/Df9H/67/AAABAMX/rv/7/1cAPgCx/z//Sv+I/3b/A/+P/lX+J/7F/T794vzc/P/8+vyu/Eb8BfwP/F/8xvwB/eX8l/x+/NH8Rv1q/Tn9Mv23/X3+4P60/nL+lf78/iT/3/6I/nf+j/57/iT+z/2+/er9Fv4O/tX9oP2e/cr9+f0a/kH+f/68/uj+Gv9k/6//4v8TAGMAtQDFAHgA//+T/0//N/89/y7/0P4n/ob9Pf1F/V79Wf1B/T39Zv2k/cD9pf2S/d79ef7f/q3+HP7D/eT9Qf6J/rz++f4s/yP/2P6M/oD+rf7P/qn+QP7M/YL9Yf1D/Qv9yPyd/Jf8pfy2/MX85Pwk/X/92f0Q/h3+Lf54/v/+hf/M/9r/3//t/+b/r/9u/2f/sP/9/+T/T/+l/mT+m/7V/qf+KP7F/a39pf1r/R39B/0x/Vz9XP1S/W/9tP3+/TT+UP5Z/mb+lv7o/ib/I//4/ub+Bv84/2H/fv+C/0z/2P5W/vj9vP2J/Vv9Nf0I/cv8m/yW/K/8uvyr/KH8vfwE/Wn91v0r/lb+cP6h/uf+Gf8v/1T/n//n////9P/4/xcAMAAkAPj/wP9//yv/y/55/kv+Nf4Q/tH9nv2k/db9BP4i/kn+d/5//lX+O/53/vP+af+//w4AWQB/AIEAjACpAKAARwDI/2f/Gv+m/hX+wP3R/f398P21/ZH9jP1y/S/97vzV/OP8Gf2I/Rb+gf67/vv+X/+2/9z/+v8yAFUAIwDI/5v/mv+B/07/RP9i/0//5f5z/kD+M/4p/jv+f/6//sT+rP64/uX+AP8D/xP/Nv9P/1v/df+d/7f/wP/R/+j/4P+p/2v/Wv93/4//df8v//T+7/4M/xL/6/60/oj+Xf4z/in+Sf5n/l/+U/50/rH+0v7S/uP+I/9u/5z/rv/A/9v/5v/D/4D/YP+R/97/2P9s/wb/Af8s/xz/yf6E/m/+Wf4g/t/9s/2R/XP9dP2i/d/9Bv4b/jb+ZP6m/vn+Tf+a/+j/OgB0AHwAcwCVAOcAJQEjAfQAvgCBADEAzv9V/8b+Lv6s/UT96Pyh/JT8vfzm/Ov87/wk/Yn99P1O/pz+7v5O/7z/KACBAM0AHQFlAXMBOwHqAKsAcAAYAKb/MP+7/kL+0f1z/Rz9yvya/KX8yfzH/KX8qvwD/Yb98v1G/rz+av8ZAIkAvgD5AEkBbwE3Ac8AjgB1ADcAu/9A//T+rv44/q/9T/0e/fL8zPzU/Az9Qv1X/Wf9m/3//X7+//5t/7n/5/8TAFMAnADUAOAAvQB/AD0A//+1/0//0v5W/uj9gv0Y/a/8Z/xl/Kn8Bv1I/Wv9jv3C/fz9Pf6a/hT/gv+8/8b/v/+1/6r/mP92/zr/6f6a/lT+/v2O/SD90vyg/Hf8Xvxl/JL83Pw7/Z/97P0Z/kP+g/7R/hf/XP+t//7/MwBHADoACwDO/6X/lv9w/xT/p/5j/kD+Cf68/X39Vv0v/Qr9Af0Q/Rj9I/1X/an94f36/TL+lv7h/uj+3v7z/gf/8f7U/uH+6v6m/jD+4f3A/Yb9IP3T/MT8yfy5/LL8zvzv/PP8+Pwt/Yv96/0+/oP+pv6g/pf+sf7c/vj+Ev88/1T/KP/K/n7+WP4r/vH94P0Q/kj+S/4m/gb+9f3q/fv9Qv6l/u7+Ev8t/0f/Sf85/z//bP+p/93/DgA+AFAAMgAAAOP/3//g/+z/EwBKAGMAUAA2ADoATQBFACQAEwApAEQAQgAlAA8ACwASABwALQA8AC0A9v+j/1j/Kv8X/wr/9P7h/uj+Bv8Z/wz/8/7u/u3+zf6X/oT+pf7H/rz+n/6l/s/+6f7V/qr+i/50/k3+Dv7M/Zv9df1S/TL9H/0X/RL9FP0s/Vf9e/2K/ZX9tf3f/fv9Df4v/mz+p/64/pH+Rf79/db9wv2V/UH99/zh/NP8hfwM/M779/s2/DL8BvwK/E78l/y6/Mn84fwE/S39VP1m/V39Vv11/Zb9bf3y/H/8W/xf/DT80vt9+1j7R/s0+y77PPtI+037b/u7+/77EPwd/Gr86fxI/W39lP3n/T/+W/5C/ir+Lv40/h/+7/24/Y/9gP2C/Xj9WP1G/Wr9r/3X/dD90v0W/or+6v4V/zL/bf/J/ysAgQC+ANQAzADKAN4A5gDGAKsAzAAFAfMAkgBWAIIAwwC9AJcAoQC6AJMAVQBjAKoAugCWAL8AQQF/ASMBwQDvAGIBdAEwASoBgQG5AZMBYAFyAaABngFrATkBHAEIAfIA2ADBALwA0ADoAO4A7QD8ABEBGQEbASsBOAErARwBMAFPAUgBMwFQAZABlgFUATEBZwGaAWsBFAEKATwBLgHPAJIAqwC2AF4A+v/2/yYACQCW/zv/Hf/r/oL+Lf4P/s79LP2K/Fb8WfwR/IP7I/sI+876Rvq4+WL5Lfn9+OD4wfhi+NP3cfdR9xb3mPY49jz2TPYD9pf1cvV79Ub12vSc9Jr0gfQ59AD04/Oc8ybz4fL08gXzzvKK8n7yd/Ik8qXxTfEa8djwovDA8BDxJfH18PPwS/GU8YPxd/Hm8Zby7fLY8uHyWfP482P0qPQJ9ZD1EvZw9q/27fZO98f3I/hR+J74Tvkf+pv61/pT+xz8p/zJ/BP92/2T/qv+kf76/rf/BwDn/xUA0gB3AYYBYQGPAfIBIQIjAk8CtAIZA1wDkAPFA/gDLARsBLUE+AQpBT8FPwU5BT8FSgVbBYcF0wUQBhQG9wXiBc4FowWBBZMFvAW0BYIFbwWUBcUF6gUjBn4G2gYjB2kHtAf2BzIIcgimCL8I3QggCWAJZwlTCWQJgglXCekIlwh6CE4IAAjbB/8HHQj7B8oHxgfWB84HyQf3B0EIaQhcCDIIAQjNB5oHbQdNBz8HLQf3BqAGVgYZBqoF/wSFBIMEkAQwBKYDfAOBAxIDQALFAb8BbQGHAMb/m/9g/3P+Uv23/Fn8eftA+nH5C/lK+Of2YvUC9IXy5vCv7xbvn+7s7UPt0+wt7Pjqw+lM6VnpB+kW6CPniubT5ZbkT+PA4s/iqOLl4evgE+Av3yjeht3e3fneIuAu4YziYOQv5rTnY+mu60LuZvDb8efyvfNc9Oz0rfWY9nH3L/js+Hv5iPk6+R35bfnf+VH6Hvt3/PH9Gf8aAGAB2AIaBBcFEQYDB5EHiwcfB4AGtQXYBCQEsANjAycD+QKyAhYCOwGJAEMASgBtALYANAHAARwCMwIrAjcCbQKyAtECrgJQArUBwACI/3D+yv17/T79H/1E/Xf9VP3w/Mb8Ev2V/Rf+rf5e//f/XgC0AA4BWgGoASkCyAIhAw4D1gK5AqECdAJhAooCzgIQA2ADuwP0AxEEWwTpBGwFuAUHBoYG/wY4B08HZQdUBwkHxgawBnsG8wVvBT8FEQVqBIED9QLZArUCWwIjAjQCQgIrAjYCiALZAgQDXAMXBMME3ASWBJYE8wQmBe0EvQQSBbkFKwZMBnUG5gaIBzYI8Qi0CWYKDQvSC7gMjg1CDg4PGBAnEeoRXhKwEvASEhMxE2gToRO2E8kTDhRmFHYUQhRBFLYUTxWSFXcVUhVOFT0V5RRgFAQUBBQtFBAUiBPaEkkSuhH0EBYQbg8CD4cO4A03DaQMAQxIC7cKbQokCpQJ0wggCHEHkQaQBbwEMQS9AzoDvwJVAskBAQE9AMT/a//d/iL+oP1s/R39ePzg+8D73fu2+077EfsM+9P6SPrU+bv5t/l++T/5PvlP+SL5xPiA+F34Lvjw9773jfc799z2o/aF9lX2KfZD9pT2sPZk9gD21PXC9X31HPX/9D31ffV99Wv1lfXw9Tr2g/Ye9w/44fhD+XT52vlk+sT6FPu5+7r8m/34/fP94/3w/Q7+Mf5a/pn+Cv+h/w8AJgAuAI0AMAG3ARwCsAJnA88DzQPKAwEEJAQQBCwEsAQiBQ0FxwTUBAAFwAQ6BBYEeQTSBMoEsgTcBBwFNwVRBZ8F/QUlBhQG9QXNBXgFAAWnBJ0EwATCBIQEOAQbBCAEDATPA6UDuAPpA/0D5wPJA8UD7AMxBG0EgQSBBJQEpARoBN4DbgNfA3oDbwNWA3gDxwPtA9cDywP0AyQEKwQnBEcEewSDBFIEKwRQBKgE2AS4BI8ErQTmBMYETwQQBFkEtgSjBFQEYwTXBCEFAgXnBCYFcAVZBQcF5wT7BO8EtgSlBNwECQXmBJwEcwRlBEEEDQT+Ax0EMAQLBMkDmQN/A2YDTANGA14DhwOsA8ADvwOzA7gD3QMRBDUETAR1BLYE4gTYBLcEtwTaBPIE+wQlBX4FzwX8BS0GdgarBrcG7AaTB14I1QgNCXUJ/gkkCtkJvwk6CuYKRgt1C7kL4guhCyYL4QriCuwK/Ao6C4QLjAtXCzULUQuRC9kLJgxiDHIMVgwXDKMLBQt3CiMK6gmiCUoJ6wh0CPAHfwcHB1UGmwVLBT0FxQTTAzADJgPlAvUBKgE0AUUBYQAx/9r+2v7P/Qf8N/uR+2v7GfoM+Tz5d/mF+Dv32vbo9kD2M/XQ9MT06vN78rnxqPH88G7vTe5D7iru8Ow36x3qculZ6O/mAuaj5SflXOS740jjaOL34LDfCN9w3iXdVdvO2fbYqdjl2AjaU9yk34jjU+dB6g7sTO2y7irwHfGV8UDyOvO380rzvvIa81708vW/9/v5Ovye/Qj+Uv42/6sAeQLEBJkHbgp2DEMN7AzaC6QKwwkjCTcI3AatBSIF0gQrBK8DigToBoQJLwv1C2AMSww5C2sJvgeZBrkF7gRNBKADcgLZAIb/wv4E/tz8uPs6+0H7MPvi+tD6Yft4/Kf9hP7i/uL+wv5z/qX9X/wu+4D6KPrY+a359vmq+pf7v/ws/of/dgAiAecBtgIqA0kDmwN4BJsFgQb0Bh8HRQd2B3oHHQeZBnUG2wZiB6gH4geDCJEJsQqtC4EMEg1ADRoNugwKDAAL6AkiCaoIMwiqB0UHFQfvBsQGpQaCBikGpQVDBRsF7QSUBFMEdQTQBPQEsgQ5BKsD8gL8AfUAFwB0///+wv7K/vv+MP92////uwBbAbMB9AE+Al8CKwLdAc0B+QEsAnUC9wJ/A7UDsgPaAzAEWQRNBHoEBQWMBdQFKgbRBo8HIgijCC0JewlVCfkItQh2CBAIqAd0B2IHSgdCB2YHjAeRB6IH5wcdCPMHjgdSB0UHGwe+BmUGPAYpBv8FpgUeBYEE9AN6A/ACUwLZAawBrQGiAYEBbAFtAXYBdAFWARgB0wCiAHAAFACb/0v/Qv9T/1X/Wv91/5X/sf/f/xgAOABDAHQAyQD6APYACwFhAbYB2QEAAlUCkwKCAmYCkgLZAugC6gI7A8IDFQQgBDEEZwSZBLQEzQTiBN0E1gTvBP0ExARjBCoEGATqA6MDgAODA3EDTgNRA1sDCwN9AkICeAJ/AvgBagFjAYEBEQE6AMr/6/8AALL/Y/9k/2H/A/+R/nb+kf5//kT+Rv6m/g7/Kv8L//3+L/98/5b/bv9c/7X/PwB6AFkAXwDUAF0BngHFAR8CiQLCAu8CSAOdA6sDswMhBMkEJQUtBWIF6gVeBnsGgAapBtcG6QYBBy4HOwcfByIHZgeeB4AHNQcRBw4H7AabBkwGIAYPBgMG7wXJBZYFZgU/BRMF2ASNBD8EBwT0A+YDpQNBAw4DKANKA0ADNwNQA08DCQPKAtACxgJgAgUCMAKFAlwC6wHyAW4CmAJCAhICWAKUAnkCZwKPAocCLgIUAnACoQJNAg4CYwLAAoACDgIYAl8CPQLnAf4BUAItAqsBhwHFAaIB+QCZAOUANQHvAHMAUQBjADIAx/90/0n/I/8J//3+xv5R/vH97P0D/tv9l/2N/aP9fv0Z/cX8pvyc/J78vvzg/NX8tPy3/MP8j/w3/BL8GPzg+1f77Prd+vD6BPtg+xT8u/wT/Vj9sv3M/XP9I/1V/bv9zf2o/dT9Y/7k/i7/jP8xAPcAmwH3AQsCBQIsAoMCvwLTAh8DzQN1BMME/wR3BewFEQYmBnkGxga4BqIG8wZiB3MHagfTB3YIqwiBCI8I1gjPCHkIWwiFCIMIVgh2CN8IFQkiCYUJIgpKCv8J+AlKCjQKlglKCacJ5QmNCU0JuAk7CjkKGwp1CvIKAQveCv8KLgsUC/wKQguPC4QLfwvqC1oMQAz3Cy8MsAzBDHcMjwwhDYMNcw1qDb0NHA4zDiIOHg4gDhEO+g3hDb0NpA2zDdgN4w3VDdgN9Q3+DdENfw01DQoN4wyeDEoMGAwKDNwLgAs/Cy4L4AooCpMJiwmECdwIEwgECE4I2wfFBkAGfAZOBkQFcARvBFAETgM5AvYB5gEeASgACQBgAAIA9f44/v39av0v/AP7bfoW+o754/hK+M73evdJ9wD3bfa59QP18/M28iLwUu7U7GnrSer86YDqUOtQ7ATurvC18zn27fcU+bH5K/kN9wP0pfHr8EnxzfGm8q/0rfcq+mL7V/xQ/v8AAQO7A9MD4wOIAycCJQDT/iP/xgCgAgEEEwUeBs8GpAbmBZgFXwbIB+8IhQnaCR0KEAqPCfgIuQi7CHYIogdtBi4FGgRcAz0D8gNTBeYGIAi2CLgIYQjBB8sGlgVwBHMDVALfAG7/of6u/k//OwBbAYACRgNfA88C3AH0AHoAgACoAJYAYQBFABcAh//K/o/+Hf/8/68AOAGzAfkB8AHZARACpAJzA2kEZQUUBj4GAAaYBSUFyQS+BCEFywWHBkoHDQixCDEJrwlBCsgKIgtJCzYL4gppCvcJnQlUCTIJXQm8CQ0KPwp4Cr4K7Ar6CvwK3wp+CusJYAncCEEItgeFB6EHsQeRB2kHQwfzBn4GKgYJBuYFpQVlBSUFtQQUBIUDOgMkAzEDVgNoAzsD6gKzAosCSgIaAlgC+QKGA8QD5wMRBBwE/wPtA/kDAgQOBEsEpATJBMkEEgW8BVwGugYVB4UHvQeaB3IHegdqBx4H+wZLB7gH3wftB0QI0AgwCU8JVQlWCU0JQwkvCe4ImwiOCNEI+AjPCK8I4AgPCd8Iiwh1CHUIMwjNB54HjwdGB9YGnwaoBo0GLQbRBaEFZAXpBFQE4AOXA3EDawN6A4kDmAOtA7sDpwNvAycD2wKSAlMCDwKxAVMBOwFzAaoBtQHgAWoCAgMtAwED9wIgAxgDxgKJApgCuQK6AscCCgNfA5sD1wM2BJ0E4wQJBSkFSQVrBZEFqgWwBdQFNAaLBoAGRQZdBrwGzQZuBkcGuQY9Bz4HCQc7B7wH9gfEB4oHegdjBysH5wafBlwGUwaWBtQGyQbCBiEHngesB2oHZQejB5sHLQfYBtMGyAaOBoMG2AY8B3EHrAcWCG4IhAiMCLEIzAjBCMII6Aj+CPQIGAmDCdkJ5An2CVgKwArTCr4K4AooC0gLOws5C0YLPAslCyULNgs1CyoLMwtGC0ILJwsLC/AK1grFCrcKlwpeCh8K2Al5CQcJlggfCJEHGAfiBr0GTAapBUoFMgXaBBAETQPsApoC8AEdAYYAJAC7/0n/4v5h/sT9WP02/ev8LvyM+5r77vub+5L6pfkp+Wn45fYz9S70x/NW87nydfK28vzy9fIZ8/LzIvWq9Rn12PMj8mPvIutl5j/j3uKU5Cjncur87jr0OfiX+Rj5h/hh+If3OPVJ8vHvRu647JTrA+y+7mfzHfnd/oMDMgbsBjAGJQTrAIn9bPvp+in7vfsz/bj/cQLIBEMHQArFDKwNUg3rDKQMogvXCYUIsQjaCdcKXQsLDD4Nbw7jDo8OBQ6mDVAN1AxlDFgMugxMDcoN8Q1uDRsMMwoqCFQGzgSsAxADEQOaA10E5gT1BNYE9gQkBaYENgN1AQAAmP7J/Pz6Ivp4+mv7j/zs/Vr/SQB+AE0A7v8l//f9Av3C/OH8z/yu/Av9+P36/sr/lwCJAWgC8gItAy4D8wKfApUCDwPOA3UEFgX4BQEHrQfEB7MH6QdDCGYIXwh/CM4IDQk2CX4J4AkeCjIKWQqMCnsKEQqjCW4JSgkJCcgInghsCCEI3wesB1MHzAZoBk8GMwbLBUcFAQX5BOwExASbBHUEPATfA1kDpQLhAVQBJAErATgBSwGDAdgBIwJLAlACQwI3AjECFwLPAWgBDQHUALwA1gArAZ0BFwK6ApIDRwSABHYEqQQMBRwFvAR2BJ8E6QQABQwFRAWMBcoFKAavBhMHOgd/BwoIawg7CMcHjAd1BycHugaSBrMG0gbmBhwHYQdyB1YHWQeEB4wHTAf7BsUGiAYPBmgF0wSABHMEhgSaBLAE2wQOBRUF1wR1BBwE1QOTA1gDKgMGA+kC2ALQAscCuAKsAqoCrgKwAqACbgItAgYC/gHgAZgBaAGPAdsB9gHqAQQCSQJrAkwCJgIiAisCMQJCAmECfAKjAugCIgMUA+AC3gITAyUD/wLxAigDXgNTAycDFAMRAwAD9AILAzcDVgNgA1kDOQMBA8gCmwKAAocCuQLnAuICwAK8AssCqQJYAi8CVQKFAnICMQIJAg4CHAILAtwBtAG6Ad0B0gF3ARAB7gD6AOMApACLALEA2gDgAOQA+gD+ANgAowB7AFEAGADj/8H/sv+4/9L/5P/T/77/0f/y/93/oP+c/+7/MwAZANP/vP/D/5L/Lv/3/h//Z/+I/5L/tP/j//H/4v/h//j/AQDu/9L/r/9p/wf/x/7Q/vv+H/9U/7L/AwAOAPP/8v/6/9L/lf+Q/7f/rf9l/zv/V/9y/2P/af+7/yIAYQCHAKwAsACAAE4AQQAvAPr/3P8FAEEARgA0AFMAkACuAL0A8wA5AUcBJwEhATIBEAG6AJQAywALAQQB4QABAV0BmQGKAWYBZgGHAaABnwGLAXcBcwGFAZcBfwE6AQUBFQFMAV4BQAE3AWoBpwGqAXUBPwEuAUEBXAFVARkB0wDCANoAxwB1AEEAdgDaAAcB8gDTAL4AogCDAGsASAAgADIAkQDfAMkAiQCSANwAAgHsAOQADwFAAVoBZQFQARMB6AAOAVMBTwEaAS4BpAEFAgwCBAI9AosCowKQAoECeQJoAmUChgKxAtAC+AI/A4kDtAPIA90D8wMBBBEEIgQXBOgDvQO7A9ED2QPSA94DDQRDBFYENgQFBPYDBAT6A7wDegNqA3EDTAP1AqQCdQJSAi8CGwIZAg0C8gHdAcwBkgEcAZwATQAeANH/WP/v/sz+y/6i/kj+B/4M/hz+7/2Z/WP9RP3t/FL8yft++zD7tfpZ+mv6r/q2+oL6dfqe+p36OfrA+ZD5mPmA+Sr50fik+JH4cPhE+DX4UfiF+Lb41fjV+LX4jfh1+F34MfgX+D74gfiS+H/4m/jd+OP4rPjC+Fj53/nt+e35Xvrj+uL6kPqQ+uH6BfsD+0/72vsp/EL8o/xB/ZH9jf3S/YD++/4C/xn/hv/b/9D/0v8rAHwAfACNAAQBhAGyAd8BagIJA1MDdwPLAyMELgQaBEUEkgS2BNUEPAXLBSkGZQbOBlwHwgfwBxIINQhFCEoIXAh1CJkI6whxCfIJTgqtCh4LYQtTCzcLRgtPCxsL6goUC3ULrgu9C/MLXAy3DNQMyAywDJQMdQxCDOILaQsWCwEL/ArhCs8K6AoLCwcL1AqAChIKjAn8CF8ItQckB8gGeAb8BXwFNwX4BFkEewPgAoYC4QHgAB0Ax/86/yL+HP2h/C78Jvvz+VD5+Pgi+N726vVd9X/0EPO08drwF/Dz7rPtzuwm7EHrA+qt6GnnL+YV5UnkyuNi49/iIeLs4PXeQtxi2SHXFtZv1hHYs9rX3dPg/eLo44njReLO4L7fLt/N3m7eON5U3sDeqd+q4U/lbOoj8GT1MPnA+tr5D/dY86bv++x57LLu7/LE92H8yQDmBCMIRQrXC2MNmg7SDukNOgwICpoHwgWRBWIHoQqdDvwSQBdjGoYbxBryGLoWUBT0EREQ1A7+DU8NxwxyDDMMCAw0DNoMqg0tDi0OoQ1jDGAK1AcpBaICbgDZ/g/+xf2K/U79UP2I/Zf9Xv0y/Uj9WP38/B783fpT+af3Ifb09C309/Oe9Bn21PdD+Xf6vPvt/I79gv0w/fL8sPxD/M/7m/u9+zH8Dv1k/gIAowFCAwEFuQbzB3QIgwh/CFcIwgfVBhQG6QVIBvEGxgfQCA0KXguDDDENTQ0NDb8MWQyLCz4K0wioB74G6QU8BfkEMwW8BVwG4QYMB68G2gW+BGIDrQHD/wj+x/zh+xX7YvoE+hL6WPqP+qP6oPp7+gv6OPkO+Kz2M/XV88byHPLK8dDxQ/IR8/HznvQU9WT1fPVB9c70UvTT80/z7/Li8hfzZPPf87706vUL9/334Pi3+Ub6ePp++nz6ZvpG+lT6pPr++k77z/uk/JX9Zf4k//f/vgBGAY8BrgGYAUQB5gCqAHsAPQAYAEYAswAbAWUBsAEEAkgCaQJlAioCsAETAXAAtv/M/t/9RP0V/R79MP1O/YH9sP20/Xn9Af1a/KD7+vp3+vf5XPnD+G/4avhr+Db4/fch+Jn46vjP+I/4evhw+CP4qPdP9y/3JPcu92/3zfcH+DH4mfhH+eL5Mvph+qD64voJ+xD7/Pri+gX7kfs7/Jj8xPxF/Tn+F/99/7D/EgCKAL8ApwB5AF4AZwCiAAABXAG0AScCrAIHAzIDXQOFA24DIwP2AucCjwLoAYkBwAEOAvQByQEWApkCmALzAS8BlQDw/yf/ff4d/uz91f3l/fz91f10/SX9Av3O/F784ft/+xz7ifrX+Tr5z/iX+I34qfjd+Bz5U/le+SX5ufhH+Nn3Yvfq9pv2i/aa9qH2oPaw9tr2FPdO94T3tffe9//3EvgL+OH3oPdt92b3gvei98f3Efh++OX4L/ly+bL5xPmj+ZL5t/nK+Yb5Ovlf+cn54/mi+Zv5A/pi+mb6ZPqk+tD6l/pF+jP6GPqb+SL5Qfmu+aT5LfkP+Xb5pPk0+bz4xPjz+Mf4cvhZ+E749veJ93X3jfdc9w33LPel9873gfda96b34fei90f3SPdp9zj34PbX9gn3Cffj9gT3bvei9333dvfR9zP4PPgf+Dz4fPiG+Ev4EPgD+CP4Zfi3+Pf4Jflv+dr5GfoC+uf5Lvqs+ub60frN+vj6BfvY+rv62fr7+hL7ZvsD/HD8YfxC/Iv86vy+/B/8yvv9+yf82Ptq+2D7qvvq+w/8Sfya/Nb87/zu/L78Sfy7+1f7JPv6+s76tfq6+uD6LfuP+8X7svuX+7P7x/tk+576Bvri+d75rPl3+Yf5z/kZ+lP6ePpw+kD6KvpH+kf66Plj+R/5Gfn8+K34Z/ha+IH4xPgK+SP5+fjK+N/4Cvnd+Fv4A/gU+Dv4GfjL96H3q/fH9+v3DvgV+P73BPhJ+IT4X/j998737vf897H3P/cM9zP3dPeV96D3vff29yb4LfgJ+M73jvdj92T3g/eS94H3iPfW9zT4RvgZ+Br4Zfig+Iz4Zvhy+Ir4dfhX+G74l/iM+HD4nPj3+BH51/i1+Or4L/k0+Rr5J/lV+Wv5VPkj+en4sPiN+If4hfh9+IX4rPja+Pb4APn/+O341PjL+MP4kPg4+AD4BPgF+Nf3tffp90/4i/iT+KH4sPh4+PH3cPcr9wT35Pb69l/31fca+Dn4W/hp+Dr45fee92L3FPfR9tj2I/dy97b3KfjR+Fr5g/lu+VT5Lvnb+HP4K/gL+AP4Kfie+D75yPlB+t/6kPvo+7z7W/sV+9D6WPre+br57Pk2+pT6KvvQ+yb8LPxM/KL8wvxm/O/71vvw+7v7M/vb+vz6UPuL+7r7AfxN/H38l/yc/HP8Jfzy+/n7APzM+377VPtE+xz76fra+un67Pry+i/7gvuH+zD74vrb+sn6WPrD+X75j/mX+Wz5Ovkp+TD5TPmE+b75zPm9+cj54fmv+Rf5dvgq+CH4Ffj/9xD4TPiM+MH48fgG+ej4ufi2+M34ovgZ+JD3ZPd292X3J/cW93f3F/iI+Jn4e/h1+Ij4dPgQ+In3K/cJ9/z25/be9vz2PfeQ9+j3Lvg++BD41vez94n3JveY9i72FvYp9ir2FvYd9l/2w/YK9wT3wvZ+9lr2Nfbg9WX1DPUE9TD1T/VI9Tr1TfWF9bz1yPWr9ZP1oPWu9YD1F/W99KT0uPTU9AP1UPWY9bf1xfXn9fr1x/V/9Y71+fU/9hr27vUq9pv2v/ad9rT2Pffc90D4gfjL+AP5Bfnx+PD47/ja+Ov4XPn6+WD6iPrE+ir7cvtq+0n7Xvui+9j75vvn++779/sF/Cv8cvzY/E39sf3p/fP93f2p/VT9//zp/B79Yf2L/c39VP7m/hr/8f7K/sb+mv4W/ob9Uf1q/X79gv2z/RX+Wv5X/kP+Tf5P/iD+5/3b/db9i/0L/bj8qPya/HL8dvzJ/B39I/0C/fj84Px6/P/73vsI/AX8vfuc+9D76vuL+wf75PoW+yv7+/rF+rP6pvqB+lj6O/oq+jb6b/qk+oH6/vl2+S35+Pic+D34N/ia+BX5V/lb+Uj5L/kI+cf4a/j895j3Y/dZ9z335/aG9nf2xfYW9yv3MPds97j3qPci93b26PVs9ff0sPSz9NX09PQ59cP1TvZ39k/2N/ZE9h72kvXt9JX0jfSW9JP0nvTO9B/1hvXw9Ub2f/a19v32Nvcg97H2K/bZ9cX10fXu9Tr2yfZ99xn4evip+L/4w/i++Lv4s/iR+FP4Ifgf+Dj4Svh2+Aj5BvoF+5f7tfui+3/7JfuJ+vf51Pkz+sX6RvvA+1T83/wi/S39Uf2i/cv9lP0//SD9EP3F/Gn8dfz//KT9LP68/lX/nf9k//b+nf43/p79Lf1V/fL9d/63/vz+af+0/5v/RP/5/tH+tP6X/ob+hv6Q/pj+nf6n/rj+t/6O/mH+a/6e/p3+Rv70/fr9HP7u/YT9V/2U/e39F/4b/hX+/P3H/Yf9Qf3q/J/8mvzn/Ez9i/2W/Xv9V/08/RX9rfwd/N37JPxx/C/8n/uA++f7KPz1+8r7AvxD/Cb81vuM+xb7Yvrs+Qj6MfrY+Wb5pPlX+oD65flh+YD5sflA+WT4wvd09yf30Pau9rv2sfaW9rT2AfcF9432DPb69ST28PU49Xz0MfQ89Db0BfT080D03PR+9dj1zPWC9VH1W/Va9Q71q/Ss9CD1nfXa9Qj2a/b79o33FfiE+Lb4tfjS+Cj5Wvkj+eT4Mfn2+ZT60PoT+637Y/zX/Ab9H/0u/TL9Rf1u/X/9ZP1l/cr9Zf7D/sf+w/4B/2D/jf9s/zP/Iv9D/2L/QP/j/pv+qf7v/hb/Cf8E/y//W/9F//f+pf5h/iP++v0A/hr+GP4L/ib+Vf5C/uX9p/3B/eH9tP1+/ar9E/43/gz+Af5E/o3+tP72/nj//f9SAJYAzACyAEcAFQCCADsBwgFHAkEDgQROBW8FXgVwBW0FNQUhBXYF9QVkBggHFQgmCboJAgqICjsLeQsFC08KugkkCV8IngcxBysHlweFCLoJpQr8CgwLCAt3CtYIjwamBH8DogK8AS0BZgEsAuUCRQNTAxYDhAKsAY8ACf8S/QP7T/kN+Av3RPb29Uv2Fffq92D4PPiT96b2iPUE9BLyM/AE74PuK+7B7Z7tC+7E7mDv1u9D8InwefAo8L3vD+/17dDsQ+xi7LjsGO3l7VPv6/AV8rvyFfMx8xPz8vLw8tbykPKH8gvzqvPP87jzMPRd9Zz2jPdv+GL5+/n0+Zz5MPmL+M73pPdU+Df5svkh+hX7LPyZ/GP8SvyH/Kb8fvxs/Ij8ffxO/Gr82/wU/e38AP2d/Sn+B/6R/Xr9rv2a/TT9AP0u/Wf9ev2W/cj9xf1y/Rz99vzA/Ef81PvU+z/8tvwO/XL98f1X/nL+S/4E/qj9Rv0M/RH9Nf1a/aT9SP4o/+L/TQCuADYBrwHAAWoBAAG2AHwARwBGAKwAcgFoAm0DZAQgBW8FVwUSBc4EhgQyBAAEHgR4BMAE3AQHBXEF9AVaBrUGJwd/B2gH5AZCBqUF8wRDBPIDJASMBOAEOgWzBQsG9wWVBTQF1QQ9BHQDzAJhAgICngFuAZ4B+wFIAogC0AL9AtYCYgLYAUQBjADG/z7/Df/z/sv+1/5R//n/WgBsAIQAtQCqADcAnf8T/4r++P2W/YL9iv2U/eb9q/6G/wYAPwB4AJEANQCA/9r+W/7b/YT9rv0x/n/+hP7M/pD/TQCZALwAIQGXAZ8BLAGOAPD/U//n/u7+Xv/1/6AAfgFzAhcDIAO3AkgCDQLmAZ4BSgE8AZAB8AH2AbEBhwGvAQkCbgLZAkUDoQPpAwwEygMEAyUC0wEaAmkCbwKLAhQDtgPcA3UD9QLAAuQCQAOfA9MD4QP/Ay8EEARoA5YCNwJ1AuwCPgNuA7QDIwSOBLAEeAQnBBgEXgSnBKEEUgT8A9ID0APJA5cDVQNmA/0DvAQQBfAE5AQuBWEFBwVSBMsDmQOEA28DdAORA6YDvAP4A0QEVwQpBBAETAShBJ8ELQSfA04DNQMMA7oCgwKwAjEDrQPoA+cDygOmA4oDcwNFA/ICrQK4AvwCEwPQAnkCZgKRArECngJxAl4ChQLOAvACvgJyAmoCpgLBAoYCOgIpAkACOQIIAs4BnwGPAbgBFwJwApkCtALlAgcD2AJWAsABSQEKAQIBEQEPAQsBRQHGATkCXQJYAmYCZgIXAocB9QB1AAMA1P8NAHQAqgDGACEBowHYAaoBfwGBAVsB4wB3AGIAYAAwACAAkgBCAaQBrwHOARkCMwL0Aa0BnQGfAY0BjwHJAQwCKAJAApAC+AIpAxwDGgNDA24DdQN5A50DzwPvAwsEQgSDBKAEmQSgBMoE7QTkBMkE0gQKBVsFrgXzBRUGEAb9BecFsgVUBQ8FKAWJBeEFIwZ+BuYGDwflBrYGqgaFBh8GygXTBQkGDQb6BTIGsgYRByUHJgc0ByIH0QZuBicG/wXsBfkFHwZNBo8G9QZSB14HKAf7BtoGfAbhBXYFdwWiBbsF8wVwBuAG9gbdBuIG6AaqBkoGHAYfBg0G5QXbBegF2QXEBfEFUAaABmoGXwaDBoQGHAZ/BQ0F3ATBBKgEqQTNBPsEFgURBfMEzQSqBIcEZARMBDgEBwSvA1IDFwPxAscCrgLIAgIDIgMbAwoD9wLJAocCUQIvAgcC0AGcAW0BOwEWARsBPAFPAVoBhAHEAd8ByQG0AbIBjgEpAbAAUwAJAL7/lP+9/y4AtAAzAaIB5wHpAaoBRgHTAF0A/f/J/7z/xP/Y/wAAQQCZAAMBcwHbATMCbgJsAhYCfgHZAE0A4f+p/8r/SwACAb8BdwIiA44DlQNNA+8CkQImArwBhwGhAegBJwJgAr0CSwPbAz8EgQTNBCoFXwU/BecEmQRuBE8ENgRBBIkEAQWRBS8G0wZeB7gH7AcVCDQIMAgKCOcH6AcHCCQINAhTCKAIHQmrCTUKwgpWC8wL7wu5C2wLSQtICzsLHgsqC4YL/Qs8DEQMbgzuDIwN8A0SDiEOJQ78DaINRw0MDewM8Qw3DawNEw5NDn8Ovg7ZDrEObw5BDhYO1Q2gDZgNmw1/DV8Nbw2XDaANkw2VDZQNYA0BDaoMZwwoDPsL/wsdDC0MNAw6DBEMnQskC/QK3gqECgYK3gkRCisKCAoHClUKjgpeCvYJnwlECb0IPQgPCCsITghgCG0IcghiCEsIMQgGCMwHpweaB2QH5wZiBhUG6AWyBZcF0wU1BlUGJgb2Bd8FnwUcBaEEcwRqBEYEEQT5A/UD1QOgA4wDpgO6A6gDjQN/A14DCAOdAk4CHgLwAdUB7wEkAiwC9wHBAbABnAFkATUBRgGAAZ8BigFUAf0AhgAcAPX/BgAiAEsAowAQAUQBKQH5AN8AxgCjAJkAsgC9AKAAhgCLAIcAZQBqANMAZwHHAfwBTwK7AukCuAJxAlYCVAJMAk0CcQK/AjYD1QN7BP4EXQW4BRAGQQZHBkYGSQZBBj4GawbCBhEHUwe8B1oI7whQCaMJDgp9CsgK7wrxCsIKcgo6CjwKXQqVCgYLtgtiDNYMKQ12DaANiw1lDWENXQ0kDcgMkAyJDJMMrgwFDaINVA7lDkQPdQ92D0IP2w5VDt4NqA20DdcN+Q09DrkOOw+CD5EPnw/FD98Pyg+OD0sPEw/kDrcOkw6JDqUO2A4QD1IPqA/xD/4P3w/RD9oPvw9wDzEPMw9FDywPAg8GDy0PQg9ID1oPaQ9TDyoPEA/wDq4Odg57DokOQg7DDYINjw1/DSsN+QwoDWENRQ3zDLAMawz+C40LSQsTC8gKlAqjCrkKiQouCusJqgk0CbYIiAiSCHYILAgCCPIHnAf3BnIGUAZMBiIG9gXyBesFqgVGBe8EqARkBDUEJwQeBAME8QPwA8sDZQP6As4CyQKsAoICiQLFAusC0AKXAmsCRQIOAtgBxgHbAfcBCwIkAkwCaAJTAhkC7gHwAQAC8wHYAeQBGQI5AhgC2QHAAd4BDwI6Am0CuAIIAzEDGwPQAnYCLwIJAvsBBAIvAoAC4QIxA2YDigOnA7gDvQO9A74DvgOxA5IDaANIA0gDbwO4AyIEqQQ/BcMFGgY/BjkGCQa5BWEFGQXpBNsEDAWEBRsGpAYkB7MHNAhjCD0ICgj5B+UHrgeAB5MH0wcNCEEIkgj/CGoJzQktCnMKgApuCmoKagpOCjUKWgquCt4K1grVCvUKCQsDCygLnwsnDHkMtwwVDWYNUg3lDIIMVAwnDN0LqwvSC0QMxwxEDccNTw6zDtMOrQ5cDvkNjg0lDdQMrAyvDNUMHw2GDfENSA6PDtEO+Q7jDpYOPQ7nDX8NAg2eDHoMjgzRDEkN6w1+Ds8O3Q60DkcOmQ3nDHcMUAxTDHkMyQwgDUMNLg0PDfsM2AyYDGAMUQxSDDoMBgzQC6kLhgtXCyYLBwsGCxcLHAsJC+YKvQqECjUK5QmvCZgJkQmSCZIJfAk8Cd0IdggPCKwHZwdjB5gH2wcVCEcIYAg2CMcHRwfZBmwG8wWaBY8FvAXjBfoFLQaBBrwGtAaDBkwGAQaFBfYEkwRwBGIEWARyBMIEHAVKBVUFYgVoBUUF/gS7BIgERATrA6kDkwOLA3YDbQORA88DBQQzBGUEgwRoBCIE3gOhA0gD2wKTAo4CrALPAggDawPeAzIEXQRtBF8EJATMA3gDPAMTAwEDEQM6A2YDjgO6A+oDCQQSBBoELgQ/BDUEFgT3A98DxAOiA4kDigOrA90DEQRABGkEjwSxBMwE4gT0BAIFCAUDBfcE6gTiBOAE6AT5BBAFLwVcBZYF1AUSBlcGogbiBgAH+wbfBrMGegZJBjcGSQZ1Br0GKgemBwgIQAhqCJoItwimCHwIWwhCCBcI1welB5QHnwfFBxgImQgnCaAJ8gkaCgcKsAklCY8IEgjHB7sH7gdZCOsIiwkVCmsKhgpyCkAK/gm4CX8JUwkuCQ4J+gj0CP4IHAlUCaMJ/QlVCp0KuwqcCkcK1QlZCeUIkAh1CJgI6ghUCcEJFQpACkUKLwoACrYJZgkrCQAJzgiaCIUIlQisCL8I6gg7CYwJsAmsCZkJaQkCCXUI/Ae5B6AHqgfjB0IIoQjcCO4I4Ai0CHEILAj0B8IHiwdcB0MHNAcZB/cG6wb6BgsHCwcGBxAHGgcEB8YGcwYcBr0FXAUVBf8EEwU4BWAFigWqBawFiQVQBQ8FygSGBE4EJgQHBPAD5gPoA+oD5APlA/YDCgQUBBIEEAQIBOsDsgNwAzYDDQP4Av0CIgNiA6wD6QMNBBIE+wPNA5MDYQM/AywDJQMrAz4DUQNYA1oDaAOCA5cDoQOsA7kDtQOPA1MDHAPuAsUCpQKlAs0CCwNKA4IDrQO+A6cDawMaA8UCeQJCAikCOQJvAr8CFgNkA6YD1QPeA7ADWAP3Aq4CgAJmAmcCkALbAisDaAOQA6wDvgPBA7QDmwN3A1ADMgMlAyUDLQNEA20DmwO6A8sD4AP6AwcEAwQFBBUEJAQlBCkERwRvBIIEegRyBHgEfwSDBJgEyQQJBUMFdQWiBcIFygW6BZsFdQVLBSwFJgU4BV8FlgXhBTMGegahBqEGggZOBg4GzAWTBXQFfAWmBeAFGAZBBlYGWgZTBkgGOwYvBi0GOQZEBjoGHAb8BeQFywW1BbEFxAXaBegF+gUTBiAGDAbjBcEFpwWIBWoFZgV9BZMFkgWJBY8FlgWFBV8FSQVZBXcFggV6BXsFjQWaBZAFegVwBW8FXwVDBTQFPAVEBT0FNgVBBUoFNQUJBeoE5ATiBNYEzQTPBM8EuwSWBGYELATvA8cDxwPnAxUEQwRsBIEEeARUBBsEywNtAx0D+AL7AhEDMANfA5kDwwPFA6MDbQMtA+cCpAJwAlECSQJXAnICjQKiArMCvAKxAo0CXwI3AhMC7AHMAcgB4AH/ARICHgItAjcCKQIAAs8BrQGiAa4BzAH5ASYCRQJLAjgCDwLbAaoBjQGLAaEByAH5ASgCSgJXAk8CNQIPAucBxgGyAa0BvgHmARcCPQJOAkwCPAIeAvYBzwG8Ab0BygHVAdwB3wHeAd4B4gHsAfoBBQICAugBvgGPAWIBPQEuAUIBfQHKARICSgJpAl8CKALaAZYBbgFgAW4BnwHmASkCVQJvAnoCcAJOAikCEQICAvsBBwItAlwCfgKWAq0CswKWAmYCRgI+Aj4CRgJsArIC8gIOAxEDCgPsAq4CbQJTAmYCjAK7Av0CSQN5A3IDQwMGA8UCgQJPAkMCYgKbAt8CIwNVA18DQwMUA+QCtgKNAnMCcwKLAqkCwQLVAu4CDAMnAzkDPgM3Ax4D9gLDApACYgJEAkICYwKkAvICOwNzA4sDdwMxA8ACPALLAZEBoAHyAW0C8wJlA58DiQMkA5IC/QGGAUMBQgGAAeoBXwLFAgUDEAPlApkCTAIPAuIBwwG6AckB4wH0Af0BDAIrAlICcQKDAowCiAJtAjwCAALJAZoBbwFTAVABaQGUAc0BDgJMAmsCXwIvAu8BpQFSAQIBzgDEANsACAFGAY0BygHsAfUB7wHZAagBYQEbAewA1wDVAOQABQE1AWYBhwGSAYsBegFmAU8BMwEXAQEB9ADvAO4A8gD6AAMBCAENARoBLAE0ASYBCAHrANUAvQCiAJUAqADRAPgADgEVARIBAQHfALkAngCZAKkAygD0ABQBGQEFAeYAxQCmAI4AigChAMkA9AAZAS8BLQEWAfYA2wDBAKMAiQCFAJUApgCtALEAugDFAMkAygDUAOYA9ADwAN0AvwCXAGkAQwAzADwAUwBxAJ4A2AAJARcB/wDWAKsAfwBOACYAGQApAEkAcwCiAMkA2QDXANIA0ADIALsAtwDEANEA0ADJAM4A2gDhAOAA4gDoAOYA2wDPAMkAxgDGANIA6QD7APwA+gD7APUA2QCtAIcAbwBhAF8AdQCeAMcA5AABASMBNwEqAQUB4gDJAK8AlQCKAJgAsADCANUA9QAaATQBRQFaAW0BZwE7AfoAvgCNAGQASwBOAG0AmQDDAOEA5gDIAI8AUQAfAAMAAAAUADoAXgB1AH4AfQByAFoAOwAjAB8ALgBMAGsAhQCWAKIArQC1ALUArQCiAJgAjwCEAHoAdwB8AIsAogDAAOIA/wASAR8BKAEmAQkB1ACgAIEAdQBuAG8AhQCtANIA5QDrAOsA4QDHAKkAlwCQAIYAdABjAFYAQQAdAPj/4f/f/+//DwA+AGwAhwCHAG8AQgAGAMr/nv+L/4//pv/P/wEAKwA/AEEAOwAuABEA7P/O/8T/xv/G/8H/uf+w/6j/qv+//+D//f8OABoAHgANAN7/nf9j/z7/MP82/1L/gf+6/+v/BwAKAPn/2v+1/5H/dP9j/2L/cf+N/7H/0//k/+D/zv+6/6r/of+h/63/wP/T/9z/1f+6/4//Yv9B/zD/K/8x/0X/Yv9//5P/nv+h/5v/if92/2X/Vf89/yD/B//3/uz+6v77/iH/Tf9w/4D/f/9w/1X/N/8e/wz/BP8H/xL/Hv8k/yn/Nf9E/0//Vv9d/2f/a/9i/1T/Rv80/x3/DP8P/yP/OP9I/1n/bf94/23/Uf8z/yD/GP8a/yP/M/9H/1j/Zf9r/2n/Yv9b/1j/Wv9c/1//Y/9s/3b/eP9v/2X/ZP9v/3v/hv+T/6P/r/+s/5r/gv9p/07/Nf8m/yf/M/9D/1f/bP90/2f/Tf8w/xr/CP/8/vz+B/8T/xb/EP8E//T+5f7c/t7+6f75/gj/E/8Q//3+4f7G/rP+qP6o/rj+1v7y/gb/EP8R/wf/8f7V/r7+rv6k/qL+qv69/tP+5/75/gL//P7l/s3+v/64/rD+pf6g/qX+rv6z/rb+vf7M/uL++P4J/xH/Ef8H/+7+x/6d/oH+e/6G/pr+sv7Q/uz+/f79/uv+yP6b/nL+WP5O/k/+Vf5d/mf+cf52/nL+Zf5V/kv+SP5I/kP+PP44/jP+Kv4e/hL+Bv73/en93f3S/cL9sv2s/bf9zP3g/e799f3z/ej92P3L/cH9uv27/cj93f3x/QH+E/4p/jr+Pv43/iz+H/4Q/gH++P3z/fP9+v0K/hz+Jf4g/hT+Cv7//ez90/28/a/9r/28/dP98P0L/h7+Kv4u/iv+Iv4U/gD+6P3V/dD92/3v/Qb+IP46/k7+WP5W/kf+Lf4O/vL93/3Q/cL9uP23/b39wP2//cX92P3x/QT+C/4H/vr95f3H/ab9iP10/W/9ev2S/bT91/3y/fv99P3i/cn9rP2T/YL9e/15/Xz9gv2L/ZT9nf2q/bv9yP3L/cj9xv3H/cX9u/2t/ab9qv23/cX9z/3W/dv94f3m/eP92v3R/c/91P3a/d393P3b/dn90/3H/br9sv2x/bH9s/23/b79xv3J/cX9vf2z/ab9mf2M/YT9gf2F/Yr9jf2L/Yb9gf1//YD9gP18/XT9av1g/VT9Rf03/TL9OP1G/VP9Yf1v/Xr9ev1s/Vf9Qf0w/Sv9M/1C/U79V/1k/XL9ev10/Wf9Wv1P/UX9O/03/Tn9PP09/T/9Rf1O/Vj9Yf1n/Wb9W/1J/TX9Iv0T/Q39Ff0n/T/9W/12/Yf9hf1x/VX9OP0c/QX9+fz+/BH9KP09/Un9Sf07/SH9BP3r/Nv80/zR/Nn86fwA/RX9If0h/Rn9Ef0I/fz87vzl/Ob87Pzx/PP88fzo/Nb8v/yr/KT8qfy0/ML80fzg/Or86PzZ/MD8pfyM/Hj8afxj/GT8ZPxl/Gr8evyR/KX8tfzE/ND80PzE/LP8pfyZ/I38hfyH/JP8p/zA/Nz89fwC/f/89fzp/OD81/zK/L38tPyz/Lf8vPy+/MD8xvzR/N/86/z1/Pz8Af0C/f/89fzi/ND8x/zJ/NH83Pzr/Pj8//z6/O384PzS/L/8rfyh/Jz8mvya/KD8q/yu/KX8lPyG/Hj8aPxa/FX8U/xM/Dz8Lfwm/CX8JPwj/Cb8Lfw0/Db8M/wr/CD8EvwE/Pr78/vy+/b7+vv/+wX8C/wN/Av8B/wF/AL8/fv2+/P79fv5+/77A/wL/BL8FPwS/BD8D/wO/A38DPwJ/Af8CPwM/A/8DfwK/Ar8DvwR/BD8DfwJ/AX8Afz++/77/fv7+/r7+fv2+/L77/vw+/H78fvt++b73PvO+8D7ufu0+637pfug+6D7oPud+5n7lvuP+4L7dPts+2n7ZPta+1X7Wftk+237cftz+3P7b/tn+177VvtP+0b7Pfs3+zb7Nvs3+zr7QPtJ+1H7VPtS+0v7Qfs1+yr7I/si+yL7I/sn+y37NPs1+zL7Mfsy+zH7Lvst+zD7Mfsv+yn7JPsi+x/7GvsX+xf7Gfsc+x/7JPso+yf7IfsY+wz7//r0+u/67/rw+vL69/r++gP7A/sA+/369/rt+uP63PrX+tP6zvrJ+sb6yPrP+tf62/rZ+tT6z/rM+sj6xPrC+sH6wvrE+sj6zPrP+tD6z/rM+sf6xPrD+sX6yPrJ+sr6zPrO+s/6zfrK+sb6xfrF+sX6xfrD+sH6v/q++rz6uvq6+rv6vvrA+sD6v/q8+rj6tPqy+rL6tPq2+rb6s/qu+qj6p/qo+qr6qvqq+qz6rvqt+qn6pvql+qP6nvqZ+pf6lfqV+pj6nfqj+qP6n/qc+pv6mfqV+pP6l/qe+qL6oPqg+qP6qPqr+q36sPqv+qn6ovqg+qH6ovqj+qb6rfqx+rL6sfqx+rD6q/qm+qX6p/qn+qT6pPqm+qb6pPqi+qL6ovqh+qD6ovqi+qD6n/qe+p36mfqW+pj6nvqh+qH6ofqe+pX6i/qG+on6jvqQ+pD6kfqU+pb6lfqU+pH6jfqK+on6i/qM+oj6gfp/+oL6h/qI+oL6e/p3+nj6fPp++oH6hfqH+oT6fvp5+nr6fvqB+oD6ffp9+n/6gvqF+of6ifqJ+of6hfqG+or6ivqF+oD6gvqI+o36jvqM+oz6ivqF+oD6f/qC+ob6ivqP+pX6mPqU+o76i/qJ+oT6ffp5+nn6e/p++oH6hvqG+oH6fPp8+n/6f/p6+nT6c/p5+oD6hfqF+oL6gPqB+oL6gvqA+n/6gfqD+oL6gfqC+oP6g/qF+oz6k/qT+oz6hvqJ+o76kPqM+oj6ivqR+pn6nPqZ+pL6kPqQ+pH6jvqL+oz6kfqV+pj6m/qd+pz6mfqY+pn6nfqi+qb6qfqq+qr6rfqw+q/6qfql+qn6sPqx+q36q/qt+q76q/qr+rH6tPqx+q36rvqx+rH6r/qw+rL6svqv+q76rvqt+rD6t/q9+r76vPq9+sD6wfq/+rz6u/q5+rf6ufq/+sL6wvrD+sb6yfrI+sX6x/rK+s36z/rT+tj61/rR+sr6zPrU+tv63PrZ+tb61/rZ+tr62/rb+tz63/rj+uj66/rq+uf65Pri+uT65/rr+uz67frv+vX6+/oA+wL7A/sE+wT7BPsC+//6AfsH+wz7D/sQ+xH7E/sS+xD7DvsP+xD7EfsS+xX7F/sV+xL7EfsR+xP7Fvsc+yD7Ifsg+yL7J/sq+yj7Jfsk+yf7LPsv+y/7Lfst+y37Lvsv+zP7Ovs8+zn7Nvs4+zr7Ofs5+0H7SftI+0L7QftE+0T7QPtB+0r7U/tU+1T7V/td+2L7Zftp+2r7aPtn+2v7cftz+3P7dPt2+3f7ePt7+337fPt8+4D7hvuJ+4j7ivuP+5D7j/uQ+5b7m/ua+5T7kfuU+5r7nvuf+6D7oful+6n7rvux+7T7tvu2+7f7ufu8+7/7wfvG+8z7zvvP+9L71/vc+9373fve++P75/vs++376fvj++D74/vq++/78fv1+/r7/fv8+/v7/vsB/AP8BPwG/Aj8CfwK/A38FPwa/B78H/wd/Br8Gvwb/B38HPwa/Bf8FfwX/Bz8JPws/DH8Mvwz/Db8Ovw6/Dj8Nfw1/Dj8O/w6/Dn8PPxE/Ez8UfxV/Fn8W/xZ/FX8U/xU/FP8UPxO/E/8UvxU/Ff8XPxf/F78WvxZ/Fz8Yfxi/GL8Zfxq/Gr8Zfxh/GT8avxu/G/8dPx6/Hv8dfxv/G/8c/x1/Hb8ePx7/H78hPyL/I78ivyE/ID8fvx9/H78gvyD/ID8fvyB/Iv8lfyc/KH8ovyf/Jz8nPyf/J/8nPya/J38ovym/Kn8rPyx/Lj8wPzG/Mf8yPzI/MP8ufyy/Lb8wvzK/Mv8zfzS/Nb82PzX/NX80PzI/MT8x/zO/NT82fze/OP85fzm/Of85/zl/OP85Pzn/Or87Pzw/PH88fzz/Pv8Av0C/fz8/PwC/Qn9Cv0K/Qv9DP0L/Qz9Ef0Y/Rv9G/0a/R79Jf0s/S/9L/0u/TD9Mv0y/TD9Mf02/Tr9O/05/Tf9Nv05/T39Qf1D/UX9R/1K/U79Vf1b/V/9YP1k/Wv9dP14/Xb9cf1u/W39cP1z/Xj9e/19/YL9h/2M/Yz9if2H/Yn9jv2R/ZP9kv2Q/ZH9lP2X/Zj9l/2a/Z/9of2e/Zz9nv2g/Z/9nv2l/a/9sP2r/ar9tP2+/b79uf25/b79wP29/bv9vf3B/cP9xP3F/cf9yP3H/cT9v/2+/cP9y/3R/dP92f3g/eP94/3l/ev97/3v/ez96f3n/ef96v3w/fb9/P3//f79+/36/f/9Bv4H/gH+/v0C/gX+A/4E/gz+E/4R/gr+Bv4H/gb+//36/fz9Af4D/gf+EP4c/iP+JP4h/h3+HP4b/hv+Gv4a/hr+HP4b/hn+Gf4d/iL+Jv4o/ir+Lv40/jj+Ov47/jz+PP44/jL+Lv4x/jf+Pf5D/k3+WP5g/mH+X/5g/mH+XP5U/k/+T/5Q/lL+Wf5k/m/+cv5w/nL+d/57/nr+ev5//of+jf6Q/o/+i/6F/ob+kP6b/p7+nP6b/pv+mP6U/pX+m/6e/p7+oP6o/q3+qv6k/qX+rf6x/q7+rP6w/rT+s/6z/rj+wf7G/sn+zf7T/tr+3/7k/uf+5/7n/un+6/7r/uj+5v7p/u3+8v73/vz+/P72/u/+7f7v/vD+7/7x/vT+9P7x/vH+9/7+/gT/Bf8E///++P7z/vH+8/72/vv+AP8D/wj/E/8i/y3/L/8w/zP/N/85/zn/O/86/zf/OP8//0j/Tv9R/1P/Vf9V/1L/Uf9S/1T/VP9S/07/S/9L/07/T/9O/0v/SP9H/0f/SP9J/0n/R/9G/0r/UP9R/1D/Uv9Y/13/X/9h/2P/Y/9h/2H/ZP9m/2b/Zf9m/2j/Zv9k/2X/Zv9m/2T/ZP9m/2j/af9p/2j/Zf9i/2H/Yv9i/2H/Yf9l/2n/af9p/2v/bf9v/3T/gP+P/5j/l/+U/5P/kv+O/4z/jv+Q/4//jP+N/5D/j/+I/4L/g/+H/4n/hv+C/3//fP98/37/gv+G/4n/jv+S/5T/mP+e/6b/rf+v/63/rP+u/7b/wv/M/9D/zv/N/83/zf/K/8b/xP/H/83/0f/T/9T/1P/S/9D/zv/P/9L/1//a/9z/3f/e/97/3f/c/93/3v/f/9//4P/k/+n/7f/s/+v/7P/u/+7/7P/s/+7/8f/y//X/+////////f/9//3//P/7//v/+//8//v/+f/2//b//f8KABsAKQAxADMAMgAyADUAOAA4ADYAOAA9AEQASgBQAFYAWgBdAGAAYwBmAGYAZgBlAGAAWgBYAFsAXwBgAF4AWwBYAFUAVABUAFQAVABYAF0AYgBmAGoAbgBzAHYAdwB0AG4AaQBnAGsAcQB1AHgAewB8AHwAfAB9AH8AgAB+AHoAeAB7AIMAiQCLAI0AkACTAJAAigCJAI0AkQCVAJsApACrAK4AsQC2ALwAvwDAAMIAxADFAMQAwgC+ALkAswCrAKUAowCpALAAtAC4AL4AxQDIAMYAxQDKANAA0gDQANEA1ADUANcA3wDqAPMA9ADwAO0A6wDsAO0A7ADsAPAA9wD+AAEBAQEBAQAB/QD2APMA9wD/AAIBAQH/AP8AAQEFAQkBDgEQAQ8BDAEOARYBHwEiASIBIgEjASUBJAEkASgBKwErASkBKQEsAS4BKwEnASQBIgEcARQBEwEZAR0BHwEjAS4BOgFAAUQBSwFTAVEBRQE4ATIBMQEwATEBOgFOAWYBegGEAYUBgAF6AXYBcgFwAW4BbAFqAWoBawFuAXEBcwF5AYYBmAGnAbIBuAG6AbYBrAGhAZYBjQGDAXkBdgF9AYkBlQGcAaEBpwGsAa0BqgGqAbQBxwHbAewB9wH6AfIB5QHbAdoB3gHmAe8B+QEAAgAC+wHzAeYB1AHCAbYBsgGzAboBxQHRAd4B7QH+AQ0CFwIbAh4CIAIfAhsCFAIKAgICAgIJAhICGgIhAiUCJwInAioCMAI0AjUCOQJFAlUCXgJfAl0CWQJUAkoCPAIvAigCLwJCAlgCawJ5An4CegJsAlsCTQJEAj4COgI+AlACaQJ9AoYChQJ+AnECXQJHAjgCNAI5AkICUQJkAnoCjQKbAqICpwKqAqYCnQKYAp0CpgKpAqECkwKHAoECfAJ3AnICcgJ2AnwChwKYAq4CxgLXAt4C3gLaAtACvgKpApkCkgKRApQCmwKmArUCxgLYAuoC/QILAxIDEgMRAw8DCwMDA/sC/gIPAyIDKgMoAyYDJgMjAyADIgMoAysDJAMaAxYDGgMfAx8DHQMeAyQDLwM4AzoDNwM0AzEDKwMkAyQDKQMrAycDHwMgAyoDOQNJA1sDcAOCA40DlQOcA6ADmwOMA3oDbANoA2wDcgN7A4YDkAOSA4gDdgNlA1oDUgNLA08DYgN5A40DogPBA+UD+gP6A+8D5gPiA90D1QPNA8QDuAOuA6cDpAOrA74D2QPwA/8DBwQIBP8D7gPdA9ADxAO4A7ADsQO4A7wDuQO2A7MDqwOdA40DggN+A4EDjQOiA7kDygPSA9gD4wPxAwIEFQQmBCoEHwQMBPcD3wPDA6oDnAOcA6UDsQPCA9MD4QPrA/QD+APvA9wDxwO3A7EDsgO2A7wDwQPGA8oDzgPSA9YD3QPrAwIEIAQ9BFMEXgRcBFAEOwQjBAsE9QPgA9ADzAPUA+MD9AMDBA8EFgQYBBUEEAQRBBkEIwQsBDQEOgQ8BDsEOQQ2BDQEMwQ2BDsERARRBF0EZQRlBGEEXARWBE0ERQRDBEQEQwRABEMESwRSBFoEZwR7BI4ElwSRBH0EYAREBDAEJAQdBB8EKgQ+BFMEaQSABJQEoQSnBK4EtQS3BLAEqQSpBK8EsgSsBJ0EiAR1BGkEZwRlBGAEWQRSBE4ETwRXBGcEfASVBLAEywThBO4E8gTvBOQE0AS1BJQEcQRRBDwEMQQrBCMEHwQnBEAEaASXBMcE8QQMBRUFEAUBBecEwgSYBHIEVwRGBDsENwQ9BEkEWARkBGoEagRsBHYEhASUBKEEqgSrBKEEkQSBBHEEXgRJBDgEMgQ4BEYEXAR5BJgErwS5BLsEuQSzBKkEngSaBJsEmQSOBH0EagRUBDoEIgQRBAkEBwQNBBwEMQRJBFsEZQRmBF8EUgRCBC4EGgQMBAgEDAQaBDMEVQR1BIkEjQSIBHwEZgRKBDEEIwQiBCoEOAREBEwETQRGBDwEMQQmBB8EGwQaBBoEHgQmBDAEOgRHBFcEZwRxBHYEegR4BGcERgQfBPsD2wPEA7wDwgPNA9QD1gPYA9wD5gP7AxwEPwRaBGYEYwRSBDQEDQThA7QDjQN0A2oDbgN/A5sDtwPMA9oD6AP4AwgEFQQhBC0EOQRABD8ENgQjBAQE4APCA7MDtQPEA9kD8QMIBCEENAQ5BCsEDQTsA9ADvQO1A70D1gP3AxQEKQQ5BEEEPwQ0BCsEKQQrBCgEIAQXBA8EBQT1A+QD0QO6A6IDkQONA48DjgOIA4YDjQOZA6ADpwOyA74DxwPLA84DzQPGA7sDswO3A8QD1APkA/UDBwQWBB0EGAQHBO4D0gO5A6cDoQOnA7EDtQOwA6UDnAOYA5gDnwOtA8ID1QPgA+MD4gPdA9ADvAOpA6ADogOrA7cDxwPTA9cD0wPQA88DygO+A7YDuQPGA9UD4gPtA/cD+wP0A+gD3APRA8ADqQOSA4QDfwN9A3oDeQN9A4UDjgOYA6cDuQPGA8UDuAOtA6wDrgOoA5cDiAOEA4gDlQOuA9cDCAQyBE4EXQRbBEEECgS8A2wDLgMLAwADCgMvA20DtAPxAyIEUgSDBKkEvwTMBNIExwSkBHAEPQQQBOIDrgN/A18DUQNRA14DcwOPA6sDwQPVA+sDBAQZBCcEKwQoBCUEHgQKBOgDwgOkA4wDcwNZA0YDOwMyAysDKgMyAz8DTgNkA4UDqwPQA/QDFQQqBCoEFgT1A8wDowOFA3YDcwN2A30DhwORA5gDnQOoA7oD0gPvAw0EIwQlBBME9gPYA7wDogOQA4sDlgOqA8ID2QPtA/oD/gP8A/kD8wPlA88DtQOhA5EDgQNyA24DeQOOA6gDwwPcA+kD5QPWA8QDsgOZA3oDZANkA3MDhAOTA6EDqgOpA50DjQODA38DfAN4A3QDdQN9A4UDiQONA5cDqAO4A8UD1APmA/ID8gPwA/MD7wPbA7oDnwOSA48DkwOhA7wD2gP0AwgEDgQABN4DsAOCA1oDPQMyAzMDOwNLA2YDiwOxA80D4APvA/gD9gPrA9wD0APFA7cDowOMA3ADTgMoAwgD9gL2AgIDFgM0A14DkgPEA+YD7wPbA6wDagMiA+YCvQKrAqwCvALVAvECDgMqA0IDUANSA0sDQgM3AysDHwMTAwcD/AL6AgQDFQMkAzADOgNDA0IDOQMxAzIDNwM6AzwDPgNAAzoDLwMmAyQDJwMrAy8DNgM7Az0DPQM+A0ADOwMsAx8DJQM/A10DcgN/A4gDhwN1A1kDPgMnAxED9QLYAroCmQJ4AmICXAJjAm4CegKNAqQCuQLPAugCAQMPAwoD9ALVArICkgKAAoIClAKqAr8C1gLuAgMDFgMsA0EDTgNOA0MDMQMaAwED5ALDApsCbgJEAiICDwIQAiYCTQJ5AqECxALhAvYCAwMKAwgD+wLlAs0CtQKdAoUCcgJpAmgCdAKUAsgCBQM7A18DbQNgAzYD+gK9AogCWQIuAhACAwIBAgICBAIPAiECMwJCAk8CVgJPAjQCDgLmAcUBqgGZAZMBmgGsAcYB5QEEAhwCJwIgAgQC3wG9AagBnQGYAZ4BsQHKAeAB7wH8AQgCEQIVAhQCDQIDAvUB4wHLAa8BjwFvAVYBSwFVAXMBoQHWAQYCJQIsAhkC9AHIAaMBkQGVAawBzQH3AScCUwJ0AoUCjgKQAowChQJ+AnUCXAIvAvgByAGmAZIBiwGQAaABtQHLAeIB+AEGAgMC7wHPAakBgAFWAS0BCQHwAOcA8AAIASgBTAFvAY8BrAHFAdkB5AHlAeAB2gHbAeAB6QHyAfkB+wH5AfYB9gH8AQYCCgIEAvgB7gHmAd8B2AHWAdcB1QHLAcEBvwHFAdEB4AH5ARoCPAJZAm8CewJ5AmYCRQIeAvUB0AG0AagBrQG7AcwB3AHqAfIB7QHYAbYBjwFnAUMBJwEQAf8A8gDqAOgA6QDvAP0AEQEjAS0BOAFIAVwBagFxAXYBdwFtAVwBUwFbAXIBlAG7AekBFwI7AkwCQwIdAuEBngFiATIBDgH5APMA+AAHASEBRAFkAXkBhAGMAZMBmAGbAZ4BngGZAZUBlQGXAZUBkAGRAZkBoAGhAZ8BngGYAYwBhAGLAZ0BqwGtAakBoQGOAWkBOwENAeUAwgCrAKYAsAC+AMcAygDIAMMAvgDFAOAACwFDAYIBwAHrAfEB1QGmAW8BOQERAQIBDgElATwBUQFlAXUBewF7AX8BiQGSAZcBkwF8AU4BDAHGAIYAVgA+AEEAWAB1AJEAqQC5ALkArgCoALAAxADeAP8AIQE2ATIBGgH+AOIAwQCXAGsATABCAE4AawCRALcA1ADiAN8A0QDDAMAAywDhAP4AGgErASkBFQH4AOEA1QDRAM4AywDIAMcAxQC6AKUAjQB2AGMAVABSAGEAegCQAKAAsgDEAMkAuwCkAIsAbgBIABwA+f/k/+D/6v8DACkAUwB6AJgAqACqAKYAogCeAJQAhAByAF4ARgAsABgADgABAOv/0P+6/6r/m/+Q/5L/p//F/+L/+/8QAB4AIgAbABAAAwD0/93/yv/D/8//6/8OADEASwBZAFcAQwAgAPb/zf+r/47/dv9m/2X/df+S/7f/4P8CABUAEQD8/9v/t/+R/2z/Sv80/zL/Rf9o/5P/w//y/xcALQA4AEIATABLADcAFADn/7D/ef9R/0f/Vv9u/4T/k/+W/4L/Wv8s/wT/6f7e/uj+BP8p/07/a/9//4n/iv+G/4P/fv92/2f/VP8+/yj/Ev8C//7+B/8b/zT/T/9t/4b/jf94/0r/Ef/X/qT+gv56/ov+qf7H/t/+8v7//gL/Af8B/wj/Fv8p/z7/Tf9S/0n/OP8q/yT/Jv8t/zf/Rf9X/2r/fP+L/43/fP9X/yr/Bf/y/u3+9P4D/xL/HP8g/yP/KP8p/yD/Ef8B/+/+1f61/pP+dv5l/mf+fv6h/sP+4f73/v/+9v7b/rX+iP5Z/jf+Mf5I/nX+rP7h/gn/Hv8m/y7/Ov8//zf/Jv8T//j+0/6q/oj+bf5R/jv+Of5J/mL+ff6b/rX+vf6q/oT+VP4i/vT91v3J/cj90v3r/RT+Rv56/rL+6f4S/yT/Iv8V//z+2v69/rP+u/7N/uP++/4H//z+3P6y/oL+Tf4Z/vH92P3J/cP9xf3O/dn96f0D/if+SP5i/nr+jf6S/ob+cf5Y/jn+E/7x/dz92P3j/QH+L/5k/pP+tP7B/rT+kP5j/jP++v21/XP9Rf0s/SP9L/1W/Yn9rP2x/ab9lv14/Uf9D/3k/Mv8vfy+/OD8J/1//db9Jv5u/qL+s/6k/oH+VP4c/uP9tv2b/Yn9d/1t/W/9ef2B/Yf9j/2T/Y/9hv2B/X/9fP18/YD9gv14/WP9T/0//TH9Lf1G/Xz9uf3s/Rb+OP5H/jv+H/7+/dT9ov13/Wb9bP1+/ZX9r/3F/c39yP2+/bH9nf2F/XP9av1s/Xj9hf2G/W/9Rf0W/en8v/yd/I78j/yX/Kb8wvzr/BX9N/1O/Vj9UP0+/S39JP0f/SL9Nf1R/Wf9bP1k/Vb9Qf0m/RT9EP0O/QH97Pzb/NP80PzY/PH8Fv01/UT9Sf1M/U39Sf1C/UD9Rf1S/WT9eP2P/aT9sf2s/ZX9c/1O/Sr9C/30/On86vz3/A79Mv1b/YL9of25/dD95v35/QH++f3k/cj9r/2b/Y39hP14/V/9Of0P/e382/zY/Ob8CP05/XL9rv3k/Q/+J/4s/h3++/3G/Yj9T/0h/fr82vzI/ML8x/zV/O38DP0r/UP9Vv1m/XD9cv1x/Wz9Yf1O/Tr9KP0R/fD8zPyy/KT8o/y3/Or8NP2E/c79EP5E/lf+R/4f/vD9vf2F/VT9Mf0f/Rn9Iv06/Vf9av1z/Xj9ef1x/WX9X/1j/Wb9Y/1i/Wb9ZP1U/T39Lf0l/SP9KP04/U39Wv1Y/VH9S/1G/UX9TP1k/Yz9vf3x/R/+PP46/hb+1P2G/T79DP3z/PL8AP0S/R/9I/0i/SD9Hf0U/QP98fzo/Of86Pzo/OT82vzO/Mj81Pz3/Cr9Yv2a/c799v0O/hT+Df76/dz9vP2k/ZX9hv13/XH9ef2P/a390v31/Q/+GP4W/g/+A/7z/eX94/3q/fL9+P35/e/91P2z/Zz9kv2R/Zn9sf3U/ff9Fv43/lb+XP5D/hr+9/3a/b/9sf27/df98P0A/g/+Hf4e/hH+/f3l/cb9nv17/WX9YP1r/Yn9tf3i/Qf+Hv4h/gP+xv17/Tn9C/3y/O/8Af0d/Tr9V/15/Zv9tf3F/dH93/3s/fj9BP4J/gD+6P3O/b39rv2b/Yj9gf2F/ZH9ov28/dr99P0K/iP+O/5O/lz+bP57/n7+c/5m/lr+Rv4o/hX+Gf4p/i7+Iv4N/vX91v22/aT9qv3C/eb9Fv5F/l7+Vv46/hr++v3a/cT9xf3W/e/9D/46/mb+f/59/m3+V/48/iD+Cv7//ff98/36/Qz+H/4v/kL+XP5x/nj+dv53/nb+Zv5I/iT+Af7g/cT9tf24/cr95/0O/jz+b/6n/tr++v75/tz+sf6C/lP+Kf4H/u792/3M/c395P0O/kD+c/6m/tb+/f4V/xf/A//g/rn+l/5+/m3+Yf5T/j7+Iv4L/gH+Cf4g/kL+b/6m/uX+Iv9R/2r/bP9a/zL/+f67/on+aP5a/lr+Y/5x/nz+iP6c/rn+1P7p/vj+Av/+/u7+3f7Z/t7+3/7Z/s7+vv6i/nr+Uv42/iz+NP5R/oP+yf4Y/1n/ev9y/0X//f6n/lP+FP71/fb9D/47/nb+uP7w/hH/GP8R/wT/9P7j/tf+1f7e/ur+8/71/u7+2f64/pv+kf6i/sj+9P4e/z3/Tv9R/0n/Qf8//0H/P/83/y3/Kv8v/zf/Ov84/zD/If8M//b+4v7K/qj+gP5h/lv+dP6j/t3+Fv9E/2L/av9h/07/Nf8Y//j+3v7U/tr+4P7d/tb+0/7T/sz+wP66/sb+4/4O/0T/fP+s/8v/0//B/5b/Wf8Z/+T+v/6v/rr+3f4K/zP/VP9s/3r/fP90/2n/YP9X/0n/Of8u/zD/Qf9d/33/nP+u/6v/kf9p/zz/Ef/u/t7+4v74/hj/Pv9f/27/Zf9J/yf///7U/rX+rf63/r/+xP7N/t3+6v7y/gH/Hv9D/2X/hf+j/7r/wv+7/6r/kv95/2z/bf90/3j/e/97/3L/Xv9F/zH/H/8Q/w7/H/87/1f/dv+W/6v/rP+f/5P/if96/2X/Vf9L/0H/N/8z/zL/LP8r/z3/Yv+P/8D/9v8nAEEAPAAmAA4A8v/L/57/b/9A/xj/BP8H/xT/If8v/z3/P/8v/xL/9P7S/qv+j/6O/qb+zP73/iP/TP9o/3T/c/9s/2f/a/91/3r/d/9x/27/ZP9L/zD/If8b/xL/D/8k/0//eP+R/57/pP+V/2v/Nv8K/+P+tf6A/lL+Lf4N/vv9DP5G/p7+Av9j/7T/6f/7/+f/sP9f/wr/yf6j/pn+rv7m/i7/aP+D/4L/Z/8x/+r+rP6K/of+mP66/uf+E/8y/z//Pf80/yn/JP8k/yH/F/8J//f+2/6x/o7+hf6e/tH+Fv9j/6D/t/+o/4X/V/8h/+/+2P7l/gr/Ov9z/7H/4f/w/+X/0//C/6r/iP9l/0P/H//5/tf+vP6j/pD+jv6a/qX+p/6q/rj+1P72/iH/UP93/4z/k/+c/6j/qv+b/4L/aP9T/0P/Pv9B/0T/QP81/yj/Hv8c/yn/Q/9l/4b/of+0/7r/s/+p/6D/lv+D/2P/OP8G/9L+n/5w/kn+L/4o/jL+Rf5f/n3+nf63/sr+3P7u/u/+0/6r/pL+kf6a/qT+tf7T/vH+//7+/vP+5f7X/tD+2f7s/gP/HP8y/zn/Lf8V//v+2v6r/nv+Xv5c/m3+iv60/uH+A/8Q/xP/GP8Z/w///f7x/uv+6f7r/vL++v75/uv+1v7A/q7+n/6U/or+hP6C/or+ov7E/uj+Af8G//v+6/7d/tD+xP69/sD+y/7Y/uj+/v4b/zr/Uv9d/1f/Q/8q/xT/AP/w/uz+Af8n/0j/Vv9S/0D/Hv/u/r7+of6b/qD+qf66/tb+9f4N/xr/Hf8U//n+yv6V/mv+Vv5R/ln+bv6O/q/+xv7V/uf++f4G/wv/Dv8Q/wn/9v7j/tf+y/63/p3+hf5w/lf+Pv4v/jb+TP5n/nf+dP5n/l7+Yv5r/mn+YP5Z/lL+Pv4e/gL++P38/Qb+H/5O/or+vf7c/uj+5f7T/rP+iv5f/jz+J/4n/j/+a/6e/sb+2f7X/s3+xP69/rn+u/6+/rH+i/5W/iL+9P3I/aH9iP2B/Yv9qv3g/ST+Xv5//oj+gv51/mf+Xv5X/k/+R/5D/kD+Mv4Z/gP++/37/fr9//0U/jT+T/5l/n7+mf6s/rT+uf7A/sX+wf61/qf+m/6W/qP+xf71/iP/Pf82/w//zf6A/jL+8P3N/dj9Df5Y/qL+3P4A/wX/6v6+/pL+bP5U/lL+a/6X/sf+9P4c/zT/Mf8V/+/+yv6o/or+df5o/mD+W/5f/mf+af5g/lT+Rv4z/h3+Fv4t/l3+l/7T/g//P/9V/0r/JP/q/p3+RP7u/a39jP2N/a395/0t/nP+qf7K/tv+6P70/gD/Dv8n/0v/bf91/1j/F//A/mL+Bf6w/WP9Kf0O/Rn9Rf2J/dr9Kf5g/nT+df5x/mb+Rv4R/tr9s/2e/Z/9tf3W/e799P3q/dP9rv1//VX9Pv0+/Vj9lf3u/U/+n/7V/vP+9f7Y/qX+bP48/hr+C/4R/iT+Of5M/lj+Wf5O/j3+NP47/lH+dv6i/sr+4/7q/t7+v/6Q/lf+If7w/cT9oP2Q/Z79xv3//T/+e/6n/rv+uf6i/nz+Tv4i/gT+8v3s/fX9Ef46/mL+fv6P/pX+jf52/lf+P/40/jT+Qf5e/on+uf7g/vf+AP/4/t/+vP6W/nn+cP58/pX+sf7H/tD+w/6d/mz+Rf40/jb+R/5r/pz+y/7w/gz/IP8i/xL/+v7m/tf+yP68/rX+q/6V/nf+W/5E/jX+M/5A/lP+X/5p/nz+kv6g/qj+s/67/rL+lP5x/lX+Of4U/u39zv25/bH9vv3e/fz9Bf77/e/96v33/R/+Yf6u/uz+E/8i/xj/9P7B/pD+bP5W/kr+R/5I/kr+T/5U/lT+Sv46/i3+J/4r/kP+cP6f/rj+sP6O/l7+Jv7u/cH9oP2H/Xr9gv2k/dn9F/5V/on+rP7C/tT+5P7t/ur+4P7S/r3+of6G/mz+VP5D/j/+Sf5e/nn+l/6x/sP+zv7f/vn+D/8U/wz/+v7c/q3+df5D/h7+Bv7+/Q3+MP5a/oH+ov6+/tT+5f72/gj/Ff8a/xT/Bv/y/tr+v/6d/nz+Zv5n/nn+jf6b/qf+tP67/rn+tP62/sH+zv7X/tz+4f7n/uz+8P70/vn+9f7b/qz+ff5k/mz+i/61/t7++/4B//D+1/7J/s7+4P76/hb/MP9F/1T/Xf9a/0X/Gf/a/pD+Sf4W/vn97/3v/fz9Hf5T/pb+3/4h/0z/V/9J/zD/Ff/5/tf+tP6U/nz+bf5l/mb+b/6D/p3+tf7E/sz+1/7o/v/+GP8t/zr/NP8Y/+3+xf6t/qj+tv7V/gL/Nf9e/3P/df9o/1L/Mf8F/9b+sf6a/oz+hP6G/pP+p/69/tX+7v4B/wb/+v7i/sr+uP6s/qn+q/6u/qr+m/6F/nL+af5q/nj+lv7C/vP+Gf8v/z3/SP9K/zb/Ev/1/uj+5f7d/tL+zP7L/sj+wf68/sD+yf7P/s7+zv7S/tz+5v7u/vf+BP8T/x3/Hv8b/xX/Cv/6/uv+4/7f/tr+0v7O/s7+z/7R/tj+5f7y/v7+Cf8M/wL/7/7e/tL+yP68/rX+uf7G/tj+8P4N/yH/IP8H/9j+oP5x/lz+X/5r/nf+jf6x/tn++P4Q/yf/OP85/zL/Lv8v/yb/FP8E//3+9P7k/tP+y/7L/tL+3/7x/v/+Af/v/sv+o/6I/oD+hP6K/pb+rf7L/uX+/f4f/0j/a/+A/43/kf9//1P/H//y/s7+tv6y/sn+8/4l/1r/iv+h/5H/Xv8W/8H+bP4z/if+PP5e/ob+wP4C/zj/X/+E/6z/x//D/6X/ef9H/xj/+/7z/vH+6/7j/tr+zP65/q3+rP6t/rD+xv79/kz/nP/i/xkANwAtAPn/rv9i/yH/7v7K/rb+rf6o/qH+mv6b/rD+1/4F/zX/bf+s/+D/9//w/9b/rv92/zT/8/66/or+Zv5U/lP+W/5q/oL+pP7J/uz+Cv8k/zj/Rf9N/0v/Ov8b//P+xf6Y/nX+Zv5k/mj+b/6D/qb+zv72/iH/UP99/5//s/+1/6L/fP9N/yH/+f7W/rn+pf6Y/o/+jP6P/pv+rv7G/uH+/v4f/z3/Tf9I/zL/Gf8C/+v+1P7F/rn+pv6J/nH+a/56/pj+w/78/jz/ev+r/8f/yP+y/47/Yf8u/wD/5P7c/tr+0f7G/sH+vP6o/oT+ZP5V/lv+cP6U/sX+9/4d/zD/Mf8n/xP/9v7X/r3+sv65/tT+/v4x/2D/gv+P/4H/Vv8W/8z+i/5e/k7+WP50/pf+vv7q/hD/If8Z/wL/6P7N/rD+nP6g/r7+7/4s/3b/v//v//X/1P+a/1X/FP/q/tj+1P7X/uX+Af8i/0L/Xv9z/3H/U/8o/wb/8v7q/vH+B/8a/xP/8P7H/qb+jf55/nX+h/6m/sX+4v78/hH/G/8d/xz/Gv8X/xf/G/8c/xX/CP/7/uz+3v7Y/uP+9v4F/wn/Bf/0/tn+w/7F/uP+DP8y/1b/dP9//3D/VP85/x7//v7g/tD+0P7W/t7+7v4C/w3/CP/9/vf+9v74/gT/I/9M/2v/ef97/3H/W/8+/yv/KP8t/zH/L/8u/zP/Q/9e/33/kv+Y/5P/gv9i/zH//P7Q/qv+i/57/o3+xv4Q/1T/iv+t/7D/h/8+//L+u/6f/p3+tv7l/iD/WP+I/7P/1f/g/87/pP92/0z/Jv8D/+T+yv6x/pr+j/6W/qr+wf7W/uj+9f78/gT/Ff8t/0L/UP9Y/1r/U/9B/y7/Kf81/0z/av+R/7z/3P/u//T/8P/V/5//Yf81/yD/FP8J/w3/Jf9C/1P/Y/+C/6v/xP/A/6n/iP9b/yL/6/7H/rL+pf6f/qb+uf7P/uX++/4V/zf/Xv+J/67/yv/d/+j/6f/k/97/0f+w/3T/NP8K///+Cf8j/0v/ev+f/7P/uv+7/7b/p/+X/5H/mv+o/7T/uv+8/7j/q/+Z/4v/hv+H/4v/k/+n/8f/5v/z/+3/2v+6/4r/U/8k/w7/Df8c/zf/X/+T/8r/9v8LAAoA+//l/9f/3f/9/ykASwBRADoAEQDY/5b/Wv81/yb/Iv8t/1D/gv+v/8//6/8KACMALQAvAC8AIQABAN//xv+y/5z/lP+o/8r/3v/e/9v/2//T/8D/s/+3/8L/zv/l/w4AQABpAIUAlwCZAIQAYgBFADEAGwABAPD/6f/i/9L/vf+p/53/m/+h/6z/t//G/93/AAAnAEoAXABZAEQAIQD2/8j/pf+g/8r/HAB+ANkAGQEyAR4B5gClAHgAawB1AIYAlwCoALcAugCtAJUAfABiAEMAJQAYACUAQQBaAGkAeACIAJIAjAB9AHEAawBiAFAAQgBFAFsAbwBxAGIATgA6ACUADwADAAQAEAAgADkAWgB9AKAAxgDxAB0BPgFSAVcBSwErAQAB0wCrAIYAZQBGACQABQDy//b/DwA9AIIA3QBAAZABugG7AZ4BbQE1Af0AyQCZAHEAXABjAIkAyAAWAV8BlQG1Ab8BtAGUAWkBPQEUAekAwgCuALcA0gDwAAsBJwFBAVEBUQFFATQBIAELAfUA4ADPAMAAtgCwALEAtAC2ALIAqACfAKIAvADzADcBdgGhAbkBxgHHAboBnwF7AU8BHQHzAOMA9AAaAUgBdQGdAbUBugGyAakBogGYAYcBcwFqAXMBiwGsAdAB8AH9AecBsAFuAUABKwEmASgBNQFPAWcBcgF1AX0BjAGXAZYBjQGIAYgBhgF7AW0BZQFhAVgBRwE2ATABNQE/AU4BawGUAcEB6gERAjoCXQJuAmICQgIYAu0BwwGcAX8BcQFsAWEBSgE2ATEBPwFcAYwB1wEwAnwCqAKyAqQChgJiAkACKwIbAgkC8QHXAcABrgGlAacBsgHLAfEBHwJGAloCYQJkAmcCaAJrAncChAJ/AlgCGgLWAZoBaQFKAUoBZQGMAbIB3AESAksCeAKNApECiwJ4AlYCMAIVAgoCDQIaAi8CRgJaAm4CiQKkAq8CogKJAnECWwJJAkECSAJTAlMCRAIyAiICEAL6AeUB2gHdAewBBwIpAkYCVgJWAk8CSwJLAkwCTAJRAl8CdQKMAqACtgLMAtYCzQKyAowCYwI5AhUCAwIJAiMCSwJ5AqICugK5AqkCmQKQAo0CjAKNAowChQJ4AmsCYAJaAlgCVQJJAjACFAICAv0B/wEGAhcCNgJfAowCuQLfAvMC6QLJAp4CcQJEAiECFAIgAjkCVgJ0ApQCsAK9Ar4CuAKwAqMCkgKFAoIChgKIAokCjgKZAqICngKOAnsCbwJpAmYCaQJzAngCbgJXAkgCTgJqApICwQLzAh0DOQNLA10DawNrA10DRQMgA+YCnQJcAjMCHgIaAiwCVQKHArUC4QINAzADOwMwAxwDBwPrAskCqgKUAn4CWgInAvQBzAGyAaYBrwHTARICYgKwAvACHwNCA1wDcAN8A30DagNFAxYD7QLTAsgCxgLHAscCxgLEAsACugK0ArMCtwK8Ar0CvAK6ArECmwJ+AmcCVwJCAiMCAgLwAfEB/wEYAjcCTwJSAj0CHgIAAugB3gHnAQUCMAJhApMCwQLjAvMC7wLaAroClQJ1AlsCSgJFAlACZQJ3An8CfgJ6AnMCaQJfAlgCTwI8AiMCFAIWAiICLwI2AjUCLwIpAigCMgJDAlECWAJWAk8CTgJXAmQCagJfAkQCHwL4AeEB6QEWAlcCmgLSAv0CFgMfAx0DFQP/AtkCqgKEAm8CZAJaAksCNAIUAvYB5wHwAQoCKQJGAmACcQJ4AnYCcgJyAnoCigKaAqACmQKOAoQCegJvAmcCZQJiAl4CZgKDAqUCswKsAqICnwKaAowCgQJ+AnMCUQIjAv8B5wHNAasBkwGVAaoBxwHnAQgCKAJDAlgCaAJxAnICawJYAjoCGgIEAvsB+AH4AfwBCQIXAh4CGgIUAhcCJwI9Ak8CWAJZAlACOQIWAvcB5QHaAcoBugG5AcoB4AHrAeoB3gHIAasBlAGOAZgBpwG4AcsB3AHoAewB8AH1AfIB4QHAAZgBcgFcAVwBcwGYAb8B2gHjAdkBxgG1AaoBpgGlAasBuwHQAeYB/AEOAhMC/wHSAZwBbwFaAV4BdwGfAc0B8gEJAhACCwL7Ad8BtgGKAWUBTgFJAVcBdgGZAbIBvgHCAcIBugGsAaEBpQG3AcwB3AHnAesB3wHCAaABigGBAXcBZQFOATkBKAEeASIBMgFBAUEBLwERAfEA2wDXAOIA7gD2AAQBIwFMAXABjAGnAcABygHAAa0BmgGFAW0BVwFHATwBNAEyATgBQQFLAVwBcgGJAZkBpgG1AbwBsQGTAWkBNQH3ALYAfwBVADYAKQA5AGUAnQDOAPMADgEeAR4BCwHvANYAywDRAN8A6wDzAPkA9QDgAMEAqQChAKgAtwDPAO4ADAEjATUBQwFGATABBAHPAKUAkgCfAMwACgFCAWgBeQF2AV0BMwH+AMgAkQBiAEsAVgB+ALEA5QAUATQBOQEiAfwA2AC+ALEAsAC7AMsA3QDwAAIBCAH3AM8AoAB3AFsASQBCAEwAZACCAJ4AvwDlAAkBFAH9AMgAhgA+APf/v/+s/8P/+f88AIYAygD3APsA0gCNAD4A+P/E/6z/sP/I/+v/EQA4AF8AggCgALYAwAC+ALUAqgChAJ4AnwCgAJcAggBiADsAEwDw/9n/0//d//H/DQA2AG0AqQDfAAUBGQEcAQ4B6wCzAG8AMAD+/9j/v/+1/7j/wf/R/+b/+f/7/+X/wf+j/53/uP/0/z8AggCmAKkAlABrADMA9f+8/5L/fv+F/6n/2v8EACAANAA/ADsAJwATAAcA///x/+b/6f/8/xYAOABcAHMAawBBAAgA1v+x/6D/pf+6/9j/9f8RACsAQABOAFYAWQBRAEAALwAmACQAJgAtADQALgATAPD/1P/I/8j/0//v/xsATgCCALQA3gDoAL4AaAAAAJj/O//2/tr+6v4V/0j/fv+0/+H/+f/6/+3/3P/O/8f/yP/Q/9//9P8EAAYA+v/t/+f/3//I/6X/h/9r/0n/J/8c/zL/Wf+C/6z/2P/7/wcABwAIAAsABQD4/+n/1/+9/6H/i/97/2v/WP9H/zn/Lv8u/0P/bv+i/9b/CgA1AEYAOAAeAA0AAwD5//X/+/8AAPj/5f/S/7//pP+F/2//Yv9Z/1L/Uv9X/1v/W/9f/2v/f/+V/6v/u//A/7z/s/+m/5X/iv+M/5H/hv9w/2P/a/97/4j/jP+G/2z/Pf8N/+7+4/7l/vD+Bf8h/z//Y/+N/6//tf+a/27/Qv8f/wr/Dv8q/0//av9w/2P/Rv8g//r+2/7E/rz+zf78/kP/lv/o/zAAXwBpAEwAFwDZ/5b/U/8c//3++f4H/yH/RP9l/3T/bv9c/0j/NP8g/xL/E/8f/yv/Nf88/z//OP8s/x//Fv8S/xr/Mf9R/23/gv+V/6n/t/+//8j/z//J/7T/nP+J/3b/Yf9Q/0z/UP9O/0r/Tf9V/1j/Uv9N/1D/UP9B/yn/Fv8S/xn/JP8y/0b/X/9z/3n/dP9t/2z/a/9n/2P/Zv9z/4L/iP+B/3D/Wf9F/zD/Fv/6/uj+5f7p/u/+//4i/0//cv+D/4n/hv90/1D/If/x/r3+g/5N/jD+NP5Y/pX+3v4k/13/gP+P/5H/k/+d/6f/pv+a/4//iP+C/3n/c/90/3j/c/9l/1r/Vf9S/0v/QP81/y3/LP8y/z7/UP9m/3P/af9G/xn/7v7C/pf+gv6T/sL+9/4n/1X/f/+V/5b/kP+R/5n/of+q/7j/w//C/7b/pP+P/3j/ZP9a/1r/XP9e/13/Vf9C/yf/Ef8F/wD//v78/vn+9v75/gb/GP8q/zn/Rv9U/2X/gP+f/67/nP9x/0j/N/9C/2z/tP8KAFUAhQCbAJwAggBOAA8Az/+O/0//Jv8h/zb/Uf9r/4T/k/+E/1H/Df/R/qj+nf65/vf+PP9u/4P/ff9i/zn/EP/2/u3+8P77/hP/N/9g/4f/pv+6/8D/wf/B/8H/wf/E/8v/y/+3/43/Wv8n//3+4/7i/vj+FP8q/zr/Rf9F/zP/Df/i/sD+s/7G/vn+Pv9+/6X/rP+Y/3P/TP8r/xL/Af/9/gr/Jf9F/2D/df+A/4D/df9l/13/Yv92/5D/qP+4/8L/yP/J/8P/uP+u/6H/jP9r/0n/Mf8l/x//H/8x/1j/hf+i/67/t//G/9L/z/+6/5z/ev9W/zj/Lv8//17/d/+B/4P/hv+M/4//l/+r/8b/2v/j/+j/8P/3//X/6f/Z/8P/ov98/17/UP9P/1r/cP+O/6r/vP/E/8b/vf+o/4z/c/9i/1X/Rv83/zH/Ov9M/1//a/90/4H/lf+r/8L/3v8AABwAIwASAPj/3//M/7z/sP+s/67/q/+a/3//ZP9X/13/dP+Z/8r//v8kADUALAANANn/lf9O/xL/5/7M/r/+wv7O/t/+9f4V/0L/ev+1/+//IQBEAFIASQAxABIA9P/W/7b/kv9q/0T/IP8D//n+Cf8t/1P/bf+E/6D/wv/i//7/GQAvADIAGgDw/73/jP9h/0P/O/9R/4X/yP8BACIAKwAdAPr/wf+C/1P/O/86/0z/cP+c/8H/1P/T/8f/tf+k/5j/lf+c/6//0f/8/yMAPABEAD8AMQAZAPr/3P/M/8z/0f/R/9T/4v/1//j/4v/B/6j/m/+S/4//l/+p/7r/xP/J/8v/zv/W/+T/7v/t/+z/+v8TACcALgA4AEwAXgBdAEsAMgARAOX/t/+a/5r/rv/T/wYAQgB5AJsAowCVAGsAJQDH/2P/Dv/U/rX+sv7L/v3+OP9q/47/qP/A/9H/2P/W/9P/1P/f//j/FwA0AEcATgBNAD8AJgAJAPH/3v/R/87/0v/Y/9n/2f/a/9j/1P/X/+X/7//n/87/tf+d/37/VP8u/xX/Bv/9/gL/Hf9I/3P/k/+h/6D/lf+I/37/dv90/3r/iv+e/7D/vP+8/7D/pf+q/8T/5v8DABwALwA2ACkAEwD//+//1/+1/5L/ff90/2b/Sf8i//z+4v7U/tH+4P4D/zX/af+V/7v/3//+/xYAKgA8AEkASQA2AA8A1v+R/0r/Bf/L/qz+rf7L/gD/Rf+T/9b/+f/9//b/8P/i/8H/m/+E/3r/aP9F/xX/4/6v/nj+T/5E/l3+k/7Y/h7/XP+R/77/4P/3/wEA///t/8z/p/+F/2j/T/86/yf/GP8S/xn/KP82/zz/OP8s/xn/C/8O/yT/QP9d/37/ov+3/6v/gv9K/wz/y/6U/nX+bv53/o3+r/7U/uz+9P70/u/+2/68/qf+of6f/pj+lv6j/rj+vv61/qv+q/6s/qj+qP63/tP+8P4H/x3/Of9Y/23/bf9X/zD///7C/oL+T/44/j3+Uf5l/nf+jP6o/sb+2v7f/tj+zP64/pz+gf5w/mX+V/5I/kH+SP5V/mj+gv6h/rr+w/7E/sD+s/6U/mn+Rf4w/iv+Mf5C/lz+df6D/oH+cf5e/lD+TP5S/mP+hP6y/uT+DP8f/xX/8v69/oT+Uv4p/gX+4/3E/a79qP2z/cn95f0F/ir+T/51/qH+1f7//gj/7/7H/p7+bf4x/vj91f3L/dH93/32/RP+Mf5J/lr+av6B/qX+zP7j/uH+zf6t/n7+Q/4N/un91P3G/cP90f3p/fv9Av4E/v797f3f/eb9Bv4u/lL+cf6K/o/+fv5j/kf+Kf4I/uz92P3J/cL90f3+/Tn+a/6I/pP+jv57/mT+T/47/iL+Cf74/fX9/P0N/hz+HP4H/un92v3h/fn9IP5U/oj+q/61/rH+pP6I/lz+K/4D/uT9zv3K/eP9FP5K/nD+fv53/mX+VP5H/j7+Pf5H/lj+Yf5e/lr+Xv5m/mL+WP5V/mH+b/52/nf+df5t/mD+Uv5J/kH+Of40/i/+Jv4c/hr+If4o/ib+Jv4u/jj+N/4y/jv+U/5m/mr+aP5p/mP+S/4q/hL+Bf76/en91/3K/cH9u/24/cH93f0P/k7+if60/s7+0f62/oP+TP4o/hb+B/73/ej92v3F/az9pP21/c/93f3h/e39C/4z/ln+c/53/mL+N/4D/tj9u/2s/af9qP2s/br90/30/Rf+Nf5J/k7+Rv46/i7+I/4W/gr+Bv4I/gz+Ev4a/iT+Kv4s/iz+K/4p/ib+I/4c/hL+Cv4M/hj+Jf4u/jH+Lv4j/hT+Df4S/iD+Lf4z/jL+J/4S/v399v3+/RH+I/4z/j3+Pf4z/if+IP4a/g3++/3o/dL9uv2m/aL9s/3Q/e79Ef4//nP+oP67/sL+uf6Y/mH+I/7y/d794/34/RP+Lv5B/kX+O/4o/hP+//3v/ef97/0K/i3+T/5l/mz+W/4w/vT9u/2V/Yj9kv2w/dv9Df48/mH+d/56/mj+Rf4a/vb96f32/Qz+EP78/dv9s/2F/Vf9Of02/UP9VP1r/Zb90v0N/jn+V/5t/nz+hP6F/n7+bf5U/jz+Kv4c/hP+Ev4a/iL+Iv4c/gv+6f2y/Xb9TP1E/Vz9i/3F/f79Kv5E/kv+Qv4v/hX++f3d/cr9xf3J/cr9xv3H/dP94/3s/fL9Bv4p/k7+af56/n/+cv5O/iD+9P3K/af9l/2j/cP95/0I/ib+P/5O/k3+Qf4s/g7+6v3I/bD9qP2y/cr96v0K/ib+OP44/iH++/3W/bn9p/2k/bj94f0W/k/+g/6n/qn+gf49/vT9tf2F/Wj9Zv1//an91f3+/R7+Lv4m/gn+4f2//az9qv2y/b/9zv3Z/d792f3Q/cn9xP3A/br9tf2y/az9of2W/ZH9lv2j/bb9z/3r/QH+Ef4f/jL+Sf5f/nL+g/6M/of+cf5U/jT+Ev7o/bn9j/10/W/9gv2n/c/97/0F/hH+Ev4L/gz+Iv5M/nf+lP6l/qz+ov5//kv+Ff7p/cj9rf2f/an9y/33/R7+O/5Q/l7+Zv5r/nn+kf6p/rP+qf6S/nT+Uv4s/gX+4P2//ab9mv2l/cv9Cv5R/ov+rv66/rH+lv5r/j3+Fv74/eH91P3b/fb9Gv46/k7+U/5N/kH+OP44/j7+SP5V/mL+bf51/n3+hv6L/ob+df5a/jv+H/4J/vv9+v0Q/j7+d/6p/tL++P4U/xX/9v7G/pT+ZP46/iT+JP4t/i/+Jf4T/gL++v0H/jH+a/6g/sv+7f4A//X+x/6D/jn+8f22/ZD9h/2Z/cT9//06/mP+dv5+/oP+h/6M/pf+q/69/sL+uv6p/o3+Z/4//h7+B/75/fr9Df4t/k/+cv6c/sv+9f4X/yz/Lf8T/+f+uv6Q/mf+Rf42/jz+R/5Q/mH+hP6x/tr++v4T/yH/JP8m/y//Of82/yT/Cv/r/sf+of6H/nv+c/5q/mb+bf5+/pX+tP7Z/vz+Ff8k/yr/JP8Q//f+4/7W/sb+sP6W/nz+ZP5Q/kb+TP5m/pD+wv72/iz/aP+g/8X/0f/G/6b/cv8z//3+3f7Q/tD+3f79/i//Zf+Q/6L/k/9l/yf/6P6r/nH+R/44/kH+Wf58/rD+6v4R/xf/Cf/2/uf+2/7a/u7+E/87/1r/av9m/0v/H//w/s3+uf6x/rX+yP7r/hn/Rv9p/4D/i/+I/3D/Qv8N/9/+v/6k/on+d/56/pD+sf7W/v7+Jv8//z3/I/8C/+j+3P7m/g7/U/+n//n/NwBSADsA9/+Y/zP/1v6R/nX+h/6//gf/TP9//5T/iP9n/0X/MP82/17/qP/+/0EAXQBLABQAyv+E/1P/Pv88/0n/YP91/3//gP9//33/cv9h/1b/Wv9p/3n/h/+V/6D/of+Y/4n/ev9u/2z/cP9z/27/Zf9i/2z/hv+q/87/7P8DABUAHAARAPX/1P+2/5j/e/9w/4b/s//e////FAAgABcA+//b/8b/vf/A/9L/7v8AAAAA8//n/9n/uv+R/3X/eP+T/7f/5v8dAFEAagBjAEQAHAD1/8//sP+b/5f/qf/J/+j/+v8AAP7/8//c/8X/v//R//P/GQBDAGwAiwCXAI8AcwBDAAQAxP+Q/3T/dv+b/+L/OACGALoA0gDOAK4AeAA4AAMA7/8HAEsAqQAIAU8BcAFlATYB9ACxAHUAQAATAPP/4v/j//P/DgAvAEoAXQBrAHcAegBtAFIANQAfABoAKABDAGEAfACSAKIApACVAH8AcgB0AIEAlgCzANQA8AD8APoA7QDXAL0AowCPAIAAegCGAKUAygDnAPkAAQH6AOAAuQCXAIQAggCOAKcAzQD7ACoBSgFRAT4BHAH8AOEAxwCxAKsAuQDKANEA0ADTAN8A7gD/AB0BUgGSAcABygG0AZABagFDASABCgEEAQYBBQEAAf4A/ADyAOQA3wDqAAEBJQFaAZ0B2gH8AQAC7AHGAZEBUwEcAfUA5ADsAAYBIwE7AVIBbAGEAZUBogG3AdQB9AEQAicCMgIlAv8BxAF/ATgB/wDpAPwALAFnAZ0ByAHhAecB2QHAAakBoAGnAbMBwwHeAQQCIQIlAhcCBgLzAdQBrQGWAZgBqQG+Ad8BEQJHAnAChgKFAmkCKQLUAYABPgEQAfoAAwErAWcBqgHtASgCUAJbAk4CMQIPAu8B3AHWAdwB6gEAAhgCKwIwAiQCDALwAdYBxQHEAdcB/AEpAlMCdAKKAo8CegJMAhMC4gHEAbcBuAHGAeIBAwIiAj0CUQJYAkwCLwILAuUBwgGpAZ0BmQGYAZsBqwHNAf0BNAJwAqkC0wLsAvkC9gLUApECPwL8AdQBxgHRAfcBMgJxAqQCxQLXAtgCxAKbAmgCOAIWAgwCGwI6AlwCegKPApACdQI/Av4BwgGaAYoBlgG4AegBHgJVAogCrwLBArwCqgKUAoECdgJzAnsCigKUAooCawJFAioCIQIqAkkCgALEAgQDMgNNA1YDTQMyAwkD0QKNAkwCIAIVAiACMwJIAlwCagJpAlYCPQIqAiECIgIrAj8CYQKJAqwCvgK9AqsChgJUAiAC/gH8ARkCSwKEArkC4gL2AvACzgKWAlMCFALmAc8B0QHpARICRAJ4AqUCxALKArMChgJTAigCCgL+AQgCJQJLAmoCdgJwAloCOAITAvQB3AHNAcwB5QEYAlkCmgLQAvEC8wLVAqUCcwJMAjACHgIYAiUCQgJjAnkCgAJ6AmoCSwIiAvsB5AHdAeYB/AEgAkcCZAJyAm8CXQI/AhsC+QHfAdUB4QECAjACYQKLAqoCtAKmAoUCWwI0AhQCAwIHAh0CNwJKAloCcAKJApQCjwKIAooCkgKYAp0CpQKqAqAChAJjAk8CSwJSAlwCagJ4AoIChQKDAn8CbwJLAhYC5AHEAbMBqAGfAaABsAHJAeQBCAI7AnwCuwLkAvIC6wLTAqsCdwJBAhsCCgIIAgsCDQITAh0CIQIeAh8CLgJLAm4ClwLHAvUCEQMRA/gCzAKPAkYC/wHJAaYBjgF7AXMBdwGCAZABpwHUARsCbwK/Av4CJQMyAyID+gLKAqACfQJbAjkCHgIQAgkCAQL+AQgCIgI/AlYCZwJ5AogCjgKJAn4CawJKAh8C9gHbAc0BxAG8AboBxgHfAQECKgJYAogCsgLNAtkC2wLWAsIClQJSAgoCygGOAU8BGQECARQBRgGIAdIBHAJdAosCqgLHAucCAAMHA/0C5gLEApQCVgIOAsABcwEqAeoAugClALUA5QApAXwB3AFBApoC1wL1AvsC5wK4AnQCKwLpAbIBgwFbAToBKgE0AVUBhQG6Ae4BHwJOAn8CsgLdAvQC8QLbArcCggI+AvgBvAGKAVcBKAENAQ8BJwFTAZMB3wEhAkoCXgJmAmICTQIqAgEC1AGkAXsBYwFfAWMBawF6AZIBpwG5AdAB8AESAjECTwJqAnsCegJoAkkCGwLkAbMBmgGYAaMBuQHcAQMCFwIQAvsB5wHVAcQBuQG+AcsBzwHHAcIBwgG/AbABmgGHAXsBeAGCAZcBrwG7AbUBqAGkAbIB0gH6ARwCNwJPAmACYAJOAjICFQL1AdIBvAHDAeMBCAIlAjcCOQIqAgsC7QHdAd4B7QEKAjICXQJ9AokCgQJmAjsCBwLRAaIBhQGIAasB2wEFAiUCPAJDAi0C/wHOAakBjAF4AXMBfwGNAZIBjgGLAYkBggF4AXABZAFSAUUBTQFwAaEB2QERAj8CVQJPAjICAQK8AW0BJAHsAMkAwQDeABkBXAGRAbgB1QHkAd8B0AHFAbwBqwGPAXQBYgFdAWQBdQGGAY4BkQGcAa4BwgHYAfoBIwJAAkYCQwJGAkoCQQIqAg4C7wHOAbQBrAG0Ab8BwQG2AZ8BegFRATMBIgEbARwBLgFWAYYBrwHOAeUB7wHiAboBggFGAQoB0ACmAJgApwDJAPkAMgF0AbQB5wEKAiACKQIjAg0C7AHKAasBjAFkATMBAgHaAL8ArACkAK8A0AD7ACUBTwF8AakBxgHQAc4BwwGpAX0BRgETAecAxQCwAKgApgCkAKQAsADKAPEAJAFiAaEB2QEFAiMCKwIZAu0BrQFdAQUBuACHAHUAeQCQALgA5wANASYBOAFEAUQBOwE3ATsBPgE2AS0BJwEdAQcB7wDcAM0AuwCsAKoAtQDFANcA6wABARcBMQFPAWgBcwFuAVkBLgHqAJ4AZQBKAE4AbwCmAOQAEQEhARYB9wDLAJwAfQB1AIMAogDLAPYAFAEaAQsB6QC5AIEAVgBFAFUAfwC4APQAJQE9AT0BKwEQAe4AzQC0AKoArwDAANgA8gADAQMB8wDcAMgAuQCsAJ8AlQCMAIEAcQBgAFYAVQBeAHEAhgCTAJMAiwCCAHwAgQCUALUA1ADqAAABGwEuASYBBAHbALQAjABjAEkASwBlAIsAuQDtAB0BOAE5ASQBBgHqANIAvACrAKMAqgC5AMkA0QDUAM8AvwCqAJoAmQCmALsA0QDkAO4A7gDnANgAxACwAKUApQCqALAAswCuAJgAdQBQADQAHwAWACEAQgBtAJYAwgDzABcBIAEWAREBFwEYAQoB+ADrANoAvACfAJMAmgCrAL0A0gDpAAEBFwEnASkBFQHpALAAcwA4AAoA7//n/+v/+P8PADMAXwCSAMsAAwEuAUgBWQFnAW8BaAFPASIB5QCfAFsAJwARACAAVgCmAPsASAGJAbsB1gHWAb4BmQFvAUUBJAERAQQB8gDVALQAlQB1AFUAOwAuACwAMwBDAF4AfwCZAKAAlAB9AGcAVwBNAEcAQwBGAFEAYQBxAIEAlgCxANEA8wAWATcBSwFMAUABMAEeAQsB9ADeAMoAuACrAKMAoACdAJoAmgCaAJgAlgCiAMEA5gAAAQkBBwH/APEA2QC+AKkAmwCUAI0AhAB7AHcAfgCKAJoAsgDaAA4BPwFlAYMBmwGgAYYBVAEYAd0AqQCEAHUAfACJAJQAoQC1AMwA3ADhAOEA4ADfAN0A2wDaAOAA7AD8AAQB/gDsANQAuwCjAI8AhACFAJIAqADDAOAA/wAdATUBPQE2ASwBIAEQAfcA2gDDALcAsgCzALYAvQDGAMwAzQDJAMQAwgDIANcA7gAIASEBMgE7ATwBMQERAd8ApgByAEYAJQAYACkAVgCVANkAHAFYAYUBmwGaAYYBagFOATQBHAEBAeMAxgCpAIsAbABVAEwATwBeAHsApQDQAPEAAwELAQoB/QDnAM8AuQCkAJMAjACQAJsAqwDDAOYAFAFKAYMBtQHVAd4B0wGzAYABQQEEAdAApgCGAHcAewCLAJsAsQDSAP8ALgFWAXYBjQGYAZIBegFQARsB5gC+AKUAlwCUAKIAvQDXAOkA+gARAS0BSgFgAW8BewGHAZYBpwGxAa0BmgF+AV8BQAEmARUBDAEDAfYA6QDiAOkAAAEkAVIBggGpAb8BwQGyAZYBbgFBARcB+QDoAN4A3gDvAA8BLwFDAU0BWQFsAXwBhAGJAY4BkQGOAYcBhAF/AW8BTgEjAfUAxwCfAIkAigCeAL8A5wAYAU8BhQG1AdsB8wH7AfEB2AGxAYMBUwEoAQMB5ADVAOAAAwEvAVsBhwG0AdgB7QH0AfgB+AHtAdcBvwGqAZQBdgFTATMBGwELAQUBCwEcATEBQwFSAV4BZgFoAWgBbAF2AYQBkAGbAagBtQG7AbUBqAGbAZEBhQF3AXEBeQGOAacBuwHIAc0B0QHUAdMBygG8Aa0BmgF/AWEBSgE/ATkBMAErATIBSQFqAY8BtgHcAfoBCAICAukBvwGLAVgBLgETAQcBBwEWATcBagGjAdgB/wEYAiECGQIFAvIB6gHpAeMB1QHAAacBhwFjAUUBNQEuASwBMQFEAWYBjgG2AdYB5wHmAdkBxQGwAZkBgwF1AW8BcAFzAXsBiQGYAaUBrwG0AbIBpQGRAXwBaQFUAT8BNgFCAWMBjAG2AdwB9gH9AfAB1AGxAYgBXwE/AS0BKAEsAToBUgFrAYABkAGgAbIBvgHFAcYBwQGvAZABbQFOAToBNgFDAVkBbwGBAZEBoQGrAa0BqQGnAawBuQHPAeoBBQIYAhwCDwL1AdYBvAGsAaQBoQGgAaABnQGZAZYBkAGGAXwBfAGHAZMBlQGOAYMBcgFWATMBFgECAfQA7gD1AAwBKgFGAVwBbQF6AYMBjQGeAbcB0QHpAfkB/gH2AeABwAGZAXUBXgFYAV8BcAGLAa8B1AHvAfYB5wHJAacBjAF8AXQBcwF5AYoBoAGwAbYBtQGtAZsBfAFYAT0BMAEuATUBSgFtAZEBpgGoAZ4BjwF/AW4BYAFaAVgBVQFVAVwBawF5AYABhAGLAZUBmQGcAaQBtAHFAc8B0wHZAeAB4gHbAc8BwgGwAZMBbgFIASsBGAESARoBNAFcAYgBrwHIAdMB0wHMAboBngGAAW8BcQGDAZcBpwGtAagBpAGlAagBpgGfAZsBlwGKAW0BSwExARwBCwEFARABKgFIAWMBegGKAYkBegFqAWEBYAFjAWoBeQGJAZMBlAGNAYIBdAFlAVYBSQFCAUQBTQFUAVMBTwFQAVgBYwFpAWUBVwFGATUBJwEbARgBIAEtATUBNwE+AUwBWQFZAUoBMQERAeoAxgCyALEAvADQAPAAHAFLAXkBpgHSAfMB/gHzAdsBvwGkAYkBbAFOATQBIwEaARUBEgEWASIBMAE9AUoBXAFtAXQBdQF8AYsBmAGXAYkBfAF2AW0BXQFMAUIBQAFBAUEBQgFDAUMBPgE2AS0BJQEgASIBLQFAAVcBbgGAAYsBkAGPAYYBcwFYAToBHQECAeoA2ADMAMUAwgDJAN4A/AAfAUMBZgGBAY8BkAGHAXUBWQE9ASsBKQEtATABNAE+AUcBRQE0AR8BFQEXAR0BHwEbARYBFQEZAR8BKgE8AVIBYgFlAVsBTAE5AR4B/QDlAN8A6gD7ABIBMAFMAVIBOQEMAdwArgB/AFYARABQAGoAfgCMAKIAxwDvAA8BKAFDAWUBhwGdAaEBlQGBAWgBSQEnAQgB8QDjANsA1gDYAOMA9AAFARABFQEZARoBFQEMAQQBAgEIARUBIAEkAR0BCgHsAMQAlwBtAFIARQBCAEgAXAB9AKYAzQDxABEBJAEjAQ8B8gDVALgAngCOAI0AnAC5AOEACgEsAUEBTAFQAUoBPwE0ASwBIQEQAfwA6ADRALMAkwCBAIIAiwCWAKYAvADQANgA1ADQAM8AzgDMAMoAygDJAMMAvAC8AL0AsACNAGIAQQAxACkAJgAuAEQAXwB0AIAAiQCTAJ8AqQCtAK4ArwC2ALwAtgCnAJoAlQCQAIkAiQCcALkAzwDYANgA1ADLAMAAwQDPAOMA7wD1APoAAQEDAf0A8gDjAMsApgB7AFIALQALAPX/9P8IACMANAA9AEgAUABLADwANwBGAGEAewCVALcA2wDuAOcAxwCYAGkARgAyACcAJQA3AF8AjQCxAM4A8AAQAR4BFgEIAfsA5ADCAKAAiAB0AGIAYQB5AJ4AvgDeAAYBKQEwARMB4QCqAHEAOAAJAPH/8f8BAB4AQABkAIUAnwCrAKgAmwCSAJIAmgCpALsAygDPAM0A0QDfAO8A+wAAAQIB+gDmAMYApgCMAHgAYgBJADQAKwAxAD0ASgBdAHgAlACkAKkAqQCnAJ8AjgB1AF0ARwA5ADUANwA4ADcAOAA9AD8AOAArAB0AEgAKAAgAEAAfADIASQBhAHMAegB8AHoAdABiAEoANwAsACQAGQANAAkADAAQAA0AAwD6//f/+P/0/+v/4f/e/9z/1f/L/8j/zf/W/+P/9v8PACgAOQA/ADYAGwDv/7j/gP9Q/y//Hv8g/zX/W/+G/6j/uv/F/9D/1v/L/7T/oP+V/43/gf98/4T/k/+g/6X/ov+Y/4f/df9m/2D/Zf92/4//qf/B/9j/7f/0/+f/yv+l/3r/TP8m/xH/Cv8I/wn/E/8h/yr/Lv82/0H/Sf9L/1P/Y/9u/2r/YP9e/2X/av9q/2z/ef+K/5b/nP+i/6n/pv+T/3L/Sv8i/wP/7P7c/tH+yv7M/tz++f4c/0D/XP9o/1//RP8c/+z+v/6h/pv+q/7I/vX+Mf9x/5//rv+f/3r/Q/8A/7/+jP5s/lz+W/5n/n7+mv65/tr++/4W/yr/Of9D/0X/Pv8x/yT/G/8Y/xf/D////un+0P63/p7+jP6E/ov+n/7A/uX+B/8g/y//Mv8m/xL/AP/2/u/+5P7Y/s7+xf63/qf+l/6G/nL+XP5I/jn+Mf48/ln+e/6U/qH+q/62/r/+yf7W/uH+4f7W/sb+rP6F/lj+Of4s/iv+Nf5V/oj+v/7u/hn/QP9U/0n/Kv8L/+r+wv6Z/oL+e/55/n/+l/7E/vL+Ev8n/zb/O/8x/x//DP/8/u/+5v7j/uL+3f7U/sr+uv6h/oL+aP5X/kz+Tv5l/o3+vf7n/gb/Gv8h/xr/Cf/1/uD+yf6v/pP+ef5m/lv+Vv5W/mT+g/6r/tP+9/4Y/zX/Q/9F/0b/Uf9k/3X/gf+D/3j/Yf9E/yn/C//n/sj+tv6z/rb+v/7T/uz++v71/uj+2f7G/qz+lP6H/oX+g/5//nv+dv5r/l3+U/5P/k7+U/5m/on+rv7K/t3+5/7j/tH+t/6e/oX+av5S/kf+Sf5Q/lv+bv6H/p3+r/7E/t3+8v75/vX+6f7L/pn+Xf4p/gT+7P3n/fj9Gv4+/l7+ef6I/oT+c/5m/mT+aP5v/oL+pv7M/uf++P4C/wP/9/7k/tf+0P7M/tH+4/7+/hT/Hv8c/xD/+/7h/s7+xf6+/rP+qv6o/qr+qv6n/qj+rP6q/p/+kP6F/n3+bv5R/jP+H/4e/iz+Sf54/rP+6/4T/yr/NP8u/xT/7P7E/qX+i/51/mj+Zv5v/n3+if6J/n7+b/5m/mH+V/5M/k3+Xv50/oL+i/6Y/qX+pv6Z/on+gv6A/nz+dv53/oL+kP6d/q7+zP71/iT/Wf+T/8n/5//o/9L/rf90/yb/0P6D/kX+Ff7y/eX97P0F/if+S/5l/nD+dv6D/pL+m/6Z/pf+l/6P/n3+af5g/l7+Xf5h/nL+j/6r/r7+zv7g/uz+7f7k/tv+1/7a/uT+8v4C/w3/EP8M/wH/8f7i/tv+2f7Z/tT+z/7K/sj+yf7Q/t7+7v72/vf++P76/vT+5P7Q/sL+vP6//tL+9v4g/0P/W/9s/3D/YP8//x3/Bv/8/v/+FP82/1v/eP+I/4z/hP9r/0P/E//k/r/+rf6v/sL+3/4E/yv/TP9f/2L/Wf9F/yr/EP/+/vj++/4D/w3/E/8R/wT/7v7S/rj+pf6c/qD+rP6+/tT+8v4V/zP/Qv9B/zj/MP8n/xf/Bf/7/v/+Dv8l/z//Wf9q/3H/cP9q/1v/Rf8s/xb/BP/5/vf+BP8g/0P/Y/91/3P/Yf9E/yH/+/7c/tD+1P7b/t/+5/76/g3/D//+/uT+zf67/rL+tP7F/uL+Bf8j/zb/Pf88/zj/M/8v/y//OP9F/1b/b/+O/6f/q/+X/3L/Qf8F/8n+ov6f/rH+xv7Z/vL+Ev8v/0P/UP9e/3L/h/+U/5b/lf+U/43/dv9T/zb/KP8j/yP/LP9E/2D/c/93/3P/cP9x/3r/i/+j/7z/1P/o//b/+f/x/+L/zf+1/6D/j/99/2f/Vv9U/1v/Y/9n/23/eP+F/5L/nv+k/53/iP9x/17/VP9W/2n/jP+v/8L/yP/H/8H/rf+Q/3v/df9+/5D/rv/Y/wIAHQAiABQA/v/k/8T/ov+G/3j/ef+C/5T/sv/Z////FgAfAB8AHAAZABIADAAHAP//7v/Y/8r/z//g/+n/3P/C/6r/mf+G/3D/Yv9o/33/kv+p/8n/8v8NAA4A/P/r/9//yv+m/3//Y/9K/yb///7l/uD+5f7s/vz+G/9H/3T/n//D/9n/3v/Z/9b/1f/U/9j/6v8CABMAGAAXABEAAQDr/9n/y/+4/6D/lv+f/67/uP/A/87/2v/b/9r/4f/p/+H/zf+5/6v/nv+Q/4f/hf+I/5L/qf/G/9f/0v/E/7X/oP9//1j/Qf9H/2r/n//X/wUAIwAxADIAKgAjACkAOwBMAFEATwBMAEQALQAMAOr/yf+s/5r/m/+o/7f/xf/W/+P/3//I/6v/kf96/2v/bf9+/4z/jv+Q/5v/p/+n/6D/oP+l/6T/n/+f/6X/qf+n/6f/qf+u/7f/yv/g/+z/7f/s/+7/7f/n/+L/4v/o//X/CAAYABQA/f/h/8P/mf9q/0r/RP9K/0//Xf98/5v/o/+V/4L/bP9Q/zH/If8l/zX/TP9m/4H/l/+s/8D/xP+u/4j/av9V/z3/JP8n/1D/jP/H/wAAOwByAJIAlgCJAG8ATgAvABYAAwD1/+7/8P/w/+L/xf+k/4T/Yv9A/yj/I/8w/0n/cf+q//P/PgB6AJ4AqwClAIsAYQAyAAoA7P/R/7//xP/o/x4AVwCJALAAygDQAMIApwCIAGwAWABLAEAANgAqAB0ADQD7/+b/zf+z/6D/mv+g/6j/sP+1/7X/q/+a/4v/gf92/2T/Wf9l/4n/t//i/wIAGAAqADcAPAA0ACQAFAAGAPP/3f/N/8n/zv/X/+r/BwAkADkASgBeAGsAYgBIAC0AGQAEAOv/0f+3/5b/a/83/wP/1P6z/qj+tP7P/vn+NP98/77/7v8FAAcA9P/P/6j/iv93/3H/ev+M/5v/o/+s/7n/u/+q/47/ev9v/2H/Tv9A/z//Q/9B/zn/M/8u/yf/HP8J//D+1v7C/rv+xP7f/gz/Q/93/6D/vP/G/7b/jv9Z/yL/7P67/pz+mP6p/sj+8f4l/13/jf+w/8f/1v/e/+P/5v/i/9D/sv+V/37/av9U/zz/J/8W/wj/+f7o/tX+wv60/q7+tP7M/vX+KP9b/4f/rv/S/+n/6v/V/7H/hv9Z/y//Ev8H/w//J/9K/3T/oP/F/9n/2//P/7b/lv9y/07/MP8b/xD/Dv8P/w7/DP8P/xv/KP8r/yb/IP8j/yr/M/8+/1T/cv+R/6r/wP/R/9v/1v/E/6n/iv9q/1D/Q/9J/1z/dv+Q/6b/tP+0/6P/fv9K/w//1P6f/nf+Zf5x/pv+1/4W/0//ef+S/5X/hP9l/0D/GP/t/sj+sf6v/r3+1P7y/hT/Mf9B/0X/QP80/yH/Dv8H/wv/Ff8h/zj/XP9//4//iP9w/07/I//z/sv+sP6i/p/+q/7L/vn+Jf89/zr/IP/4/s/+qv6N/nj+cP53/on+ov69/tb+6f7x/uz+3/7S/sb+vP61/rL+sv6x/q7+rf6y/rz+x/7V/uz+B/8b/yT/LP86/0r/UP9R/1T/XP9e/1P/Pv8i/wH/3v7A/qz+nf6U/pT+nP6l/qP+lP5//mn+UP4z/hr+Dv4R/h/+M/5O/nP+n/7J/un++/4B//7+9P7m/tb+yv7J/tb+7P4G/yX/Sf9s/4T/i/+F/3b/Xf86/xX/9P7Z/sH+sv61/sb+2P7f/tn+yf6t/oP+Uf4m/gz+Bv4R/iz+Uv5//qr+yP7R/sf+sv6Y/n3+af5r/oj+t/7t/iP/U/90/3z/bP9L/xr/2P6O/k/+Kf4d/iP+Nf5Q/mz+fv5+/mr+Sv4i/vn91v2+/br9y/3w/Sb+Zv6p/uT+EP8k/xz/+/7N/p3+c/5V/kn+UP5m/oP+pf7L/un+8P7f/sT+rf6W/n3+bP5r/nf+gP6D/oX+gv50/lj+MP4C/tD9of2A/XH9b/10/X/9kP2j/bf9zf3i/fH99/39/Qn+G/4t/j3+Rf5F/j3+Mf4i/hP+BP76/ff9AP4V/jL+U/5w/or+n/6p/qH+iv5u/k/+Lf4N/vP93/3O/cH9u/26/bj9sv2s/aT9lf18/Wn9Y/1m/Wn9bv18/Y/9nf2l/ar9sP20/bX9uv3F/dH93v3z/RP+Nv5T/mn+e/6F/oP+c/5a/kD+Kv4Z/gX+6/3S/cH9uv22/bP9tP2+/cv90/3Y/d795f3p/eP92f3O/cP9uv20/bb9vv3I/dP94f30/Qf+Ff4a/hj+E/4O/gn+Cv4T/iP+Nf5I/lz+cf6B/or+h/56/mX+Sv4u/hn+EP4V/iH+Lv46/kH+Qv49/jT+J/4X/gX+8/3l/d392/3f/ev9/v0P/hn+G/4X/hL+C/4D/v/9Bf4X/i3+Q/5Y/mv+ev5//nT+Xf49/hr++P3b/cb9uv24/cL91/30/RH+Kf44/jv+L/4W/vv96P3e/dj92f3j/fb9Cv4Z/iT+KP4i/hP+AP7w/eD90v3K/cz91P3Y/df91/3e/ej97v3p/dv9x/2y/Z/9kv2O/Zf9q/3G/eP9AP4b/jH+Pv46/iX+Bf7g/b79of2O/YX9iP2V/ab9t/3F/c791f3b/dz91v3M/cH9vP24/a39nv2T/ZT9nv2u/cD92f32/RD+JP40/kT+Uf5a/l7+ZP5r/nD+dP56/oP+h/58/mb+TP4v/gv+5f3E/a/9nv2P/Yb9iP2O/Y/9i/2J/Y39k/2Y/aL9rv2z/az9o/2g/aT9qv2z/cH91f3r/QX+KP5Q/nT+kv6t/sX+2P7j/un+6v7j/tX+wv6u/pj+gP5q/lX+QP4q/hb+BP7y/dr9wv2w/aX9mf2K/Xn9bP1j/WL9Z/1w/Xn9gf2J/ZL9oP22/dX9+f0e/kP+af6Q/rH+yv7a/uH+4P7Z/tL+zf7K/sX+uv6o/o/+c/5U/jP+Ef7z/d790f3K/cr90/3i/e798v3u/eb91v29/aX9lv2T/ZP9k/2T/Zf9nv2q/bn9yv3a/ev9/v0R/h/+Jf4o/iX+Gf4G/vb97/3u/ez97P3x/fj9+v32/fL98P3q/d/92P3b/eT96v3p/ej95v3h/dr91P3W/d395f3r/fD99f33/fT97/3p/eP93/3e/d/94f3l/ev99P37/f79/P34/fP97P3m/d/92P3Q/cr9x/3H/cj9yP3H/cL9uf2u/af9pv2p/ar9rv24/cr94P33/Q/+I/4v/jH+LP4n/iL+H/4i/i7+Qf5U/mP+cf6B/o3+jP58/mH+Qv4f/vv92P28/ar9o/2k/ar9tf3F/dT92v3P/bf9mP19/Wb9Vf1N/VH9ZP2D/a393v0N/jD+Rf5R/lj+Uv43/gv+2v2x/ZL9e/1u/XP9iv2s/dL9+P0f/kH+Wv5l/mL+Vf4//ib+Ev4I/gT+BP4E/gH++v3y/en93v3O/bn9pv2c/Z79qv3B/eL9BP4f/jP+Qf5E/jH+B/7V/aP9b/03/Qf97vzt/Pr8Ev04/Wj9mv3I/e/9Dv4e/h/+Ff4J/v798/3u/fT9A/4S/h7+Lf5F/l7+b/50/nX+eP58/n/+ff51/mb+Uf42/hX+7v3G/aP9jf1+/W39W/1Q/VL9X/1u/Xv9iP2W/aL9rP20/bn9uf21/bD9rP2p/aj9r/3B/dz9+v0Z/jr+YP6G/qb+vP7I/sn+wP6t/pT+ef5g/kj+MP4a/gX+9f3r/eL92P3I/bX9oP2J/XT9Yv1V/U79Tf1W/Wz9jP2v/c395v34/QD++/3r/df9xv27/br9yf3o/RD+PP5n/pH+sv7J/tP+0P6//qD+dv5J/iP+DP4E/gL+/v35/ff9/P0E/gX++/3l/cz9tf2m/aP9pf2p/bP9xv3g/fn9Cf4U/hr+G/4V/g7+Cf4J/gz+Ff4n/kL+YP55/oz+mf6e/pn+jf59/mr+U/47/if+HP4Z/h7+Jf4s/jP+OP44/jD+Iv4X/hb+IP4u/jv+Qv5E/kX+Rv5D/jj+Kf4a/g3+Av78/f39Bf4Q/iL+Pv5j/ob+ov63/sr+1v7T/sL+pv6D/lr+L/4M/vb97P3n/eP95P3w/Qr+KP5B/lH+Xf5r/nX+df5q/lz+UP5A/if+Df7+/QD+C/4W/iD+Lf4//lP+ZP5x/nv+hP6K/oz+jf6Q/pH+j/6J/oL+e/5u/lv+R/40/iL+EP4B/vz9AP4M/h7+N/5U/nD+h/6S/pP+if53/mH+Sv4z/h7+D/4L/hX+KP5B/mD+hP6p/sP+zv7Q/tD+yP61/pj+ff5q/lz+Uf5L/k3+Vf5f/mb+av5q/mr+bf5v/nH+cv56/on+l/6b/pf+k/6O/oX+d/5m/lT+Q/43/jb+Q/5V/mr+hP6o/tD+8P4A/wX/B/8E//j+5P7J/q3+kf58/nL+df5//ov+lv6i/qz+sv64/rz+uP6p/pP+gf55/nj+c/5o/l/+X/5p/nn+hv6M/oz+jf6T/p7+qP6t/q/+sf61/rr+vv7B/sT+x/7J/sn+yf7I/sT+vP61/rH+sv67/sz+4P7u/vT++f7//v3+8f7f/tD+w/61/qX+mf6V/pL+kP6T/pv+pP6r/rP+vf7D/sL+vf66/rj+tf6y/rL+s/6z/rP+uP7C/sz+0/7b/uT+6v7s/u/+9f77/v3+/f4A/wX/B/8D//r+8f7q/uf+5v7j/t/+3v7g/uf+7f7x/vX++f75/vX+7v7q/un+6P7m/uL+3f7c/t/+5v7v/vf+/f4G/w//F/8a/x3/JP8r/y3/K/8p/yv/L/8z/zT/M/8z/zT/N/85/zf/Mv8v/yv/I/8Y/xL/E/8Z/x//I/8p/y3/MP8x/zH/L/8q/yP/H/8e/x7/Hv8e/yL/Kf8x/zr/Qv9J/0v/TP9O/1D/UP9O/0v/SP9E/z//O/84/zf/Of89/0D/Qf8+/zv/Ov88/z3/PP85/zb/NP8z/zL/L/8s/y3/Mv82/zf/N/86/0D/RP9F/0j/TP9S/1j/X/9k/2b/Zv9n/2n/aP9m/2T/Y/9d/1X/Uv9U/1f/Vv9X/1v/Xf9b/1v/Xf9f/1n/Tv9G/0X/Rv9F/0T/RP9E/0X/Rv9I/0r/TP9P/1P/WP9e/2H/YP9f/2H/Zf9p/2r/af9o/2j/aP9m/2X/Zf9k/2P/Yf9f/1//X/9f/1//Yf9k/2f/Z/9o/2z/b/9w/27/cP9y/27/aP9o/2//dP9z/3L/d/98/37/ff99/33/ev91/3L/cf9u/2v/bf9w/27/af9n/2v/cP9v/2z/a/9s/27/b/9v/27/bf9v/3X/d/90/3D/b/9y/3P/c/90/3r/gP+C/4L/hP+I/4z/jf+L/4j/hf+E/4b/iP+I/4X/g/+E/4j/i/+L/4n/if+J/4f/hP+C/4H/gv+C/4D/fv98/3z/gP+D/4P/g/+E/4f/iP+H/4b/h/+J/4r/iv+J/4r/jP+O/47/jP+L/4z/jv+P/5D/kv+U/5X/l/+a/5v/mv+Z/5r/nv+e/5z/m/+c/53/mv+X/5X/lP+S/5H/k/+W/5j/mP+Y/5n/mf+b/53/n/+g/57/nP+Z/5b/lv+Y/5r/mv+a/5v/n/+h/6L/of+f/53/nv+i/6T/o/+g/5//n/+e/57/ov+n/6X/nv+a/53/oP+e/5v/nv+g/57/mf+a/5//pP+j/6L/ov+i/6T/qP+s/6z/qf+o/6r/rf+t/6//sP+x/67/rf+w/7P/tP+1/7j/vP+7/7j/uf++/8D/v/+//8L/xP/C/77/vf+9/7z/uP+4/7v/vf++/77/wP/D/8P/wf/A/8L/xP/D/8L/xv/L/8z/x//E/8f/zP/O/83/z//T/9X/0v/P/9D/0v/U/9P/0f/P/9H/1P/W/9b/1f/U/9T/0v/Q/87/zv/N/87/0f/U/9X/1f/V/9j/2v/Z/9j/2P/Z/9r/2//a/9n/2P/c/+L/5//p/+r/7P/s/+z/7v/x//L/8P/w//T/9v/1//P/8//z//D/7v/w//L/8P/r/+n/6v/s/+v/6//q/+n/6P/p/+3/7//v/+7/8v/3//r/+v/3//X/9//6//z//v8AAAEAAwAEAAUABgAHAAgACAAGAAMAAQADAAYABgAEAAMAAwAFAAcACAAIAAgABwAGAAUABQAEAAMABAAFAAUABAAFAAcACQAJAAgACAAKAAwACgAIAAkADwATABIADwAPABAAEAAQABAAEQARABAAEQAUABUAEwARABMAFgAWABUAFQAWABUAFAAUABYAFAATABMAFQAVABMAFAAXABkAFwAVABUAFQATABIAEwAXABgAFwAWABYAFwAYABgAGgAcABwAGwAbABsAGwAbABsAHgAhACAAHQAbAB0AHgAcABgAFwAZABoAGgAaABsAGgAYABUAFAAXABkAGAAWABUAFwAZABkAFwAUABUAFwAZABsAHgAiACQAJAAiACEAIwAnACkAKAAnACUAJgAnACgAKgArACoAKQAoACkAKQAnACYAJwAoACcAJwAnACcAJQAiACQAKQAsACkAJwApACwAKwAoACgAKAAoACcAJwApACwALgAwADAAMQAwADIANQA4ADcANQA0ADMAMQAwADIANAA0ADIAMwA2ADgANwA3ADYANQAyADEAMgA0ADUANAA1ADUANAAzADIAMQAvAC0ALQAwADIAMgAwAC8AMAAxAC8ALQAtAC4AMAAwAC4ALQAuAC4ALAAsAC8AMQAwAC8AMQA0ADUAMwAyADQANQA2ADYANQAzADAAMAAyADMAMAAvADEAMwAyAC8ALwAwADEALwAuAC0ALAArACwALgAvAC4ALAAsACsAKQAoACkAKgAqACkAKAAoACcAJwAnACcAKAAqACsAKgAoACYAJgAmACYAJwAnACcAJwAqAC0ALQApACcAKQAtAC4AKwAnACQAIwAlACcAJgAkACMAJQAmACYAJwArAC4ALAAnACUAKAArACwALAAsACsAKwAsAC8AMQAxADEAMwA0ADMAMgAzADYAOAA3ADgAOwA9ADsAOAA2ADgAPAA/AD8APwA/AEAAPwA+ADwAPQA+AD0AOwA6AD0AQQBDAEUARgBGAEUARgBJAEwATABLAEoATABPAFEAUQBPAE0ATQBPAFAAUABRAFUAVwBVAFUAWABbAFwAWgBaAFwAXABbAFsAXgBfAF4AXQBeAF0AWwBbAF8AYwBkAGEAYABhAGIAYABeAF4AXwBfAF4AXQBeAGAAYQBjAGQAZgBmAGUAZwBqAGwAbQBrAGsAagBqAGsAbgBwAG0AagBqAG0AbwBwAHEAcQBvAG4AcAB0AHYAdQB1AHkAfAB6AHYAdAB1AHYAdQB0AHIAcQBxAHMAdgB5AHsAfAB8AHwAewB8AH4AgQCDAIIAgACCAIYAiACHAIUAhQCIAIoAigCMAI8AjwCMAIoAjgCTAJQAkgCPAI0AjQCNAI0AjACJAIYAhgCIAIkAigCNAI8AkACQAJEAkgCQAI8AkQCUAJUAlACTAJUAmACaAJoAmgCbAJwAnACaAJgAmQCcAJ0AnACcAKAApgCoAKYApQCnAKgApgCmAKoArgCvALAAsgCzALEAsACxALYAugC5ALcAtQC1ALgAvAC8ALsAuwC/AMAAvQC/AMYAzADIAL8AuwC+AMIAxADFAMkAzADOANEA1ADVANUA2QDdANwA2ADYAN0A3gDbAN4A6ADtAOkA5ADlAOcA5wDsAPYA+wD3APMA9wD8APoA+AD9AAUBBgEEAQgBEgEXARcBFwEcASEBJAEnASgBJQEiASYBLgEyATEBLwEyATMBMQEyATcBPAE/AUIBRwFMAU4BUAFRAVMBVQFZAV4BYAFgAWIBZgFmAWQBZgFuAXMBcgFxAXYBewF8AX4BhQGMAY0BjAGOAZEBkgGRAZYBnAGYAYwBhAGGAYkBhgGBAX8BgQGDAYcBjAGMAYMBdgFxAXcBfgGCAYUBhQF/AXQBcAF4AYMBiAGLAZEBlQGSAYsBjAGXAZ8BnAGXAZMBjgGIAYgBkQGYAZYBkgGWAZ4BnwGbAZwBogGmAaABkwGKAYoBkAGTAZUBlwGUAYcBdgF0AYgBoQGqAaYBoQGbAZIBjgGYAZ8BlAGBAXwBiwGgAbQBygHaAdcBzwHaAfoBDgIHAvcB9wH8AfQB5wHpAfsBCwIOAgIC4wG0AZcBugEjApgC2gLoAu8CAwMPAwUD/gIKAw0D5QKhAnACXwJQAjMCFwIQAh8CPQJcAmYCSwIqAi0CVgJ8AokClwK8AtwCzwKiAoACfwKNApUCkwKOAowCkAKaAp8CmgKbArwC+wIzA0cDQQM9A0YDTgNJAzwDMQMqAxwDAwPjAscCtwKzArMCsAKrAq8CwwLfAusC5wLkAu4C9gLqAtICwAK7ArQCnAJ5AlcCQAI7Aj8CQAI4Ai4CLgI0AjUCMQI2AkcCVQJLAjECHQIgAi0CMgIsAiQCHAIRAgQC+AHzAfEB8wH9AQsCGQIiAi0CPwJSAlsCVwJOAkYCOwIoAhEC/gHuAeAB0wHGAboBrwGsAbEBtAGuAaYBpQGpAacBmQGKAYABeAFuAWMBWwFVAU0BQgEzASUBHAEbAR4BIQEjASoBOAFJAVcBXwFlAWwBdQF8AXsBcwFrAWcBYwFaAVMBVAFfAWkBbwFzAXcBegF+AYQBiAGGAYABfAF7AXcBcAFpAWYBYQFZAU8BSAFBATwBOQE3ATMBLQEpAScBIwEcARcBGQEbARYBDgEJAQUB/QDvAOIA3gDgAOAA3QDcAN4A5QDuAPcA/wAEAQkBDgERAQ8BDAENARMBGgEcARwBGwEbARgBFgEXARsBHgEgASYBLgE1ATkBPwFIAUwBSAFBAT0BOQExASYBGwEQAQQB+QDxAOkA4gDeAN4A4gDkAOMA4QDhAOIA4QDgANwA1QDMAMMAvgC9ALsAuQC3ALYAtwC3ALgAvADCAMcAyQDIAMkAzADPAM8AzwDQANUA2QDbANgA0ADJAMUAxADAALsAuAC3ALUAsQCtALAAuADBAMQAwgC6ALEArACsAKsApACbAJQAkgCRAI4AjACOAJIAkwCSAJEAkwCVAJcAmQCaAJoAmQCZAJoAmwCZAJYAkwCTAJUAlgCWAJUAlACTAJQAmACcAKAAogCjAKQApQCnAKcApgCmAKUApACjAKIAogCkAKYApwCmAKYApwCpAKkAqACmAKQAoQCdAJkAlwCYAJwAoACjAKMAogCjAKUAqACqAKoAqgCsALIAuAC7ALwAvQDAAMQAywDRANYA1wDVANUA1wDYANYA1ADSAM4AzADOANUA2wDdAN4A4QDiAN8A3ADdAN8A4ADdANoA1gDTANMA1wDZANYA0gDSANUA1wDWANQA0gDQAM4AzADKAMgAxgDGAMgAygDKAMYAwgDBAMMAxQDDAMAAwADEAMgAzADOANAAzgDKAMYAxADEAMUAyQDLAMsAyQDLANMA2gDcANwA3gDfAN8A4ADiAOUA5gDnAOoA7ADrAOgA6ADqAOsA6wDrAO0A8ADxAPIA8wD0APQA9QD2APYA+AD7AP8A/wD9AP0A/gD/AAABAwEFAQUBBQEHAQoBDAEKAQcBCQELAQwBCwEKAQsBCgEJAQkBCQEJAQoBDQESARcBGQEaAR0BIAEhASIBJQEqAS4BLQEqASkBKgEsAS4BLgEtAS0BLwEzATQBMwEyATMBNwE7ATwBPAE7ATkBOAE1ATQBNQE2ATcBNQExAS8BMQE0ATgBOgE5ATUBMQEwATEBNAE1ATUBNQE2ATkBPgFDAUUBRAFDAUMBRQFHAUoBTAFLAUgBRwFKAU0BUAFSAVcBWwFcAVoBWAFZAVkBWgFbAV4BXwFeAV4BXgFbAVcBVQFWAVYBVgFXAVoBXAFbAVkBWAFWAVYBVgFXAVgBWgFcAVsBVwFSAVABUAFSAVMBVwFcAV4BXgFdAV4BYAFhAWMBYwFjAWUBaQFsAWsBaAFoAWwBbwFwAW4BbAFqAWoBbgF1AXcBdgF5AX8BggGAAX0BfwGDAYQBgQF+AXwBegF7AYABhQGEAX8BfAF/AYABfgF9AX8BggGDAYMBhAGFAYUBhQGHAYoBjAGMAY0BjgGPAY4BjwGSAZYBlwGXAZkBnQGfAZ8BngGgAaUBqAGqAawBrAGrAagBpwGqAa0BrQGsAa0BsAGyAbIBtAG3AbkBtgGyAbABsQGzAbUBtQGzAbMBtgG9AcIBxAHDAcMBxQHIAcsBywHLAcsBzAHMAcwBzgHQAdQB1wHYAdYB1QHYAdsB2wHYAdoB3wHjAeIB3gHbAdsB2wHcAeAB4gHhAd0B3QHjAecB5wHnAekB7AHuAe0B7wHyAfQB9QH2AfgB+AH3AfYB9gH2AfYB9wH7Af4BAAL/AfwB+AH2AfYB+wEAAgICAQL+Af4BAAICAgUCCAIJAgsCCgIJAggCBwIHAggCCwIOAg4CCwIIAgcCBwIEAgECAQIEAgYCBQIGAggCCQIFAgECAgIKAhACDwIKAgkCCwIOAg0CCwIKAgoCCgIKAgwCEQIYAh0CGgIUAhICFwIeAiACHgIeAiACIAIfAiECJgIrAioCKAIoAioCKwIsAi0CMAIyAjMCMwIzAjECLwIvAjECNAI3AjkCOQI4AjgCOAI3AjQCMwI2AjoCOwI7Aj0CQgJFAkQCQgJDAkYCSQJJAkcCQwI/AjwCOgI5AjkCNwI3AjgCOgI8Aj0CPwJCAkQCQwI/Aj0CPgJCAkcCSwJNAkoCRQJCAkACPAI5AjoCPgJBAj8CPAI9AkACPgI6AjoCPgJAAj4COwI5AjcCNQI0AjICMQIvAjECNQI1AjACKgIoAioCLwIyAjICLQInAiYCKAIqAisCKwItAi4CLwIxAjYCOwI9AjwCOAI2AjgCPAI+Aj8CQAJCAkQCRAJGAkYCRQJDAkMCRgJFAkECPwJEAkoCSgJIAksCUAJQAkoCRQJGAkgCSAJGAkcCRwJFAkMCQwJDAkECPwI+Aj8CPgI+Aj4CQQJDAkUCRQJDAkECPgI9AkACRAJIAkwCTgJQAk8CTAJJAkkCTQJSAlcCXAJeAl4CWgJWAlYCWwJhAmMCYAJcAlsCXgJjAmkCbAJrAmUCWwJSAk0CSwJLAkwCTQJNAksCSwJKAkcCQAI7AjsCPAI+Aj4CPgI+AjwCOQI4AjYCNwI8AkMCRgJCAjwCNwI1AjcCOwJCAkYCRgJFAkcCSAJJAk0CVAJUAkwCRQJJAlMCWAJWAlYCXgJmAmoCaQJlAmACXwJiAmcCaQJnAmYCZgJgAlYCTgJMAkkCRQJFAkkCTgJPAksCRwJCAj8CPQI8AjsCPAJAAkMCQwJAAjwCNwIzAjgCRgJOAkoCQAI6AjsCOwI6Aj4CRwJQAlUCVgJXAloCYAJnAmkCZwJoAm4CcwJ0AnMCdAJ0AnYCewKEAosCjAKLAo0CkAKTApcCmwKeAqECpwKxArgCuwK+AsMCxwLHAsYCxgLFAsICwQLHAs8C1gLgAu8C/AICAwgDFAMiAygDKwM2A1IDcwOKA5ADjAOHA4kDlgOzA+ADDwQzBD0EKAT7A84DuQPDA+UDEAQ2BE0EVQRNBDEECgT2AwsEMQRDBDwEJQT2A6YDVAMuAz4DZAOBA4sDeANFAwgD4QLdAusC/QIPAyMDOgNQA2EDawN5A44DnAOWA4ADZwNHAxEDuwI9AogBswAYAAMAVwCyAPEANwGVAQkC6gK8BHIHIAqxC7MLVgoeCMwFRAQTBA8FjwbuB88ILQlVCdUJOguTDRQQRhH1DwMMWgYuAJj6l/bY9BP18vXt9Un0UvHy7VXreeq162DuO/E+8/7znPOq8ibyGPPZ9cj5uv2NAIgBlABf/vz7avpl+lX8CwCmBBUJtQxeDxoRNBIyE2oUsxWzFisX2BZaFagSXw9WDBcK1QicCCsJ1AnOCaUIWwZTAz0A9v0w/Rj+RADuAjAFTgb5BWQEHQLR/xT+Lv3Z/Fv8CPvJ+CH20fOR8vDyGPWj+Ln8aQD5AgsEzAP6An4C6wJMBFEGfQg0CvAKiApVCfUH9gaoBgcHzgecCCkJYwlsCY4JJQpsC1sNmg+SEaUSbxLjED8O8Qp7B1YE0wEBAMH+2v0e/Yj8OvxU/Mr8dP0x/uH+VP9d/wP/eP7n/Wj9Ef3x/Pj8B/0T/Rn9CP3N/IH8Z/yt/FP9UP65/5IBrQO9BZUHLQmFCowLJww+DMkL2AqfCVIIEwf6BS8F0wTfBCoFigX0BWwG7gZhB6QHlQctB38GpgW0BLUDuALQAQMBOwBc/1L+Jv3++wX7W/oM+hz6ivpE+yj8Ev3u/bb+Z/8AAHwAzgDkALkAYAD1/4//Sf9A/4b/FADbANAB4wLyA9sElQUlBpEG6AZIB9MHgggtCaMJvglfCYAITgcVBgkFOQSfAzQD6wKxAn8CaQKIAuICaAP9A3EEjwQ6BH8DiQJ6AWYAYf+H/vX9qf2G/XH9af14/ZT9qP22/dX9KP6//pP/iQB+AUsC3QIuAzoDAQOaAi0CzAFyARgBxgCOAIQAvgBMASoCQQN4BLUFyQZ9B7cHiAcUB3YGxwUpBbsEgwRzBG4EVwQWBK4DPQPXAnwCKwLzAeAB6gH5AQECBgILAggC9AHLAYgBJgGdAOP//P4G/jL9pPxm/Hb81vx//VD+J//r/44ACAFLAVcBOgEFAdUAyADwAEYBrwEQAlUCdQJ0AmYCXwJsApACxwIJA0YDeAOnA+UDNgSSBOoELAVABQ4FlQTfA/8CCgIhAWoAAwDx/x4AbgDDAAUBJAEUAdgAhAA3AAQA5f/I/6X/fv9a/z7/L/8w/0L/Yf+H/6j/uP+s/4T/U/85/1T/rP8zANQAfQEhAqcC9AIFA/cC6gLkAtcCsgJ5AjoCCgL2AfoBBwIeAkkChQK3Ar4CnQJ1AlsCSAIlAvMBygG4AbIBnAFoASIB4QCtAHoANgDi/5X/aP9c/1j/Uv9d/5r/AQBsALQA1ADeANkAvwCOAEwADADn/+v/BwAaABkAKgBtAMwAEgE2AVoBkgHGAdQBvwGmAZsBnwGkAZ0BjgGIAZsBtgG1AY4BWwE3ARoB7wC4AJIAkwC9AAABRwF6AY4BiQF4AVgBIgHgAKoAiwB0AEQA8v+V/1f/Sv9h/4//1/86AJcAtACAACgA6v/b/+3/CwAuAE4AWQBDABIA2v+8/83/AAAxAEkARwA6ACcAFAAVADgAeQDEAAYBNwFKATkBDAHVAKAAaQA0ABAADAAhADgAOgAsACUAOABcAHsAkwCsAMMAvgCSAFQAIgAKAAQABAADAP7/8f/i/9L/v/+t/63/xf/l//P/7//p/+r/7f/s/+3/9/8CAA0AHAAtADYALwAkACIALAA4AD4AQwBNAFgAWwBTAEUAPAA/AEsAWgBhAFoASwA8ADEAJgAWAAcAAAD9//n/8v/q/9//1P/F/7H/l/9+/3P/d/+A/4b/iv+Q/5f/mP+V/5X/lf+Q/4r/iP+I/4v/lP+k/7H/sv+y/77/0//h/+b/7/8AABIAHQAjACoALwAuACkAHgAPAAUADwAkAC8AJgAZABIACADz/9z/2P/f/+D/2//Z/9f/xv+u/6P/q/+r/5f/hf+M/53/lf9y/1T/Uf9Z/1v/Xf9u/4v/o/+s/6z/p/+g/57/o/+p/6v/q/+v/7b/uP+v/6P/mf+W/5r/pP+u/7H/s/+4/7v/r/+V/4b/k/+t/7j/rf+f/57/of+X/4T/ff+K/6D/q/+n/6L/o/+i/5r/jv+K/43/lf+e/6n/q/+h/5H/jf+V/53/nv+f/6r/tv+0/6T/lP+N/4j/fv9z/27/c/98/33/c/9n/2L/af9u/2z/Zf9h/17/VP9E/zz/SP9f/2v/Yv9W/1z/a/9u/2H/V/9c/2H/Wf9M/0f/Sf9E/z//RP9Q/1T/VP9e/23/a/9S/zz/Pf9I/0v/TP9a/27/cv9e/0H/J/8U/wn/Df8c/yn/K/8j/xr/D/8A//P+8/4H/yH/Lf8h/w7/Bf/9/uT+xf6//t7+Bf8b/yD/J/8t/yf/GP8R/xr/Kv83/0H/QP8z/yr/NP9I/1D/Sf9H/03/Rv8v/x//Jf8x/y7/Kf8t/zP/Lf8o/zf/Tf9M/zP/H/8W/wL/4f7M/tX+6P7y/vv+Dv8a/w7/+v71/vv++f75/g3/K/8w/xr/B/8D//z+7f7y/hr/Rv9T/0b/Ov8u/xj/Av8D/xz/Nv9B/0L/Of8l/xL/Ev8k/zH/M/86/0X/Qf8j/wP//v4P/x3/If8k/y//PP89/zX/Lv8x/zj/PP82/yr/G/8L///++P7z/un+6P7//iX/O/8y/yD/F/8P//r+6/7+/ib/Qv9I/0b/Ov8f/wf/C/8h/yz/Lf8//1n/Vv82/yf/P/9X/1P/Tf9i/3v/cv9V/0b/Qf8q/wn///4T/yr/M/85/z7/NP8Z/wT///4C/wT/Cv8N//3+3f7H/sv+4P7y/gD/FP8t/zn/LP8M/+/+5P7o/vD+9/4B/w3/Df8C//j++v4F/xb/Lf9A/z7/K/8Y/xD/Cf/7/vj+Df8r/zv/PP83/yr/EP/4/vX+AP8K/xD/Gv8h/xD/6P7M/tX++v4c/yr/J/8Y//3+0/6l/on+j/6y/tj+6v7g/sb+sP6q/q7+sv7C/un+GP8f/+r+o/6B/ob+kP6Z/r7+/P4m/yH/Bf/w/tz+yP7K/u3+Fv8p/y3/NP8z/xP/5/7Y/vH+HP9B/1f/Wv9I/yr/Df/z/tz+3f4C/zj/U/9B/xv/B/8L/w7/Af/0/gb/Lf85/xP/2/67/rf+tP6s/q/+vf7J/tD+2/7f/s7+uv7E/t3+1P6p/pD+q/7Y/u/+8f7t/uD+yP6x/pz+gf50/pj+3v7//t7+tv7H/vL+9v7c/uX+Jf9f/2H/Of8T/wH///4I/xP/Hf8z/2H/kf+a/27/Of8s/z//R/86/zP/RP9R/z3/Dv/m/tb+3v74/hj/KP8h/xn/HP8M/9H+iv52/pX+sP6v/qz+vv7O/sz+yP7Q/tr+3/7r/vT+2v6o/pT+rf7I/tD+4v4Q/zT/O/9A/1H/UP85/zz/X/9n/z//K/9R/3P/XP9C/2b/nv+t/6n/wv/c/8n/p/+q/7v/qf+S/6X/w/+v/4b/iP+i/5b/a/9Z/13/Qv8R///+E/8h/yf/PP9S/0H/GP8D/wH/8P7W/tD+1P7I/r7+2P4A/w//Ev8m/zT/Hf8B/xH/Pf9Z/2X/df95/2H/Sf9O/1n/WP9t/6T/xf+n/37/e/91/0L/F/8l/z3/IP/5/gD/Bv/M/oP+fP6c/pr+iv6s/t7+1v6p/p/+p/6H/ln+W/5u/lD+Kf5N/pv+rf6Q/p7+0/7S/p7+lf7D/tT+v/7a/jf/cP9d/1D/fv+n/5D/bf+D/7n/1f/Z/+D/3//F/6f/o/+2/8X/zv/j//7/AgDW/4L/L//3/tH+tP65/v7+Yf+j/7f/wP/E/6b/fP+G/8L/4f/K/8D/2//f/7r/xv83AMQAFQE+AWUBZQEgAc8AqACRAG8AdQDDABoBRgFyAbwB5wG+AXIBPQEKAcgAqADAANYAvwClAKoArgCjALQA5QAGARsBWwGqAbQBmAHTAWQCxwLuAlUD/QNEBP0DygP6AxoECARUBCIFswWlBaIFFQZaBu4FhgXoBY8GjQb/BY4FGgUKBIcCUgGdABMAwv/5/3EAZQCU/2v+M/3D+wT6IvgA9g3zq+6V6PngnNjj0FTL7MjbyarNUtNr2Z3e4eHA4r3haeBC4G7hEePB5K3mZ+j86H7ogOiL6t/u2fSv+2UC7AeYC1sNog2DDYcOnBF1FjgcGSLpJiEpEShyJD8f+xiMEoINvwqQCdAINgj/BwMIzAciBxoG1QREA/wAW/0h+NzxWOsP5WPfC9uu2EHYRtlX2/PdNeBV4WXhBOGB4NzfgN9K4JXi3OVo6evsPfAX80r1+vZp+Oj59vvs/oMCKwbDCX4NORGcFM8XRhvlHggiSCRyJQslvSIcHz8bxxfrFBsTwxKYE9AU3BV2FlkWXRWREwERxw1fClEHfgR2AV/+vvuP+W33j/W19Bj1JfY/9yn4y/gN+fL4t/jY+Pn5Y/y7/2kDBQctCoAMIA6OD+YQ9RE3E6AVDBlGHPQe7iFhJTco5ik4K60sqC3VLb8tYC2yK2soryRZIfwdXhpwF90V1xRFExYRlw6TCwEIoATRAb3+yfrk9gX0P/H47IXnouKY3vvZZ9Skz0TNs8yXzNnMBM6fz3zQidD10FTShNMC06DQ9sxqx3K+crL+puGfGp48oSKqn7lxzSrh1PF9/nYG6gk/C/8M/g4TEA0RvhInEzkQywtrCQkK4QwzEoQZgh84IWYf+hvmFoMQUgyvDYYTDRoFH9chUyH1G+8ROAUA+PDrOOJH27LWwtMN0qfR5tLn1UTaVN+45BPqOO5o7+Dss+e44R3cgNfY1CfVYthg3d3i7ufE6wnue+9D8bbzkvYu+i3/GwWqClIPeRMmF8oZURsFHKUb1BkcFzsUAxE7Df4JuAiHCcELTA8ZFDkZix2KIK0hXyAzHbYZiRYiE6kPGQ1mC4UJYwfjBf0EDASbA5sETwY4B54H0wiSCpALCAxgDbMP5BGVEz4VsRYkF20W/hQvE1sRGBDHD3cQVhKCFX8ZgB0gITckjCYjKDkptSlIKUEoMCfSJXAjYSDaHWUcmxtMG64beBzjHJ8c+RsbG+YZqBgOGBoY3xfKFm8VTxSgEn4PtQvACGkGUAOH/438o/pN+O70vvGX793tUOza653sHO1B7IjqI+jY4yXd0NWpz0DKacSYvu+5D7busQWu+KuWrJSvvbTku87DJMrqzAzMS8lUxmvDAMGCwfrGhM8r1wzdP+Mq6hLwK/XF+0gE5gzkFIgcciL3JEIlpyVaJqwmlifyKUQsvCxRKwsoCCLsGasSRA74C7QKxQobDPQMlAsHCIUD9f58+iH2JPKx7kfr/Oal4UDczddS1LLRvdA40mLVjtge25nd7d844avh4OKq5Sfpt+wQ8VL29Prt/SIAlQLxBAUHxwmuDcYRUBWlGMEb2x0QH60gNCPXJU4oNSsXLlgvpy5lLTAsRSrBJ/wlJiXyIwciTyChHs0bIhgwFf0SVBChDZsMMQ2pDYENow0iDhoOcQ3cDK8M8wziDUAPKBBFEEcQthBgETQSthM+FmUZWhx+HskfuCDCIQ8jyyRJJ3Iqby1pL04waTCpL80tJyubKJompCRaIl8gYR/UHssdgBx8GxUagRd0FNkRzQ4HCiEEZP5U+Pfwg+lK5Gnh497N2ynZRdd41JbP4skzxXjBpb0BupS3DrZBtACy3K+vrfSq8KdipYej8aHdnxKdHptinECheajsskvD2dh/7lsARg4lGHwcgBttF7QRcAtUBwAHMQh3CE0J9gxpEsgXih1hJCIrzzB7NeY35DU/MKAqrCZ3IqQc6RYcE+4PYApeAbH2r+ww5AfdltcI1Q7WCNpb33nkjOhh6/LsSe1+7GPqp+bv4czdk9qo1nHRYs39zJfPOdMS2GffkOh58Rf5f/+NBDYIRguQDuMRvRQgF/8YvBkIGWAXJRVfEgYQ2Q/1EXIUiBbeGS8fPSQ3J3cpjixRLykwoy+GLgEsiScHIhMchBVLDyALTAn9CDwKRw39EAYUiRYzGdcbMh69ILEjdiZWKNoonyfZJHwhOh4VG1MYuRaKFjgXUxjaGfwbGR+EI6YoOi3EMNIzXzYpN2M1CzK1LogrdydmIsgdghqYF/8TixBqDg0NfgtxCtMKiwsAC4kJEgitBQoBDfuM9W/wRuoQ40/cfNZt0I3JHcOGvoC7+Lj+tlC2fbYltq+0drKhrwms7qfWoyCg25xlmRaVHpEZkK6ScpcwnwqtgcAW1P/jOvFU/OECOgRZA3UCdgEuAewCFgUIBakD3AMIBgoJkA3QFO8dKydmL/c0Cja3M6cxXjHEMF8u6CvXKukolCKzF5sLKAGR+Fbxbuwq6w/tFfC78sz0Ufby9sL22fYO+Fj5qvio9ePx2+3r55/f2tew0+zSp9N91fvYht3d4aPlJOmO7Efw/fSo+kYA+QR3CGgKfgpFCcMHKAY6BPoC7AN7Bk8I7AiNClcOhhLhFfsZDSBvJjUrli7vMDYxMi+JLCcqQSfZI40hByEIIYkg5h+vH/kf4yCAIpokRyfzKkQv1TK7NGM1eTXwNJoz2TEWMB4ugitYKBwlDiI2HzUdPh20H1UjmSZYKTss3S6+L1IuHCzTKgYq2Cf5IzUggR1hGpAVeRAZDQELqAhiBm0FLgX/A/cBZwAq/+/89Pnd98324fQJ8WDs7+fk4kvcF9UKz2TKPcZ2wry/8L01vEC6TbgrtmmzLbAKrTqqdKcgpA6gcZw/mwed6KAmp3axi7/ezVfZ0+H051Hr/+td65PqQ+qB66Xu3/F283T0qvbX+TP9ngHjB80ONRVnG8ggOSPjIjYjACa/KCgp6Cj+KV0qnCb+HtMWGBBpCo4FqQKfAtYExwc6Ct8L6AxXDQUNYgw+DFAMKQtNCPcEwAFS/e/2lvCn7MnqJemJ5xrn2+eK6Jnoq+hx6UHrTO5V8ob2PPpA/f7+n/5p/Kz5APce9L7xe/FC8xj1S/Z0+FL8PAAQAzUGDwuUEBoVphjYG0IeXR+yH/EfGSBCIAwhjCLmI3EkXyQQJKgjiCNNJDUmLClALU0yZDdGO449vT5IPyA/KT6oPP06RDlRN/I0JTI1L8UsjCu7K6UsZC3fLaguli9QLyYtiypdKRsptSffJG4i4SA1HjIZjBMtD4ELUQdvAzoB/P8N/pL7xvln+CH2JPP48M7vDO7P6v3mWeMr38jZBtQoz0vLzcebxAbC1r9kvYS6lrfmtFOyua9lrcOrqqo3qQqnT6WJpamntKr+rs+1qb7/xjjN9tEA1ufYb9pz28rcst5Z4ZHkXec06SvrUu768Uz1Hvlb/vQDbQj/C00PrBHMElIUlhdUG8gdch+HIQcj6iFHHj0aLRfQFMMSchFMEQ4SAxOZE7gTqBOuE9oTLxSiFK4UpBOYEUYP0AyXCbgFnQIjAUwAxv66/BH7p/mk9yP1QfOf8unyuPPy9Fn2aPfI93b3o/aw9fr0hPQf9P/zc/QZ9Tz1H/Xb9bL3vPmQ++v9FAH/A9MFMgcICSkLDQ0MD78R0xRwF3IZWhtKHeEeAiAqIdgi+iQUJ+goxCoPLagvBTL5M+w1DTjmOfM6WTuJO3Y7uzpuOT44ojdAN4c2kzUHNeQ0OzSDMpcwfi+9LhMtoCq8KJQnvCWxItYfDR4jHPIYaBXVEooQIA0CCbMFQQNqAPz8BPrO92P1U/JS78HsAOq45pHjCOGH3nHbGNgk1YPSo89ezDXJr8bYxDjDWsFxvxu+bb2uvGy7QLrZuQe6Y7o4u9+89r4dwcjDX8csy1PORNHq1OvY7dt03VfeaN+q4OThLOO05KPmKelD7GvvBvI59Nf2Pfq4/VsAKwLrAwkGHAiPCWQKPAvBDPoOCBH0EeUR+hGrEgUTOxIgERERARLPEg4TNRNmE2ETahP6E5gUZBSsE4ETuhPiEmgQpA0JDGYLmAo1CcsH6gZ8BtsFbwRWAoUAxP+o/yr/FP4z/f/89Px2/Lb7P/tH+8L7lfxX/YP9N/0v/bP9Lv4//oX+uP+PASwDRAQ2BVUGpwcnCcUKVgziDb4PAhI4FPYVhBdsGawb0x20H3khNyPlJJwmXyjbKeUq7CtwLRYvFDBYMJAwCDFCMeUwYDA+MF0wVjAhMOEvbS+bLsctVS3uLOoraSooKTMoriZBJMEh+x+RHr4chxptGGwWIxSUEf8OXAypCUsHhgXQA3kBu/5T/E36/fcl9VTyFvBF7mnsRury56rlmOOd4YDfT91w2wvazdhk193VUtSg0szQQM9FzqzNSs1nzS3OJ8/Izy7Q7dAn0oDTudTx1TDXKtiT2G3Y/9eb14PX19eJ2HjZnNoF3Jjd/t4M4Brho+Kk5KTmbug36hbsvO3w7vDvGvGP8lD0VPZH+K/5hvo3+9/7KPwf/HT8lf0K/zkAKwEiAgEDmwM0BBMFAQa8BngHaQgdCf8ITAjIB7MHnQc9B98G1Ab/BvwGeAZmBRkEFAOCAhcCpQGBAe8BjALVAt0CBQNXA6cDEgS5BEsFbgVYBXYFngVmBQYFKQXwBdgGngeACJkJpgqEC2wMfA2PDr0PXxF6E5UVaxc4GSQb4xw0HlkfqCAWIm4jtyT2JfImgyfsJ4MoPCneKXgqSSs+LAMtdi3DLRAuVy6rLi4vyC8oMD8wTTBUMOMvuS5RLT8sYiswKqMoNicUJtgkOiNrIa8fCh53HPkaaBmFF1YVFRPFED0OkQsOCdgG0ATZAtMAiP7z+3T5S/cw9czyUvAp7jfs+uk15yTkHeFX3tnbcdn51q/UA9Pe0afQOc8mztLN5s3zzQ3ORM44zqXN2MwVzB7LycmjyEjIdMhnyP3HyMcwyPXIrclbylPLx8x8zgnQR9Fn0rLTQdUA19jYvtqy3K/epOBe4rDjpuSE5ZPm9OeN6RbraezH7YfvffEX80v0z/UY+Jj6hPzj/UT/wwD3AcUChANtBF8FRQYwB/QHOwgDCMEH2gdBCKsIBAmQCY8K0QvNDEANkQ1WDooPkxAhEYsRMRLiEioT+BKtEqUS7RJhE9UTKxRrFLsUMBWqFQYWaRY0F5QYQxrLGw0dUB7OH04hciI+IxMkHCUgJt8mZSfUJzgolSgOKbQpZCoAK6grgixyLSsuii6+LgoviC8BMCcwAzADMGAwqjBRMH8v2S56Ls4tlCw+KzIqOSn8J4UmACVuI9shbyAWH4cdzRtDGuMYMxf7FJASORDSDUQLwghlBggEsQGb/6r9cPvY+E72DvTI8SPvL+wl6RvmEeMA4Nncu9ka10rV+9Od0ivRJtC/z2nPmM5qzWjMxsspyyTKyMiNx7fGA8YYxRjEhMOYwwzEgsT3xJjFXcYWx7rHg8ipyRvLpsxQzlHQmNKu1EzW1NfJ2Qfc4t0Y3yXgk+FB45PkQeXO5RrnVemv62DtzO768PLzhvb/9xj5vPqt/CD+BP/d/8YAhwEuAukCegOVA48DBgTuBJ4FxwXbBWIGVgc/CMcIJgn6CYoLSg1sDvIOlA+jEIcRqRFJEQIRAhEaES8RLBHxELQQBRH9EeUSMRODE9QU8hahGFsZ+hljG04dzB6mH4cg8iGnIwYl2SVuJhMnwSdJKLAoISmfKQgqcyohKwAspSzuLGAtai6nL1QwazCzMJcxczJsMpQxzTCGMDMwJy+RLTYsZSugKlcpmifqJZokkiOAIjIhvR9cHicd6BtTGlcYIhbxE+oR9A+6DQkLRQgBBhgEtgGc/pn7afmU9zH1SvKc71Lt1+rS55nklOHU3lbcKdo52FLWgdQQ0xHSKNH+z7HOps33zDbM5MohyZnHnsa3xV7E6sIqwknCqsLMwuDCS8MUxOzEpcVYxk3HqchBys3LQc3LznPQF9LF06vVrNdu2efacdwj3pjfl+B+4bziS+Tk5XvnNuk162btke998TLz6/Sz9kf4hPmq+uH75fx9/ez9ev78/kD/jP8zAAEBhQHNAUIC9AKYAxQEtQTCBTAHuQgfClcLhgy6DbQOJw86D2EPvA/zD9MPpg+qD7IPkg+cDy4QHhEKEgsTehQrFncXQBgoGZ8aORxsHXseCCAAIqEjkSRVJXYmsid7KNkoXSk5KvYqMSs0K3or/yttLNYsri3+Li8w3DBVMf8xnzKnMigyvDGiMWgxlTBcLzouRy04LOgqjylgKEsnOyYtJQIkiCLUIEAf6x2DHNEaGxmwF1sWqxSIEjEQ1g17CxsJkwbEA+AAQf7V+yD5CvYm89Lwoe4b7HDp/OaS5OPhJ9+y3E7at9dW1b3TrtJh0brPZ868zRzN2MseyqzIyMfrxoHFtMM1wlfBucAIwI6/uL9twELBKMJPw5PEo8WmxgvIxMlJy4DM+80N0EHSBdR11RvXG9kT277cSt4B4NThd+PR5Bjmhecc6dLqsey37rrwlfJT9AP2hfe0+Kf5o/rK+/v88f2C/t7+Uf/d/ykAGgAiAK4AgwEjApACIgPlA6QEewWyBhkISAlUCqILCA3NDb4Niw3RDVQOhw5nDm0O2Q5pD7sPzg8GEMUQ+hFAE2YUohUhF7EYDxpQG7ccVh4TIOEhtSNiJcAm6Cf4KNQpXCq9KkYr9yubLCYtuS1YLvIupi+dMLQxpDJuM0k0JTWmNaQ1XzUZNck0UDSwM/syOjJzMbEw3i/XLqMtdCxvK3QqQSnGJzsm3CSUIxkiZiDJHmkdBBxUGm4YfBZhFPcRXg+7DPEJ5wbfAxYBZP6M+7/4QPbi81Dxlu7u60Tpa+aO4+3gW96b2/XY49ZD1YrTtdFc0KnP9c6jzfHLeso8yaLHcMUmw1/BEcDRvp294LzCvPG8Mb2vvZG+m7+gwNPBU8PWxBLGP8ezyFzK/sutzaLPvdGr01/VD9fC2EDaa9uA3MvdUN/Q4DLivOO25fLn8emh63TtqO/E8UPzWfSW9Qb3HfiN+K74DPm6+Vn6q/r0+qr7uvyM/d79OP4W/x8A1QCRAQED3gQ0BvAGAgiuCfUKMwtFCy0Mdg37DbYNqQ0yDpgOZA4yDsMO+g9KEZwSNRQJFr0XPRnSGp8ccB4xIBUiKSQLJl8nUChJKU8qDSt2K/0r8iwDLq4uAC9rLxYwuDAzMdkx3DLrM6E0CjVqNa81lDUpNdI0vTSnNEc0sTMbM3wypzGPMFkvJC78LOMrxCpnKb0nCSaXJEkjzCEyIOEe5B3FHC8bSBlBF/wUaxK9DwANCwr4BjIEugEA/9f75fib9lv0bvEp7lHryejY5YHikN9L3Sjb4dj01r/V19S+05vSxtEE0bnPwc2Iy2DJLsfKxGTCXcDnvvK9Xb0WvR+9jL1xvri/AMEIwhHDfMQbxlPHDsj9yJrKeMz/zWzPVtGa03HVktaL183YC9rg2pfbz9yZ3mzg/+Gl47nlEOhA6j7sTu538FTyiPMj9Hv0xvQB9Rb1HPVX9fv15/a490b43vjG+cX6ffsT/P78Qv5t/1UAUgGKAqwDjASOBfsGaghHCbEJLAq6CtsKbgoFCiwKxApsCzEMbQ0qDxcRDhMxFYAXrxmgG54d0B/VIUgjZyS6JTknZig0KTMqsitGLX0ueC+IMI0xOjKmMh4zrjMzNMM0kDV6Ni03ozcgOLQ4IjlIOVk5dDlqOfk4IjgRN9M1XDTEMk0xGjD/LsUtgSxsK2gqDilIJ4wlNST9Imchbx9wHYUbaRnfFvkT/RA1DsMLYgmlBp8DzAA8/kb7kPfH86jw2u2a6hnnLuTn4YDf09yy2oXZoNhw12DW8NWV1WLUWNI10DXO3cv9yCLG0cP0wT3Aub6hvfW8pbzkvM29DL85wGTB5cKQxL3FT8YJx5TIl8pNzLPNec/P0fvTWNU51mDX4Ngg2uva0NtJ3f3eX+Ck4YDjDuao6OrqMu3f743yhfSb9Tb2ovbP9qD2P/YQ9l/2Dvez9w34YvgK+d75ePr4+tv7HP0e/qb+Qv9OAFsBCwLWAkgE/QUtB94HmQhECSwJSghyBygHFAf2BkEHYQj/CZgLRA1nD+cRWxS8FkoZ4xsCHn8fwyAXIkIjDiTaJDomMSgnKq4r+ixqLtwvzjAkMXYxTzJrMys0hDQSNRs2Ize6Ny04BzkmOuI6+zrKOog66TmlOPE2RDXKM3EyLjEPMBgvMy5ALSgs5SqLKScopCbwJCIjNyHxHjUcWxm9Fh0UKRFCDvoLBAp7B1EEXgHD/n37Kvfm8o/vZexy6G3kl+GY3xbdFdr/10zX1tbS1eXUotRN1PfS2dCrznXM6clOxynFasOpwfi/r765vcy8GLwYvNG8z73qvmPAMsLawx/Fc8ZeyMnKN815z+PRo9Qz18rYaNn+2Uvb4Nzn3ZfeCOB74tLkQ+aN58LpmuwS7yDxk/N19sX4A/rR+sj7oPz5/DL93v3f/qH/2f+s/1n/Av+i/h3+hv1V/en93f54/8v/oAA4AtgD/QQsBvkH4QnjCtkKeAofCoIJbwhJB48GZAapBj4HDQgcCY4KZwxXDh8Q9BEnFH4WZhjJGSgbvxwuHj0fZCApIkgkEiZhJ6coGSpPK+0rNCytLIUteC5PLywwVjHNMkA0YzU6NgU36zfGOFg5iDlnOQo5ajh4Nzw27zTmM0oz2zIzMjYxKTAlL+AtGiwYKkwotib8JPsi2iCjHjMchxnFFvITDxFXDu4LbwlcBu8Csv9m/FH4qvOb72zs++ir5KngBt7i2+TYvtU91E/UAtSf0qLR79ED0kLQfs2Uy5fKCMlvxv/DlMKLwQDALL7lvHq8orwWvbi9gb6MvwnB48K3xF7GS8gFy13Oh9EE1DDWntgg2+3c1t3A3m/gYOKW4z7kheW057Tp6OpV7BHvcPLr9Gj2Jvig+tf8/P2g/rf/JQEJAvgBcAEgASYB/gBAAD//w/76/iT/xf6K/kf/jABLAZQBdgIkBIUF+AU6Bu8GfQcvB4kGdAa1Bm0GmAULBQwFCAW4BKEEUgW6BnkIVwpDDEAOXRCKEnwUFha2F7sZ7RvTHWQf8iCKIvUjQSW4JmAoDCrZK+4t6i9AMSMySjPENNk1XDYeN6I4OjoLO047vztVPHA8/zuoO7072zuZO/w6JDr5OHs34zVjNPQyiTElMK4u2yyIKuAnGCU5IjQfHhwdGTwWTxMREGgMmwgJBZsB2/3P+T32gPOY8E7s++YZ4gHeg9k51NbP581azfDLgsn2x/fHwMf+xfrDhcMCxFrDNMFAv1a+Mr3Mujm4L7edtyC4Ori6uAK6O7unu9q777wev83BuMQyyEPMJNAW01rVy9e82rXdVeDg4pLlAuir6cTq/Oub7Wzvd/ES9C73NPq+/PD+5gB7AsYDPQX0BloIEgl+CeYJxgmlCBYHHgbbBZ4FKAX0BD8FhwU/BXgErQM6Ay8DWAN1A4sD1gMtBO8D7gL5Ad0BSAJbAvoBvgHGAZcBFQG7AMsANwE7AhwEVQYFCFMJOAutDXgPKBD5EAATmhWvF2kZmxs7HpkgnyLWJHEnNCoCLcUvKjIaNA82TjhcOuI7fT24P+9BSUMrRHxF30YjR1BGp0WcRTtF70N+QrBBGUH4P10+zTxkO+g5LTjoNcoyLS/kK/wofyX6IFocihj2FIcQdgv/Bl8DWP/e+WXzEe1F55LhvttX1hfS9s4TzKrI/8T6wc2/ir11uji3DbX7s72ymrCHrrytz606raWrpKp5qwetGq2Bq26qTKu8rOKsq6zmrjm07rmRvQHAj8NSyDzMb86V0E/U+NjF3CnfIeGc45rmtem+7NDvNfMo90f7jP5oAKQBcQPQBbsH7wiGClcNkBDBEpkT2BPzE6YTxxKvEcIQExB0D5YOIg1FC90JjwnzCUsKwArkCy8NOw2rC8YJlgiWB/QFMARxA8QDCwRsAzQCMwHRALwAWwCz/67/8QCUAg4DhQLyAlUFIAiZCY4KAg3sECAUZhX1FW0XxhnzG6Edkx98Ih0mhykfLFYuEDFeNHs3IDrvPBZAo0L+QxZF0UZrSNVIuUhhSUVK1Ek7SC9H+EYYRhZEUEJcQeM/Jz1fOjg4NDU5MOkqUSewJOMgEBxjGGIW7hNDDzgJvQNF/2v6tvNB66/iVNui1CbNNsU2v2q88rpPuKW0vbGwr9Oss6j0pMqih6FToMmf1aDuop6kR6WipZemAajJqDSoAqenpjynRadPpqWmx6rlscq4L74JxNzL79Ny2Tvc1N45477oQO3H77LxFPUK+nP+4wD0AgsHmAyxEGES3ROYFtwYAxnrGJAbdyB4JIQmqygTLKMuHy53Kzcp9ycaJpwicB7nGhYYPRUcEksPrQ2rDb0Olg8eD3kNvAtYClUI1gTxAOT+F/88/0f9Svru+Hb5Sfng9i/00fNE9eD17PR09P31bvg9+gP8Zv9eBDQJ1QzKD68SFxV7FmkX+xiVG7AetCGUJK8nUytiL2QzIzcPO5M/HESFR65JzUubTiNRPFJ7UmpTQFW2VgdXwFZeVnNVr1N6UQtP8Es/SOxEIkKIPls5JTS8MGku+iosJtQhjR54GicUxQwNBpr/6Pcy71Pn9uC32njTJ8wvxhHBELsCtMKtSKmtpMqd7ZW6kD2PjI6VjO2LGJBwl0ecd5wsnHqfJKS0pHmgx5zmnc2hrKPeoqGj5qgpsPe0Qrdhu5zDiszb0YXULtkU4Xfot+yL8LX3LgGiCHQMHQ+5EiwWeRfGFg0W2BYLGUsbbhwXHWkfFSSoKI4qHSvuLRIzHzZCNDkwFS5tLdMqkiWTIN8dSxwVGjkXQRT+EKUNVgsrCmcIJgVsAoACIQTQA8sAP/6t/k0Atf+9/Gr6Ovr7+Tf39vJS8FDwJvGF8XjyUfVZ+fn8FADCAzcIhQxDEAIU7xcuGzcd2R4sISMkyia1KKwq0C0xMmg2DjmsOmo9EEKaRglJoUoZTgVT9FWzVUFV6FZZWIRW61JaUYdRaE/nSd1E0kLpQMQ7WjUcMgwyxzASLIImrCIhHx4Z8xBNCTcDH/2f9UftQOW13U7WJ892yNnBCLuutHevcaq+o12b1JMTj9aL6YdIhICEgYluj0aSwJJalLyX9ZlEmd2Xu5i4m3yeGKDZodqkkagbrNev6rSYu7zC8MjszZPSyteQ3XXjm+nA8Dn5SwKXCvEQAxV6F1cZ0Bo9G8UaOxsCHqEhbyOSI/QkoigCLEotFS9gNOU6aj0POwQ4tTaRNGEvwSkEJ9ElwCI+HlYbqhmKFZAOQAlBCD8IbQWyAS4B6wLkAej8mfii+Mf6Bvtf+YH4x/ju9yH1MPKS8MXvSu//72jydPUn+B77Ef8KA98FgQjUDJUScxdvGgkdciCHI/gk7CWQKAMtczENNbg43zxwQMpCAEUwSLxLeU6EUKFSfFQfVcdUtVQoVQRV0FOIUttR8FDJTutLeElJRz9EIUAFPKk4YDUDMWcrYyWgH68ZcxKhCXsAgfhe8Trpit+I1oLQd8wnx5a/gbhTtEaxZKv0obWYG5Pyj1mLooQBgDSBH4YWiVSINYiqjCaT7ZVQlJ+TcZfUnEmfrp+WoiCpYq9ssmm0C7lSwCnHFcyq0KHWet274xzpke7l9Bz8vAP3CuIQVxVfGdodzyFuIy8jPSRaKOIsLS49LZwuOjNQNpc0IzLcNEw7Lz72OiQ3Vzc2OAk0yiuIJXojxyFLHeUXhRSXEskP8QutCHwGiQSaAiQBqv/z/BD5nPWq86DyivGI8DfwhPDP8MjwkPBK8BTwRvA08bPybfSZ9sL5of0DAXADSgYsC1cRQxb6GGQbPh9RI3ElSCahKEQt9DEvNUU4jTzXQLpDZkalSk1PmlGbURZS8VPWVHNTFlIbU/pUn1QrUohQu1B0UL9Nt0lbRoFDfT/UObkzHS6IKEgipht6FdoP6QnpAvr6jPKT6cPffNXTy5bDsry+tmqxPaylprmgV5vuluSSw442i+OIH4cIhWCDs4PMhdaHX4lUjOmRCpiEmwacLZzlnYmg6qKPpbOpPa8CtY66ZsDBxjzN+dO521rkRexN8lP36PzdAqwHWAsLEPsWPx5EI24mGipwLuMwZTCML/kwwTOeNdc2Kzn7O/s8gTx1PUZAjkFUPz889zpLOW0zWSrgIvAe3xu6F1kUhBNTE/UQ6QygCUIH9wPJ//b8+vs7+jX2aPLd8WvzYPMk8RTwQPIt9Xf1jfOA8j7zxPP78tfyk/Wn+u//lAQ0CegN9xEzFRkYmxo2HHodzx9II1kmaSgdK+gvpDU5Oos9EUEWRVlISkrHS11NZ05/TmZO2k6cT01QHVEBUiFS61DUTj1MpEjKQ7Q+Njp3NWYvBylWJCQhBx3HFhUQ4gpjBhwAM/dj7Zrkk9yU00LJvr9KuV21QrG1qxCmbqFqnHGV4I2WiAyGUIS+gheDJ4bJifSL042xkeOWcZq3m5qd9KEhpl+mlaP6opunva4XtLO3bL0ix+jRwNl83lPjduq38tf5qf/hBW8NJRU4Gz8fbyIxJsoqUy/TMl81ojdjOXk50DeONto3NTt0PtxATEOmRWJGL0W3Q6tCWkCvO4E27DLUL5gqYiMsHZUZEBe6EwAQRA1JC3YIKwRu/1f75fe09B3yyPCP8JPwZvBn8KjwaPAg75Dt+uyG7Ujuru4j7xrwd/FZ84z2ePs2AZAGTgulD/0SphSIFYsXMxsqH5IiQyb5KsIvbjN6Nig6fj6AQtJFuUgFS1pMTE23ThZQN1CIT8ZPI1GxUWJQtk4ETtFM6kj3QsA9Rzq6NogxiCtQJughHh1kF0MRTgtLBZz+Dff77p/mgN1O0wDJHsDHuKixTKr6o2ufJZuelbSPNosdiDeF/IIog2uFE4fghh+Hc4rOj3OTppPKkj2UO5jfmySdnZ1ZoOel2qudsA620b4XyhfU6NrO4IDo/vBL91L7eQDVCAMSWhifG8ceyyOMKQYu9DCMM2s28jinOjM8ZT6yQOpBlEL/RONJWU4lTwxNbEvPSgZIfkFFOsc1DjP2LnApUSVuIy8hqBxyFxYUcBJMEJ0MSQgmBOH/Pfsg95j0mPNd82nzdfPv8mPxRO9q7RTsBOt46v7qdOwi7gfw/fIW9/f6tf1nAJoEpwlADbsOIBAfE6QW7hjQGsMeHyV1KxAw5TMlOOg75j3rPqFA3UJMRCpF6kZNSWZK9Uk/SltMAk7pTEtKyUgXSItFf0BQO6c3TDTBL98qOidCJN4fWRkUEj8LPwQB/PbytOq+47rcX9Rqy5TD87zVtYqtjKUJn9qYp5ECiweIAYmoinWK24nSiz2QqZOXk5aRL5Fsk7yVsJV8lF6VIZkknXufGKL9p4Gwz7dXvB3BMcnz0k/axd435Frt+/dSABsGDAwzE3MZ/xwlHzMi+iVVKPgoeCqmLoAz4DVaNu44Qz/sRStJE0oiTD5Pvk9YTC9IyEWIQ0k/aTpbNz81VzHhK8MnqiX/IlAelRmGFn4TXQ6CCA4FMAQEAywAr/1k/e795vxt+pL46vfL9vHzRPCI7YfsFu3Z7k3xxfMe9gT52PzTAA4E4QY0CqUNxA91EMERTxU1GnYe5yHqJaYqgS6xMI4yWzVLOP45xjrnO2I9Xz5FP3pB70SyR4VIRkgKSGFHiUUYQwJBzz5hO/c29jLIL1ss/CdbIz8fHRvIFfwOlAdbAC75i/Go6W7iLty71dDN/8TrvJC1B63fovGZDZUPk6qQWI3ui/iNFZE8kqSRtZE6k5OUd5TWk2KUGpZDl9eWc5b0mAWf96XXqhiusbKcuUfAkcRryFnPSdmL4ifpW++f94cA7QbiCpUPPxYIHDsedx51ILIk8CdjKNsoJC3BNK075T97Q2BI10wmThNN2Uw1Tn5OBEx9SORFWUMoPzY64jZYNXczKjCOLFopUCV6H0UZ5RSAEn8QQQ67DFAMnwtOCe0FCgMcAWf/df1y+z35bvZ686/xb/GY8YLxcfLB9VP6kv3d/iIAswJLBXAGHQdtCXsNcBFZFAcXFRrzHGIfHiJaJQcoqClpK/UtzC+FL6kuATCSM6g2+Tc4OdA7aT4VPy8+VD25PHQ7hTm+N+81EDMqL24rFijiI1EezBipFA0RDgxkBaf+5fgw8//rdONQ24HUsc3xxKa6n7HIq+SnpqMgn5Cc25z/nbCdIJwSmwebvZpTmcaXr5cimXiaZZrRmdOa8Z05oeaiIKSZp5KtL7OGtoK5EL+/xnnNVNLu1zfgLemI717zyvcu/h0E3AZuB2YJKQ5BExIWqhc6G2QhVif+KvAtmzJkOMg8Yj8UQjVFvUbRRXdEQESxQx5BET4DPRQ9KTvRNucy8DDoLuEqSCaqI/ciASK8H/ocbRrNFwAVjBKgEMwOAQ2UCw0KJQe4ArL+7/zs/Kn8kfso+4T8bP74/kv+Yv5FAMICXARuBUgH+glODLgN+g62EKcSrxRcF74auB19H8EgbSIAJKckLyUyJ4oqUC2MLkAvWzBIMVsxUDEkMnUzOzRZND80mDOZMX4ubCvdKDIm9SKCHyscchirE+oN6wdHAgz95/eS8hbtdecn4W3ZftDrxyPBAryIt7Kzb7HlsMOwxK/ureur7KnNp8GlTqTAo+qjOaT5oxCjfqJxo7ClxacoqSGroK5Xsmi0ULWLty68o8FIxrrKc9AN14vcIOBQ48bnAu0c8X/zx/WP+UP+HwLqBGYIww3kEwIZDB0vIb4l/imkLQcx5zOQNVw2dzfPOAM5CjgAOPQ5tTusOrA3tzVeNU80NTHqLZMsiCyIK+co/CXPI9ohLR/CG2AYtRXjE44SFxH3DjkMmQnrB0EH4gZWBhMGpwZmB9QGrASIAusBdQLqAksDfwRmBsIHGwhYCCkJSAqfC8ANjhDKEt4T8xT+FhMZAhqZGnUcOx/6ICshXSF9IocjkSOQI7skgyaPJ+4nxCgpKsMqwyn1J3cmRCWfI0shtR4QHPkYEBWIEPQLpQeLA33/T/uu9j3xGuv25FTf69lP1PTOycrrx4vFTMPswe7BUcKIwUW/kLw3ug24uLV6s9qxGbEyseSxpLLpstyyMbMttE61OLZdt0u5ubv3vfS/NMLvxNfHycogzirSmtbG2jbe1ODj4sbk2OZm6bbs4PCF9Qn6Sf6cAv0GxwrkDW8RJhboGhUe/R9RIjcl7CbtJlQnsymCLIItSC3/LXkvWi8YLQsrryp/KssonCbXJQEmGyXgIvkgNCCZH3weoB2SHWAd6xt7GS0XUxVxE28R6w9QD04PWQ9PD1UPXA8LDzIOJQ1kDA4M3Qu2C+ALewwaDVANUQ2cDTEOtA4zDxUQThFIEr8SKBPtE9MUhhUtFhcXLxg0GTEaRxtAHM0cER1uHeEdBR6rHRUdfBzLG9wauRlzGPAWEhXuEsIQsw6nDGgK3wceBSUC0f4d+073hvNZ71Lq2+QG4EbcE9kk1jbU4dNB1MzTP9K10NjPFs/fzaDM6ct6y8fK7clkyRzJlMi6xwzH6sYzx4zHr8eMx2XHr8eMyKrJ2sqLzCfPR9IS1U/XcNmr25jd5d7n3yThtuJV5NblZOdl6SDsWu+G8pn1Ofmo/eYB0gTCBggJ4As2Dq0PcBE5FNkW7BftF1UYSBmwGVEZJxmZGb4Z4hijF/IWzxbAFrsW9BY0FyEX3hbJFrQWCRafFAgT6hFAEX0QVg81DrANtw2hDTUNEw2/DcIOaw/0DwMRRBKhEuQR+xBmEJYPTQ5uDakNPA4gDrMNFg5dD4AQ/RBaEQgSrxLjEsUSzRJSE20UzBXDFvQW4xZHF+UX2RcAF0sWZhbVFsgWRhb5FRcWGhZ8FWwUmBNgE10T3hLCEXAQBA8NDXIK6wcEBioElwGz/n/85/ri+ED2KPRk80nz7fJa8vHxa/E48E7u9eti6Q/nzOXE5f3lkeXV5ITkVORq49nhjeDc3yzfBN6g3E7bAdq+2MTXKdfe1iPXRtjh2Qnbcdul2wfcMdzG2yjb+Npb2zDci912347hZOMC5afmQuil6Qnr4Oww73bxQPOV9Lj12vYL+Fz52PqL/H7+pADAAnIEbQWOBeYExwO2AioCTwIJAyIEYAWDBkMHcQcXB20GrwUIBZkEiATeBFoFkAVZBfkE0AT+BHEFLgZLB7QIGQoeC4YLTAuWCpYJbghSB8QGWAcLCSUL+AxyDqYPLRCSDyAOtwzXC2ALTAv+C5cNhw8SEfIRQRIbErcRfxHEEWoSGhOiE+wT6hO9E8ETHBRyFF0UBhTzE2QUMxVFFqEXCBnZGZ4ZeBjeFiMVbxMTEnURpRE8EsoSNxOcE9oToBPPEqURXhD9DpkNjgwbDPsLuQtFC9MKSgpJCdMHegaqBTAFnATMA8ICWAFv/0P9UPvY+d74Wvg9+EP4A/g098T1v/NT8dHujuzJ6rrphunt6U3qJeqJ6dzoPOiP5+vmoea+5uTmueZK5uPlreWg5bflA+aW5mLnMejF6ATpA+ns6N3o3+j16BTpN+l36fnptup36yjs7+zX7ZTu4u7q7gnvSe9p71LvPu9j78XvYPA48Sry8vKA8wT0nvQs9Yr11fU+9sn2Xvfs93f4/viO+UX6J/sM/NX8kP1R/vj+W/+K/8D/EwBhAJsA9ACmAa4CzQPYBNMFxgaeB0QIxQhDCdgJmAqZC80M6A2jDhMPlQ9NEPcQYxHPEZESkhNqFOsUTBXAFTsWnRbmFisXhxcbGO8YyBlZGqAa3xo5G38bhhtrG2YbiBvFGxocgxzjHCAdPh1LHUAdHx0DHQUdFB0NHeEcixwCHFIbrRo2GtcZbxkMGcgYfRjdF88WihVFFAYTxhGYEJYPsg69DZoMTgvuCY0IMwfiBZwEZgNEAi8BFADe/n79A/yV+lb5Qfgx9xj2DfUX9AfztPE18MjukO2D7Jjr1+o26ojpsujD59nm9eUP5TTkf+Px4m/i6eFj4efgdeAI4KXfVt8l3xvfNN9d33LfZt9N30nfY9+P38XfG+Ce4EHh5OFy4uviX+PY417k7OR65Q3mveaQ52HoC+mf6U/qIevh62ns3exy7TLu/O6/74XwUvEc8ubyvvOm9JT1g/Z392X4Ofnx+av6gPtj/D39FP4B/woAGQEQAvACzgO3BJwFagYkB+IHvAisCaUKlwt5DEMN+A2tDncPThAfEekRxhK8E6YUVBXHFS8WtBZOF9oXVxjqGLEZkxpZG+cbThyqHAQdXR25HRgebh6zHuQe/h70HsUeix5kHlIePR4VHt4dkh0pHaocLxzDG1cb2RpMGr0ZMxmrGCUYmBf5FkIWdxWXFJ4TnBKtEdoQCxAzD2QOpg3dDOgL1QrECbAIeQcfBtcExAPRAt4B7AAOADP/Nf4J/cT7gvpS+T74Tvd19pn1qfSr86bymfGH8HvvgO6Y7cPsBOxX66fq4ukK6S7oYue05izmzOWH5ULl6uR65PjjbePo4nriNeIb4hDi/OHd4cPhuOG14b7h7eFS4sniJuNo47PjFORp5J3k1+RO5Qfm2eaj517oB+mR6fvpWOq66inrrOtQ7BTt4e2n7mjvJ/DZ8H/xMfIF8/Dz2PS19ZD2cfdS+C/5BPrL+oP7PPwI/e393P7F/50AYwEXAsMCcgMnBOMErAWKBoAHhQiPCYcKUgvjC0oMpgwODYsNJQ7XDo8PMxC8EDQRohEEEmkS4RJ1ExUUrhQ4FacV6BXvFc4VrhWzFe0VVRbTFkMXkBe3F8MXtxeaF3cXYhdiF3QXiReTF4cXYBclF+cWshZ+FjgW1BVfFfkUqBRTFOETWxPeEmMSzREWEWAQxg8yD4EOsA3VDAMMNgttCqoJ6wgvCHsH0QYhBlwFiAS1A+UCEAI1AWAAlv/W/iH+aP2Q/I37efpv+Wj4U/dL9ob1B/WR9OfzCPMV8h/xK/BI74ru7+1p7ensXey76w3raurX6Tzpjujp53DnKOcD5/Pm6ebB5mnm/OWu5Y/li+Wa5cvlJ+aX5vrmQ+d9577nDuhf6J/ozegG6WHp0+lI6szqfetU7BXtju3Y7T7u6+7F75DwMvG88U/y9/Kv83H0O/UK9tf2j/cf+Ij47vh++Tz6Afuu+0n87PyW/T3+4P6L/zsA5QCEARICiwL8An8DDgR9BMAEDQWQBR4GfwbYBnMHOQjFCPUIEwlXCaEJ2wktCrUKPwuRC7ELzAv0CzYMnAwPDWgNrg0ODnkOpA6JDnwOrA7hDusO8Q4GD/kOyQ7XDj8Pjg98D3UP4Q9VEDIQpA9UD14PVg8mDysPfQ/TDwwQQBBEENMPLA/SDrUOVg69DYENyQ0EDtkNjg1LDcQM9gtqC1ILIAt/Cv0JAwriCcYIKwdvBhsHWAgKCawIOwf0BI0C+gCpACYBrQHVAZUB6gDc/67+zf1i/Sr91/xj/Pn7lfsJ+2j6Dfob+ib6k/lA+KL2dPVa9Wj2yvcq+PL26vRI82vyB/IV8tzyEPTS9Jr0jvMD8k7wMO+E7xrxlfLq8lHyYvEX8HDuWu3y7e/vu/E28p7xs/C779Duge5Q78/w5/EN8qTxOPHk8LLw9fDZ8fbyvfP086Lz2vIW8jXyk/N+9Rz3Tfjw+Cn4wPWZ8xT06fZr+Sb6ZPps+1b89fsx+5j7vfwR/b78kv0iANwCGwTXA8gCWAEDANP/jgHfBHkI5go/C8sJ5QfDBnAGdQYWB9wISQspDSYOtQ5xDlUMRwlwCJgLYxDwEmsSQxEWEa4QtQ6MDMYMmg+CEmQTyxJ1EqwSKxJeEKgO9A5qEQ8UohTHEk0QPQ/CD3QQvhDBEfYTDhVZEhwN/glJCy4ORQ9YDwIRJhOEEesKtAMoAWoEmgryD74RQQ8tCiYFRQFU/on9RQGLCH8NXQtRBJD+s/xU/K77fPwYAPQDWwTUANH7iPcP9Tv1z/eT+lf7kfrv+fr48vXj8aDwa/Nv9oX1e/GH7grv7PHq9Cv2gvSZ8JTtNu5r8YHz2vJX8fbwNfGp8Gnvne627lbvXPAN8jX0u/WE9Z3zU/Hj72bviu/d8Pvzk/f3+Dr3J/Rb8ZHuBOxD7Enx7/h7/hL/OPtm9THxF/Iv+MH+AgGN/27+9f4p/9T+awDgAxMF9AG1/p0A9gZQDGsNtAvRCcAIRAiiB/cFygPxA4EI6Q7KEUIP4QqjCL4I2wl9DGARLhYgF7gTVg8EDdIMgQ2gDkUQZBIOFe0XOxkCF1USYA+sEMsTohQSE9oSpBW9F44UGQ2NBwIIzwvBDVENhA6XErUUjhBWCTgG8AgxDNgLSwpwCwIOiw1MCVIFxwQ7BmEGbgSAAsMCBQXBBmMF4wDc+7X4hfeU95f5Gv5cAu0Bcvwd94z2S/nB+rX5qvhy+Jr2afLr7/vyRvmP/FH68PUi853xyu/P7vzwkvUA+fX4G/Y48uXuwu097xPxuPBX71bwSfM98xfu9Oie6WTusvCT7gPtc/D39lD79fpd90XzmvBH8F/yKPZq+p79Tv5B/Gr5pvgC+7b+FgE7AXgAygDxAtsFqgdcB4wFuAMAA5QDKQW3B24LgQ9rEeMOTgnTBXIIlw8bFvQY7xhoFz8U1g+HDHYMNw+4EkwVBhacFC0S2xB1EZUSBROEE94UuBU/FEERoA+9EAMTGBRME8URERGvEYwSFhI0EJoOlw45D6UOnwy2CiYKnQoQC+4KZArnCYwJlghEBmQDIQJiAw8FTAQZAV/+S/78/x8BvwCR/0/+2Pzq+gD5CPhu+Jb5cvpX+kP5nfcO9kz1g/XV9QX10/Je8BDvf+8n8ZDyB/JK73LsD+wR7rLv5u6Z7ODqUepT6sXqx+uN7PvrVuoq6YjpJ+vI7MrsK+om5iTkg+a76wbwY/GU8LvuW+y+6tHrgu8k88D0UfVb9hD36vUW9If0sfeQ+r/6qPlC+jn9yQCmAxMGXQj+Ca8KCAt6C8YLJwyrDVcQIBJPETUPxg7QEFwTxBSgFfQWSBiAGIEXHRY5FbcVGxiAG+UdXR7vHY4djRxcGogYJxnZGwIesB38GiQX1BPaErUUaxdoGH0XeBb8FccUgRLwEE4RLhJ1ESAPwgxDC4UKbQrGCoYKrwjDBU4DCgJkAbgACwBv/4P+7/zY+rv4Gvcv9oT1JfTU8c/vgO+N8AHxqO9k7dTrYOsy653qx+n86Bvoy+YG5UPjTOKz4kXkAObY5o3mlOVR5NrifeHg4DDhnuEe4aTfIN5b3WTdB94m33fgbuHf4UHiBeMF5PTk5+Xq5pXnnueo57Xo3uoy7enuCPDS8D7xTfGE8Zjy1/TY9576KfxQ/Br83fz3/rQBYQTFBqwIpwnKCQkKWwvLDacQPRMMFZgV2hTAE7ETPRWXF3kZcBoQG/Eb5BxfHYIdJB6hHyEhgCGzIKcf/x6WHjQe9h3bHZEd9hxLHKAbmxofGZkXWxY1FRUUdhOoEx8UCBQ6EyYSJBFEEJQP/A4fDsAMEwtPCUoH+gT7At0BPwFDAMn+h/3//O38sfzJ++z5Sveb9GjydPBd7onsuuvG66nr8+pE6iPqMOrc6Rzp/edB5gPkBOKy4H3fzt053MTbWtzM3F7cltta2+Hbutxw3dTd592j3czcHtvd2B3X2tbr1yzZ09kl2rfak9tf3AXdrN1a3grfAeCX4ZnjZeWk5pHndOhe6ZLqwuxS8JX0PPiI+sX7kPww/cD9df56/88AjwL2BOYHrwrJDJAOwxB8ExgWKhjmGWgbRRxCHBIcuRxeHjkgqiHZIgkk+iRLJT8lbCXUJdYlKyVSJMUjQSNpIpohYyF2Ifgg3R/5HpQexh3jG5AZxxduFtoUNRNBEvIRVxH5D1gO6gyECw8K4wgLCPIGQAV7AzoCbQHEAEwAFADI/yL/RP4l/UT7jvgS9tv0nPRJ9J/zA/M38lbwUu1e6oborOcn55nm2+XA5Ibj5+JJ4znk+OQh5X/k1OIt4BrdQNoI2OjWQden2ADa3dr+29/did+837Pert0J3QPcYtoO2dHYatlK2mrb79y43qHgl+Ig5JHkFuTo48zkKOYp5yXo8ul17ODuI/H082j3jfq8/Fv+7v81AdUBOgIwA+ME8wZECRUMTA9EEoUUSRYMGOoZmRvuHAseGh8iICchTiKZI70kbiXRJUImzyY6J3QnwCcYKAsoaSejJiMmpCW/JLEj6iIdIqIgkR64HGsbLxrEGJcX0xbxFZsUNRP0EUMQ0w1+CycKaAlNCPgGPwb7BRoFXQOyAaQArf9v/nz9F/1i/Kr6qviO9z/3v/bZ9U/1afVc9U70VPIP8ODt0uvd6QvodeYz5TnkU+Ni4oXh4OBx4E3goeAf4eHgYd8+3U3bWdnf1rrUytSO1yrbit183vbeJt953gfdu9sU28LamNr02uzbAN3y3ULfXuHj4x3mzeca6QLqZupm6lHqeepV61/tefDP88z2wvkZ/ToAPQJMA3sEKwauB6gIzgm/CxIOLRBNEuoUpBe/GW8bkR0rIDoiNSPNI78kqyX/JUomrycZKgcsYCy3KzUrFivgKqYqBSvOK/IrBSvZKQYp0ieSJTsjJiLJIWwgAR5WHAkcXBsIGWMWIRWbFC4TFhGtD6EObQxECfQG4wWbBLkCwAEmAhQCTQA5/mb9Dv3a+2/6HfpG+l35jPc39mz1J/So8kHy6fIJ8/Pxp/C2703u6Otu6cPnkOYZ5UDjLuH63ifdddzU3Gnd4N2M3g3fKd6T25TYXNbp1CzU2dQj19PZvdsT3Uve4N5a3qTd3N2K3mLeYN3C3DbdZN4K4Ezi/+S052vqO+1t7yPw0+/x7/rwGPLi8kr0Ovc7+yv/igJ+Bf8H4glRC60MEA5hD8YQmxL1FHUXsxnPG18epyH8JEsnYSgjKVMqjSsgLEUsySzXLf4uJjCYMQwztDNfM6sy8THVMFIvNi4PLlsuUS7NLeYsWSscKdcm9STYIgcgWx3aG9ca4xhKFtQU1RR+FL8SzRCkD/kNhAqrBpkEyQMWAqP/pP5O/wz/s/yE+nT6Bfv2+fb3GvcU9+31ofMr8hHyu/GH8NvvYvB78LruKOx06lbpaOeP5AniZuDi3qjc9tnE1+zWmdcS2VXa6drY2u3ZxNfB1BvSnNA10AXRi9M11wna39rU2mLbG9zG2+raQNvf3OvdZt2j3GTd1t8O43Pmyum27O7udfBE8Tzx5/CA8bHzz/bK+Wr8If8eAiUF7QdCCgUMeA04D2wRcBPGFAkWPhh6G8YeZSGOI9YlQihAKmQr7yukLBEuGjA4MvAzBTV1NZg1+DWaNrM2pDUUNBozljJ1MbUvzC5jLysw0i/WLhUuySzKKfElDSPvIO4dRhpTGKUYpRiSFjwUuxOyE48R5Q1HC9sJewf6A6wBPAFkAAP+Nvyk/Hz9evyS+uP55vmD+NT1yvPH8nbxyO8178Dvhu/i7XbsRez16yLqkeep5T7kPeJp3zzcBtk91sPU59TR1cnWBthc2UvZmdYw0j/OH8z+y6/Ne9D50lnUXNXj1jXYJNhF11fXt9gF2jfardkm2SvZc9pj3QjhFOTJ5kPq0u027x3uN+257p/x5fOz9Xb4Bvzl/sgA1gJ4BeEHxgnzC6kO8BA2EooTURZcGhwekyBQInkkLSdbKVEq2SpNLLYuyTDYMbkySTQUNjI3mTeuN1g3hDbdNdg1oTVLNJwyJjLqMk4zgjJJMUowHS9JLfIqGiibJDohIB/1HSoctRlnGKIYDBgWFZcRxw+kDhUM1wgfB1wGBwRSAB3+CP5t/TX77Pkk+zn8Z/oo94X1I/V+86fwJO+W7+Xv6u7n7bDtHO1L61HpSehx533lm+Ll35zdIdtQ2PrVEtWd1XzWRtak1IDSktB5zg7MvsoTzFfPQdLC02/UWNTG0nzQ688V0hbV/dYq2IDZJtpI2YXYLNrM3QLhLOO15c7on+qI6qrq9eyZ8M/zkPbS+Tb9YP86ABQBsQKcBIQG+whoDBQQ1xJrFK0VnBdKGuQc9x4zIU0keSceKTkpwCkJLBovZDHoMn806zU7Nps1IzUwNSY13jTdNCA16jQKNDkz9TLPMi4y8TArLxktSysJKq4opybFJBQkjyMLIbAcNxnaF5UW2BNMEaYQNRCmDU4KHAlnCeoHbgQOAogBx/+I+yL4PfiG+bH4vfaC9l/3Z/af8+bxAvKl8afvv+0r7Z/syuqP6DnnduZv5U/ka+Mx4h7gv92u24nZ4dYk1MvRkc9ezQTMIMwvzZ/Or9Ag0zDUcNL6zmTM2ct6zEfNWc430PPS9NUQ2FzYldfk1yLaZdzD3ILcQt7H4V3kZuVq58PrW/BB87L1SfmC/Av97vtH/Lb+IAHWArcFzApCEMkTIhV2FcQVtBa4GIQbWB4dIUMkbieOKYQqkSuqLXAwCDPRND41HzRoMocxxDFWMg8zhzR5Nos3ITcBNsI0DzPwMDYvAy54LIAqTCklKXwoVSbII+whHyDHHc8bnBqeGPgUnxFYEIoPHg2ACicKqQqfCGoEmwHIAPf+fft/+Rr6BvpT9/D0d/WK9gX1cvId8lHz2PKR8A7vk+7h7MTpvees52XngeWD4+jijuK24KLdztrJ2APX1NQE0uzOgcyIy6PL+cuMzNzNgM9a0CfQZs//zcDLB8rjyivOZNEo05bUqNYv2AfYYtcP2NLZYNvJ3OLeK+Ge4ibkuucD7VbxhvNn9YP4fPto/Bj8Bf3c/xkDwQWHCBAMnQ8nEs4TdBVkFyEZfRo2HBofwCLWJcwnlCkcLM0ucTA0MUcyxDNyNOAzTzO2M2M0cTRkNCA1LzaGNi424zWHNVw0czKXMPsuPy2SK34qsilSKHEmzCQfI2wgER2uGmYZehdfFPIRLREJENYMcAlgCIII4AayA8cBVgGF/4X7NfhK96j2e/SM8sjyfPM48inwEvBp8TvxGu977ULtj+xc6jjoVue05mjlVeQv5L7j0+FU367dWty52Y7VINGAzefKcclyyRvLYs640mXWIddE1ObPw8y9yyrMs81j0HHTjtVz1vfWj9cW2P/YIdv83bjfid/L3iDfyeCv43Lo++4/9RX5m/pF+2P7iPrr+fL78QBUBr0JkAuDDQQQVxJfFNYW7hm+HG0eKh/GH8MgXyIrJaYpBC9EMys1mjUXNpQ28jVVNEczdjPYM58zgTNDNGE1ITbDNnc3ZTcINmU0eTNZMq8vLSyxKVkomyYUJPEhcyBgHpAbkxnNGE0XBxTvEMsPFg+qDK4JuwgwCf8HsQTdAXIAUv6Z+qz3EPeY9iz0gPET8dfxL/Go7/3vGfLk8gzxne5A7fjrxOnB5x3n8ObU5RHko+I34ereHNwH2tTYVdeJ1LjQGM3eyoTKmsuGzUnQ6tM01yzYUNZD087QT8/BztTPudLY1WXXldfV143YU9nB2uDdruGc4w7jXeKT4yTmBunl7GLyxve4+lf7j/sg/JL8fv1VALkEaAhaCgIMzg4hErQUpRb5GPAbuB5nIN0g+CAYIuEkfyidK/gtQTDCMsk0kjUPNdoz3jLXMpIz7jM8M1UypzJINOo1gTY6Nrc1JDUgNBcyvS7BKrQndybuJWEk5iEVIDsftB2oGpsX9hXPFMYSfBAWD6sN3wr0By4HrwdPBrwCIQDL/+v+fPvQ96n2rfYI9VfyavFt8gLzcfJH8s/yTvI/8F3um+2n7HrqJejP5uPlaeS04n3hfOD93u7cg9qi13nUntE7zxHNtct/zK/PstPx1hLZ8Nnc2PnVENO+0cTROdId05DUu9Um1hvX1tki3ePeYN+W4Lji8+P/4xLlYug+7APvn/Fn9Wj5BPyk/Yz/JQERAR8AyQC6AyEHkAmvC6IOTxLdFdIYOBtlHcUfXCKCJKwlYCaxJwYq1SxSLwoxGzISMy00sjS7M8MxZjBSMJ4wjzDGMPcxsDMcNQU2TzZzNXszdDHoL9wtgyoDJ/sk+iMpIjsfwxyNG4Ya4BhQFy8WQBTXEJcNHgxXC2cJGgeZBj8HDQZlAhT/yv22/A/6Lffq9Wv1AvRh8jHyz/JX8g7x6/AP8mfy+PAW787tVezS6fnm5+Sq47ri3+H+4Kvfpd0m23rYzdVm04rROdCYzzjQGNIE1AbV59XU1wHae9o92TjYENhM14vVENV21/La3txv3Y/eYeCT4VbiJOTP5pnoc+k16zruovDx8Xz0ePlJ/hMA6f/AAOQCQAROBMsEqgbwCOAKJA1GEK0TwhbHGRodXyDfIkQk5iSYJeImWCg3KdIpXysKLnYwlDHLMa0xCzEHMJ0vAjD8L/EuMy74Ll0w4zC1MMgwxDCZL2Et/CpmKD8lWCK5IJwfdR3LGpgZwRnUGO8VHhOyEREQ/QxJCqYJOQmcBm8D5wIVBP0CM/+f/O38vfxt+Xr1N/SH9FjzBPFD8EPxovG58EDwovAP8OvtNexN7I/syupi53Dk2+LU4ZrgbN/I3m/ee9012+TXytQT08nSINOK0yLULNW/1r/Yqdqe20rbqdoC2yvcwdxE3NTbU9wi3aHdrd4x4RHkmuVT5iPov+ro67/rk+2r8nP3j/gP+Az6Gv5fADsABQEkBOQGUAc9B6IIYwoWCyYMeg/mE9cWThiCGgse6iC2IbchCiPBJfEnXigTKNcosCoMLEAsiSzjLUgvPi8rLqIt9C0VLqotkS0uLp8uCi7PLM4rKSsqKggozCSxIR0gyh/JHiYchxmfGDAY5hWBEgARlBHXEDcNiwk8CFEHVQQbAZ4AYQGq//37X/o7+4X6svZ585rzevTw8nfwEfDp8B/w/O0+7UPule4b7Wjrl+qw6dbnx+Vx5Kfj6eIt4mrhV+D23oLd8ds82tfY/dci1/vVh9Wa1iPYiNhR2JLZl9we31jfFt443V/dCd7R3orf7d8L4Jfg5eFW44zkT+Y86SnsYO047drtYvCr82T2vfg/+2T9qP7J/5oBeQNuBB4F1gYQCfsJlAkLCqEM9Q9uEqEU2Rd6G7EdLR5zHosf7SAfIsQjKCYDKAcoCicJJ0goISnrKB8pwSpXLPIrHSr5KE0pGyrBKnQr2CsMK1Qp3ie0Jr4kLCKwIGUg8B5CG/oXqReiGH0XcBSjEpwSbREQDoILowu+C/kIHwVsAw8DDgEK/j39Sv4T/ZX47vTU9Hb1s/Ng8arxXPPz8ovwPu+v74nvJO5/7Rfuu+2N68Ppyum36ZjnwuSY49jjeOP34XLgSN/K3ePbPtr72NDXV9ee2CrbDt1M3evcOt0B3kbeCN4w3vfeVt9b3rLcTNxB3lDhJ+NB437jVuWb52foV+jc6V3tafBn8eLx4PPm9kH5v/o9/Jj9N/7E/l0AdQKNA+ADMgX/B74KUwyuDTQQ3RNiF6sZoxo4G3gcaB4MIPUg6CFUI0Qk9iNuI/ojGyWhJfclVic5Kd0pRilkKegqACwTKx0pFyhLKFIoCye4JIcicyFHIacgqh46HOAafhqtGTkYZBdZF4cWQhQHEt0Qjg8TDcwKAAocCSgGjAIoAZ8B9QCO/tX8tfwg/CT6yPg0+Vj5nffV9fb1dvYT9fXyjfLq8hrxf+2s68vs3e2U7Hrqt+l+6drnPOXE4/bjLeQW4xXhPt8V3qTd292S3lvfqN8432DeuN1M3XvcFdsi2qHa5dtI3Jnbj9tO3bHf6+AH4ZXhWONh5Y/m4eYr5/fnK+lq6nXrZeyo7ajvQPK09FP2IffW9zT5UfuS/WD/4ADGAkkFqgf/CH0JawqxDMkPYhLOE3YUIRUwFq4Xhxl1GxIdPx5aH5QghyHtIXIi+yP9JbkmmCVJJJMk3iU7JlQlySR2JS8mwiXTJLAkLyX5JHgjWyFxHwAeHx29HC0cixoCGOoVLBUCFQYUHBJcEDgP3w3dCzIK0wnjCdsI8QavBWgF1wSIA4oCHwLRAAz+o/sS+wD7h/mN91v33fjX+VD5VfiK94f2nvWv9Qb2zvQk8izwmu+47sjsm+tY7CXty+ve6EzmleRg4znjeuS55YHluuQy5YDmlObo5ATjAeKK4TnhHOHR4Nnf7d4831rgtuBg4FPhWeR454fo++fp5yzp4+oo7BbtFe747kXvGe9m7+nw//JF9KL0lvXa9/b5hfrO+hb99ACeAwMERARPBi4J6gp3CxIM9gxWDS8Nhw35DgERvBK+EzcUsRSqFS8X7hijGhwc9hwPHS4dTB4kIFkhMCEPIFkeJBx5GgAbXh2oHuocBholGWoaVBvPGk4arhpuGjwYXBUTFJoUARWSE10QwwxYCtoJmAroCssJwgfbBZsENgTiBAYG8QWnA3YAfP4S/if+dv5p/8r/O/3+9//zRfQH90D4+Pag9e717fZU90/3R/fm9hz2hPXv9ETz0PDb72Lx3fJj8drtsesC7Jns1uvJ6r7q5Or06Xjo9ufZ6IvqnOxV7kTu7OtQ6f/oxeoZ7Krrn+oW6oTpc+gL6Hjp2Osw7dLs5Ovv66btc/CI8kPyTPBu7z3x8fMJ9e/0+vVb+Iz5MvhX9rj2h/nL/Lj+q/4V/a37qPxzAOQEiQcJCEwHqwWfAxcDzQV9CrUNow16CykJswcICCIL/A8rEycSNw4KCykLmg6gE4IXzxfFFOURZRJUFe4WWRU1ErQPdA6NDlkQ7hLfExwSmw+aDsIOtw71DoAQshGdD8UKXAfqB2cK1gv0C1YLrwhDA2r+wP7dAzAIzAd1BNoBuQDR/2P/7gAaBC8G0QQqAMr6Q/jf+sMAEAQUAPD2PfBE8br31fxB/B/3ffHH7kPw8vTH+fL6ovYj75TprumQ7v7zhPa29ZPye+045wnj/OQJ7VL1F/eM8aLqsegn7B/wnfDp7iHvffKT9a70dfAJ7UjtW/Cc8xj17fMx8PPr+Oph74j2uPq++B3zgu9+8b73s/2K/938IfgI9BbySvMk+LH+AgJr/mP2FvEE8735p/8PAiYCtgFdAWcBDQLBAtQCAQPEBPUHdQqmCtYIEQYjA4wBhQNJCR8P+Q+TCl0D0wCZBdMNjRJxEPMK9gf0CFsKpAkJCV0L1g4dD3ILmQe8BioIgglxCZ0HngQ8A8YG8g3WEWkN0gRzAWsGrAwhDIkFcAAmAXcESwUMA5kAaf9q/vX8CPxN/PL8SP2+/Vn+vv1J+834nfiQ+oH8C/0q/Mn5APal8kTy4vSZ9zj4mvdV97/2CPSk7wHtie/29mv+3f/W+eDxQu8i89b3Y/jL9ZbzePJi8THxHfPv9F/zCPA98Nv0Hfj79W3yevMc+Pz5GfeP9OD2ofvr/Hv4NvGg6/Dq0u9B93T72/h78gzvTvG69Wb4L/q2/Z8BiwFy/Jn2XfTJ9XP4D/sI/Zf8hPh385ny9veh/3AD6gAq+5L37vhZ/ckAngHdAYcDJgXRA83/2vzC/YIBGwVLBg4E/P5l+vX63AF2CrAOIA0pCQ4GLQTHAh4C4gKsBMQFXARuAOf8o/31AkII/QgiBj0EygTzBEsD5gKaBvoL5g2vChoFVABj/S/8oPxA/vr/eQBv/sL5S/VT9TX6f/6Z/b36t/wUA0MFbv489ZLz7fnn/3f/jPqU9bfxj+667VvxbvjZ/uMAxv3r97vzqvT++TP/qQDk/in8DPmP9Qj0IffQ/PX+oPoD9C7xCPPI9db2Ivcu+LX5z/pW+4X7nPsQ/KL8dvtM97LyTvK29rH6g/m99H7xt/Fb8wL1oPc1+/n8nfrG9SzzifYN/7QGKgb7+8vvwusV8q37LgG1AWD/UfpV8/nvzPWaAcoIIgWV+3X1KfZi+sP+/QJrBtsFTf9P9rrxhPTQ+ir/4gDnAlAF7gMI/W32VPhYA1AOEQ+tBL/4e/a0/1gKowqbAMb4C/3UB9gKeAFa9n/1Rf6ZBgYIoAT4AIz+Bf0R/Vn/NgLPApwAgf4o//wAn/9P+rT2VPozAggF+v5h97L35/5EAv36n+9x7Sn5fQiaDHwCQPax9Fz8CwHD/Ab3DfktAEoBq/eC6z7pwvQ0BU0MaAPk8jDq/O7V9x76Dvhs+sEA2AGi+6v33/uhAD39oPbN92D/+f9G9MHoNOxq/LIIjwU3+GXucO+Z9xf/rQFd/335YvKd7pHy3fw8BX8D5feG61PowPB3/iQIwgj0AWb4tO/y6n3uePxgDsoWtw32+Uvr4+s5+dsIThDvCVv4L+dU5B30KQyoG8sYBgc085Tq0PH4AKgJXgSf99Hv0/H6+GwA1Qc2DX8JBfrO6Trp9PrrDhYTxQUL9UfvGPeFA7oIXwJl+L73fANRD+wMV/0z8PPxT/+8CmIK0P9w9Tv1uP48BtcBb/Zj8pr6DARPA5X7g/j8/ckESgWP/9D5q/piA1YM5gmR+a/nYuPF7oj/pAv2DgIIW/kU7j7yGQP8DqcJbPpC8eHzcvt3AKsBigBq/Sr4NPJa70b0wgAKC7kG7/RG6F3xMQmYFp4KjfGd5MLuIQPdDLME1vX77lbyDffF97b4NP1D/yn5Z/IU+EEIYxBEBYTzvu8d/GcHjwTk+CDxh/Hw9Tr7IAETBXUCq/lH8nrz6/tPA9cDFgBb/lj/O/3c9XLxtvgOBmAJJP3N7q7sxfPG+Az8sAY0FesUKf1w4EXblfVxGtEr+xv+96Dc/d2i9ogPWxeNDTX6b+ZA3jDsNAoCIKMaQgGF623oP/WJBiQRrQ4lAnX2NPO79gz+QQkBEgUKJfCY3DjnEQdnHMIXCQb+95Lxi/MeAeIT9xmhCr7yguWk6Qn6lQ0OGOYOmPaB41Lla/dpCuEUhxSoCKf1iujW7I3/CBH2EuMDA/Fm7L/6QQtaClr7UPMO+rIA9vvS9UP6ggKMAs7+ywKACrwHVvq48UT2rP9MA+X/bfnZ8/fzCvxNBR4F0vqG8XbykfuPBCQHkgGR99vxpPbaAIEEmv169a72xv9+BS0Ac/SU7jr1XAGWBVD+k/al+bkD2gbZ/djzlPbkBB0PDAlo+P7tu/FI+4sAWQPYCJUKXP6562LpI/8hF5EWWP1x5A3iP/abDuEWBQoJ9zfxXvqlA0UEQANzBmYGwvy98ob06f6tBVMF5wIhAeoAbQUYDPQIdPg17If1NgowEXUF0fhn9ub3xvh8/kkIWgqhAMn2EPbp+ez8sQFCB6QEpfno9Nb9cQbLACT23/hOCKUS1w0pAMHz0e439bQEyhCUDbj+x/Ku8Rz4ywAgCEkJyAIN/BD8Sv1r99DxhfviD5sVowDW5cDhwPYgD9kXrA2x9y3j4ODX9mkTxxocBmXscefI9x8JzAzdBv4BvP92+gTzbfM9AFIN7AlS9wnq8/A/A1ENyggS/xT5mPfg+QcAMAUJAg35yPY2ADIJOQTx9fnvefo/CqYNY/977Bjp3vwVGHQgtQwE8M7lW/V5DacYUxC0/lDzW/U//rMCbwHJAiEISAZm+AHuNPhxDm4W+AYv847v/vksA+sDhwBb/pT+wf9D/6D8Bv02BUQOoAmG9RXlLOy3BwIghx9cBfnmSOEC/lUjcCkeCJbjZ+FA/NUQGQ0F/1T4PflZ+z//GgYDCjgGWP/6+4v7nfpX+ob96AKHByYKbgjB/t/wB+1g/XwXcCJbENLubdvL5wsIsB20FSr7aelz7oEAUw4dECEHFPhV7A7ve/+PDGsIPPu393oAMQbl/zH30fei/p8AOPu+9eD2sf79B2cLAwWc+nz3IP4CBMoAkPo0+x4Afv+7+Tr5OAHSCJIIhgI7+yj1NPX7/4YOchEiBdX3U/Xu+ML7lwJBEKMW9Afu72foDfcqCG4LoAT+/Zj6ufpU/zcEVgOwAEMFMQw+Bsv0s+03+2oLcwxTBjQHAQgb/FPv//f/D/kXfwQi78fxKAWqD5QH2fln9rf/lwq2CUr8T/FO9g8F+AuYBr0AKwFmAVn+9P8WCBkKO/+U9ej7qgnsC2MChf03A8wHJAN9/HL8MwCAAeIBIAbPC7IKy/9h85fydAEME/wTnAAq7Ovr8v4fEc0SqAV99f3tnfWCB7cStgqv+Qv2cgN7DM0B6/Hi9P4IvROBBb3uNOto/0wT2Q/u+r/uyfeNBhgIcADW/28GqwVR+2j2a/3CA5wA8fw3ABICH/1k/aoJxw9v/wjr9vBfC/AVngMO8DP0pwV0DTYITABw+g34LP5lCloNw/9A8hD4nQqBEggHHfa98P77gxBOHSoS1fTy41r0GBIiGOEC6PK6+8QKVAmr/t39OgSXAdX3xvh7BjINHgKu9Cn38QRpDCYIDQHH/Zv9dwCtBo0JlAGG9Wn2qgfVFhcSff5F8PbzIwXnFOYT+f5a6NzplASxGWwQs/dw8L7/1QxzCBn+3ft9/90BuQL9Aaf9ifsiBC8PlAmL9U7uWwCDFD8S8QGu+Sr71fuB/pMKxRRWDG/5A/Rx/z8IJgVyAS8EmARQ/Sv30vl9AQkJSQ8gD6UCPvLr7xH+pAodCWEBbv5+/lD96v6KBV4JvgRy/nL+LAIPBJwEEgRO/g72TvioCDMVVQxL96fvwf2RDwgRcwJX9Fj0qABMC3cJx//D+6AByAeRBsICAQPpAzr/lfh1+SkDTgxyC9oAZ/eC+9ULzhSJBgzvr+1mB0Ubmw9f91D1Pwj6D6sAX/Nx/SMRIBTnA1f0g/MT/XcF+QYVBGcCgQPUArr98PrfAboLdwlr+970vgC7D8ENDP83+C7/3gVuA6UAlgWFCvMFbv51AAAJeQkYADb8dAV3DUkFlPaO95MJ7hSECf/0i+8Z/akM5A/vB+79YPmd/ZgHkw1xCKj96/jb/CgC/wSkCGAMBAl2/tP4+v9WCq4Jf/+I+lUCDg4LENMEB/Z/8Z/8Ag6HFXgMY/sQ8HzyZAI1Fo0b0wZy6C7jTwEEIf8cA/4s7dH6YA3DC73+Q/ysBWALmQYs/8D8vv5PAXQCsQI2BCcH+wYtAd/8IQKoCpoIXv1O+V4BiAc+BL8C0Qh8CDX7mvWuBz8bvhDJ8j3qxAG9F+IR5f5T+Kb+MgR5BkwJBAiQ/jT36v1YDA0R4Qb++QT45wI5EC0RwgHP8tX56RG1G/0GnOwC7jQH6RY1Dtn/yf79BL4EjAA5A9sKBgvoAHD4qPvIBRMLKwi7A9MC9AKyAeECpghRC8EDr/pg/wUOdBDD/5/zHwFvGPYY3wBY8NX7uxEEFqYG0Pdn95YBnQuoDj4KfQOdAJoBHwH1/sUB7gk9DK8ChPkI/4sMCA9EBPj9JgU3DEgG1PzC/6wKwgvDAFP6HAGNCb4IPAWzB9wIdP+l9ioB4Bc+HIMDyupI8YENuhsODyz+tv5QCakKzABN+uz/XAuoEQYOYANj+cz3LAAeDEYTahHXBrL4F/Lz+68OihV3CCX53/oAB9MJiwPxBcoRChGc/Pjuhv47GLYYiwBk81oD+RcuEyb7Wu9E/swVvBu1Ct/0gO9D/jARARZdCgf8G/k6A1QQIhSTCuT8L/rvBY0RPA4TAUP7jgHMCCUKOQs0DkEK+/xa9RcAXRI5Fo0HvffH9ksDYBCrEngIjvtq+UgEKA//DbcEZP++AeEGDwu7C6gEVvnW+fUN0SBKFkX1l+VQ/F0eJSQVCw3zkPNLBToT+xJVCSYAG/1X/0oDLwcoCqMJ9ATQAXwFZgqqBpj9DP5wC+IVtRAOBDn+ov+UAawFFw+yFIYLavv291gFIxMrE4YIXf7W+5cCCA7tEpMKl/78/TcHEAtKBe0BAgfuCpcHcgWFCZgJDgCd+9MIDRgwEF32UuvH/qcZIB1vCLj0ovTCA6oRHROTCGr7BvcZAF0PxhYxD6MAXfoTAsMN6g8xB6b+HAD+CfcRTQ/CA8j7QAJzEWkWDAlW+aH64wioEHoMPwicCGsEAfsj+7cJ/BRZDj8Ai/v+/sABrAYcEY4UBwfG+Hf/lRH/ElwCCvulBxwSEAoe/oMAxwqwDQgK1AcqBVL/yP6CCNkPCAkp/hb/Ugc5CLwDXQYcDd8JPv+s/skJYQ7wBZoAmQekDAoFaP+OCuEXsQ97+Tj0tQfxF9MO8Ps9+54LQhOjB837AgJ7EBERgAKN+QwC1g7PDkAFeAEeBsUHKwKL/8QGBQ/zDGMD/v3EAMoFJAjSCKYJvwnbB3oErQFoAogHLwzECRUCKf/dBCYKRQerAqEFVgt5CKv/5P7yCKQQHg0OBTgB7AC+AV8GGQ4kEGEICAAAAckHTwpsBtgBNgF/BXwM8g6jBub6OvwCDLMVOwtK+877mAkTEJoJZQOoBJAGfgUVBwsMrAxRB6YDkQTjBBoELwfxCs0G6P91BVsUuBQf/27u+/p/FVIc3Akr96j2ZgJXDdIRrg3nAU759v/XD48UswfO+qv9rgjLC0EHbgZqCdAF1vwO/sMNVBg+DJv2HvSnCIwYJw8E+1r3EwZIEdoMBwT/A4wJ4gpwB/AEjATPA8ADTge4DDsO0Qi1/276O/+XCxsTMwwS/pP5ywLMC7MJfAMjBLYItAeKAkUCJgf1CCgGkwVECMcG6/8D/vMGsRB5DjMDOP2UApsKfguCBlgDdARZBSgDuQGoBSkMHg3oBT7+JP87BzwMZggSArwClQmPDAEHBgHAAwYLBQvZAhf/VAa9DXIJzP/M/xUJpgxiBQUAigVWDJkI2P+B/2MHFAvTBSoAdgGDBsAIxwZ7A08CbwWRCqoKCgPJ/BoCfg0JDwMEMvxAAv4LiAuqBKEDIQdlBDf9Ov+MCxURRgYa+YX6IQa0C/gH1QTcBc8E5QDmAfAI2wtkBaz+WQFiCVAMFAjxAsABsARjCQoLjAVf/Z/9Swj9D80JPP4j/VkGgguPBsEAMQLmBrIHQgQ/ADT+UAAsB0UN/QqwAeH7mP9mB10LBwrOBcIAXv5ZAsgJ4QvEBVv/WAB4BsMKfAqzBhEBav1aAL0H0ApcBrsBswJ/BMoBWP8xA1cIiwZSAYgCpAgcCEb/N/v5A+4OMA2aABn5UP89CiMMDASl/RcB2QiJCmcFngHbAgkEEwIGAlMHTAtoBk39u/sZBAgM7QkRAOj44/t6BjIO4gqJAGX7WgDaBloG0AIxBOwH4AXj/8j/cgaBCS8EwP6CAAkFbwV2A/QDOQVGA5gAQQJcBoQGSwKs/z8B8gK6AaUATANmB4YHoQLj/dH+7gTeCQYIBwGl/EEALgglCwQFcvyj+9gDEQtXCKf/0/xLA4cJAwc0ALH+eQK+A+EAtwCEBakHFgL2+4v+uwZSCXEDCv5EAOcFpgbjAV/+iQBuBVIHhARpABf/OAEyBFgFTwSKAnUBiwGIAqYD6APuAqYBkgEUA5oE/gMWAaD+o/+yA8YGzQVmApwAjwG6AmECBAIdAwYEhgIEABYAIgNyBXMEDQImAS4BCwDW/tIAeQV1B7YDf/4w/rUC/wWaBMsB3wHvAw8EpwE3AAYCxgS9BMIBjv8CAVsELQUzAkz/YQDGA2cERQEv/6EBVAXPBG0A4P0nANYDZQQmArcAhAGpAq8CiwIoA0gDqwHk/5QAKAPsA3oBZf9fAXoFQAY9AjT+8/5sA4EGQwWqAZz/pADbAmQD4AG1AKEBIgO3AtwAgwCaAoYE2gOOATYAywBQAmQDHQOSAVUAGwEwA/QDiQIhAXcBTgIAAmMB5gGxAj8CWgG2AasCUAINAQYBRAKZAoQBFAE4AhIDQQIlAVYBAgKtAeAACgH5AVsCAALJAdcBjgEbAU4B/QEEAiwBmwAUAegBJQLWAW0B+ACeAAcBUQI1A3kC3QBcAHcBhAIhAg0B5gDSAYECFwILAVEAbQBGATkCaAKcAbkAywCdAQgCkgH2AOsAOQFNASgBLwGAAdQB0wFpAewA9wClASMCpwG0AJ4AmQFUAuABEQEnAd4B7wEbAYUAAQH1AVMC8QFmARIB3gDaAF8BTAK1AuEBfAANABcBUQJIAjQBkQAWAfQBGQKLAR8BTgHFAeIBcAHmAO8AkAELAskBJAHqADwBiQGBAW0BgQGEAVYBPgFdAWUBMQEtAaIBGwLoASQBoQDiAH4BsgFLAdIA3wBjAcEBkwEnAQcBOwFgAUQBJAE7AWsBegFZASoBGwE9AW8BegFaAUoBXAFWASQBEgFHAWsBPwEgAW8BvgFiAasAjQAuAacBaAEEASUBlwG3AWcBBgHZAOwANQF6AWwBEQHZAAABQAFPAUQBPAEaAewACAFnAW0B3wB8AO8ArQGsAf0ArAAfAYQBNQG1ANIAbQHBAYMBEgHKALgA5QBZAcEBpQEPAZ4AtwAOAS4BHgEtAVEBSAEPAfEABAEVAREBHAE2ASwB/ADxACQBQwEgAQABJAFZAU0BGgERAS4BMQESAfwA8wDqAAYBVwGCASkBngCYACUBigFMAdcAyAAQATEBAgHNANYACgExASYB9gDfAAsBUQFXAQcBtgCwAOgAIAE3ASQB6wC8ANMAFgEjAeIAuwDzACcB6AB+AIwADwFXAQoBmQCLAMYA4wDUANQA7ADwANcAyADTANkAygDCANwAAAH7AMIAiACLAMsAAwH3ALgAiwCQAKwAvwDIAMgArwCGAH0AqwDhANcAjQBSAGAAoQDLALsAkwCGAJ0AqwCbAIgAjQCcAJoAmACpAKIAWwAZAE4A3AAQAZsAFwAxAKwAyQBxAD0AdACnAIIAVwB5AKEAbgAfADQAlwC4AHIAPQBlAJUAdAA1AEQAiwCcAGUARABnAIAAVAAjAEIAhgCCADsAHQBMAHAATgAhACwASgBFAEAAaACDAEcA9f8IAHIAmgBJAP3/HgBrAGoAKAAJACcATABbAF0AUQAqAA0AJwBkAHoAVQAoABsAKQA9AEoAQgAoACEARgBlAEAAAQAJAFQAZwAPAMH/7/9fAHwAMQDu//P/DQAOABAAKQAqAPb/z//6/0MAPwDv/8b//v9DADcA+v/o/wwAHAD2/9H/5f8XACkADgDp/9n/4f/9/xwAIQD7/8r/xP/r/wwABgDv/+v/+//9/+P/yv/Q//L/BwD0/8X/sP/Q//z/9/+//5n/tP/q//X/zv+w/7j/x//D/73/x//M/7b/pP+5/93/0v+X/3X/m//b/+f/vv+Z/5v/pv+d/43/kv+n/7D/o/+T/47/kP+Q/5H/mv+j/5//lP+R/5z/ov+R/3X/cf+Q/7H/qv+A/1//Zv+E/5L/iP9+/4P/jP+I/3n/cP9x/3b/d/90/3H/cP91/3z/ef9r/2P/bf94/23/WP9c/33/jf9v/0T/Qv9p/4b/e/9h/1r/Y/9o/2f/aP9q/2D/TP9C/0n/Vf9X/0z/Rf9K/1b/Vf8+/yf/Lf9Q/2j/Vf8t/yL/RP9n/2P/Qv8q/y7/Ov9B/0P/R/9G/z7/O/9D/0j/O/8r/zD/Q/9I/zT/If8k/zX/PP8x/x//Ev8U/yj/P/89/x3//f4B/yL/OP8y/x3/EP8T/x3/IP8W/wf/Av8O/xX/Cf/7/gH/E/8X/wX/9P72/gH/BP8B//7++v7y/vD+9f72/u7+5/7r/u/+6/7l/uT+4/7a/tT+1/7d/tv+0/7O/s7+zv7O/tH+0v7L/r7+tP63/sT+zf7G/rH+pv60/sz+zf60/qT+s/7J/sP+pf6W/qT+u/69/qn+kP6C/oj+mv6j/pb+gP56/ov+mv6U/oL+eP5//o/+lv6P/oD+e/6E/or+f/5t/m7+g/6Q/oT+cP5o/mr+av5p/m7+ef52/l3+Qf5B/l3+dv5t/kr+NP5C/l3+ZP5W/kn+SP5J/kT+Qf5F/kf+Qf4+/kb+TP5F/jf+Nf5E/lP+U/5F/jj+NP47/kX+SP5C/jr+OP46/jr+M/4u/i3+Lv4r/if+Kf41/j3+NP4i/hn+I/4x/jD+If4Z/iL+Lf4q/hz+EP4N/gr+B/4M/hb+G/4S/gX+Af4D/gf+CP4G/gD+9v31/QP+E/4P/vj95P3n/fn9Bv4C/vD93v3Z/ef99v30/eT93/3q/fL95/3X/dn96P3w/en93f3V/dP92v3q/fX96v3T/cr91v3h/dz90f3N/c39zP3O/dL90P3E/bz9wf3L/cv9xf3F/cr9yf3F/cb9yP3C/bj9uf3I/dP9zP25/a39r/25/b79uv2x/a79sf2w/an9o/2m/az9qP2g/Z/9qP2t/aj9ov2j/ab9oP2Y/Zv9pf2n/Z39kf2Q/Zr9o/2p/an9pv2f/Zv9nP2h/aP9of2d/Zn9lf2P/Yz9kf2c/aD9lf2D/YD9k/2n/Z/9gv13/Yz9pf2h/Y39h/2U/Zn9jv2F/Yj9iv2A/X79jv2Z/Yr9cP1s/X79jP2H/Xv9b/1n/Wj9eP2D/Xn9Z/1o/Xn9fP1m/Vj9Z/19/X39bv1j/WD9Wf1V/WH9bv1o/VT9TP1W/V79Wv1Y/V39X/1Y/VT9WP1Y/U79Q/1I/Vf9X/1Z/U79Rv1E/UP9Rf1F/T79Nf01/UT9UP1L/Tj9Kf0o/TP9Qf1I/UL9MP0f/SP9OP1D/Tb9H/0b/Sj9Lv0m/ST9Mv09/TH9G/0T/SD9Mf02/S/9JP0c/R39Jf0q/Sr9Kf0q/Sn9Iv0e/SL9KP0l/R39HP0h/SH9HP0Z/Rn9F/0U/Rn9If0i/Rv9Gf0e/R/9GP0T/Rb9GP0R/Qn9Df0Z/R/9Hv0X/Q/9C/0Q/R39I/0d/RD9Cf0K/Q39Df0J/QX9BP0K/Q/9DP0G/Qj9E/0X/Qv9/vz8/P/8Af0H/RP9F/0K/fv8/fwH/QP99vz3/Ab9Df0E/f78Bv0K/f/89fz+/BD9Ff0K/QD9//wC/QL9BP0E/fz89vz+/A/9Ev39/OX84Pzv/P/8Af38/PX87vzp/Ov88/z5/Pj89Pzy/PD87vz1/AX9Dv0D/e786fz1/P78+Pzw/PH89vz6/Pz8/fz0/Ob85/z4/AH98/zg/OP89fz6/O385/zz/P388fzb/Nr87vz8/PH83fza/OD82vzM/NX88vz6/Nv8wfzV/PP84/y1/LL85PwF/ef8ufyz/MT8v/yy/Mj88/z6/ND8q/y6/Ob8/Pzr/NH80Pzk/PL86PzV/NH82fzX/M/81fzk/N78v/yw/MH81PzR/M/84Pzs/NP8q/yj/Lr8y/zH/MP8zfzZ/Nj80/zV/OL87Pzn/M78tPy0/NX88/zn/Ln8mvyo/Mn8zfyw/K/85vwc/QH9tPyY/L/8zvym/J784fwG/cH8hvzV/Ef9FP1d/Aj8UfyL/GP8a/zx/ET90vwy/ED80vwi/Qn9+PwC/dn8mPyz/Bn9MP3D/FP8TvyL/ML89fwr/S393fyB/Hf8yfwi/S/95/yW/Iz8wfzm/NP8uPyv/JH8ZPyG/Ar9Wv0H/Yr8l/wG/Tb9Mv1v/Zn96vzL+9P7ff0g/wL/dv36+yL7vvo3+wn9Kv+4/5z+1/2M/mX/1v6L/R79i/2V/Q392/wC/ZP8nftz+378ff2X/Yb9/P1J/sj9QP19/bL95Pzs+1X83P3i/tv+iv4f/hb9Ffys/LX+2v/D/g391fzN/UD+1f2b/dX9jf2A/Nz7ivzC/Sz+vf2U/Sn+l/4F/g794/yS/SP+W/7+/vT/nv8w/Yf6Efqc+/P8H/0e/Xf9WP2t/PT82/61AJQAz/4Y/UH8HvzC/Dn+if9+/1T+bf1w/dL9F/5o/sj+yP5Z/hj+Vv6G/hT+TP36/Gj9I/6f/rr+qP6Q/mf+If7j/eP9Dv4O/sr9qv0c/gL/tv+d/7D+g/3v/HT9vP63/4P/Z/63/XD+9v+dAKr/Nf7F/XD+JP9c/3P/Xv+K/kL91vyq/W/+Lv67/RX+nP5u/jD+tP7r/nv9efsv+6L83/1i/iX/hP+Z/VH6d/kj/MD+qf4F/kb/SgDy/cL5xvet+Ij6Zv3qAZwE0ACl+PbzNPYR+/X++QMzC8sPcA5CDEUPwRPuEKUGZP5r/uYCQgXgAzQA6fpT9ajyCfRA9h32wvQ49fj3H/vb/N37sffE8tvxNveV/5AFoAYLBDsB9QFqB6kNtw54Cd0Caf80/x8B4ATBB+4EyvwP9w35RP6Z/279U/wU/N75Wvhy/L4CxgGK+AryevYZAPQDHgAf+xr5uviV+RX+8gTGBif/T/Vo9cQAxwqBCFv+HPlJ/YoE4winCb8Fjfsr8U7y8v9ECyoIAv1I90j4Mvi59vf6FQRLB5n/T/Vo8hP3DP31/13/T/38/Cb/9/+l/Jj5svzwAs4Dqf6++6j+AwHF/XT5dPqr/5wDpwM5ALD6lfZc+FT/2gRABHz/hvpi90b45P65BkMH4/96+kD9XwGZ/kX5jPvbBEIK/QXB/RP5M/kF/EYACwQ9BLsAm/3H/SX/e/6g/PT8+v9UAlwBmv6r/Y7/egHHAIX+0v04/97/Lv4b/T8AWwUPBUv8p/I283j+UggUB8D/cP06AHf+yvbs9Af/gAkOB5b8g/j2+5b7dPVe9cD/twdgAl730vMU94/4vfiJ/aAC8P1286zzwAFXCy0DY/ZT+YUI/g19Aiz3qfroBMQGJwHt/+0ELwYo/9r3G/l1Ag4NYhELCk/5uuy78ekD9A96Cw0AEPqi+Nz2Ffl5A8sL/gSA9TTx6fz5B/YFrv5g/aT+t/ql9mv8+wcLC2sCJfoH+wUAZgEAAPT/lQD3//j/WQGk/z35Ovbv/RgJDwmW/NbyAvc1Ar4GBwJs/Mn7uv0U/k79xP7hAtoElv/D9eTxI/qeBksKrAOH/O/5v/eR9ev6Vwh3EGMJefvq9Fz3WPzGAg0LdQ2hA5D2ZPTz+0cBlALdB44PtA1YAC30MvK491sCpRIUH2MXFP2E6B7sz/8LEZQY1hYzCsD2yusZ88gCggvSC9MJVgRG+SPyT/mFB+wL4AM3/IL8iP9DANIArgJZA90C/wOvBML/fvc89Y388wazDWIPlAo5/Wbtlum++NEOahdjCufy8uPt5yb5CAihCZsAPPf88g7yUPMv+UsC/wVu/t7y2fDO+ikE7QEz+QX3g/0mAsf+OPrc+/T/xv+l/Uf/+QF6/6j6gfvSAAQCDv4F/Av9FPvT9sX4eAF9BtkCWf2Y+hv3+fPE+WgHaA1+A5H1ofEp9rz72AFuB/wEbPoX9Wj77gAD/En3hv2eBEgAxfkz/vcDA/wy8Vj4Tgm/CJz1feu49ccA8f4J/HMBNANr+LTuzvP//m8BF/2o+3z8ePqB+K36CP0L/Pv7gf7u/Oj1ivP7+Wv+X/oi+KT+lwHV9hvsmfI4AbQChviM9hMAGQPR9z3tm/Ce+5ICygMfAcL4uu2h65/3FAZDCDD+b/P471vza/r3AQcGRQRv/oT3KfE47hnz0/6tBw0FzPo19Nn00vU787Dzw/x9BrwDKfVN6u3tlPmhAAAA1/wP+ob3Svfa+ob9QPoq9S/2kfts/GP4qvg0/5oBH/oG8jnzpfke/B37Evwy/e35nfbL+j4CFwET96zx2PfX/1//Dfty/JUA+fz48oTwnPpzAzf+TfNt9OUAgQUT+kPv7vVzBYoI/vvP8H3y6vqVAC0CZgCg+Q7xJu9X9Vb7/vxm/wMDif5J8FrnNO9v/WcBIvw6+eb4n/MB7jz0rgJPBzr97vPZ9Qb6YffY9F36WwDc/CP2K/gI//L8TPJ97vv3zwIQAxL8V/eT9iX2VPbl+Tn/YQGO/ln5efXe9Rb7vAD1/973VvC38F33Hv6OAncEugAg9p/sme6s+pMEBQVAAL77Uff48zP38ACcBn0AqPUb8pD2Yfs+/uMBhgMn/TvyS+709L394QGeA28Ek/+A9PHslPD++W//z/8Z/7z8GPcm8zH2i/v4+qr2r/fW/VD/M/kq9K71fPie+Db7lAJmBYP8XPHi8WD7ev+o+7j7FgNxBBz4d+yr8gwEjAo3AOT1zfgVASsBEfre9bD2B/e49vb6IQILA+/6zfII8+D4yfwa/SH97P2s/QX8hfoA+mT6sPsZ/Sv9I/yh+w77ffgm9kL5iwCJAn36FPF58Vn6YwEPAj0Aov7i+9T46PiF+2/8iPue/PL+FP3h9nHza/YO+738u/wp/Lr4/fOS9Zz/GggtBXr6G/ND82v3Df1JA8YFIgAL9ojwLfOZ+af+VQDI/f/3WfQB+FgAMQW3Aoj8jvcX9mD5ugCZBnoEW/uJ88fyBPed+9L+agBo/537B/cl9MT0yvlEAZAFRAL4+Qb0C/Ui/EgFvQoUB5P7O/Jo8177gQDhAE0ByQHZ/bv3lPeA/RwAVfzS+nIAAAXwAGL6HPtUARQExgBf+072ZPOD9zEDSQvnA7Hxn+Y77Xj+2AulDI0B6PI/7BLzTAByBzQEvfwl+Kn44f1HBTMI1gB385nsJPO2AMQJAQntANv2MPB98a77WQnlEI4LWvyW7xjwrfuIBYkFJgDx/PX7Ivr1+fP+bwRsAjj6LPV+9838ZQGJBfEGIwH59o3y+Pfw/xYDWAIOAAr66/Bt7dL1EAOYCGUDb/qr83bwR/JE+qcD3wWD/rn0PPER9q3+0gSABAH+8/Xv8Uj0IvueAtYGIgX5/ZT1aPFy9Ij9qwdBDKgHMf2w9Cfzg/d0/pMFbQmJBdT60fLC9hMEEg6tCyMAjfVo8i32I/3rA3YH4QRc/J3zKPJc+SsC6gSPAZf90/uw+mj5tPnG+2L9Av4r/8X/ffy79m31bftdAj4Dh//O/JD7gvhm9Bn0VflAAAoEXQKD+yHzwu9G9ez/+QdXCZoERPtg8DPrKPJ+AXcMdQp3/6/1jfKu9EP5IP/eBFsH8gPr+5j0MfN8+AoB6wg7DR4LawH19EzvwfVNA3gNQw2dAofzSuom74b+sAnFBkj8tfaq9y/4nvcb/CUEpQTZ+Y3vtPGe/JoDXAGt+nL1OPSd92/9TQCQ/Zf5ZPnP+tP4/PRy9db6Mf8n/539MP0g/Bf51fZI+GX84v8aAJb7qPOJ7pbyVP31AyUA2/eK9BX33fn/+mT92gCSAPD6JfVq9MP3BPua/JT9h/4b/yH/IP6N+/L4iPmS/coADQAD/rP+ywDe/wf8O/q+/C8AIAEyAA//lv1o/AP+RQJKBJgA3vp0+SH9cwGLA/ADqQKu/pz5Y/f6+FH7cvy9/Yj/AP8Y++73yPn4/u8Bzf85+rb00/Lg9rX+YwMOADf4oPPp9Fz4L/tc/oYB5QA4+3L10PRD+Dr7Tfwo/dr92Pz4+i/7Ff72AKkBYgCX/Vj5tPVM9qj7VAGxAu7/r/yB+3b8qf7QAOkAv/3P+GT1mvUF+bH9UAEeAhUAXf1U/Dr9jv5Q/5D/C/8Y/XX6f/l8+5b+xP82/tD7ivqW+jD7FvxJ/QD+H/3R+vH4Qfmh+zj+Hf+n/c76xfiV+Qr9KQDx/7f8Bfqi+qj9+f/S/xP+kvwJ/NL7D/vI+ff4g/lc+7b9AgD0AcICWwHp/Yb6nfmn+/X+WwG7AU8ANP6y/HH8Jv0Z/tn+JP+g/mX9iPw9/Tj/rABUAOH+2v2t/bv94/3O/mUAKwHp/2P9hfs9+/D7zPyo/Xj+3P6K/pz9ZfxU+wb7tfui/Ov80fxF/RX+6v1t/C/7pPs1/Uj+Of6E/b78Sfxw/O/8/fx//Fn84fwO/UL8r/ul/E/+0/4L/mr9iv2d/Tn9BP1Z/aH9Zf3e/FD82vv3+wT9Sf6g/hf+1/1W/u7+Q/+0/xoAkP/8/cz8Tv0+/0gBUALoAXwAPf8K/1L/3v7d/db9Vv/4AGMB+QDWABgBEAF8AMr/hf8FAEMBiwL8AogC5AFiAbIA/v8iAFYBewKQAu0BcgE1Ac0AVQBFALoAdQFYAkEDygOrAyYDowJFAhUCNwKWAsICdQLfAVIB8gD2AIEBEwLRAcUAIQC7AOkBbwL5ASIBdwAOANr/0//x/z4AvwASAY0ADv9i/ZD8AP1u/h8AFQGLANT+Mf2Y/NT8K/1B/RT9nPz1+5X7z/tf/LT8h/wD/HT7D/u8+iT6RPnF+Dz5Kfp0+uL5Vvl7+Q/6pfox+4j7M/tI+qP5yvlc+v769fs1/d39Y/2J/FL8nvzG/NX8Mf2g/bH9u/1p/o3/agDvAKQBigIJAwAD+AJQA+YDnAR2BS8GiQbTBoAHOAhPCAYIVghbCQUKtAkoCUQJ3AlUCqEK+gozCyQLLQuVC9YLWwuRCmkK5goVC2sKeAkUCWUJBwqQCrEKNAo5CT0IogdnB1kHXQdTBwIHWQaaBQQFkQQpBOkD2gOkA/gCHAKgAYcBPwF4AJv/Iv/2/r3+cP5B/hP+jP2f/Kb7/Pqp+oH6S/rR+Qf5LviP9x73jPa09b/04PMw87ryZPLc8eXws++67hnuq+2N7fvtoO6r7tnt7+zD7D/tz+067p/u5u7w7gPvcO/37yfwLvCm8Jjxe/Ir8x30ffXV9tn35fg6+oH7b/xh/cz+cQDUAQIDXQTTBfkGywe1CN4J+wrYC54Mbw0zDusOyQ/cEOoRvRJaE9YTSxTgFKgVYRa+FtsWGheKF90X7hfsF+IXphdFFw0X/ha2Fh0WkhU4FbIU2RMoE/ASshLqEfIQbxBBEM8PAg9NDsoNLg18DAgMxgtTC6IKCQqECbYItQcRB+MGmgbjBQ4FSwRKAwMC/ABnALD/ev5M/Zv86Pum+kz5mvhP+Jn3dfaQ9Qj1V/Rj853y/vHv8GPvD+5Q7afsreuy6vzpMOkE6OnmXOYg5rLlG+Wq5FrkDuQP5KXke+UO5nnmO+dL6B/pgunS6Vbq6+pv6/vroOxM7QDuz+6Y7zHwz/DL8QLz7PNz9Db1rvaX+Gz6EPyv/U3/2QB3AlAEQgbyBzIJIwoYC1cM0g0YD98PehBuEZsSYRO9E2QUkxV+FpUWihZLF4QYKRkmGV4ZHhqzGqkaeRqRGpcaJBqJGUgZQhkMGaAYPRjlF3gXBBeOFt0V1RTNEx0TqhIoEqYRSRHlECsQPA97DgEOlQ0PDX8M+guPC0kL/wpmCpAJAgnrCMEIDwgvB5cG8AWtBEMDowK2AmUCTgFDANz/ev98/lb9z/yr/Br8C/s0+uz5vvkv+Uv4W/d39oH1WfQJ887x4vAT8OfuUe3e693qzekr6GHmQOWu5Njjl+LC4eDhXeKG4ovi9uKp4x/kWOTP5J3lUeau5vnmguc66PbosOlr6hXrseto7E7tVu6H7wLxv/KQ9Hv2u/hN+9D9CwBDAr8ERgdwCT8LEw0MD+UQWhJ2E28UbBVrFj4XsRfYFwQYVBiUGKgY4hhzGfkZBRrZGREapxoNGxkbLRtpG2obCRuwGpsadBrhGRUZXhi3FwEXQBZfFSQUshKFEbAQvg+cDu4N8w34DWYNygzhDFkNaA0hDSUNcA18DV4Nng0ZDiQO0Q3dDVIOXQ65DRwN6AyLDJ8LqwonCsIJKwmzCIMIBQjkBsMFNgW2BJQDPAJ5AQUBBQCf/rL9Qv1X/Jb6vvhY9+v1/PPg8QbwNe4U7OTpFOiU5gHlQ+N94bjf+t193GrbktrT2XDZq9k02pXa7trE2w7dBN4o3v/dYN5S3yHgjOA74cPip+Tn5XbmUucT6QnrV+xd7Svv3fGJ9L72Ivk9/JD/dwIuBS8IKwt/DU0PQxFyE00VtBY1GAUalhtuHL4c4hzpHNoc5Rz1HKscERy8G+cbGBwQHEYc7BxQHfQcfRyoHPUciBzGG6cb8BuDG2UayxnpGWoZnhegFX4UoRMXEkMQCA9UDp0NEA0BDeoMSQzCCx4MxAytDFQMAg1uDgoPpg7MDiUQZhGKEVERoxHxEW0RkBAhEMoP5w7eDVMN2QzDC48KIQoIChYJbQdLBtkF6gQlA9MBxAHhAc4A8f6Y/dz8mPtK+cT2yvTx8mrwUe2O6p/oFedH5SfjHeFe38HdGNx52iLZTdgb2G3Y59hg2RzaRNtZ3MTc0txR3S/ekd5o3szeOOCk4UjiA+PP5NzmxucL6GjpA+w+7oTvRPF59B34Avuu/RIBugSdB9sJQgzGDt0QyxI4Fc4XsRkGG54cQR7gHoEebB4WH2cfqR7OHd8dWx5CHsQdsx38He0dgx1THWgdTx0FHecc1hxxHPwbBxw7HLcbkhrBGVwZahikFgoVFxTfEtgQFA+EDkoOLg22CxwLEgtjCksJJAn3CWUKHQpsCtILEQ1iDb0N+Q44EI0QpRBoETQSCBJfEUQRWhGVEEcPnQ5wDo8N+gv8CswKCwokCGMG0gWSBXcE7gIAAnIBOgBO/pb8Xfvk+ab3A/WH8jXwxu0n63Ho0OV243XhkN983VDbcdkL2OrW+dWO1e3VwNZT123XnteC2PPZSNs/3CbdGd673v/ej9/f4G3ikeOJ5Ozlg+eh6GXpo+qM7H/uVPCs8q/1ovg0+wz+iwEFBfUH6wpVDnARiRNvFSsYIxv8HOQdPx81IXMicyJNIqciiCIvIZ4fIR9VH/seBB5sHXMdUx2rHP0bvRu2G5UbVBsKG80ayxrwGrUa4RkeGQEZxRgzF6QUvhL/ERARDw8IDRwMjwsPCvcHuAacBo8GCAaaBaUF0QUDBqoGwQexCHUJuQp9DNcNbA75DtoPUhAGENoPWxCcEN0PCg8oD1EPGQ4rDGkLyAtYC5EJOghaCGoI4Qa6BNcDAwR1A6gB0f+m/lr9GPtJ+MH1dvPB8HftNOqp59rlKuQN4q3ftd1e3BHbStmI18bWJtfO1ynYttgm2hbcUd1U3R7d792v3wzhTeFF4R/iwOMU5aPlE+YN513odOk/6hzreeyC7u7wGPPd9CT3xPoG/08ChgQ3BwELbw5oECUSLxWlGJ0aXRvkHG8f9yCQIPUftyDHIUUhWh+8HTcdHB2/HDoc6BvsGxcc2RvIGoMZTBk0Gr8aBRojGW4ZQBoOGtUYyhckFwkWZRQNEwQSbhBSDr8MwgsuCtwHUwY6BhYGxgR7A5wDPgTBA7kC/QKUBN0FeAamB6sJHAtwC/YLeQ3VDgoP9w6uD3MQKRB2D6kPXBAgEP8OWQ5ZDqUN4wuKCoEKngqkCUMIugekB5wGgASGAkYB+//r/VT7xfhn9j30PfL67/XsmekD52zlsOMN4XTeH92L3Cvb8dij10vYrdkF2nXZj9nr2nPcDt0L3Wndb96V32zgDOHK4cniz+Nw5IrkqeSA5eTm4+dC6BbpPevg7aHvwvC88tn10Pgc+/v9LAJOBuMIugqcDV4RSBT9FegXmxrJHJMd9x30HtEfeh+AHioeZh4YHgcdChyLGw0bRRqPGS0Z6xikGG8YSBgbGBoYahiiGFAY0hfNF/oXeBc6FhUVVRRlEwQSuhCzD0oOOwwvCpYIBwdTBSsE2QN1A1cCSgE2AYMBOwHnALwBZwN/BOUE0AV7B7IIFAnSCYYL/gxHDVINQg5nD30P7A4CD6wPqg/TDkIOQg7ODXsMSQvgCm4KKQmzB+EGIwZ4BD4CnwCN/7L9jfo19670lfIe8H3tY+uu6Yzn3+SD4v7gu9/73Qzc3dqp2rvajNp52vvar9vP227biduw3DHe9N7X3r7eYN974Fnhy+FF4hHjzOP74/7jvORX5trns+i76fTrxu7A8PbxDPSb9yj7f/2k/wgD+wa3CVMLoQ05EZUUeRaWFwQZlBqfG0Qc6BxFHRId0RwJHVcdIx2xHIccXByfG6UaPxpqGmwaFRreGeMZvRlRGfgYtxgmGEYXjxYYFnYVfhR1E2oSHRGvD48OpQ1oDNUKdglaCPsGYQVJBM8DKgMfAooBwwHNAQ8BjQAyARIC9gGfAZECTAThBDQETwQRBsYH9ge6B6wIMwqaCusJxAm1CpsLqQt4C6ELqgsBCwoKZQngCPAHoQZcBRIEawKEAMv+LP0n+6n4O/Yc9PHxje9o7dfrWupb6EDm6uRQ5HHj0eE64Jffs9+y317fPN9836rffd9l3+zf8uDT4R/i+uHj4Tbi2uJh46Dj+OPG5Kfl7+XV5VHmneey6PHoXeks68Xthe888Gnx0PN29nb4gvpt/YQAtgJzBPUGFAqADP8NwQ87ElUUQhXcFScXqhhUGT4ZZRkIGnkaVRryGakZehlgGV0ZORnLGGIYUhhRGOQXTBckF0YX7BYAFlYVUBU8FWYUJxNEEsoRGxHjD34OfA32DFYM7QrlCFkH8AbGBp4F2gMBA04DQQMWAhUBYwELAqMBvgDqAP0BagL6ARkCNgP6A7QDqQPrBHsG6QalBh0HTgjxCKwIigghCbkJpwlFCRMJxQjpB8QG1gX3BKUD9QF2AET/2P3g+8L5A/iN9uH01PKx8MXuCu1g69jplOib58vm/eUM5fnjB+OO4n/iauIW4tXh+uFP4nnipuI74wnkd+R+5LHkP+Wd5YLld+X05Z3m8OYt583nlejz6Ajpe+ls6mfrT+xx7bjutu+j8EjytvT49pP4Ufrg/Jr/jwEdA0UF9AcjCpcLMg1pD4IRyxKgE6UUxRWjFlIXBRhuGDsY0RfPFxIY+Bd9Fz4XZhdUF6AW0BWJFacVixUSFa0UpRS+FJUUGRSRE0ATHhPjEmMStxELEUsQTA8xDloN0gw3DEQLGwr5CO8HEAd4BgMGUwVnBLIDVQPYAiEC5gGMAisD0QInAosCzANVBMMDqQMOBbMGCwedBvwGKAisCBcImgcFCJ4IfgjeB1kHzAbbBdAEIwSLA2YCwQA6/+j9Rvw0+lT4Jfcu9qX0hfKP8D/vKu6w7OTqfenM6EzoYec65nLlGuWq5PzjoeP744bkh+Qi5BjkqORL5a/lNeYt5wfo+Oc159zmh+d96LvoX+hX6Pbokum66e3pr+qQ6+brA+zC7CbuXu8z8FvxKfP/9Hr2PvjG+k393f7k/5sBKQSGBiMIjglKCxANhw7bDywRKhK5ElETKxS9FJwUShR8FPMU5hRQFPgTLBRIFK4TqxIMEh0SdBKHEjMSvhFyEU4RIRHkEMQQyxC2EF8Q+g+6D3IP6w5TDu0Niw3VDPQLZAsmC7UK3Qn+CGEI0wcsB58GTgYBBqgFngXwBQoGmAU8BaEFVQZuBhgGYgZ9B0sIHQi/BygI+wg/Ce0I2Ag4CV4J7ghnCDAI7QcpByEGUgWoBKYDNwLAAG//8P0L/AL6QfjR9mf1y/MD8jbwge4A7b7rqOqR6WPoQOdS5pvl/eR25CrkGuT644vjB+P24orjTeS45NXkIuXL5Wnml+aF5rPmNOea56HnoucL6LboG+ke6TbptulV6r7qKOvv6+Hsju0c7i/v3fB58qPz6fTX9gD5nPrG+0j9UP8mAVQCRQOTBCcGkQfICBIKdQuoDIYNJw6sDi0PyQ+FEDARnxHwEUYSeRJSEgMS/BFMEogSbhI+EkcSaxJfEh0S4BG4EXgRFRHEELEQvhClEEcQxQ9UDxMP9w7hDrEOWQ7jDXANIA3rDKgMPAy3CzcLvQo9CtAJnAmHCUUJwAhFCBsIJAgVCOwH4AfyB+IHpAd5B44HugfUB/YHMAhQCDIIFgg8CF0IAghGB78GjgYgBhsF7QMNAzACxwD8/n39Z/wZ+z75RPeZ9RP0avLW8JLvQ+577Jzqc+kC6WToHefM5STl1OQd5BDjieLe4lnjPOO+4qjiP+P840zkPORR5NPkduWw5WPlD+U15bjlDuYh5mrmGuee53vnMuew5wLpTOoO66zrn+zI7e7uSfAd8iT08vWO9yf5nvrR+xz94P7BABkCBgNFBP4FhweCCGcJlAqiCx8MZQwJDfQNrQ4vD8UPVBCEEHYQthBYEdYR5RHmEUMSzBIEE9MSmRKwEgwTVhNSEyATExMvEyUTyxJyEl4SRxLIER0R1BDiEK0QCBB1DzEPxw7vDTANEQ00DeUMKAyRC0QL9gqvCsQKCgvpCl0KHQp4Cr8KXgrPCdcJQQo3CqIJSwmYCe0Jkgm1CAkIxwd6B7sGsgXRBEYEzgP+ArgBRwAO/wz+8vyO+wr6lfgT91f1gvPk8YPwGu+Q7SLs/+r+6ero1efx5jHmWeVp5KjjR+Mp4x3jD+MF4wXjH+N04/jjbeSp5NLkFeVf5Y7lx+VE5tzmFefU5ojmkObQ5hHna+f753vosej26NLpIesy7NfspO0E75Xw2PH78oL0ZvYl+ID5svoC/H79Hv/HADkCWgNxBMkFGAfYBywI0AgICjQLwgsKDLMMsw1oDpMOpA4ID6kPMhCEELQQ1RD4EDMRjhHsESsSRBJTEm8SkRKcEpQSqhL5EkITKxO9EmMSSxIiEp4RBBG7EJ8QPRCKD/MOpw5lDgEOtQ2gDX0NEA2MDDoMCAzDC5ALpwveC8oLZgsMC98KowpHChcKOwpdCh0KkgkMCY8I6Qc4B9IGsgZmBp8FlgShA8MC1QHkAB0AaP9q/vX8O/uL+Q74v/Z89RD0U/Jf8H3u5uyV63PqdumE6GnnEObD5OTjfeMw46/iEOKd4XThbuFw4Yzh2uEz4mPifOLa4qPjeOTQ5KjkkuQE5c3lX+aV5tLmYecB6Fjokeg16VjqW+vD6/Xrvew47rbvufCR8dDyfvQ29rj3Bvks+kb7nfxV/hIAbgGWAgIEjgWSBvgGhge8CAsKpwrBCjULQQxFDb0N3w0mDq8OQA+iD8kPyg/TDwUQSxCDEL4QGRFtEW0RJBELEWoR+xE/EhwS2xG0EYsRNRHQEKMQvxDOEHUQ1w9zD3QPZQ/bDiQO5Q0VDgMOWg2oDI8M4QzzDIwMDwzIC5ULSAv7CtkK3wrzCgML9gqtCjgK3Am4CZQJMAmmCDcI2wdXB6sGEQaOBdcE1wPuAmgC7AHuAHb/Ff4L/fn7lvoj+fP3yvYz9TvzdPEw8Cbv7O177BzrAuoh6VToh+e45v7lauXw5HXk+eOf44PjmOO849zjA+RC5Jfk1uTQ5I7kYuSg5DTlu+X+5SzmfebR5ubm2+Yr5wjoCumt6ffpXuoZ6/Hry+zn7Wnv9PAf8gzzKvSJ9db2A/hc+fP6avyR/bP+EQBqAWkCOQM4BGYFeQZdBzQI9giVCU4KZQuUDEoNdw2nDScOmQ6oDp8O/Q6uDx8QGxAUEI0QbREYEiYS4hHpEWISzBKxEkkSGxI6EjsS6hGQEXcRfRFZEfgQdxD5D6UPjA98DyUPlw44DisOHQ7YDaUNxA3qDbENOw3zDOQMxAyTDIwMnwxuDPcLpguoC5ULEAtTCs4JhgkwCaoIFAh/B98GLgZuBY8EhANmAlIBKwC8/hr9r/uq+rn5YfiZ9sz0UPMK8q3wKO+n7VDsIusU6h3pJOgT5wjmMOV45Kjj2eJv4oHik+I04qzhjuHm4TfiOuIm4jfiZeKn4gPjVuNr42zjy+OD5ALlFOVZ5VjmnOdO6Hjo7OgD6jfr/ut87CftM+6d70fx3fIK9P30VfYw+N/56frk+5f9p//6AGAB5gFgAz0FeQYRB9oHKQmFCoILUAwsDekNYg7nDsEPoRD7EOEQ7hBnEeQRFBJBEtMSlxMIFBsUSxTaFHIVrhWkFa4V2xXtFcwVmxVuFSkVyRSGFHwUaxQAFFQTyhJ+EigSlRH5EKIQiRBjEAcQiA8KD60OiA6BDkcOwg1XDWgNsQ2PDesMXAw8DCkMswsMC6kKfwoqCo4J4wg4CHUHrgYTBnUFbwQNA8gB0ADH/2D+4/ym+4L6EflU9631TfT28mDxlO/e7X/sd+uG6mjpHOjo5gXmWuWr5Nfj6OIF4l7hF+Eh4UHhPeER4dzgueDB4AThe+H34UDiP+Ie4jHiquJO46zjueMA5OnkHeb/5pHnVuhh6UHq5urk64PtLe9I8BHxJPKY8yP1ufZ1+Bz6ZvuC/Nr9Zv/RACUCnwMRBRkG5QYICIMJtwpxC0YMkQ3kDsoPiBB8EV0SuRLTEkgTJxToFD4VYBWWFe8VbxYQF5kXxBemF58X1RcOGAsY3RezF5oXbxcMF3EW0hVxFUwVGhWyFEAU7ROJE+ASJRKzEYIRNBGrECMQtA8wD40OCA7DDY8NPg3rDKgMSQyvCxILtQqJClEK8QlsCcAICQiQB2IHCwcTBq0EhAPYAkgCcgFpAGr/af40/br7Ffpu+Ab3CvY89RH0XfKp8Izv1e7O7Uvs3Ors6Rbpxucf5r/k3eMN4/bh0uAM4K/feN8+3wPfuN5L3uzd791b3s/eAN8M3zTfaN9033bf4d/n4DDiReMg5BLlQuZ354PoiunR6lLsw+3x7ujv0vDg8ULzEPUa9wH5pPov/M/9cP/0AG8C/QOTBR4Hmwj+CS8LWgzWDX4PmxDjECsRXRIEFOEUzBT2FAkWLRdcF+oW4xaPF18Y3Bj1GLgYZRhyGPAYPRnwGJQY1hhTGSIZSRinF5UXgxf4FiIWTBWJFAgU5hO0E+ESpxHHEGAQ4g8mD5cOMw5sDVMMvAvUC7QL7QpXCosKzApGCoIJbQm4CWUJdwjTB8IHqActB44G7gUfBSIEJgMVAtgAzv9A/6T+OP1K++n5SvmR+EH36PUN9VL0LfO88WbwOO8b7j3tuOwd7OnqNumZ51zmMuW+4y3iCuGN4D/gjN+L3ubd991s3tXeId9K3zDfBd9U3yHguODN4CHhUuK443Tk/uRq5oTo/+l+6gbrT+zQ7c7uUe/F73zw2vEP9GT20fd/+LX59ftN/vr/iQGhA8UFRweFCDQKIQytDfMOdxAgEoITwBRCFscXuhg+Ge8Z2xp+G8IbDxxvHHkcMhwuHLUcXR3PHTMevR4/H3kfaB8eH6IeDB5wHaAcfhtuGvAZyRkuGfsXChfnFuIWBRaCFGQTBxOfEm0Rsg80DkQNvwyMDJ4MrAxqDP0LrAtBC1UKPwngCDkJDAmLB6EFwwTzBAoFlQQ1BB4EigPmAaf/ff2s+1D6kvkJ+ev3RvYp9RX1HvVU9AXz0vF38IDuc+wM6+/pQug35rPks+Nu4uPg6t+a3/neld013G/bt9p02S7Y1Nd22FLZ4tkw2nPa4tq52xDdut5o4OjhG+MD5OHkGubX5+Lp1utU7Srunu5p7wPxBPOz9PX1SPf7+O76/vwZ/w8BxwKEBHcGQQiTCQULWg0xEHIS+ROxFeMXrxmVGj8bThxnHRoepR4qHx8fZh78HZseeh+BHwgfMB8FIIcgPiDAH5sfsB+nH1MfqB7iHYwdvB2yHcUcXBtDGnIZZRghFwoW9BSGEykSeRH2EJoPnw1EDL8L6ApcCUwIhQgKCbkIDwgiCLYIuggECF4HIQfwBqIGZAYTBmYFrQR5BI4EFQTzAtQB5QCC/3z9rfuf+qT5+/ce9vX0Q/QL80vxGfDR71Hvm+1Q67zp6Oil52Dl6uIt4dzfEN6l20nZbtfW1SvUitI90VXQ0c/Mz0HQ2tA/0YPR/dHP0uXTRNUJ1xvZMts53V7fn+G747Dlzucc6hvsje0C7/zw9vIx9Dz1fvcQ+0r+GACSATQEhAfpCUwLKA0XEPkS7hShFucYShsEHVoe8h97IUIifiIDI9wjSiT9I3AjFyMDIzYjhSNfI4ki1CEfItMilyJoIbAgDyFnIbEghB/9HhQf4x7yHXAcvhpVGZEYBRi2FowUtBL/EZMRNBAADgQMuQrsCYkJYAnFCH8HlgbwBqsHUQdEBjAGUAcQCJsH/gY2B8QH6AfFB4gH2wbpBY8FvgUUBSQDkgGWAd0BmgBl/hX9rPyi+7T5LPho91H2ffTk8ujxkvBp7m/sS+sF6qzn9OQF45Thfd9/3E/ZZ9a800DR686WzH7KXMlayYPJE8nDyMnJ/svuzcPOJs9D0IDSWNUB2EPardzP3zPjzOWU58Pp7+wB8NrxA/Ok9NH2FfnR+3T/GwOtBeQHQwtaDzwStBPQFZcZaR2pHw0hByNyJVEnnijiKeoqOysrK0ErICsyKuEoFCjiJ64nJSdEJgEltSMWIxYjoSJYIXAgsCDlILEf2R0FHQMdThy2Gl4ZaBjMFmwUThKmEKQOVgysCnkJhgcSBd0DLgQQBHsC/wD5AGEB8AB1ACYBUgK+AuoC5wMcBV8FVQVWBskH+wcfB/sG1AcSCDsHwAZMB5sH2QYSBhYGxgUcBEECzgEXAkEBVv8q/jT+n/04+2b4/fZQ9jf0bvD47PfqCOmr5bjh1d6G3PrYRdR20D3OyMvrxz3EeMK1wTfArL4+vw3C6sSAxq3Hecmqy87NA9BE0kzUk9bd2XXdrd+y4NXiFudA6zjtUu4j8Tz14Pef+FH61v5tBJoIogtpDzcUqxgiHEsfbCL1JO8mISmCK/0sSC2ELVAusy7hLa4s+ysnK3cp1SdGJ8Ym+yQTI0Uj7CQYJT4jJiJUI3gkNSPNINAfGSCVH74d4BuYGjQZQBf1FHES0w+nDR8MegpSCIEGnQXQBIYD3wK+A9MEsQRtBJsFIwf1BugFgQaHCFUJewheCNkJ1Qo0CqIJOgqhCvcJmwlVCqAKoQkKCfAJigpzCXIITQk7Cs0IQQZ3Bf0F6gTgAW7/h/4j/dz5+vX28mHwSe3N6Wfm+uJv3xrcBNnN1XPSQ88gzMXIlMUDw63AG74ZvL67hbwGvWy9VL8pwzzH3skbywvMsM1s0LHTXdZ92Lvbv+A15crmL+cS6oDvyfNm9UD3ovuFADoDwgTEB2IM/RCBFcAavR+vIiwkYyaRKegr1Sy9LUovfTC7MH4wtS++LW8rmCrQKoApJCbJI4Ak9SXgJPUheSArIbIhqiBZHwMf+B4iHpYcxRqsGIsWKhWRFJETbxHlDuQMTQuTCcQHNAYBBXME2gSRBVYFYgSHBEgGsAdrBykH2Ag5C7wLlwoWCqcKxApdCg0LxQx6Db8MiAyTDTAOqQ3IDWMPjhD/D2oPOBDFEH4PFw6GDikPiQ3tCi8Kbwo6CG8Dgf+V/d36x/Xc8IbuNe0k6ovloOH43jrcrtgZ1ULSrc8OzLnGn8Csu5W4Jrafs4yyU7QPt5q3ZLYKt8K6mL5dwA/CYcZjzCLR1tMY1i/ZJN2O4ZrlUOgy6kvtHPJB9gn4hfly/dECxgaSCf8NYBTpGUkdQCAQJKsndyqsLasx0TQ0NuY2TjcONhQzxzBVMLEvXi0sK7Iq8ynbJnkj5yLxIxgjniDsH1shWiGBHhUcuRxNHokd2BrgGAMYRRbSEhoPlAwdC7IJwwemBUEEFARoBBwEXgNuA3EE/QSCBHcE6gW5B6cIiAlsCyoNKw1pDOwMMg4KDoUM3QuXDPgMpAx2DeYP1BEpEoUS2xNzFDkTMBIVEygUMhNtETIRjhHWD3YMSAqTCXgHqgJU/WX5BPbh8a7toups6AbmWeOy4KXdkNnG1E7Qpswuyb7E9r4Mubq0HbLNr5Ktfq3jsHC1l7f+tpy2p7iFvLPA0MRKyXnOYdRA2pTe0OCS4rjlp+mH7K7uMfL69m366ftg/roDnwl3DfEQExegHowjPyUzJzsrMS80Ma4yfTXXOMs60zpHOUU2gDJgLygtqSrVJ3EmAydIJ4wlZCPsIjAj6iGAH2MeCx9iHzAevBxfHFkcABv7F2MUXhEZD8sMpQnqBfwCywGYAQ8BNgA+AJABVQPwBIgG3gcyCNkHVAjlCd8KiQrYCmwNbxDnEAcPgw1ODfcM9guhC38Mgg13Dm8QHxOZFJ4UThVRF1gYFxetFeEV/xUgFOkRihFPET0ObQl0BlQFewLf/JT3gvSJ8cnsDei55dbkyOJJ3zHcIdql14vTjc44yrLGVsLZu5a0mq8drkSuRq76rsSxfLW7t1q4W7nQu02/+sORyh3SMtgB3BvfpeLO5fjnQuql7S7xnPNi9ZL3H/rT/MkA5Qa4DSsTnRf0HPwibyefKXorai6NMcwzYDVqNks2TDWZNMAzrzBsKxsnqiUTJQ4j4iDmIDYiHyKFIKEfBSARIE0fPB86IDEgxh2lGgUZWRhfFp8S9A60DBALxQgVBjEEeQM4A9YCgwLEAtMDggWDB6QJwwuFDWUOXg5DDsgOkw/0DyYQsxAHEQ0QGw7PDMkMJA1xDWMOCRBSEQMSNhMbFUMWSBbbFqQYgxnuF9QVbBUjFRwSKw2kCeIHBQULAF/7gvjR9eLx7e1C6+vou+Wc4tTgod9T3cLZH9YH093PpMvvxWm/eLm4tC+wJasyp8ymBaptrjGykrUluaO8579+w7bHT8xq0UrXBd0B4Urju+U/6ZLsl+438LHylvX691X6jv1FAR0FiwrlEkgcRCNtJ18rHjCKM0w0RTSMNX83WTi6Nys21DMXMdYuGy3iKhUoAiYcJQsk6yHgH2IfUyCuIdAieCOQI0ojpSLzIOcdpxpxGKoW2BMIEJ4MHQrjB8kFLQS6AvMAsP8jAJoBKwLOAaoCvgVFCUoLNwyVDYUPxBCWEH8PRg5gDSMNiQ3GDR0NPQy0DKYOPxBcEHkQhBKjFTkXtxZAFjwXlhgvGcIZ7hpqGxQaAxhjFgIUfQ+KCuQHwAbDA2z+4/nn90/2+PIX76vsLOvt6N/l3eKe31jbetbt0WPNAcgbwuq8zbjmtIWwTKzAqfupl6wFsCWzX7Z8uuK+A8Kcw2fF/sjyzbnSuNZZ2pLdot+L4H/hgOOF5ljqDe8S9D/4tfs4AKgGoQ3ME8sZYiBbJi0qOSycLWouuy6nL0oxqDG+L50tLy0PLT8r5Sg4KIMofyduJW0kwiTyJMkkRCUAJnglmCOuIQMg1x1cG3cZ1hc/FcURwg6zDOoKLgn3Bx0H/AXNBEoEAgTfAmQBgAGrAwYGHQfJB1wJTwsuDMAL9QppCjQKbwrjCu8KsQpWCy4Npw6KDiUOaw/nEaMTVxROFYUWnBauFZEVsRZYF+gWDRdjGI0YqBWIEQ4P2Q1qC4UHcQQHA2QBCf4C+vT2z/SY8iHwzO1O69HnKuMS3inZXNRaz3fKbcYJw+C+ILkTs8qunqxfq8aqBKyhr4G0aLkQvjnCKcXfxnTIp8oozcHP7tKu1uHZttv13Pve/eEx5Xfo6+w78zj6HQDxBEoKpRCsFr4bECH8JmcruCySLEMtIS4fLcMqfSnjKVQq6CkyKX4onSc2J/gn6yipKMonHCiUKToq9SiWJjIkHyJtIOIephxaGRQW7RMbEjAPygsACj4Ktwo/CpwJfgkuCTcIrAdsCIoJvQleCXYJxQlRCVEI+gexCLYJZQqzCr8K7wr5C9gNZw8MEOgQ7RLsFEsVwRQlFUgWdRa1FcAVthbFFqAVVhWjFlIX2RXpE2AT9xKGEN4MbgpFCUAHugM9AHT9H/qy9Zfx3O527Pvo3ORk4WbeYNrB1ObObMo+x/bDCcBkvI65U7Z9sTmsHqkmqVWrKa8VtRq8Q8HhwqPCHMPWxBjHCMobzlXSItWQ1ijYs9qg3c7gbeUv7LHz2fln/u8CZwj+DfcSDxjyHXgj6iZbKEUpOSqCKtspCim6KNwoKylrKW4pgSlUKrUrRyyDK/Iq/iuNLXctniueKewnbSXRIVYewhtoGbsWRhRsEqEQpA5MDTANeg0oDXQMCQyTC2AK0Qj1B+wHzAf7BrQFTATuAvwB2QFqAmIDvQRXBpAHNggBCV8Kkws4DHkNIRCIErEShRFpEVMSKhLUEKgQTRKJEyET0xL8Ex8VwxQ0FAwVIhZ+FbMTchIrEQoOggnnBaoD5wDa/Cf5Avc09STyIO5/6pLni+TF4FXcyNea08bPyctcx+PCwr60umO2JLKdrj+stqsBrgyz27g+vem/9cHqw2DFMcbgxgnINsrHzQXSCdXo1X/Wjtkg38LkZune7nT2JP4+A3EGuArkENcWMhsTH1MjgCYmJ1UmBiZwJq8m7SYSKN8pKSu6K3csxy0iLx4w5DCHMa0x8DA1L88siioGKbAnQSWFIcgd/BqIGNUV0ROfE28UURTPEikRABB/DjoMWwrmCf4JGQkmBzIFfQNqATf/Mf7x/n0AvAGyAuoDbgXTBswHXAjxCDYKNgzQDQoOkQ2xDUEOFg5MDVMNgQ6qD3UQ2RG/E4EU4BP+E+QVZRd8FqQUMxQ5FAYS3g2mCjYJUgfEA0UAY/75/F36+PYs9PzxX+/r6/Xny+Oh38HbL9h81GTQ88sPx5HB17uptrqy5bBdsjq3F73TwOTBdMIExKHFA8bOxZXGwshvy5jNqs67zhrPsNHL1nncL+EK5r7sSfQK+sb9EAJVCPAOChQBGMsb1x5FIKQg8yAeIfsghSGKIxkmsydaKCwppip/LHEuKzA4MbExKDIvMmIwxCyAKRooPCfEJNogSh3PGr8Y5xb+FTwW0BbkFjMWnRQeEk0PPg1/DIkMTwwjCxsJ4AYNBakDfALTAWIC+gMdBccECwTABLsGBQj0Bz8IGAoODEUMegvNC1kNUQ72DWsNZw1nDXMNhQ6QEAoSVxLNEjEUBRX7E18SKBLEEggSlQ8QDSoLvghNBR0CIwBy/sX7a/h59QXzR/Dx7GPp2OUR4tLdQNmr1EPQAMy9x3HDIb+1ulu2LbPjsh22V7spwGjDecXpxm7HjMbLxNDDGsWXyITMBc/cz4PQhNIM1l3aOd9F5ajs8vNI+ar88P9RBCMJiw35EcgWuhqAHM4cRx0eHqIeZx/FIVglIihDKdwpDiunLBQuWC+DMEkxXDGCMHsuliv5KHYncCbLJIQiPiDvHVkbVhn6GLEZyhndGOcX+BbDFBwRDA40DZINJA2KC6sJyQeQBYcDvQIzA+kDWwTLBDkFUQVUBeQF/AYdCE8JwgrOC58LxQqSChsLVwsmC4ELjAxXDeINVA+qETsTcxPlE2cVHBZbFK8RnRCsEEQPAQw2CQwIyAbjA3cAQv7o/N76BPiP9c7zofEi7r3pQOWo4Hzb6NXJ0IXMcsi7w5u+97kitgKzTbGOshy3+LyYwTDEdsXbxQzFDcPPwIK/z7+qwWDE+sb+yAnLOc790sDYzN4Y5cXrSvK19+T7pv+PA1kHsgrxDU0RNxQvFrgXjRmfG5Mdth9wIl0l3icOKkcsNy51L2kwjDFKMsIxRjDSLn4triuIKdwnwyZ+JecjryICIjwhOiDBHwQg1x9BHuQb9BlaGB4WORPOEIAPpA5ZDZ4LCwoXCeMIOAmNCXoJPglMCXsJSwnUCK4I+AhcCc0JYgqMCqoJZAgVCMcIOAkRCYYJLgv1DPsN6w5WEEcR9hBqEMAQ6RBGD6UMRQs8Cz4KUAdSBPQCOQJiALb9x/vj+tf51fcy9U3y8+726qzmjOKt3s/as9ZH0pfNk8gnw9K9yrkmuPe4lbuIv2HE38hHy/jKCskSx7bFt8Tpw6HDUcQUxnLIxMrszMrPbNS52mrhd+fs7PLx5vVR+C365fxpAIgDDAb7CIQMbg8rEe0SvBXzGKQbKh4aIdEjgCW4Jnooiir0K5Us7izwLDIs4SpzKfUnlSYOJoUm0SYGJgElDSXDJcwlMiUhJYkl5iSNIoofzBz7GcgWCBSBErIRzhAGENkP6A+iD2APsQ8OEHgPFw7qDCkMPwsuCqcJvQnOCaoJqQmRCdoI+wcUCCMJDAqKCn0L+wzoDQQOfg6uDyAQFQ8TDk4ORw4TDNAILQdIB58GIQS6AQEBygBA/7T8t/p6+c33H/UF8uPuY+tq56DjleDb3YPaK9Yw0fXLZMaawNm7/bm2u9C/e8TTyHTMUc5Nze7JXcZkxBvEs8SdxY/GQ8fpxzvJocvFzovSvte53gLmdeur7gXxdvOq9Zv3Pfrk/XUBFARpBjwJBwwbDh8QBhODFqkZbhwsH4ghFCNhJBsmuCdeKFwobShLKGgnVibuJcclHiWlJIIlASdcJ5kmiSaxJ2UogyceJmAlgiQ7Iu8e/BuwGXgXdhV/FKMU8hTLFHEUPhQcFNoTYxOeEpARghB9DwkOEwx1Ct0JvQlKCeEIKgmKCQYJMghwCIkJ+gm5CV8KKwxDDccMSgz8DF8NxAtCCfsHpQdVBgEEpwL0AioD9gFQAI7/LP/X/YD7JPkQ95/0c/Hy7ZLqZOdb5JfhIt903KPYNdO4zHTGdMEevtO8UL68wpjIYM1oz8XOZswPyV7FVcIswUTCn8SPxiTH8cZVxzHJdMy/0AjWUNzY4jjof+v/7Njt7+618JDzj/fI+wD/PgG6A9sGhwk9C3QNlRG8FvMa4B2LICkj/SQTJjgnQSg9KF4nEyfKJ1coFCgFKDQpGSuLLEMtqC3pLQsuKy4mLo0tWiwNK8Mp4Sc9Jaoi3SCMH1oeph2eHXEdahwZGz8acxkUGMsWfRZxFjQV/hI5ERwQmA6tDKcLywvaC0QL5goGC7gK4QnKCcIKWQvhCqUKXwusC5wKoQn9CT0KnQhLBnwFjwUhBGAB9/+dAPUAav9Z/Tz8KPvI+Nf1w/M58vTvEe206u/oo+Zz40Lgm92T2s7VO88/yI7CE7/ovRG/pMILyHTNt9DW0FXOV8r1xWDCp8ASwe3CJsXixqrHs8cNyAPK7M0G04TYLN6X46PneenG6TDqr+so7m3xivX4+a39VgCwAisFYgdSCfwL+g93FFkYoxu+Hm8hbSMSJXMmzybwJR0lWCXhJcIl3yWmJ4YqlCxGLbotcS62LlouPC6tLsYu2C1OLJwqcSi0JUwjHCLsIfAh2CGlIRAhzB8NHkccuhqjGUgZShmeGN0W3xRVE7MRbw9nDawMqwweDCgLzwrPChIK+ggBCeoJywlKCFUHywf7B8IGvQVoBi4H0QUnA64BawFDAAD+4vzB/XP+Iv3T+jf58Pe+9QvzUPGd8Inva+0M6wPpz+bf46DgvN3M2pjWqtAlyufEAcJowefCkMbzy1rRidRU1DXRhMyYx4HDGMHPwGnC8MQ0x4zIXcm/yn7NkNFc1lzbOOBv5D3nQugv6FbogOmg653ulvII98f6c/0GAB0D3QWmB6AJEg09EZQULRcqGmkdyx81IVci8CJSIj4hLSEPIqUi9iJcJAgnkykkK1ossS21LiwvfS+dL98uMS1nK+MpLyhWJjYlKiWCJbAl6SUKJjklNiP5IEgfuh37G9Mawhq8GpgZzhdvFjIVPhMVEe8PnQ/pDq8NzAwpDPAKhwkxCaMJTAknCNQHbQgECB0G2QRpBeoFpgTxApYCiwLgAGD+TP2T/Rn9VPvL+RH52Pd/9ULzJPJp8QjwOu6k7PvqfOgm5cLh89553GjZJNUs0KnLG8hFxZPDY8QxyHDN+9Hc1LnVz9P7zvPIGcRywcHA7cHixIbIaMt2zdbPE9OE1r/ZUN1t4fTkl+aK5jDmbeZJ5xnpkOxf8Q32xPkf/YIAGgNzBLkFDwjnClMNuw/ZEiIWzRhFGwUeICCgIFIghSAGIf4gAiFvIkglQyiXKmks3y3VLlcvhC9VL+UukC5SLqktbiw1K4MqUCp8Kv4qdytHK0MqtCiXJqYjUCDBHakcdhw6HOIb7Bs4HOkbgxqKGJsWcxScEaEOgAw9CywKfwn7CRgLJAvBCWcI1gf1BjsFEgRpBNIEyQMpAlcBpADG/qD8A/x2/OX7D/qr+CH40vYj9M3xLfEz8Unwru507WfseOqM54zk9+FX3zfcyNh31U/S/s6Ly87IyseQyF7Kz8wG0F/TENXw07rQ9Mx/ycfGXMWCxcrGx8iDy9DO7NFj1LjWqNke3UHgSOIw46rjTOQS5RLmF+io6/rv7/OQ9z/7V/5DAPcBcQTpBmII2wmxDBkQrRIRFY4YWBzDHv4fFiG1ITohyiDWIcYjTSXQJk0pHyzpLckuqS93MJcwRDD/L3gvUS4qLcks8Sz4LNAsrixnLMUr1ipvKSknTiT7Ib8g2x97HhMdnBztHNUcwhtSGhIZlxdoFf4SDRFfD2gNhAtwCswJoQg1B8IGRAdZB58GQgaPBgAGzQNpAR8AF/81/Vj7wvq/+tf5UPiA90/3dPbT9LXzh/Mf85PxfO+u7evrm+nx5qbk3uII4bzePtz62bvXz9Qq0fjNP8yAy+TKL8vIzc3RY9RW1AfTT9FIzhXK/8ZhxgjH/Mc8yjXOKdKl1HXWzNh+2wPeU+A24lHjD+Tw5Jbl+uVw57fqgu6z8SP1dflj/fr/VQJYBegHGwnzCXoLSw0TD2URWRQ4F94ZkxygHigfER/6H9MhYyOYJE0mZCjhKYYq4iovK1MreSveK1cspSy4LI0sSCxMLI0sSCw8K2QqgSqxKsEpDCioJocl0CN7IVQfox0gHOsacRp6GioaAhljFwwWLRUqFGsSZBAKDyoOaQxsCaUGMQVmBIQDOwMJBMsEgQT4A/wDiQOpAYH/dP6p/Zn73/g99772GvYy9Q31qPXQ9Qn16fOX8ovw7u3M63nqKOlL50zle+Ns4b7eottb2CjVa9JE0GjOLM3gzc/QHNQP1gTXjteK1hnTtM4ny03I7MWGxfTHassIzmLQk9Pq1nvZxNs33jLgWeH+4dvhl+CM353gjOPd5o/qde/J9Or4jvtq/bn+sf8fAUcDjQXKB4UKhg0fEJcSgxUpGJQZZRqbG8McJh2WHTwf6yHjJO4nsSqCLHUtDC7vLdEs4SstLI8syys3K14szC2jLVotHi9OMd4wYy6ILBsrJyiQJAcjWiMUIwkiESLVIukh+h5cHDAbJBotGAEWaBQaE6MRIBDVDt0NOQ29DCAMLguUCQ8HRASYAlYCLAJ5AXgBywKjA1AC6/9c/l39nvuO+Yn4TfiI9zT2WPXt9PTzaPJI8brwuu/J7aPr4+k76FPmd+Tw4mXhQt8s3CLYwtN10EnP0M8h0VjTt9bo2eractnC1pbT+c+mzLXKIcoLyijK5cqJzA/PU9Lv1aHZbt2m4KzhLOA93pzdat253BndHuB95C3ocutT7zDzOPYI+fT75/2K/j3/1AC6AsYEjgepCjANnA+CEpQUtRS9FAsXnBrVHOAd3h8II6klISdHKIYplyphK7krRytvKhQqQyqGKl0rfi3jL/kwMTHdMTQyWjDpLFQqBSkvJ4skECOJI0Qk7yNWI2MjTiP8IasfTR0UG5YY0xVfE6kRixCoDw0PAA88D+EOjg3XCykKHgiSBWYDOQJ8AbUAfwAhAXsBuACk/xL/Mv4s/Pv5/vik+H33wPXN9L/0UfQL89nxOvF58BDvfe057OfqHekb5y7lF+Ob4PPdWtvW2K3WYtUs1e/Vntfb2ZHb4Nvs2hDZLdaR0oHPx83LzB3Mhcx4zv3QI9Mq1V/XPtmH2pDbH9yf25LaQNr42ifcyt0k4LviLOUI6IXrjO598Fjy6fRP94n4Efnu+av7mP6UAoQGewkWDPcOBBE6EfIQCxIfFO0V+Bc3G6ge4CCaIkIlLyiuKbIpeil0KTop2ijUKIUpJSt2LUsvsy9rL6sv+y8pL8MtTC1nLUIssylyJy0m6iRyI/AioCP/IwUjXiGuH2kdKRrwFv0USRTmE1cT0RJzEuURxhAtD3oNxQvDCV8HFQVsA18CtwGMAfABagJiAsgB3gCb/+f9Kvzv+i36avl2+Hb3afYz9f/zHfOG8uXxKfGD8Njvsu767FLrROp36Q/oyeUw48zgo96z3Fnb+9qK27TcM96e3z/gid+y3WvbBNlj1sXT7tFZ0crR5tKh1MbWyNh+2ijcZt1R3Qrc/drX2p/ay9mN2eTaBN3s3grh8uPp5i3pQeuJ7SLvZu9I7+fvEPFI8gH0vPYc+o/9zwBlA/IEGAbIB7IJ6ArCC20Nzg/CEUETaxVwGFcbxB0vIGcijSOrI9kjmCRiJeUldiY7J+cnUCiuKCwp5ikJK3Asdi2WLesswiseKh4oSyYBJfQjwyKzITUhDiGdIM4fJB+7HvQdYRx5GtYYSRdaFVMT7BEPEeUPNw6+DN0LFwsdCm0JTwkfCUMI8gZxBXoDEQEQ/xH+lv0G/av85fwq/cb89vtH+4H6LPmd93P2c/X981jycPFZ8STxXvCm74jvi+/l7pztQOwE65DpoOdo5U/jleFT4L3fEeAn4ULiruJk4q3hVuAZ3qbbUNpi2snax9rx2uLb99w13bjcWNxp3JjcpdyI3DbcztvO26PcId7Q34DhTeM25ejm++dj6JroPOly6tLrAO0k7q7vx/Eq9G32gfjM+pT9WgBIAlQDWwTtBa8HRQn5CgwNHA/bEJQSfhRQFv8XIRrgHFMfpSA+IQciKyMoJLskESVuJf0luSZKJ1wnMydYJ8In1iddJ84mhyZMJsQl5STMI6UiuyEoIYEgTh/AHX0cuxv9GtEZVxj9FgwWcxXYFOkTuxKrEcAQfw+nDb4LcAq8CSUJfwj6B4sH1AawBWMEIwPcAZoAt/9o/1D/zf6w/XD8l/sk+6D6vPm1+PH3XveD9j/1GPSM82vzQfMP8wvz5vIT8rnwku+r7jftAusW6VHoNejz59Tniui16TPqp+mO6BPnCuXm4orhEuHf4N3gk+HL4nbjJeOL4hbibOF/4Ozf0d+M3xzfbN+h4IbheOGD4aLiIeTX5PHkTeX95ZbmRed16P3pjOtK7WDvZ/EA82P0x/Xi9o73P/hV+aT6Evzv/UcArwL4BEUHQQk8CnUKGAujDF0OzA90EY8TUxU3FvAWPRjDGeIayBvYHLodBB4WHnUe7R4YHzQfhR+iHzof3B4SH1kfCx+fHtgeSh/vHtEdwRzFG0UagRhqF/0WTRY9FaMUlRQcFO8S9xGyEWoRpBDRDxEPqg1zC3gJaQibB3EGgQVyBb8FkQX1BFYEpQPNAhYCeQF2ACz/ff6D/hH+lfw1+wP7Qful+lP5Vvjq95H3NPcc9y33MPdN93b36/Y09QnzcPF78LDvKO9Z7zfwRvEa8kjyYPGk7//t0ux/67PpTOgx6AXpy+kL6szpMenJ6EvpT+pW6uboW+fO5mLm9ORH4wLjW+Qj5pLniOiu6Njn7OYN5wjowugQ6dXpdOs37XzubO9R8Bvxp/Hg8YjxkPDD70zwZ/JG9Vn4ufsf/34BUwJtAsYCRgN7A8IDxQQxBiQHkQdSCPYJVAw0D3AShhW9F80Y2hgMGNIWDxZNFvoWORcuF7wXNRkPG7Uc2R0xHpgdZhwxG1Ma9RkqGqga2RqOGhYadBktGDAWUBRNEw4TJBNVE2wTMhPkEgYTcxNQEyYSWBBUDikMEAqPCMgHYQdIB8IHqQhhCa8J1AnACfQIRQcUBbsCbgCh/rL9Rf3D/Hb8M/3o/nEADQHzAG4APv9O/TX7ePkj+FP3X/cI+D34gvfT9mX3APlM+n361vm3+Bj3FfVH8y/y1/ET8qnyBPOA8mjx+/DI8Zjy1vG77/7tmO3h7RPuWu7d7tnuwe1t7AjsXexi7Pvr9etc7Cvs4+pn6c3oNOkV6hfrLOxj7cLu+u9W8I7viu517irvi+9P70zv2e9I8HvwmPFH9Ev39fgr+Qb5NvnW+Sv7O/0C/23/AP8y/04AOQGEAUkCYwQQBxgJYwp9C1sMlAxkDIcMPg0pDgQP7g8CERkS2hLnEkoSuBH6EeISexN0E6ETrRQNFrcWVhY1FbsTZhLMEQsSnBILE1YTeBMiEzIS/xAGEL8PcRCMEZcRxQ9NDf0L5wvACysL/wpxC7sLowuuC7wLHgscCpEJ8gjABkQD0AClAIIBBQKOAtYDQQWZBUYEUQGG/df68/rH/E/9sfuG+hr8K//FANP/Wf21+vP4z/i7+db5O/h89p72ffh9+t/75fxj/dP8Wft2+Tn3x/QQ863ypPLU8QrxIfJe9Q75pfvd/Nf8gvsJ+Qb2H/MN8YfwWfEY8sXxJPFM8dLx3PFE8pn0Rvi3+n76p/jB9lX1e/Q19K/z7fHN77fvVfIh9Wr1s/PW8n30tvew+rD8Cf69/un93Pqm9uPzQfS89vP4w/mz+Xv5nPkM+5r+SQPVBisIMQiuByMGbwMcAdIARwLSA3sEuwR5BfMGjQiOCSsKggsPDpIQTBELEPsN6QsBCuUIZwnxCt8LtwvYC2oN0A+lEUsS+xEaEQAQBw9mDikOFQ57DbMLNAmRB6wHrQh6CU8K1Qt5DRUOqQ37DPUL4gk6B6EFvQVIBr4FGQRzAoEB/wB+AEwAKQEBA2MEBgSiAk0C4APtBVAG0wN5/uP3kPOB9IP51v22/mD+/v/CAosDvQGA/wP+mvwd+1X6+vnw+KL3hPcu+Nz3Efeb+P382gBZAVv/FP32+qr4rvZA9eHzffNN9rz7Rv/j/R/60Pdg9u7yKu7P60/t5fBs9Qf7AQAzAXX+avtr+oz5Rfab8cDu5+5U8OvwpfCQ8ZT14/sRAYoCCwG8/gP8SPi69JDzePR29P3xFO+s7qXx2vZq/FAAcwHHAAoANP/H/Nb4zvWU9X73y/mg+/j8+f0J/4oAIgIsAwMEdgXrBnwGdQOd/3v9KP75AFwEvAZyByoHAgd6B28IogmICksK9wjtB0kIeglkCu4KZAs2C+YJaQjnB9YHyga5BP0CpQIlBKYH9gtNDkEN/AomCq8JrAbGAS//wgCYA3UEtgNYA8sDdwQ2BaMFygRCA7IDSwcbCwILiQbyABr96Prh+PT2MveK+6ECyQd2B2UDZQBkAP0A8v/l/ev7vvkq+Db6xQABB2oGN/5c9IbvmPGs96r9YwHhAlQC2P52+IXyYfFr9Z76pP3S/jz/Bf64+sH3v/eh+cb5ivZV8oTxp/aK/9YFlASY/Vv3WvVq9er0evQT9Vv1dPQb9HP15vaW93z5AP1H/sD6M/a69Vj4H/mu9sTzI/J48UjycfWR+b38pf8bA0YELgDS+Rn3M/jB9/7z3fFh9fT7rADnASMAbvtC9VTyq/aQAJMJHQyYB1cAOvy5/VwBcQGa/Ab3DfX49tr6hP8OBP4GJQh8CdcLcgxvCLkBg/0s/hQBjgKcAW7/Mf2K+yL7z/xnAQkJmRHFFnoVWQ/4CFgEdf8h+bz0pfZh/pkGnQomCgoIKAdcCJwJIAeu/wj4b/cf/6EH4ghtA9D+6f8uBIAG9gSkABn7ivYZ9rr60wCuA7cCTgEmAv4EPwgzCswI6QJz+k3z8O908HP0TfuGAtYGywf4B28IygZxAV777fhK+sT7CPtJ+Qz4yPY79cP1svrhAdEF4QNA/3v8Vfy2/Hz8gfu1+Bn0mvFK9cH8swAP/hb5p/Yu92n5c/wI/VX3Eu857yb8eQsuEOEJSAEg+nnxeOer4crj6OzO+jEJuA+KCVP+ePoR/qX9dvXS8Nb4jAUzCFb+sPKj7h7y9ffp+3H8+PrZ+gD+0wJjBvsG7AN+/WP2Y/It8nbzC/Zm/GEFLgpKBvj9zfio+LX5OvmO+JD6zACpCaYPNQ2iA137p/qW/hMA+vzC+Nz2DPiu+04AVwQtCCQNmBCoDEsBAfjn+O3/+gLU/8j8rv0zALkCwgYlCwYLYwXU/5H+tP6t+8z2uvWq+0wGpQ/CETgLOAEG+8n6Of27/30COgRuAVD61/Tf9b37VwJbCBINVw3FBxEB1P6q//X9gvly+Ib9LAMvA0r/G/6aARkFlgTPASYAp/7U+XPyqO4O8039PQc8DS8PUw2wB30AcvsM+Rn1lOwa5GXlmvRICdYUqxAjBB37QPmL+Vj4X/jZ/EYD8gUQAjj5fO876vDtwflnBksMEQrTA4L9PfgR9NnxgvPZ+skGbBFbE2cKKPtw64Pen9dw2+rqUv87Dx8W4BT+DdEE5P1l+0j6lvZ88ZfvbPIM9zT6pfrb+Ln3cPvqA14KKQksBIEDCAdJBmn9NPOR77vx2vM79HD2T/08B68PeRJiDt0FvPxq9VfxYPLm+GEBoAe1C5UPkBBSCaL7x/Gv8nb5Af0p/Bj9tgJ5CBsJYQVhAikDOgakCHAJmgh7BMf7T/Jc74n0n/qV+7D7zwJ7D80XBBZCDVICj/d88DLxmff1+wf77PmT/TIEWQloCmkFhPrr8GHyLf4gCL0ICgZXBxoJrgSl/EL4L/if+Eb63P+hBZME9/xk9lT2pvwOBzYR3BOnC5b/ifnA+a/40fOy8ETzyfht/bEAPgN3BW0IcAvSCekACfdP9Q370/5d/IX5zPu9AIMDUgPLAAr7Q/Pa7ufxmPoUBJoKuAsCBz8AYvza+gD3Y/ER8Yj4OgAvAQr/4QDVBPsCtPqZ9JT26/w+AbACpAO/A4cAWPrT9KPyYfOk9cb4BPw2/t3/oAOFCq4QchCrCLz9QPSw7cTqse1g9zsEMA43ERcNmgRM/Aj4I/g0+vn81QBGBEsE+wFmAu4FXAV//FzyXvCm9af6Iv43BWkPIhR1Dv8DHv20+1n8Jvzm+tX6I/9YB0cMdQYM+J7rmOj07V74hQZcFXge9B2SFd8HlvXh4ozZjuC585cHmRMtFgoSAAsMBOT9HfgZ9Hb01Pg6/er+Mf9iANUCzQWHCKsJdAhHBgQE3P7o9CXszu2Y+YQEHQf1BVYI9gwxDdAGZ/2r9WLz6Pf1/iIBUf1j+jT84v1e/FT+vQhdEkYOCv+L84Lyy/TF83/xGvFa8nT3JwQtE2kXeA0ZAksAXwJA/WLy1+tE7BfuFPBo98gEjxCvE3gOMAV6+1v0/PG884b31vwYA6MGYwS0/8D+OwEXATj9NfxwAVQGgwPs+474GfzYAPEBrQD6/9L/Xv/S/8gBPQLw/Sz3MfTp9gj69/hT9/P7+wXBDIALUQdNBgsGVQAH9t7uXe+j9Iv6WwDtBfYI8we4BKgBov69+kP36/b4+rsBDQfDBu4AOvsX+/f+FgGSADoCJAfpCAgDdPqI9in3FPgn+jYBUQofDQoIAgNlA24EIQBf+ev27Pij+gL8WwFjCbIL6wTr/RUB0AvoEMAImPkB7xDu3fNV+wQBlwNABJEFowfcBhcBOfpC+Mj7sP/W/+f8HfpI+nv+SQQFBoQAaPip9Sj63ADRBTsJPwpWBbj65fCC7S7w6vbJASAO6xNiDmcDGPzk+LvzNuwD6qzyhgLjEBwXKRPgB7j7/fOK8L3ukO9U9rYBPAuFDnUMZwYt/DDxou2b9Z8C3wr8C/MJLAaD/tH0NfBW9Ib8qgKxBjoL1Q4eDn4KcQgnBxUAI/Ej4hPdT+TP8kcC5w0GE0ET/xJLElcLmPxs74/to/Oy9nj0R/T2+Iz9CwENCRgUdxWkBonzaOy+8q/8lgSnCm0MfQbG/O/2lvVd9AL1xv1FDG0UPg98Al/3e/Ex8cD2Of9lBVoJSBBFGfgZEgym95jpP+Xq5Z/pIfIH/ukIohFOGdMc5RaNCav+C/yX/Mv4k/FF7o3y+volAkwFIwQ1AEv9Kf93BcgLkQ7iDTEK6QFV9YnqDel28ZT8hAPjBVEHSgnkCDEC2vWn6wjtiPoICUcNTAjAAwcEtAQjAnT+bfuk98f0lPh0ApYHeQC99KjxMvlyApwHmgrqDLgLmgXI/fz3jPWq9hD6ovuO+B31FPk4BdIQ8hLlCin/lPeC+Kr/RgXUA0L+5/oA+g33GfO59QsBqwv1C/MEHQITCCoPtg2JA9b46/N782rz1fOo98z9/ACf/9H+6wJhCVANxA0lC0QDI/bg6vno3O4e9jz+nApNF+IZoA8/Anb7v/qG+rr4ZvZJ9A30r/iSAk0OdBj8HRMZzAWM7BbfUOWw89H6Q/px/GgFBw9hE+ARNAuHADr3p/Wq+mr+L/3A+/H+PQTgBUcCtvyJ+fj7JQTIDCAOcQYq/Rv69Pt1+6v2CPSm+Y0FFRAAExQNxgGj95D0yvim/v8ASgDP/5EAxQGRA28FLARO/uv4MPqL/wIAQfmc87L2KgBHCZ8PWxOnEXQHOvib7EXqfu8D9kD5W/vvA68VgiUII78MfvRO65bv5fRg9r74rf7VBO0HIwchAgz7CvgX/BABagCc/rkEgRD/FIILHPvB7k7sOPUlBgMULxMgBT/30vFo8Mvtlu2X9O//Ngr4Etga0h2hFyQKnfrY7Bjlu+h+9o8CrwGt9m/vwvWcBocWcxuFFOAKVwiQC2EJ7/ss6/Hi1OUz7gz3ZP4iA0wGUws/EucUzg5UBN38gvkX98D1Yfja/k4GmgzVDtYIyvyf9rX+pgt8C/76FepF5zPwNPqLAXoJZhKaFwgWCBCrCSoE5f1v9RbsxuWl5v7vjP6vC7cRgxBfDbcMGg2ICtoE4f6W+Bbwo+jq6X/1EQONCq4Mig1hDMMGU//4+gr67/nJ+gL+4AE/BCsHuQy7EDANFwPF+LPxoe5f8mL9qgYYBBn60vdBAcUIrgNT+lz7FwcwEd4RfgvBAXb1K+r751jz2gXjEQ8Ocf6K8ur2KAe/ERwM0/7O+ZIABQi2BVj72fLC82P9hggfDoANNAsUCQsDrfZs6ufnevCx/FMGuw2tFM0YgxUhCX73Pulh53Dz0AOoC24H4P6f+qf7iv0n/VH7nft4AbcLzRKID4AESPxj/OP+Lvxv9if27P35BpYJJwXM//7/AwacCkAGEfvv8xr3Gv64//L9tQIJECgb2hhHCQj27OjY5bTpSu4h8nj7mA59ItAmvBYD/xHvIOuR71750QSrCvYGgP+v/LT+XwBrAYcFXAqnB8P7AfGF8nD/TAwrD30IXgHmAVIIwgovA4P3ZvIb9j37uftj+eL4h/tQAN0GZg5lFDEWhRIZCaT7nu9v6x/wZ/gP/5ED2geGDJsQSRLrDh4F5vdc7a3pXe2O9+QFWBIeFjYQ8gXm/P33b/laAdAJtwrJAw79rftd/Nb6Ivij9rz2y/rjBoQX7h+1GBYKvQB6/TP4pu4e52rm0+uF9uQGMBnDJP8iZxRR/73s0uTR6U328QK6DKkTxBZaFUQRVguvANDwYuPA4TPsLfv7CNoTQxjWEZYDRviP95T++wT1BQMDuwC9AUQDsP+n9hTw+vL2+1gCtgReCZESexnRFv8KGPyj8HDtHfPX+6UAdQJICMQSRBgBERkBDfKr5yXhduBq6RL74Q/yIgAwHDCIHeb8L9570QvbifFoBiUR5hOTFG8SbQcS9ZjoMux8+UcCQwO2BI8Kig4XDD4IrAgHCg4FRPmV7eToNe2t93IC1gjQC60PxxO+EG0CiPDF6Fvx7AOqFM4bBhmdEFMGkvrM7CDgpdvr5Kz6pBS9J8wrUiBUDB/4G+gn3zjitvMHDHcdPiHiG8QTkglo/B7vYeUC4NXfmudc9wkKxhqzJ1ks1SCSBTHq2t9s51H0w/25BLoKhwyFB4L9H/JG6lLtl/7yFNkgSR1sE2ALFgI08wjlqOLO7Wj9VQivDCUOiRF3GLkd7hf4A1brBtyC2y3lRvOiA+MTNR+KIoYftRg8DR/7HeVS1NXSpePz/voWLyLjIBMZ7Q6FAx/5QPQi953+VgW8CEMJIAfjAAn2AOrJ45HprPsyE6glyCqVIAcMYvb453njJ+am7FP2PQP6ELAbyiCfHnITngDN7XPkEOcU8PL5GwSMDl8VnxS3DU0F5f0c+AT2ovlkADME6AGn/Nr6FgHnDTsY2hQ8ArbttOcG8y4ETBAUFm0XlxK4BoT5FvLd8L/x1fPG+cQDTQ4xFkcZChSOBAfxC+Ye62b7WQvgEvUQWAmrASn+Sf5M/pX9SACiB5AMkQdM/Mf29PvhAroAYPcJ89b6XAh2D68LOASKA/YLchQzEVQAVe0z5lvtkfgT/pf/2QVXE0AfSh6WDsn5XOxs65by8vpoAnMK8hBVD6cDavZ08p/4dQBHBOoGegzhEnEUZw50Au/0C+yA7VX5fAgPE4oWgxRdDmIF1Pyi98r0EfEb7JPpDu5o/EoT5ikzMgcl2wu3+HXzPPSH8bTsEe0x9PD8AANxBpYJHg+mF2wdjRZpAZjrBeWb7Uf3tfld+84EWhPjHFcbPxCdATb3TfYT/N7/4v3s+sT66fmO9m/4UgZPGDofEBjaDWkIAwQX/MfzRe9T7SPtPvPTAaMRlxl8GdQWuBIvCnT+l/Xg8ir0+/Zh+ysBhAYlCgMMogu0CHAFGgVkB3wH+QCL9YztoPE9AREQMBEmBkT+RgRsEcUW6g7/AJv1t++w7wj21wCkCoUOSwzPBwgF9ASVBQgFzAPGAl4AMPvR9rT4d/8uAwABVQDxB7oSiRVzDZkCsv1m/+AB4P8v+iL3WvsLAxEGSwNtAioIrA78DbMGS/97+2r79v4FBLYF6QJUAU0EEQakAY/9mQIdDKANPwbBAUoFuQdFAbb3+/Tl+YkAvAXyCfoMLw7WDdsKAgOM+Cfz6PYA/gIAtfz2+sH+9gS2CD0JgAm9C1cOHg0iBvr8xPcL+cX9QwHWAdsB9gRACycPNQvbAmYA2AaeC5oEaPf58TD3M/11/hcBgwphFQoZEhSzCpkAvfgG9p33wfgg+K/6eQN9DQgS7RDEDW4JiwPW/iX+R/8y/qD7mPuv/qMBGQMdBcwINQw3DdAL8wgFBe7/5/mz9N7zx/meA/kKxgwfDLsMvQ00DLsH/wFs/Nb4YfnB/BX+K/xI/bIGNhP2F4IRrAYR/z78YPzS/Xz+ZvyP+c378AWxEkoY8hDi/4XvSOqa8jQBeAwzEVYSlRGiDL0CD/lI9jL7NAIbBoMHcwpyDwUR6AnH/M3y8PHL903/Jwc7D8YT7BBiCYsD1wDW/Vr6Pfr//Mz8QflB+6sHeRRtE8QE3vYG9If4FfzX/dMCXQzcFIIVEA36ANT4C/i5+7r+af9PAO4DfwngDS0OfgnVAb37F/s3/3UD2ASOBasIlwvdBwT9lPQd+AEF8A5gDpEHNAK3/xj9z/lH+PP52/7TBpUP3ROUEPsI5gE8+//ysuxS7+P7TgsUFmEZmBRfCHP6YvQd+tcEGgtRC74K3guWCmkCnfV97MDt7fcAA1kJfQ1LFLka8hbdBaPyBOye9McBQgj2BYgA3v74A1cMRxDIC7IDvv9qAFn/q/k59U75RwWNELUSBwv4AOn8lP8+AnsAd/4LAr4IKgqRA5v7qfni/dsCQwTUApoD7QrqFUQaPhCW/PnsVeqw8Y/67AC/BvUNxRPBEiwJVvyW9MD1bvzWAtcGdApaDxQTQRA2BNfzfOl37IP6WQrjExMVXxAXCXsBtPrw9XD1W/t7Bg0RqRTWDzIH9gC4/1gBWwKNAU4AFQDcAPwBIwPJA0cDXAJSAzkHqguIDBMIEAHQ/GT+LwNWBaECav+yAEgFvwcnBh4EJgVOCAgK0QevAVb6Sfaw+BkApQeFC1QLpAgEBbgBzf+u/wYB7wIPBDkDsAB1/rb+yAGTBSUHYgVxAuEBvgQFCLoHRAM9/jj9swGuCCQNRwwFB9r/z/hw9O/1rP35BkYMFg1NDeQOFg9FCswAbPfV8zn4BwG+B2cJTQmjC/EOgw1PBYb7WvfI+mUBXAXjBFwDVgVXC7MQEhDkCLz/g/lc94P32PgZ/L0BCQgCDAYMSwkFB1sHcAibBYj9LPZh9ykByArFDL8IGwUyBGsDeAHwAMMDEgf4BQMA/vpA/XMGMA8/EEwJwf92+Kf0L/Tg9xwAYwrYEaIS+gwdBdD/QP65/ez7sfov/pMHpRKjGDsVoAnU+4rym/Bd9BH7cAMzDCcSABLNC2gDnP0y/X8BigbMB5kEMQHcAYYFQgfjBMwBUgJBBowJLwmgBewAnPzy+ZD6eP+SB8APYhQ2E6oMwgMn/NH3jvY89y35l/wpApUJKBAFEvkNawcbA14CygLtAa7/MP1e+x37W/3nAQcH3AqKDLoLNggZA1L/Lv96AbQCXQHY/3oBvAaYDC8P9wz4B7ADNwGp/ln7XvpQ/jkEiAZVBFQClARNCqQP/xDnDEsFt/46/Lj8nv2C/hAAlwFjAtsDjwdADAoPYQ5mChcEyP1y+sn6bPyt/SoA6AV3DQIT+hNGEAIJzf+i9mXv8+t77tP36AS7DzMUHBPID+8L5wY5AO35h/dw+t//fwMsBKAEGAfhCTAJwgPf/LT5f/weAk0FpAQGBAYHlwtrDIwHaADT+6j7Qf6fADMBNwHeAtkFRgffBRQEawSpBbQELQEr/sT++QLNBw0KjQn/CL0JFwn0Aw38w/YV9zz78/+pAz8G1wfBCDwJzwjOBssDhQHVAJAAaf+Q/uUAwgbNC9kK3QN2/Mr5jvso/jwApQMiCasNdQ16CJ0Cqv/t/8UAFADI/pX/OwNEBxgJ0wiyBzwFVgBj+tn2ovfH+5wBTgi9DosSbhEyC24CSPvC+HD6Xv2x/0ECrAW3B9IFQQEj/m/+KADkAOUA9QHBBEMI1go0CyMJxwW7ApwA5f4u/fL7GfxI/mgCFgfwCX4JwgbVA14Bqf7/+wr7gPwq/wQCvQWwCnMOSw1QBgP9K/bp80r19fja/sYGRQ4/EV0NwwT8/Jn6dv1nAcQCswHUALQBfgN4BLoDowF0/1f+Sf5m/oj+sv82ApYEQAWnBF4EuARkBFMCL/+3/BX81vyl/Uz+RwBlBEMIFghdAxr+dvyE/mkBPAMYBGwEIgRBA/YBQwDO/iP/sgFDBEEEEgJOAC4AvAApAccBugKUAyQEEgRAAqP+Mfx9/vAEfwqZCj8FE/7I+N72mPe/+XX9uwN9C3kQ7Q7oB1AA2ftz+nv6c/vr/dQB7wVuCEIIIQb1A8kCnQEg/xP86frO/DAAcAJ7AmoBFAFSAl0EjAXDBJUC8QAmAUsCNgJHAD/+uv0T/hn+vf7gAQAHKAtPDMAKZAe8Atb9O/p9+Gf4V/qk/u0DCwhXCkILGAqkBdn+zfj39dv29PogAVwHjQuTDDwKOQW6/5X8k/zN/Yb+JP9wAMYBWwLYAvoD6QRlBJ8CwgB7//n+h//9AHcCSwO2A/EDVwMpAbz9fPoc+aD6k/4PAzoGhwc/B2QF6wHE/Zv6tflV+9z++wIuBoMH2wZoBIgAGPw9+P71ZPYt+loA7QWCCJQIwQfnBfsBBv0A+ob6S/3t/zsBzAELA2AF8gZaBfUAAv3R+3T8Df2n/Y3/6AJEBr0HNgZHAjX+Cvy6+/r7rPz6/gUDAQfjCPgHpQTe/xv7+fdq93r5rP0RA0oI7AsHDUILFgfdAff8yfiL9aD0vfd5/hIG4wveDqIOxQq8A3b7lfRl8ffyPvh3/oQDPgfpCZIKUwguBBYAy/wT+iP4gvdI+G76GP6nAmEG8geYBx0GmgMJAET8ofnx+Bz6Zvzs/i8BJQN3BFAEeQIaAMj+1/4r/3P+mvwQ+4f7Iv4SAX0CPwJOAff/5P2L+1X6M/vD/ckA2wL4AkkBH/+G/WX8d/tr+wb9yP9jAhwEvgTnA4cBgv7A+zH5zPbe9e33ivxjAXkEYwW7BBIDgwAB/Tz5Cff694X7bP9FAnAESgbHBrUEhQD/+7T4Sfe19575jPwBAF8DugVHBv8EqQIrAAT+Sfz1+kn62/oW/YsA8wMTBoEGgAVhAz8AbvwL+cz3xPk7/gUDPgZaB6sGgwRjAXH+7vxE/d/+3AB1AhYDsAKzAX4ACP9w/W78qPzx/av/cQEDA90DcgOUAbP+1vtY+vD6Bv1g/0wBmALLAokBh/8S/pz9hP1i/Z39lf7m/+gAUwEbAT8A7/6i/cr8fPyW/BX9Bv4y/xAALAB4/z7+3fyj+9j6vPp5+wP9/f7HALwBcwHj/139tvoR+Sf5nfpu/AP+jv8tAUMCFwLCAAr/Vf1y+3D5LfiS+Ir6I/2E/1MBZgJzAmMBif95/cT7xfqG+tP6ifuj/O396v5S/2//pv/P/1D/5P3p+wf6zPiU+HT5Efvg/I3+AQAFATEBVQCf/mL8J/rL+AL5j/qL/IP+qwDJAr4DvgJeAOv9Gvzb+hP67/mt+mX85v6OAXMD/wNhAzMCyAAJ/xL9sPvq++j9kgCIAlADcANpAwsD8QFNAAj/5/6//50A3ADWADEB3wE0AvcBqAGrAckBpgFAAckAaQBNAKIAPwG3Ac0BoAFpAUgBTgFwAX4BVgEBAYAAuv/T/kL+P/6F/uf+uf8nAZUCLAPEArABKABW/qP8ePvu+iD7UfxK/goArwBMAGv/N/67/G771/rz+lb7svvg+7D7Kvu8+sj6L/uR+8D7q/s3+3X6z/ma+av5mvlT+R75Fvn++K/4cPia+An5M/m/+Nb3zPbh9Vr1dvX/9WD2avae9lX3B/jw9xz3O/az9WL1JvUb9Un1qPVL9h33qveL9wL3oPaW9sL2G/eh9yL4hvj/+IP5ivnp+G/46vjv+Wz6TfqJ+pT7m/yN/F376/kk+Vf5O/ph+578A/5y/4IA7QDFAEAAkP/0/rH+x/4M/6H/5gDZAsAE4gUxBgkGjAWgBGQDaAJEAiUDuQRyBtoHzAhlCbIJignOCMEH7AapBt0GQwe+B1II9giJCeYJ6gmZCUsJYgmtCW0JSAjvBmIGtgYkBywHHwdpB88HuAffBpIFWASKAxADjQLMARIBywD/AEIBJwGTAKL/iP5u/UL80vo6+RD4yPcm+Iv4uPjU+OD4fvhg95z1p/MQ8ivxz/CH8B3wye+w73zvu+567T7sW+ux6u/pAOkp6NTnKujf6G3peOn86CLoEOfg5anksuNx4yfkcOV05sXmp+Zr5tnluORv48fiHOMu5IXlu+aY5y3ot+gc6fjoWugC6IPoh+l66nnrBO0K7+rwN/Lm8v7yrPJw8rDyRvPx8/L0l/Z4+M/5f/ob+/D7vfxF/bn9Yv5c/6AA/AEKA6QDMgQhBS4G0gYlB7sHsgiVCRsKfgr7Cp0LeAyNDXIOzA4ID+YPShFNEpsS8xLzEzMV+xU6FlsWlhbZFvsW1BZlFg8WNRaWFqQWZhZqFrwWxhZPFtUVjRUEFRQUWBMhE9IS5xHZEEMQzg/VDoANcAysC8kKvQnNCPUHBAcJBvkEbQNIASz/oP1C/ID6tPiQ9+P23vVG9IHyrfCN7kLsN+p46MbmTeVo5Nrj9OKP4RDgjt613IXac9jF1lnVMNR+0yfTwNI20uLR4dHV0X3RCdG00HvQUdBJ0GTQktDo0ILRMNKp0h7TEdSM1QfXONh12fzacdxm3Qjex97A39rgNuL44+DlnedR6UPrNO2M7jnvxu+Y8IPxVPJE86v0mvbs+HD73/3q/4cB6wIYBMEEuARbBFAE/ARKBuQHpAmsCyUOzBD4EiEUWxQoFN4TaROdEs8R2BFbE/gVoRiyGmYcBh4dH/oerx0KHMAaEBoEGokaWRtOHJAdFx8rIBMgIB9eHj4eLx60HTUdVh0aHvEeWh80H6keCR58HcQcnhtWGqEZuBkeGmYaoRrVGpAadRmxF6YVZxMIEfUOhg2CDIILfwqnCckIfwezBYEDzgB//dj5S/b48trvPu2R68fqWerU6QDpqOed5QbjOeBW3XPaBdiL1tbVLtVP1KrTe9M902bSK9Eh0GjPts72zVvNA833zFTNFs7pznvP5s9t0PvQS9Fh0Y7RCtLh0hXUftXP1gHYc9k+29vc4d2u3uDfY+G14rjjsuTB5enmWegJ6oTrmeza7bDve/Fq8t3y6PO39Xr30vg6+vD7e/2V/o3/hAAoAYQBRQKoA/QElAUGBgQHXQhmCRAK0wrMC8QMwQ3bDtUPfBBBEagSRhQxFVAVZxXWFScWBRbaFT0WUBffGKgaSBx3HVseRR8KIDgg6R/JHy4gySBNIeMhsSKRI2okWCU7Jq4mnCZuJlUm8yUOJRYklCN7I3IjYyNiI0Qj1CIpIlEhByAdHvIb+xkNGLwVKxPuEC8PgQ2ZC6QJvwexBTcDVwAu/dD5dfZq88XwXe4f7BvqO+gw5sLjEuFu3gfc5dn21ynWmNR608/SOdJa0VHQfM/hzi3ORM13zCPMVMzjzJ7NTc7XzmLPDNCQ0InQKdAr0O7QBdL+0hTUqdV/1/3Y9dmq2jTbg9vc26fc3N0i33/gTOJs5Dfmaedo6ILpceoK67Lrvuzp7ebu/O+B8Srzh/TO9X/3g/lA+4H8mP2i/k3/gv+x/zQA7wCzAakC/gN8BdUGDQg5CSwKsgr1CjkLeQuVC8cLegy/DUYP1xB3Eg0UUhUaFnMWdRZBFjUWwRbsF1wZ1hp6HF8eOSCiIYAiBiN3I/gjeyTUJP8kUyU5Jo8nvihqKdgpYSraKswqFSoIKQUoNCeRJvclMyVHJIcjMCPkIvAhJyASHiwcQBrCF6MUdRHEDpMMegogCJEFJAMTAR//r/x2+eT1v/I/8ObtP+uZ6KTmeuVz5O/i/uAP31jdtNv32SHYXNb41DvUCNTR0zHTdtIw0ljST9LG0S3REdFh0bDR1tEC0l3S79K706rUadXD1f/VktZw1xTYWNjM2PLZgNvQ3Lfdj96Q35LgZuEW4rLiQOPu4/bkOeZT5zPoQOm16iXsBe1l7cvtcO4i79DvsfDv8W3zDvXB9kb4Qfm6+TX6+/q5+x78hPyG/SL/tgDfAdwC/wM0BTAG2AZPB84HkwjBCSgLcQyPDdUOahDwEfYSlxNlFLcVXBf3GHMa/hu8HYkfBiHyIXUiCiP+Iy8lVSZvJ8MoaioeLHgtTC6+LhQvdC++L7UvXy8eL0Ivli+eLzMvrC5NLuMtCC2oKwsqeCj2Jl8liyN6IWUfhx3MG8sZQhd3FNQRTA91DDEJ6QUMA4gAC/58+w351/az9H7yOPDr7ZfrUelD53HloeOx4dffaN5Y3UbcAtvD2c3YCtg511DWhdUA1cTUxtTt1AbV9dTx1CzVbNVD1cbUkdTx1HjVuNXx1ZvWndd02PnYbdnh2THae9oO28rbTdy73KjdFN854LjgNOFK4orjM+Rt5Pbk6uXC5ljnCuj16Mjpc+pI60vsFO2U7VHujO/Q8LzxoPLf80j1dvZw93X4fflp+mb7o/za/b3+if+oAPIB3AJfAxcEYgXvBkoIfwnmCpkMZA4JEHcRzRJEFO0Vkhf2GCwajhtKHS8f9iCIIgAkdSXlJjMoPikbKhordiwHLnEvlzCkMcAyyDOCNNA0wzSSNHc0fTRnNPkzXTP1MsgyZDJmMfUviC5DLdkr9imuJ2IlUyNVIQgfUBx2Gc0WSBSYEYkOPgsPCDYFqAIiAHP9vvpZ+FT2TvTt8Vbv/ewT62Hpneeu5bHj6uGL4GLf6N3u2wra6NhT2HLXBNbG1FjUYtQh1HPT19Km0sPS7tL10rvSZNJV0sDSO9NM0yvTjdOS1IPV19Xj1TzW3dZh18HXSdgE2bLZYtph25Xcdt3o3YTert/g4GrhfeHh4cfipuMq5KTkauVg5lnnYOho6TPqz+q86y3tk+5v7yTwX/EF81/0OfUd9nL39PhK+nz7r/zX/e3+GQBkAZQCmQO6BDAGygdJCbsKTQz8DbIPdRFCE+oUXRbgF6gZehv5HEoe7B8AIhckyyU6J7ooWyrYKwAt8S32Lj8wtzEdM0g0TTVSNlc3LjiyOOc49DgDOR85HTnGOB44cjf+NpQ2wzVvNPIyrTF/MPMu0yx5KmMooibKJHgixR8ZHa4aShiEFT4S0Q66CxgJjAauA5kA1/2w+8P5d/fD9DPyMfCR7tXsv+p+6G/myORd47vhq9+M3fXb7drS2TbYetZK1cPUadTO0/HSF9KM0XDRfNEm0VXQwc8Y0O3QJtGM0CrQ2NAP0r/SydLu0qLTldRa1djVJ9Z11iXXYdif2S/aRtrT2iLcW93L3fLdr9733wvhp+Ex4uXioeNm5GrljOZn5xLoIemu6gjstOw27UbuzO8k8SHyM/Oq9Fr29fdj+av65Ps1/ar+CgAnATQCiwMhBZ4G9Ad2CUQLFw2/DnMQbBJ7FEkW2xeFGWcbSh3vHl0g1SGQI3klPCefKNopXSs2Le4uIzAMMTMyujM1NUI2BTfsNyk5fjqIOyA8eTzcPEk9ez0/PbQ8JDylOxA7OTocOcg3UTbaNHkzEDJXMDMu8ivnKfkntiX2Ih8gpx13GwIZ9BWgEo8P5gxLCmMHQQRIAb7+dfwM+lT3k/Q58lvwn+6p7IXqfOio5tnk3+K94JjepNwV2/PZ7dik1y3WAtVT1LfTvdKZ0dzQqtCf0GfQDNDBz7DP9M990O3Q89Dc0EHRHtKx0qPSotJs07PUodUY1rTWsNee2DzZ3dm02nHb6Nt83Hjdd94K33jfUeCQ4bHii+Nk5FflP+Yo50HoYek26vjqP+wF7oPvUfAV8Y3ycPTs9d324fdb+f76W/xo/WH+eP/UAHUCEARgBZsGMwgtCv8LVQ2PDjUQRhJVFC0W9BfRGbkbkB1FH88gOiK+I4MlYicEKVcqqCs6LfAuiTD5MXAzCTWkNgo4JjkTOgM7ITxiPY0+cj8iQNBAhEH9QQRCtkFoQThB30ANQM0+gD1pPGI7FDprOLM2PDXiMy8y6S9cLfYqtig8JmEjbSC2HS4biRinFaYSng+SDIgJkgasA78A0v0T+5z4R/bg82jxFu8b7WDrhulI58zkkuLI4AXf3dyc2vrYENgh16TVANTl0k3SpNG40OXPcc82zwjP587NzqnOq84Zz8bPMNBG0InQO9Hm0SvSadIa0wjUt9RE1R7WKdfp13XYZdm82sfbPtzB3Mzd8N6e3x7gEuF04rbjreSj5bfmwOfA6OTpGesn7Cvtdu7r7yLxIPJk8w/1qfbn9yX5r/or/DT9EP5J/9MAMwJYA64EZQYeCIoJ3ApsDDkOARCqEU4TBhXQFpoYWRoKHL0deh8xIdQiaCT6JX8n4yg+KrwrWy3sLlww0jFtMww1fja2N9g4CjpSO5E8lD1RPv4+0z+3QFlBp0H0QYBCDkMvQ8ZCHkJ2QbxAxD+KPjo9/TvSOpo5NziYNsg02zLeMMcueyzvKT4nliQAIk8fZBxoGaUWJhSpEfYOGAw6CWsGogPSAPT9Fvtr+BP26fOg8S3v3Ozd6vjo6ea45KXiveDh3gLdMduC2QXY0dbd1fLU7NPp0g/SQNFc0IzPDs/Nzo/Obs6lzgjPLc8ez17PDdCj0MfQ7dCX0YTSH9Np0+zT3dTh1bjWh9d02GHZN9oQ2+rbndw53RHeRN9+4HzheuLH4znldeZ655ro5+kj6zbsUe2N7sLv3PAU8o3zE/Vq9qf3CPmG+uj7JP1l/sH/GwFtAsMDHQVkBqgHKAntCqgMGQ5uDwERxRJdFKcV8haSGGsaIxyaHQQfmyBcIhoksyUtJ6MoJiqsKxctWS6LL9gwTjLMMyk1aTawNxI5dzq7O9c82j3JPpk/SkDhQFpBqkHgQR9CYkJ6QkNC20F0QQdBWUBXPzE+JT0wPBw7wTkrOH82xjTmMsMwZC7mK1cpqybZI/UgFB46G2UYoRX/EnEQzA0HC0UIpwUYA2YAjf3C+jz46PWD8/jwdO4q7P/ptOc+5dTipeCm3sLc+9pZ2dTXadYr1RjUEdMJ0iPReNDhzzLPfs7vzXrNBc22zL7M8sz+zPTMOM3LzTLOO85gzhDPBtC70DbR6dHx0vXTxtSV1YXWfNd02IfZqNqV21TcQt2F3s7f3uD44W/jGOWI5rnn+ehU6pXru+wN7pXv//Au8nTzC/Wj9t/37/hS+hP8vv0K/zEAhwEMA4gE3wUkB34IDArGC24Nyw77D1kRAhOcFN4VAxd5GEcaCByIHfgelCBMIu8jdiX3JnMo7ClyKw4tky7VL+0wJTKTM/w0KzY6N2s4xTkIOwU82Dy+Pcs+2z/HQINBEEJyQrpC9EINQ+FCdkISQtxBlUHhQNQ/3j4uPmE9EDxlOto4gTfyNeUzmDFrL1ktFSuDKNclNiOPIMYd6RoTGD4VVxJpD5AM1AkcB1MEjgHx/of8L/q59xn1evIO8MPtTOuL6NnlnuO/4bnfXd0c22vZFNiG1qvUAtPl0Q7RBtC+zo/NwcxCzMfLKMuKyjbKOMo0ytzJa8lXyaLJ2MnUyQXKsMpxy9/LOswBzRDO4M5vz0TQh9G30n7TMdQ11W3WiteS2LHZ5toa3GHdvN7x3/PgJuLM44zl6uYL6HXpKOus7NrtGu+m8DrynfP+9Ib2BvhR+aT6QvwA/of/2AA+AssDUgW7Bh8IkQkVC7IMYA7yD0sRlxIcFMwVWReoGPsZiRs2HcYePSDSIaEjhiVTJwQpqypPLNktPC+NMOsxSjOENJk1tjb1Ny45NjomOzQ8Xz1qPjY/5z+lQGdBDEKNQvhCU0OZQ8VDykOXQy5DqkIbQm5BjUCEP3U+YT0mPLQ6KzmlNww2NjQsMh0wGy7+K6IpKSe9JFEisR/dHAUaPxdoFHARgg67C/YIEgYwA4MA/v1q+8b4Rvb186zxR+/P7Fbq4eeB5UTjGeHk3rrcydoG2TTXSdWF0wjSr9Bczy3OK80ezP3KGMqbyS3Jcciwx3fHpMeRxw3HqMbSxjvHbMd4x7vHP8jTyHDJJsrYymfLCcwCzSbODM+wz4jQy9Eh0zfUMdVb1rDXBdlY2r3bGd1T3pTfEuGv4hjkTuWj5kDo8Ol069nsSO7P72vxGPPA9Ef2v/dl+UX7FP2V/vD/cgEcA6wECQZhB84IQgq8C00N6Q5iELoRMxPrFJwW/xczGZcaQRzzHXgf4CBdIggk0CWMJxopgCryK5ItLy92MGQxTzJ4M7g0wzWaNng3fDiIOXI6OjvtO5g8Rz0GPsI+ST+RP84/KUCCQIdAKkC9P38/Qz+rPq89rTzoOys7HzrLOIc3dDZRNd4zMDKHMOouLS1AK0ApOicZJc0ibSAPHqYbHxmFFvsTgxH6DkkMgwnSBkgEzwFG/6r8IvrM94/1MPOj8B3u1eu56YfnK+XY4rvgwt683KDamNjE1h/VnNMw0tHQb88azvTM/MsCy+/J+8hlyBDIp8cax6/Gj8aOxoDGf8asxu7GLMeAxwbIhsjLyBPJx8nLyqDLK8zfzAbOS89G0BbRHNJl07LU7tUv13rYv9kU25DcF95538bgNuLK403ltOYh6KPpKOuz7FvuBfCJ8fvynvRw9iD4k/kL+7f8af7s/1UBzwJPBMEFOQfICEsKqAsQDbAOWRDGEQsTeRQWFqAX+BhRGs8bUh2zHgIgVSGnIu0jOSWeJgEoRSl4KrwrDy1KLmAvcTCfMdky7TPENIA1SzYcN8U3QDi4OFE55zlFOnM6ozrnOh87NztJO2g7gDtxOzY72zpmOtc5ODmCOKs3tza4Nas0eDMgMs4wlC9KLsksJSuGKd0n/SXqI+QhBSAgHgcczxmfF3MVJBOtECwOtQs8CbIGGAR5Ad/+U/ze+Xr3FvW08mfwMe7767TpbudJ5UTjPuEx3z3ddNu42eXXD9Zv1AbTl9EK0JvOf82OzIHLaMqXyR3JrcgYyI7HQMcRx9DGicZnxmjGc8aOxsnGDMdEx5HHHMjGyGHJA8riyurL0sybzYfOoM+r0KbR1NJE1KXVzNb812rZ2NoG3Cbdit4c4JPh8eJx5Armh+fz6InqQezV7T7vv/Bn8vjzVPW19k34/vmb+zL92v58AAQChwMYBaEGDwh6CfsKhAz8DWkP2BA8EpET9xR1Ft0XFhlRGsEbQx2RHrcfACGBIvwjQSVtJqYn4CgHKigrTyxwLX4uki+9MN0xwTJ2Mzc0GzX0NZU2FTeiN0E4yTgfOVk5lznZORA6NjpJOj46DDrDOXM5DTl2OK433zYkNmA1bDRMMyIyADHTL4suLC3BK0oqxSg0J5El0SP3IRcgQB5nHHEaTBgMFs8TmxFbD/0MlQpDCAQGvQNfAfj+k/wv+s73evUt89Dwae4l7BbqC+jY5aDjpeHd3wjeE9wy2n/Y2NYn1ZDTK9Lc0I3PYM5qzXbMVss8ynLJ4shByI3HGMfwxsjGd8Y3xjrGVsZaxmfGrcYTx2XHtMc2yN/IgskkyvLK58vOzJ/Nic6Tz5XQiNGV0snT9tQT1k7XsdgC2irbadzq3Wzfr+Di4Vjj/OR25rnnEumo6kjsxO0u76PwIfKd8x31oPYc+Jn5KfvJ/GD+7f+DAR4DpwQpBsAHVQm3CvkLag0aD7QQ/xFCE84UehbiFwIZORq2G0Adoh7vH0whtCIYJHYlzCYCKBopOyp3K6Msmi16Ln8vojCjMWgyGDPYM5I0JTWcNRQ2hDbXNhc3Zje8N+k35zfsNxY4Lzj4N4U3GTe/Nj42eTWeNOQzOzNwMncxbDBjL1AuJy3pK6IqWSkKKKImEyVtI9AhOyCLHrcc5RonGVIXORUAE/EQCA/+DMAKkAieBrMEiAI1AAn+FPwa+vb3xfW2887x7u/77fXr9+ke6GvmsOTN4ufgNt+u3RTcYNrU2JTXbdYo1d7TydLc0drQxc/bzi/OjM3NzA7Mf8sfy8TKV8rsyarJnsmpyZvJeMl9ycvJJ8pOymfK0MqKyzDMlswIzcnNqc5cz/PPt9Cv0aLSfdNi1GTVc9aF16PYz9kE20ncm93k3iHgdOHt4mDkruUC547oMOqk6/jscO4Q8J3xBvN99BL2ofcc+aX6Q/zR/Uz/4wCYAiwEjAX3BpYIMwqfCwINlQ4+EMURLROhFCYWoBcLGWkasxvrHC0egx/JIOohDCNQJIsljiZxJ2coZylBKvoqwiugLGktCy6iLj8vzy9CMKEw/zBgMboxAjIsMkQyZTKIMoUyWDIrMgwyzDFQMcMwSjDELxAvUy63LRMtPSxbK54q1Cm0KG8nZiaHJWgk/iKwIZwgbR/yHWocBhucGQ4YhRYPFXQToRHdD08OsgzKCtYIJgefBe0DAgIYAEv+iPzF+gT5O/dy9cjzQvKv8O/uJu1+6+7pWei+5ifljeP74ZfgUd/f3TncvNqq2bjYftcc1v3ULdRd02LSatGb0PDPYM/lzl7Ovc0yzfPM3sygzDvMAMwPzC7ML8wozDrMY8yjzADNZc2zzQHOjc5YzxjQpdA00QHS+tLm07nUj9WI1rDX9dgp2i/bNdyI3R3fjOCp4cniROTv5WTnm+jt6YbrN+3L7kbwwPE687z0WfYH+J35EPuK/C3+0/8+AXYCxQNRBfMGewjqCVoL0QxEDrEPFBFfEpIT0hQ5FqIXzBjBGcwaERxYHV4eNR8iID8hXyJNIwEkqSR2JWAmJyedJ/IneCgoKakp2SkEKm0q5iopK0krgCvBK9ErsiucK5crcyssKwQrESsTK8wqTyrSKWUp7yhcKKkn5iY3JqUlASUVJP4iFiJ3IdMg6R/gHvgdJx0uHP4axRmjGIsXbxZPFSAU0hJuERIQxw5tDfILcQoMCbwHWwbTBDsDtAE8ALn+If2O+xf6rPg197H1MfS78kzx5u+N7jPtzutt6iHp2+d/5hXlvuN/4kPhAuDN3q3dndyW25jaldmG2IHXpNbm1SbVbNTU01bTy9I10rXRT9Hl0HzQPdAi0PzPys/IzwPQOtBQ0ILQ9NBt0bvREdKr0mDT8dN81ETVOtYV19fXv9jR2dDas9u03OLdDN8h4E7ho+Lz4yTlV+al5/joPuqI69/sMO6G7wfxrvJI9Mz1bPcy+d/6VPzF/V7/9gBcAqwDEQV4Br0HAAltCucLMw1aDooPvRDFEbASuhPsFBMWHhcvGE0ZVhpHG0QcTh0zHucenB9lIA4hdiHVIWkiFiOcIwQkhCQiJagl/CU0JmAmdiaAJpYmsiayJpkmlia7Js4moSZSJhcm6iWaJRwlmSQnJLQjMSOsIioilSHoID0gox/7HiYePx1pHJUblBprGVMYYRdsFlgVOhQtEyESABHiD+MO7Q3XDKgLigqCCWYIJwfrBdUEzwOwAnYBOwAL/9L9h/w9+wT62fis9332U/Uz9BHz5fG48JvviO5t7TvsAevX6cDoq+eR5oTlnOTZ4xvjQeJJ4VXgft+93vfdMd2U3C/c1NtM25na69lb2dHYP9i912PXJtfs1rPWhNZW1ifWDdYd1kTWZdaF1sHWFddb14rXzNdA2MzYUNnT2WnaDNui2zbc5dyr3WPeCt/F36rgmOFu4jrjHeQZ5RnmE+cO6A3pE+or61bseu2P7rfvGPGf8hD0VvWU9un3Svmc+tv7Ff1T/pz/7AAuAk8DbQSzBRcHWghiCWQKjQu5DK0Neg5lD3oQhhFwElgTVhRNFRkWyBZ7FzgY8xilGVAa7BpsG9AbJxyAHOMcTh27HSYejh7oHhsfHh8MH/8e7h7GHqAeox69HqoeXh4UHucdoR0QHWscCBzjG6sbPxvMGmwa+hlZGaMY9hdCF3kWuRUWFXQUrBPQEhESaxGuEM8P9Q42Dm4NdwxkC2YKiAmzCNQH/wZDBpAFwATFA7QCqgGtALf/wP7X/QP9NPxU+2P6cPl++IL3evZ49Yb0nfOy8tPxG/GK8AHwYO+g7s3t+Owt7Grrperd6S3pp+g76LfnCudY5sjlSOWq5OnjPePK4nbiEeKX4Szh4OCh4FrgDeDG34bfR98M39feq96N3o3es9773kjfhN+o37zf0d/t3wvgKuBc4LjgM+Go4Qfib+L94p3jHuSE5ADlq+Vf5u3mZOf4573olulb6grruetx7DLt8O2l7lLvCPDY8MHxp/Jz8yz08/Ta9cr2mfdB+OT4pvl7+kb7BfzT/Lj9mf5h/yIA8QC+AXUCKQMABPQE0AWGBj0HFwjxCKEJOgrsCq4LRQyZDNQMIw1+DcMN8Q0lDnAOyg4qD40P7Q8+EH4QthDnEA4RORGEEfURcxLXEg4TIBMcEw4T9RLNEp8ShRKVEr4SzBKdEkYS+BHGEZURUBEBEb8QiRBFEN4PWA/CDiYOjA34DGUMxQsUC2UK0QlbCecIWwjDB0gH9QafBhEGUQWgBCgE0gNuA/QCgwInAsEBNQGMAN3/JP9N/lf9W/xm+3P6fPmT+Mz3JfeJ9ur1QfWS9OrzX/P28o/yBvJk8eHwmfBs8CXwwu9u7zXv6+5t7tTtVO327J/sQOzp66LrW+sR68/qj+o26rvpTOkb6Rfp++is6GPoaOi36AfpJOko6Unpium56bjpp+m/6QvqZequ6ujqHutP63HrfOtq6znrCOsM61brvesT7F7sy+xq7Q/uje7h7ijvh+8J8JvwGPFu8bzxL/K38hXzMfNO87HzPvSh9MP05/RP9e71iPYH94T3EPia+An5X/m1+R76lvoN+4L7B/yj/Dr9pf3i/SL+iP4E/3D/zf9DANoAWgGKAXgBagGRAeIBNAJ3AsECJQOVA/ADIgQ2BFUElATiBBsFPAVpBbsFFAZDBlAGdAbRBkUHnAfLB+sH/wfxB8UHrAfIBwQIOghrCKQIzAiyCFMI7gewB30HJAe0Bm4GcQaQBpAGXgYBBoQF+AR+BB4EvQNDA8cCcgI7Au4BdAHxAI4ASAAFAL//df8X/5T+/P17/SH91vyG/EH8Ivwm/Cv8C/zD+2r7Hfvb+oT6//lb+cf4V/j796L3UfcO9872jvZc9jn2CvbN9bX15PUr9kX2QvZ59vb2U/dC9/f21vbk9tv2nPZS9iD2+/XZ9bf1ffUU9ar0mfTn9Cr1DPW79KH0yfTn9ND0q/St9Nn0E/VJ9Xj1oPXJ9fv1MPZh9pv28vZd97j35vfd96f3ZPdB90X3Pff89rX2yfYy93P3Pvfo9vP2W/el94/3ZfeG9+r3QPhk+H/4yfhG+cn5H/o/+kv6ZfqT+s36Hvuf+z78x/wR/Sz9Pv1U/WP9cP2L/br97f0W/jj+Wv6A/qb+uv6t/pb+qf7u/iL/D//z/kj/EgDEAPAA1wAHAYwB7gHeAaABmQHYAR8CRgJQAk0CSwJeAnsCewJOAh0CGAI0Ak0CYgKMArMCqAJ3AmACagJEAssBYAFwAcwB1QFTAdIA8QCMAeYBlgEHAeMAPAGJAWkBGwETAVoBiQFlASYBIAFLAWABNAHoAKwAiABfABgAtv9W/xv/BP/z/tL+sf6j/pv+d/4r/s39ff1U/Vz9fP2D/Vr9Lv08/XT9mf2c/bj9Av5B/kb+QP5u/qv+pP5b/i/+Sv5r/kn++/3L/c392v3N/aP9Z/0v/Rz9NP1O/UH9Hv0X/ST99/xe/JT7EfsK+0H7SvsL+9X6CPup+138z/wH/Uv9z/2E/jr/z/85AIwA3gArAVABNwH8ANMAwgCkAG4ATABnAKcAzAC1AHcAOgAdACcATAByAIEAgACIAKsA4QAaAVgBsAEyAsUCOANwA34DhwOXA6kDyQP6AxcE7AOPA2QDmAPUA6kDNQMDA0gDmgN0A+kCgAKXAgYDXANdAzYDRgOlA/sD5AN1AzEDWwOWA2cD6wKtAucCPQNSA0YDbAPBA+oDsgNLAwcDBQMWA/4CrgJfAlcCiAKNAiYCnQF7AdsBRAJMAhcCFQJmAsYC+gIPAzMDcQOrA70DlAM9A+YCqwJ9AjkC6wHGAdkB9wH1AdsBvQGKATgB9QD3AC8BWAFiAX4BuAHKAXcB+gDHAPcANAE8ATwBdwHPAdMBYQHlAOQAWAHEAdsB2wEUAmUCXwLuAYABeAGyAcQBhQErAecAtgCIAGoAZABpAHEAigCuALgAnQCQAMIADgEkAQAB+wBPAcUBAAL9AQcCRAJ+AnoCQgIUAhkCQwJ0ApMCmwKRAocCggJqAh4CqwFNATQBRQFIAToBXgHIAScCHALDAaIBAgKRAs8CuAK4AgoDYQNMA9ACYgJmAscCJAM/AzgDTgOJA60DkgNgA14DkwPAA78DtQPSAwkEIgQOBPAD3QPAA48DdQOjAwMESQRHBBsEBAQOBA8E6gO9A7wD8wM1BFgEXAReBGkEbgRqBHAEiwSwBMcEywTNBNQE1QS+BJQEdwSGBMIEBQUcBfUErAR0BGgEfQSaBK8EvQTLBM4EtwSCBEMEHAQhBD0ESQQwBP4DxQOVA3wDhQOpA9AD6QP8AxMEIAQPBO0D4APxAwEE8gPHA5UDdgODA8MDFAQ6BC4EKARNBGQEIgSdA0cDYwOzA9UDuwObA5UDiwNsA1IDVQNZAzQD8gLPAuMCCQMjA1EDwANNBKAEmQR4BIYEuQTaBNoE4wQTBVkFjQWSBVkF8QSJBFIETgRaBFoESAQoBAUE/gMoBF4EXwQsBBkEXAS0BMIEigRrBJkE5wQVBSAFHwUUBfMEzgS+BL0EsASXBJEEqQTJBNsE7AQQBUEFXAVSBTcFLQVBBWIFdwV2BWwFaAVlBVUFOAUhBRoFFAUEBfgEDAU9BWcFcQVmBVYFPwUdBfwE8AT3BPsE+AT4BAkFJAU4BTcFGgXvBNcE6gQXBTUFKAUGBfgEBgUQBf4E6AT/BFAFqQXSBdAF1gX5BRsGIQYdBjIGXwaHBpUGlwaXBpYGkwaPBocGdAZZBkAGLgYnBjcGZAaTBp8GfwZWBk4GaAaIBp4GsAbXBh8HcAeZB4IHTwc5B1EHdQeKB5sHuAfUB+MH8QcRCDYIRAg4CCwIIwgOCOwH2wfuBw8IGQgDCN8HvgejB4sHfweFB5sHuQfbB/kHDAgHCOwHxgeqB6cHuAfEB7UHjgdmB00HQwdBBz8HMwceBw4HGwdAB2AHYwdQBz4HMAcjBx8HNQdgB4YHjQdzB04HOQdIB3IHiQdwB0YHRwd6B58HiAdXB0YHWQdiB0sHLgcmBzEHQAdKB0MHJgcKBwcHDwcGB/AG9QYXBygHCAfSBrAGmgZyBj4GHgYbBh8GHAYXBhMGBwb0BegF4AXOBa8FkAV7BXAFbgV4BYAFdQVdBVEFWQVbBUYFLgUuBTcFLQULBfEE6QTiBMgEowSFBHAEZQRsBH4EfARRBBgEBAQcBC8EGgTwA9kD1gPOA7QDmAOMA4sDhwN5A1sDMgMOA/wC8QLeAtEC4wILAxgD9QLIAr0CxwLDAroCywL2AhYDJAM5A10DcQNtA3EDjwOzA8EDxwPSA9kD1APaA/YDCwQLBBcETASFBJQEkQS4BPYE+wS/BKEE3wQ1BUQFFAX+BCQFUAVZBVkFdQWiBbYFqwWmBcAF6AUCBg8GJwZQBm8GdAZtBmsGagZnBnoGrAbhBvgG+wYNBzIHTQdXB2cHfgeHB4IHiweqB8MHzQfeB/cH/QfsB/IHHQg6CCEI/wcZCGoIqwi4CLYIzgj4CBYJIgkwCUwJbgl8CW0JWAleCYAJnQmjCaMJsgnECcoJzgnfCe0J5gneCfcJLQpeCoEKrgr1CkYLfguMC3cLYwt7C8cLGwxEDEoMVwx2DI4MmQyyDOoMJQ1HDVUNaQ2GDZ8Npw2gDZQNlg2yDdUN3Q3GDbsN3w0SDhkO9g3mDQsOLw4WDtwN2g0oDn0OpQ7UDkoP2A8TEPMP5w80EJAQpBCaENAQORF5EaMRTxLFE4AVuxZHF4kX1xcyGJEYChmMGccZjBkaGdIYrxhKGH4XyhbYFqcXdRirGKMYMhmGGgUcQB2FHh0gcSG8IUchPyEYIt0iiSJ4IfUgnyHMIm4jMCONIjQiYiKsInYimSGBIIsfqB7GHUEdUR1xHegc3xsrGyAbNBv3GqkalxqJGkoaMBqNGgAbCRvhGi8b/xu+HBgdTh2eHeodFx5QHrseSx/pH5AgICF2Ic8hmCK2I4IkrSS0JB0luCUSJkkmyiZ9J+4nFihsKAkpfimoKQQq3CqyK/8rCyxsLBAtbC15LbUtOi6JLmYuOy5eLpAuhi5vLnouWC6/LQ0twSygLAosBCs6KvQpwClGKdAooyiHKDso+Cf8JxAo3ieBJ0EnCCeRJvYliiVFJdkkUCQCJPsj6SOoI3cjciNeIxwj6iL0IgMj6CLRIvYiLiM9I0MjeCO1I6wjayNEIz8jISP1IggjZCO1I9QjAiR2JAYlgCX4JYEm6SYPJysncye/J80nwifpJy0oPigeKCEoWiiDKHoocih/KGAo8yd6Jy8n4iZcJswlgyVlJQ4lbiTYI30jLiO4IjMi0yGXIWEhIiHZIIYgOSAGINsfhh8CH5Mebx5nHi4exR10HVgdRB0YHewc1Ry1HHIcKhwBHOUbsxtxGzUb7xqHGh8a6BnPGY0ZHBm+GJIYYxgQGMAXkhdnFxwX0xa6FrEWhRZFFiQWHBYFFuMV3xX9FRcWJxZEFmMWZRZUFlYWXxY4FuoVvBW9FagVWBX/FMYUihQuFN8TwhOiE0ATuxJWEvsRZRGrECUQ4w+TDwcPeg4rDvoNqQ05Dd0MsQygDIgMWAwWDOIL0QvNC64LeAthC3sLkQt0C0oLUwt9C3oLMQvkCswKyQqaCjkK1wmSCVoJGwnhCLsInQh2CEEICgjfB8YHtAeTB1IH/AayBoIGUgYSBtgFvQWyBZcFdAVzBZUFqwWeBZIFqgXQBdwFzAW4BagFmAWUBakFwQXBBbYFuAW1BYkFRwUpBS0FCAWaBB0E0gOfA1AD6gKYAlsCFgLVAbkBsQGPAVUBOAFFAUsBMQEcAS4BRQE7ASEBHwEwATEBGAH4ANkAuACXAHsAYQBOAE4AVwBHABcA8f/s/9//pP9d/zr/I//e/nz+Rf49/iT+6/3S/fn9Kv4x/i7+Sv5x/n7+gP6Q/pn+f/5l/nf+nf6b/nf+av6C/o7+ef5v/on+oP6N/mL+SP5A/jL+D/7h/a/9d/09/f/8u/x7/Er8Jfz++9D7sfuu+7773PsN/FH8kvzB/OL8/vwI/fn83fzI/Lv8qPyQ/H38c/xp/Fb8Pfwp/Cn8PfxM/Dj8Dfz2+wX8GPwM/O/75fvm+837m/t5+3T7Z/s9+xj7JPtR+2r7YPtG+y37D/vq+sj6rfqa+pn6svrS+un6CftN+6X76fsZ/Gb82fw2/VH9TP1d/XX9ZP04/TL9Yv2H/XD9R/1N/XT9ev1G/QT90/yh/Fb8BfzL+5/7Zvsf+936nfpI+uX5nPl4+Vv5NPkj+UP5gvnH+Rn6f/rl+jj7jPv2+178pvzi/C/9c/2E/Xb9if3B/d79xv2r/a79r/2N/Vb9K/0L/e/82/zC/IP8K/zz++b7y/t++zb7MvtX+1z7Ofsp+0r7dvuC+3f7dfuE+4r7dvta+137hfus+8L76Ps1/IX8sfze/D39o/26/Y79fv2Z/Y39P/0D/QT9+fy1/Hn8dfxt/DH8/fv7+9v7W/vU+rb6xvqB+vr5rfmo+Yz5Svk4+Wr5iPl0+XH5n/nE+c/5Bfp++vj6U/vK+3f8B/0z/SX9HP0T/fL80fzE/KP8Xfwv/Ej8cPxm/E78bvyr/LD8ifyL/MP81/yT/DD86Pug+y37svps+kL64PlA+br4gvhP+ML39vZf9jv2WfaC9sP2QPfw97f4kvmL+ov7d/xX/T3+FP+7/zQAjwC5AJgAPgDT/1D/jv6S/ZH8n/ua+mj5JvgF9xD2N/Vx9MHzM/PW8qjyjfJ28ory7PJs863zrPPP81D06/RL9Zf1NvYz9y/4+vjN+eP6B/zS/Cf9Rf1q/Yn9eP0i/ZX83vsD+yD6YfnU+E74r/cW97n2g/Yq9qn1UvVT9VH12PQE9GXzOfMo89XyXfId8i3yXPKC8rTyLvMU9En1dPZi91L4jvnL+kj72/pN+k76fvoQ+hX5VPgN+KP3sPae9eH0LPT+8nLxD/AB7wbuAO0l7J7rXOtB6zzrUuuf60TsNO0x7iPvN/CB8anyUPOS893zT/Sj9LH0r/Th9DT1YPVC9Qf18vQP9S71NvVC9WP1YfUE9Wr01fMw8zLy6vC3767uge0h7PHqIOpj6Yno4ueu55znS+fm5sjm9uZJ5+Dnyuil6RPqXOoU60nsmu307qfwxvLr9Lv2J/gv+bP5ofkY+VL4lfcL9332aPWe84rxkO+B7RPrkeh/5uPkc+NH4r7hwOHH4aLhj+Gl4bjh1OFF4hDj9OP65Hvmcuhc6unrTu237vPv4PDE8dvy/vPu9Kf1LPZJ9sr1xvR28/rxcPAW7wfuHu0v7D7rZeql6fHoTejQ543njee/5+jn1ueY51vnIufP5nLmROZe5p/m5+ZA57bnP+jJ6EnpvOkh6oDq0OoP62/rMOwy7fHtK+497o/u+e4K78Tug+5e7hfuo+1U7WztzO0g7h7upO3g7Cnsj+u86ojpXeio5y7naeZR5TnkIOPI4V7gW9/S3nXeWN783oXgcuJa5FvmlujO6sbsoO6J8GXyAPRN9Tb2lPZr9vb1TfVQ9P7yk/E+8Pruv+2A7ArrJun45snkk+I14PXdaNy424Pbh9vn27nc1t053/DgseIc5H/lpOeT6lbtS+/u8MTyTfSz9BP0NPNn8nLxVfBm76/u2u3S7OHrM+un6jTqBeor6nfquOrp6gXr+OrB6l3qwOnv6DDoxOeW513nFucN53DnEuil6AjpSOlv6Vvp2+gK6GfnWOec55jnQOcs56/nYejl6JzpAOvB7DzuiO9K8ZLzpfUD9/X32Ph8+ZD5Nfm++Cr4PPfi9Tf0QPL374TtIevb6KHmfOSV4v3grN+n3g/e8N0Z3lnexN6i3wPhkuIL5LjlH+gq6x7ukvDu8p31L/jt+fn6E/xg/TT+Jf6h/RL9LfyN+n34ifa09KjydfBz7pbsdeoE6L3l/eOm4pLh7ODp4HXhZeK241Xl8+ZN6HDpi+qW637scO2r7g7wK/Hi8XzyJ/Os89jz4fML9Db0GvTV88Xz4/PX84/zZfN683jzNvMY83Dz3vPa85TzrvMz9IT0VvQv9JT0QPWO9Vb18PR19Ijz7fHz7xLuXOyQ6rDoHecd5nflz+Q45B3kq+Sl5djmZehz6t7sYO/Y8Tr0avZg+Db66/tG/TH+5/6T/+j/jv+u/rb9r/w/+175c/e69fTz4PGv78PtOuzm6qDpdeig503nWedw53vnyOeW6Kjppuqp6wvtw+5w8ALy0fP59Q74n/mu+mr73fsA/On7qftA+8b6ZvoK+mj5fPiY9+b2IPYL9fDzPfPw8q3ySfLs8a3xXPG88N3vJu/y7hXvBO+C7v/tAO5Y7nHuOe477s3ulO8j8J7wePHI8ib0J/XA9Tz23PaD99T30/cK+M34mvnI+Yv5jfnE+Yr54Pic+BH5fvlP+Qz5TfmY+R75B/gO9zv2AfVv8z/yp/ET8TXwe+847wHvYe6m7XDtyu0q7kruge5A72bwXvHW8SLy2PIU9Gr1k/bE90D52vo3/EX9Kf7u/oj/8f8AAGj/OP4Z/Zb8Wfyi+2H6LvlH+Dr3t/Ud9OryKfK58arx+/FO8lvyUPJr8mvy2/HQ8NLvIe967qTt1+xu7ILsBe3z7TzvsPAo8qTzHvVx9pX30fhx+ln8Ff5b/yoAnwDIAL8AlwAmADX/5f2r/JL7A/qW99701PKY8VPwhO7W7D7sn+zn7HTs0+va64TsGO1O7bXt3+6T8DDyi/P/9Kj2Gfj7+Jb5YfpQ++f79vvt+0r8AP2G/Xn9/Px2/Oz77fon+fv2N/Ut9HXzlvK38U3xYfGA8WfxYvHj8QXzePTh9SL3Ufho+R76Kvqj+fL4T/iX97H20PUT9Tb0+/Kf8aLwMPAm8Jvw1vG385n17/bD92n4Aflq+Zv51flw+oL7tfyC/a79ef0y/dv8WvzN+3f7YftS+xT7f/pi+aT3c/Uj8+nw7e547bjsfOyJ7O/sx+3S7sjv2PBT8vvzUvWO9m34DPug/Yz/BQFOAvICWQK0ANz+b/2Y/Ef8TPxk/Gb8OvyI+9v5a/cq9dHzIvOa8kXyafK88o7ym/E78OXuCO4W7jjvEfEv84z1Kvh5+sr7QPyh/FH9AP5n/q/+DP9r/6v/uv9k/2/++vxd+6750fcA9qr03PMx84HyC/LU8WTxdPBw7//ua++b8FbyQvT/9WP3gfhX+dP5LfrF+qb7ePwN/X/9xf2w/Wv9WP1J/Yv89fpI+RL47fZp9QD0ZvNW8wDzVvIX8qLyfPMb9ID06vRn9fT1r/aw9/D4Uvqm+6X8GP31/EX8AftU+cL3wvZK9gb27PUf9mT2FvbV9AvzjPHN8KLwufAy8XvyhPRs9m/34fe2+CX6cfsi/Lv83v1g/6wAhwHuAbMBrwAM/+j8KvoR93z0+/Ie8kDxgvBG8Czwiu+a7jjuqO5775nwdPIE9Wn38fjF+VL6sPrW+vT6SPvj+7P8gf34/f799v0t/kf+wP3W/Dn85fsq+9z5q/gE+Gr3QPam9C3zJvKN8UnxL/Er8XzxZvKj85/0RvX+9dX2Wfdl93j37veF+PD4Qfl7+V358fis+LX4p/hf+G74LfkL+lz6RfpV+pj6tvqZ+mb6D/p4+cn4Ofim99/2BfZU9c30ZfRF9If0/PRr9dX1MPZL9jr2cvYt9wT4g/iu+LP4gfgb+M73yvfb9+X3MvjP+C/54vg9+M73ofeE94X3r/e995P3h/ew94H3tvYA9gT2WfZA9vL1NfYK9773EPhV+Lj4GvmF+fn5Cvp0+cv4qPih+AX4MvcH91P3HvdW9uD19PXP9TL13PQp9Yf1pPUB9t72svc7+Ar5YfqL+wT8Q/y8/AP9pvwG/IP7q/oQ+Uf3IvaC9df0OvQ19MX0dPUk9gj3EfgO+Qj6B/u/+xP8Y/zo/CD9mfy8+yf7rPq++XL4WPeX9vH1b/VD9UX1OvVT9bP14/V89e700vTo9LP0ofR29eb2+ven+LH5E/vv+z/8Gv3w/sgA0wGPAqQDpATCBAcE/QLAASkAXP6M/Kb6ovjS9l315vM98sfw1u8o74juWu737hbwZvEs85/1MPg4+ub7s/1k/2cA7gC0AeAC3QNLBE8ECARbA1oCRgEkAM3+Uv3n+3v69vie97v2/fXq9L/zMvNY86Dz0/NY9FT1Pfah9r/2B/dr96X3tvfj90744Phw+fX5lPp++4r8Pf1m/XP9xv0M/tD9Wv1O/ZT9ev3S/Cf8wftV+8H6UPoM+pb56/iL+J/4ovhR+Bn4SviC+Gj4Rvhv+K74y/gA+Vz5dfk1+Tr5yPkc+o35ufiJ+Lj4XPh+9/n2+fbF9hX2gPVt9YX1gvXB9aH24vcM+Qb6D/tM/J/9yf6m/2wAfwHWAt8DTQSPBAkFOgVrBMYCDgFr/2j9/vqw+Kb2j/R/8vzw/u/d7n/tyuxr7e7ujvA58kj0tvYl+Un7Af1W/pz/KAGzAosDsQP2A7AECwUyBIkCAAHJ/2r+0/xq+076Tvlk+Kn31/aV9T30nPPS8zP0YvTu9HT2kfg5+uz6IfuI+zD8ofyZ/Hv80fyU/S/+N/7U/Wr9Fv2y/CD8avu/+mX6kfor++L7i/xD/RH+x/5I/63/AQAqAEgAsQBVAY0B6QDP/8r+nf2u+yz5FvcB9nr1y/Ts823zqfNr9Db11vWn9iT4LvoF/EP9a/4QAMgBrQKzAqoC2gKUAm0BAwAI/0T+P/08/L/7lvsv+5n6V/pZ+g36eflc+Qf65vqD+yf8Hv0M/or+1v5O/7r/yf/Z/2kAKwFbAf4A2gAfARMBSABs/zv/bv8z/2X+mP0i/bH86vv7+lv6N/pN+jD6yPl++dD5rPp2+877Dvyu/Hj9y/2K/Vn9s/1J/pj+sf4O/8L/SABQADYAfwASAXoBwAF3ArwDxQTnBI4ElATrBLwE0QPxAooC8gFuAGL+qPxJ+6D5kPfG9cP0XfRC9G306PSc9X/2mffI+Nb53fo1/O39oP8CATECYAN/BEsFnwWKBUgFIgUwBTUF/ASzBLQE6QTcBFcElgPaAiMCdgHxAJAAIwCZ//7+P/4y/fP70fri+Q/5ivie+CL5n/kS+uf68/tm/Aj8u/sx/PH8P/1m/TL+kv+4AFoB9AHbAtMDtAS7BRUHmAgTCnQLjgwgDSQNxAwDDMsKRQmvB+YFrAM2Afr+4vxr+qD3TPXq8w7zO/LP8W/yAfTH9Vv3DPk6+8P9LAAxAv4D9gUvCD4KrguVDFgN6g3CDb8MjAu/CgwK2ghdB2EGGgbJBcUEXQNYAukBkQHoACcA0P///04AQwDL/0n/L/+P/xIAVwBZAHoABwG8AQwC1QGfAfEBpgIoAzQDDAMOA1sDzAMYBA8E9ANVBD8F+wUBBuIFfQacBzcIDgj4B2gIuAhfCNAHjQc5B3IGwQW2BbgF4ASOA/MCLgMmA1IChgGdAT4CewIYAp0BhQHGAfsBzQFbASgBfQH0ARAC+AE8Av4C1gOUBGoFYwZJBxsICAnfCSkKAAoDCkwKKgo1CfsHIweIBqkFkgSvAxUDjQIGApgBQwEPATwB7AHDAkQDZgOOA/wDhgTWBNcE2wRQBS0G4QYWB00HJghNCdMJmQmACRMKwwrqCr0KtAq+CoUKFAqTCeUIDAhwB0cHGgeHBvQF3gXxBYMFoQTuA6YDbwMMA6YCaQJVAm4CtAL+Ai8DbQPKAwEE5gPNAxcEoAQPBX4FRQZDBwcIgAgLCcEJTgqHCqkK9gpPC2sLLgvACloKBQp9CYYIZQesBmwGFgZhBdsEBgVwBVcF4wTfBG0F3wXpBQQGgQb9BiIHLwdmB5AHgQePB/8HewikCLkIJQm+CQcKBQohClwKSArOCVMJCgmzCCcIrQd0BzoHtwYSBpoFTAX+BMQE0gQaBV8FlQXpBWcG6wZiB+AHYwjDCP0IOQl9CZMJdAl3Cc4JKgomCvQJGAqPCr0KSwqfCUUJRAk/CQgJuwh8CFMIPggdCL4HJge7BsIG7Aa6BkIGFgZvBtAGsQZABhoGdwb0Bi0HPAd/BwkIigi4CKQIiAh4CGgIYAh8CLoIDQmHCUUKEguEC5cLzAt9DFsN2w0EDlIO8g5wD0gPeA5mDW4MkguOCikJlwdVBpYF8wTxA7UC2QGZAZQBXQEOARABnQGKAoADTgQUBRkGYwefCJAJZwpzC7YM9g0mD1MQZxFDEgQTuRMWFMsTKRPFEo0S1hFgELUORw3FC7IJLgfTBPsCkgFgAEz/cP4W/mX+B/9y/6f/PgCQASEDUQQuBUQGxwdTCXEKGQueC1MMQQ0iDsQOUw8lEDYRHxKnEgITZROlE4AT+BIuEiARyg9eDgoNrgsYCl8IxwZpBS4ECgMTAmABAAH3ACABSgGKATQCRAM3BLcEHgXsBfIGlwfPBzAIEgkkCgQLxAukDKoNvQ7XD+sQ1BGDEhwTrRP+E9ETORN2EpsRfRDvDgUNGgt8CRsIogYBBasDBQPQAn0C9wG2AQQCmwIfA5cDQAQwBVAGeQd9CEYJCAocC3sMsQ1+DjkPTRCREXcSvxKwEq0SyBLCElsSjhGhEOAPNw87DrgMFwvuCUsJsAjPB/wGvgYYB4cHoweaB+YHqQh6CewJEQpLCskKVQuwC94LBgw2DGEMdAxYDAQMnQtlC3ULnAugC4oLlAvRCxgMNgwnDBgMRwzIDF0NrQ2xDcMNJA6CDlwOvA1ADUQNXA3oDPsLPQsEC/AKhgrgCXoJjwnlCS8KYwqlCiIL8gv9DPwNuQ5UDxUQ8RB6EWgRABG0EI4QMBBfD04OUg2BDLALuQqwCcgIJgi9B2MHAwe8Br4GDweCB+cHQQi9CH0JYwoxC80LZww8DTsOHQ+9D0kQ8xCtEUESmBLAEsYSqRJlEvkRVxF8EIMPjw6hDagMpQuoCsEJ/wh6CDkIIQgnCGgI+gixCVsKFQscDFANSQ7wDqAPfhAuEVgRRRFxEdMR7RGVETQRLRFXEU4R9hCREF0QVRBDEPsPjA8sD+cOhA7ODe4MPQzLC1ULuwo4CgEK+gn5CRYKdArnCjULeQv7C6QMFg02DVkNuw0fDj0OMA5IDo4O1w4aD3QP8A97EBcR0xGTEiwTpxM6FOoUfxXLFd0VzRWXFTQVphTjE98SvhG/ENoPyA58DVkMpAsgC28Krgk6CRwJCAniCOAIFglWCY0J8wmeClAL2gtyDF8NgA58D0QQGREaEhkT5ROOFC0VtBUPFkgWahZfFgcWbxXMFDIUghOcEpYRmhC5D9oO3Q3KDMsL+QpJCqIJCgmjCIAIlwjOCBsJggkBCo4KKgveC6cMdg1ADggPyw95EAQRbxHKERwSYRKOEqoSwhLfEvgS9xLcEsMSxhLYEtsSyBK6ErMSkBI9Es0RWhHoEG8Q+A+IDw8PkA42DhgODg7nDcAN4w1UDsYOEQ9kD/gPvxB9ERcSohI2E9oThhQjFZgV7RVDFqQW5BbaFpAWNRbeFXQV2hQUFD4TcBKyEfoQORB0D8gOVQ4hDggO4w26DcUNJg60Dh8PYQ/LD5kQkRFLErUSIBPJE4AU7hQEFQQVKxVxFZgVchUXFckUohRtFOwTKBNpEtcRVBGsENMP7A4jDocN/QxRDH8LzwqMCpEKcgoTCtYJCgp0CqAKggpyCqIK7QoeCycLGQsICwQLEAsQC+QKpgqaCuAKTAueC8oLCAyPDFQNBg5oDqIOEg/DD0kQShD6D88P2A+2DyUPVw6bDQYNbgytC8wK+glnCRsJ6AikCGUIWwiFCLgI3AgFCT4JhgnpCWkK2woXCz8LlwsQDE4MNAwaDD8MZAwzDLkLSgsBC7MKPgqyCSoJtwhdCAgIoAc2BwsHNgd8B5wHtwcXCL8IZwnfCUQKzAqEC1QMHA3EDVoOCw/qD8oQdRH5EaASghNqFBgViRXpFVIWuBbyFuIWmhZRFiUW9RWJFd4UJRSJEwkTfhLMEQERWhAHEOUPng8kD9QO9Q5FD1wPQQ9ZD80PYxDmEGQR8hGKEjET9hO2FDQVfxXtFZIWEhcoFxAXIBdJFz4X8RaNFi8W2RWcFXYVOBXXFKEU0xQgFRQVzBTNFC0VZhUlFb8UnBSdFFoUuhP0Ei4SbBGsEOkPFA9ADq4Ndw1ZDRINwQy5DAINXQ2jDeMNNQ6UDuoOHQ8RD8IOVg7sDWwNqwytC6IKqQm6CMkH0gbTBdgECQR7A/4CTAJxAcwAjQBlAOb/FP9Y/uz9i/3U/Mv72vpS+hb61vlu+Qz58Pgm+Xj5qfmz+c/5K/qw+h77UftO+z37P/tU+0r79Pp8+k36lPr/+i77Qvu8+9P8Mf5i/1cAdAEGA+IEjAbBB8cICQp9C6EMKg1ZDZwNBQ5TDk8OBg60DY0NkQ2HDT0N1QyvDOwMTA2IDacN4w1WDuQOYw++D/0PShDOEHkRCRJVEoASzhJOE8wTGRRMFKgURhX4FXoWwRYIF4EXFhiJGMMY7xg+GagZ9xkGGu4Z3xnmGe0Z3Bm5GZQZehlvGWgZURksGSAZSRmMGbQZyBn6GVYatRr6GjYbexu8G/IbJxxPHE8cLBwOHAMc4huSGzQb7hq1GmoaChqyGXQZTRktGQUZ3hjKGMsYvhiLGE4YMhguGAsYuRdpFz8XFxe+FjoWwhV0FTYV4BRuFPwToxNUE+ISOBJuEakQ8g8wD1YOZA1iDF8LZApdCScIxgZ6BWwEdQNNAvAAnP9u/j791fsy+nz41fZA9Z3zxvG776/tzOsC6hnoAObg4/DhOeCO3sbcANue2d3YhNg82CXYxNhN2mTcrN5g4e/kV+ks7jPzhPgh/skDPgl1DmQT3xfFGywfJiJ7JNklQSYIJl4lHyQuIsQfPx3EGj8YmRXZEhoQhw1MC2MJmwfpBYYEnAPvAh4CGwEoAHz/CP+s/lf+Df7q/Rf+jP79/jb/fP9JAKgBGANJBIkFPQdBCRcLlwwDDpYPQhHkEmEUoxWsFqwXxxjPGXQawBoMG44bFhxPHCEcyhuKG1Ub4hoFGv0YIxiCF9QW9BUKFVQU3ROKEz0T+xLzElAT/RO5FGkVMxYrFyoYDRnjGb8ajhtHHAQdyR1hHqoe0R4UH2Mfgh9nH04fZx+aH6wffR8vH/8e/h71Hq0eSB4OHgQe2x1gHdAceRxMHP8biBsjG+4asRo0GosZ6hhaGLsXBRdVFrsVKxWMFNYTFhNlEtwRdxEcEccQlhCaEKgQiRBJEB8QFhABEMcPgQ9DD/UOfA7WDQ4NJQw0C14Kmwm7CLgHywYGBiMF+wPRAu8BKQEvABz/Of53/X38Rfse+iX5I/gE9/H1+/T388jyjfFT8Pjuce3m63bqBul2583lKOR24pzgot6z3Nva+dgH10jV9tPa0pnRYdDjz2PQWNFf0hbUYtcg3E/hhOZs7JzzjvtBA2cKexHYGBggcCZtKzIvGjIZNL80zDOJMXYu4yrZJkwiOx3HF1YSXQ3oCKgEigAI/Z/6LPkI+Mr2nfXu9NL07vTZ9J30tfRp9Wj2IPd099v3xPgZ+oL75fx5/m8AqwLSBJwGEAh5CQELgAzADcoO0A/LEHoRxhHjERASXRK8Ei0TwhOGFGYVJhaSFr8W9xZOF3sXRhfVFlcWphV6FNYS+xAnD30NFgztCuUJCAmECFwIXQh2CN4IuwnzCmAM8Q16D7UQnBF3EmgTLxScFOMUXhUUFrIW5Ra5FpgW8Ra9F34Y3hguGfMZERvEG6IbJxsRG3EbrxtdG64aGRrCGWgZxRjnFzAXBRdrF+gXARjFF7YXDBhiGEMYyBdnF0QXARc5FucUThPAEXQQYQ9ODisNRQzmC9QLlgsqCwsLigtlDEINDw7LDlYPpQ/ND7wPMw9IDn4NCA1kDBcLaQnzB7QGMgVcA5sBKQDV/nb9GPyk+ur4Afc39YfzkvE87+HsyurA6HXm+OOE4TXfCN0E2yrZZNe71XPUvtNW07bSxdEI0efQ8tBZ0BjPHc7pzbbNrcxCy7LKU8t0zNDNJNAL1DvZKd/X5YbtFPYj/5MIYhI5HHglni2KNEU6lz4MQY1BmkCuPog7pTY9MC8p9yFqGpkSOAvuBLX/OPtm90n0yvHX74ju5+3F7fjtgu5S7w3wUfAb8Lzvh++U79DvMfDa8Prxf/MH9T72Wvfo+Bj7gv2q/5cBpgPhBdQHEQm/CXsKrQseDV0Obw/FEIsSaBQOFqsXeBlfG0QdTB9cIeAigyOuI8gjbiMDIrgfRx3tGksYHhWbESMO+go/COUFywMOAvsAoQCyAPcAhgFqAncDnQT+BYcH1AiwCWgKSwszDMsMHw2cDZEO2g8ZESESIhNsFA4WzRdrGfQamxxpHhUgRCHcIRAiGCL/IbYhQCGpIPQfKR9gHpkdqhyJG4YaARrnGdEZixlDGSUZFRnQGD0YeBewFhcWsxVAFXsUfhOmEhUSgRGsENIPXw9mD54Pzg/6DyoQUhBoEGkQQhDfD1oP3A5WDoQNPQyYCrcIqwaCBD8C1f9Z/RH7EvkE95/0LvIu8JPu8uxJ6wbqROme6MTn2OYI5kXlcOSL45fiheFb4DTf+t133LTa/tiP10bW49Rg0/rRydCSzzPO8swVzEzLHMrbyGnIs8iVyNXHGsjPyvrOxNJw1gTcIuT97P30y/zUBQQQ+hnGIoQqhjGfN1w8Xj97QLs/Xz3GOTY1oC/WKCYhbBlXEsALKgW2/h750fSQ8fju9eyt6zfrgOs97PHsQ+1d7bvti+557yTwm/BO8YLy8fMQ9bf1efYT+IX6Ef0x/y8BiwMVBhoIUwkyCjULZgyADVEO1Q4oD3YPzQ8QEDYQgxBFEWwStBMDFWAWqxewGGkZ6RkgGvYZgBnOGMIXRhZ9FIgSWBD4DbILugn3B2MGMQVsBN0DbgNTA5UD7wNFBNcEygXYBrYHbQgqCfIJqwpJC9ALXQwbDQYO2A50DyAQFhEXEtUSgBN0FJcVdhb2FnMXLhj8GKIZKxrUGrMbpBxkHdUdHR53Hu0eTB9iHzQf5h6FHuUdzBw1G20ZuRcNFi4UGxIYEEMOcwyhCgYJwQfABgoG1wU4BugGuQfHCCoKvAtjDSEP2RBXEqgTCRVUFv8W4hZ1FgIWNhWyE6kRfw9DDd8KZQjVBQIDCABu/Wr7ffkw9+P0QPM08hfxou8s7gLtF+xI63HqUenU51jmN+Ul5H/iReAa3lvcrNqM2PzVVdPc0KbOo8ypyo/Ia8amxI3Dy8Kcwdm/aL4vvqy+h76kvZe9dr9VwuzEucc+zKrSy9kV4R/pLfKi+yYFEQ9JGdIiASsmMqU48z0cQfBBQEHiP749/jk4NC8tGCZAHwoYQhDbCO8Cgv7C+jr3NPQS8rnwzu9H71Lv1O9U8JLwsfCp8Pzvce6z7JvrFOtf6lTpnui36Drpm+n86QDrCu3c7/byEvZU+QD99QClBLwHlwq7DfYQixNIFcoWfxj8GbYa3Rr5GiEbFBvIGmga7hlfGf4Y3Rh/GHkXHhYDFScUCRNzEbEPJg72DOQLYQogCLYFEgRFA2gCBwHO/33/y//m/3L/wv5c/p3+cf9EAKQA5AC0AREDOwTBBA4FzQU0BwQJ0ApLDJkNSA+cEQYUwBXZFiIYEBogHJIdUx7mHrkftSBeIUYhiyDOH4kfdx/sHsMdkxzjG3wbtxpXGb8XdBaZFeEU5xOUEjARBRAKD+cNZgy+Cm0JwgiGCDYIrQdSB4AHCQiGCOgIcQlICl0LkQyxDXsO+Q5+DywQrRC3EIQQdBB+EFcQ6w9TD5MOrw3JDOgLywpSCc4HigZGBZMDkAG+/zD+dPxf+lD4lvYJ9WzzyPEz8KjuNe3p64jqwejE5h7l2eNM4hLgkN1R2zXZiNbX0oDOY8rsxo3DfL/2uhq3fbSBsl6wWa5/rZSuebFitYC5170sw7PJcdBh1qnb8OBM5pnrxfD/9AL3U/d++If7Af7q/Xz9ZABYBqQLqA6nEQUXMB7xJBMqCi7oMf41MznUOW43RjOrLoQp+CK7GlYRxAfy/h/3ou/m563gitvt2JLXJtbz1E/Vttf02ovdXt934VLkJOf56OfptOrU6yntc+6I70zw3/DQ8Y3zyvXa97H5CPxG/64CMgXEBj0IIgojDM4NGQ8kEA8REBIsE+gT8hPgE5MU+BUvF9cXVRjpGFMZRhmpGF8XgBV9E4sRLA/uCzAIowRtAUn+Kvs7+Kj1vfPQ8qPyivJl8tbyLfS89cn2fvd/+O75YvuA/En95P13/gn/iP/z/3wAYQGuAlIERAZpCH4KWww+DnQQ1RLgFF8WrRcxGbMahhtoG+MashrZGrka/BkRGZcYnRirGG4YDhjcFwMYZhi6GLwYcRgzGEIYUhjOF6AWSxU5FDgT3hEoEG8O/QzVC74KcQnuB6AG7AWjBUkFzASOBL0EEQU3BSUFCwUrBaEFNAZ/BoEGqgYkB4YHbQcdBw4HNgcqB7EG9AUbBRwE4gJlAab/of1w+z75D/eq9P3xRe/V7L/q4egp55rlR+Re4+/iquIp4pjhiuEH4ljiAuJc4d3gUuAn3yjdq9o22APWxdPz0JjNe8ooyCnGxMNBway/hr9KwEHBUMLcwxfGqcgTy0LNaM9i0d7SHNST1aPW/dX+0/zSBtQt1cfUrtTQ18Hdl+N06Gru5vbPAJAKzhPGHHsl0C1JNbs6aT0dPuw9eTyLOAQyGyriIXUZhhAWB7X9YfXE7nbpj+QZ4DHdhtxN3T/eJt++4EzjDOYn6JDpseqz65LsYu0H7gPuKu1G7Dvsyuzj7FXsSOyx7e7vlvFj8ofz5PXJ+A77yvzv/pgB8gOoBVAHOQnpCiwMkw1nDwwRARK9Et8TLhXzFfkVuxWwFbYVLBW1E84RQhAMD1ANuQoICPMFKwQrAiUAhv44/QP8Bfs/+k75Gvgx9/72IfcP99n25fY994/3qPeu9/r3vfjI+cj6t/vZ/Dj+ff91AHABzgJ4BAYGWge6CFwKFAydDfkOWhDOETQTghTEFd4WqBc/GOsYpxkMGtsZXhn9GLwYSRh2F24WhRXXFCYUIBPIEYsQwg9ND8sOFg5hDd4MbAy0C5YKUAk3CFgHhAadBaQEnwOgAs0BMwGwAEYAQQDXAMgBrgJ1A0QEKwUhBgwHvQcPCCYIPQgiCGEH5gUmBHsCwAC1/mj8I/oX+Er2qvQZ85LxTPCD7ybv4e6M7l3ugu7C7tLuvu6o7lzuo+227OLr3+o76S7nYOXV4+PhVt/E3Jbaftgh1qbTZdFkz4vN08skym3I18arxdXE+8MVw4vCm8L8wjLDDMPMwszCB8Mfw9/CmsK9wkLD8sPpxFHGGchpygfOV9OH2bjfb+af7sr3dgAjCIMP7hbcHc0jeChvK44sdCyTK00pAiVnH8EZXBSzDqwIwQJj/dv4avXh8rPwzu7b7S/uCe9073fvx++T8Cjx1PC473XuUe0C7FDqeejd5pHlgOSy4zLj4eLB4iXjR+TX5Vnn1ui26v3sKO/i8HPyTvR+9r/45Prk/Mr+xgADA0MFDgdtCAcKHwz8Dd4ODw9XD8MPpA+rDkYN9gvMCpMJFghZBrwEuwNKA+MCWAIdAncCDwOQAxIEoQQBBTEFgwXXBX4FRATsAhoCZQELABn+VvxM+7b69vnN+L33kfdu+Iv5NvrD+hL8P/5zABQCcwMjBR4H5wgrCgELmwsYDIAMtgyTDBsMkQs0C/4KxQqBClYKcgrrCrYLlgxRDfYN3w4qEGkRJRJ/EvkSoRPzE5MTxxIREoMRyBC4D5oOrw3rDCwMggsUC+kK7gohC30L6QtZDNAMOw16DZUNqw2gDT8NlAzcCxoLIAoBCRUIawe6Bt8FEgV7BPQDTgOPAs4BDwFJAGT/Nf60/AP7RPlg9z71CvP68A/vLO1o6/fpyuii54TmuuVY5Qfli+QL5LbjYuPM4unhzOBs39LdMdyS2qfYWtYe1FDSo9CXzlbMgcpCySbI4MayxevEZMTDwwfDh8JVwv7BHMEDwFK/577ovSu81LrYura7b7xOvX+/UsMMyGTN3dOQ293jhuza9Yj/ZAjCDyUWGBwkIXIkuSVAJWQjZSBhHD4X7RDvCVAD4P1w+Sn1xPBB7eHrd+yC7Qzuye7q8DD09PYG+Ob30vf890z36PRe8cLtO+o55s7hzN2O2rzXZdVB1HfUH9Wq1ejWxtmp3SrhEORx58rr9++z8lL0LPas+MP6l/u5+0L8U/0a/hf+u/3H/Xr+ef9LANwAigGkAv0DJAX3BbMGiAeDCJ4JpgpNC5kL/wu6DEwNMg2uDE8MDgx5C24KLgnYB2UG6ARyA9cB7f/5/XX8fPuo+qv5w/iB+AP5tfn++RH6qPr0+0X9+v1V/vz++/+2ANQAoQCTAKIAhAA+AA0AAADe/6z/vf8lAIkAuwAsAU8C3AM3BVEGsAeQCYsLLQ2BDt8PeREnE6IUuBV3FhoXvBcsGDYY6heKF0EXBRe0FjIWhxXdFF4UCBSwE0IT3hKxEq4SlxJDEsoRWxHwEGQQqw/ZDvAN2QyWC0cK+wi2B4MGdgWHBKUD2wJEAtkBggFBATEBWAGUAcIBywGxAXgBKgHBADUAhf+0/sb9wPyx+6H6fvlE+C33e/YW9qT1D/Wb9Gz0M/Sn8/LyZ/Lt8SXxCPDj7sbtW+x36l7oXeZ25JLir+C/3rrcz9pC2eDXHdb90zPSJtFH0NXO6Mwry8rJQcg8xgvEC8IIwLW9a7usuSq4KLb7syizXbRXtuy3FbqavlPFZ8wH0zva0uIE7Kf0a/yHA+QJHA/pEkgVVxYkFnAUIRHbDIsIVQSt/7T6l/YV9K3yrPFJ8QfyyvM29lH5E/2+AIsDmAV6B+0IxQiDBhIDkf/k+yX3QvFB6+rlBuFN3DXYVNWR05TSj9LV0wzWddjr2t3dX+Hd5NbnYurI7OjuX/AX8V/xhvGK8Ujx0fB78I/w9vBi8cjxkPIK9PL1t/da+Wj7/f18AHoCXgSrBhIJ9ApYDK4NAg/8D34QpRB2EPgPdA/rDtgN9QvcCUwIFAdnBSQDEQHa/0T/pP6x/eD8zvyM/Y/+Wf/+/9gA9gEQA+ADQwQuBM8DgANIA6sCSAGO/07+tP0T/ff76vrJ+qL7pfxC/dj9HP8XASIDtQT7BXEHMQnECsILUQzfDJANKw6WDvQOUA+OD8kPUBAZEawR7BFmEn8TuBRYFXQVwBVxFvUW1hZYFgkW+RXEFS4VdxTnE28T2BImEo4RGxGyEFMQFRDrD7IPaA8tDwkP5A6xDnMOPA4TDusNqA1DDdwMkAw9DLML9wo5CnoJlgiHB3IGZwViBHEDkgKdAZEAvv9W/wr/gv4D/g3+f/6o/k/+9P3l/b79Cv38+w37Lfry+Fb3u/U59HXyS/Aa7kDslOrD6NrmI+Wv40viy+Ar33rdz9s72qnY9NYQ1RTTDtHuzqjMPsq3xxvFZcKHv6e8A7qftzm15rJqsVmxO7JTs/i0QrhtvYvD38m10HLYueDE6A3wd/YZ/O4AwQRaB9YIYwm+CKQGrQPZADb+GPvd9wH2C/bL9l/3mvhk+xH/ewLIBacJkw1NEKkRehLLEoYRNA7rCc4FjwE7/P31HPBW6zrnXuM44GLevN3X3bHeWeBZ4iLk1+Xf5/bpUeuc607r2Oob6r7ouOZs5GniBOEi4Gjf2t773ivgKeJ45P/m6+k67a7wIfRv90r6jvyY/sYAvgLNAx0EowS5BZsGtgapBk8HbwhACbIJTwomC8YLHAyADOsM6gxqDO8LvgteC1AK1QivByMHrAbFBbAEIQQ1BEQEzgMiA9AC1AKxAjMCkQH7AFsAmf++/s/9w/zC+xT7w/qH+iz65PkI+pP6H/t5+9j7kvya/Yv+K/+s/1oAMAHuAYECGAPhA9YE5AUDBykIUwmPCvcLew3aDv0PGRFdEp4TgRT8FGUV7BVbFmgWLBb/FQQWExYEFuMV1BXpFQ4WKRYsFiQWHhYfFiwWOhYaFqwVHBWpFDkUdBNSEkwRsRBBEJQPsQ7vDXMNEw2ZDAwMlQtYC0YLLAvsCpMKPwr3CbIJaQkWCbYIVQgJCMQHYgfVBj0GxAVvBRcFkQTiA1IDFAPvAn0CxwFNAUgBOwGiALr/G//L/jb+Ev3E+6v6j/kW+Fv2s/QY81Lxge/07ZbsBetN6ePn0+aW5e7jTuIL4cHfBt4U3FHajtho1v/TwNGYzynNm8p9yM/GzsQUwli/bL3wu+O5ebdOtju3FLmTunO8NMCQxf3KP9By1qHdgeSo6ubwKvcF/OH+6QALA4wEZQTRAukAav8w/rP84PqK+aX5CPuy/F3+zABCBOAHCgsoDmERzhOlFEgUZRO7EZ4ONApdBZwAuPt99k7xwez76Nvlp+Pe4lPjLeQP5Yzm8+hj697so+2N7pnv+e9a7xvueexb6u7np+Ws48Hh+N/r3v7e698u4aniruR+5+rqbu6g8Xn0R/c8+gv9NP+hALgBvAKIAwQEYgS7BOYECwW0BfEG/QdrCOoINQrXC+AMRA28DYUOIg84D+4Ofw71DVQNoQzWC+YK3gnkCBgIhQcNB3AGogX0BKEEYgS6A7UC2QFgAe0AGAD9/v39Qv2y/Cr8pvs6+wX7FvtT+4L7lPvF+1H8Gf3G/UD+wv5u/xoAlwD5AHUBGQLQAo8DXQQyBQgG7Qb1BxoJRwpxC5wMyQ3tDu4PsxBTEQISyBJwE9oTOxTJFGMVwhX7FVgW4xZcF6kX8xdSGJ0YshirGKQYhRgnGJUX/RZjFqEVtBTSEyUTmBIHEoERJBHgEJQQRBAOEPQP3w/HD7YPqQ+VD3IPLQ+7DjYOvQ1CDZcMwAvwCkIKlwnaCCAIgAcCB6oGbQYlBsYFgQV0BWUFBwV1BPsDhQO6ApQBaQBO//j9XPzp+tb5wPhY9wT2RvXj9Df0P/Oa8oPycfLp8RPxSPB972Pu1Ozs6tPoqeZq5PHhKd9I3KLZSdcS1fLSEdGJzz3O8cx6y+LJUsjfxnvFJ8QMwzfCiMETwTXBDMJOwwvFC8i1zDrSk9fj3NjiOOnz7nrzHfdF+vz8Df8LAKL/O/7f/OP7ifqD+OT2vPar98b4Mvqs/BkAwQN6B30LVw8gErgTxBRhFc4UlRJUD+4LewiABN3/HfsB9+rz0vGC8MnvvO+n8IbyrfRY9pH3/viw+tb71Pv2+rf5+Pd+9ZPyn++l7K/pT+f75U/lveSU5IPlfefJ6RDsj+5a8Sj0xPYW+dH6z/uH/HH9JP7w/Sb9zfwc/Ur9B/0U/Qv+gf/hAFQCIQT2BXYH2whkCq8LQQxmDLIMCA3FDNgL2wo6CrcJ9QgFCDkHwQaEBk0G+gWdBWwFggWuBZ8FNAWXBAUEggPWAskBggBv/8z+U/6b/ar87/un+5X7avsp+w37Lvt3+8b79/vx+8/73vs//Kj8w/yx/N/8bf0D/lP+f/7h/qL/mwCFATUCyQKOA5gElQU/BskGnAe3CLMJcQoyCyMMHQ0LDhEPNhBDESASChMYFP4UfxXRFUAWsRbTFqYWbBZBFgMWnhUtFccUbxQfFNETgBMtE+oSuBJ9EiwS1hF+EQkRaRC2D/wOKg5KDZMMDwx7C7YKCgq5CYEJBglxCDQITQhHCPkHtQeoB5MHSgcIBwAHCQfrBsoG5AYbByYH9gbNBuUGKgdRBykH4gbZBg8HBAdlBpgFNQUVBY0EiwOyAk4C4AELATYAzP9y/73++f2g/WX9qvyQ+8P6TfqJ+Ub4B/cR9gL1n/NH8jrxI/DI7ovtxOwR7N7qTOno58fmeuW647XhnN9k3fDaKtgG1Z/RWs6ky5TJC8gbxxbHJcgpyv/MmNDH1DTZqt0l4nPm9ukk7Cntse377ZbtL+xP6uroWOgd6NLn3+cf6eXroe+Q8433AvwSARIGGQr1DCIP1hCNEc8Q7Q6aDAEK6waeA+YAHf/J/Zb8GvwE/ez+wQBKAlgETAcnCrEL9AvWC5MLcAr3B7sEjgGT/nn7S/h49UfzpfF+8AbwYfBT8WHyX/OT9CL2jvc0+Cz4K/hk+Cj4+vZl9TX0W/NR8jLxpPDK8CzxsPG/8ln04vUg95L4d/o7/F/9K/4D/7T/6P/V/8r/ov86//3+Rv+o/6H/n/9jAL4BywJlA00ExQURB6oHAQiNCAAJ7giiCI4IdgjnBx0HtwbBBrsGgQaIBicHGAjmCG8J4glzCh0LnAumC08LAgvkCpMKugmpCNsHRgeJBq4FGgXaBJ8EaQSOBBAFhwXOBUQGEwfKBw8IKwh/COAIAAn8CCMJZAmLCcIJVAogC9MLjQyxDS8PgBB2EWsSlROpFGEV4xVtFucWIBclFx0XABe4FmoWUhZvFpAWqhbqFmoXBRiFGOIYRBm3GRAaGBrQGV4Z2BgkGDEXJRY3FXYUxBMRE38SNhIqEigSFxIoEoYS9xISE9ESkxJzEgIS8xClD5MOnw1bDOEKtwn3CEcIkQcrBy8HRQc/B1YHnAe/B40HOAfZBjsGVgVrBHwDJgJhAL7+ef0M/Bb6LPgB91H2W/Ue9Cvzj/LI8bDwnO+Q7jHtkusp6ufoK+fZ5KriD+GB34Xdhdsj2jXZFdis1mPVR9T20mvRJNBZz4fOQc35y3jLp8ugyxvLQstWzfjQqtQL2G7csOKF6eTulvIC9qX5N/yw/Oj7X/tG+8764flk+cv5h/oi+x/8PP5WAbMEIAgiDOgQhRW4GE8aMBvxG+QbMxpnF+kUGhP+EPUN2QrCCJMHnAbxBSEGCwcFCOkI+wnoCv4KVwq4CS0JwgcDBcAB1/4K/Lv4MPVR8nvwQe867nbtKu1F7Yvt6O1p7v7ub++i79DvLfB/8GHwAvAY8NXwefFr8S/xn/GW8kLzgvMV9Fb1yfYD+DD5cfqN+4T8xP1a/7QAmQGRAvsDXQUlBpAGNwcwCC0JEQriCoYLAQyVDE0Nww3QDfcNng5iD7UPtg/VDwQQ9A/DD7YPmw8cD3cOJA7xDUENFQwcC5kKCAoDCdUH7AY6BoAFyQQ9BM4DagMoAw4D4QJ0AucBdAEXAaoAIwCR/wX/l/5Y/ir+5v2k/av9//1O/mf+fv7K/jb/oP8ZALkAZAEDArMChgNFBL8EJQXOBbMGhAchCMQInQmRCmULEQzCDJYNdw42D8MPMBCHEL4Q3xAGETcRVxFtEbIRNBKsEuESCxN3EwUUVBRhFHsUthTUFL0UoxSSFFgU9xO7E68TfBMIE7wS2xIIE+ISmxKTEqcSfBIcEtMRkxEiEacQbBBIEN0PUA8iD1EPUg/5DsAO5A4FD8wOfQ5nDlgOEQ7GDbQNnw0xDZgMPQwQDKYL8gpjCjcKLgruCXoJEQnOCH8I6gcVB0AGjQXNBMsDrwLBAeoA1v+O/oL9wfzV+5H6dfnY+FD4Zvdp9uf1pvUF9Qz0RvOy8rXxLvCw7nvtEuws6kro7ObE5Ujkm+I+4TzgKt/k3cTcB9yD2/nacdoS2s/ZXdmG2GbXS9ZT1U3UONOf0iXTy9QK17bZLN2B4fflw+nn7MHvJfKA89jz1fPF80fzMfIy8QHxd/EC8s7ymPSM9/L6JP5TAesEtQgCDH4OXxDIEXsSRhJfERwQkA7EDBkLFAq9CagJsQlFCq8Ldw3pDu8P+RAPEp4SPBIUEYkPsg11C90IGQZXA74Abv5r/Lr6dPmy+Gj4d/jM+EH5kfmZ+YD5WPnU+LT3Q/b19K3z/vEG8GjuZu2a7Nnrl+so7CXtEu4T74bwOvKv88/09/U/90r40fj8+Bv5QvlV+Ub5QvmX+Wb6gfuw/A7+1f/zARAEBQb3B+AJfQu0DK0NaQ60DqMOog7IDq8OPA72DTsOpg7SDhIP4A/yELQRORLuEqwT5xOhE2cTRBOmEmoRMxBgD4IOQA0LDHELSgsbC+UK9go/C2sLcguCC4ULPAu5CkQK0wkTCQII+gYvBnkFwwQ5BPUD2APOA/EDOwRsBGoEcQSrBNoEtQRbBBwEAQTHA14DAQPlAvIC/gIPA0IDlAPoA0AEqgQfBYEF1AU1BqIG7QYFBxYHPwdfB0YHDgfzBvkG8gbdBu0GNgeRB+wHZQj7CHcJvgn7CUkKeApeCiwKIgovCh0K+AnxCQAK+AnlCfgJJgo5CjoKaQrBCvAK1wq1CrEKmwpPCvoJzwmxCX8JWAldCWQJPAkPCRUJKwkJCcAIoAiyCLEIhgheCFQIRQgWCN0HpAdQB9sGdAYuBt8FZgXwBLMEmQRfBPUDjwNWAy0D4wJvAvcBkgEnAYkAt//W/v79Ev0B/PH6C/o8+V/4kfcT9+b2zPa19tb2RPe39+b33Pe+93L3u/aX9S70mPLN8OXuG+2X62bqm+lY6Z3pQOoY6w7sBe3F7Rvu/e167aXsies+6vbo6uc+5/fmGOet57ToB+px6+bsa+7j7xHx6PGT8iHzZfNJ8wrz5fLF8ofyW/KO8hXzrfNV9Ej1gfax97j4v/nW+sP7Y/zY/Dn9Zf1L/RH91vyK/Cv86/vm+wT8PPy2/ID9X/4n//r/7gDDATkCbwKgAqsCTgKiAfMASgB2/4H+vf1E/e38r/zB/Dj93f1//i7/8P+YAPwAJAEmAfoAmAAaAJ//Iv+k/kD+DP74/fL9Df5Z/sT+Mv+j/yAAmADyADEBZQGFAX0BVwExARMB8wDQAL8AzADuAB0BWQGjAfEBQAKSAuMCJgNWA4EDrQPRA+QD5gPnA+8D+wMBBAQEEAQpBEcEYgR+BKQEyQTfBOUE7AT2BPME3ATIBMwE2gTbBNQE2QTuBP0E+wTyBPEE9QT1BPQE9ATzBPEE8wT6BPgE5gTVBNIE0wTCBJ4EfwRxBGgEWgRNBEYEQQQ4BC0EIQQEBNEDmwNvAz8D9wKoAnUCYAJKAicCCwIHAgkC+gHcAbwBmwFzAUQBFQHjAKYAZAAmAO3/rP9n/yn/+f7U/rT+mf6A/mn+Vf5G/jP+Ef7j/bT9i/1b/Rj90PyX/G/8Svwj/AP88vvo+9n7y/vF+8T7v/u7+7/7xfu7+6H7ift++2/7Ufsx+yX7LPsx+yz7K/s6+1D7Yftp+3L7gvuW+6f7svu++9D75/v5+wX8E/wk/DP8O/xF/Fr8dfyK/Jz8u/zn/BD9Kf08/Vr9gP2f/a39s/2+/c793v3o/e399v0K/iP+Pf5X/nf+nv7G/uv+Df8r/0b/Xv9z/4H/hv+F/4f/i/+N/43/kf+f/7X/0v/w/wsAJAA9AFkAcwCGAJIAogC3AMoA1gDbAOAA6ADyAP8ACgERARwBMQFKAVgBWwFkAXsBlAGfAaQBrgHBAdMB4AHtAfoBBAIKAhMCHQIkAiUCKgI3AkoCWAJgAmoCfAKVAqgCswK/AtIC5QLuAu4C7wL3AvoC8gLnAuAC3gLZAtQC0wLUAtMCzgLJAsgCxAK8ArICrAKkApMCfAJnAlYCRAIvAhgCBQL0AecB3AHQAbwBpQGQAX8BagFMASwBEQH8AOUAxwCoAI0AeABlAFQAQgAuABgABgD4/+X/zP+2/6b/l/+C/2r/Vf9C/y3/Ff8C//X+5/7X/sv+w/66/qn+mP6M/oL+c/5i/lT+Sf48/i3+Hv4T/gn+//30/ej92f3L/cD9s/2j/ZP9h/19/W/9X/1Q/UT9Nf0m/Rn9D/0A/ez82/zR/MP8rvyY/Ij8fPxr/Fj8SvxB/DX8J/wa/A/8Afzv+9/70vvE+7P7pPuZ+5D7hvt++3r7ePty+237a/tq+2P7WPtT+1T7UftJ+0L7Q/tL+1L7U/tV+1z7aPtz+3j7e/uD+477mvuj+6r7s/u9+8j70/vi+/T7A/wS/CT8N/xJ/Fn8a/yC/Jz8tfzH/Nf86vz+/BD9IP01/U39Y/1z/YL9mP2x/cb91f3h/fL9BP4U/iP+Mv5D/lP+Y/5z/oP+k/6i/rP+wv7P/tn+4f7p/vH+/f4L/xb/G/8g/yz/Of9A/0L/R/9S/17/Z/9v/3v/hv+P/5T/l/+b/5//o/+n/6n/q/+u/7H/rv+p/6b/qf+u/7D/sf+2/77/w//F/8f/yv/M/8//1P/Y/9n/2//j/+r/6v/m/+f/7v/y/+3/5//k/+P/4P/g/+P/5f/h/93/3P/Z/9H/xv/B/73/tP+l/5n/j/+F/3n/cf9o/1r/Rv81/yj/GP8B/+n+1f7F/rL+mv5//mX+Tv44/iL+Cv7x/dz9yf2z/Zn9gP1r/VP9Nv0Z/QH97fzU/Lf8nPyF/G/8V/xC/C78G/wH/Pf76PvY+8b7tvuu+6n7ofuZ+5P7kPuN+4j7gvt8+3f7dPtz+3H7bvtu+3T7fvuG+437mfup+7X7t/u6+8b71/vi++n78/sF/Bf8I/wv/EP8W/xu/Hv8ifye/LL8wfzM/Nz89PwM/R79Kf00/Ub9V/1l/XL9hP2Z/av9uf3J/eD99P3//QT+EP4j/jP+Ov4+/kP+SP5N/lT+Xf5k/mf+bP52/oH+i/6U/p3+pv6s/q/+sf6w/q/+sf64/r7+vv6+/sT+z/7W/tr+3v7l/u7+8/74/v7+A/8F/wj/Ev8g/yz/Nv8+/0X/Sf9M/0//U/9X/1r/Wv9d/2L/Z/9n/2P/Yf9l/27/dv91/2v/Y/9g/1//V/9L/0P/Qf8+/zb/Lf8q/yv/KP8b/wr//f71/u/+5/7Y/sH+qv6a/oz+d/5b/kH+Mf4j/g7+9/3n/dn9yf22/aX9k/17/WL9T/1A/S/9Hf0S/Qv9/vzp/Nf8z/zK/L78sPyk/Jv8j/yB/Hf8cPxq/GP8X/xc/FT8TfxN/E78SPw5/C78LPwv/Cz8J/wn/C/8O/xE/En8S/xO/FT8Xfxm/HD8e/yI/JX8ofyt/Lb8t/y2/Lj8wPzG/Mv81/zt/Ab9F/0l/TT9Rf1R/Vv9Zf1x/Xf9ef17/YH9h/2O/Zb9oP2o/a39tv3F/c/90P3S/d797v36/f/9Bf4N/g/+Df4O/hX+Gv4b/h7+Kf42/j3+Qf5H/k/+UP5L/kn+S/5O/lL+Wf5i/mf+av5v/nb+d/5t/mX+Zv5q/mb+Xv5d/mL+Zv5n/mr+cv54/nX+b/5v/nP+dP5s/l/+U/5I/kD+P/5C/kb+R/5F/kb+Sv5L/kn+Rf5F/kX+Qf44/i3+JP4c/hj+G/4i/iT+Hf4U/hP+Gf4c/hr+F/4X/hf+Fv4X/hv+Hv4d/hr+GP4Z/hn+Ff4R/gz+CP4H/gv+D/4N/gP+9f3n/df9yf3D/cf9zv3S/dT92/3l/ef93f3R/cn9wv23/ar9ov2a/Y/9f/10/XP9d/18/X/9f/15/W79YP1Q/UP9Ov0y/Sf9Gv0Q/Qv9CP0E/QX9Cv0H/fL81fzG/Mn8zfzH/L/8v/zE/Mj8y/zK/Mf8xPzG/Mr8yvzH/Mr80/zT/Mr8v/y7/LT8pvyZ/Jn8pvy2/MD8w/zD/MX8yvzN/M380PzY/N/84Pzg/OT84vzU/Mj8z/zf/OP82fzS/NH8y/zA/MP81/zn/Or86/z2/AH9BP0H/Q39Df0D/fr8+vz5/O384Pze/Oj8+PwL/Rv9Jf0v/T79R/0+/Sv9IP0d/RL9B/0T/Tb9Vf1e/Vr9Wf1h/Xj9l/2o/Z/9lP2c/aX9l/2K/Z79uP2g/W79b/2o/cz9uP2t/dv9EP4T/v/9A/4J/ur9zP3r/Tb+av59/pv+y/7m/ub+7v4F/wr/6v6//qT+mP6b/q3+wv7M/tv+DP9T/4v/n/+b/4r/af9E/zD/Jv8N/+P+v/6s/qj+wP4G/2X/r//S/97/2v+2/3T/Nf8Q//n+6/7y/hb/Rv96/77/CAAuABsA+f/5/xIADgDV/4j/VP8//zf/PP9j/6//CgBZAI4AkwBHAJv/t/7Z/Qn9Jvw9+6D6ePqa+gL7RfwO/xsDMQcbCo0L8QvgC/8L2wyMDo8QUxKWE/cTnRLqDnIJmQNW/uz53fYo9in45vsCANQDCwfNCBMI0gQaABn7mvZk8z3yUfPv9Sz5avwn/9AAEgEOACr+2fu9+Xb4Hvhh+Cf5qvqV/Lf9P/3W+7D64vmn+DH37PZ0+GH68vo6+o75bflI+Sr5FvpM/I7+1v/AAD8C0gNJBLsDPgP8AhECXQAM/9b+KP97/zEAcQFVAjUCvAGtAZcB1AD2/+n/YgCAAGMAugAxAdkA9f/D/3IA1gBCAHX/Qv+7/8wAbgLWA9cDYwJ4AGL+rfso+eb4XftV/vb/FwH2AlUEMQMXAGb9xvvy+d33dve7+SL9zv+NAcYCCgP9AVIAyv5U/TT8ufxO/+gBKgKAAFb/i/+j/4P+Kv0R/Wr+qQBTA3YFpAWuA0EBzv/S/n/92fxL/uoAVwIkAkUCvAMBBXwEvwIwAf3/t/7D/Zb9oP2G/Yr+4wEbBicICgekBKACrABw/l396v7YAfYClgBW/Hf5Lvp3/qgEzwqiD2ASJBIQDqkGkf4J+Yf3IPk//EYANwVWCv4N3A7xDD4J1QRrAKD8Mfq5+U/7W/66ASsE3QTMA44B1P4t/D/60/lX+zH+ygCaAUUAuv3/+kz4qPUz9MH1ufoOAScGQAkcC9ALIQp2BUr///nb9qj13fVS9wP6ff23AHcCJgJnAHz+Av21+2L6dflK+YX5n/m6+XL6FPxr/iEB7ANuBkII/AgsCKkF/QE6/jr7X/n8+G76dv0SAW8EdAcGCi8LywnXBZkAo/sd+Mn2/PdL+5D/UQNhBWgFHASqAqgB2QAPALn/JwCpABQAJP7d+4b6lfq3+3P9qP9mAmEFsAdmCE8H6ASZAY39dfnb9iL3XfpS/1wEGAinCd0IMgZOAuH92PlV9/b2bPgM+1P+vwGMBAUG+wWsBJwCmgCA/2r/wP8cAL0AqQEsAsUBCAHJANsAfgC8/1r/p/8QABsA7//h/wUAVwDPADYBUwFTAYoBxQFxAYYAvv+v/yIAigC9AOYAEgENAZ0AyP/n/n7+uv4+/53/9P+tALgBYgIrAlcBiQAYAPn/CwBOAM8AnwGlAnoDjwOuAjcB0f/d/kz+6v3J/UP+g/8OAQ0CIAK+AY0BfwECAe7/2v59/u/+pf8QAB4AJAByANwA2AAeABj/gv60/mH/AgBZAI4A7wCQAQ8C4AHrAMz/K/8R/w//9v4P/43/KwB1ACoAc/+3/k/+Ff6A/Wn8lPv1+2v9yv5i/8f/tQCvAX4B2v/n/eb89vxk/bb9Ef7B/sb/tgD9AD8Av/40/R38VfuR+hD6efrz+7/96v4m/9z+g/4u/rD9/fxZ/CD8YPy4/MD8g/xu/LP8CP0c/f784Pyt/D78zfu1++L79vvt+zD82fxb/T791fzO/Df9ZP3X/Oj7Vftd+4P7QvvB+p76Ffuo+9b71fs7/AX9e/0o/XH8/fvm++H73fsU/JL8G/18/a79pf1Y/fH8t/yU/Bf8G/sn+u75gvpZ+//7ifw1/eT9J/7K/ST9sfyW/Jn8h/xx/If81fw5/Xn9cv09/SP9Vv2s/d/98f0g/m7+f/4X/nH98fyz/KX81fxb/Q/+qP4Q/1j/X//y/jT+kf1G/Tj9UP2e/Rj+iP7e/kP/qv+2/07/6P7u/iD/+f6T/p/+bP95ACYBYgGAAZEBUwG0AAcAvP/r/2MA9gCbAUUCtQKtAkACyQGHAWYBTgFqAdoBUgJeAv4BswHNAQYC9AGiAXgBtQEwAqcCAgNPA5MDtgORAxwDhgIRAtsB0AHbAfkBHwJCAnMCxgIaAxsDvAJVAi4CGwLRAXABYAGvAfsB9gG+AY8BcAFQAToBNgEcAcQAVgAhACoADQCE/9f+k/7e/k7/ff+a/woAtADxAGoAkv8M/9j+cf6t/Qr9//xu/dT94v2t/XX9b/2t/Qn+LP7W/Rz9VvzH+2r7Hvvy+iD7pPsK/Nb7IfuO+oX6vPqp+kT6//kI+hP63fmU+YP5nfmh+YX5efmN+Yr5Ofms+Cn45PfK96v3fvd197P3EfhJ+E74Uvhy+Iv4dPg9+BH4C/gl+D/4KfjZ95P3qfcI+Dr4BvjA98v3AvgB+NL33Pcz+GL4EviR92X3p/cC+EX4lPgX+a/5HPo/+jL6Evry+eb5Dfpx+vD6Vvua++j7WPy+/On89vw3/cH9Tf6Z/sf+Gv+J/8X/rv9+/3z/r//u/yoAfAD2AH8B9QFLApMC0QLuAuEC2AIKA2kDqgOzA8wDNAS3BPYE7gTyBCEFOAUMBdIE0AT4BBQFIAVCBYcF3gU+BpsGyQasBm8GUQZVBlAGUQaXBiAHjQeaB3IHbQeaB8AHsQd6B0wHSwd4B6kHtwe2B+QHVAjHCP8IDAkqCVMJQwnkCHkITghnCI4IpAiuCLIIrAidCJ0IxggQCVoJhQmLCXQJQgn9CMYIwwj5CDkJSgkqCQsJDAkGCb4ITggVCEQIngjKCMgIzQjgCL8ITAiwBx4HnQYyBgIGDAYDBqQFEwWaBDYEpAPrAmYCRQJDAvwBZgHUAJcAngCLAAgAK/9X/sH9KP1F/Er7svqU+nv6+Pkb+TP4avey9uz1CPUQ9DjzpvI18pfxx/Ai8N3vse9B75Hu6+1k7drsN+yB68LqDeqV6Xzpk+mE6UjpJ+lR6Y3phulC6TLpsumH6gDrwOpG6ljq++p262brX+sa7GHtVO6W7p/u8+6B7wDwavDw8LbxzfIu9Jr1sPZR98L3RvjO+Dv5pPk9+iL7R/yB/Xj+6f4E/1v/JwD6AGsBxQGeAuED1wQYBf0EEAVqBdIFJQZpBq4GDgecBycIRQjaB1wHTweaB6oHTQcFB1wHIgihCIEIJwgZCEkINwi0BykHDQdPB4YHewdPByUH9ga7BoYGUgYGBrUFpgXoBSUGBwa4BZ8FwAW1BU0F5wTyBFgFpAWeBYUFqQUQBokG8AY8B24HiQeZB7MH4QcrCKAIRQn+CZgK/QpQC7cLLwyNDMIM7gw7DZ4N7A0QDicOZw7iDncP6w8bEBsQFhAgEC0QNRBPEIwQzhDnENQQsxCTEGUQKxAFEPoP6w/AD5UPfQ9LD8MOBQ58DVwNcQ1pDTsNDw3vDLQMPgyeCwcLowpjChgKpgkuCeMIxQiaCD0Iywd6B1MHIwfDBkMG2QWaBV8F+AR3BBwEAQT8A+wD4wPyA+ADfgMIA+QCAwPtAnsCDwLkAacBCAFNAPD/7f/k/7X/iv9l/xz/wP6N/nD+C/5L/Y78D/yH+7H6wvkf+cn4evgV+LL3V/fi9kf2mPXP9Nvz2PIJ8oDx/PA68D7vNe417ULsdOv86v/qe+tI7Bnti+1h7cHsIuzU67rrmuuY6wns2Ox37ZDth+3q7ajuLu8/70fvt+9/8Enx+vG28pTzf/RZ9RX2x/aR94f4k/mV+on7Zvz3/Bn9G/16/Tf+4/5u/1oA4gFpA0cEswRaBVMGIAeLB+0HiQgkCX0JqAnKCeEJ/wlXCuMKSgtYCzwLKQsCC6oKXQpiCp0Kvwq6CrkKvQqiCmUKLgoJCtQJggkrCdYIaAjPByAHgQYRBt4F3wX1BQ0GMwZhBl8GAgZ3BRgF/wTwBM0EygQYBYoFzgXPBbkFqwWeBY4FhwWNBZwFzgVCBuQGbAe2B/AHVQjSCDkJmAk8CisLAAxkDHUMiQyrDLAMpAzbDHINLg7WDoIPShD7EFYRcBGGEZwRjhFuEX0RzBEqEm8SpRLLEsYSmRJwEl4SRRIhEiUSXxJ/EjESkBH4EJMQUhA9EHkQ7xBCETARyhA9EJgP4Q5FDuwNxg2TDTANxQyMDJMMrgyxDJEMUwztC10L2QqhCq0KpwpjCg4KxglMCXoIrQdiB3EHPgedBgkG2wXIBXcFGQX9BPgEsQRCBAsEAQTDAz4DwQJZAqoBmACT//r+o/4z/qz9NP2s/Of7E/uA+hP6bfmU+Pn3vvdr95n2jfW79A70/fJg8a7vYu6D7e3suuwV7dLtdO6x7pzuXu4G7rTtuu1H7hrvne9v76Tupu3b7Hvsm+xO7ZjuQ/DC8YvynvJ58oDyqvLo8oTzyvRw9tj3x/h1+f/5N/or+lj6EPsI/Nn8mv2Q/pL/LQBfAKIAUgFaAn0DqwTmBRAH9wd3CIIIPwj/B/kHGwhBCIsILwn+CX4KgApNCiwKBgrACY8JvAkwCo8KpwqKCkkK3wlICZoI7wdcB/EGsAaIBmUGNAbXBUQFqARZBHIEuQT6BEkFtwXvBYMFhwSNAwED4AIGA3UDHQS2BP4E8QSnBCsEqgORAyoEKgUMBrUGdgdkCBUJNAkMCTAJxQmACjAL8QvTDJ0NHA5hDqAO7w5aDwkQEhE2EhUTlxPvE0YUiBSpFMIU8RQrFW4V0BVOFrAWzBa/FrcWoRZXFgAW9RU/FosWnxadFqIWfRb8FUsVwxRtFBcUtxOAE34TXRPVEgoSYhEJEc4QehAYENMPpg9VD8oOPA7kDZ8NKQ2TDDAMDAzKC00LAws6C3wLFgsICvUIKQhdB4AGCgZBBqYGnQYrBrMFTwXlBJsElwSeBGAECATpA8oDKAMaAj4BuwATACn/nP7O/if/6P4i/kj9Svzo+pD5APkq+Ub5A/nW+Nv4Xfjn9jP1TPQX9ILz+vEH8GvuOu0g7Cjr0+p76+nshu7E71rwUvDo72Dv0+457pXtGu347CLtYO2Q7cntIe5/7sDu7u5I7/3v+vD68bzyKvNh85jzBPTL9O/1OfdT+Bb5pfkT+iD6oPkR+Un5cfrG+6P8Vv16/vX/JQHoAcAC9AMfBcgF9wUABhoGYgbWBi8HEweaBlIGkwYXB4EH1Qc+CJwItwihCI0IcQgzCP0HEghYCGUI9gcrB0sGlQUqBf8E5wTXBO8EJgUqBdMEawRGBE0ESgRYBJ4E3QTWBNYEQgW/BaUFHgUABXMFoAUdBbIEIQX0BVgGdwYAB9UHPQhCCL0I3wm5CqwKZwrSCrkLTQyGDCkNdQ6vDzIQRhCFEPoQSRFoEasRMxLSEm4TIBTVFEgVdxW1FRQWMRbWFXkVrRVTFtcWBhcgFywX8xaOFmoWlBaQFiMWtRWbFYgVFhVyFAoU4hOuE1cTAxO3EmsSPhJEEjISrhHEEMsP7Q4jDpQNgQ3kDVEORA50DREMzgpUCnkKgQo/CksKuwqICvcI6QavBTgFmgTzAzMELwV1BWYE+wIDAh8BEACV/+f/1v+Y/lL9ZP0P/p79NPx4+7b7Y/vN+Uj48ffz9xb3n/Vx9F3z4vG48PTw7vHZ8YXwuO9D8GXwUe726q3o3ee/5nTkg+KW4j3k9OUy5zLohOh057rlCeXF5YTmZeZ45tvnkOmk6QDoneYA56ToJuoE67HrjOxg7cDtmO1b7bHt0u5g8Pjxm/NV9cP2k/cE+F/4Wfi+92z3bfhK+nv7rvsx/Lb9F/9N/0L/XQA9AnUD5gO1BBgG7wa8Bm4GuwYfByEHXwdUCCEJtgiMB/8GWAebBy4HnAaPBuMGIwdEB3oHqwd8B9IG/AVUBegEjAQ9BD8ErwQXBcsEvQOWAtsBcQE5AZIBpwLGAxAEqwOBA+ADOQQ/BHgEQAULBicGvAV5BZkF0QX7BT4GqgYuB+wHHAlxCjELGgvICv8K0QvCDIkNTQ5ED2gQhBFQEpISYxJTEuUS1BNKFBUUHBQjFYwWDxeEFhYWlRZqF7UXkxelF/EXERggGHYYthgXGL0WvhWfFasVNBWjFKsUFhUgFYYUlROHEn0R6hAsEdYREBKwEUAR5xAeELIOYA38DFENYw2cDFALNAqoCZQJpgmaCV8JDwnBCGoI1AfeBrMFvQQuBL0DBwMkAn0BCgE6AOf+uv04/e38Tfzj+4H8lf2G/ff7UPp4+Xn4cvax9Bz1CPej96b14/KA8UDxtPDQ777vsvCH8Xzx2PC977rtDesR6ZDoh+iO59Hlj+QA5A3jFuHq3rDdpN1O3j/fPOAg4QLiCOPj4wvkwOMN5EPlJeaP5UvkNeSn5QnnEudV5jHmHOem6GnqO+zP7QHvIPBs8YjyEfOC87b0ovZd+Fr59vmm+l775fsu/B/8xvvW+yj9YP8WAdQB2wItBbsHzQiECIUIigm9Cm8L7wtjDCwMIgsmCssJdwmwCDYI1AjRCeMJIwnLCD4JjQkGCSoIvgfFB84HoAc7B5YGvAXqBEAEnQPYAg8ClAG8AX4CLwPuAq4BgwBoAAUBXgFtAQACLAPuA6MD4wJvAiwC0AGxARYCbQIpAuYBnQLyA6QEjgQIBdkG9Aj6CRgKgAqBC04MdAx9DPcMrw1hDlMPrhDLEfARghGXEWcSDxMFE/oSvxMLFfkVSBZZFloWPBZEFrkWHxeoFn8VshSuFLIUMxS4E8sT8BNxE5USMxJ4EvgSdxPSE4MTOhK/EDMQghCbEBIQjw94D0gPkQ6zDQwNTgw5C0IK4gnLCXkJCAnkCAQJGQknCVMJTgmbCFAHAgYJBUYElwMJA4cCwgGLACb/IP7k/Tr+Vv6s/an8NfyD/O/8F/1B/V79rPzv+if5J/hA9371mvMj8wn0gfSb82fyCvIO8oXxwvC48EnxXPFo8O3ube3e6zDqsOiQ55nmn+Xo5K3kfuSM46Phkt913rDe1d9t4WnjsOWl54joO+hI50PmceX25OTkHeWE5Urmm+cM6d3p8+kf6i/rDu0E73vwYfEW8hXzbfST9ST2ovbm99H5Ufvp+0T85fxI/ej8XfyL/Fj9NP5Q/zMBeAMnBTMGbQfsCMQJjQkfCTwJhwliCQIJ5AjdCIgIJAgzCJYIvAiQCHIIcgg5CMIHegeJB4gHIAeUBmMGsgYqB04H3gb8Bf8EBQTfApYBugDIAGoB0QHIAcUB+gH+AaMBcgHfAY8C5QLmAvAC9QKsAlECagLeAgUDrgKDAg0DEQQDBaQF3AWgBUsFoAXjBnEIoAmOCpsLhQzWDNQMMw30DW0OeA6yDmsPFRA2ECIQUhCaELEQAREbEpETMRSME4QSIRJqEskSCxNTE2wT5RL3EX4R5xGqEhwTKhPJEnURJQ9LDa0NPxAUE2YU1hPBEcoOVAwgDD4OYRBPEE8OSgxMCwoLOQvSCyYMIgvXCLkGAwaPBmsH0gdmB0YGHQWjBNYEJwU4BeQEzgPCAX3/PP5j/jf/7/9YAF0Awf+U/kH9EPwo+9f6M/up+6j7ePuD+z/78/lC+HT3ZffL9pX1PvVX9ov3kveA9o70lfG37nvuqfGS9Sj3afb+9PDyRe/56qvoQ+kg69Lsdu7P72DvqezQ6U3p1eoM7NXrX+vX63vs2+tE6pvpz+p77L/syetl62Tsv+1h7obuyu7m7mPuwO307S3v4vC98rL0b/aA9873ePeY9rH1qPWr9rz3J/iz+Cv6ifsz+6f5Lvm6+sH8pv3F/Uv+N/+Y/x7/c/5e/ij/jADxAdMCRQOlA9wDaQNTAmIBMQGQARICnAIcA1YDbgPqA9IEZwUWBUYEpwNVAygDYwM4BPgEoQQXA1YBWwBtAFEBogLcA4MEeATyAxUD3wGCAJv/0v9iAeADYAbQB4gHxAWaA0MCSwJeA9MELwYwB54HbgffBiEGEAW/AysDjQTdB4gL1A0RDloMSwlaBmYF/QbBCRgMvQ3xDk4Psw4zDl4Ohw0BCtIFdgViCtYQHBQWE6MPhQvMB/AFIAeXCiMOVxA/EfUQ2A6sCukFWwMPBU4K3g/IErkS4RA9DSoHzQAL/yIEFgyaEKEP5gsXCL0EnQK8A0UIngxiDK0GyP63+Xz7bQR4D5gUmQ9PBLL6JvdS+Hf7xv9cBBIGeQJL/MT5lf1WA4IE0P8D+uP3e/m8+8/8E/3s/N/7MPqR+SL7nP2n/mf9lvqw9svxle177Qzzwfp7/tD7YfYl89ry2/I+8jDziPbl+GT28++d6tzpsuxD8BnzGfUS9pP1avOq7yHrCei06JfsR/Bj8Tfx+fEZ83vySfDQ7tfuuO5x7TrsQuwA7c3tF+/O8GvxJ/Cy7vnuWPDZ8FvwePDV8WzzQvRB9JDznPKI8vzztPXm9e70zPQE9gD3zfZn9pn2qvY09mn2LvhT+ir7r/rc+fD44feD96j4mvrQ+8b7N/sG+8L7i/13/9f/L/4a/C/7Evv6+sn7nf4YAm4DCwIgAGb/Uv/X/hj+x/1E/tr/dgK7BMUElgJ6AFcAiwEwAn4BSADE/4MAMAKzAwEEAgOKAYIAgADlAWwEqwbzBvMEFAIfAPz/bwFqA/oEXgaOCOcKkwrcBW7/bvxN/80F2wu6DsENFQo0BiYEoQMwAyIDXAX3Cf0Nmw5JDJ4J1AecBX8B8Pxh/BwDdA6jFv8VZg4kBuYAKv57/YQA/gfXEOcV3hPUC9wCVf4X/2cB1ALFBT8M1xESEMwHqQDc/ln/aP98ATIHMgz7C8wIggeBB2YEYP72+jX91gGiBKoF+gbhB6YFNABk+7L6Hv0W/+f/mwIECNwKpwUy+8r0f/cq/xIFJQeMBmkDuP3f98307vRN98P7agEYBVEERQBl+zX2U/EN8PD0Ev2iAh4Duf+/+QDz3e8087X4O/lC9Zv0Ofr7/kT8ofWD8ifzefI68KPx5/cA/fz7R/ft87PygfGb8CDylfWy9+H2IvXa9L/1wPW687LwH+8C8cH1DfrX+kH4s/TG8cHvZe+b8SD1BvdU9ub0EvQP8+/xA/Pl9sn5APho8/Tw//GY8wf0HfV/+KD8nP4G/TH41/FL7fXtFPTb+6QAiAD2/MH4v/Wx89/x1PGY9qr/+QbKBm8A/flw9hb0RfLt8/D6LAT+CcAIgAAg9XDtu+5W9yAAZwSQBfgFKQQy/vv2i/RW+Y4B6wYlBlIBhv14/ej+mf6l/az/HwS3BdEBWfxe+kn8v/+sAy8HggcfA4f9LfwaADYFfweEBsUDDgCt+3f48fmyAWYLEA+UCecAvfxS/e39Kf4GAiEJMA0OC5AGAAPY/jb6YvqmAYAJ1wpfBw4FlwTRAgAACP+v/97/0gAoBfwKSQ2BCm0FpAAT/an71fyM/00DgwiwDMsK1ALx+6X61Poa+QP7fQUMEQMS7AgOAJP7nPd/9BD4twGwCMEIgQbQBKEAXfqw+EX9VgAe/c35Iv3pA1kHjQZPA478lPNL8Kj3lgK8BlkE1wLqAi7+HvTM7QHyhvxkBPMFZAM2/2v65fZh98/7wP/P/gr6hPaD9sD3ePnC/rIGCwh7/MbsN+j98Or6vf23/Xz/a//g+pP3wPmH+9X21vAH8pf4nPw3/d7+7v+I+gTxbe0T8wT6RftO+Uv5Dfu9+xP7DvpW+BP2NvWQ9pT4jvq2/TsB8gDY+ijz5O8W8hH2Mfku/ML/yAF9/7j55fQi9Pv1Xvcq+Cv62fzB/eH8WfyY+9r3lfKt8a72pPtu/CH9rAHvBL//RPXx737zsvnH/M79t/8ZAtQCkwD3+tXzLfCW8yP7ygC7AucCXQEm/Tz5jPmv+zD61vYM+SUBZwZgBKQAZv/8+0/zK+2B8tz/1QkNC20Gd/+J+M71f/mr/gr/kvza/bMCwQSSAgIB8gCM/TH3MvbD/RwFRwQgAHIBEAauBEz8pvUQ9lr6ev+9BncOQA/9BVn6kfWl9xL7j/4sBPQJBAsoB50Cyv7A+Sr1lPb8/hkITQzrC6YICQLs+WP2WPqVABcDGQPABO8G9QUtA7ICDQPP/pf2iPLa94AC8wqqDfEK1AOg+qrzufIW+MMAawiBC4sJXAV6AXD90/jW9r/65gHHBRoE1gDF/xsAS/+n/Hn5EPiR+iIAUgR3BIYDYgRwA4787PTi9SH+MQLo/ez6BQFICY8Izv83+Vj5ivto+3/6Pvw9Ad8G5QiQBIz8tvd4+a39m/46/Kz6SPwZANMDlQR+AM/5qPX39VP46vvRAtQK8wvzApD3xvJx9AP4Wv07BTkKRQbH/PX2vvdb+j/7Y/sH/Fv9HQBcA/gCuv00+dj5zfvO+kz7HgJlCPYDgvhJ81T3oPtu/Gj/ngQYA4f57/Ng+ZMAY/9W+hj7oQCGA8oCMgIgAdD8zffR9lb5LvzI/wcF5AdCBN38a/eO9bT2u/upAtgEiAAH/tQCtgYiAFP1EvSf/NECMQJlAvUG5AiBA3D7gvXZ8dbyr/z+CZwNfgUL/60BzgI2+WPvNvQCAwMLmQg/BnMHTwTv+tj01PbO+W/5pvyOB18QtwyJAcL6bvkq9mPxPPT2AMAN0xGkDpAIN/8K88zrSfHz/5YLJw2nCA4FZQMfAPX5WvT28yj6hgMiClwKJwaPAmgBL//F+Jbx8vBf+ZQFuQ5XEmkQqAeT+JrqSeg39GEFcxC8EVwM6QMf++T1A/fX+/7+p//EATMG8gcRBH7//v+jAtX/9Pf49PX8HgmaDs4LDQcXA+b81fSV8Zb2aP58A0oI5Q/DE5EKeff/6D3oyfF5/4IOJhkXFo8FC/Zl81r4h/m39wr8mAahDVIMAQfyACL5IvJX8sD54wAfBAAHYwpsCXEDoP7p/Pr4+vKe9BoBPAw+C3wE1ALRAuH6vO/M70D80AaDB28FgAZJBdP98fct+6oBiAGA/HD75/77/2n+XAGsCGYJf/7h8p7y7Pk5/Yz8UQGTChwLff+w9oH7sgKj/Qn0jPgPCb8P2QQX+nT9IgT5/unzFPPq/DQE3gOOAnIDbQJJ/1b/cAKVAcH6KvVk9ywA7AnUDnAKnP7o9bD49QBeAtn85vsBA9sHrAPA/Sj+yAA6/iH5NPk5/m8B7wBEAa8EeweVBXP/6PjJ9cr3Cf5DBrANyg+rB4P3OeyJ8RcC+gtDB83+X/5aAiIBO/yR/DkCKAR0/+37O/+qBMYFzQNaA8QD1QD9+gf4bfu2AfsEzAOlAYsBbAKCAYD+yvuv+9r+bARoCW8JfQMQ/Vf8sv9gAB3+cAA+CSEOUAYI+Zf07PqSAWoDzQVYCuQIa/579rX72wY+CaoCpf8eBGoGNAGV/H7/8gPlAcP8x/yIAd4E8wVjBzwGCP4a9Jfzk/1hBxoKuQkCCtkGWf1A9AP0xPtbBAcK5QyiC7AEg/ux9rb4Ev6BAhkF9QbyB88FMf/B97/2TP6MBq8GCgEX/0UChwKj/an8VARxCpEEgvkr+I8BlAhrBl4C8wJYA5T9oPb1928BTAkJCRAE7wDCAMr/FPy0+CL65wC2CHwMuAqGBYH/5vkH9sT2Bf6ACMsOygwmBpkAAvw99XXv8vKeABcOMBLXDlYJlABr8zPqxO6Q/ZYJww13DywQUgnJ+W3sg+st9f4AEgrqDrgNbQbS/CX1v/Gv9Ej+EwlZDSkKMAVQAY/8ufd39zL8MQHkBBYJlgrpA575F/eA/BT+Vvms+q8GBA/xCBP/b/7dAG/7evW9/DQLlw6IBen/KwN+Awn7mvQP+eYByAW3BVUGRAa0AvD9W/vG+o/7lP5gApsDJAM2BdsI5AdrAR/8afur+jj33fbD/hUK0A9bDV8GIv5Y9tbxV/NJ+nYD7guzEQUTlw5dBO/2xewk7aD4GgeKEI8UEhWwDtX+Nu6T6pv1RQMtCjQMNg19CxsGrAHXACz/o/k19g38XQhpEd8R9wvwA8D8gPip95/4vfrt/6UIVxAlESIK7P9k+Bv3ofvGAUQFIAZmB5cJ2gksBxUEqQGE/VP3UvR7+YcE+A2fEOcMNwZ5/8j5rPUs9er6ggVHDh4Qcw3rCi4HuP6+9Tn1eP35BJ8GdgfLCpoKlgII+tL55P7//878fP3iBCIMhwzNBq3/u/qz+UT8ov95ATADCwcgC/cKtAUd/7n6c/lA+5n/QATABgEHKwYcBPgAoP9nAi0GPwV//177xf11BMcJzgo+CO8Dhv9L/NH6Ffsx/fAA7gR8BzUIiwddBcQBY/66/PH7Gvvl/N4EDBDGFDkNTv9B9hv2sfkg/N3+jgS9CoAM3wizAiD8gPY09eL6yAOuCIQIKAlkDFkLrQGv9kL0b/kP/nYA3gUVDvwQfwqtAIf60fcV9nv3Hv88CuQRoBH2Cez+Xfb19B36tgAzBTUIawrxCfUFUAG5/in9mvoI+K34fv79B/8PiBDlCNL/zvs7+xj5KPew+/AFvg0cD0ANLAkGAFX1TvO1+24DwAOTBO4MLhSYDmQAOPfD9uT4SPyjBGoORBB8CRkDewEHALP8q/wuAqMHuwgvCGYISgYfALr65frG/i8C0gTbB4cJrgfRA8YAs/65/I/8rACqB2EMTAtbBoUCwgEPAef9B/w3AS4LrA+iCVkA9/x2/n7+IP1h/wUFnQiCCLAHQQaIAbv7F/sfAI0EoAWtB8QMaw+yCooBRfqB99b41f3hBKIKSQ11DaQKOAN7+dXzrvUB/JoCZgj4DIIOnAwYCWwEpv0T9+f1RPuAAiwIRw2KEa8QBwlz/yf5Svb19eT5BgJ6CZEMWQ3dDRcL9gKc+j/4k/qF/CD+3gKmCYANPA2mC+8IhwLE+Vv0BvXx+K79ZwT0DJkSIxFrCnkDPP5W+TT1lvW4/AYHPw5AEPMP5Q7oCTX/mfTk8cD2WfyEAF0HRxB5Ep4JI/4D+mL7gPr79/76jAMxCQUItwUwB0gJWAeZArL+//uW+RP5Q/yBAdsFqAhoCkwKfAf5Aib+hvnE9iX5CgFrCQINVQxGCykKwAUI/on45fna/3AEeQXOBX0HPwiMBXABAgBFAaMBggCIAbUFUQhTBhkEgQYeCkEIWAImABsDQQRfAGv9QwDKBFoFWQNlAgsBWf1++77/qgUQBtACdwOBB2sGW/6P+N77kQMjCHUJtwqBCsIFtv6H+nv6MvyM/twBJwUgBw8ImAd/A0P8gPc5+ff9sQDyAosITw5cDWAG/wDL/6/9H/ml+CsAeQnkDGILAgqZCPEDlf1q+nP72P2wAOgEmgiGCOIF+AQjBsUFcAMBA1MFDgYnA+cA7wI9BmIGjgRpBDQFqwOyACgA6AG/Aa7+vvx0/lAB4wKEBF8H4Ai8BjsDwQGaAWAAUf+qAcIGUgpECiYILAVCAR7+gv5tAcECsQH9AR0FawefBtAFbgdXCJcFhAJoA9sF5wQBApICJgbfBo0DogHGA8oFUATrAVkBywDT/q7+uQIHB74G3AMDBJsHlQk+BzwDtgC9/2f/+/+BAakChgIHAnICZQNVA6wBpf+z/rH+kf7v/vwBgAcoC6AJrQV7BOEFQQXoAc0AZARWCFQIEga8BEcD5/8X/e79YQDDAFEAkwIyBtUG7gQdBRwIogkBCIoGKgeIB2cGJAZhB8gGLAPNAM4C5wXYBdcD4gKXAYf9w/mW++kBawb8BpIH7gkUCqwFMAGKAbYEYwU4A4EC3wQuB6oGJwReAYb+xvtj+hn7Qv1fAHQEHQj+CCoHaAXdBGADCAD5/az/lgJeA5gDggbfCQoI3ACr+n35n/qH+hj6hPtH/gQB1wM8Bk8GYwTHA1UFdgWbAhoBdAQFCZ4Jgwf1BgYH0APF/mX9OgBCAn4BQAHaAv4CcwAP/xkBXAMVA9oCswV/CVMKIQhxBUMDqwGsATEDywOOAksCtQRxBvwDg/9j/Vj9YPxG+3X9JwLWBKQEcAWCCPMJjQfJBNwEgwWwA3cBgwJaBXwFzwJ7AZoCWwK0/hD79vry/Nz9Ef7N/50CZARQBawG5waKA/b+1v7RA/MHcQflBWkHUQnIBjgBGf59/rP+g/26/ScAuAHqAEQAgwGKAlsBhf9L/1YAaQG6AnwEcQX1BFAEVgT9A8UC8wHiAc4AN/64/Er+BAEVApsBOgHrAM7/h/5H/uv+HwCFAuoFSQibCHAIwgjCB0MElwAJ/z3+dPyn+03+PgJmA/cBRwGlAWAAa/3++zD9mP4p//4AEQX5CJUKkwrSCXEHQwNw/679EP08/OD7Rv3r/yMCAQN4As0Awf5Z/fj8a/3h/pYBlgRUBpsGYAbKBSMErAGT/xv+mPxL+0r7dvyN/Sj+vv7L/nv9Efzc/IP/NQEXAW4BggNzBacFUwWlBSIFYQId/9H96v0K/Qb7z/kC+jH6rPm3+Xz7Yf4YAUEDNwXxBtgHpgf4BrEG6AbsBlUGdgV2BN8CqgDK/sz92Pwu+6L5Jfn9+E34TPir+n/+UwHTApUEigbZBpQFQAWyBoYHBQauA0cCCAGZ/rv72Pm1+Jb3B/e29/L4CPqZ+/X9wv8vANkATQMwBjQHtwbJBoUHJAdMBYYDTgIsAIz8Pvkl+Mb4Zflm+Zz5mfra+6H8Jv1+/kQBrARYB+4IIQowCz4LiwmYBn4DvQBO/kr8+/p5+pX64fq6+tX5vPhC+JL4d/kz+xn+eQFDBI4GMwnEC5EM8AoECOMEnAGH/sL8ivyz/GT87vsz+0H5bvbW9IP14fan9y/5B/3KAdcE5gWeBnEHVAcvBkUFCQWVBHADOwJGAQMANP5s/Bv7GvpE+bb4Zvhj+E/5ofuM/rYAAQJ8A3YFywacBrYFaQWYBesE8wI6AVQBdgIwAsf/Tv18/AP8+/mq9wj47frs/IH8GPym/X7/n/9g//IAYgMoBFMD+wJoA/YCUwHw/03/g/53/QP93Pze+3/6b/p++5T7WvoQ+sf7g/2f/Yj9J/+VAa4CbQJyAhIDEwMCAsoAAgA2/xP+Ef2V/G78Xvxm/GH8CfyX+8/7Ef3e/moAawEjAswCLwPTAqgBYwDp/1oA8QDfAB4AJ/85/i796/vB+iH6KvqT+i37PfwO/kMA9AGdAocCMQLfAc0BNgLCAo8CTAGh/zD+3PyY+/z6Lvs/+6T6Zfpw+7f8ufw0/Bv9M/8tAF7/vv6O/0kAbf8T/h7+NP+o/zH/xv6M/tP9xvxX/Jv8wfyd/Mj8RP1Y/e78vfwC/Tj9SP3H/cD+aP9j/z7/PP/E/o79cfxO/OP8df3p/X/+Bv8e/+b+rv5M/mj9T/y4+877Bvz1++H7R/w1/TD+o/5i/tL9jv3C/RD+Hv4J/gj+7f1W/WH8s/vE+2H8DP2Q/SH+9v4LADoBOwKTAsQB2f+d/e/73PrO+Yv4o/er93P4ZPk/+hn75fuS/GP9sf5MAKIBZgK4AqIC/AHLAFP/x/1I/Dn7+/pb+637qPuU+5P7VvvA+kP6N/pM+h765Pks+ij7nfxW/icAvgGzAtgCPQIaAb//bv45/Rf8LPud+jj6pPkH+dr4Gfkf+b/4u/i8+Vz7y/zq/RL/MQDWAOQAtwCCACcApf8i/6H+9v0W/SH8NPtx+gf69fn3+f35UvoG+5T7lvtu+8L7k/xz/UL+Hf/G/+3/zP/O/73/Ev8A/jv9z/wf/CL7jPqQ+nT60flM+X75Afo1+kb6wfqc+238Gf3A/Tr+Wf5I/jT+5v02/ZH8c/yw/N/8If3G/W/+TP46/e778foj+lv51vjL+Pj4B/kX+ZH5l/rQ+8X8Vv3I/Uv+o/57/vz9pv2T/Vr96fzU/Gf9Af7w/Wf95/xB/AT7nPn1+B35R/kw+WX5EPqC+mT6W/oB+wD8u/w2/b39Ov51/oP+Y/7C/Zr8jfsd+/36xfq/+k37DPxR/CT8/fvT+0X7dfrZ+Wv51/he+KP4mvmC+hD7tPug/Gj91P1B/tD++/58/uj90P3m/YH9mvyr++f6LPqC+RL52fi2+Lv4A/lo+ab5vvnU+eb58fkz+uX61vuj/Dr9y/1L/nP+N/7s/c39sf1Q/bH8Kfz/+w/85fsi++35zvgp+PL37/cI+D/4nfhA+Uj6hvuE/BT9jf00/sT+0f51/gX+ef2Q/Ir7/fr2+tj6Qvqp+aP5GvqH+rr68PpA+2H7K/vn+gH7e/vm++n7qfub++f7NPwj/Mv7ivt++2n7Gfuv+mH6Ovol+iD6Qvql+j/73Psr/BL8zfug+4P7R/v2+sf6w/q/+rf61foG+/f6o/qI+gD7vfsq/Cr8Fvwn/EX8VPxi/Gn8NPyY+7X65vln+Sv5//ja+PX4ePkn+qT66vpE+8L7H/w7/Fn8mPyb/B78efss+y77IfsF+yf7gfvD++n7LPxg/AL8GPtW+iX6F/qm+fz4l/iN+Kv49PiQ+Wb6PvsX/Pn8rf3v/dv9tv16/f/8bfwW/PL7tPtP+w77CPsI+/D64/rn+s76gfol+sf5XvkW+UH51/ll+qv66/px+yT8y/xq/RH+lf7K/rP+W/6t/cr8Gfy++1v7qfr3+aP5fvk0+ff4JfmE+Zf5hPng+Zr68/qz+ob65vpo+5r7x/tQ/NL8xvxv/GT8hfw4/In7IPsp+w/7hfoP+iL6ePqe+qb63/o4+2T7ZPt2+5/7tvu1+7T7tPuq+6X7tfvJ+9b7+fs4/FL8HfzZ+9b78vvb+5v7hfuj+7X7vvsB/Hb8tfyc/IH8l/yl/H/8Xvxc/Cz8qPtF+3T75Pvw+5b7Xvt2+4r7f/uu+zb8svzO/Lb8qvyP/EH87PvB+5v7TfsG+wT7IfsT+/P6Evtk+4n7bvtb+3D7dvtb+137hfuC+zL7/fpA+7T73vvO++37P/xd/Cz8AvwQ/Bn84fub+4L7evtM+xj7Iftd+4j7jfuh+9/7I/xJ/GH8hfyo/KD8Wvz5+7L7k/tu+x77yvrP+kP7yvsN/CD8Rfxs/FT8AvzF+737vfur+7D75PsZ/Cf8KfxD/GP8avxv/I/8qfyB/Bj8o/tB++/6r/qS+pP6ofrG+ij7xftq/Nv8Cf0F/dv8kvw3/Nb7cPsG+6z6i/q3+gr7QvtN+2P7s/sa/Ez8SfxS/IL8qfyk/Jf8n/yZ/GL8Hfz8+/H71vux+5v7hvtU+xX74vq1+n/6X/py+pz6u/ry+nT7H/yh/O38Mf1r/Wz9NP35/MT8cPwA/KT7YPsQ+8v61foW+yz7Dfsq+6r7FvwS/O77G/x3/Jb8ffx6/Iv8afwa/PT7Efww/Cb8E/wP/AH83/vP++n7Ffww/Dj8NPwm/Bv8Hvwc/PD7oftg+0H7JvsD+/H6B/sq+zv7TfuJ++f7I/wU/Nv7xvvx+zH8YPyP/N78LP06/Qz95/zk/MP8Wvzj+6j7oPuI+1L7LPsm+yP7G/sx+3L7svvH+737yfsJ/Gb8qvy9/L384/w1/Xz9gP1D/ez8lvxL/Bb8+vvn+9P7xfu7+6X7kvut++/7Evzw+8z77fs9/HT8hfyR/I/8afxD/E78avxN/P/70Pvd++776fvy+x78P/w1/CX8MPxF/E/8V/xf/Fb8SPxe/JT8r/yX/IT8qfzr/BL9E/35/ML8c/wr/Pj7yPuX+4b7nvu5+8P73vsg/GP8gvyR/K78xvzJ/Nn8Ev1F/T79HP0i/UL9Nf3w/Ln8vPzb/OP8z/yu/Ir8aPxT/E38Wfx3/Jj8ovyU/Jv8zfwA/Qn9Bv0p/Vn9U/0i/RL9N/1K/SP9A/0i/Vn9Xv00/R/9Nf1T/Vb9QP0j/QD90fyg/IL8lfzX/Bf9KP0a/Sr9av2n/cH90f3s/fH9x/2d/a/97P0S/gv++v3t/dH9of1v/T/9Bv3N/Kr8kvxs/Ev8Xfyb/Mn81fzq/B/9Uv1n/Xb9mf3D/eH9Af4m/i7+BP7O/bP9nf1n/SX9Bv3+/N38oPx3/Hn8gfx0/Gr8ffyj/M/8BP1C/W/9df1r/XH9iP2a/av91/0e/lP+Rv4D/sP9of2E/U/9D/3k/Mr8nPxW/B/8DvwM/AT8Cvwz/Gj8j/y0/PP8Pv1o/Wb9V/1O/T39Fv3i/Lj8qvzB/PD8GP0e/RL9Ev0U/fn8xvyi/J/8ofyO/Hj8evyP/J78nfyZ/J38q/y+/NP86Pz//Br9NP1U/Yb9wf3u/QD+BP4D/ur9s/1+/Wb9Tv0O/b/8lfyM/HX8UfxY/Jj83/wL/TH9Wf1g/UD9LP05/TH97vyk/Jv8xfzt/BH9Uv2i/c/91P3X/dr9wP2T/Xv9dv1c/Sz9Ef0a/SD9D/0J/SL9Pf1B/UX9Xv11/Xr9gP2Y/ar9o/2b/a/90v3j/er9A/4n/jv+NP4i/g3+7v3M/bj9vP3Q/eX99v0B/hL+N/5r/pj+tP7O/uv++v7v/tv+y/6y/oj+Zv5n/nj+fP53/of+rP7H/s/+0/7f/uj+6P7k/t3+1P7N/s7+yv63/qL+nP6b/pH+h/6S/q/+y/7g/vn+D/8V/xb/IP8l/wz/5v7e/vf+Cv8C//v+A/8A/+f+1P7b/un+6/7s/vr+B/8G/wj/HP82/03/bP+a/7z/vf+n/4r/Zv87/xn/B//0/tr+2P75/h7/JP8f/y3/Sv9Y/1b/V/9X/0f/M/8r/yf/FP/6/uz+4/7K/rH+sf7E/sr+w/7K/tz+3P7G/rv+xv7J/rH+lv6W/q3+wv7O/t3+9v4M/w7/8v7H/qb+l/6L/nf+b/5//pH+hP5m/l7+c/6D/nr+bf5x/nz+e/5t/mL+ZP5r/m7+af5i/mX+dP6F/pb+sv7c/v/+E/8s/13/jP+Y/4v/jf+i/6X/if9p/1//XP9I/yj/CP/p/sj+sP6m/qP+m/6T/pX+p/7I/vL+HP8//2H/iv+1/9T/5v/8/xwAQQBjAIEAmACdAJIAhQB5AGYATgA7ADEAIwAFAN//wP+t/6P/ov+t/8L/1//n//P/AgAaADUASwBbAG4AiQCmAMMA4gAIAS8BTAFfAW4BeAF+AYMBjgGZAZcBiAFzAWIBVwFOAUMBNgEvATQBPgE/ATgBNgFBAVEBXQFrAYABlgGkAa4BugHJAdoB8AEGAg8CDgIZAjYCVgJoAm8CegKGAooCjQKZAqQCogKVAo8CkAKOAoQCeQJvAmQCWgJZAlsCVgJIAjkCKAIYAgwCCgIMAhMCJAJEAmICcQJ7ApACqQKyAqsCqAKyArwCuwK2ArYCsgKiAowCdwJjAkcCIwIAAuMBxwGhAXQBSAEnAQ4B+ADeAMUAsACnAKgArACtAK8AuQDJANIAzwDPANgA3QDSAMkA0ADYAMQAnwCIAIIAbQBEACUAGwAKAOL/t/+h/4//bP9K/z3/N/8g/wb/Av8O/wv/+/7y/vT+7f7f/t7+7P71/vb+AP8W/x7/EP8C/wP/Bv/9/vP+9/79/vP+3/7R/sj+tP6S/mr+QP4Q/uL9wP2r/Zv9i/2A/Xv9eP1v/WP9W/1c/WP9aP1k/V39Xf1f/Vf9Rf04/Tr9Pv0x/R39Ev0N/f/85/zY/NT8xPyf/Hr8aPxb/Dv8FfwF/An8A/zt++T79/sP/BX8Ffwo/E/8ePyc/ML87PwT/Tz9cP2o/dX9/f00/nz+vv7v/h7/Xf+e/9H///84AH0AuwDtACUBaQGpAd0BFQJdAqQC2gINA1MDpQPoAxwEVQScBOMEKAV5BdoFOwaXBvoGZwfIBxYIaQjMCCgJagmlCfIJQgp4CqAK1goXC0gLZQuIC7UL1wvoC/0LHgw3DDoMOgxHDFoMYwxjDGEMaQyFDLEM1QzhDOMM9gwUDR8NFg0YDS0NNw0oDRwNJA0qDRkNBA0ADfkM2gy4DLAMtgykDHYMRQwcDOULnAtOCwYLtgpcCgYKvwl3CSEJxAhvCCIIzgdwBxYHxgZ0BhIGowU4BdYEbwT6A30DAwOOAhwCrgFAAcIALgCS//n+V/6k/fH8T/ys+/D6J/pw+cb4DPhB94L2z/UH9Sn0X/O78hfyVfGS8PPvZe+97gXuZe3a7DnseOu66g/qXemQ6Lrn7+Yl5kjlY+SF46zix+Hb4PnfKN9a3oPdqtzZ2xjbZ9rM2VTZC9n32BXZX9nT2XfaTttV3Hvdt94G4G/h9eKR5Drm6eeZ6UvrAe2z7lnw8vGF8xX1mvYF+Ff5mfrH+9L8t/2F/kr/AgCsAFsBHwLtArMDcQQ+BRsG8wa+B5EIggmJCpALkwyeDa8Org+KEE8RCBK0EkcTwRMnFHMUkxR9FDgUyRMtE2ESdBF6EHIPUQ4YDdQLkgpMCfoHpgZgBS8EFQMUAjIBcADM/z7/zP5//lb+Sf5X/oj+3v5L/8P/RwDdAHYB9wFbArcCFgNnA58DzgMGBD0EYARzBIkEpgS/BNQE9gQxBYMF6QVnBgMHuQeJCHgJhQqtC+0MQw6pDxgRkxIcFJ0VAxdTGJsZ2Br0G+ocyx2YHkAfvR8cIGEgeyBiICog5h+HH/4eWR6wHQMdQBxkG4QaqRnLGO0XHBdgFq0V9hQ/FI4T3xIrEnERthAAEE4Pmg7ZDQsNOAxgC3cKfgmECJEHkwZ6BVUEOAMZAuMApP90/lL9Ifzi+rb5qPiX9332fPWn9ODzDPNF8qbxIPGR8Ajwp+9g7wjvn+5J7gTuqe0t7bfsWuz764TrCuuj6jvqueko6Z3oCuhZ54/mxuX55A7kC+MK4g7h+t/I3p7dlNyc26na2NlG2dnYZdjx16HXcdcx19bWmNaW1qfWo9az1hTXstdO2O3Y19kj25Hc7t1c3wjh0eJ05PDlfucm6bTqD+xq7e/ufPDh8S/zlvQO9mf3lvjC+QD7Mfw8/TH+Jf8TAPAAwwGZAnkDbgSHBcEGDghtCd0KQAx8DZwOtw+8EIYRKxLbEokT+hMjFDoUUxQ6FNwTbRMRE6AS8BEXETMQKg/eDWkM7wppCcoHLQa3BGkDNAIlAUMAeP+z/gj+gP3//Hj8EPzb+7D7afsm+wz7+/q/+nH6T/pW+lf6VvqD+tz6IvtC+2L7kfur+6b7sPvn+zn8mPwh/eH9vf6f/5YAtwHvAjUEmwUoB8QIVgrgC2gN2g4kEE8RbxKIE5MUkRWHFnwXcBhQGf0ZdRrXGjIbaxttG1kbVxtPGxUbuhpvGi8axxk9Gc8YiRg3GMMXZxc/FxEXqhYrFsEVWBXCFBcUhxMCE2QSvhE5EbgQARAkD2IOuA3nDO8LGAtwCrUJyQjiBx8HUAZXBXAExAMoA3ECyQFsATkB5wB3ACAA6P+i/0H/5v6l/m/+M/72/bj9cf0d/cP8Yvz7+5H7Jfux+jb6ufkw+YP4t/fn9hz2RvVk9JLz3vI48pTxAfF88OzvS++v7h3ud+227PzrVOua6rnpz+jx5wHn8OXk5P3jIeM04lPhmODf3wHfCd4U3RrcAdvf2dbY5Nf51iHWatXL1DzU1tOq06PTvtMr1ADVEdYy133YGdrh25zdXt9j4aTj4+Ua6H3qDu2H78Tx6vMM9vX3fPnF+gn8Qv1P/j3/LAAZAe0BswKBA1IEIgUPBjUHewjFCSQLqQwuDoUPwxAaEn0TwBT0FUgXrBjhGeAazxunHDAdXx1ZHSYdoRzFG7MacRnuFzwWhhTMEu0Q+A4gDWgLrwkCCJoGcwVRBCsDNwJ2AakAxf8M/6D+Uf4A/tr98f0O/gj+Av4c/ir+Df7t/fH97P2n/T795fyM/A/8ifst+/L6svqC+o/60/om+5P7QPwk/Rj+Hv9TAK8BEAOHBDkGGAjzCcULpw2PD1AR4BJbFMIVABcYGB0Z/hmgGhEbbxuqG6objhuHG4EbTxsGG98ayhqDGhUa1RnGGZQZKhnkGPMYCRnpGM8Y+RgzGTUZHBkdGRcZzhhnGB8Y0Rc0F2IWrBX+FAcU1xLGEd0Qzw+aDo8NsgyuC3cKagmnCNcHzwblBVsF9gR2BAAExQOmA3sDYwN4A4cDaQNQA1wDTQPuAnICGAK3ARIBTgCs/xD/QP5Y/Zv8+vs0+076ifnw+Ef4c/ec9ur1WfXT9EH0nPMC85fyQ/LG8SPxqvBq8AzwY++67kDupe2x7LfrDuts6nXpaOiy5x/nOOYd5UjkqePM4rvh6uBf4LPf395N3gXemt0A3abcptya3HXctNx73U3e8d7V3zfhpOLK4w7l0+bJ6I/qYuyZ7ujw1/J89DD20fcK+fL56Pr0+9v8mP1V/gr/lv8KAJEAJAG/AZICtwPyBBQGSwe7CBsKKQseDEwNkA6fD5cQwRH3EuETkBRIFegVGRbpFbMVfBX8FCgUPBM2EuQQWQ/dDWMMrQrcCGIHUwZVBUsEgAMLA5wCCAKGATgB8wCiAH0AlQCoAIkAYwBaAEEAAADJ/8L/zP/J/9X/9//0/63/X/8+/yH/5v7B/un+P/+O/+7/jABcATgCMQNlBLgFCgd1CBsK1QttDekOZxDWEQ0THRQpFSYWABfMF58YURm9Gf8ZPxplGlkaShpmGoUaeRpyGqoa5hrXGrAa5hpkG7Qb2xtHHPEcSx01HTUdfh2IHQYdgxxxHFQclhuOGt0ZUhlRGPkW6RUqFTEU9hIMEpER/BAhEIUPZg8/D7oORg5FDmQOOQ4GDisOYg4zDsANgg1rDRENdwwIDNgLfwvHCvUJSQmTCJUHbgZnBZEEuwPJAtwBGgF0AL7/Af99/kT+Gv7X/bH91v0B/tX9eP1G/SP9qvz1+3z7OPuc+pT5rfgO+CX3svVS9HLzkfI68dvv8e4Q7qvsK+s16nzpUOj85ljmSObv5TDlyOTX5JnkyOMO47ziO+Iw4SbgfN+v3kTdottR2hLZfdfd1b3UDtRx0wDTE9OQ0xzUy9Ty1Y3XWNle2+Td1eDL45zmcek97LHurfBs8iX0xPUj90f4PPn3+WX6jvqW+qL6zPoY+5X7Z/ye/QL/UgCtAV8DVQUrB9wI5gptDewPBBIMFFgWgRgEGhAbFRzmHBIdwxxrHOobwBoJGV4XyhXFE0MR7g4eDYQL8wnBCBUIkgcBB6YGmQZ9BikGCwZpBuQGDgcKBx4HKgfsBnYG9QVbBawEHASsA/wC4QG2AMD/vv5+/VL8h/vo+kH65fkh+qH6APuK+778Zf7h/ycBtgKkBHsGAQh2CfYKRwxGDSAO8A6YDw0QfhAQEboRahIFE3gT5hOXFIAVNhahFkkXgRjJGZIaKxsrHGQdPh7bHtQfCiHKIQwieiIrI2Uj6CJrIlkiJCJPIUUghR/THtUdzRwVHHgbthoVGtAZgRnSGB8Y1xevFzQXmhZKFgQWUBVcFJ8T8RLkEaQQtg/4DtsNYwwaCxUK4ghpBx8GMgVJBDMDHwIfAREABv87/qH99PxF/Nr7kvsD+zL6d/nX+BT4RPes9hv2LvUR9D3zgfJQ8dLvyu5F7o7td+ye6znrouqV6avoPei658fm+eXE5Z/l+OQ+5A7kHOTE4yfjxeKN4iHiqeF+4Vvh2OA44OLfZd8J3hPcb9o12bDX1NV41OHTQtMf0hrRztDV0KrQ0tAa0kvUetZl2JXaNN2o34fhOeNF5ZLntumb62/tHe9X8AnxePHT8QnyDPIH8i7yjfIX88vzrfS19eb2Xvgw+jP8Mf5FANEC5gUICbQL+g0yEEgSxBOTFD8VHxbtFl8XrRcDGOYX6RaBFXEUnBNXEsAQtg9mD+wOug1jDJILEAtzCv4JGAqCCsQK+QpmC70LhwvuCnUKFwphCToI7waoBUwE5gKLAR8Anv5Z/X/8tfu0+t35pPnE+cb53Pld+vT6JPtI+wr8Kv3n/Wn+hP8lAU0CpwIAA88DgQS2BPcEsgVpBpsGnAbiBjkHQgc9B64HngjACeYKCgw2DZEOLhDEERETZRQyFiUYiRluGnsbpBw5HTgdah3mHdQdAx1bHD8c3xvOGt0Zphl8GcgYKhg2GFIY9RfPF3oYJhn7GLMYNhnLGUwZRhgHGE4Y0xejFuMVlBWRFLoSPBFxEGUPwQ12DPELVAsECqIIyQcQBwgGFwWjBFgE3QNuAyoDrgLSAQYBgwDg/9b+wP3n/AP81vqU+Wf4MPf59fr0E/Tt8rrxAfGh8PzvFe+P7mru6u3p7Bvsquvd6ozpm+ho6AXo1uaj5SvlxOSR4xXiVeEk4Z/gxN8/3w3fi96i3djcRtx823jau9le2dnY29ep1ofVR9Sw0t/QGc+OzVjMiMsly0nLFsx2zQ7PtNCU0rzU49be2P/akt1U4NHi+eTy5pnopekf6l/qoOr56pbrmeza7RTvMvA78SPy9PLx80v14var+Pj66v3xAHIDpwUsCO0KPw0KD+8QJhMfFYkWyxcUGcoZkhkOGdIYXRgHF2QVixRuFAkUHhN7EncSXBKuEfUQvhDKEL4Q4RB3EfwRyBEGEUcQlQ+GDhgNwgvMCg4KQQk4CNsGSgXXA5sCUQHh/7D+DP6j/Qb9Vfzh+4f7B/ui+rr6Dvso+zz74Pv3/Mf9GP5y/hf/mP+h/4X/mP+//9//MQDLAFcBoAHuAYgCSQMBBNkEDAaLBy4J6AqYDAoORA+DENQRChMsFHIV0xYKGBcZJRoDG1wbcRvOG1IcWhz5G/sbfRywHFccPBy1HAAdthyjHEwd4R2/HakdYx4eH9YeGh74HQYeLR3CG+wajhqdGTAYURfkFsYV+xPFElUSchHID5EOVA7qDZMMPQuzCi8K5QiDB+QGeQZmBRIEXAMDAykC2wDQ/x7/O/77/LD7h/p7+Zv41ffl9tP1+/RO9D3zsfFQ8F/vWe4L7RLspusF69Tp3eii6E/oOuc85lTm5Oa75gnmyuXq5YHlieTG40zjh+KT4SDhHOG84OPfRd8e39Le/d3q3OTb2Nq92ZbYK9dp1eDTCdOG0tzRddH/0UDToNRL1qXYD9u63CTeMeA94vLiueJS4+7k3OV/5VflW+Zv54XngOeM6DXqkev97DPvq/Fs8630T/ZO+P75UvvE/Hn+TgBGAiQEYwU5BqYH2AmVCz8MBQ3iDscQaBGBEXUSwxMPFMkTdhTaFVMW2hUeFn4XUhjEFyAXZxezFwQX+BWBFVYVxRT8E2UTrRJuEQgQ/Q4oDksNtAyVDIEMHQysC1MLowpwCV8I5QeGB8EG8AV5BeQEmAPuAZYAh/9c/mH9Kv2J/dL99v1g/v7+Pf8I/+f+Hf9h/4b/wf8wAJ0A2gDvAOQAuwCcALsAGQGuAZcC1gMcBSkGIgctCBIJrQlpCqoLMg2TDusPhREUExUUrRRbFRIWcRasFlUXURgFGWYZARrbGlYbaBvIG6ccUh2AHeUd7B7aHwkg/h9mINIggSDCH2YfUR/RHv4dlR2SHS0dPxx2GxIbehptGYAYDRifF9EW9hVRFYQURhP1Ee8Q9Q+7DnwNgQyYC3sKPwkRCNoGkQVfBDcD3QFwAEf/Nf7F/Cz7EPpR+SP4hvZW9aX0cvN48cPv1u7G7Qfsier56XjpO+gK57bmf+Z/5WbkOORc5Krjg+L+4c/h2+BL3zTepN2+3JHbBtsr2x7bp9ps2nvaFtoL2fTXEtcL1uTUBtRU02LSftFW0azRwdHk0SbThNXT16zZzdtE3vjfdOCk4BPhGuF34D/gKeFg4gvjxuNF5d3mruc86IPpYesz7TLvyvFs9F728/el+ev6SfuZ+978oP4EAIMB4ANYBr8HigjXCTcLlgulC+4MIQ+aEFgRxBLIFLQVLBW7FAkVCBVjFFkUdRWUFvQWSBfsF/gX8hbAFRUVfxTEE40TBhRCFMITHROOEmoRrQ9qDhEO0Q1SDV4NFw48DiMNuAusCkkJIQc9BWoE5APtAjsCZwKAApkBggBYAJkAQQDH/y8AIwGFAVgBUQE1AVIABP8x/sT9Lf3e/Kf9Ev8EAJEAgwGOArsCVwKnAsADowRHBaUGsAgfCo8KAwvyC5IMlAzhDA8OfQ+cELoR+xLcEzoUqRRUFcIVBhbsFogY9xnpGgEcVx0PHugdxR0LHvwdVR0RHbMdRh4JHrEd7x0bHnEdiBw7HDUc0htsG40bpBvzGtwZDhkuGKgWBxUiFKMTwRLBEUoR7xDYD1EOKg0bDGUKaAgNBxEGkgTQAqsBywAx/yT9tfum+uf4zPad9SX19/MJ8rLwBfCW7i7sTepw6V3oq+ad5azlguVb5EPj5eJB4qPgB99V3vDdGd1L3Avc0tse20vaqdnk2PbXdtd913DXN9dM12bXotYC1WvT9tEM0BvOX83lzaLOjc+O0UXUD9ah1mfX1ti72bbZJtrD217d9t0d3nHeXt6D3bfcytyM3dfeJOFd5IfnC+ot7NftZu4h7kLuJu/477DwiPKv9Wn4nfl9+kP8Cf6K/qn+KADEAtkEOwYgCH0KywuuC6YLhwxUDXANBw4KEH4SCxTkFM0VaxYWFkMVyRSQFE4UkBSzFcoW7BaZFoIWDRaXFBMTphK8ElUSARKwEnoT6BJ6EbQQWxAeD1gNoAzsDJsMUAtMCtcJrgh8Bp8E6QODA9oCqwJxA0oEYgQYBOoDbgM8AtkA4P8j/1j+1/3q/SL+Df7z/Sf+TP4H/s79NP7//p3/KQASASMCwQLbAugCHgNeA7gDZgRsBa8GLwi4CcoKSAu7C3AM8wwQDYUN4w5/EI8RfRL8E3wV/xXqFW4WgxcaGCcYxhg8GmwbtxvUG1Mcnhw2HLAbtBv1G/0bFRyfHC4dMB3YHJscUByqG/YanhphGtoZTRkUGcIYxBd4Fo4VxRR3E+UR1xAyEDMP7A0HDVcMDgtKCe8H6wZSBTcDvAH7AND/7P1T/Ev7yvl992v1B/R08nLwCO+I7tbtgOyC6zPrW+ps6JfmoeWQ5Kfi1eD631vfHd603MLb7NrA2ZvY4Ndg1xjXUtfM1+3X2tf616HX2dUv0+TQ084jzJDJw8imycTK+8tczobRv9O51LTV7NZR193WzNZN11XXx9aS1rDWRNa01VzWQ9hS2o7c2t+y44PmHuiT6cfqmepm6fLot+mH6iHrwuzB77ry0/Tn9pf58Pso/Tj+UwDdAmgEEQUrBtYHpggRCH4HLAhvCUYKSwuZDZ0QzBL0ExgVTxakFgQWfxWVFb8VvBXcFQcW2BWBFWIVCxUZFGMTyBN/FGAUABSIFEMVqxQtE2QSKxIBEQsP8w3ZDR4NbwtWClQK+wmUCF8HPQc3B2oGlAWPBb0FMQUvBGcDngJTAeH/8/6A/iL+9f05/p7+uv62/tP+vv4t/qf9v/0P/u79xf1q/pb/SQCGAC8BTQL2AvICEQOfA/4DCwR7BJAFsAabB8QIMQpPCxYMEw1JDi4P5Q8cEaISlBPwE58UsRU3FhQWbxbAFwYZlRk3GqIbDB1uHTQdZR3hHcodPB0oHbsdNx5aHrIebR/mH7ofWx8mH84eFB5OHcocVhzEGzwbvhr7GfIYCRhFFzIWyBSRE54SXBG+D2cOag0PDEoK+QguCNoGvQQCAw4CswBs/mf8T/v9+bT3jfVN9PHyz/AS74zuGu7C7G7r9upO6mjoGOZ85B7jMuE13+vdCt0P3C/bjdq92bnYD9iy1wjXPtYS1kLWxtWd1IzTSdLUz5jMHMq7yMHHjsdhyQbN1tAR1BzXmNlQ2jzZmdf81RzUZdLb0W7SPdM31N7Vy9dH2djaat2D4A/jSeX451fq9uof6kTpk+hA597lNuav6OfrFu/18rT34/s9/kL/DwChAFoAqf/Q/xwBjgKEA6sEkQZjCCcJewm0Cs4Mmw7UD1kRYhPhFB0VpxQ2FL8TJRPGEucSYBMKFM8UThU7FekUtxRZFJUTJBOnE18UUBToEwAU+ROrEpQQMQ+RDpANOQzIC04McwzSC3ALmwtBCwwKHwkSCekI9Qf+Bq0GQQb2BGADUgKQAbAAMwCbAFcBuwEZAs0CIQNXAhABUQDp/xb/Pf5V/in/s//u/68A3AF1AmoCxQLUA7YEEAWaBaYGeAekB6oH3QfgB74HMAhlCbUK8QuxDeYPgxEgEo8SRxOWEyoT+hK2E6AU+hRnFaMWAxiHGKMYahmpGlQbZRvQG74cSx0RHbMcqxyjHFAcAxwTHF8cqRzrHCMdOB0fHdUcPhxnG6MaExpfGWUYoBdXF+wWyhVlFFgTLhI5EBkO4wxDDBwLrgkkCSkJHwjfBfgD2wImAWv+Ofxd+3/6qfjr9iL2PPVN81rxdfDU72/u4+wb7G/rzemU57jlD+T94dPfRd5J3YTcCtzd24fb4tpQ2sDZl9j01r/VFNUW1JXSadGa0BLPtcz5yrjKLMvvyxHOF9KC1prZUNsa3G/bvdj71MHRrc+wzjLPo9Ft1VfZvdyd38Th6+JV46TjHuSq5F7lZuaD5zLocejE6H/pkOoc7KXuN/Ic9rP5+/zH/0sBIgEnAF//xf4n/mb+cQCeA3gG1Ah2C+wN1A4/Dt0Ndg4lD3MPYBB6EpsUkRWoFaMVYhWFFHUT5BLxEmgTOBQgFbMV7RUVFvoVNBUtFMYT7BO1EwoTxRLlEkUSkxAMD34OFg4ZDWAMzQyZDYANvgxJDO4LxQoFCcsHSgeqBrsFPgVeBT4FaQR+A/oCdwKyATkBdgH0ATQCbwLXAusCQwJJAYoA6v8i/43+pP5J/xkAEAFHAoUDhwRPBe0FUAaJBssG/AbtBugGUgfjBxoIYQiPCWYL2AzgDXIPfBGjEn8SVBLUEgATORK5EZYS6xODFP8UghZ5GIkZ5RnEGhccshxzHFwcqxyOHN0beBu9GxccPxyvHIMdIR5HHk8eTR7gHRQdbRzvGyUbIxppGdYY3BesFv0VqxXzFOcTQBPFEnwRfQ/nDdkMUAtICfUHgweYBrME/gL6AYMAH/4c/Eb7e/rZ+FL3uvYB9hv06vGh8K/vA+4R7N7qFOq66PDmceUc5HTiwuCT37je4d1U3Svdx9zi2xPbgdpa2WTXvdUD1T3Ut9J00VDRUNFq0JnPT9AK0nzTDtX+15vbxN3l3TDd+Ns52RzVutGV0DPR+9KK1g3c3eEX5ozo5en96XXoD+Y65Jjj/ONK5Wvn3ekk7EnuWfAI8m/zWvUS+MD6xPyN/kYA8QAAAKr+Q/5v/oj+iv+jAuEGSgqkDAMPJxGdEVIQ7A5mDkYOVQ49DyERJROkFK0VKBa6FasUuRMcE7QS3hLzE0gVBBZkFvAWBBfCFfITFRMXE8QSHxJGEhITEBP0EfcQixC2D1MOtA1gDhAP2A57DqoOiQ49DXoLSwp6CWkIcQc0B2cHWAcaBxoHKAfVBk0GBwYBBv4FDwY9BiwGpQXxBDUEHAO1Ac8A9AC8AckCdgTWBvAI8gkzCikKZQmyByYGyQUWBjgGvQZxCIEKkgsJDDsN7g7KD+YPnRDrEUYSXhG1EAgRQxHcEAkRnxKLFK4VmBYWGIEZ7RnUGTAayBrQGngafBrAGqIaORopGn0axhoIG5wbWhzGHNkc6BzmHIMc3xtZG+EaMRpaGZEYsxeSFoUV6xSEFPkTkBOLE1UTQRKtEEsP2w3FC4sJMAh7B1wG3QT6A5cDdAJlALD+y/2d/Jn61vgL+EH3l/XL88Hy3vEq8AzueexU6+XpQugF5zDmVuVq5JTjoeJp4TrgPt8t3vvcI9y/2y3bH9r62MLXz9Ug0+vQC9Ad0NfQ9tLF1uXasN3p3vfedN0P2v3VDNO10XrRhtJq1W7Z5twn3+fgfeJP40HjVuM+5HHlM+ae5v/mIufl5trmmecP6Rfr9O2l8Vr1Tfh++hP8q/we/C77qPpz+ln6EftF/T8AygLiBEEHown1Ci8LdgtcDEYN0A15DowPfBDSEOEQDRE/EWMRvhF3EmATWBRVFQ0WKBbVFX4VHBVtFMcTwRM3FHYUbxSkFPkUtRTJEwcTuRIyEisRZRBiEIcQMBDCD9EPBBC2DxEPqw5vDtcN7ww2DLcL9grWCdUITQgOCOUH+weECE8J/QlgCn4KTgq3Cb0IkwdpBk0FRASPA4YDKwQZBRMGVgcACX4KHgsAC88KoAoFCiEJwQgbCX8JogkqClkLWQyqDDENzA60EK8RCxLfEu4T5ROnEpYRdhGVEYoRLhIWFFgW5xcJGW4anRujG74aHxo2GlYaFxrzGVIa3RofGzEbYhuvG/YbSBy3HBMdIR3cHGcc0hslG2oanxnLGBgYnBcoF48WAxbAFZAVHhV8FM8TvhL0EOMOOA3RCzkK1ghpCI4IIAgAB/wFCwVBA7kAw/66/Yb8uPpf+fH4Lvg59hv0+fI78trwQO9a7tjtz+xH697phejX5iLl+OM042TipeFM4SPhxeAn4ELfx92+26nZp9dZ1RHTGtIT0ybVf9de2sDdTOC84HDfXd2N2vzWANQX0/XTT9UH1+DZbt0+4PLhjeNk5Zjmw+aU5lTmZ+XK45bicuLk4sfj9OWu6cftSvGI9Kv3v/kr+sb5Vflb+KD2bfXX9TD3jvif+jL+PQIwBTEHLgmtCqAKkAkACRoJ/wjTCJUJMwufDKYN9w6EEIUR8hF0EgMT+xJ+ElQSjhKXEnsSyBJeE54TqRMSFI4UVBSfE1gTZxPoEukRaRGREXoR6xC8EB4RIBFtEOoPBBDYD88Oug1dDRwNNAwqC94KDgvqCoUKfAqxCnwK2AlcCSoJ2ghQCOAHrQd7By4H2gZxBuoFfAVHBQEFjgRwBA8F+AWXBi8HOwhICXcJ4ghiCCgIugc2B1AHCwivCBMJxwnaCq0LMwwfDX8Ohg/8D44QWxF/EcUQPhCGENMQpxD7EJYSjBS7FZsWHBitGRYajhlMGXIZExkgGJ8X9BdhGHsYzBioGYMa5hoeG4AbxBuQGwobfxrwGVAZtRgkGJEXFhfLFngW2xUqFb0UWxSbE6cS3xH/EIUPxg1/DJQLYgonCbwI5QhuCBgHywW9BP4CcQBg/mj9iPwa+wD6yvld+cX34PXJ9ObzL/Ij8NfuBO6t7PjqxOn36M/nbuaY5Tjlg+Rl44biDeJv4Xjggt+p3q7da9zo2iDZLteP1bjUt9SP1WPX8Nlk3Bre8d6o3s/cy9kI137V7NQG1VTWCtkD3AveXd+24MTh6uHV4bjiSOQz5UbleOXp5avlxeSf5P/lLuik6uft8fFk9U73VPgY+fj4lfcy9hf23/a29x753Psm/60BmQO2BZAHIwjgBxwI5whTCWsJJwqJC5oMKw38DSYP/w+OEJAR/BLyEzwUhxTzFNMU/RMmE8QSrxLuEs0TEBULFqQWIRc6F2IW5xSmE84S+hFYEXAR8BH+EbARwREEEpARgBD6DzMQExAbDysOwA3/DE4LhQmlCF8IAgjQB3EIngl6CrcKoApHCoIJYggkB9QFegRgA78CdAJnAtoC6AM5BX4G0AcVCakJJwkXCCoHVAZHBWMETgT2BNMFvwbfB/0I2AnNCk0M5Q3GDgwPaw/aD5QPlA7LDc8NTA4MD2gQVRIPFDUVShaSF10YLxi9F+8Xixi+GIIYgxj0GF8ZgxmnGQQadBrgGmwbHRyrHNgcthx4HCgcohvOGt0ZOBkQGR0Z9BidGHAYZBjsF8AWNxWnE/gRJBCXDpcN3Aw1DAkMdgyaDKML/wmMCBAHvQToAcP/hf5O/dv75/qR+uf5i/hj9+z2Rfa39OTykvFD8C7urOuh6R7op+ZJ5XXkJuT849Hjm+MY4yjiD+Hm31vea9y12qfZ6tgm2KDXj9d419/W+tUl1T7UL9Ob0j7TANU715DZ7tvu3dTeHN7Y26zYmdWN0+7SqtO+1SjZWd044f7jtuWx5gPn0+ap5uHmOudM5yfnFecS5xDngecQ6eXrme/G8yX4I/z0/jgAJgAJ/w/9wfoT+bL4jfli+z3+BwIIBm0JCwweDooPBRDFD2UPJQ/SDloO8w2/DbcN7w2MDokP2BCTEqMUghbDF4MY3hhsGOgW8BRWEx4S8xA3EIsQkhFVErcSVxMUFAQUDRM0Ev0RuRHoEB0Q0w9uD0QOwwygC6AKSwkgCP4HrwguCTEJXwnzCTIKkwmECKsHBQdCBnAFzwRFBJ4D9QKSAnECWAJWAsMCzAMxBXkGSQeRB24H8AYLBtEEpgMDAxgDzQP8BG8G3QcvCagKSgyBDd0N1w0qDp8Oeg7cDcMNiA57DzQQLBGVEscTWBTiFOMV0hYqF30XhxjPGVEaExrzGSsaKBrEGaIZKRrxGoYb+htvHKAcSxynGyob/hrsGsoatBrXGgUbuBqfGRsY1hbjFcgUaxNXEswRPREyEA0PPg5mDREMvAoNCoEJKQg/Br4EmAPbAYb/rP2j/JH7HPr++GX4cPfa9ZP0CfRF863xFvAg7/btyetX6bHnleYy5cjjHOMR4+ribuLW4RLhA+Dk3ubdxdxh2ybaatnj2ETYwteD1z3XwdY21n3VL9SH0n3RlNFT0m7TY9Vy2LvbFt4m3wTfmd0O20jYMdb01HfUJNVm17raBt7I4Fjj8+Ux6JLpNOqN6rfqVOon6Y3nOOad5eDlI+ec6VTt8fHX9mP7Ev+LAZYCHAJeAAL+tvva+bH4yfid+uP9vAG2BegJAg4IEWwSwRK+EkIS4xABD34NsQw9DOcLCAwYDRsPmREUFGEWghgoGrsaCRqJGJ0WKhRoEU4Peg5LDgYOOA7FDwMSVxNvE14TiRMSE48Rzg9yDiQNsAuWCvUJEAmQB0IG1QXXBZ0FcAXoBc8GZgdXB7kGkQXtAzkC3gDP/9/+WP6e/mn/5f+o/wb/gv5L/mH+x/5q/ykACAHuAVwC1wGsAND/vf8dAJYAVAGKAgYEfgXVBt0HcwjpCL8J0wqIC8cLLAwCDecNrw6tD+QQzhFTEgQT+hN+FGcUyBRlFmwYsRlmGncbvxwvHYgcvxuNG6sbsxvVG0ocwRzTHKwcxBwqHX0dkx26HTsetx5uHh4dXRvcGZgYHRdtFRoUchMUE50SShJnEpMSMRJcEZEQhQ9ZDR8KDgfQBMwCnAAH/7H+4/6j/g/+l/3M/DH7Vfnv95/2wPSz8hzxk+9e7d/qB+ng59bmDOYc5sjmJefY5jDmJ+VP48TgSN5i3AHb/dlz2XXZ1tlH2n7aVtry2YzZAtn914XW+tR70+nRndBl0JPRwNOJ1t3ZSN3A34Pgqt+23SHbedhN1uHUR9TC1I7WYtmf3PHfVuPI5gzqqezU7frsjuq15xPlnuLU4PXgkePU57Ps3vEb94b7Vf62/0EADQDe/vf8GfvN+SH5Bfm8+dD7af/YAxQIywtbD6YSqhTFFJoTGhJOEOcNXguxCU4JFwoGDBsPzBI7FtEYVBqgGrsZ2hdVFc0SGRF/EDEQaA+bDqkOOQ9KD/UOPA8vENQQ0xC1EGkQGA/CDIwKCwmWB8IFUwQDBGkEswS6BMAErQQxBFQDZgKGAa0ABgDq/2EA8gAFAXoAk/95/if9w/vI+rX6sPtw/V3/2gCiAcYBWQFjAED/nv7o/vj/hQFYA/gE4AUpBmgGzgYfB4cHqAiWCqQMSg6UD4oQCBE/EZwRLRK5EmMTkRQfFmwXRBgVGRga8hpgG7sbchxnHTQe2R65H9ggrSHeIashYCHLILgfnh44Hoce6h4mH6kfjSALIXAgCh+fHUocpBq1GBcXHBZkFYAUhBPDEkISqhGqEFYPAw60DAML0AiUBqoEzwLSACz/Kv43/df7j/rg+TD5y/cf9uX01fM88jLwMO4j7OTp2+dy5nHlpORJ5HDkhOQM5CzjFOKX4K7eytxR2zvac9kL2ePYoNg22ALYF9gH2K3Xh9fw13jYf9jo18vWA9W00o/QJ8+FzvjOW9Hc1Sbbl9+X4iXk1uNH4RHdg9i91I7SrtJH1X3Z9d3i4S/ly+dM6YTpIek76SLqDesh62jqcelg6BbnIOaq5mbp+O2F81D5mf5nAv0DWwMUAdX9Wvqb95j2wve7+q3+4QICB94K9w24DyMQ+Q/ZD50P7Q4fDswNzw2QDScNXA1yDtAPDhGQErEU5hY1GDcYRxfUFdgTNRF0DqEMNgysDHsN2Q7CEAYShBHTD1oOMA1wC1gJQAhmCH0IvQfFBhEGHwWrA3oCLgJLAh8CxAGSAUoBZwD9/qb91fyA/Gj8c/yj/Nz83fyH/An8uvu5++T7Cfwp/G/87Pxb/XT9cv3Q/Yb+JP+j/3EAlAGEAjYDQATEBRIHxQdYCDgJJArdCp8LpwzkDVAP8BBwEnETJRT7FM0VLRZeFhgXaxitGZQalBv0HDse3B4HH04fwx//H+0f/x9cII8gUCAYIGQg1yDFID8g9B8OIPofSR9GHmQdmRyLGxoafRjrFnsVPRRIE7ASbBI8EsYR3hCQD8wNWQtcCIUFUQOEAd3/vP5Z/gn+If3v++f6lvly9xH1VfMT8pDwy+467cfrGepS6MPmY+U15JjjjuN149viCuJA4RzgT94x3E7a3Njq13zXXNdA1zrXh9fe16PX1dYO1qbVaNU31S3VC9Vm1GzTjtJx0YLPf80izfvOCNKa1QTa9d7G4iHkDeP03x3bqNWd0TnQNtEN1LTYnt465CfoJOql6jnqieks6T7pgunl6VLqTOp96XHoM+hK6bLrdu+c9Hn6w/+DA3kFmgXIA2YAr/z7+eb4Yvlq+xz/DAQgCV8NjBC0EqETLBPmEcUQOhAMEP8PJRCBEN8QFhEpETMRiBGjEo4UmxYfGA8ZbRm3GKMW3hNIEQwPSA3HDNcNQQ+zD44PxA+2Dx0OfwuyCTEJ1ggdCL8H5genB50GbwVlBOgC3QA6/6n+o/5l/g7+Nv7r/pD/i//Q/s/9/fx2/Ar8qfuU+wf8y/xF/RH9YfzC+4/72/vG/HX+pgDLAosEygUvBmQF3gO5ApQCOQNrBDcGiwgDC0kNGg8vEKYQORFPEmET6BNJFBEV7BVLFnsWEBfkF4QYJxlZGvEbQx0tHigfXCA0ISEhUCBkH6Ue4h0UHcEcZR2pHrEfFSAKIK0frx7zHAMbkhm8GCgYlxcUF4cWjxXrE+wRLxD3DvkN9gwaDIULwwpCCSQHEQU9A1UBcP8e/mL9g/w6+xj6TPki+En2g/RX8zrysPA07y/uL+3l693qZOrI6Y7oVOej5vTlt+Rj46biReKx4fngcODx3y3fNd5F3WLcltsk2y3bfNvb20rctdzZ3IjctNtJ2lrYY9bP1IPTcdJN0tjTndZq2ejbqt6G4ULjO+Mz4vLgRN/t3KXaSdnE2KPYKdkA2zTeGOIi5jHqDu4N8V/ytfF372fsKuk65jjk6OOs5THpr+138hb3JPst/u3/gABWAMj/9f4I/mb9VP2n/Sn+Gf/NABYDlQVpCN4LeA8wErITdxSvFO4TKRIsEMAOEQ4uDlAPUxGGE14V0BbNFwoYehd6FmcVixQ1FGIUbhTeExUThRKuEfUP8g3CDGAMAwy7Cy0M9gzZDKILTAo/Cc8HyAUVBFsDHgOvAhkCjQG3AEb/k/07/Gr7+vrx+oT7ofzR/Y3+l/79/e38oftR+in5Tfj291/4ffn0+lz8hv1s/iD/xf9oAOwAUQHqAe4CBASlBNwEFwWCBRkGFge+COIKKA2HD+0RxhOPFI4UWxQTFK0TpBOIFCcW6BepGY8bRR0yHlweXB6NHrAelx6VHgwf1B9VIEUg8R/DH6kfSx+2Hl4edx6mHpMeRB7MHfIcixvUGSEYbhaRFLkSVBGQECwQzg9XD9kOPQ4xDXkLRwkIB90EsQK0AE3/bf6K/W78b/uj+o35AfiY9rr1/PT08+Dy8/HB8AvvXO0s7B/r0emv6DzoJejg54rnbudB55vmv+UM5T7k7+Jp4U/gtd8/39fetN7N3t7ext6Z3lfe/93F3ePdSd6f3obevt003BTawNeZ1RHU4NO51Z3Zq97F4yToJOsM7Hjq6uaG4l3eKNt+2cjZ6ttA3w3jy+YZ6p3sLe4I76vvZvAi8YnxYfG98N7v4e7A7avsUOyC7XrwoPQr+aT9rgGsBA4G0AVWBBICqP8M/vT9L/8WAXgDaAZrCZILhgzPDAwNfA1KDpgPKhF7ElcTyxOlE5ASvRDrDq4NOw2vDQMPsBAIEtsSUxNME4USTxFZENEPZA/1DpwOCw7EDOQKAglGB3YF4gNcAwoEMAVDBmQHfgjYCPYHOQYtBOABXf85/Q38uvvI+xL8ofww/Wr9Zf17/cb9KP6j/jX/pf+3/4L/NP/I/i7+kf04/UX9wP2y/vD/LAFkAtIDVwVoBtsGJgelBxUIOghsCAcJ4gnHCuELLg0jDmkOjA42D0sQZBGpEngUjBYyGBUZRxnHGLAXkhYBFvYVHRaJFn4XxRjUGZIaTxsPHGUcHhx7G6wajBkZGLwW3xVwFSMV7RTqFP4U0hQtFBsTwxE3EJIOEQ36C20LOgv2ClkKgQmnCKUHGAYMBCACwAC5/7/+Af68/aD9Ov2X/P77SPsa+qL4Z/d99oz1m/QW9An08PNt853yrPGf8LHvQe9J72Lvc++/7zDwI/A77+DtpeyV64LqnulK6YHpxumj6fTo7ucB55vm5Oa158ro4emz6ufqJeo06DDlteGq3rjcBtyU3HzeoOFG5XPohepU6+HqU+kd59DkxeIz4W3gwuAO4sTja+XV5vDnsehD6fPp4urs6+7s6u3A7hXvpe6f7Ybs0evG64/sMe5r8Mvy//Tf9kr4HPlw+Z756flS+tn6qfvI/Nr9h/7l/jH/bf+N//D/FAHwAvoE1waKCAEK4wr/CocKzgkKCW8IKAgiCB8IIQhjCPEIjgkVCqkKXQsCDFkMTAzlCzYLUQo4CdsHTgb1BDMEBgQwBJcELwW0BdQFkgUmBYsEmwOOAtIBdQEnAdUAvgDNAHgAif93/r/9TP3l/Mb8Rf01/hr/wf89AHYALQB//9r+h/5+/qn+Cf+T/ysAtwASAScBLAGLAV0CSQMjBDYFnQbBBwAIigcCB5IGFgbhBY4GEgi7CRALHQzmDDIN/gygDEwMFwxWDE0Ngg4cDwkP7g74DqUO9g2uDQEOIg7ADcYN2A4KEDEQjw8ID3oOKg11C4IKiAquCqIK5wp9C48LyQrYCSYJPQjbBq0FSwVWBUcFUwW7BeYF/QQWAwwBd/9b/r79x/1c/gr/cv+C/0H/mf5w/d37K/q9+OH3y/eN+Pf5ZPv7+2L7GfrQ+LD3j/ar9ZX1a/aX92T4kfhI+NX3dfcr99f2k/a49jT3Ofcr9qn0DPTl9Hv21ved+L74APht9sn0/vM29Nz0YvW39fn1/fVl9R70rvLJ8Z/x0fEp8tzy7fO29Hj0NfOG8eDveO6t7dnty+7v7/Xw0/FL8gDyBfHO75PuYO237Ert8O6O8F3xnvHW8efxdfF/8ETv8u3Y7IrsVe3V7nbw+PE38+Pz2fN38yvz9vK58qHy6vJn88jzGfSN9AL1P/WA9Ur2sfc9+W/6GPs6+/r6r/q0+hL7oPti/Gn9gv5B/3z/XP8I/5r+Xf7F/ur/YwHKAgAE6gQ4BcYE5QMBAzQCbQHYAMoAWAFNAnQDnwSEBdoFoAUQBUwEXQN+AhkCVQLhAlkDowPHA6cDIwNtAuYBvwHdASsCpAIYAykDugIYApcBMAG8AGoAkQAhAaABwQG3AcgB3wG+AWQBDgHlAOQADgFxAQgCpAIZA0sDMgPTAk0CzAFxAU8BkwFsArsD7gRhBfoEKARXA5gC9wHZAYEChAMgBCkEHARPBJMEtgTQBNYEgwT4A9YDWgTwBA8F8QTgBHwEcwNaAgUCZwLtAosDhQRyBY4F5gQ9BMgDCwP1ASAB3QDaAPMAbgE2AqwCigI1As4B2ABR/0v+sP7///cAIwHvAIkAn/87/if9Av1x/Zz9Xf1a/QX+9P5r/zr/vP49/sT9Sv3A/Aj8TPsu+w78Wv0l/kf+Q/4t/pv9pvz2+7X7XPu6+lT6m/q1+wj+hgFFBGADP/7Z99Xza/PE9fn5O//dA78F3QML/2n5bPWS9Gv2RvkR/NP+LwHlAVoAk/3F+g34XvWv8zz0Pffr++wAPATnAwkAHPtY99D07fJs8kz00fct+5X9Mv+k/zX+Ovvl9/r02/Jn8lP0z/cJ+xL9Cf7L/dz7u/jw9W/0FPS09IH2E/k4+zD8P/y4+236fvjZ9kz2vfbG90v5Bvsq/B38OPtA+of5/PjR+FP5VPpP+wX8lfz//AH9hPzU+1X7Nft++zP8Nv0y/tD+9/7F/ln+xv03/e78C/13/Rj+5v7K/28AigAiAIf/8v55/j3+av76/qn/PgCyAP0AAAGnABkAlP8+/yn/VP+k/+r/EQAuAEkAVABCACIAAwDo/9D/w//B/8P/zv/s/wkAAwDW/5//dP9S/z3/UP+Q/93/GgBQAHsAgABNAPv/q/9z/2j/of8RAHkApQCbAHoASwASAPT/EQBbAKcA5gAkAVYBYQFDARYB4QChAGwAcwDBACABVgFsAYoBtgHOAcMBrQGeAYoBZwFOAVkBgQGsAdAB6gHsAcUBigFnAW4BhgGVAZ4BsQHJAc4BtwGTAXoBeQGIAZYBmQGiAbwB1AHIAZUBXQFAAUABTgFjAXkBhgGKAZIBpwG/AcYBswGGAUoBEAHsAOUA8gANATIBVAFlAWYBZQFlAVcBOAEZAQYB9QDkAOAA7wD7APEA3ADPAMcAvQC4AL0AvgCsAI4AdQBjAE8APwA+AEkATwBIADkAIAD8/9T/tv+l/5j/j/+N/43/if+C/3z/b/9O/x//+P7h/tH+wf61/rH+sv6w/qb+kv52/l3+T/5M/k3+Sv5B/jT+IP4I/u792v3V/eP9+/0T/h/+Hf4O/vj95P3b/dz94P3n/ff9Cv4W/hn+If4t/i/+Jf4f/ir+Pf5O/mb+jP6v/rn+sP6l/pz+j/6J/p3+yP74/iL/SP9j/2b/VP9B/zr/PP9C/1L/cf+X/77/4v/+/wgABgAIABkALAAzADEAMwA9AEoAUgBYAF4AZgB1AI8ArwDKAN0A6gDtAOIAyQCvAKMAqAC4ANAA6wABAQ0BEwEXARcBDwEAAfMA7wD0AAABEgEiASYBIAEXARIBEwEXASEBLwE6AT4BQAFFAUQBOAEvATcBSwFZAV0BYAFqAXEBbQFlAWIBZgFuAXcBgAGGAYkBjQGNAYMBbQFdAWABcwGGAZMBnAGhAaABmgGTAYkBewFyAXUBfwGEAYMBgAF/AXsBbwFgAVIBRQE8AT4BTAFdAWgBbAFnAVMBMwEUAQMB/wD9APsA/wAIAREBFAESAQkB+QDoAN4A2wDXANIA0wDgAOwA6gDfANgA1gDSAM0AzADTANkA3ADgAOUA5wDmAOoA9gD8APoA9wD/AAsBDQEKAQwBFgEgAScBMQFAAUwBUQFUAVcBVwFVAVoBaAF5AYYBkQGcAaIBoQGdAZ0BngGeAaABqAGzAb0BxQHMAdEB1gHeAekB8gH2AfMB6gHbAcgBvQHAAc0B2QHgAegB7wHwAesB5wHjAdoBygG+AbkBuQG4AbwBxgHPAcwBwQG1Aa4BpwGeAZsBnwGmAa0BtAG4AbYBqAGVAYUBfQF+AYgBmQGoAa8BrwGsAaYBmQGJAX8BfwGEAYwBmgGuAb0BvgG3Aa0BowGYAZEBmQGsAbsBwgHJAdEB2AHYAdUB0gHPAcgBwwHDAcgBzAHQAdsB6QH0AfUB7wHqAesB7wHzAfQB8gHvAe0B6wHtAfIB9QHyAewB6wHwAfMB8QHvAfAB7wHpAeMB4gHhAdoBzwHIAcgBzQHRAdUB1QHQAcoBxwHFAcEBugG0AbEBsQGyAbgBwAHEAcIBvwG+Ab8BvQG6AbgBuAG3AbIBrwGvAbQBvAHGAdAB2AHbAdkB1AHPAcoBxwHJAdAB3QHnAesB7AHsAeoB5gHjAecB7QHyAfUB+wEBAgYCCQIJAgUC/gH3AfgBAAIKAhICHAInAiwCJwIeAhgCFAIQAg8CFQIhAiwCNQI/AkcCSAJBAjgCMwIvAiwCLAIyAkACUAJeAmYCZgJiAl8CYAJgAl4CWgJbAmMCcQJ+AogCjAKOApACjwKOAo4CkgKbAqQCqQKsArMCvgLIAswCyQLFAsMCxQLMAtgC5QLvAvUC+wIAAwIDAQP/Av4CAAMDAwYDCwMPAxIDFQMaAxwDGwMZAxgDGgMhAykDMQM1AzQDLwMqAyQDHgMbAx0DJAMsAzADMAMvAywDKgMpAywDLwMwAy0DLAMsAywDKwMrAy0DLwMuAy0DLgMvAy8DMAMxAzEDMgMyAzMDMgMxAy8DMQM1AzgDOAM3AzgDOQM6AzoDPAM+A0ADQgNHA0wDTwNOA0wDTANQA1QDVQNVA1YDWwNiA2cDZwNmA2gDbwN2A3sDfwOAA4EDgwOHA4oDiwOKA40DkwOZA50DngOhA6YDqgOuA7ADsQOxA7EDswO3A7oDugO6A7wDwQPHA8wDzQPLA8sDzQPPA9ED0wPUA9QD0gPSA9MD0wPSA9AD0QPVA9oD3QPfA+AD4QPgA9wD1gPSA9ID1QPXA9gD2gPcA90D3QPeA94D3QPcA9oD2APVA9ID0QPWA9sD3gPdA9oD1wPVA9MD0gPRA9ED0gPUA9gD3APeA98D3wPgA98D3gPeA94D3QPeA98D4QPkA+kD6wPrA+kD6APoA+kD6wPtA/AD8gP0A/UD9APyA/ED7wPwA/UD+gP+AwAEAgQDBAQEBAQEBAMEAwQFBAcECQQLBAwEDgQPBBAEEgQVBBYEFwQZBBoEGgQaBBsEHgQhBCIEIwQkBCUEJgQoBCsELAQsBCwEKwQrBCsELAQuBDEENQQ4BDkEOQQ4BDgEOgQ9BD8EPgQ7BDcENgQ3BDgEOAQ3BDYENwQ5BDkEOAQ2BDcEOwQ+BEAEPwQ9BDoEOAQ3BDYENwQ4BDgENwQ2BDQENAQ3BDoEOgQ5BDYEMwQyBDIEMgQxBC8ELQQsBC4EMQQ0BDUEMwQwBC8ELwQwBDAELwQtBCoEKAQpBCoELAQsBCwELAQrBCoEKAQnBCgEKgQtBC8EMgQyBDEELwQtBCsEKgQqBCoELAQvBDMENAQ1BDUEMwQxBDMENwQ7BD4EQgRFBEUEQgQ+BDwEPAQ9BEAERQRKBE0ETQRMBE0ETQROBE0ETARMBE0EUARUBFUEVgRXBFgEWARWBFQEUgRSBFIEUwRWBFgEWQRZBFkEWgRYBFYEVgRWBFYEVQRTBFEEUQRRBFMEVgRWBFQEUQRRBFIEUwRTBFIEUARPBE4ETgRMBEoESQRIBEgESQRJBEgERgREBEIEQQRBBEMEQwRCBEAEPwQ+BDwEOgQ5BDkEOgQ8BDsEOgQ4BDUEMwQyBDEEMAQtBCwEKwQrBCsELAQsBCsEKQQlBCEEHgQeBB4EHgQcBBkEFgQVBBQEFAQSBBEEEAQOBAwECQQGBAQEAQT9A/oD+QP4A/cD9gPzA/AD7QPrA+gD5QPhA94D3QPcA9sD1wPTA84DygPHA8UDwgO+A7wDugO5A7gDtQOxA64DqgOmA6EDnQOaA5gDlwOWA5QDkgOOA4gDgwOAA34DfQN9A30DfQN6A3QDbgNqA2gDZwNmA2UDYQNeA1oDWANVA1MDUgNRA08DSwNGA0MDQAM9AzwDPAM8AzsDOQM3AzUDMgMuAyoDKAMnAyYDJQMmAyUDIwMeAxoDGQMZAxgDFwMVAxMDEQMOAwsDBwMDA/8C/AL6AvgC9wL4AvcC8wLtAukC5gLlAuMC4QLdAtkC1gLWAtYC1gLTAs8CywLGAsICwAK+ArwCugK4ArUCtAKxAqwCqAKlAqQCpQKnAqcCpQKjAqICnwKZApMCkAKPAo4CjAKMAo4CkQKRApECjwKOAo0CjQKOAo0CigKHAoUCgwKCAoACfgJ7AnkCeAJ3AncCeAJ5AngCdAJsAmYCZQJoAm0CcAJxAm4CaAJiAl0CWAJVAlQCVgJXAlUCUgJRAlACTgJMAkwCTQJMAkkCRgJEAkQCRAJEAkMCQQJAAkICRQJGAkACOAI0AjYCOwI/AkACPgI0AigCHwIfAiQCKAIoAiQCHwIbAh4CJAInAiACFQINAg4CEAISAhICEgITAhICEgISAg8CCwIJAgoCCAIEAgECAgIDAgICAQIEAgYCBQIAAv0B+wH9AQECBgIGAv4B9QHyAfYB/AEBAgQCAgIAAgACBQIHAgQCBAINAhoCHAIPAv4B9AHyAfkBCQIaAiACGQIUAhkCIQIfAhcCEwIZAh8CIQIiAiUCIwIdAh4CKAIvAiMCDgIGAhMCIwImAiECHwIeAhUCCgIJAhICGwIgAiUCJgIeAhMCFAIhAi4CMgI1AjUCLQIjAicCLwIjAgIC6QHtAf0B/gH4AQICHwI6AkACLAL/AckBqQG1AeABCAIZAhQCCAIHAhQCFwL3AbwBmAGpAdsBBgIZAhsCDALsAdEB0gHuARECLQJAAkACJAL9Ae0BBAIxAlYCYAJSAkQCSQJnAooCnAKaAo4ChgKIApUCqQK7Ar0CqQKNAo0CugLyAvgCwQJ7AlcCWgKFAukCdQPOA6IDDwN7Ah4C5wHCAcEB6QEuApECAwM6A+oCIQJFAbsAvQB6AfYCyAREBtAGCgbOA6gABP5C/Yn+yAD0AqQEjAUWBfMCu/+d/L76yvqe/Db/UQFeAoMC0AEiAPf9iPyn/Ob9WP+OAH4B7AGiAe0AXgAxAEoApwBdAUkCEANcA/QC3wG7AIMAjgEDA9ED2QOqA2EDnwKCAc8A6ABQAacBTgLCA+4FngjGC7YOCBBeD2gOxQ6VD78OMAz3CVgJ8wnaC+sPJBUvGDkXPRSXEVkOewgwARf8zPr2+0j+bQEaBD0EAALa/9P+e/1j+9L6Nf18ABYCbAINA0IDIgHn/PX4dPdT+QL+ZwI2Atn8Ivdk9eT1tfTu8kv1mvxaBLcIPQmaBT39oPOr79jz1/rq/rUAWQODBaUDDf8M/Vn/LALTAkoDigV/B64GbwQYA84BOv83/rICsAqeD+8OXAymCo4HigGe/IX9MgPFCJULCQz1CoAJbwlPCrwI5gOSAHUCBgZ8BmAGcQqJDp8Jtv0z+e0DKxO7FiUMgv4J+Jz65gJlC7YNlQfL/lX7MP4RAvMDjwXJB1kI+gVtAkD/hvxf+7v9vwI5BwkKNwxnDIcHKv+z+fn5E/wc/S8ALwdMDDYJAwEY/Mb8+P4hAUYFXgmTBygAPfs1/agAEQB1/lgAvAItAf3/nga4EbwUUwoa+2Xyh/On+1wGgw2rCxkD4fxn/aP/Ff89/30D1gacA/v9mf2KANb+/Pgn+Pb+rAT6Alv/YwEdB3oJ6AZNAnf7BvHD6BHtLv8xEiAYfxCyBQD/Ivso+Iz5xgLJD6AXThX+Cin+RvS08fD24v7HA5EFpAeVCYwHhgHG+8b3zfNn8nz5lAYXDXwGafwX+3UAxAHD/N347/kY/C38j/tP++z6sftT/mb+Ivhm8cDzo/3LAyQCAADNAD39B/I+6sPwMv/9BQUBufmS99/4mvqJ/RQB2wBR+571OPUk+cv8d/6I/04Afv/+/BD6+fan89jyZfhZAmAHeADB8hnr6O9H+48DGQUmAgf+d/tG/P7+YP/1+2z4+fcD+aH5DPyxAYEFbQHP91fxkvKJ+JX+GgJ0AUn9pPrU/e4CoAFT+Vfzzfbl/+AFJQUiAFz6TPbH9dL4AP3O/8EAtABmADoA1f/n/TX6ZPel+LL9/gIDBZEBoPgM74Pt6PbRAWoC2fkl9PP2c/t0+4r64vwv/sj59PRv9/b9jv5a+M/0Z/jc+w/40vCl7jvznfkQ/kMAzP/l+7v2tfSb96v8t/+Z/j76c/aT95H97AFq/sb1ffG69Tn8wP3d+2H8A/8a/ov4K/Q69VX5xfyN/zEC/QHU/Mv1FPIF8z72o/nX+9/6jvZs8+T29//tBkQFBvxI8vru8PPY/MoCQwKe/Sv5kfaN9fv2qPv4AH0CRf/L+kD4jveR90D4f/kT+nP5JPni+kv+GwEqAdP9dPi485fxH/Kt9FH5Xf9rA+UB2/v39lv3T/sQ/mX98/ok+XT42fcB90f34vk3/ZD94/mH9tP4KQC4Bb4DVfuh8vXuZPFC96v8RP9a/1j+s/xA+vf3WPcG+Pr3ofbR9fT22viH+b74xPeX90b4OPm0+Z75vflG+rn55/a8847zavbq+Hr5gfqz/WEANf9E+2b4xPdO99D1ePRU9Ov0w/Uc9874HPrx+rT7xfvb+WP2/vPY9HP4Sfy7/Zv7I/er8/7za/ej+qf7cvtT+5D6FfgW9QL0WvVQ96j4MPqu/NH+r/55/Cf6jfiU9tbzMvJn8zn26ff290n4q/lQ+un4Jfd+98H5Z/ve+tf4uPY59Yv0s/Rq9XH2B/hb+p78e/1u/Bz6e/ds9dD0E/Zz+Iz6rvsG/Jv7J/oN+Iv2bvYP9yX3SPZz9R32oPhm+wj81fnv9jf2UPhF+7b8svvU+K714fPQ8z/0HvRh9K/2Xvpt/B37CPj99dz1b/Zw9sz1aPVV9q34+fp1+0n6bPm4+X35MPdX9Aj03/YC+m/6Evg59f7zufRm9iz4O/oF/ZX/ff9q+3X1uvFs8gH2WPnS+uj6s/qv+qb6M/pO+ZL4uPig+Sr6bPnw92b3EPlV/Nj+Z/5G+0f44/dc+ej5ivhG9+f3SflD+Sn4Z/j0+gT+d/8L/7X9Nfz++nH6Tfqn+UD4LPdq9234B/k3+ej5GfuP+5r6Kfl5+IX4ZvjQ9273z/e9+Kz5Tvpz+s/5Vfif9pv1wvW79rr3Kfga+DH48/gU+pf6DvpW+bH5GfsV/Gz7b/lP98j11fRz9Or0bvbE+Dv7vPxK/BD6t/fu9qz3jPjK+Pv4sPmE+uH62vqX+r35Ovj09tP2qPfB+A/6s/vp/Jn83voe+ZT4gflm+zv9sv1q/Jr6ffmK+LP29PST9ar4gfsr/LL7mvtQ+8H5wPfS9sL2ival9jf4ZPrr+nL56Pd590f3r/aY9pb3jvh9+BH4TfjP+MH4dfi9+Hv5D/p6+vH68/r++aH4y/d39zb3ZfeP+An6nfph+m/63PqC+hf5/Pc++Br5R/nV+Mb4g/mQ+l/7sftv+7v6DPq7+Zn5Q/nF+I/47vi1+Vj6VvrQ+az5ovod/Mb8P/yV+5X7o/vS+n35zfgd+bz5Gvpi+sz6DvvE+u754/gJ+LH39fe1+Lv50fqb+6b70PqR+Yj4/vfp9z744/iF+cX5iPkF+bD4Cvkn+m/7H/wt/BL8yPvG+iP54veX96v3ife098j4Kfq0+ln63vl/+ez4bvjO+Aj6Kvul+8X7uvs9+2f61fmv+V/5qfgV+Oz3uPdB9x73q/dm+Pb46vmS+wD9Nv2x/Hf8P/zt+qr4F/cp9yL4Avna+QP7Afwb/Hz7/vr6+hX7APvT+qH6QPqy+V75nvlM+vP6Uft4+3v7P/ul+r35svir98z2WvaT9mz3lvi/+bb6WfuX+5H7eftI+7f6rPl/+LL3hffp97D4lvlB+n76bPpU+lj6b/qV+tD6C/sU++L6uPrf+lf73vtL/MD8U/2y/Wb9dvxv+7f6Lfqx+ar5g/r2+0D9A/50/rz+rv42/oT9uPy++7X67vlx+fL4ePiO+Ff5HPpA+kL6/fo9/Ov8k/zq+5v7VPuV+rv5i/kH+n76kPp8+lv64PkN+ZL46/ii+f75Cvpa+vn6Vfs8+0v7A/wF/X/9G/0i/Az7NPrE+aH5jvmK+cb5LPpQ+iD6Mfr3+gr8s/zZ/Nf8uPxE/Kb7Tfs1+/j6mPqF+sn61Ppm+gz6WvoU+5D7nfuW+837Mfx6/HL8MPwK/DH8ZvxE/Nj7mPu3++f72/uo+3/7Wfsp+wr7G/tP+5D72/sd/DH8GvwK/CD8QvxH/Bn8qvsA+0b6sPlR+UL5v/nL+vf7xPwo/WH9eP1P/Qr96fzZ/KP8Wvws/O77evst+4D7OPzB/CH9y/2T/sH+M/6D/f78aPzl+xv8G/0O/mz+o/4H/xv/gf7D/Xz9cv02/fj8Cf0n/f/85fw+/cv9LP6g/mn/AADV/zv/2P5z/n39a/xM/Cv9DP6G/ij/EwB3AOD///6S/lf+4P2L/cX9GP7R/T/9R/0G/r3+Af8k/13/WP/T/g/+Xv3F/FL8U/zf/JP9Gv6X/j7/0f/4/83/nf9V/7H+0/04/Qv9+/zb/PX8if1V/uf+J/9S/4b/ov+M/1X/Ef+4/k3+9f3f/Q3+Vv6d/un+Pf9p/zX/uv5W/kL+X/5//qT+3P4U/zz/Z/+N/3X/DP+d/mb+Rf4A/rn9qP2t/YT9QP0s/VX9n/0R/qj+C//5/qz+cv4V/kz9fvxb/Nb8R/17/c39P/5L/sT9MP32/Oz84fz4/DL9O/33/Kr8dfwn/MX7sPsF/G78svz2/Dj9Jv22/Ej8CvzS+7H7BPy3/DX9NP0D/d/8n/xL/En8n/zZ/Nr8Ef2L/aP9Ev1y/Ej8W/xf/Ij89vxE/UL9TP1r/Q39IfyW+wL8rPzH/MD8W/1B/pn+cv54/qf+fv4g/if+fv6I/kH+Of56/on+b/7H/qf/awDHABwBjAGUAfMAJQCu/2z/JP8b/6//swCZAR0CZgKtAu4C+gK5Al8CRwJxAnoCLgL1AUcC+AKKA+wDdQQgBX0FXgUbBecEigTuA4ADmwMFBFgEsARlBUMGmgYhBlEFwwSMBGoEVQR+BPIEfAXhBRIGDwbzBfwFTwa3BuUG1ga2BnMG4gVDBRYFbQXsBYIGbwd1CMwINAhYB74GCAbwBB4ESQQeBcoFLAaeBvkGzgZYBjYGZwZrBkAGSwZjBuUF0QTuA6QDngOjA/wDwgR6BbwFngU5BW0EXgOaAmcCfwKoAhIDxwNIBB4EaQOMArMB6wBnAE8AfAC3AOsACwHoAHUA7/+W/3f/df94/2L/Fv+O/tX97fzo+xH7xfoc+9f7mvwQ/Qb9ivzb+xL7FvoM+W34dvi8+MP4n/ia+Jf4S/jb95v3efct99324/YQ9972Tvbo9dr1w/V49Vr1pvUV9ln2f/aI9i72WvVu9NHzgvNy89bzx/Tk9aH22vbC9nr2AfZ29Q714/T+9GX19fVT9kb2EvYf9m32qPbR9lP3VPhi+e/59/nH+Yj5P/kl+Yn5b/qT+8j8+/34/mv/RP/R/m/+WP6x/oH/mgC+AdQC3QOmBPcEBgVeBSwGAQd5B6kH0gfrB8kHiQeDB/YH5QgpCnwLlAxVDdQNHQ4gDuwNxg3kDTsOog72DhoPCw8RD4APPxDjEFER1xF2EpoS3xGwEMwPhg/ND4gQchEKEhcS7hHNEWQRjBDzD04QKhF8ERkRuBCcEEYQpQ95Dy4QJBGnEcoR1hF0EToQlg6FDWcN0A1TDv4O3w+bELIQHBBYD+sO6A4AD/0O6A7IDn0O8A1BDaAMLQwODFIMswy4DFAM6gu7C2YLpgrXCXYJbwlrCV8JXQkiCXQIlAfRBv0F4ATXA2MDVQMgA78CjgKPAnkCUAI3AugBEgH+/xr/Kf7G/F77rPqE+iH6fvk4+Un5EPmP+GX4ffgK+PP29fUm9cPzyvFY8PDvxO9Q71PvPfAh8Rjxn/Bi8OTvi+4Y7ZLskez66+7qd+qr6pjq/+m26Tnq+upn65brrOto66jqu+ns6ETo3+cP6OPo++ny6qDr9Ovo65zrOuvS6o/q1uri63LtHO/G8HPy5fPc9Hv19/Ut9gT20vXy9Tf2cPYQ96b46foX/Rz/bQHnA7YFfQazBq0GLAYtBUoEAAQzBM0EIwZNCLAKsAxEDnwPERDUDyQPZg6ZDb8MSAxrDLUMugzaDJsNsg5uD8wPTRDsEAgRZRB/D8UOFQ5ODcEMyAxBDcMNHQ5SDk0O3Q0KDRwMYQvvCrcKvQoYC7kLWQysDKsMeAwrDMILRgvUCoMKbgq/CnkLUAz9DJgNYQ4zD64P2g8tEMsQQhFCERQRExEzEWsRFxJ0ExsVgRapF8wYmhmbGQkZoxitGNIYBhmyGeQaAxyeHPgcWx2aHY8doR0pHsse9R65HoMeRh6jHcQcTxx1HLccthycHIQcIRxbG5saKhq9GRcZjRhbGAEY9RaRFY8U2RPSEo0RwBB7EPYP3Q7RDTsNoAyQC3oK1Ak+CSIIqwZXBSIE0gKoAQYBtABEAMz/kP9K/4f+fv26/CH8O/ss+n35EvlH+BP3JvbK9ZD1Q/U29W31X/XS9Cr0kvOz8pTx2fDB8LnwY/Ak8Cjw1u/d7vDtpO107dLsXOzZ7LDtn+2t7PTrx+ta62nqyOnz6Trq8+mA6Xnpm+lq6Svpd+k16rnqvOp56gnqWOmb6ETocej86Pjpnuua7SPv6+998ELx2vHX8arxEfLq8l3zQvN385f0LPaJ9+n46/pJ/QL/r//j/yAAPwAWACYA/ABuAtsDCwU9BpkH7Qj/CbkKMgudCxoMdAxaDPwLDwzaDNYNhg4yDzQQHhFbES0RPxFvERoRZhAuEJYQyhBoEB8QdRDtEPcQ2RD6EAQRhBC/DzAPqw7cDSsNNw3JDS0OVQ60Dh0P2g7uDTAN9gygDOwLqAtyDKcNWQ6nDjsP8w8bELgPiw/VDwUQyQ+SD70PCBBEEOMQPRLhEywVJRYdF88XuBcRF5wWkBZ6Fk4WshbsF0sZNxoVG2gcrB0DHqUdjB3XHZMddByBG5IbHBxHHGIcNR1xHv8eqh48HhAemR2hHNIbjhtCG2kafhkjGRoZ4hisGOsYRxn2GOEXmBZQFccTIhL2EHEQJBDRD6QPkA8mD0EONg0uDO0KYwnsB7oGmgWABLIDNQOrAgUClgFXAbYAhf9M/l39VPz3+sb5EflO+Bf3BPas9Y/16PQO9NjzBfSH8zPy8/A+8Ibva+527SvtPO0d7cTsauwA7GLrqur/6V/p1eiW6Jzog+gN6HznFOes5gnmVOXj5L7kreSt5O/kfeUd5rDmXOdU6HHpQeqC6nbqhOqa6kTqhekj6cTpMOvV7LruOPH78wf27PYu91z3XvcP99P2Lvcj+FX5mPrx+2T9+/68AHcC4AP6BAIG1Qb3Bm0G8gX4BTIGdQZYBz0JaQvaDJkNRw7kDuMOUw7kDdsN4Q3WDfwNSg5yDqQOYw+DECcR8hBoEOQPGA/yDRkNBw1lDcMNPA7XDv8OVA5nDfkM5QyRDAYMvwuwC0YLXwp9CREJLwngCSILkAyJDdINmg3xDMQLcgq+CfwJygq1C60MsQ2HDhYPog9VEPIQSRGfETYStRKNEu0RrhFHEkETAhSvFMwVOxcxGE4YLBh0GOYY6xiyGPwY3hmJGqEa0RqTG0ccMRy/G9sbaxyLHBIcwhv3Gygc6huEG0kbHBvtGuka5BpeGnwZCBkaGcUYqhfPFgUXgBcNF/UVVRUiFVkU5xLaEZIRNRFBEFYP8g6DDnsNVgzRC7MLSwuDCswJMQlVCCYHAgYoBYsEEgSlAxIDNAIhAQkA+v71/R39jfwr/NH7bvvo+hz6IPk7+Hn3lfZx9VP0cPOl8tfxPPH18MXwcvAn8Afwve/y7uLt/ew97FbrYurF6YrpXOkO6bnoYejk50znyOZT5srlQeXk5KHkQeTk49jjF+RT5ITk3+RN5WTlEeWw5HfkQOQd5H3kiuXr5lvoCur764ztJO797c7t7O0x7pDuLu8U8CXxXvLH80P1w/aG+LX64PxS/t3++f4R/yH/Cv8E/4D/wQCgApYEJwZRB28InwmFCugKGAtpC6cLhgtDC00Ljgu3C/4L4QwpDgcPKw8QDw8P4w5gDt8Npg2CDUoNJQ0TDboMHgzdCzoMhwwWDDULmQo8Cp8JxQg6CDkIggjcCCcJDglYCGcH2QagBjUGnAV+BRAGrAa/BpAGvAZRB+gHTgibCOAIBgkFCfwIDwlQCbkJPgrqCt8LDg0fDssOSA/tD5UQ0RCnELQQThEQEoESyBJdE1EUPhXfFVEWzxZgF98XLBhZGI8Y1RgKGSYZXBnEGRkaJxo4Gp8a/RqwGtcZQBkwGRIZlxhBGHIYqxhhGNkXhhcuF2sWkxUrFeMUDRTaEg0SsBESERcQcg9fDzEPbQ55Db8M9gvZCscJKAm2CAIIMAeVBgQGIAUQBEsD4gKLAjMC9gGzASMBUwCT//X+SP6A/df8Zvz6+2b7t/og+r35ivln+TX58Pib+CH4Z/eB9qb15/Qv9JLzQPMe89ryfPJq8rDyyfJq8vDxt/Fs8aDwiu+17jXuz+2a7cvtHe4O7pTtCe1/7MLr9Op86mzqf+qq6hzrmuuZ6/7qPOqn6SrpvuiV6KnouujS6C3poenV6SPqZ+ut7czv0PDz8L/wD/CY7vTsK+yf7AfuMfAB8+f1Fvhp+Vz6NPut+5D7Hfu++rP6EvvS+9H8Bf6N/24BWAPwBDAGOwf7B08IWghSCEAIMQhpCAQJpQkCCmgKQwtgDDgNyA1eDskOiw7ADRUN1Ay2DMgMeQ2ZDiMPhw5hDXwMyAvnCi4KRwogC/wLUQweDIkLvQoNCrEJcwn5CFMI3geNB/AG6AUBBdgEfwWOBpYHYgjfCAYJzQg+CIkH6QZ3BioGCgY8Br0GWAf6B9II7gn8CqwLGgyDDNgM4gy1DJYMgwxbDEsMrwx9DUEO1A6aD9wQRhJSE9wTGhQtFBQU4xO8E6ATghN9E8QTWxT+FGcVlxXWFVoW8xYvF+EWWxb7FacVDBU+FKsTehNZEw4TyhKxEoESBBJ4ESUR0BAUEAsPJg59DccM8As2C6YKAQouCWAItQcVB4kGTgZZBjMGiAWHBIYDfgJUAT0Ajv9I/yn/CP/e/p/+Sv4O/g7+E/6+/QX9N/yG+9v6F/pM+Z/4KfgA+C/4lfjs+AP52viF+Af4W/eR9tP1SPX59L70cfQs9Cr0Y/R39C70zfOu87TzfvP68nryL/Lx8ZHxGvGs8Ebw4e+R72vva+9372vvI++w7lnuRe467vLtiO097fbsYuyV6wXr3urb6tnqJ+v56wbt9e227kLvWe/j7jTunO0J7XLsOuzD7N7tIO+A8CTyx/Pr9JL1MPbt9nn3qfe/9+33Bvjv9/X3iPjA+WT7L/30/o8A6QHkAl0DSwPmAogCawKaAhgD1wOmBF8FIAYQBxII4wh1CeUJKwojCtwJigk6CeYIwQgICYYJugmGCUsJUwlwCXMJfgmoCbkJgwkwCekIjwgDCIIHTgc5B9wGJgZlBdoEkASGBLgECQVbBbQFFwZUBjAGsQUcBZwEKgS5A1YDJANEA8QDiQRjBSoGxQYcBygHIAdOB6AHuAd4B0AHVweLB50Hygd/CKEJoQo6C6wLNQy7DAEN/wzWDLsM4gxWDdINAA7xDRUOpw5rDxUQqRBHEdkRIxIKEqURIxG0EGwQLxDeD5wPrg8HED0QEhC+D4sPZg8iD9EOmA5QDrUNzwzoCxgLPgpdCasIPgjpB4IHFwfBBnoGOgYPBv4F3wVzBYsEHwNhAcH/sv5f/pf+Ef+D/5z/J/9d/s79v/3W/Yz93/w8/N/7i/v4+jz6pPla+Vj5mvka+pv6uPpA+nr54/jA+PP4Lvk8+Rb50fiP+F/4N/gG+Mr3jPdL9wH3wPac9pf2sPYK98L3k/ju+In4q/fK9hH2e/UX9e30xvRx9CT0PvSs9OX0jvTe80vzEvMt83bzu/PL85fzNvOy8iHyyvHz8W3ym/IX8iLxVPAP8F7wF/Hz8aXyFvNu877zxPNK85byMfJQ8r3yNfOx8z70yvQr9VH1XPWZ9Uv2Xvdr+B75f/nA+d35wPmZ+cf5WPr++nv75vtX/Kz81/wY/bz9vf7b/+oA0gFWAjYCigG+ADYAHgCJAHIBjQJEAzADewLIAbABXgKNA8QEtAVRBqYGhwazBUMEzgLuAbUB1QEcAqYCigOXBIsFTQbPBs0G8AVLBI4CrQEoAo8DvQSnBDoDdQGUABoBnAJgBOYF3wb0BvYFQgSrAugBJgIIA/QDXQQLBEADkAJ0AgEDBwQ0BSEGcAYKBkEFiwQsBCkEcgTpBFYFgQVoBT4FRAWgBUMG3wYdB/wG4QYPBzgH7QZWBh0GfQbcBpYG1gVhBa8FkwaMBykIJgiSB94GfAZsBk4G7AVsBf4EoQRMBB8EMQRoBKUE3ATtBJ8E9wNbAyIDKQMcA+kCqgI/AmgBSwB5/1P/sv8zAKYA5QC1ABIAcv9n//b/cQAiAOv+b/2M/Jn8FP04/eL8qPzy/E39Df1j/D78DP0Q/i/+Jf2Y+1T6s/m3+Ur6R/tl/C/9RP2p/O37sfsN/H/8jPw9/NP7WPvG+mL6k/pN+wT8RPws/C78k/w6/ar9Vv0t/Nz6WPrf+qT7ufsf+6v6//rf+4n8gvz++5P7sftN/On8+vxd/Gv7tvqS+tb6BfvN+mL6U/rs+tv7hPyQ/Bz8gfsU+w37XPul+5P7L/vY+sn60fqu+nr6nfo/+wH8U/wV/MT75ftS/FL8evtd+hL6Afts/Cz9v/ya+5/6d/o8+3z8j/0L/vT9hP3f/Cb8rfvM+338T/3T/fb92v2m/Y39y/1a/sT+iv7X/X/9IP5e/y0A4P/X/h7+Tv76/j7/0f5h/rL+lv8RAJv/zP6w/pL/vwBXAQIB+P+9/vX9Gf4X/0sA+wDdADkAq/+3/2gAJgE2AYIAsf9g/4H/pf+i/5n/jP9f/0H/rP/AAPMBdgLuAa0AXP+R/ov+Hv/i/4UA3QC/AA0AE/+I/vD+CwAUAYYBfQFFAeUAMwBF/4r+e/47/2UAUwGHARABcAAXAPn/v/9n/3H/QgCBAToCvAFCALX+9v1r/un/twHHAkYCUwAP/tL8PP3e/qIAjQFHAUgAav8j/zv/Qf8z/3P/FwCfAHMAkv+G/t/9zv06/uX+gP/Q/8z/hP8B/1j+3v0A/sf+rv8aAOX/Rv+C/sv9Tv0l/UX9qP1V/iX/mf9G/2H+i/0k/S39pf2Q/oP/tf/d/qL94PzI/AX9aP35/Yj+uP5z/vr9if1A/Vb99f3R/kD/8v5E/r79g/12/ZT94f0z/lz+YP5c/kn+Hf78/RX+T/5k/kL+If4y/l/+e/55/mH+Qf4o/iX+Nv5J/l7+hP66/s/+pf5k/lr+mf7j/vX+z/6a/mb+Lv4C/gj+Pv5z/ov+pP7c/g3//P61/on+qP7n/vj+w/5u/h/+6/3c/QX+a/7u/lb/dv9K//j+sf6X/rD+6f4f/zD/Bv+u/lT+Nf5u/t3+PP9f/1T/Qv8+/0P/S/9N/z7/Hf8G/w//KP8u/yj/PP91/6b/pf97/0r/Jv8W/yb/T/9r/2L/Sv9F/0j/Mv8N/wf/Mv9q/4D/cv9c/03/Qf8v/xr/A//x/uj+7f76/gn/GP8q/0D/VP9e/1b/N/8C/7/+g/5p/nz+q/7N/sD+if5O/jv+Yf6l/tf+3v7H/qf+hP5d/kD+Rf5l/nf+Xv4w/hb+H/44/kn+WP54/qn+zf69/nT+JP4M/jj+dv6S/ob+bf5e/lv+W/5g/m/+if6l/qz+k/5y/m/+mP7M/tr+tv5+/lf+V/52/pX+lP5z/lj+XP5y/n3+hP6c/sD+z/67/pn+fP5l/lL+UP5i/nb+c/5V/i/+G/4q/lb+gP6L/nf+X/5S/kD+Hf7//fv9Df4d/iP+Kv41/jT+Hv4B/vT9+f0F/hH+Gv4e/hX+/v3l/d397v0Q/if+JP4O/v79A/4U/iD+IP4X/gf+9f3t/fj9E/4q/jX+Of4+/kD+O/45/kn+Z/6B/on+g/51/mn+Yv5l/mv+bv5x/nr+iP6O/ov+i/6Z/qz+sv6n/pb+hf57/oD+lP6o/q7+qv6v/sD+yv7C/q7+nf6T/ov+gP52/m7+bP52/of+lf6W/pH+kf6T/o7+gv50/mj+Xv5W/lf+Xf5e/lf+UP5Q/lP+U/5Q/lH+Uv5P/kz+UP5a/lr+S/42/ir+Kf4u/jX+Pv5H/kv+R/4//jj+Nf43/jz+QP4//j7+QP5E/kf+Sv5P/lL+Uv5U/ln+Wf5P/kL+Rf5U/lz+Vv5N/lD+W/5l/mv+cP5w/mf+Wf5P/kX+N/4u/jL+O/44/ij+Gv4c/iv+Of49/jn+MP4p/if+Jf4c/g7+Bv4G/gX++/3q/dv90v3Q/db94/3t/er92/3N/cb9wv26/a/9pv2h/aH9ov2h/Zf9iP1//YP9jv2U/ZL9jf2L/Yr9g/15/XL9cv12/Xb9bP1d/VH9Uv1f/XH9ff2A/Xv9dP1x/Xb9gf2K/Yr9g/17/XX9cP1q/Wf9a/13/Yj9l/2f/Z79nP2d/Z/9mv2P/YL9fP1+/Yf9kP2S/ZH9kP2W/Z79oP2c/Z79pP2l/Zz9kP2O/ZH9kP2I/YP9hf2M/ZP9lP2K/Xv9b/1w/X79jv2W/Zb9kv2M/YH9df1r/Wb9a/13/YL9hP2B/YH9hP2D/Xz9df10/Xj9fP19/Xz9ff2A/YP9iP2P/Zf9m/2Z/ZT9kP2Q/ZP9lP2W/Zv9of2m/av9tP28/cD9vP24/bn9vP27/bj9tv23/bn9u/2//cL9wv3D/cn90v3Y/dn92f3Y/df91P3V/dz94/3j/dn9y/3B/cD9w/3E/cL9v/3A/cX9yv3J/cH9tv2z/bf9vf28/bX9r/2q/ab9oP2b/Zv9nv2d/Zf9j/2L/Yv9jf2R/ZT9kP2H/Xv9c/10/Xr9f/1+/Xf9cP1w/Xr9hP2H/YH9d/1y/XL9dP1z/XD9av1j/V/9Xf1d/V39YP1l/Wj9Zf1b/VL9Tv1P/VD9T/1N/Un9RP09/TX9LP0h/Rv9HP0e/Rz9F/0V/Rj9F/0O/QH9+fz2/PH86/zm/Ob85Pzd/NH8xvy//Lr8t/y1/LT8svyt/KP8mfyS/I38h/x+/Hf8cvxx/HH8bfxk/Fn8UPxN/E78S/xB/DT8Kfwi/CD8Ifwm/Cn8Kvwo/CL8G/wX/Bj8HPwZ/A/8A/z++wH8CPwO/BD8DfwG/AL8A/wH/An8B/wE/AT8B/wL/Az8CfwD/P/7//sD/Aj8C/wO/BH8FfwW/Bb8FvwX/Bb8FfwU/BP8EvwR/BL8F/wd/CH8Ivwi/CD8HPwY/Bj8Hfwj/CP8H/wc/B38JPws/DL8NPwx/Cz8Kfwo/Cb8Ifwd/B38Hvwc/Bn8Hfwq/Df8O/w6/Dr8P/xE/EX8Qfw9/Dv8Ovw3/DT8NPw7/Eb8TvxR/FD8TfxJ/Eb8SfxU/F/8ZPxe/FX8UvxV/Fr8Yfxn/Gr8Z/xh/GH8avx3/Hz8ePx1/Hb8dvxv/GP8W/xc/GL8Zvxl/GH8Xvxh/Gj8a/xo/GX8Z/xx/Hj8dvxt/Gb8Zfxm/Gj8aPxl/F38VfxS/FT8V/xV/FH8UPxT/FX8UfxK/EP8P/w9/D78Q/xH/Ef8P/ww/CL8HPwd/CH8I/wh/Bz8F/wV/Bf8G/wi/Cr8Mvw1/DH8Jfwa/Bb8Gfwa/Bb8D/wK/An8CvwO/BX8G/wY/A/8CvwN/BH8D/wI/AH8//v/+//7/fv6+/j7+fv7+/j78/vx+/L79fvy++r75Pvh++D73fvW+8/7z/va++n77/vm+9f70PvT+9j72PvV+9D7y/vF+8D7v/vD+8z71fva+9n71/vX+9z73/vb+9P7yfvD+777ufuy+7H7u/vN+9v72/vQ+8z71fvi++j75vvm++37+vsH/BH8E/wP/An8BfwB/P/7A/wP/B38Ifwd/Bv8JPwx/Db8NPwy/DX8OPw5/Dj8OPw5/Dz8QPxF/Er8Ufxd/Gr8cfxt/GX8Zfxw/H38gPx6/HP8b/xs/G38cvx6/H/8gfyF/Iz8kvyY/KD8qPyk/Jr8l/yh/K78tPy2/L38x/zN/NP83Pzm/Ob84fzj/On85/zd/Nr85Pzv/PP89vwF/Rf9Hv0a/Rv9I/0m/SD9Gf0b/SD9Hf0V/RL9Ff0X/RT9Ev0W/R79JP0p/S/9Nf06/T/9Qv0+/TH9J/0u/UL9Uf1P/UH9M/0u/Tb9S/1c/Vv9Uv1R/VT9Tv0//Tz9R/1O/Uf9Qv1C/T39Mf0w/UL9Uf1J/Tr9Of1A/T/9OP04/Tn9M/0u/Tf9R/1T/WH9dv2A/W39T/1H/VD9Uf1K/U/9XP1V/T/9Pv1e/Xr9ev19/aL9z/3a/cT9s/2v/aH9h/19/Y39lv2G/Xb9ef1+/Wv9VP1Y/XD9ef1y/Xn9k/2g/ZT9iv2Q/Y79ef1q/W79b/1k/Wv9kv2w/ar9p/3L/eT9wv2T/an96f3u/av9gv2f/bP9gP09/UD9d/2f/an9tP3A/bv9vf3k/RP+Ef7p/df97v39/eD9uP2x/cH9vv2Y/WX9Rv1G/Vr9av1q/Wj9ev2d/bf9s/2i/aX9xP3e/cj9jf1o/Xr9mP2N/XL9if3E/b/9Wf0D/Sj9f/10/f78qPyq/J/8V/xD/LX8Pf1u/bT9vP5XAN8BbwOSBawHBgj8BQoD2AA9/yD9ivqE+G33nfa/9Uv1qvXE9of4Afuj/Wb/BwBhABgBvgG2AS8BqAAIAOT+UP3c++36lPrJ+lL7tfvC++n7oPyq/XX+9f6Q/00ArQBXAJj/6P5l/ur9bP36/Ir8D/zG+wL8r/xP/ar9Hf77/t//KQD2/+v/KwAtALH/Gv+y/jL+iP0t/VL9af0S/d/8Y/0q/mn+Pf5X/sT+/P7o/u3+Ff8C/7D+g/6A/kn+5P3U/Tj+iv52/kn+XP6K/qD+tf7T/sD+bv4t/if+Ff7K/Yz9l/2y/Zz9h/2w/eb9+/0s/rD+KP8b/73+oP7J/sT+af4L/uH9zv27/bj9v/28/cf9Af5K/mX+W/5o/pT+u/7T/t/+wf5u/iT+IP42/h7+8v0F/lT+kP6T/nv+XP43/in+RP5b/j7+DP4J/jf+Xf5d/kr+O/40/j3+U/5i/mP+Zv51/on+m/6m/p7+i/6O/qr+m/5F/gn+Rv63/tH+r/7z/q3/HQDe/4f/v/8qAPz/Nv+U/mL+M/7I/XH9UP0V/cX88fyz/Tb++v3Z/cr+MQCsAB4Azv9jABgBGAGoAGEAJwCV/7v+5/0e/WP8H/yU/Db9Pv3Q/OX86/0S/2P/GP8p/6z/mv9w/h79svzf/L78TPwp/F38gPym/BL9YP0s/Qz9lf0d/tH9VP27/Y/+mf4K/gn+j/6L/t79Z/1x/Yv9nv3B/aD9PP1U/f39If6W/dr9UP8EAAT/Qv7x/vb+8Px4+4X8F/1C+hr3v/eB+R/3pvIP8/n49P0///gAZgXgCOoIcAj9CUQLkQlDBtQD4wHs/qD79/kv+sD68vrm+5D+4QFVBGsGiQnZDBEOMg1gDAQMjgr4B6cFHQME/+P6b/nW+WH5kvjb+YT80v3//Vr/wAE3A40DtANRA+QBZwBy/xn+HvyY+p35Rfgi94D3mPjn+GL5m/sJ/iT+7/xo/ZT/ywAsAF7/ff/c/5n/xf4E/tv9H/4k/r79Wv3l/P77ZPsv/FH9p/zF+oD6Rvxu/e787fzo/qYBrwOwBG0ETQNRA3QFLQfsBV8DiQKpAiwBx/77/XX+QP7f/dr+EgDZ/9D/XgLuBf8GlAWWBNgEjATyAjcBMACd/zH/kf4z/aP7lftS/b7+Yv6u/Xj+2P/E/3n+AP7T/mr/9f5l/l3+JP5y/Vj9RP7M/uX9w/zk/If9E/3v++T7WP3r/oL/Pf/h/j7/jwDeAewBAwGfABIBOwGiAAkAy/+P/4L/zv9u/6T9+/tY/Mz9Av4K/er8Bf7i/vn+J/+z/y8AvgCHAbUBzADt//v/AgAW/0b+s/5f//3+Xv7R/q7/u/+t/7wA/gG7AY8AgAB7AXMB3P+O/tX+qv+j/+D+Sv4i/i7+Sv5Q/vr9af0i/Vr9tP3b/er9Gf53/vP+Vv9J/9L+hP7D/hz/6f5U/vn94f2t/W/9cP2B/WP9fv0c/nH+wf3k/B39A/48/uv9Vf5n/7v/D/+j/gf/cf9s/1f/K/+A/sb9zf1B/jX+4f0W/n/+UP4w/jb/hgBpAGX/lP/5AFIB6P/E/k3/OgAYAHT/SP9F/wL/Kv8DAGMAjf/D/mf/pQDLAPn/tv9vACUBVgGJAeQB0wFjAWgB7AHbAdwALwC0AG8BLgF2AGEAlQAbAHL/rP8tAJv/if60/qf/Rf+4/Xv97v6N/2v+1v0K/wwAfP/x/q7/ZAAkACsAxwD6/zv9Mft0+/L7vvo8+S/5s/l9+XX5xvqh/O79Bf8MAPv/4/7Q/nkAiAFFAKf+Ev8sAB//kPzB+1b9rv5z/j3+F//q/1MAowHEA5MEpgNZA4AEpwR7Ak8AJQCZAOz/2f5X/rz9Cf3J/dz/zgAHAP//uwHjAtwBZQBGALYAlgA/AMj/aP6n/Ev8RP11/Vb88ftQ/ZX+Cv7H/LL8d/13/aP8afws/a79V/1Q/WD+Rv/C/tX9I/4H/5L+xvyR+737H/zL+yH7x/oH+/37RP0A/i7+1f4TAIIAlv++/gD/Sf+d/vT9Xv7//pP+e/3X/Nn8Gv2C/eb94f2X/aP9/f0e/kT+Df/s/7r/0f67/pf/1v/z/l7+7P5Z/3j+Lf3Y/EP9gP2k/Sb+h/40/uD9cP5W/3b/Df82/+v/EgBc/7f+4/6I/+X/t/9K/wr/Df8A/7D+bf6H/r7+tP6P/p3+vP65/tz+Vv+q/1D/kv4x/mn+2P4C/7z+Wf5s/gv/df8F/zr+FP6l/hL/4/6P/p/+/P41/wz/pP5q/q3+NP9e//T+g/6o/jD/cv9A//z+7/4j/6f/WgCPAM7/5/4o/00AswDP/wL/av9HAGcA4/90/0f/R/+Z//3/tP/O/nr+Tf8vANf/jP6n/db9lf4Q/wf/Bv/A/wMBswEpASYAu//N/5z/Kv8P/zn/HP/m/jz/1f+y//H+5f4CABcBLAHfAA8BZwEgAUoAgv8M/+T+A/8s/wv/yf7T/gT/2v59/oH+1f7u/tr+A/8r/9f+b/6o/hb/xP7l/Zz9Lv6//sz+s/7C/sr+xf7n/hn//v6a/lj+Zf50/j/+9/0e/s/+Yf8S/yH+rf0r/rX+bP7D/aX98P3l/YX9dP3A/eb91P3k/fL9lP0I/QD9e/3J/b/94v1m/tz+B/8g/yv/y/4G/mf9E/2G/JH78/pe+2H8A/0G/QT9a/3s/Rz+Cf4A/gv+7v2I/f/8ifw1/O77rvuA+177MvsA+/j6O/uv+x/8Yvxu/GT8b/yF/Gz8LPwZ/Dv8GfyS+0z7t/s9/Ez8Zfwk/eH9nf24/Fr8n/y+/Jz8w/wM/dX8Xfxu/Nr80Pxx/Kj8ef3z/dP9w/0M/jf+If4l/jv+BP6y/dz9Xv6K/lf+aP7X/gr/zf6c/sL+/P4l/2b/pP+M/zv/LP9g/2H/K/9J/97/XAByAHgAvAAIATUBcAG4AbIBYwFfAb0BzAE7AcsALAHUAdMBPwH/AHEBIgKuAiQDkAPXAwgEWASyBNUE0QT7BF8FrgWyBZQFkwXGBRcGUgZKBg4G2wXEBZ8FWgUeBRMFSgXYBY8G2gZ7BikGogZZBygHNwbLBSMGFgYnBVoEVARMBKcDHQNAA1oD2wKNAioD7QPVA0cDJwNLAxIDqAJyAgkCAAHr/2P/6f7l/fb87PxC/f38R/zQ+137a/qD+U/5FPnT90n22vUY9lr1ovOS8p/ybvJb8WrwJvCr75Tu4+0O7vnt9OwY7GPs4uxC7PfqT+o66p/pVehO5+vmnuYr5hrmkObN5knmmOV75bnlnOVM5anl5OYV6JzoDOkw6s7rJO0r7ovvePFl8+30XvYk+BP6nPt7/Ab9w/3A/pb/KAACAXcC4gN9BJ0ENAU4BrMGhAbMBh4IcwmvCUgJZQkLCj4KnQnrCNUICwnRCBMIZQcxByoHygYRBnoFNgXkBDsEkgNTAzADhwJwAa8AkwCLAC0A/P+BAFABfQH5AH8AXQAZAH3/Gv9o////SwB2APMAoAEGAj8C2QLoA+gEowWEBsMH9wi7CUQK3wpwC88LSAwuDUwONw/+D+cQyhFBEmoS1hK4E7MUfhVAFhMXthf3FxcYbBjiGC0ZNBkfGfwYqRgKGDoXdxbgFVcVsBTzE2oTQxNHExQTkhL/EYIR7BATEEAP6Q4JDxgPsw4GDlgNlgyaC6YKIwoBCtkJhAkpCb4ICAgeB24GJAb/BdUFzgX5BRQG9gW0BUgFhgSPA84CTAKOAWIAQv+I/sz9m/xM+376HPqX+dn4MfiM94b2NfUR9Anzg/GF7+Xt6uyp62zp+OZz5Z7kReNA4bzfXt9J36He5t3S3c7d09w/2z7akdnO1+fUitJO0V/Pcstax+bFQ8eYyXrMktGO2YbiG+rF70H04veF+oH8lP4WAekDIwf8CsMOuhChDzEMVQgkBWoCSAD7/0kCJQbECXkMqA6JEEMSuxTXGNMdmSEII70iQyGwHRgXuA5sB+ECIwBf/Vr6ePh8+FX5lvl3+Wb64fys/2wBGwJbAg0ChwDr/Tn7+Piu9i70dfJG8pLymPFm78jtcu3p7BXraOn/6ZfsKO8C8UnzevaJ+dL7Hf7PANkCigPsA/IEjwVkBFMCawHOAckB4QCmAC4ChgSHBpUIcguRDsUQ2BF1EuoS9xKOEgESkhE+EdgQHBDmDpsN6AzmDPMMqAxQDCUMpwteCrkIjwcLB8cGtQYbB8MH9gdkB4MGywUVBQcEtgKCAZAAuf/T/uf9NP0W/cL96/78/8IAkwGfAnIDewPhAlsCTwKAApQCngL2ArADfgQTBXwF9gWaBkYH4geDCDEJzAlBCqYKCQtPC2YLbwuRC8ML4AviC9kLxguoC4ALOAu5CiYKxwmuCasJtAkECrUKfQsNDHAM1QwtDT8N/QyIDP4LfAslC/8K3AqeCnQKlArdCgULKguyC6kMkg0YDnwOGQ/OD0sQnBD3ED0RKBHiEMYQuBA+EF8PuQ6PDm8O/w2qDfkNxA6GDx4QvhBXEbAR3BEOEhYSjhGSELMPHQ9XDhENtwvXCmIK1wn4CPEH9QYIBiIFTwSkAzYD+wK8AkIChQGQAE7/u/0z/Az78Pk7+Ab2JfTo8p7xvO/D7XHsouu46p7psOj85zvnXeZp5RnkMeIZ4HfeOt3B2/DZadh313DWp9SC0u/QENAxzw3ONc3qzFzM8srMyfjKGs8T1R7c3+SI7wT6lAHkBeQIogvxDNgLxQnJCKsIiAcbBWIDngOPBNAEVgXzBzcMyQ++EZgTZxbTGCwZKxjuF9oYUBlwGFYX6RYKFj4TIw+PC8cIXgXyABn96vpK+dP2RPRu83b01/Xf9nL4DPuD/Y/+ZP7d/eD8qfpX9wf0X/Hr7krsHuo06UHpTuky6cDpaeuN7XHvXPH98x33xPmT+zH9Kv8lAZ4CzgM3BZcGNQf9BpkGUga7BbwEEQRIBPYEiAU2BoEHPAnZCloMGw7nDyMRuhEhEmES8hGhEO8ORw1zCywJsAaEBN8CrAHZAHAAcAC7ABgBUQFjAZIBGALRAn4DKgQGBdcFJAbeBYoFcgVCBaAEygMyA8ECDQIlAZsAuwBMASACbANKBXQHpgkBDJYO8RCkEvATUhWSFgAXmBYxFjoWKBaBFcoU3BSxFawWpRf7GKsaFRzcHFId3x1oHqQeph6+Hvce7h49HuccXBv/GboYRRe+FbIUUhQIFDwTJRJ2EWMRghGPEb8RNRKhEpwSBhL7EJkPEQ6PDPgKBAnDBrQECQNhAX7/5v0v/fj8cPyv+3z7y/uP+4X65/l/+h77Ufq++Bn4P/hI97r0ifII8sTx5u847cPrc+tj6jTosubB5uPmy+WG5KDkieV65TvkKePN4hTiPOAb3r3c19t02nDYUNYW1FvRds5zzKfLMctSykXJUsjwxtXETMNhxNjI5c+o2LTiJO069sH8JAGnBM8HMwqNC1gMHg14DXsMPgpLCN4HWgh3CHwIvwkZDJENTw3qDMMNvw5ODmcNKQ5lEMsRiRFCEd8RvBE6D2QLUggiBmADtP9M/Lb5Jfco9KPxXvDm76Lv8+9J8efyovNw80Hzd/OB8/HyI/Kp8Z7xvvHA8YjxNfES8SfxHvG88GLwjfA18RDyKfOp9EP2oPcX+Uf77/0+ADAClwSOB/QJAQtXC+ELewyaDHkMrAwQDSYNDg08DYUNZQ0CDQUNhA3VDZAN+wxyDOsLSguZCs4J0QjHB+4GLwYuBegD0gI2AtUBRAFvAJ//I/8p/7D/jQCMAY8CkANlBMAEiAQMBL4DvgPYA9EDqwOGA28DYgN0A9cDqATTBS0HnQgSCmMLaww+DRwONA+DEPIRZhO1FLUVXxbBFtsWqhZlFkwWURYrFtcVpBW3FckVoxWAFbQVHBZbFnIWsRYQFxUXgBanFesUNRRME2gS5hGlESIROxBPD5wO8w01DakMjQytDKsMfAxIDBQM1wulC5oLpgubC2kLEguKCsMJzwjWB/EGIgZcBZQE4gNqAxQDkALNATUBDwH3AFoAXv+V/u79rvy3+vP4/vc299P1Q/Rn8/XyyfGv77jtiuyE6/zpVug051bmEOVW45Lh2t8O3njcedu/2o7Z19c91tbU4NIb0IbN+8vUyvvIx8ZexZvEHMOuwOm+wL4Tv/i+8b8wxGTLQtPq2qzjCe7k9/H+oANGCMoNoBJGFYkWShiZGj8bzRjhFDUSJhGxD94MRQqLCeUJcAkDCAoHPQcDCOoISwodDJINVQ4PD/8PEBBdDsMLxAlcCCYGmQLA/nf7MPgk9LXv3+vu6Jfm5uQ/5IjkLuXy5RTnrOhX6sTrHu207nDw2PGT8t3yQPPh80v0HPTD8wL0svTN9PnzPPON83T06fQt9YP2Mvkd/H3+6wAmBL4H1QpgDc0PFhLZEw0V3RUhFq4V2BT4E84S/hDbDg0NvguxCuYJcQkBCTwIYwfdBmsGiQV1BBUErwSGBfEFIQaQBjYHswfiB9kHoAdEB+oGiAbFBWQEwwJ+AcQAPACp/0//pv++ACsCcAN6BKkFVwdpCW4LJg27DmkQGhKDE5IUdRVeFlUXNxjEGMEYNBh4F/MWphZUFvQVyRUQFr8WhBcTGGkY4RjWGRgb/RsxHCQcXRyeHDUcBRuxGbsYCRhMF4AWthXZFNsT2xLpEeYQ3Q8qDwwPVw+kD7QPkQ9gD0cPQQ8gD8gOZg4jDs4NDw3jC5cKSQnjB24GCQWeAxECmQB//4j+UP0U/HT7Wvv5+gf6IvmW+Lz3OPbO9Ej0FfQx877xp/D077zuteyj6gbpceeF5ZPj6OE64F/ex9zA28naX9ne1+fWO9YI1TTTh9Fo0EnPos3Oy1TK3Mi5xiXE7cHzv0+9K7pVuC25KbxgwFTG2M7d2ATiMekn7570ZPmk/WUCHAjODWwSDhYiGTcbhBsyGk0YkRbjFNUSPhBcDcEKIQm6CBMJkwk+CoQLZw1LD4UQ6BC8EJUQ3hA1EX4QYw4zDEwL2gq2CHwEIwAB/fD5kfXC8F3tlus76ujoSOhs6JfosOh16QnriOxq7VLu8e/i8TvzvPMN9N30KvY491H3rPZL9qn2+PZK9hb1wfSy9fL2zffA+Gv6kvy2/tsAJQNaBXQH/QkjDR4QJRJyE68UyhU+FhUWuRU+FXwUkROeEmERwg9YDrUNew3tDAIMPQuyCgAKKgmqCLsILQnZCb8KoAsmDG8M7AydDfMNlA3ZDDkMnwuuCnEJbAgGCBsIRwhoCLcIcAmBCqELmQxqDTAO9A6wD3QQahGyEjwU0xVKF5AYkhkuGlMaIBq0Gf8Y7xe5FrsVJxXfFLoUwBT3FDMVOhX2FHgU5hNxEzMTGRMOEzsT3xPhFM0VYBbHFjUXgBddF9cWORakFfQUAhTqEu0RNBG6EGIQCxCOD8EOkw0kDKUKNgnrB+wGTwb0BaQFSAXTBB8EJwM1AnsBrABo/+79wfy0+yr6QPjN9g72OvXT82ryffGK8AXvce2I7PLr3+qL6dTop+gT6NzmxuUd5UPk5OKT4bfg4d/A3sTdKd033FTaB9gj1l7UxNFHzufKLciPxZjC5791vlm+C79twKrCL8Xhxq3HBckpzM3QMdba3NDlbPA1+jwBzgVkCZwM6w7KD7cP6Q8hEdoSuBMVE8YRFxErEekQjA+mDV0MDwwKDI8LtApXCksLdA3DDzkRChI3E+IUshV5FPUR3g+NDtMMHQphB3QFzAOTAfb+b/zB+a/26vMy8hTxue+F7qTuFPB48fHxG/Le8h70BfUf9av0RvRg9NL0+vSF9AH0NvQC9Yj1Y/UT9Rv1ZPW39Rz2oPY890T4Mfq7/PT+mQCAAj0FFwgPCkkLngw/Do8PHBAYEPwPORD4EM8R/xFoEb4QfhAnEBEPlA2uDMQMXg3qDTUOZg7WDtUPKBEOEjESNhLfEtkTDxQ5E00SRBLvEmMTNRPlEhcTvxMtFM0TzxL6EdwRRhK3EiET/hOGFTkXVRiqGKYYrxjBGJoYFxhMF3EWwhVGFa4UthODEnsRsBDLD4YOGw3zCzwL0Qp7Ci4KDQpNCvMKuQtMDLAMJA2/DVEOtg4MD3UP8Q9kELMQshBAEIgP4A5XDqINlQxrC3IKlgmYCIUHrgZDBhgG1wVfBdQEaAQKBHwDwQI5AhsCCAKCAaMA5/9A/xb+SPx++i/5+fdX9on0EvPY8Vrwke7z7LXrnuqK6YjokOeU5rnlGOVm5GfjdeIO4uzhVeE54ETfod6N3XTb5tjC1gDV49I+0NLNJ8y/yr3IE8Z3w1DBSr9Dvd+77LuBvUDAMMSeySbQr9Z53MbhEOcd7Fzw+PMI+Fz9bQPCCHAM8Q4/EVgTNRRRE54RfRAAEPUOowzvCU8IGAhSCD8IQggKCW0KlAscDHUMQg2uDncQSBLnE18V6RaIGL8Z/Rk+GfUXZhZdFKQRZQ4ZCz4IBgYWBL4Byv7q++35mfj99tj0/vI+8mTyqPK88gPz5/Nd9fP2Lfjb+EL51vmn+kj7T/vS+kD62/mR+Sn5i/jd92/3S/f+9iD2EvWs9Cj17vWX9ov3NvlL+079S/+GAdMD+QUzCKsK1AwbDvEORxAeEnwT8RMqFNAUkhW0FRYVRRS6E2oTABNVErQRmREuEhYT8hPNFNcV6RbKF6cY6Bl1G+AcIx6oH3Eh1iKDIw8k/SS9JV4l9SN4IlQh7R/SHZ0bFRoNGacXlBVkE6YRMBCMDrQMFwv5CSQJSAiCBzsHigcECEMIWwiJCK8IgAgNCMEHvwe0B1QHwwY9BrcFEQVjBN8DdgPgAvgB4ADO/9n+C/51/ST9Bv3z/M/8u/zx/GL9s/2r/YD9ef1+/U79B/38/CL9Ev2q/Cr8p/vh+tP54/g3+F73CPaf9LHzJPNv8m7xdvC77yfvle7t7RftKex46yLruurT6a3o1+dM54TmWOU65HPjv+Kx4S3gQN7325PZZ9dp1SzTldBYzjnNBc2/zN/L78q1yhXLQ8siy9DLds7R0nfXZ9vf3ofiXObV6Z/s++5c8fnzsfYZ+dT6//sw/dr+tgAAAlECDgLdAdUBdwF/AHP/NP8GAFsBigKpA1wF7Qe4Cr0Mtg1NDkYPmhC6EYYSlhNgFXYX5BgiGYIYsBf6FhwWpBSFEj0QVg7EDBULGwk4B9wF8QQABLICDwFn/xL+LP15/Kb7yfpg+qn6OPt0+1D7Q/uO+9X7nfvr+jr64vm7+XD5AfnF+On4Kfkp+fH40PjT+Lb4bPhZ+MT4d/ks+hD7b/wR/m3/XgBDAVcCfgOjBOwFawfoCDgKcQu7DCIOrA9cER0T0RRhFrsXrBglGXwZIBoYGxgcER1HHs8fUCFoIhUjgyPGI+gjCyRFJH8kqCTYJBklNiX4JIMkJyTdIz0jByJ2IOgebx3qG2kaKRk8GGQXaBY+FfsTrxJrEUQQMw8bDugMpQtzCnUJwAhDCM0HQgeeBs0FpAQwA80BxgAAADD/S/5o/YX8lvvC+jT6yfk0+WD4i/fy9pX2RPbd9XX1TPVz9ZT1WvX/9AP1X/Vt9d30K/Tb873zYfPZ8oryf/Js8jDy5fGU8S/xz/CP8E3w3+9z70rvOe/j7k/u2+2h7U/tt+wE7FnrourS6QjpS+h754bmiuWc5K3jquKS4Vng494W3dvaRdjV1WrUk9Tv1aDXGdk42tnawdog2rPZLdqp26jdlN874d/ixuTF5njo2+k264HsQO0+7QLtO+377eXu3e8P8W/ymfNQ9M30evV69pf3lfh/+ZX6AfzC/cP/+QFYBMAGFwlNCzoNtA7JD8oQ9BEfE+UTORSbFKMVMBdWGFgYgRepFgEW7RQhE1ERVBAMEKQPrQ55DX0MxgsRCzAKMwlOCJkH4wb9BQQFTAT1A9UD0gP7A0IEXAQkBMgDdwMUA4MC7gGMAUIByAAiAKL/gf+c/7L/of93/0b/Bf+Z/gL+gP19/Sf+P/9kAIABpgLOA84EoAVwBl0HcQjKCYULew1LD8cQIhKLE+YUAxbrFtgX8RgxGnkbqxzEHcsepB8MIPUf0h81IBgh5CFAIm8ivSLuIpYi0CEjIeAg0yCjIC0gfR+pHs8dBB05HFIbXBp0GYsYcBcoFvUUABQsE1ESahFtEDwP5A2lDJYLiQprCW4ImgeeBkwF+wMRA24CrAG6AM3/7P7s/cX8m/uL+p355fhZ+MT3/fYi9ln1lvS689Py+fEp8Vzwq+8T72XunO0C7cbsoOwm7GDruepm6jLqzeku6ZroVehU6DHomufB5izmCebj5UDlOuRY49niaeKK4Sfgxd793cLdZd1t3DjbU9p+2f/XutVv09fRJ9GG0QjTCtV+1kHXNtiP2R3aS9nD2IXaDt7/4Gzi0+N75pjps+vA7L3tK+/J8DnyNPN/83bzEvSu9Vb3+Pfl91H4nfn7+o/7Vfv4+kT7f/wE/uH+SP+nALMDCwfiCHIJgwrFDA4PShDbEL0RQBMfFQwXqRikGTkaBxsLHFMcSRu+GfwYJBkXGfEXGxa5FDsU7BPbEhARgQ/CDjkO8AzdCu4I3gd9By4HqAYVBrgFsAXKBZEFywToA4YDpQOZAwEDVAIxAokCuQJgArsBQQEmATIB/QBiALT/X/9e/y3/gf65/Yf9HP77/pD/xP8OAOUAKQI1A7UDMwR9BZEHhAm4CqkLNQ1yD58RLBNJFHkV8BZvGJoZXRoTGycckx3HHk4fVx9uH9AfPSBuIGMgTyBeIIUgdiDqHxEfhx6jHvge1h4tHoIdGB2XHLQbpxrdGWoZFhmsGBAYMBcmFjgVehSiE20SABGuD3wOMA3DC3IKYQlwCHYHXAYFBW4D1AGJAH3/Wv4P/eX7Bfs5+k75XviR99v2JfZz9cH06fPv8hrylfEm8YDwtO8K75LuEe5a7YXsxesw66bq8On36PDnLOe55kjmjeWt5A3kxONr46PinuHm4KTgXOCb35Lez91n3eHc5tux2pvZwtgy2PrX3NdS10/WddUY1YbUJ9PH0fHR5dM91s/X69he2gncMt2K3Xndud0Q39/hX+UK6G/p3eph7djvcvCy7yHwuvJu9Rf2cPW89Wv32PgT+T35rfr1/Iz+1P6g/ub+rP9uACQBZQJ9BMwGgwi9CUELOA3bDsQPrBBIEgAU2BQcFRIWARiyGTwaQhq2GkkbARvgGfMYwhihGMIXVBYZFT0UOxPIEV0Qgw8BDx4OmQz2CrcJwQi3B6EGygU4Bb4EYAQ7BB4EtQMaA7kCjQIGAvsAGgAPAIsAtwBUAOb/x/+9/2z/4f5v/j7+N/4m/uL9a/33/OL8WP0e/sj+Lf+b/20AewEzAmkCxgIJBP8FsQexCKcJUwt4DT4PYBBfEbISMxSAFX4WVRc/GGIZtBriG5Qc0xwGHXsdEB5rHmIeKB4YHlMeih5SHrcdUB1yHZsdFx0KHE4bPRtBG8Ma7xlBGcIYKxh0F8oWLRZ8Fc0UNBR2E0sS6BDNDxUPYg5nDUAMJwscCg0J9AfBBnIFMwQtAzQC9QCD/1D+kv32/B78Gfsp+k/5avh39432svXs9Ev0zPNA84HyrPHy8FTwsO/67j3uh+3n7Gjs7es+61fqg+kF6bPoJehJ53nm9+WG5cXkwuPm4mPi8+FE4WXgkd+/3rbditx824XaZtlD2K3XtdeR16TWXdWK1BjUbdPG0irT79Qp1+HYF9oh29PbE9yB3M/dxd/F4b/j+eUf6JXpheq7613tte507zDwRfEs8oDy5fIc9Ln1tvb99m73gvim+T36jvpU+778Pf5J/wgAMQEwA6EFxgdhCecKswyHDgMQShGvEiwUhRXKFjEYfBkwGm4a4Rq0GyAceBszGloZLxnrGNoXQBbyFD0UkBNCEmYQrg6bDfUMLgwGC7EJiQjCB1AH5gYwBk0FygTpBBgFngSeA/UCEANfAykDfgLvAbUBlAFTAfIAfwALAMD/rP99/8r+tP3s/Oj8S/1i/Rb9AP2V/XH+1/6o/p3+Yf/IACYCLQMiBFkFwAYeCF4JjAq/CyEN2A60EDQSJRP3Ey4VpBa4FzQYmhhoGXMaLBtZG0sbaxu7G+cbwxuGG4kbzBv3G8gbaBsfG+Yakxo2GggaABrZGX4ZLxkGGcIYMRiFFwQXmRYAFjoVjBQQFJsTBRNJEmoRWxAvDwsO9gzaC74KwgndCNIHgQYcBeUD2wLVAcoAzf/i/vb99vzp++v6HfqE+fb4RPh097H2BfZK9W/0o/MQ85nyBvJR8Zrw7+9C75fu+O1X7Z3s2+s066Hq7ukS6U/o0Odd557mmOWl5P/jb+Og4pXhmeDV3xrfK94S3QrcMNt+2uDZQtmP2NjXcdeW1+7X2tdP1xLXxdcK2RTa2tof3DjeYOB94WLh+uBi4fXiHeUG53fo++nw67PtMu5v7dTsrO2b7zXxzfEU8vLyTPRR9Zr1pvVS9vL3DvrX+/j8y/3i/m4AJgKqA/AEZAaHCEYLvw0WD5EPdRBtEpEUnhW5FTgWwhdmGfMZhxkvGXgZ4hm1GcoYlhesFjoW3RX8FG0TvBGdECQQtw/GDnMNWwzLC1ULUgrLCJsHbAfWB8QHxQaEBdsEzgTBBGIE9QPPA+IDywM0AyYCHgHBADEBwgGqAecAMgABAO3/X/+M/kH+2/65//z/iP8Z/1P/GQDaAFcB4QHTAhcESQUpBtQGngfICDgKkQuNDGsNqg5hEAgSHhPCE3YUYBUsFqAW/BalF6oYshldGowacxplGnoaiRpoGjwaSxqSGrEaaRrkGXoZUBlEGSwZ/BjEGJcYZhgBGFEXkRYkFhgWDharFf4UUhS4E/4SCRL6EAkQSA+WDr0NnAxaC0sKkQnhCNYHcAYNBegD4wLGAZwAn//t/mL+sP2k/GH7UPqp+S35d/h+95/2D/aU9d309PMo85nyHfJ28ZHwke+x7h3usO0V7RvsAOsu6rPpMuld6FznkOYK5nLleeQ84yLiXeG94PHf4N6z3bjcE9yK27jajdmJ2DPYVtgr2GfXqNak1iPXUNfv1szWytfX2f/bad0M3m/eAd+230vg3OAD4i/k6uYL6dXpqumg6Vbqf+t87DLtFe5x79/wlfFl8Rbxt/F583v1z/aC92T47/m3+wT9xv2r/lcArwLpBGMGWwe7CAULlg1HD+UPfBD2Ed4TAxUkFUAVKxZ4FyMY3hdNFxwXSBdKF7MWixVPFHoTDBOJEogRMxAUD2kO2A3tDK0LqApQCmMKGgoOCbQH1QacBnwGAQZpBTIFXgVrBf0EOQSMAzQDIgMSA8YCQQLMAaUBrAF4AecAUQAYACcAGADB/23/d//N/wwABwABAE0A6wCfAUcC+QLDA5IEWAUoBhIHEggsCXYK4gswDT8OPw9pEKIRnRJZEx4UEBX5FaUWKRe7F2oYFBmWGeUZFhpHGoAamxpvGhUa3RnmGfcZzRl2GTMZHhkLGcMYSBjQF5kXohegF0sXsBYbFrQVURXDFCYUuBN4EyQTfxJ+EUYQEw8cDl0NlAyWC4sKpQnACJQHKQbcBOYDHwNIAksBMgAP/wP+KP1g/Hf7hvrP+Uv5n/ib94/20fVS9cv0HPRV84LytPEG8XHwte/A7t/tWe337EDsNOtL6srpYumg6ILna+ap5SLlgeSY45Diq+H44DjgI9/G3Yrc39vM29TbY9tt2m7ZyNgw2DPXJtYS1n3XptlH2+bbAtwt3HjcxNwf3dLdJ98i4Unj1+Rz5a/laOaw58XoLulw6UnquOsT7ejtau4A78zvoPBC8bnxZ/K18471VveI+D357fne+g78ev0n/wkBAQP3BMsGQQhOCUsKngsyDZwOtQ++ENsR2xKUExwUkRTVFMkUjBRPFBYUxhNdE+sSchLYEQURABD2DiEOmw01DboMJgyPC/EKOgqCCe4IfwgVCK0HZQcrB9AGWwYYBiMGMwb1BXMF5gRrBPkDngNvA3ADhAOMA2sDAwNUAqEBOQE4AXcBugHnAQUCLAJYAnICeAKlAkIDTARgBR4GjgYBB7AHiwhxCV0KaAuvDB0Obg9cEPgQnRF/EmwTFhSFFAsV2hXFFocXAhhJGIYY1BgkGUUZKhkRGTsZiRmeGV0ZGBkYGTcZJBnLGGcYKhgRGP0X0xePF0YXDhfdFosWEBadFV4VNxXmFFQUjxOoEqoRuhD4D1EPoQ7oDTANUQwXC5UJKQgMByIGRwV7BL4D6gLiAbwAmf+H/pT9zPwY/Ef7V/p6+cL4Bfg294b2DvaJ9aj0j/Ob8uXxNPFw8LPvEe937s/tC+0e7Afr9+ku6aDo/+cf5zDmceXN5PLjs+I+4ebf3t4V3lvdntz123fbAts22trYLNfL1UPVktU01rXWKdfm19PYUtke2eTYmdlV2zPdZt4R3+LfO+Hl4mjkd+U45hrnW+il6XTq7OrX65jteO9p8EHw2u8S8AbxPvJl85z0L/YM+Jn5Pvo9+o/60/ur/Wb/8AC8AuUEBQeyCN8JxgqoC8wMPA6kD8UQ3hFDE6EUMRXPFD0ULxR9FJAUSRQEFO4TwhMhE/oRnhCCD98OdQ7VDesMDgyICykLkAqwCdkIVAgNCK8HAgc2BsgF8gVVBk4GuwUdBd8EzARyBNcDewOxAy0EXwQIBGUD4AKpApgCbwIuAhgCXwLeAj0DRgMfAxgDWwO9A+wD6wMhBPEEKAY8B/gHrginCbEKdQv+C60MtQ36DkYQdBFtEj8TFRQJFfQVrBZKFwkY5BiaGQoaVhqhGukaHhtAG0cbMxshGzQbTxsxG8kaUhr3GZoZHRmcGFsYXhhuGFEY9Rd6Fw8XzhacFkoW1xVuFRkVphT3E0ATwBJmEuARAxHkD6kObg1EDDgLOgo4CTsIRAcyBuoEkANYAkEBIwAB//j9//z8+wL7R/q6+Q/5Rfif9y33m/a79c70HfSS8/XyUPK88STxavCn7/DuJu4o7SPsWeu56v7pD+kV6B/nGeb85N3jxOKt4bPg+d9m36nend123HbbgdpV2Q/YJdfa1t3Wo9YW1o7VO9Xr1HnUFNQO1HzUa9UG10nZt9uw3QLfz98H4IXfvd7L3n3gluMh507qwOw97p3u/+3u7C/scez57Wbw5/LX9CT2Bfd993L3LPdQ91L4H/pg/MH+5QB6AocDWQQZBb8FlwZQCBwLLQ6FEPIR0hJMEz4T4xLREkcTCxThFLEVORYaFmYVlhTWE9YSZBHZD6IOyw0dDXwM4wtJC6UK8QkKCdIHjAa4BX8FegVJBQMF4QTKBHIEzwMdA4kCLwIuAn4C1wLnArICYgLhAfUAyP/m/rP+DP+J//H/LQAzAPz/mP8s/+H+6v5m/zIABQG+AYQCgwO1BPIFHwc5CEEJTApfC2EMOw0ZDjsPpBAWEmwTvxQXFjgX9BdcGKEY5Rg+GcoZiBpCG9QbURzSHEgdiR2mHdEdIR51Hpgedh4sHu0d3x37HSwech7gHmcfvx+fHwgfNh5lHa0cBBxeG8gaXRoiGuEZThlRGA8XrBUeFHAS3xCyD+QOOA58DZAMWwviCWcIJQcQBvkE5QP0AggC4gCL/1r+c/2h/Mf7Bvtm+pn5c/gw9wP2w/RW8wLyD/FM8Gjvd+6t7d3suutg6jHpMOgP587lueTS47PiPOHY39reFd453UncX9tX2gjZmddS1irVAtQF02bSyNF70HLOgsxPy6vKP8pUylTLx8y8zQzOVM7kzn/PNtCJ0XTTbdV+13XaWd7Y4fnjQ+WJ5nTnZOf85rLnGuqK7RLx8fOg9ST2HPbs9Vr1hPSD9Cr2v/jo+mz8Fv4tAA4CNgPnA6IEoQUJB/4IVwulDagPbxHtEtAT9RPYEzEURRWgFpAXyxd8F90W4hVeFGkShxA+D5kOIQ5gDWUMjAveCu8JdgjCBl0FdQTdA3ADPANBA24DvAMbBEIE9wN4AzwDSAMiA6wCaQKyAhcD+gJnAtgBZgHOABwAsf+m/6r/iP9k/0j///6E/j3+kv59/7AADwKeAz8FqQavB3IIRglyCgMMzg2qD5ARjxOBFRMXJxj7GNwZxBp+GwocpBxfHfodQh5ZHoUe1B4XH0Efbh+oH8sftR+GH3MfjB+wH8Yf3R8MIEcgdiCgIOUgTSGoIcIhkCEsIaQgAyB5HzMfHB/tHoQe7h0lHQgctBp/GY4YqxekFnoVKhSdEvEQeA9IDjENJAxLC5gKuAmRCG0HdwZ6BVQEOQNKAlkBWACA/9f+Cv7u/MX7svpy+dv3PvbU9GHzw/FL8Cnv9+1k7NXqtumm6AnnCuVU4wbir+Ak36jdTNzY2kLZttc91sjUetNs0lDRws/JzcPL5skiyHHG2sSCw7TCecJVwtzBUcH7wDvAXL4BvKC6zrpcvJy/3cTqysrPBNNz1QzXIdej1vjX/9sn4eflUeq+7p3yPPWF9tX26/bS98n5nvtX/Mj8Nf4mABcB1ACtAHwB6wKCBEYGMQgFCr8Lag2TDroOUw6oDmwQARNmFWUXahlmG4scKhx0GkoYfxZXFW4UNROuEZYQTBD4D3UO1Qs/CT8HNwWuAi8Ae/6m/W/9r/0M/vf9ZP0Q/Wj90f23/bb9vv5/AKoBqgEwAeEAowBaAG0ACAHLAXsCMwOhAwIDYgHt/3f/n//e/4cA+AGuAwMFFAYtBy8IHwmRCsAM9w6XEA8SCxRHFhQYfxkdGwodwh7jH4Qg5yA6IaMhICKBIqMiqyK+IrkiXSK6ITAhGCFuIechOyJUIj4i+yF6Ic0gOSAaIJ4gkyFvItIiyCKQIh8iOiELIB8frR5PHq8d/BxyHOEbGBtRGr8ZJhlFGEYXaRaWFbQUARS8E8ITzxPLE5gTAhMXEjERehDFDwoPhg4rDoUNXwwNC9IJgwgDB5YFcQRWA/8BdwDR/uv81/r5+Hb39fVC9Lryl/Fn8L7u8eyC60vq2ug557DlI+Rt4tLgf9/+3fHb29lT2ObWvtQW0v7PtM5bzWLLNMldx8bFA8Trwbm/y70+vMu6SLkQuGS3zLb2tZu1M7aGtju1aLM4s4e0srVQt/W758MxzKbS0Nc93AXfIOBT4dnjW+fg6zvysvm5/x8DSQVvB80IoggSCIwIkQm/CUkJrgkmCzMMWQw+DcwPERIaEmcRrhJrFe8W9BaiF1YZGRp2GTIZ8BmLGuoaFxxpHckcDRr2Fv4TJBDDC20IQQYtBGkC3gGWAcT/3/zi+rz5hPcZ9J7xN/HV8X7ylvNF9bz2qfen+LD51fkv+Ur5yPoo/Af8Ofs7++H7DvzJ+wL86fwD/jP/XwDVAEUAyv95ANwBEAOXBHEHNwuqDnsRGxRvFj4YIhqcHPYeWiBYIfwi/SRQJucmoyfoKDEq3yqqKq8pjSjyJ7knKCc2JsklQCbFJoom+CXtJYQmMSeZJ8MnqycqJ1EmciXLJE4k8yMAJJskJyWzJC0jfCEuIMYe1Bz0GuwZhxkRGW0Y5hd5F/8WrBajFokWGxa8FcYV5BWhFSsVBBVKFbcVBhb8FWUVZBRLEyASnhDYDlENSQxjCx0KdAi+BiMFiAPeAT4AuP4u/Yv71/ka+E32dvTB8lzxQ/A47+DtDewJ6kbos+bP5InikOAx36/dT9uF2DjWW9Q/0vnPJc6yzATLDMk3x4LFjcOCwd+/nr5kvUG8fLvwulm6tLnVuIa3abZWtqO26bWJtEC0+LTxtHm0PrY7u6XBbcgE0EvXx9vK3TjgnePe5V3nl+t383373gChBF4Iigs8Db8Neg1nDEYLSgsxDG4Mngt1C30NuhCDEssRdxDJEEwS+BKYEucSkBR3Fr4XVRjlF4AWzhURF6sYTRiNFoQV0xRSEsgNGAlMBUwCgwAhAJb/o/2p+0v7MfsL+Y31afMq8//yJ/LE8Yvy//Pt9W/4pfpm+yj7ZPsW/Nb7h/rl+f/6wfzi/Yj+Of/H/xwA1QAFAs8CFAP+AwgG9wfMCGwJJAvYDcEQuBO7FnUZ5BtmHqYgwyEMIukitCQ7JsgmBCd+J+gnFChSKJMohSh1KMEo0yjaJ08mWSUaJfokBSWnJYomECdcJ7cnsif7JkUmOCZTJswl4SQuJJIjrCK3IQUhXSCEH7weFh4HHVgbrhmVGNQXHxerFqMWvxbOFvAWIBcaF+8WDhd/F7sXhRctF+AWYhabFeMUdhQgFKwTKROYErARRRCeDiIN2QuZCl4JPgg5BzMGBgWJA8sBMgD8/s79LfxO+q/4HvcD9YbycvDf7iHt+OrS6MfmdeTm4Ynfat1A20HZyNdm1mrUJ9KC0GHP183TyzXKJ8m8x5nFjMMZwq7AAb/NvYK9Rb02vMO6yrk8uVC4mbZ+tPmykrJdsvqw8a6xrlWxYbXFuZK/W8d4z0TWmts9367gheG85J7qn/DK9dL7GgMLCYELVwudCkoKNArvCTkJUgjUBwIIqwipCdAK3wsVDewOwRAmESYQvQ8zEZkTeBV1FukWKBdeFwcXTRXhEvcRBRNjE/4QVA1zCnQHyALf/T77evqA+ZT4V/nV+lD62fdF9mX25/XF80nyN/Md9Qv2efaF96P4C/lY+fL5z/mI+Kn3GvhM+Ar3A/Yc92T5+vo1/ED+ZQCMAa4CKAXvB4IJ/Ao8DisSLRSGFPkVWxmjHHYevR9lIdoiUiPxIjQieyFsIW4iySNYJBokFSSpJB0l/CTiJI0l3SYgKPEoZymlKbgp0ykpKnkqSSrAKZUpyilfKcwnBiYlJcYk3iOAIoQh+CAlIOkezR3wHCgcwhsXHLIc0hyKHGkcYhwRHK0bphvKG7AbaxsiG4wahxmsGHgYkhhbGNQXTRetFq0VbhRdE6gSMBLVEZIRRxG+EPEPGQ9gDqANnwxnCxoKrAgEBxwF7AKKAGL+tPwF+6v4+PW186fx6u6k6/voK+c/5fTiDOGo3+bdhttg2dTXP9Zd1MbSp9FA0C7OJMyzymnJtcfcxWjEKMN5wUm/Or2qu1y6HLkvuLO3AreWtS+04rMJtMqyYLCVry6xyLFcr8KtZLFduGS+c8TszffYA+Ff5qnrK+/B7rLu8fMR+yn+m/9UBUENeRDGDpgNMA6HDWAL+gnoCLoGdwWQB8oKkQv/Ct4MMBFQFK4UghTaFfYXVRndGfQZJBkoFzAVHxSUEgAPDwvsCQILDgpaBUcArf2H+yz3VvJs8C/xEvLl8iL16/fc+Dr4R/gl+dv4Sfd49jD3JPiD+KX4Zvhb92n2sfY992D24PTx9Hn2MPeN9qP2r/iE+xn+CwG3BD0ITwvdDv8STxZjGKYasR0TINYgECHhIdEiYCMBJLMkpST1I8ojDySDI0UiCiJSI68kSSXWJcomqCdIKCspTSpKK2Ys8S0nLwEvyy2QLGQrwSn4J8gmESYZJcwjjSIwIWgfrB2iHA4cWxuhGkkaHhq6GVQZXxnHGUQa3hqNG+gbuBtEG84aTxraGY8ZNBmHGMAXJRd+FpYV2RTSFFEVyRUPFjoWMxbtFZAVQhX+FM8U0hTjFKsUChQbE+IRTBBrDnkMgQpACJoF7gKHABD+Kvth+JP2dPXX84Lxc+8J7lrs8em7517mMuWX4+/hZuBL3oLbFNlC193Uq9FBzyfOX8y9yEXF48MUw5vAUb1gu3u6z7hXtoW0prPyskmyFLIgssGxuLCVr0OvyK96rzetJqs/rGCvMLG8stq4XMRO0CDZEuCs5iTsAPDI8mL0X/Vw+Kb+igT/BvgHewp8DYAO5g0cDecLPQpsCXoJyQjABwsJAg2cEBASDRNDFb0XChmdGcEaaxwxHS4cDhrrF40V8xGrDdAK4QmhCI8FVQLZAMD/i/zd97n0BPS384Py3fFe8yD2L/g0+Uj6l/vi+476pfhH91L2OvUz9LnzsPOR8/ny6PH/8C7xbPJu88bz6fSx9336xPv3/CgAigQiCCsL3A6kEmkV1Re+GiAdOx5pH3QhlSJ3IbQfDB/LHgge6h1gHychIyI3I/okEiahJSElKSYQKGopLSoiK2MsaS3RLYEtuSwaLOcraCv2KfcnTCYFJZ4jGSLhIAUgLx89Hl4duRxWHEgcnhxGHQgech4lHlIdkxwNHFMbZRoDGmoauRowGjMZXRhjF/YVmxToE5UTLBPyEkUT3BNFFKAUTRVUFm0XSBi6GNEY1RjGGEMYIxfJFX0UABMxEWEPuQ3eC7MJpgfeBdgDVQHv/if9bvsg+dT2dvWr9E3zX/H17yjv2+2x66/pYejm5qzkYeJj4NjdUtrX1iPUYNHMzWrKb8gwxyjFV8ITwOm+Fr7dvD27qLmvuHC4IbgNt9a1nrUMtuu1WLX/tCu0IbKMsNmwr7B2rRyq16sHsrG3RrxUxCLRwt0F5vrqRu9q8+P2vfk2/ND+UQJyBqoJYAuIDF4NOQ25DCkNhw2fC0wI9AZyCP8J2wnhCTcM4A8/EqoSNhPMFZUZQhxMHQseeR62HHAY/BO0EDINvAhcBVYEeAN/AKv8UfoJ+ev2GvRY8hnyT/Jq8uPy+vNL9Yj2r/eo+C/5Kfmp+NL35vZD9tH17PRI85rxoPDY72fuCu2s7YDwgPOa9SD4+PuP/3MBCQMzBjwKeQ1XEB8UIhjAGh8clx0/H0EguSA/IYwhJCGFIDYgzx8XH+Qe0h8mIS0iVSMMJcYmEiiAKYoroy0TL+ovdjCXMAgw8i6zLZMssSviKrgpASj/Jf0j7iHTHxYeDx2cHH8chxx5HCUc0RvpG0ccbhxnHKQcFR0oHbIcChxPG1caSBlvGKYXoBaMFcEUHRRaE7YSiRKrEtwSVxNHFDcVuRUiFgIXLBj6GD0ZShlCGdYYwBcsFooUIBPaEX0Q+g5vDdUL7QmhB0oFUwOrAfn/S/4S/UX8Ofuv+VD4h/ek9v30IvPH8VLw5e0f6x7pX+ek5Ezhw97K3MnZ4dUR08DR58+0zArKEsn5xxfF3cFUwJ6/0b1zu0+6J7pGuau33rYBt4C2vrQTs6SydrK9sKOtQquFqrup36dipxirDbK7uY3Crc122Ebfk+M76SHvKvGC8KLyRfhy/Af9jP2JAPIDggXyBbcG2wfkCJsJwwm1CXgKUAxVDi8QjRJQFVsXtxjtGoge8iGVI9kjGiRCJIEi0B0FGPYTyBEAD8QKdgeuBmUGUASAASoA3//D/gz9Rvxg/AP8F/vB+kD7lPsj+1f6tPkq+U74yPao9JTyM/FI8NHubuwg6grp9+jb6Ljo5+kN7Qfxj/TX93D77/7MAaEE+gcECxYNEg+vEdATYhRxFIEVIBchGNcY/Rn4Ggcb5hpzGyAcXxwjHW0fjiJCJXUn2CmmLIgvDDLJM9Q03zX3Ngg3dDVhMwEyujCPLj4sAitTKtso1CaIJfQkAySvIgkiXSLLIsEiiCJpIjQiuyEIITIgdB/oHkceHR1yG7cZ+Rf/FfUTURIcEQkQJw+5Do0OPA7rDRsO3w7aD90Q8xEHE+wTkBT3FBkVARXDFE0UcRMwEqwQ8g4lDYULLQrXCGAHGwZPBaYEngNyAtsB9QHsATMBOgCD/7v+Vf2e+zH63/gh9x/1U/N18QHvVewo6iDoYuU64q/fmN3N2n3XSNVQ1LDSzs+3zY7NKM2IymPHM8bpxQbEIsGhvzq/vb1TuxW63blBuM209rEvsY2wia3OqH+lCqVkpd+kz6W8q9i1FsAEyTPSKtv64J/jiOaf6h3td+0D7xLze/bc9i32I/ed+QH8lf2i/hEA7AK7BnUJfgocDBAQuBShFyUZXhusHqshwyPLJR8okikBKfgmlSRaIfUbYBW/EAkPdQ0ZCk4Hsgd4CS8JPQe1BgYI3AheCOoH7wdoByYG5QRwA/YA+f2d+6b5F/ci9LfxvO957S7rlelN6KTmSuV55eHmLOhk6ffrKPBL9D/3zPnE/IL/PgGJAiEEnQWHBnoHzgiYCUYJDQkoCtoL9gwCDjAQLRO8FaUXoRnxG2IeFCE0JHEnaCo1LfovbjJONJc1NzY9Nhs2ADZGNWwzSDEIMGkvVi7oLEwsviwoLdQsTiwwLEMsKSzvK78rdyvUKrcpIyg1JgwkuCFuH5kdTRz0GhYZIxe4FZEUCRNoEZMQrxD9EAQR9BDpEM0QtRDdEDARZhGDEawRshExEQoQlA4+DTYMUgtKCgoJwQerBtIFFQVcBLoDYAN3A8IDwQM9A6ECeQK3Ar0CFwIDAfD/xv7//HD6pPc29SzzQfFo76Pt0+sD6o7oducr5mLkvOLV4SPhid/13JvaGNmW1zXVdtJZ0JDOCszUyAjG18Ngwae+4rw9vBa7oLhutui1obVYs8GvzK3Zrbms2ahHpVSlnac6qWuro7FRu5jEc8zE1AHdQOKC5MvmpOm36vbpB+qN64vsieww7fzuGfHg8+L3w/te/mMBcgaACyEO6g/dEyAZbBxpHbgePyEXI0kjWyNXJNskYiPZIPweVR0GGlIV5BH4EIwQwQ7wDFMNPA9MECgQeRC3EYUSGBIOEcEPxQ0TC0AIVwXRAc/9DvrB9n3zHPAA7XTqeegr57Lmx+YJ56DnAukO6/TsYe4I8IryOvX89tz3wvja+Xz6rvod+8z7KPxp/FP9j/4e/3H/HwFWBHgH1gmcDHcQJRSQFowYWhvOHgMi+yRBKKsrZy4lMEsxPDLiMvwyrDJvMoIygzL2MRExmzDSMCwxTDGhMakyDjT7NC41HjUyNSA1TjTAMhcxky+RLY0qHSctJLYhIR+THL8aoxmGGC0XCxZLFaAUABSwE6ITfhMxE8oSGhL9EMwP2Q7lDYkM6wpxCQMIPAYfBEICCAE1AGj/qP47/g7+zv2M/bX9U/70/mb/6/+CAJkA2/+v/p39nPw/+2v5Z/eM9dHz4PGo76jtX+yR66fqr+kk6ejoS+g853TmFeZY5ejjd+JV4aLf3twi2l3YrNbp09vQ4s5czZTK1cYOxKvCOMEev4e9F72kvBK77bgqt6y1sbNqsQOwuK8ir2OtEqwtrfyvjLLDtWy8Q8awz9zWMt1p47Tn+eiY6BHokOc250bnXOdw57fofOsZ7inw5PPp+UH/WAIpBr4MyxISFSQW3Rl/HrIf6x1YHd0ecx/xHdgcvh3lHm0eFR1NHKQb3RlKF3YV8RTQFHcUjxS0FTIX7RfrF+8X8RcrF3AVRhO/EG4NdAl0BYMBO/3q+GX1s/Ip8M3tXOzn69DrE+xS7Urv+fAg8lnzj/Th9E/08vMp9Cb0o/OB8xT0bfQq9GL02/Wg97P4x/n1+7z+vwAJAu4D7QYoCvMMxQ8wE9UW8hl+HAEftSFGJGomWShdKiwsOS1/LbktaC4YL0YveC+cMH0y8TOaNG81ATeJODc5aznYOTk61zmrOC03hjWTM3UxeC+zLfErByoBKAUmLCRTIl4glB5NHWgccBs+GhsZLxhZF4MWthXoFA8UOhNZEhIROw8pDTgLTgkkB8YEhQKUAOD+Wv0m/Ij7nfsk/MP8YP0R/r/+Hf/+/ov+7/0Z/dX7JvpZ+Kj2CfVo8wnyKfGM8MXv4u5A7rzt2+yz6+bqluot6nPp2OiQ6BboGucG5hTl1+MV4lDgyt7R3OvZ6Nak1ITSkM9RzCrKG8nPx+zFn8R3xG7EnsOLwt3B4cCavmm7cbinteGxTq0zqgeqaqvfrM+vbLaPv8DH9M3z01baSN/A4cDiNuMT46PieOIn4ifhXeDp4GXiLOQD547r2/BC9rD8HgQ0Cq0NtRASFaUY5xiNFxoYchqGG40aDRp/Gz8dgR3XHKMczxxpHHkb2Bq1Gn0aJBpxGrcbBB1kHTkddB3sHZQdEhwuGm4YfxYBFOQQGg3ECJMEDgG//ST6CPeJ9T/16/Rs9Ir0QfXB9fT1bfb99vT2ePY39vX13fQy8yPy7fGu8R7xE/H/8SzzEPQw9QL3C/nF+pv8Iv/uASsEAAZXCEcL5A24D4kRHhQAF0MZ7hrXHD8fjiFcIwUl+CYLKeAqbizwLXov1jDsMf8yTDSgNYw2GDfBN504FDnUOFY4FzjKN+I2hDVCNDozAzJxMN0uni1/LAUrISlPJ9IlQyRLImYgIh80HvMcbxs6GkQZAxhnFtsUdxPpER4QWA6bDKQKYwgeBgME9AHS/7/9H/wc+4D6CPrK+fH5U/qA+k/65vle+aH4nfdv9jv1AvSu8jnxzO+b7q3t4Owy7MrrsOum62zr/Opx6uvpbOnP6PbnBudC5pDlf+T+4oPhZuBW39/dJ9ye2k3Zvdeo1W7TntE30MTOKc3ly0bLsMp0yerH3sYSxl7Ei8HbvuC8TboytgWy3K9wr0Gv4q9os+i5KMH0xwTPUdYr3KffpuHa4s/ih+Hx34reDd2k2/naHtvQ22jdU+A35LboRe4F9b77bAGQBskLLhCNEmwTNRQJFfcUDBSFE/wTnhShFJsUbRW1FlgXNRdbF1UYaxnoGVUahBssHWkeIR/rH7sg1iAMIO8ewR0JHIYZrRbpEwQRwg1RCgQHEQSfAb3/Of4B/W38nvz3/On8x/wb/YL9Jv0r/Fn7sPpd+UH3QfXX84LyD/FJ8LLwqvGH8qHzePWg91r5xvqI/KX+ngBFAtcDfQUQB3cItAncCikM1w3VD+IR+BNSFuQYRRtRHWQfsyEGJCMmNShvKp0shi44MMgxGDMVNN80fjXKNbE1bzUhNbE0IzSiMz0z3jKLMlIyDzKmMTgx0DA0MEkvSC5VLTIsuyozKcYnTSanJPgiTyGOH8MdFxx0GpYYlxbJFBoTNREbDycNaQujCcYHGQbCBI4DSgIQAREANf8z/gP94vvl+tH5dfj79pL1IvSS8gTxtO+u7tTtKu247Hzsaex37JHsquy77K/sZOzL6/Pq1Old6LvmQeXk41vixeCe3+7eHN7u3Afc2NvH2xzbKdq42aHZ+9iV1yXWH9UI1F3SVNBuzrnM3cq7yI/Gj8SJwizAr72ru0K6G7lruEe5TLy6wKLFLMu80YPYDt674frjJuUM5aTjhOFW30bdT9vA2R7ZeNlo2vvb+N6t4zPpme4r9J76WAG5BikKpwzuDlAQ+w93DhcNWgy8C/8KugpsC8gMQA7dD+oRLxQhFqkXOhkFG5EcbR3WHU4e0x7PHv0d0BzAG60aMxlTF10VcxN1EWEPVQ1ZC28JwweHBqsF+QReBPIDvQOhA24D7wIwAnMBzgDh/1P+evz3+sH5SPiK9kv1+vQd9Uz18fV192L5CPt9/Df+AAAzAdQBgAJ3A0wEvAQhBe4FEwdGCHYJzwqGDKYOERGPEw0WthieG38eByFDI2AlSSfAKMgplyoqK2crhSvXK1csxiwuLdgtwC6LLxUwlTApMaMx1DHZMdAxlDHtMOkvyS6lLUcsoCoHKdEn2ybKJaIktCMFIzoiGyHJH2ge6xxFG4AZjRdrFT4TMxE1DxgNAQs6CcIHVQbmBKYDngKeAYoAdf9m/j799fur+mz5Gfig9iP1xvOG8k3xMPBT77/uae4+7iPu+e287X3tMO277CfsmesU633q0ekj6WboeOdx5pHlzuTh49DiBOKd4SbhSeBr3wbf095B3mbd2Nys3E3cYds72i3ZBthz1ozUodKw0HPO4MtKyfLGp8RLwnjAFsBLwX7DcManykfQPdZA2wnf/uEG5JDkb+Mt4X3eyNtM2UDX29VH1a7VO9cC2tbdX+Jt5xztTPNA+SH+0QHOBBoHEAh0BwUGqAR/A0ICIAHBAH8BJANWBfgHDwtuDrwRqxQnFzIZuRqmGx4cbRyVHFocuxsNG3carBl1GCYXJhZWFWMUWRONEggSdhG6EAkQgg/2DjgOWQ2MDNoLIwtHCksJWQh1B3AGIQWhAyMCpQD8/kT98Psz+9L6qfoA+xD8gf3b/iEAiwHlArgD+AP4A+QDlQMBA20CFgL/ASsCsgKoAwQFxQbuCG0LLQ4qEU8UZxc1GqQctx5NIEQhryG3IXghDyG+ILcg9CB9IY0iPCQ8JisoBCrWK18tUC6zLsIufi7FLaosbSsqKs0oTifPJYoknCP8IpAiXiJ3IsYiBSMDI8YiPCI6IasftB18Gw0ZgBYLFM0Rrg+yDQMMugqyCbsI0wcSB3QG0QUEBQcE9QLaAZ8AIv9p/ar7C/p0+Mv2L/Xe8/LyOPKG8fHwk/BZ8BPwue9g7wzvoe4h7qbtOu3T7GjsBeyy61Tr0eol6mLpnujW5/Pm6+Xm5BTkauOm4rLh3uCB4G3gQuAG4BXgbuCS4Drgnt/w3v/dndwD23jZ39cN1i7UeNK/0LjOj8zmyh3K/8lpyrjLYs4q0kLWHdrI3UXhHOTM5T3mt+V95MLixODH3gDdrtsY22LbkNyX3nPhDeVJ6fftwvJU93/7Ov9TAnAEdAWmBVIFfwQzA7oBjADq/+X/kwAPAkcEDAcxCpIN9BAEFIQWZxjFGZ4ayBo2GjAZEhjrFokV+xO+EhYSvRFeESkRgBFLEgITaRPJE0wUlhQ7FE8TQBIpEcYP+w0TDHMKJAnrB7oGugUKBYwEEwSlA2wDbQN2A24DgQPVA0MEhASdBL0E2QSqBBoEZQPIAjcCowEkAekAAQFhAQgC/QJDBM4FoAemCb4Lxg28D6cRZhPAFKMVKxZ1FnkWJhaVFQAVnxSFFLsUVRVzFgoY3hmvG2cdDB+LILsheSK5In0iyyGtIDMfeR2oG+QZVRgpF4AWRBY8FmEW0BaBFy8YohjXGM0YaRiRF0EWeRRPEvMPoA1uC2YJrQdWBksFcQTgA7ADsQOYA1ED8gJvAqYBogCf/7X+tv1s/OL6TPnF9032AfUV9InzHfOf8jbyJ/J18tLyCvMu81nzZvP88gXy2/D073TvQO817y7vAO+77rLu8u4U78fuU+4n7hzuzO1T7Urt1u1s7oDuKe7m7ent9e3E7WDt9eyS7CnstetF687qO+qN6cro6ufI5lfl1+OR4mThEuDu3uHeT+CI4srkJOfu6cDs1e7Z7/7veu+H7oftq+y664rqXOmC6Pfnr+fW55ro++nk6z/u0/BW86b1wveL+dH6kvv0+wf8tPsB+z/6wvmW+Zz53PmY+vD7rv2T/5cBtAOrBUMHkQi0CYIKxwqsCogKZwoaCqMJSgk6CWIJrQkLCmsKxQozC8MLVgzJDB8Naw2dDagNmg2FDVsNEw3EDHoMLQzWC4QLNAvVCnEKMQoRCtgJcgkZCQEJAwnmCL8IwwjmCPEI7AgECTIJQwkfCdkIZgi1B+MGKwaJBcwE/AODA+cDSwUkB7EI0QkZC9MMLg4TDpEMCAutCkMLrQuDC4ULVAxMDUoNUwyWC9ALbgydDGsMhww3DRkOtQ7yDg0POQ9eD1UPKg8JD+gOgw7KDQUNhgxkDHoMggxdDEIMhgwbDYANQw11DIoLBAsJCysL3AoxCtIJAwoqCrkJ5wg4CL4HTgflBnkG2wUnBdsEHAVYBfcEHgRpAx4D/gLCAnQCNwL7AZ0BMgHwAMkAfQARAMn/kf/z/uj9E/3v/Cv9Ov0W/Qv9Df3T/FT83/uu+5v7W/vm+pr6x/pH+5v7h/s8+/T6nPoM+mD59PgL+ZL5MvqG+mP67/l4+TL5GPkJ+fD4y/iR+Db4xPdg9yf3IfdH95D32ff89/73/vcA+N/3fffa9hn2cfUI9c/0l/Rc9EX0bvS59P70PPWU9RT2q/Y99573sfdu9+v2Ufa59SL1hvT485PzafNy86Lz7vNH9J30//R29QD2hvb19kb3d/eK93z3VPcf9+z2wvaf9on2lvbX9jn3oPcO+KL4Zfk1+u76i/se/J/88Pz7/Nb8s/yv/L/80Pzm/Bf9a/3a/V/+7v51//v/lABFAeoBWgKWArwC2ALbAq8CXgIRAuoB5gHvAQcCQAKcAgUDbwPfA1gE0AQ0BWoFbQVPBSEF7ASrBF8EGwT2A/kDEAQoBEUEhgT3BGsFvQX6BUUGnwbiBvMG3AayBoIGVAYoBv4F0wWuBZoFpAXJBf0FMgZlBpYGtwa0BpcGgQaRBrkG0gbHBq0Gpwa8BtUG2gbTBtcG6wb9Bv8G7QbPBqwGiwZzBmIGVwZPBkcGPgY6BkYGXQZ0BoUGiQZ2BlgGPgYwBiQGAgbHBX4FMgXuBLsElARvBEwEPgRMBGYEYAQsBPED2wPYA7ADYAMSA98CnwIyAqkBNgHwAMcArgCWAIMAgwCcAL0AyQCzAIIASwAcAPD/rv9Q//r+yP6n/mz+Ff7T/cn94f37/Q/+Jf44/i/+Dv7x/eD9yP2c/Wb9Lf3o/Jz8YPxD/Cn8+/vT+9D77fsI/BX8H/wq/C38H/z5+777gftM+xb70/qS+m76bvp9+oj6m/rA+u76DfsT+wj77/rM+pr6Yvoq+uz5p/lj+S75DPkE+Rf5P/lt+Zj5wfnk+fv5BfoI+v752fmd+VP5Afmq+GD4OPgr+CX4MPha+J743/gN+TP5Vvlq+W75aPli+Vb5Pfkh+Qf58PjW+Mb4zfjl+AP5JvlX+ZD5wvnv+R76UPpx+oH6ivqP+oT6bvpe+l76a/qA+p76xvr3+jD7bPuj+8778vsQ/CP8LPww/Dj8PPw2/C/8NPxH/Gn8lfzI/P38MP1g/Yz9sf3O/ef9A/4f/i/+MP4r/i7+N/5B/k7+Zf6L/rj+4/4J/yv/Tv9v/43/o/+v/7L/r/+q/6b/n/+X/5P/lv+j/7j/z//i/+z/8P/9/xQAJgArACYAIwAiABoACgD1/9n/vP+o/5z/lf+T/5P/lP+S/47/kP+Y/6D/nP+T/4z/g/9w/0//NP8n/x3/Bv/j/sf+t/6o/pL+f/55/n3+gP58/nP+Z/5W/kX+NP4d/v792/2//ar9l/2A/Wj9U/1I/Uf9SP1E/T39N/0z/S79If0J/ev80/zA/K78mvyH/Hj8Z/xR/ED8Ovw9/D78PfxD/FD8V/xW/FL8UfxR/Eb8MPwc/BP8D/wH/P37+vsF/BP8Hfwp/Dn8TfxZ/Fz8X/xn/G78a/xj/Fz8WPxS/Ev8SPxJ/EX8Qfw+/ED8RvxO/Fb8X/xn/HD8d/x6/Hj8dvx3/HX8cfxn/F/8V/xK/Dz8NPwz/DH8LPwk/CD8H/wd/Bz8Hvwg/B/8G/wW/BH8C/wE/P37+vv4+/T77/vo++L73PvX+9L7zfvM+9D71fvY+9z74fvk++j77Pvx+/r7/Pv5+/X79Pv6+//7/vv8+/37BfwP/Br8Ivww/D/8TvxW/Fr8Yvxu/Hv8hfyM/JD8lfyc/KT8rvy2/L78wvzJ/ND81/zi/Oz89/wC/Q39F/0i/S79Nf07/UH9SP1Q/Vb9Wf1c/V/9Yv1m/Wb9Zv1n/Wr9bv1z/XX9fP2F/Yz9kP2S/Zb9m/2e/Z79nv2e/Zz9mP2V/ZX9lf2X/Zn9m/2i/ab9qP2q/a39r/2w/bH9sv2z/bL9sf2y/bT9tP2y/bH9sf2w/bD9sv21/bf9uf27/b79v/2+/b39vP2+/b79vP26/bf9tv20/bL9sP2t/az9q/2q/ar9p/2n/af9qP2p/af9pv2k/aP9of2d/Zr9mP2X/Zb9lP2V/Zb9l/2X/Zj9l/2X/Zb9lf2V/ZX9lf2W/Zb9lv2W/ZX9lf2V/ZX9lf2V/ZT9lf2X/Zv9nv2h/aT9qf2u/bL9tf24/bv9v/3C/cT9xv3I/cr9zP3P/dP91v3Z/d394/3p/e798/34/f39Av4J/g7+E/4V/hj+G/4d/h7+IP4k/ib+Kf4p/in+LP4v/jH+Mv41/jj+PP4+/j7+Pv5B/kP+Rf5H/kn+TP5Q/lL+U/5V/lb+Wf5b/l7+Yf5i/mP+Zf5p/m3+c/52/nv+gP6E/on+kP6V/pr+n/6j/qj+rP6w/rX+uv7A/sX+zP7S/tj+3v7l/uz+8/75/v/+BP8K/xH/Fv8c/yL/J/8u/zT/Of89/0H/Rv9M/1L/V/9d/2P/af9v/3T/ef99/4H/h/+L/4//lP+Z/53/ov+l/6n/rv+z/7f/uv+//8T/x//K/83/0v/W/9r/3f/g/+T/6P/r/+//8v/2//n//f8AAAAABAAGAAkACgANAA8AEgAVABYAGQAZABwAHAAdAB4AHgAeABwAHAAcABwAHAAcABsAGgAaABgAFgAVABIAEAAPAAwACwAJAAYAAwAAAPz/+P/1//L/7v/p/+b/4v/e/9n/1f/R/87/y//I/8T/wP+7/7f/s/+v/6v/qP+k/6L/nf+a/5f/k/+P/4z/if+H/4X/gf9//3v/ev93/3T/cv9w/27/bP9r/2r/af9o/2b/Zv9m/2b/Z/9m/2X/ZP9j/2H/YP9h/2H/Yv9i/2H/Yv9i/2P/Y/9l/2f/af9r/23/bv9w/3L/c/92/3j/ev96/37/gf+F/4b/h/+K/43/kf+T/5X/lv+Y/5r/nP+e/6D/o/+l/6n/rP+v/7L/tf+4/7r/vP+//8L/w//F/8b/yP/L/8z/z//S/9X/1//Y/9n/2//c/97/4f/k/+f/6f/r/+3/7v/v//D/8v/1//f/+f/6//z//////wAA//8AAAAAAQACAAMABAAFAAYABwALAA0ADwAPAA8ADwAPAA8AEAAQABAAEQASABQAFgAZABwAHQAcABwAHgAgACEAIQAhACIAJAAnACkAKQAoACcAKAApACcAJgAkACQAJAAkACUAJwAnACYAJgAoAC0AMQA0ADUANAAyADIAMwA1ADYANAAyADMAOAA8AD4AQABDAEcASABJAEwAUgBUAFQAVgBdAGQAZwBpAG0AcwB3AHgAeAB6AHwAfAB+AIEAhgCLAJAAlQCbAKMAqwCxALIArgCqAKsAsQC2ALYAtAC0ALcAugC5ALcAtQCwAKkApQClAKQAngCYAKMAwADgAPsAHAFIAW0BcgFWASsB8wCgADoA5v+r/33/c//l/xcB5QLhBM8GqggvCrsKxQlWB+ID+f82/Fn57vfy9wn5+/qu/cUAiQNMBdAFGQVDA6gA8v3A+1363PlZ+tv7Dv5dAEwClgMHBIEDNgKjADT/Fv5k/Uf9zv3E/tX/xgB2AcEBlgEFATcAVv+J/gX+4/0S/nP+Cv/U/5oAFQE0AR4B7ACPAA0Anv9v/37/tf8aALEAQQGCAXUBWQFSAUUBHQH7AAoBPAFoAX8BkgGaAXUBEQGEAPz/nP97/5b/3/9HAMcATQG5AfoBDwL3Aa0BPwHXAJ0AkACjAN0AQQGpAeAB3AG7AXUB4wANAFL/Bv8i/2n/zf9zAFwBOgK2ArkCWgKcAX4AIP/O/dn8avyO/Fj9yv62ALgCawSFBdAFEwVCA7kAHP7s+2T6q/kF+pz7Jf71AHEDQwU2BhkG4gTQAj4Ag/0F+235SPmT+rv8Hf9iAVoDvQQ/BcUEaANjAST/N/0M/L77P/yE/V//TgHGApYD1AN/A3sCBAGx/9j+Tv7j/dD9Yf5z/54AtgG4AmgDaAO7As8B6ADs/8f+zP1f/YH9+v2+/vL/hAELAwIELASfA5YCTgHy/7T+8/0Z/kH/BwHTAkEENwWaBTEF7QMkAlYA1/6+/S79Xv1Z/s7/UQGjAqUDKwQGBEoDQwI+AVkApP81/yz/kv9WAEcBHAKpAvMCBwO+Au0BzgDx/6b/vP/w/0gA3ABxAcoBEAKPAgQDyQK2AWkAh/8U/8/+zf5V/0gAKwG+ASsCjwKwAk0CiAHGAEcA8f+L/xD/0/48/1EAjAFPApICwgL7AsACywGdAPf/4f/Y/7b/0f87AJ0A3wBoAUACpAIcAmUBewEUAgQCEgFaAKMASAFnAUABkgE8AnECHwIMAnoCrQIPAiUBwgDZALQAFQCJ/5b/HQCgANIA2wApAfUB6AJRA+UCIgKwAZMBTwG6ADQA+v/b/7v/5/+WAHYBBQItAicCCALIAYcBYwE2AegAxgAbAaUB3wHCAbUByQGyAXQBaQF9ATUBrQCzAHkB7gElAcD/CP85/4z/wf9vANIBTANRBAYFiwWEBbsEsAPoAjUCQQFeACsAnwAVAScB9ACeAA4AYv/9/gb/Lf82/1v/uP/D/+7+1P0F/lIAuANyBr8HGQj8B2AHYwadBUsF5QQBBPYCIAIhAcj/I/90ADcDVAWYBe4EtwTsBIAE8QK3AMj+Lf6Q/00CbgR5BBgDCAK/ARgBa/+4/Vb9W/7//9oB7AOyBSkG0AQ5Ap7/Fv7q/VH+Lf6J/eD9IgD8Ai0EYgNqAmwCaAJKAeP/jP/4/wAA8f8AAecC4ANnA/oCewO2A6gChAHjATYD0AOlA/0D6wQpBXsEIASYBKYERwM0AYj/Sf5C/RP9O/7s/wUBtQHzAtMEbQYLB38GuQQjAgkAef/z/04AowDwAf0DSwVEBdQEWQTfAkMASf4N/vz9hPx4+xL+5gOsCI4JHwj0BtcFYwNtACf/oP/N//7+8P7xAN4DzgU8BooF0gN3Acz/uv9fAGIALgCPAf8EsAh4CpcJcAa+Ac38kfl1+TP8dwAeBUQJrQteC74IQwXUAWD+LftS+Tz5+vn0+jr9qAGoBrUJwQquC10MCQq+A8X8qfgS9yz2N/fa/IwFygugDKAK7wj2BjADVv8n/t3+W/5j/AP8of78AQIEnwUHCJEJqgekAn79qPqf+tX8GQCMAk8DEQS9BqYJdQgKAvj6ifjy+nj+EQHxA8wHnQpbCsIHzgTbATj+gPp2+Kr4DfoF/DX/yQOACOwLjA0KDRQKzgWnAlQBu/93/Nz5xfrC/Qn/sf7iAPIGlAzsDaAMrQtsCWQCQ/gM8bPv8/G89bb7GQP3B5kIrAhmC6oNhApPAzn+Vv1x/KL4TvUl96j9hgRCCVAM9g0vDacJ0wSBAIP9tftw+ib5T/hR+ab8yAD4Ax8GsAe7B1AFQQK3AYQDnwOy/9P6uPnH/GIAPAKkA2IGjQmmCnYIBARq/yf8H/oh+BP2/vWc+ST/1QIXBJ0G5QymE+MUZA45A/P34O9H7dLwF/gx/+AEGAtbEs4WLRRCCyABaPm98xPv+uwf8G/4TQLACa0Nrw8lEQ8RJg38BIn7FfWU81b1gfeA+Vb9eAT/DLQS8hKJDgAIJwEN+9z2MPVU9ar2Avqo//0EBgcgB7sJAg/LEHgK7P/h+Fb3/vYh9U70lPc4/poF+AurD+kOeQoFBnwDgADE+sT0K/MI91r9PQOqB/MJ0gmlCPYH4AatA53/3f15/vL9DvuN+b78JgK7BLUD5wLOBI8HGwi2BY4B+vyN+Wf5Z/1QAy8HCQe0BLsDdwV9B2MGGwKG/rL+sQAGAOH7X/jR+Jf7z/2pAEUH6g+oE1MOHgTi/IL7g/zy+/35nvn2/JIDdQp7DZQKjAT3AO4BeAOqAOr5HPSz8hn1k/me/7wGRQ2qEXMTNRJaDe8Fqv7u+Mvzce9V7yL26QBiCW4MxAvSCVsHJAUdBIsC5fyw84Htv+/B98n+SANnCWESjxhzFvANSgVw/7L6tPWl8WzvOO4s7hXyPfxGCukVFBrdFkoQfQnVAcn3vu1H6W7sbvLn9Z/4EAGfEAYgxCb7IqEYxwv+/bjvGuID2LnV9t1o7uoAJhGxHuUoBixNJWEXzAeN+STtV+Tc4aDl2uzQ9ScAmgk/DlQNYwoXCDkFxADL/S4ASweTDlEShBF5DF8EfPtk88rrNuXA46/rgPuFDLMZliIRJ3EkXBmuCSr7zu+C5hTgnt/Q5U/vP/l8BDASSx95JuslPiC6F7UL7Pvh653gHtwY3VbiOOzU+mQM0R2FK+cx3C6cI9gTjALh8Gjg1tQD0sDYNeYi9o0FqhNDIGIpaCuQJGAXUAi3+dzrROAl2o/bTeQs84sFvRXtHSceLBx4G7kYnA+qAR/0pOk84l/fhOO/7db5DQW4D6wZWSB2IUMdHxXqCfP8MfE36hbqEfDB+C8A3wQWCGMKaAleA4H7/Pc3+9kBtAcJDBYQchOFE/4NMQOf9vDshOg76JfquPAN/AEK/RT5GYEa1xjXFJMNfQMI+F/tkOe96gf2bAJJCX4KPQq9CsEKzginBBX+U/Xf7FroOulF7uT1n/6lBToIegfjB4sLLQ/YDnsLXwk8CkkLzQiNAfP24uvg44jhieQV6hvwXPdyAZYNpBhGIHskYyUXIVQVPAM88KHipt1f4MXne/He/GUJQxQlGWcWZw8VCeUEMAGL/an7svsi+9/4dvdK+en83P/WAq4HpgzHDZMKigbcAy0BnP03+zX75/pZ9w/yXO9Y8TP3IgCTC7YWSB1sHV8YVA+5Akr1NOwB6srrwu0z8Gn1/fyRBJ8LjhLKFjgUSQu2AdT7ofgn9gD2nPpcAukIJwwoDecMvQrVBTr+u/S764jnz+sL+IQHpxS7G70bcBZTD8kIfQKE+8303O9i7Ozp7+rC8jQAdA0UFl8axhtLGb8RMAdP/aT1ju8L61fpauum8Vr8NwqQFqob6BcYD+8F0v0l9u7vu+0l8Nv0sPn8/q8FdwxvEEEQGQ3hCAwFjwI/ATb/3PrZ9czz0fWf+cL9ewOqCigPhA0tCBkEvAF3/ZD2XfGS8Sv2e/zTAwEM3RIMFrkVTBO1DiIHnv3S9JXuM+uj6t/sQPEI9yP+/QVUDAwP4A45DkkN1QlZA/T8gPkX+Hf2KvVo9rD55vtB/O39PAOfCa0MpwuECQ8IpgVIANn4T/LD7gnuue4L8OTy+fhoAoAMohM/FjcVwBEfDGcELvuN8Vvp9+R45WHpyO4j9ooAnguWEi0UEhTZFMYTWQ0jA9L5WvPQ7nbszO3x8eD18Piu/VYFYA3PEmEVExaWFPQPfwje/xf4IPPK8ZTyMfPE88f27/xkA4wHXQr3DboRUBNFEuUPKgzoBfr9XPde82jwoO057TPxoffc/EQALQRwCd4NmQ9fDy4O3wosBMT7BPVX8b3viu9b8S71vPlZ/qEDZAmDDRcOZgvYBjUBCvt69WHxfe6f7Ljsb+/N86D4G/6YBK8KcA7CD7IP8w0zCb4B0/lE83vupesa63nsGu9k8/v5sAEgCHwMpQ92EW8QnwxfCO4EvwBn+lLzAe5h61zrVO4Z9OT6HQHdBiEMDA8VDn0KcAb7AVP8/vaj9BH1vfUs9pz4of1LAiYEbARtBcwGWgZcA+T+8fkm9avxiPBh8T3zPPbm+jUADATXBSUHIwnXCooKBghuBJwAjvxC+F302vFh8dnydvVZ+D37XP6nAYwEsQZ0CB0KBwsrCmAHjQO7/4b8Wvpw+aH5vPrz/CIA7ALfA6oDnQQkB4QIgQbjAisBywExAkgBAgHQAksFwAa2BxoJyQkoCNcEsQEc/4r81fpr+5j9I/+w/xoBGAToBvgHmAdDBpUDKQAj/kz+vf4W/gD+LgDFAosCt/9n/er8j/wt+/r5KfpC+8T8FP/IAUQDNQNcA1kE3gMqAGb7BPkL+br4K/c89vn2APgz+HP4dvk4+uX5hvkq+uz6sfqA+u/7Iv6s/ir9mPsO+2v6uvjb9sX19/TX8/7y2fJ+8mDx5vBx8rj0YPWU9NL0EveB+Yb65frj+/T8rPzF+gf4F/V88uvwXvCk7w7u3Oys7frvyPGL8s3zlfap+Sf73vos+gP67/nX+Cb2UfKi7oHscuyh7cvuo+8K8ZfzSPZw9+P2VPbs9pD3e/bt89TxHPHx8Nbwu/Ew9Az35PjF+UH67Pkr+MP1/vPF8h3xQ++r7tLvlPEU8+D0mvep+gD9Tv7G/mT+M/22+2f6E/lr99j1PvX09Wz33vjz+dD60fsu/b7+BACTAHIAFwDc/4D/b/6x/Fn7f/vY/Pn9U/4V/5cBWQVzCMAJuQlXCeUILwgOB4sF7APYAuECuANzBMwEnwW/B8AKUA2nDiAPkw9dECIRTBGzEMEP7g48DlsNSwx6C08L0QvBDNUNvg5KD6MPKxD2EJ0RvBFZEbAQ2w/jDvcNUg3/DNgMuAyNDFIMDgzUC6ULXwvmCkgKtAkzCZUIsAevBvAFiAUEBf0DywJHArMCSgMvA20CpQEVAU4A5v7c/H76OPiI9pf1/fRO9MzzCfTd9Gz1S/Xy9MP0WvRA86/xFfBg7lTsMepk6NzmUuUS5LLjE+Ri5DnkEuRi5NLkxOQq5Grjs+LC4UrgSd4I3PjZetiP1+bWT9YR1n7WYNcm2JHY3dg32WnZNtm62DDYn9cF15vWj9ao1pbWjtYg11zYntln2gLb89sb3ebdJd5O3tPeo99p4BLh1eHe4jDktOVM59roR+qX69fs++3V7lPvre828A3xBfLr8s7z6PRZ9v73jfnZ+vj7JP1w/qP/fwAVAaoBVQLuAmAD0gNsBBkFwQWEBoIHmQiXCXoKTgviCwgM7wv4CyYMHQy9C1kLPwtOC00LUQuTCw8MkwwRDY4N7g0MDvwN9A3+DQMODA5CDqQOBw9UD6YPDxB2ELcQxhCiEFgQGRAiEHkQ8xB5ESAS+RLqE+kUEhZ1F+0YWhrFGzwdjR6IH0cgDiHYIWsivSIVI6AjLiSPJO8kmCWHJnEnLyjMKFAprinrKSQqWippKkQqDyrkKa8pVCnGKA4oMCc1JiclASTBInwhWCBGHxkexBxpGxgasxgpF54VNBTLEi8RbQ+4DRkMcgrNCFgHDwauBA4DYAHO/y7+T/xa+pf47PYL9fzyJ/Gu70Duquwv6wrq8eiB59TlTOTu4mbhqt8T3tDcp9tt2lfZp9g42LzXJted1iXWldXk1C3UdNOc0q7RzND1z/XO083rzHvMUMwbzPjLNMzEzE7Nsc0ezqTOBs8czxrPN89nz5jP88+o0KPRr9LG0wrVfNbz107Zi9rB2wDdQd5s33LgZOFh4mrjd+SM5b3mAuhE6Yjq4utH7Zfu0O8L8U/yf/OJ9IH1gPaA93T4Zvl0+rP7Fv2F/ub/MAFpAo8DoQSbBXgGKQehB/AHNQhzCJQIlAiICHwIZwhMCEsIZgiBCIkImAjCCPcIGQkoCS4JIwn2CKsIYQgoCAAI4Ae5B3sHJgfFBlgG1gVGBbsEPwTLA2sDQANLA10DWwNsA78DPgSxBBQFkAUkBpsG3gYXB3EH3Ac2CIgI7QhkCdQJOQqnCigLpwsRDHYM9AyWDUEO2Q5oDxYQ6hDBEXkSHBO9E0UUjRShFLwU9xQzFVwViRXTFSwWeha5FvsWQBd2F4gXbxc8FxYXERcTF/QWwxatFqcWdxYQFrEVfxVHFdgUWBT6E58TCRNHEqIRIBF8EKYP3Q5PDtgNWA3sDK4MdAwPDI8LHAunCgYKTQmwCDAIoAftBjoGpQUYBXUEwgMgA50CNwLhAYgBIQGwAEAAzv9V/+D+ev4Y/qL9F/2O/Bf8qPs7+9/6n/po+iv67/m++YT5F/lw+K/36vYf9kv1i/T284TzGvO78njyRPID8rHxcfFB8ffwb/DC7x3vf+7M7QXtRuyZ6/PqTeq66T/pzuho6Bfozedm59zmVubq5Xbl3OQ85Mvji+NZ4zXjQuOK4+rjQuSU5OfkK+VS5WnlgOWH5W7lQeUV5erktuSK5IDkn+TX5B/ljeUg5sfmdect6OfojekU6o3qDOuR6xTsn+w+7fXtu+6J713wM/EJ8tnymPM/9Nv0ePUP9pT2Evej90f44vhk+dv5WfrY+lv7+Pu//Jz9b/4t/9f/YgDHAA0BRgFzAZIBqwHMAQECUwLLAmcDFQTHBHUFFwahBgoHWQeaB9AH+wclCFgIkwjRCBsJggkFCpIKFAuHC/sLdgzuDFANlA3FDfANFw48DmkOsg4cD5gPGRCeEC4RxBFWEtQSOROGE78T3BPZE8MTsxO8E9oT/hMnFGcUxhQyFZMV5xU4FooWyRbhFt4W2hbhFugW4RbPFrsWqxahFp8WohanFq8WtRaxFpkWdhZRFisW+RW+FYIVSBUNFd4UxxTBFKwUfRRJFCYUDBTmE7YTihNpE0sTJhP6EskSlRJmEj8SHBIAEu8R7BHiEcYRnxF8EVoRNBETEfsQ1RCKECMQwg90DyYPzw6FDkkO+w2FDf8MjgwzDNMLYwv3CpYKLQqqCRkJkggVCJgHDwd8BuAFMQVtBJkDwALhAfkADQAu/17+nf3t/En8n/va+vz5H/lM+HT3mPbQ9R/1ZvST87fy6vEj8Vjwn+8F72/uuu3y7D7snuv26k3qwOlO6dDoO+iv5z3nz+ZZ5vLlqOVj5QnlrORm5DLk9uOy43rjTeMg4/zi7+L24gHjGONS46Dj3+MP5E7kq+QE5UbljuUA5onmAudy5/7nr+hi6Qbqqepa6wvssOxY7RDuxe5m7//vr/Bz8TDy3/Kg84X0c/VB9u32mfdU+A75svlI+tz6Zvvi+2P8//ys/U/+6f6Z/1kABgGTASACyQJ2AwcEgQQABYoFDQaGBv0GdQfuB2wI+AiLCRoKpAo2C8sLTQy4DBwNjQ0FDnQO2Q5JD9EPZxD7EJMRNhLZEmkT7BN7FBIVkxXwFUgWtxYvF5gX+hd0GAkZkxn5GU4aqxoOG18blRu+G+0bJhxfHI4ctxznHCcdbR2pHd0dFx5eHqQe3B4JHzkfah+VH7kf2R/sH+EfuB+OH3sfex9/H4Qfjh+XH5Afdh9UHzsfLR8bH/Qetx52HkceJB7uHZodQB37HL0cZxz2G4kbLhvIGj0amhn9GGUYyBcvF6gWJBaBFcIUCRRkE7cS6xEUEUkQfQ+UDpENjgyZC6UKpQmeCJQHhwZ4BWoEUAMbAtUAlf9e/hX9rvs++uX4ofdZ9gL1r/Nm8hLxqe8x7r3sVOvv6ZfoUecU5trkr+On4r7h3eAC4Dvfjd7i3SjdX9yT28vaDNpd2brYFNhk177WNtbG1VjV6tSN1E/UJNT709XTvNO408DTx9PM097TCdRR1LLUJNWn1UPW+da/14bYSNkP2uLavtua3HXdUd4u3xPgCuEW4i7jSuRt5aDm0+f06ADqAusJ7A7tDu4N7xTwJ/E78kPzOfQn9Rb2BPfr98/4s/mR+mD7K/z+/NL9mP5Z/ykACAHTAX4CKgP2A80EjwU7Bu0GqgdgCA8Jwgl4Ch4LsAtFDOYMhw0fDrsOaA8VEK8QRxH4EcIShhM4FOUUmBVDFtgWZBf9F5sYMxnDGVga9hqOGxgcnBwvHdYdhx44H98ffiATIZ0hGSKNIv8ibCPPIywkkSQGJX8l7CVLJqMm+SZKJ40nvSflJxIoQihlKHEodCiCKJoorSi4KMUo0yjTKLYoiChfKEYoOigtKBQo7ie8J4QnRyf/Jq4mUCbbJU8luCQkJIoj2yIgImshtCDaH9Ietx2iHIsbaBpAGR8Y+hbJFZwUgBNmEjcR/w/VDq4NagwLC7YJeAg5B+sFmAROA/YBgwAD/4X9Avxk+rb4D/dw9b/z8fEi8Gjutezm6vvoF+dM5YPjsuHv31je4txt2//ZtNiP13HWR9Ut1DrTWtJ00ZHQx88Xz2vOv80bzYfMBMyby0/LEMvJynnKNMoCytHJk8lYyTrJPMlPyWXJg8m8yRzKnMoyy9bLkMxlzUrOMs8d0BnRKdJK03TUqNXm1inYednc2lXc191S38ngQuK54yrlnOYN6HTpzOof7Hnt1O4k8G7xu/ID9DX1VPZu94T4lfmo+rv7vPyd/XL+WP9AABEB1AGvAqcDlgRnBTMGEgf4B8wImQlwCkgLEAzJDH4NKw7MDmsPEBC0EEgR1xFyEh0TxBNhFP0UnBU0Fr8WRhfTF18Y2RhEGbQZMxq3Gi8boRsdHKocRx3vHaAeVR8CIKUgRCHnIYciHCOpIzwk1SRpJfElcCbvJmkn0CcjKGwosijyKDEpdSm7KfopKSpPKm0qgiqTKq8q2Sr+KhIrJStJK3UrlCulK7sr1CvfK9IrvSujK3YrMCvjKpkqQCrGKTQppSgYKHcntybqJR4lRSRMIzgiHSEFIOMerB1pHDEbDhr2GNEXmxZdFRwUyxJhEekPdQ4GDZcLKwrKCG4HAwaCBPQCWgGw//L9Kvxa+oH4pPbM9PnyIfFD71/teuuW6bTn0uXm4/bhFOBN3pbc69pb2ezXidYc1avTS9L60KnPYc47zT/MWst9yq3J8chCyJLH4cZGxs7Fc8Uhxc7EhcRRxDDEGcQCxO7D5sPywxbESsSJxN7EWsX6xbPGgMdmyGbJdMqPy7vM8s0jz1PQotEh07PUOdbC13DZQNsA3ZjeJODM4YbjLeW85lDo7+l76+nsUO667wbxJvJF84304PUJ9xL4M/lq+n77YfxE/UP+OP8CAMMAmwF7Ak0DKQQxBUYGOAcRCPwIAQrzCr8LigxuDVMOGg/LD34QLxHIEVAS5RKPEzMUwBRHFdkVaRbiFlIX1xd4GB0ZuxleGgkbqBs0HMQcah0dHsgedB82IAsh1iGTIlYjLCT7JKMlKiaoJiQnkif4J2go4ShGKZEp3SlDKrMqDCtMK40r2SsbLEcsbiykLOosNi2ELdEtEy5LLowu5C41L2Qvdi+PL74v4C/XL64vgC9ZLyAvwy5JLr0tIS1yLLMr5Cr9KQEpACgAJ+glnCQlI60hTyD4Ho4dHBy8Gm8ZJBjTFoUVNxTdEnkRExCmDhkNawu7CR4IggbLBP0CMwF7/8j9B/wt+kP4XvaF9KLynPB67lrsQuoe6OvlueOT4WbfJ9332vHYBtcj1VXTtNE70M3OZs0czO/KycmhyIjHi8adxbbE58M+w7XCNMK1wU3BC8HmwMXAk8BQwAjA1L+8v6+/mL99v3u/pL/jvxDAMcB0wP7AxcGgwnnDY8R5xcDGH8h4ycbKH8yhzVXPIdHp0qvUhdaW2Mva6dzT3qXggeJd5BXmnucS6YLq+et57fnuVvB68YvywPMN9TX2H/f99/f4/vn4+uD7uvx8/S/++/7i/7cAcgFSAo8D8gQeBgcH/gcwCWoKcgtRDCcN9Q2sDlYPAxCdEA4RehEXEt0SixMGFH8UJhXkFYgWFReyF24YNRn9GcgajhtFHAMd6h3vHucfwSCeIZ0ioiOMJGMlQiYrJxAo9CjbKaoqRivBK0cs1yxDLXQtmi3lLUsupC7mLiMvXS+GL58vvC/eL/YvDjBGMKgwDDFRMYYxzjEyMpEy3DIRMzQzSDNVM18zVTMfM9AyiDI+MsYxCjEoMEMvWi5YLT0sCyu+KV4oAyerJTAkhSLQID8fwx0uHHwa2BhTF9QVSBS+EjoRpw8DDmQMzQoiCUwHaAWeA+MBDAAP/gf8CPoI+PT1zvOi8WvvIe3Y6qToeeYz5Nbhl9+G3XLbLNnR1prUgdJW0BjO+ssPyj7Ii8YqxSfEPsNFwm7B6MCBwOe/KL+cvmK+QL4Gvse9mr1tvTa9Db3+vOS8qbx5vI68w7zFvI+8eLy2vAq9Kb05vYu9M74Ev+K/4MAKwk7DwcSAxnTIXMohzPTN+c8L0vXTzNXK1wDaS9yF3qvgxeLN5L/mmOhc6gXsi+347mLwzfEa8zb0O/VR9nD3dPhU+Tj6M/st/BL99/3q/t3/zwDfAQ0DLAQlBRoGMAdJCDoJHAogC0EMSQ0vDhkPDhDnEJIRMRLVElkTnxPVEzYUuhQwFYsVABakFlIX5hdyGBIZuRlSGu8arxuDHFEdLB5EH4AgliFgIhwjCiQUJfwlviaLJ3MoVikiKugqqCs+LJ0s5iwxLWUtZy1eLX8twi30LQcuIC5cLp8uzi72LikvYS+NL7gv+y9PMKMw+zBoMd8xOzJzMpUyrjK4Mq4ylzJ1Mjwy6TGOMSkxoDDZL9wuxC2aLF4rFCq6KFAn4SV8JBQjhiHWHywenxwNG1EZehezFQgUZBLDEDMPrg0cDHIKtwjzBiQFSQNpAYv/q/2/+8H5r/eJ9V3zKPHg7oHsEuqg5zPlyeJi4PjdlttW2S/XB9XT0rTQs86lzGzKP8hjxsDEGcNxwSTARr99voy9rrw2vBG89LvduwK8W7ynvMq86bwAvdy8arzwu6+7jbtXuyK7LLt0u7e71rsAvF683rxcveq9oL57v2bAZsGcwgXEjMU4xzXJicv8zVnQodII1Z3XPdrA3B3fc+HS4yfmUOhH6hzs6u2573/xK/Oz9CL2iffk+Bf6Evvs+8P8l/1e/hX/xP9mABEB5QHtAvkD4wTNBecGFwgYCekJyArMC8MMiw1JDiIP/Q+7EG4RMxLzEosTBxSIFAwVbBWnFeMVKxZeFmkWeRa3FhEXVxeHF9EXSBjIGC4ZnhlHGigbFRz/HPkd/h7xH8UgmCGHIoQjeySDJawm2CfSKJUpSSoAK6MrGyxzLMAsDi1cLbEtDC5hLqgu7y5AL40vwS/nLx0wcDDLMB8xdzHoMW8y9jJhM7QzATRTNKY04jT8NP009jTkNLA0UDTWM1EzsTLnMfYw6i/ILoctNyznKoYp+idNJqkkDiNXIXMfkR3aGzwajhjLFg8VYBO0EQYQWA6gDNYKAgkxB1kFaQNrAXL/ev1w+0/5JPf09KzyTPDh7XfrC+mU5g/kiuEV37LcVNrv15bVWdMv0fXOo8xUyh/I9sXYw+XBLsCfvjK9Iryeu3G7PrsGux27kbv8uw68A7wzvH+8i7xLvAm847uzu2u7S7t0u6+7y7v2u2e887w/vUe9cL33vaa+P7/Zv8rAJsKvwzTF18bTyC/Lws1p0CXT8NWs2Erb2t1f4MXi/OQp53bpzOvy7eLvzfHH86T1Qfe3+Cv6kvvI/MT9lv5M/+7/kQBJAQ8CzwKLA1kERQVABjYHKQgmCS4KLAsIDL8Mdg1IDicP7Q+TEEMRExLnEpwTQBTtFJYVGxZ3FrwW7RYEFwwXGBcUF94WhBZLFlYWdBZ7FoUWwhYsF48X1xctGLgYZhkWGr0aaRssHBIdJB5QH3kglCGzIvAjLSVBJhkn1SeUKFEp9Sl1Kt0qRyvDK0gsvywOLT0tci3DLSEubi62LiAvtS9VMNMwLTGCMeYxXTLkMnMz7zNCNHM0nTS+NLM0cjQcNMwzdjPyMjkyYDF3MH0vby5LLQwsrSozKaonCyZPJIIixCAbH3AdsxvrGSAYSRZgFG8ShRClDsgM9QozCXUHpAW3A7oBuf+w/Z37fPlQ9xz14PKl8GfuF+yn6RnnhOT84Xrf5txE2rfXUdXy0nTQ4s1hy/nIkcYjxMrBlr9+vZS7EroLuVu44LfEtzS48LiAuby597lsuu26MLs8u027cbuFu3y7druCu4u7mLvPuzm8k7ytvK+85LxZveW9ar4Mv+e/78ATwlfDz8SDxnrIxMplzT3QFdPl1b3Yndto3gbhfOPd5TbojOro7EfvjfGn86H1lPdy+Qf7QvxO/WL+dv9YAPkAdwH9AZcCPAPtA60EeAVJBiAH9Qe3CGUJHAr5CvgL9gzcDbMOkA97EG4RWhI5ExQU/BT0FeIWpBcuGJAY2hgNGRsZBhnbGKwYihhvGEkYDRjVF80XBRhZGJUYqxi6GOoYQxmqGRMamRpoG4YcxB3zHhYgViHAIiskZiV1JnUncShXKSEq3yqTKzIsvixQLewtaS6qLsku+C41L1QvUy9nL7gvKTCKMNowMTGLMc8xAjJFMqQy+zI1M2cznTOzM4YzKzPTMoIyFDJ5McowGTBWL3cuiC2MLHArKyrXKH8nCyZfJJgi3iAmH1MdcRutGQ4YYhaKFKcS3xAkD1sNjQvdCUYIqQb3BDkDcQGT/6f9yvv8+Rv4GfYQ9A3y+O+u7TnrvehC5rXjE+F53vjbdtnV1iPUhNH8znXM7MmHx1rFScMvwRK/K72Tuzq6JLmMuKO4Sbkfuuu6t7uGvDK9kb27ve69Qr6Xvsy+6b4Avwy/A7/svtW+vL6cvoe+qb4Ov5C/CsCHwDTBIcIowy7ESsW3xo/IwcoszcHPedJR1UrYU9tJ3g3hn+Mx5uPooetA7rrwKPOW9e/3GfoT/OX9kv8WAXACmAN7BCMFvgVvBiYHvQcwCKkIOwnICSkKcQrTCmILDwy6DGkNLA4DD9wPqhBvETES9xLJE6QUfBVAFusWiRcXGHoYmxiLGHoYhBiWGIoYXRglGPsX2he2F4kXTxcPF9YWrRaPFmoWQhY8FoUWJxcJGAQZBhoXGz8ccB2VHqgfxSALInYj2SQNJhMn/SfWKJwpWyoiK+grlCwYLYQt4S0fLjQuQS59LvMuey/sL0owrDAdMYox4jEbMjoySTJVMloyQzIBMq0xcDFMMRYxpjAHMF4vvC4WLl4tkSyrK64qnymBKDYnoSXVIxYiiSANH2wdrRsAGm4Y0xYOFS4TSRFfD2UNaQuACa0H5gUrBHkCwADx/g39JftA+Vn3cPWG84bxXO8Q7cHqeegd5pnj/OBo3t3bPtmE1szTNdHCzmXMGcrbx6HFZMMvwRy/QL2auzu6Srn+uGi5Vbp6u7S8Br5jv5XAXcHBwQzCisJEwwrEssRBxcLFKMZWxknGJcYixmbG5cZzx+3HUcjAyFPJ/8myynHLZMynzS/P5dDL0vDUU9fg2YHcKN/D4UXkwOZM6dzrRu6D8MjyOvWx9+n52fuv/YL/KgF/AosDcwRJBQYGpAYdB2sHnwfgB0UIswgDCTkJewnVCSsKZwqiCgALjwtEDBUN+Q3kDsoPqRCKEWkSOhP1E6gUZBUnFtcWXBe3F/0XPBh2GKsY6BgxGXUZmhmTGWYZHhnJGIcYfRiyGAIZThmRGewZdhooG/Ab0BzoHUsf4CBtItEjICWBJvQnWimqKgMsdC3YLgAw4zCcMTkytzIdM3ozxzPzMwE0HDRgNLg0AjU2NWs1oDW2NZU1SjXuNJY0RDT7M78zjDNTMwMznTIeMoIxxzAAMEUvki7KLd4s4SviKs0pfCj2Jmcl7SNzItUgEB82HVYbahlzF3EVZhNWEUYPMw0UC+wIyQawBJUCcQBW/lT8WfpF+Bz2+fPm8cvvl+1c6zbpJucI5cfibuAP3qPbENlT1orT0NAazlTLgMi3xQLDV8C9vUq7ELkZt3G1P7Sgs4yzArQWtcy247j9ut+8h74AwEvBcsKhwwTFrMZ5yCzKhstzzA3NcM2kzZzNe82CzbzN7s3bzZzNfM2dzdrNDc5FzrnOi8+00BrSs9OS1crXUtoJ3crfkuJx5XTolevB7u7xIPVo+Mj7HP8pAskEDAcOCcEK9wurDBYNdA3NDf8N8g20DWoNIg3TDFwMtAv7Cl4K5QlsCdgIQwjfB8IHzgfdB+EH8AcuCK8IWAn/CZ4KYAtfDHUNZA4hD+cP5BAJEicTLRQkFRIW5haNF/oXJhgqGD0YjxgXGaQZIxq9Gp4bwRz/HUsfuSBSIgEkpCU4J9gooSqcLLku2DDpMu008DbwONA6czzTPQI/F0AWQfNBoUIiQ5pDJUS+RDhFZ0VLRQBFl0QKRExDVkIyQec/gD4IPXc7uDnSN/01XzTiMk4xhC+XLZUrcSknJ9QkmSJsIDgeABzRGasXkBWME5cRdg/5DFIKzwdwBesCIgBT/a76Gfh39eXykPBZ7gDsfent5mDk0+FY3wzd7trg2NnW6dQW01nRrc8gzrHMVMsEyrfIXMfvxXzE/8Jswbq/FL64vLO747ouupC5CrmsuJa497gEuv67OL/Lw1zJV89m1YHbfOHc5kzr/O5c8qD1rfh9+0D+/wB0Az4FDgaoBekD7gAX/bf46fPE7qLp6eTJ4Bndp9lz1ovT3dA9zpjLG8kjx/zFw8VxxuzHDsqxzL3PJ9Pv1hHbl9995KLpw+6Y8+33s/v7/uABaARyBvgHLQlVCnQLVgzyDHMN5w0GDocNcgwQC5oJMggABy8GvwWWBbkFNgboBpQHMgjzCOMJ1AqhC2cMVw2HDvUPphGTE6wV6xdcGt0cIB/zIF0ibSMFJBAkxyOLI4cjpSPXIyAkfyTqJGQl/CWuJmonJijrKL0pnSqjK/Usti7kMF8z9jVqOIE6GTwmPbE90D2fPUo93TxBPGU7WjpFOSg47DaLNR40pTL0MPUu1yziKiUphicBJrMknyOgIqkh2iBjIFcgpSAzIechniItI3AjXCMZI9AilCJiIkAiPyJLIiwiuiH/IPofjB6jHGYaBRh5FaYSog+sDOgJQweqBBwClP/3/C36MPcB9KHwMO3k6e3mV+Qc4i/gg94H3ajbUtru2GzX0dUx1JHS69Azz2rNhstjydPGwsM+wFu8ErhYs2GunKmGpXuit6CDoBCiOKV+qViubrOVuLe9B8MRyVTQ1dhM4n/sOffiAXILGBOfGBUcYx1yHKMZwBV3ERgNvQhnBNb/m/po9Cvt8+Tn23jSgsnXweW7v7detbe0nLW5t7K6PL4jwmfGLsuQ0HjWytyW4/vqzfKN+tkBlgi+DiEUhBjiG1Qe6R+iIIsgqR8GHsgbNRmKFs4TCBFiDgQM7gkHCEMGswRiAz4CSAGiAHUA1wDKAV8DsgWzCAwMVg9hEiUVhxdCGUQa0Ro+G5kbyBvJG8AbxhvLG68bWBu7GuoZCBknGE8XnBZQFqsWvRdsGZQbFR7QILIjtibAKaQsSC+uMdczoTXpNss3ejgOOXc5qDmgOUs5czj9NgA1nzL7LzgtjyowKBcmISRMIrwgkx/YHoEekx4DH7IfbSAWIZ4hByJrIu0ioyOLJJAlpya/J74olik/KpsqfSrHKYoo2ibEJGciDSD3HTAcnhozGeMXahZ0FOIR2A50C7QHuAPZ/2P8ZvnU9rT0DfOs8TXwYu4o7Jvp1ub34yvhqt6z3GPbqtpF2gHavtlc2ZDY+dZy1B3RTs04yfHEocCUvO24gLUFslOuW6obprqhrp2RmsGYkJiGmkyfFadSsRa9sMmd1jTjwO7R+JABkwlmET8Z+SAqKFMu6jJsNVw1SzIMLOwiqBcEC6X9L/Bm4wbYU84Xxv++xbhDs2yuWqpPp5+llaV2p1mrE7FDuI3Au8md0+ndS+iJ8nr83AVqDvEVXxywIeIlBSkfKzgsYyzDK3YqiCgEJvgiah9gG+AW/xHZDJ4HoQI0/pP65/dS9tb1U/aP90/5Vvtr/Xz/kQGzA+sFUAgDC/sNExEtFEQXMxqxHJIe1h9/IGggix8qHqUcLxvgGe8YixipGAcZcxnrGYUaShs+HG0d6x6/IO8ieSVjKKwrPC/eMkU2JjlDO248mjzuO7U6PTm0Nxc2YTSeMuMwJi9DLRwrvCg+Jqcj7iAzHsQb8xnnGKAYBBnrGR4bbxy7HeYe4h+yIHIhPSIQI84jaCTnJGYl6CVIJlcm9CUWJbgj0iFxH74c5hkTF2oU+xGyD1UNwAr9ByQFIgLj/n/7NPgn9Ujyke8a7ffqFelH52blcON34Y7fuN3723PaQNli2KvX39bn1bXUO9Np0SzPdMxPyeDFRMJ+vpG6obbOshWvbKvOpxukL6A6nPiYKpcRl9GY+ZxKpM2ugbseyd7WZuQ48bP8cQavDiIWgB39JDcsfzJINyE6fTqyN1QxhSf5GqcMdf0x7qPfi9J/x6G+nrfxsTCtMqn3pZWjRaJyopykFqnir624AcNVzi3aJ+bt8TP9sAcoEV4ZJyBuJUEpzitLLeMtpi2KLIIqjyfAIzkfNxr9FLoPhApgBV0Anvti9wT0vPGj8Ljw7PEJ9K32kfmU/KP/pQKaBZgImQt8DjwRBBTZFngZnBs7HVse4h6rHr8dThyJGqgY5xZnFSMUKxO1Et0ScRMhFOAU5RVoF3EZ7hvWHjgiGSZWKpoujjIUNik5xTu3Pc8+ET+lPrI9PjxJOuU3PTVqMmAvCCx3KOQkeSFBHlEbzhjOFk4VUBTtEzgUJRWQFlsYYBpdHBgeix/cIC0ihCPYJCMmXidkKAQpGymmKLInPSZEJOMhUR+xHAYaVRe2FCQSbQ9sDDQJ5AVxAtT+S/ss+IX1LPMK8TXvq+087MDqNem452nmUOVR5EnjPuJa4angAOAv30HeUt1O3PLaF9nE1hfUKtH7zXfKm8Z9wjy+5LmBtTKxEa0aqU6l0aHKnkacfJoimi2cHKHMqPGyXr+mzcLcbOvL+KUEGA9cGJQgyicYLrMzoThnPBc+5TyLOCsx+CYiGhULwPpo6iTbjs3awR24Z7CdqmimYaNNoUags6Dtog6nAq22tB2+/sjb1B7hUO0m+VgEmA6eFzsfUCXEKassQC64Li4uryxmKnwn+CPNH/8arBUBEEMKrwRt/5L6RPa28hHwXe6N7Y3tV+7+74vyy/Vp+Sr9EAEdBSoJCw2xEBgUNBf1GUUcCx49HwggrCAeIRAhVSAFH0MdFxujGDkWKxSfEqIRPxFjEfkREhPfFGAXXxqzHUUh+SSHKMIrui6RMVM07DZAOS47jDw3PR49Njx4OvE3vzQQMRgtBykGJUghGh6vG/0ZwRjRFzUX9xb+FjsXxRerGOgZbhs7HT0fQSEgI9UkVCZ1JxkoTigtKLMnySZ0Jcsj2yGsH0cdvRobGHgV5RJWEKoN2QoJCFgFwQI5AMn9cPsu+RP3LvVz88HxHPCo7oTtluy56+TqJ+qM6fjoO+gv5+nlkeQy47fhFuBb3pHcqdqJ2BbWNNPWzxfMDsipw9y+zLnNtBOwpauXp/yjzKD9nbybWJocmm6bAZ+dpWqv1LsTyoLZZem5+I4GhxLOHLclii1jND46AT9jQtJDpkJZPqk2jiteHeoMT/uJ6WTYscgeuwawXafeoD+cM5mWl4eXRpnxnHWiwKndssq9Ncp41/nkZfKR/zkM2xfnIQUqMjCfNF83XTivN7c15DJXL/YqsyW+H2QZ5xJUDJEFrf4E+Afy6Oym6F/lZ+MI40jk4eZc6lfux/K99wD9FALPBn8LdxCQFVoaoR50IuIl4ChEK9YsaS0HLeEr+SkaJ0gjBB/xGmcXahT/EUAQSA8aD44PahCPER4TRhX4F/caKR6sIaclBSqCLs8ypjbaOUk8yT0tPmg9pjswOTQ2yTIMLzoroSd+JNYhdx8mHd0awhj3FnoVUBSoE7kThBTWFXkXWhlzG6gdwh+GIcUiZiN2IyIjmCLtIRwhHiD1HpUd0RuGGcoW6hMUEUoOjQv9CKoGdgQ/Ag8A+v3u++H56Pce9nH0xfIv8drvyu7a7fDsA+wP6wvq9+jK53nmFeWz40fiouC33rPcu9rH2MPWt9Se0krQkM1vyvrGLsMjvxW7Oreps2Kwb63aqqKo4abKpXalAKbWp7urKrLuun/FhtGz3j/sF/lzBDQOoxYTHrgkmyqaL34z+jWrNhs13jC/KQEgNhThBm34eOn32tTNdsLZuPuw5Kp8po2j6aGVocCiq6V9qiCxTLnFwmbN9tgF5Rbx1vweCKMS5xuAI1Ipfy00MJUxyDHcMNku4SspKLgjex6MGEMS6wuXBUn/K/mC85Duleq/5xbmj+Uv5unnheq/7XXxo/Ur+uj+xwPHCOANCBM7GFUdFSJBJr4pZSz7LXMuDi4TLYIrRimJJo8jeCBPHTcaWxfXFLUSBhHUDxkP1g4uD0EQFRKdFMQXchuLHwEkoSgbLRcxejRJN3Q52DpvO1471DruOaI4zzZlNI4xii5tKyQoxiSfIeMeiRyFGvAY4RdFFwYXLReyF1UY2hhSGekZlxorG5Qb6RsuHD0c+BtXG10aEBmAF7UVrhN1ES0P6gy1CqAItQbcBAQDSAHA/0X+r/wk++P55fj29wr3QvaT9cn0vfNx8unwF+/q7F7qjeef5Lnh0t7P27bYsdXI0uLP9swmyojHDcW6wrjAHL/JvZS8grupuvq5P7k0uK221LQQs6expbBAsCuxNbSUudfAbMm/0iDc6+Tz7Fz0IvtZAbYHBw8TF5gefiSHKMMq0CodKHsiYhrHEJ0GNfxa8SXmVdu10ULJVcGPuT+yH6y/py+lQ6QBpbynvKzRs0i8e8Vgz0zaPOZx8vj9Xwi8ER8aViENJysrCi4xMMUxVjJjMd0uHCtbJqAg7RmAEu0K3wOh/QL4yvIm7n3q6ec35kPlGOXJ5WTn4ukc7e7wavXA+tAAFwciDeQSaxibHVIijCZTKnYtti//MGQxATEFMKkuEi1AKyYptSbaI64gjh3ZGpoYuhZPFX4ULhQ6FMwUIxYpGIEaBR29H3Qi2iTzJhcpbCuyLa4vXTG7MqMz/jPkM3IzvTLHMXEwkS4+LOcp5Sc2JskksCPvIj4iRiH5H3se6hxYG90ZhxhPFzIWRRWSFPcTRhNrEmcRPRDqDnYN/gu0CsgJNQnMCHwIXghuCFsI6gdCB5sG4QX2BP0DHwM0AgkBqv8i/lP8LPrT9071V/LC7sDqluZL4t3dddlI1WXRss0ayoXG+8LFvzi9RbuNufC31LaTtv22uLfZuLS6R70dwJrCOMTExK3EtMQGxUzF4sUeyM3MJtME2kjhJ+no8GH3I/x7/98BHgRQB9YL5xCTFXYZFxxoHJAZsBOuC30CvfjM7t/kPdtY0orKx8O+vTy4ZLNyr3isjqopqt2r3q/rtba9+8Y/0e/b2+YL8lf9aQj6EqMc0iQqK8Qv2zKINAI1ozSBM3IxTS74KWgkwB1fFqMOwQYH//b34vHK7KzonuWo48viBeMr5Prlc+jn62nwjfX++t8AUAf3DVIULhqTH4YkDCkrLZ0wAjNjNBc1JTVDNIEyYTArLq0rvChsJc8hAB5uGoYXMRUqE7ARLBFqEdgRdhLMEwkW2BjqGyMfWSJoJXwouSvULnUxvDPeNZc3cjh8OCY4qzcJNzg2ITWLM3YxNC/yLHgquyc2JUYjpiHiHwEeRRycGsUY0hYXFaATRRIZEVoQ/Q+0D2UPJg/jDmIOnA3BDOoLIwuOCk0KVAqCCsUK+ArmCnwKxwm3CEAHiwW8A7cBav8F/a/6K/gz9e7xpu5T67/n6eMA4DLcoNhV1TDSCs8FzHnJjscGxp/EZcOIwvvBfsHfwCTAkb92v/O/18DNwb/CwMOvxCzF9sQVxK7CB8HWv/W/pcHWxA3K8dGg28zkEuwO8pH3S/z6/5wDiAjxDtUVyRuqHyEhkSAbHkEZ9BEuCfH/YfZr7Gvi5Ngg0FHIecEOu5e0lK4oqgioHagiqiGuNrQbvBzFms6a2KLj6O/Q/EoJjRRVHq8mgi2PMvo1WjgPOso6CDqkN74zZC7IJ0Eg7hfNDlQFXfx29Jzt0edz47fgSd+T3kjenN4U4BHjc+fc7BLzAvplAbAIjQ8TFm4ckiJMKGUtqjHvNEQ34Di0OYk5fjj4NhQ1nzKhL3QsSSkXJvQi9R/XHG8ZNxbVEzcS5xAEEBsQLhGVEucTTRUBFwkZbBsnHuwgeiMUJhspSizpLsYwVDLkMyw1xDWnNR41hjQSNJQzsDJbMfQvny7vLHMqUCcCJMggkR1TGi0XRBSoEVgPPQ0pCxgJQAfQBbEEsQPYAlkCSwKQAgQDnwN4BKMFAAc8CCoJ4wlxCpwKPwqHCZsITweIBXYDPAGy/rv7hfgo9WjxEu1O6HLjr94Y2sLVztFYzlTLicitxavC0L+TvRa8HLt5uny6gLtMvUe/KcEVww7Fvsawx4fHNcZhxEXDsMN3xUHIG8zs0MzVs9l93LTe8ODR4+PnAe1c8pz3Sv3HA1wK6g//E8sWQRi/F6AULQ/FCMICWf3K94nxtep448nbvtOWy7PDorz2tsqysa+CrQWtQ69stLC7EcQezdbWFuFm62z1RP9OCa8T3R3UJtItADM2N8c6Az07PZ07oTg4NCMuoyZpHh8WTw5EB68ABfpv88Ltd+k35pXjqOG94O/gKeJb5I7nE+xF8tj5rgG/COsOpxQVGgAfZCOCJ3srNC9uMtg0NzapNpM2/zWBNOAxdS7AKgsnhCNbII8d/RqrGKoWuRScEqcQhA9cD7wPWRBUEbUSOxTUFbsXDxqkHFIfESLAJBonDCm2KhUs/CxuLaUtxy3MLaktaS0VLaosGyxAK/EpQShsJokkaiL5H3QdNhtXGaUX6hUSFB4SBBCzDSkLhwgXBh0EqQKZAcMAGgCu/5P/2v9kAPMAcAH9AaUCJgNWA1oDSwP3AjgCLQHa/wz+0/ue+YL3+PSO8XrtK+mx5OjfA9uA1sjS6s+PzT7Lx8hexirE+MGWv1W9xbseuzS7zLu9vMq90r70vxPBc8GTwBC/Gr4YvsS+dcA/xJPKhdKy2hbiEOiC7Bbws/OF93L7GQBTBpcNEBRtGNca7BukG4UZTRVXD54ILQIe/KH1Wu4S55HgUdoj0+rK4cJFvF23wrM7se+vH7D2sWS1FrrSv+3GA9AG28bm2vHh+3YFBA8WGO0fbCY+LOMx6zZKOmM7ljqeOKg1PjEAK0Ej7xrfEjoLxQOM/A72sPBJ7Gvo4OTW4cnfPN8y4B3ijeTJ51Ls/vEY+FD+2gSuC0ESFBgOHT4huiTZJ/gq5S0HMDExyjEOMrExdjCfLoEsHipeJ08kAyGkHaEacRj9FsgVlRSLE64SxRHYED4QKRB/ED4RghIuFPUVzRf5GXsc9B4UIeMigiTwJSknPyhGKTsqCSuSK8crxSvDK8UrlCsHKygq/ihjJ04lCCPrIPoeCR0LGxAZDRfgFJASTBA0DjoMPAoxCDEGcQQYAyMCiQFRAXsB1AEkAnAC3gJxAwwEmQQLBTkFEgWzBC8EYgM5AtkAWv9y/dj6tPdj9APxcO2V6YrlduGE3enZwdYJ1MXRCtDGzqjNacwQy9/JBMl/yCbIvMc2x9XG18YDx+bGesYRxpbFhcTCwhTBesCEwWrEKslDz+HVfdzx4uzo9u078rn2LPxFAkAIyg37EroXdxt+HWQdNRtNFx4SFAyeBRb/kPj68UXrQuSc3EXU8MuzxB2/7LrKt9e1eLW7tj25n7z2wKbG481i1pnfPOlS88j9KwjZEWoa3CFDKLItRDL1NXo4hDkXOWo3bTThL/YpWSOWHMQV1g7bBwUBkvrC9LDvMus25wzkFOJO4Y/h2OI+5afo4+zO8Rv3V/xiAZQGGQyYEagWSRunH6ojESe+KbUr/yzOLVsumS48Li8tryvtKdMnUyWNIqwfxhz1GVgX7hS6EvMQvQ/iDgUOHQ1eDOYLvgsVDCgN6A4CET0TjBXSF/EZ8hsBHjYgdCKBJCwmaidkKEgpFyq6KjQrgCtvK8UqlSkvKMYmUSXCIxgiNSDnHS8bXBjHFZETtREfELUOSw21C+4JKQiqBpgF3wRWBPoD1QPNA60DfwOGA8YD5wOuA0ID2gJhArQB6QATAAj/mf3Q+8j5c/fR9BPyX++e7K3ppea04+fgM96b2yfZ2dbF1PrSZdHZz1XO/8zjy+HK6ckVyXPI58dPx3nGEcXqwnbAcL4WvTK85LvZvF+/8sL4xoTL8dAu19vdseSH6zHyz/jK/y8HXA6fFNoZNh5hIaQisSEaH7YbvBe1EkMMsgS3/K70meyE5KvcQNVMzsvH0sGNvFW4urUmtY+2bLk4vdzBoMemzqLWFd+756jw3fnrAj8LuxLRGeIgiSfoLIwwoDJmM98yGDFSLtIqrCbxIbYc8RanED8KQwTh/tX57/Rb8GDsKenZ5ojlReUQ5tTnTuor7VzwD/Rd+AP9tQFRBrMKpQ4XEj4VTxhDG/8deyCLIuwjkCTGJNUkuiRUJKwj1CK6IUkgmR7aHDYbxhmMGGAXDhanFGsTchKeEeoQgxByEHkQahBzENwQrBG/Eg4UoRVZFwMZkRokHM4deB//IF8imiOYJEklzSVlJhcnqSfcJ6EnBSf9JYQkvCLcIAYfPh11G5sZqhe0FdwTLhKYEAgPfg0GDKMKWAk5CFIHqQZRBksGXAY6BuAFkQVdBQ0FhQT8A6EDQwOTAoYBMQCP/p/8jPp++Gv2P/QV8gnwB+7j65TpQOcI5eXiveB+3j3cOdqR2BnXntUa1KrSStHgz2/ODc3My77K68kTyarHc8Xwwr/A274Kvce7A7wDvh7BycQzyYvOa9Rh2mbgm+br7E/zCfomAR0ITg6JE9wXEhu9HLgcVRsNGRUWUBKADaQHDAEW+uXyf+sD5NPcT9aS0HzL88YXwz7ArL5uvly/RcEyxFnIxc0d1Ora++Fy6UHx9fggALoGDw1VE2oZ+R63I2wn8ik6K0YrIyr1JxMl8CGmHuMaZhZwEXEMpAf9AoP+Yfq89qbzGPHy7jXtReyQ7PDtxu/C8Sr0L/eF+t79XAEnBQMJlgzCD5IS+BQEFwIZGhsIHXIeSB+8H+ofyh9jH9AeOR66HUEdiRxzGzsaQBmPGOQXHBdTFpkV0BTpEwwTbBINEt4R0hHUEcMRnxGYEeoRsRLaE0AVyRZvGCUaxhs3HZMeDyCnIR4jOiTwJFwlliW2JcMlsyV8JRkleSRrI8whwx+pHbQb1hn/F0IWuxRdEwoSuRCKD5EOsg3CDLQLsArfCT8JqgggCMcHnQdfB9AGFwZ6BQcFjgT5A0gDZgIwAaz/+/0o/DP6MvhE9mT0dfJh8Cbu0Ot/6VnnSeUd49vgy94M3Wzbs9n/14jWUtUl1MbSJ9F3zwLO18ykyx/KdsjuxlTFTsMFwS2/Q75Jvk2/mcEkxXnJTc6708LZ8d/y5QLsgfJR+QIAWQZhDBcSJBcAG0Yd7B03HXEbtBgIFY4QeAvhBbz/5viC8RTqJePl3CTX0dE6zajJE8dKxVLEcMTTxVzIs8uLz9zT2NiW3trkR+um8ev3B/7VAzgJNA7VEhUX5BoXHm8gqCHGIS0hOiDhHuscWhptF0IUwhDrDPEIGgWcAY7+zvsu+cX28/Tz86Pz1fON9Mn1Sffk+LD6vPz0/l0BHwQcB8kJxAs/DZ0O9Q8xEVwSohMGFVEWOBeDF0UX6BbGFtcW6RYDF1AXvRcCGB4YTxigGN4Y/BgaGSgZ6RhqGAgY5xfDF18X1hZOFroVCxV3FD8UeBT+FJoVIRaGFusWghdtGLQZURsWHcAeFyAMIZkh2SEXIpYiQiPFI/Qj4yOUI+Yi4SHHIMAfuB6bHXIcOhvcGWIY+ha7FYoUShMAEsAQiw9bDjANGAwtC4QKAwpqCaMI5gdXB8IG9AUgBZYENgShA8QC0wHhAMr/f/4W/ZT78Pkx+Fr2WvQx8g3wD+4X7PXpr+dl5Snj/+D63iHdaNu/2SLYfta71NvSAtFLz7bNMsyNyoHIBMaDw3HBx79svta9xL5NwcPEqMg0zZzSdtgy3rDjK+nV7tL0PPvnAWMIVA6NE8oXjxqDG9saOhkXF1QUmhD4C+gGpQHf+2L1sO5w6LfiPd0V2KLTCNAjzQbL7cnSyWrKnsupzaXQV9R/2CfdX+Lp503tSvL09m77wP/4AyMIJgzZDxsTyhW3F8MYERnXGDMYNhfzFWgUexI5EM8NWAvMCDgGvANfASX/Lf2V+1X6dfkk+V/5yfkg+o/6Uvtc/KL9WP+LAdsD5wWoBy4JXQo8CyEMTg2oDu8PBxHlEXwS2xIfE0gTUhNeE5QT4xMpFHoUABWoFTgWnRbXFtEWgxYvFicWaxayFtoW/xYcF/4WlBYjFvMVDRZJFowW0xYdF2kXwRdDGBIZORqbGwkdax66H90gtSFSItciSiOVI7gjxiO6I4EjJiO8IjQieiGVIJsfgh48HecbrhqSGXMYXRd7FssVEBUlFC0TVxKREawQnA+NDqYN4gwaDDcLTwqOCfAIMwg0Bx8GMQVQBDwD/wHKAJj/MP6W/Ar7q/lY+PH2gfUa9KTy7fDa7o3sSeoy6Cbm/+Ph4fzfOd5N3CLa6tfH1bjTxdH2zy/OVsyCyrXIrcZNxBLCh8CWvxS/dr9WwWHEuMdKy7vP7NTc2UPeE+MD6X7vo/WJ+7wB/gdaDUAR8xPpFScXZReWFvkUqxKQD6kLPQd0Aiz9evfr8d7sH+ho4/TeMNsn2JzVfNPd0fLQCNFL0mbUz9Z82dHc1ODU5D7oUeu57p/yffbO+bD8rP/3AiQGiAj9CQMLFQwTDXYNEg1rDBIM/QuiC7AKYwkzCF4HvAbmBaAELwMoArEBTQGQAML/hf/6/6IA/wD8APUAZwFqAmkDwgOuAxYEPwVVBpcGZgahBmkHHQhQCC8IJgh/CDAJ3QkuCjoKdgorCyoMIA3/DQcPhBB1El8UsRVsFjcXghjoGb8a/hoqG5Mb7BuzG9YavRnrGHsYFhhuF7gWZBaBFrIWtxavFtUWNxfKF4wYahlHGjcbZhy8Hdwemx8tIMsgXiGpIZ0hWiEOIc0ghSAPIFQfgR7XHVYduhzrGx4bgxoDGmIZlBjFFx8XnhYqFrEVLhWfFAEUWROxEgASJREQEPAO7g3cDHELyQldCEgHGAZ8BL0CRAH8/5b+C/2D+wH6cfjR9iH1S/Nh8arvRe787JDrBOp16OHmOuV845fhgt9u3Y3bwtnE137VM9Mk0VnPp83Ny7nJuccdxqnE0MLDwKS/McDXwdTDd8ZkyiXPl9OS1+rb1+Cs5UDqVe8s9df6ef9oA2IHKAuwDYIOWQ41Dg0O4AwqCsoG5QNKAcP9+Pgc9EbwH+3E6TbmT+Nq4QXgpN523eXc+NyB3ZneeODr4nTl9efV6jTuf/EU9Cn2dvgr+6/9cP+aAMoBQwOkBGYFdQVLBWwFyQXPBR8FEgRPA/8CsAIRAl4BBgEqAZUB/gEtAjkCjAJ0A5EENwVnBdEFwgaoB/wH+QcbCGkIogjCCMYIiAgZCO0HLAhLCMwHCQe4BvIGJQf2BrIG7AbMB94IlQn2CYoKnwvUDKQNHQ68Dr4P5xDxEcsShRMrFMUUQhV9FXUVYxV5FaAVshWuFa4VwBX4FWgWAheTFwgYghgKGYEZ3RlIGs8aVhvSG1IcwhzvHO0cDB1cHZMdlB2dHcwd4x23HX4dbR1tHVUdQh1ZHXwdex1kHVwdYB1PHScd/hzbHKscXBzwG3Mb5xpEGo0Z2RhCGMAXKRdpFpEVpBR6E/wRWhDeDpcNWgwWC+AJzgjQB7oGbAX8A6ECZgEPAHP+1Pyb+7/6x/mD+EP3QfY69cnz9/Ea8FTucew/6r7nHOV34qnfiNwo2cbVWtKWznjKgsYLw9O/qrwTusS4srg/uS+62LthvnLBpcTsx3vLpc+q1FvaEOBU5XXqxu+79Hb4EvuZ/YEA+wIlBEIEKwT6AwkDKAEX/339GfxZ+ln4qfZS9crz7/Ff8I3vD+9F7lTt8uxk7R7ug+6v7kbvivDj8ZPytfIw83f03fWR9tr2p/cg+WX66vo6+wn8Hf2+/dX99P1k/sn+0f67/vj+ev/U/97/9P9sAAgBLwHXAKkAJgHnAS8CCAJHAksDWgSSBCYEAwSKBCkFTQUeBTEFvgVdBoEGEgaKBXIFxQUEBvEF6AVGBtMGFAcFBxYHgQcUCKMIUQk0CgkLfQupC/ILegz0DCsNcQ03DmAPQhCEEJEQ8xCOEckReBEQEQUROxFKERER2xD5EGsR6xE4EmASohIUE4cTzxMFFF8U6xSPFUAWEBcFGAsZCBr2Gt0brhxAHYUdsh0PHpge+h4RHyMfch/HH7IfNx/IHpsebR76HWYd+hy0HFQcwxslG6MaORrVGWwZABmOGAkYXxeVFsAV9xRAFJoTBhOIEg4SfhHEEOoPEQ9RDp8N2QwIDGQL/QqFCrIJuAgHCJ4HAgfwBcUE4wMXA+gBSgCe/if9x/s++oT4y/ZB9eDzbPKq8KfuqezM6uToz+a85OziR+F834Hdq9sm2rLYAtdE1eDTwNJQ0UbPLc2+y+fK+8nUyDTIuMjkycXKWcukzDjPUdLi1BTXBtoP3iHiReX852/rmO8p8271T/fj+cr8wP6K/zkAbwFQAtEBYwBo/zP/qf4O/Uz7rPre+mv69vja9yj4DvkY+VD4Ffj5+AH6NPr/+Xf6u/vq/G/9r/07/vf+Tf8P/7D+lP6N/jj+n/02/SX9C/2Y/BD86PsK/P/7pftn+5b7+vst/C38WPzZ/HH9y/3s/ST+qv5Y/+n/WgDxAMsBpAI0A5wDKgTWBFsFvwVYBjQH9QdtCO0Itgl5CtwKEwuFCxAMPgwSDAcMPQxGDOwLnQu3C/QL3guQC4cL0Av7C8sLkgu4CzMMrAwFDXwNRQ5ADxsQuRBAEd0RfRLuEiATRhOQE+sTKhRPFJEUBBVtFY8VgBWEFaIVpxV/FWYVmRUIFmwWpRbXFiIXcBeJF2IXLhciFyoXDBe7FnUWbBaHFowWchZbFlIWOxYIFtkVyxXSFc4VthWsFdQVLxaXFtoW6hbaFqgWLRZXFWcUsRM9E8kSLBKEEeoQPBBMDysOHQ1BDH4LtArpCTYJqwg+COAHkAdUBywHBwfbBroGuwa/Bn4G3gUYBWEEkgNiAuQAhf9v/kT9kftz+XT31vVU9JLypfD67svt2Oyx6z7q1Oi+597m8OX95FfkBOSZ47/ipOGW4GjftN2b28TZhNh71zfW1tTA0/3SPdJy0fzQPNE+0szTwNUY2Mzart2E4EPjJOZS6YjsWO/J8VD0HPev+YT7zvww/sz/FAGdAa0B1gEtAkACzgExAewABQETAewA5ABEAdABIgJFApcCJAOAA3QDTgNhA4UDXgP5ArUCqwKCAvQBMAGTACgAp//r/iv+tv2E/Ub90PxS/Bv8M/xW/Fz8avy0/Db9uv0f/mf+n/7H/uv+Hv9d/4z/mf+e/7v/6P8EAAoAGwBYAMEAQQG3ARQCWgKgAvMCQAN3A68DGQTABHgFDwaBBvEGegcTCJQI2gjqCPIIGQldCaAJ1wkFChEK4QmQCWUJfQmrCcAJwQnFCcEJowl5CWcJcAmBCZgJwAnyCRYKJwo4ClMKZApNChAK2QnHCcMJpQltCU4JWAlYCS0JBgkdCVAJVQknCf4I2wiECPkHlgeaB8UHwAeXB5sH1wf9B9IHeQc7BykHEge/Bj8G5QX4BV8GvwbkBvMGDgcAB5IG+QWaBXcFTAU3BZcFIAbqBb0EqwOSA7MDzgI/Ab0ABwL+A3QFhQaAB5kH0gW0AgoA+P4g/7v/twCJAhAFLQeOBwcG5wOqAngCSgKJAdYAAAHZAZUC0QLCApMCPgLiAcMB1wHPAZ4BogEIAmwCWALyAcQB/QE+AjcCFAIrAnAClAJ6AloCXwJuAlYCEAK7AXkBXwFwAZEBpQG0AdYB+AHlAZEBLQHuANAAtwCTAG4ASQAqABcAAwDU/4T/Of8Q//L+tv5i/iP+EP4Q/gH+3f23/Zn9f/1j/UL9Hv36/Nz8u/yN/FP8IPz8+977u/uZ+4H7bvtV+zj7JPsU+/364frL+rX6l/p7+nv6l/qu+qn6m/qn+sj62vrP+r36u/rC+sb6yvrd+vz6EfsW+xv7LvtA+0P7PPtB+1L7YPtn+2/7gPuU+6L7rfvA++T7Evw8/FP8Xfxw/JD8qfy2/Mr8+Pwv/Vb9cv2X/cD90f3O/d79Ef5I/mX+eP6e/s7+6f7o/uX++v4t/2v/mf+p/67/wP/a/+T/3//o/wMAGwAkADUAWQB1AHwAhwCjAK8AlABzAH0AoACqAJgAmQC9AN0A1gC9ALcAyADYAN8A5gDyAAEBFQEnASkBEAHuAOMA8wAHARIBIAE6AVYBZQFsAXEBbgFmAXMBmQGtAZEBbQF3AaIBtAGjAaYB0gH7AfUB1AG9AbIBpQGdAakBvwHMAdAB2QHuAQUCBQLiAbQBrQHWAQAC/AHnAfQBFwIQAtkBugHiASUCRQI+AjcCOgIqAvwBzgHBAdIB4wHlAeUB5wHaAbIBjwGVAbQBtAGKAWwBfwGWAXwBRAEuAUUBWAFHASYBFAENAf0A3ACzAJAAeQBwAHEAcwBuAF4AQwAwAC4AJwACAMr/qv+0/8H/o/9s/1H/af+O/5X/eP9S/zf/If8A/9r+yf7X/u7+9/72/vr+/v7z/t3+0f7V/tP+yP7I/t3+8P7m/s3+y/7j/u7+0/6z/rv+6P4M/w//BP8C/wb/BP/6/uf+yf67/tz+HP85/xj/7/75/iT/Mf8R//L++f4W/yT/Ef/r/tr+8/4Z/xb/5/7K/t7+9v7g/rb+s/7V/u3+8P72/gD/7P7A/qn+tP6+/rj+wP7l/gL/+P7j/uv+Bf8R/wr/AP/5/u7+6v7x/vT+8P4A/yz/TP87/xn/JP9Z/3b/Y/9I/0v/X/9y/4j/o/+r/6P/sP/W/+D/t/+U/7b/9/8FAOL/z//t/w0ACADv/9//3//q//v/CAAKABIAKgA4ABsA5f/Q/+7/EwAgACEALAA6ADoAMAAlACEAJwA1ADoALQAgACcANwA0ABoACQASACUAKQAcAAQA8//1/wsAGAAAANr/0//0/xUAFAD9//L//f8NAAkA5P+q/4//tP/9/x0A/P/K/8T/4//s/8X/l/+Q/6//y//F/6j/l/+f/63/pf+L/4P/nf+9/73/ov+P/5X/nP+S/4f/jv+d/5//kP99/2//Zv9l/27/dv90/2v/Yv9b/1T/TP9B/zP/L/87/0j/Qv81/zj/Sv9J/zD/Hv8p/zf/Kf8I//L+8v77/gf/Gf8t/zP/KP8f/yb/L/8m/w//Af8N/yH/IP8L/wD/F/85/0P/Mf8i/y3/P/84/xf/Bf8a/z//SP8u/xb/GP8k/yH/Fv8Z/yT/If8W/x3/Nf89/yv/Gf8b/yX/If8W/xL/Ev8L/wT/CP8N/wL/7f7i/uX+6f7n/uf+7f7y/u7+4/7U/r/+rf6r/rj+wv66/qn+o/6t/rn+uv60/rH+sf6u/qL+lP6H/nv+cf50/on+ov6o/pf+gv58/nn+af5T/lD+ZP51/nP+bv51/n3+cf5Z/lL+af6F/oT+Zf5M/lf+df53/lX+Ov5I/mr+c/5s/n/+qv60/oj+Yv55/q3+u/6e/or+l/6n/qX+p/6+/tb+1v7E/rT+q/6l/qr+vf7S/uH+7/4C/wn/+f7f/tX+3/70/g//J/8v/yb/JP80/0P/Of8m/yz/Q/9J/zb/K/9B/2f/e/9w/1T/SP9b/4D/jv9v/0X/O/9W/2v/Wv84/y//TP9s/2//Xf9a/2//ff9p/0X/N/9D/07/T/9b/27/a/9N/zn/QP86/w7/7v4M/0X/UP8p/xX/Mf9O/0L/LP84/1z/af9Q/yr/DP/x/tn+0v7r/hT/Mf86/z7/QP8p//D+wv7Y/iD/SP8i/97+wv7O/s7+uP67/uz+IP8m/w3/Bv8k/0H/Nf8J/+j+6P7x/uX+1P7f/gf/Jv8i/w3/BP8L/xP/Ef8B/97+sf6W/p7+vv7b/uv+9/4K/x3/Hv8F/+X+5/4R/zH/Hf/p/sr+x/69/qn+tP7p/hT/F/8P/xr/I/8L/+j+4v71/gD/+P7n/tH+v/7L/vz+Kv8z/y3/P/9Y/0j/Df/e/t/+9v73/tn+uv68/t/+/P7x/s7+yf7+/kf/Z/9U/zX/Kv8z/0D/Sv9N/0L/FP+U/qv9kPy2+3H7y/vI/IT+1gAPA30EBQX5BGwEEAPVAEH+B/yl+mz6hvuw/TAAbgJfBB0GSQdSBzEGfgSyArsAdv4//Mr6g/pL+8L8l/6fALYCjgS5BfsFlAX2BC8E6AIMASP/uv3T/ED8RfxX/Uz/ZgE7A/gElQZkB8wGEgXpApQABf6H+8X5FflT+Vz6NPyX/twAhAKKAxQEHwScA6gCYgHa/0b+C/1U/Oj7q/v2+xT9qf4IAAAB0gGVAvcCvgIMAhwBEgAo/6L+if6f/tb+aP9kAGoBCgI/AjkCDgLPAaYBpQGfAXsBeQHSAU0CjwKXAp0CmwJ9AoIC5gJWA1UDCgMEAz4DNAMDA4YD9wR1BmMHawhICjwMvQxLC6EIPgUPAYb8DPnQ98D4+/rF/akAOAMOBd0FaQXRA/AB0QCNAEUAhP/u/iz/1/8aAPb/BQBvAMAAuwCEACIAjf8f/zD/XP/4/l3+oP7d/9oA7wAUAUwC0gMaBPkCjQFnADT/F/7q/bb+ZP9q/6b/ygAVAoMCcgLQAmMDOANNAqMBqQHYAdUB2QHuAcwBpQH8AYwCeALdAegB8wLHA24DigL1ATkBsf8b/pn95v0x/hP/pwHoBCMGrAT3AgQDowPCAvgAeQBoAaUBZgCn/xMBYwNZBAEEFwTDBEgEIwJ/AGIBvAO/BIADwAFTASICGwO/A0AE3ATGBQcH7wcqBzkEawCc/Tv8bvv9+gT8QP9yA2QGIweWBtwF9ARXA1IBAAAKAP8A4AEJAnoBtwCHAFUBkQItA+MCnQIrAxsEVAR9Az0CXQEgAUkBVQHyAI4A/AAjAswCYwIfAlADOQUEBn4FIAVnBfoE9gJtAM/+Hv7Y/U3+8v8kAtgD4QSNBXcFBQTQAVoASwDdACMBLgGaAZMCgwOhA78ClwEoAaEBVgLCAgEDGwOpAqIB2ADbAPwASgAY/5X+HP/Z/0IA7QB+AkkEuQQaA6YAaP8AAP8A0wD3/zEA1gELA2kC9gCJABwBNwFyAPz/lQBpAVsBkgABAPX/w//a/qj9Uv1//p8AhwKoAzsEPQQjA/oAEP+l/nX/OwCTAEEBwQI2BFEE1wLPAEv/Rf4O/ab7KPtt/ND+CAHUArgERAYcBgsEpgFXAP7/NwCOASkEfgbiBrEFjATpA8YCcgBx/dn6zPkB+8X9CgCaAJ4ApgH7AqIClgDZ/mT+L/6Q/Yz97f7DAO0BtQLJA6MEFwTnAQP/oPyj+zL8af07/tT+HQCgAVMBdv5H+4P6EPyW/d/9+f0O/8IAHAKpAjcCbQDA/QX85Pyr/9EB7gE4AYABeAJLAnAAff7m/VX+3P5//5gAmgG8AU4BKAE6Ab8Am/9u/q39mv2i/pcA+wGEARcAoP8hAOL/jP4t/hkAmwL6AuYAhP6n/Q7+Of5e/Xj8NP2g/4YB/wAX/3H+kf9WAGH/3f1L/Wv9vP0L/8wBMgTqAykBKf4W/Gv6JPmV+Wz8NQCgAqwCKwGT/7P+TP7J/Xn9i/4zAX0DFQNRAPv9vv0q/kn99vvZ/GUA4gPpBDMEsgNNA4sBvv4k/az9rv7g/lv/RgEpA7oCZQC3/rT+9/5e/p39v/3V/nYACQJRAoQAEv52/cb+d/9h/rL9gf+ZAmcEZASgA2QCkQAM/3P+YP2W+jb4nPlG/t4B/AHaADABJAI8AVf+jPtz+j/7iv1AAK4BSQGuAC8BbAF0/4b8EfzU/r0BWgLiAXICRAP8AZT+yvup+1v9rv6T/sD9mf21/i0AfQBy/7T+rv9dAXgBiP+T/YP9Cf+WAFEBfQGqASICrAJ7AgMBMv/n/qEAigKTAugAW//Y/pr+rv1d/O37cf2qAL0DbgR0AhYAlP9dACUAaP5E/Wn+rADSAY8BVAHHAfcBIwHg/xH/x/6r/uD+uv8JAUACAAPuAnwBr/7Y+5H6+/rh+8X8lP6tAVcEXATfAUz/Wf5X/r79hPwB/O78gP6D/9H/MgATAcsBWwG3/+P91fyV/K78Bv3D/av+Pf9d/1T/Pf/p/nT+Xf7K/jj/Jv/J/rn+IP9+/07/v/6o/nz/bwBJADj/6v5NAAkCQgIqAW8AjABiAHb/xP7q/jD/Jv+R/7cAPQEaAIf+X/5q/+D/Jv9h/m7+3/42/6L/JQAwAJ//SP/S/7cAEQHVALAA4ADfACQAxv5o/b78Ev0U/hj/nf+b/2X/Uv91/33/C/82/rn9H/7i/uP+6/0w/eH9gP9UAIz/SP40/nT/ggAaAKr+mf2P/ej9xf0H/Tb84/tS/GL9ev72/uD+8/6K//b/YP8R/jT9X/38/UP+Uv7K/sr/pAC7AD0A5/8RAFcAJACA/+r+qf6a/pj+qv67/pn+X/5p/rP+xP6F/p3+bv9HAC8ANf9Y/kT+qv7x/vP+9f45/8D/MwAdAGn/o/5o/qf+v/5i/t79jv1w/WL9cP2g/cT9xP3O/QH+MP4f/ub9w/20/Y/9Y/1r/aH9uv2U/Xb9pP0I/mf+t/4H/zX/Bv+I/gP+kP0J/XP8LPxz/Pf8Tv2T/TD+DP9//0H/7v4x/8f/1/8c/zb+0P3j/QD++P3v/Q3+RP5x/oH+eP5f/jj+AP7H/aP9iP1W/Rr9If2U/Sz+if61/gv/kf/Z/6T/P/8S/wj/xP48/sn9sf3W/en9xP15/T79RP2B/ab9cf39/J38cPxJ/Bf8Efxg/NL8Hf05/Vj9hP2e/aX9v/39/T7+Zf5//pz+p/6G/kP+Av7V/av9af0T/c38tPy9/Lv8nvyI/Jn8sfyZ/Gv8gvz7/Hr9pv2e/cH9I/6A/qL+ov6q/sH+0v7L/qX+Yv4Y/un92v3S/bb9gf0//Qb95/zV/Kn8VfwW/DX8o/wD/SP9Pf2b/Sf+hf6L/mv+Z/6C/oz+bP47/iX+Mv5E/jz+F/7f/Z39V/0d/fn81/yj/Gf8Qfw3/Dj8OfxI/Hb8xPwf/XD9pf3I/fb9Qf6J/qz+tf7Q/gf/NP82/xj/8/7L/pv+aP48/hX+8f3M/aj9g/1d/TH98Pyk/IL8t/wn/Yv9y/0K/lz+mf6m/qj+zv4E/yD/K/9M/3T/bf81/wr/Cv8K/9z+lf5f/jj+Af60/Wb9Jf31/OP8+Pwk/Uz9cP2f/c394f3i/e79D/4t/kX+df7E/gf/Gf8J//v+5/62/nv+Z/6A/pj+kP54/mv+Xv42/vb9vP2b/ZD9iP1+/YP9pv3k/Rr+K/4h/iD+M/5E/jv+IP4P/hH+Gf4d/iH+M/5X/n3+iP5x/kz+MP4X/uj9n/1b/Tn9Ov1Q/Wr9gP2U/br9//1F/lr+Mf7+/fj9Gf4q/g7+4/3f/RH+R/5I/hT+4/3c/eH9uv1m/Rf97vzh/OX8Af0s/Tv9If0E/Qj9E/39/Nb81vwH/Tv9Sv1G/Uv9V/1a/VX9VP1X/Vr9Xv1q/Xb9cf1S/Sn9B/3q/Mf8m/x1/F/8UPw+/Cz8LPw9/FD8W/xr/IP8jvx0/EP8JPww/Fb8c/yB/J783fwn/VL9Uv1J/VX9bP1z/Wf9Yv1u/YD9kf2s/dH97P3x/fP9Bv4g/iT+F/4Y/jf+YP52/nP+Z/5k/nL+jf6w/t3+JP+G/+7/OQBmAI0AugDkAAcBNQFyAacBwAHPAfUBJAI4AjECQAJ1AqUCpQKLAoYCkQKDAlwCSQJgAoIClgK0AvcCSQN2A3UDcQOQA8UD8wMfBGUEyAQkBVwFdgWIBZEFggVkBVkFcgWQBY4FcQVYBU8FPQUKBcMEiwR7BIcEkwSTBKEE1gQbBToFJgUNBQsFBQXkBM0E8QQrBTIFBwX0BA8FFgXlBLIEtATBBJEEKgTRA50DYgMMA8MCqgKzArUCoQJ/AlQCJgL9AeAB0AHNAdIB3AHaAbwBdwEdAcwAmABvADYA8f+6/5H/Sf/I/ib+iP3x/E/8pvsB+1f6pPkH+Zr4Pvi89xj3jfYo9rL1BfVM9MXzZvP18mDyzfFP8crwI/Bs78DuFe5U7YHss+vd6tvpqOh152PmYOVc5IbjFOPz4uHizeLj4jTjmOP945Tkh+W55gDoa+kU69jse+4I8LjxgfMc9Wf2kPe5+Mf5nPpN+/b7jfwD/Wb9sv3G/Z79d/2D/Z39mP2X/dX9PP59/oz+uP4s/8D/UAD7AOEB3QK7A34ERAUABosG7AZPB8AHGAg+CEUISQhJCDoIHAjwB7EHZAcaB9kGigYdBrYFiAWRBaMFpAW8BRgGpAYjB4EH5AdkCOcIRgmOCeoJZArjClgL0QtaDNgMKg1KDU8NTg1BDRgN3wy2DKkMmQxmDCcMEwwwDEkMTwyJDDUNFA62DgwPZA/cDyYQDhDjDxMQnhAtEZ0RERKREuES1BJ+EhYSthFVEeMQZBD0D7APgQ8tD60OUQ5ODmMONA7jDeANMQ5iDkIOOA6UDgEPEw/7DjYPxA8zEGEQnhAREWsRZxEcEbkQPhCvDzkP9w7ADnQONw4iDvkNdA2pDO4LXwvTCkAKywmCCTsJ5QiiCH8IUQgACLsHugfeB9AHeQcUB8sGfQbwBS0FbgTSA0cDrgIBAkcBewCQ/3/+TP31+4X6H/nj99D2xPWw9KHzp/Kt8Znwb+9I7jbtMew060PqUOlH6CPn/OXZ5JzjOOLn4PDfRt+F3mzdG9y/2jTZQNcg1XDTjNJK0m/SA9MU1FzVf9aG19bYpdrV3FPfSOLP5arpde0T8a30YfgV/J3/7QIeBjsJJgyfDn0Q0xHAEjQTCxNlEqkRFBF/ELsP6w40DlIN4AvsCfMHQAaxBDgDJwKyAZIBWAECAdIA0gDLALoA2gA6AY4BkAFEAdAALwBO/0H+Pf1W/Hn7lPqm+ab4fvcp9sj0gPNV8jzxR/Ch72HvZ++Q7/HvuPDj8TbzlvQn9g34Jfo1/Dz+VwCCAoUEQwbXB2IJ4QpCDIQNrA6xD3cQ3xDWEGsQzA8hD28OtA0PDZgMLAyTC9MKKgqvCUcJ8AjcCBYJWwlqCVkJWglkCVoJUQl+CeQJTQqSCq8KoApRCsMJEQlKCGYHYgZRBTkEDQPEAXQAPf8s/kX9gvzX+zj7pvov+tf5l/l++av5Mfr9+u/78/wI/i3/WQCFAaICqgOoBKgFnQZlB/UHbgjxCGkJqwm5Cb0JxAmrCVoJ+wi9CIwIMAiwB0kHCge2BjkG6wUbBpUG7AYYB28H/wdaCEcIHwhUCMcIDQkXCTIJbgl3CRoJmwhFCAMInwciB7kGWQbKBQcFQwShAxADgAIIAsUBsgG1AcUB6QErApACCQN5A9IDMQS1BE4F2AVbBgkH7AfJCHQJAwqKCuoKBAv+CgoLFgv2CsEKtgrHCp4KKgq+CZEJagkECYYIQggvCAQIrwdrB1IHPAcPB/UGCgcqBzQHQAd1B7oH2gfQB78HrweKB0oHCwfVBpoGYAY+Bh0GwgUiBX0E+ANdA3gCfwHOAFsAy/8G/1T+4/1+/e78Vfzg+3b76fpO+sr5Rvme+AH4t/ej92P36faK9mH2EvZj9aP0LPTN8yjzUfKo8TDxlfDS70zvHe/Q7gnuCu077ILrjepz6aXoSOgM6LXnZedC50PnZefR54boPunG6U3qCOvc66Tspe1K74fx6fMm9kn4R/rn+yz9av7I/wwBGgInA1AEPQWfBb4FFQaOBqYGRAbOBXMF3wTUA6cCyQEwAYkAxP8V/4z+//1f/d38p/y8/PL8Jf1G/Vn9bP10/WD9SP1y/fj9lf7r/vb+9f74/sD+LP5//Q790vx0/MP77vow+nr5k/iI97n2YfZA9vf1nPWN9cz17vXO9db1XvYj97r3Svg6+XT6f/tK/ED9gv6i/1wAAQHaAaUCEQNPA7wDQASBBH8EfAR1BDAEwQOCA4oDmgOWA6QDvwOWAw0DdwImAgwCDgJLAuEClQMbBHQEzQQlBW8FyAVRBusGUAd6B5oHvgfPB80H3wcUCEYIUwg2COsHcgfpBn0GKAa/BTIFqgQ+BNIDTwPkAsQC4wICAwUDBgMYAy0DPANpA+ADoAR6BUkGFAfoB7kIbgkOCsAKkgtrDCsN0A1mDuUOQA98D6cPxQ/UD9sP2w/ED4gPNw/qDqYOVw74DZ0NVg0eDeUMpAxmDEEMRAxjDI0MvwwIDWINsw31DUQOpg79Dj0PhQ/kDyQQEhDRD58Pcw8QD3AO1Q1VDboM2QvMCrcJkQhFB98FdQQEA48BIQCy/iP9fvvv+YD4A/di9c7zcvIv8d3vnO6X7ansius76u7oluf35SLkdOIK4ZDfwt3M2+TZ6Ner1XPTtdFw0CTPf82vy9/JzMc1xX/CgcCUv1O/WL/XvzrBXcO4xSvIM8sgz4rTzdfc2yjg5uTe6ezuWPRX+pkAfwasCyYQChRZFxUaUhwVHkEftB9tH5AeRR2uG+YZ/xf4FagTzBBJDV0JfwUGAv/+bvx0+hL59vfH9pL1r/RQ9GT04PTY9TD3hPiF+UT6+Pqd+xT8cPzr/IT97v30/a39RP2p/LH7XfrY+D/3j/XS8zDyxPCE72juke0V7dbssezE7Fbtb+7M70Px+vIZ9X337Plx/DP/HwIFBdsHuwqMDQ4QMxIkFOgVPxf7F0IYVhhGGAMYiRfYFt8VlRQEEy8REQ/PDLoK/AhxB+EFRwS5AjYBw/+B/pH99fyn/LL8+fwp/Rf9/Pwi/W79oP3G/Sv+wf4Y//z+tv6V/oL+PP7K/V797/w9/DX7EfoS+UL4j/f39nj2AfaF9Rj11vTG9OP0QPXt9cn2kfc0+Or43/kC+zj8nv1O/woBcwJ7A20EcAVQBt8GRAe5ByAIKQi0BwEHWQbJBR8FMQQXAwcCBgHL/zH+ifw++zv6HPni9wH3nPY/9p71FvUO9Tn1EfW29LX0IvWA9Zz11vVz9i73uvcx+MH4S/mp+fj5WPqf+qr6u/ob+4/7pftx+3P7yvv9+8P7hPvE+2f87fw1/Zf9Sv4L/4b/xf8RAJUANwHKAVIC/QLmA+wEyQVlBu4GgwfqB+IHnAeLB70HwAdXB+gG3QbwBpEGwgUHBY4E8APuAuMBLAGiAPj/R//Q/m/+1v0t/eD8+PwR/Rj9a/0T/of+cv5I/pD+G/95/9j/tgDqAboC/AI9A8IDEQTjA8gDRwTrBPYEiQRdBIgEagTTA2ADfAPCA7wDkwOVA6EDeANKA10DhwN9A2QDkQPpAwsEBgREBNcEWQWaBd0FMgY5BsQFQAUdBS0FAwWoBHoEcgQoBHIDpQILAosB7gA8AJf/8f4t/lP9h/zh+2L7CfvO+pP6SPoA+sD5a/n4+KT4p/jX+OH4zPj2+G75xvmw+X/5n/nv+fX5rPmH+br57fnM+Yb5b/mD+Xn5Lvm8+D34vvdC98D2L/ao9WL1XvVP9QL1p/R49Fr0EvS986PzxvPf893z+fNJ9KD06PRA9a318/Xt9c71x/XJ9bj1rfXI9fb1FvYe9gP2tfVU9SX1JfX99I30NfQ89FX0JPTz80j0B/Wc9ej1VvYE94r3zfdV+Gr5jvo9+7/7p/zN/Y3+1/5N/0IAOgGiAZQBjwG7AdgBygHHAfEBEwLrAYMBCQF+ANH/Lv/q/v/+/P6i/jn+Ev4G/tD9ov3k/X/++/4+/5f/EQBXAGUAvgCVAW8C5QJDA+cDigS4BKAExAQgBU4FRQVXBXwFXAX7BMYE0ASyBEgE/wMTBB0EvAM+Ay0DhgPVA/YDNAS3BDoFeQWNBbsFGwaUBhYHpwc4CJ4I0Qj3CCgJSQlHCVEJkgnYCcoJdQk9CTkJBwmCCA0I8wfkB3gH4AaZBq4GtwaGBlYGVwZ2BpQGpgapBrcGBAeAB8MHoweVBwAIggh5CBgIIAieCMQIMgiFB1EHQwfHBvMFPwXABDIEfgPHAhECPQFSAHH/nv7H/ef8GfyA+zD7AvuV+sj5CPnL+NL4f/jo98z3Wfi2+Ev4rved9833f/fe9rT2B/cB90j2Z/W09LTzC/I98PnuC+6/7O/qBekf59bk7uHM3gTcyNn012DWANXT0+LSS9IX0iDSVNLq0i/UENYl2E/aAN2Y4Mrk8+ji7NXwy/Rm+J/7+P7CAqAGEwobDdUP8REQE4UT9xN/FK0UXBTeEz0T/BHjD3ENOQs/CVIHfwXjA1cCrQAE/4D9FfzJ+vn54fkv+nT6yPp2+1X88PxT/Qr+Ov9wAF8BUQKMA7kEVgV2BZMF2AX1BakFHwWZBAcEHgPMAWIAN/9G/kf9JvwW+zT6T/lG+F/38/b89iv3Y/fE91j4AvnN+e76dvxC/ioAGgLfA1QFoQYTCKkJJwuPDCIOwA/QEA8R7xD2EAYRwBA1EL4PWA+bDloN2QtlCv8Ikgc4BhQFHAQhA/4BzgDX/z3/2f5s/hH+JP6s/i//Tv9S/8T/nwBdAb4BIwLrAuIDigTJBPsEXwXCBdAFjAVBBRAF1gRxBPkDjQMiA6ECFQKLAecAIQB6/y3/D//Z/q3+3v5T/5r/qf/8/8EAgAHiAU4CQANuBDoFsgV3Bq4HwwhLCZQJDgqbCtwKzwrQCgcLMwsZC9AKlQpnCgMKVAmfCCsI1wdFB2oGtAVqBUYF4QRUBAoEFgQbBNwDiANpA4cDuQPpAxoEUgSdBPsERwVWBT8FSwWEBaMFhwVzBZsFtwV3BQsF4gT1BNgEegRFBFoETQTfA3cDfQOqA4YDRwOFAy8EkgRpBEsEsQQ7BVUFKAVNBd4FXwZ6BmYGcgabBrkGxwbQBsMGnAZ3BmkGTAbvBWUF/gThBOQExQR8BDwEMgRLBE8EHgTTA68D2wM2BHQEewSLBOYEbQW4BasFlwXJBRoGPAYuBiMGJgYjBiMGMgYfBrgFNQX8BAIFywQwBJ4DdAN1AywDiwLjAX8BXgFPARUBqQBjAI0A4gDRAE8AAgBQANAA/AAAAU0BxQHzAdMB0gEMAjMCNAJhAtICFgPOAjoC3AHOAbkBZgEJAfIAEgH6AHAAzP+J/6D/i/8X/7/+9/5r/3X/I/8q/9r/lQCsAFQAXgAWAd4BDQLsAVACWwMqBA4EmAPJA4IErgQMBLEDVAQPBbsEzQOkA18EoAS5A7wCzgJiAw8DpwGFAKwAeQGOAasA7v88AO8AoAAz/zX+3v5FAI4AgP/I/n3/gwBXAGn/b//CAMUBQwErABcA+gBrAfAAtQCXAZ4CWAITAYEAQwELAqwB5QAuAU4CmQKAAXYA1gDvASwCcAEUAb4BdgJHArcB4gHPAn0DZwMfA1QD4AM7BFUEkwQsBecFcAazBtgGFgeAB+sHFwgCCPkHKwhgCFgIPwhtCMgIzAhNCMQHngecB0oHzga5BhYHMgeRBrkFiAUHBlUG6wVmBZ0FVQZ3BqEFzgQUBSoG1AaUBjwGpQZ6B7MHCwdSBlUG4gYxB/sGwgb/BnYHkgc9B+wG3QbKBnkGLQYnBh0GqgUUBf4EZAWDBfgEXARTBIwEQwR1A/ECLAOtA8MDYwP9AtECxwLNAusCCgPyArMCogLKArICEQKFAe4BHQPKAzwDTgJCAvkCLQNnArEBEAIOA2sD0QIpAkUC4AIaA6UCCQLjARoCHAK8AXoBsQHuAZYB7QDDABYB+gAfAIL/4/9sAN7/lf4h/t7+XP+P/lv9KP3N/e39//zr+6P79/sa/LX7Mvso+7H7SPxJ/L37WfuO++r75fvX+3f8kP0k/v39Av6h/vz+b/78/eX+egDiAOj/Yf9hAIUBKgEPADIAwgHVAkMCLQEsASUC0gK7ApEC6QKMA/oDEAQBBCcE1ATwBdoGEQfpBh4HvgcuCEUInQiKCXIKuwq8Cg8LfAtgC/cKKwsMDJIMMgzDCzMMAg0GDSsMjwvfC4AMkwwnDPALQwzGDPgMvwxvDHUM4QxTDWQNKw0aDWoN4A0pDkYOaw61DhoPew+nD5IPfg/ID2QQ0hDJEKEQ0xBMEZgRkRF1EXURgBGDEX8RZREqEQYRQhG3EdwRfhEZER0RSxEbEZ8QZxCrEAARDxEEER4RPRE0ES4RYRGTEW4RLRFcEfIRQRLwEYQRnRELEikSxhFbEU0RdBFcEcwQ/Q9pD0wPVg8ED00OtA17DTMNYwxMC34K+wlgCaoIMwjtB2oHuAZwBqIGiQasBagEPQQ3BPoDlgOWA/4DSgQ9BPUDZgN4ApEBMAH7AAsAW/7n/BP84Ppm+D31ivI58Efteem15Zzixd+W3BjZidXe0UHOcssByoXJQclMySfKdssNzKjLsMu2zazRWdYb21jgO+b267jwvfTo+Jb9aQIAB1gLgQ9zEzwX/hqUHn8hUiMCJLwjviJpITAgTB+lHiEemB2FHEQa8RacEy8ReA/NDS4MCgsvCuUIHwezBTEFTAWzBZsG3weXCD8IuQciCCgJpgmZCSwKqAu7DGAMcgtgCxMMLAwCC0AJnQf1BQAEGwLKAO//Bv/S/U78SPqu9xL1UvOU8jXyxPGN8ePxevLW8h3z2fM29eT2uPjF+vr8If9bARkETAdLCqwM2w5mERkUUxYAGLcZ0hvhHTAfkh9+H3sfph/IH7sfkx9QH6AeRB1uG5YZ5xdEFtYU7RNQEzgSZRCcDqENHg1EDB0LbAphCkkKrwkOCQ8JqwllCuwKMAsrCwQLEwt9C/gLQwyLDAMNVQ0EDS4MfQtBCyMLwwo7CsIJMQk/CAoH/wVHBaoE8wM2A5sCHwKtAUoBBQHsAAsBYAG/AfsBMwLIAuIDKgU3BgwH8wcMCTAKQQtRDHsNxQ4WEDERzxH0Ef8RQxKmEu0SIxNkE3YTDxNSEpMRtxB0DwQO/QxTDEILhgnkBw0HlQaYBf8DfgJxAYwAgv9s/pP9Iv0e/VX9Uf3R/Er8dPxI/fX9//3j/VT+Kv+t/7P/2v+cAKMBUAKGApkCqAKVAnoCnQLdArwCKwLLAQcCUwL0AScB1AA4AYYBCgEaAJn/8f+9AFUBdQGBAR0CRwMoBCwE9gOpBEoGqAcFCAoIsgjoCeQKUAuIC+gLawzWDOAMZAyrC0cLXAtUC6UKmgnPCE4IpAenBp8FtQTLA9QC7QESASwAYf/u/sP+g/4G/nn9C/2//Jv8rPze/BL9Zf0G/rT+9f7R/uv+mf9ZAJQAggDWAKcBTwJkAlECoQIkA0YD8wKxAs4CCAMSAwkDJwNSA1EDOgM7Az0DHQMOA10D2AMHBPQDJAS0BCMFJAUnBZ8FUAbDBgIHVge4B/QHIwh1CLMIjwhTCH4I5QjWCDUItwfGB9cHSAdfBtYFywWtBSAFZATeA5ADQAPOAkUCwAFfATIBHgH2ALwAogC4AMsAsAB6AF4AbgCdAN8AHQE+AU4BgwHkASQCCALdARUClQLUArICqwIMA38DlwN5A38DqwPDA8YD3wMCBBIELQR+BNUE5ATIBOIEPAV/BYoFmgXSBQkGLgZiBpkGlwZyBpAG+AYlB9MGgQavBhEH/gZwBv0F6gXjBZ4FPAX6BNoEugSIBDsE0QNpAysDCwPSAm4CCQLEAZQBYwEvAfgAsABiADQAHQDl/3j/G/8S/zX/Kf/l/rD+tf7M/sD+k/5o/lz+gf7O/g7/Df/r/gH/Xv+a/3L/Pf93/wMAWwBaAGkAxgAjATUBKQFEAWwBbQFzAcEBIwIuAvUB7gE1AlkCGgLWAfYBTAJhAh4C1QHLAfMBGwIaAusBvgHMAQMCCgLGAZsB3AE3Ah0CmAFGAW4BpQGFAUkBTwF5AWIBBAG3AKAAlwB/AG0AZwBOAB4A8f/O/6j/kP+e/7D/jv9N/z//Zf9b/wP/zf4M/2X/Vv8J/xT/if/V/6f/af+Y/wsAOwAHAN7/FwCKAMwAyADMABABVwFGAewAvQD3AE0BYwFRAWkBmgGNATcB+QAKASkBEAHhAN0A8QDbAJgAbABxAHEAQgADAPX/DQAJAMf/ev9p/4H/dP82/xn/Tv+I/23/Hf8A/yT/N/8V//7+H/9I/0T/L/8+/2j/gP+D/4r/kv+F/2r/Wv9f/3L/lf/B/9P/u/+h/6//zf/N/73/2P8aADsAFQDi//H/OwB/AJMAlwC2AOQA8QDKAKUAygA2AY4BkAFoAXkBygEBAugBwgHkASwCMgLgAZEBkwHBAcYBkwFkAWcBggFzASIBuwCFAIsAigBLAP3//f9EAGAAEACy/7X/7f/a/3j/TP+X/+7/7P/E/+3/WwCYAG8ALQAlAEgAVgBEAEsAkADqAAoB2gCUAHQAbgBTACUAHwBPAH4AgABxAHUAeABZADIAMQBMAFoAYgCLAM4A+QACAREBOAFZAWMBbwGMAZ4BoAG9AQcCRgJFAioCOQJWAiwCvQF8AaQB3QG9AWQBOgFFASABpgAvAAgACwDy/7v/i/9Y/w3/zP65/rv+rv6x/uD+Af/N/nj+cP6v/s7+vf7Y/jT/Yv83/yf/hP/q/9r/kP+V/9P/wf9Y/zP/m/8XAC4A/P/i/+L/tv9O/+X+qf6d/q3+vf6x/o/+hv6u/sj+kP4g/t795/30/dr94v1V/vP+OP8V//j+Hv9B/x//7f4I/2P/rP/K/+//NQBzAH8AXwAyABkAJgBHAEYAFwD8/x4AOADw/3P/Q/9s/3X/If/I/rL+oP5G/tL9nf2i/ar9uP3p/Rf+CP7a/dv9AP7//dv96f1D/pb+pv6z/g7/mv/5/w0ABADz/8f/hv9h/3j/tP/3/zcAYABKAPX/mf9j/zv//v7Q/ur+Mf9O/zL/Nf+E/9P/wP9o/zz/XP9+/3P/ff/t/50ADAH6ALgAuADwAO0AlABkAMAASAFSAeEApADlACQB2wBAANf/rv91/xf/1f7Y/v/+DP/Q/kb+s/17/aT9wP2J/Uj9S/1V/RT9y/z2/Hb9uf2a/YT9qf25/Yv9cP2r/QT+Mf49/lH+cf6Z/t3+Jf8x/wP/5P7d/pb+Cv7V/Vf+Cv8u/9v+uP7e/rz+Ff5t/Un9dv16/VL9XP2x/Qv+Lv4r/iP+C/7J/W/9Nf1F/Zv9Dv54/sv+C/81/zv/Hf/4/ur+6v7Y/rb+t/71/kX/a/9n/1r/P//q/mj+/v3O/bD9gv1f/W79m/3G/e79Ef4E/rb9Yf0+/TP9Gf0u/b/9iP7m/rr+lP7U/iX/GP/Y/tr+Kv9s/3T/bv+C/6r/2P/1/8//UP/B/or+ov6g/mD+O/5n/ov+PP6Z/Sn9Lv1w/Zv9jf1R/Qz96/wA/Sf9Of1O/Y/93v3j/ZD9Sv1t/eT9U/6M/pv+k/6D/oX+pP7B/sn+3f4a/0P//P5g/gX+Sv7a/h7/9/6//q/+kP4v/r79nf3f/T7+eP5//lz+Iv4B/iT+Z/5q/hj+2v3+/Tf+D/6x/b/9Vv7N/pv+Bf6l/Z79p/2e/Zv9nP2S/Zn9z/35/cn9bP1i/a39tP0j/X78fPwW/Z79nf1P/S79W/18/Tj9tfyA/N/8Z/11/Qf9xfwV/Y/9nP1H/RH9Jf05/R39Cv04/Yv9y/3v/f/96v2u/YX9qv0G/kH+OP4h/jr+af5p/jD+AP4M/jb+Qv4s/hv+I/4w/jT+Lf4W/ur9zf3n/SD+Lv4N/gj+Qv5s/jv+4/3S/RH+S/5Q/kr+YP58/oD+av5R/kb+U/5x/nr+Wv42/jv+Uv5M/jT+MP4y/hD+5f3o/QH+6P2x/cD9DP4X/r/9iv3P/SH+Cf7J/eP9M/47/gb+Dv5m/qL+mv6f/tr+B////gX/Sv+O/4j/Xv9g/4//sv+6/8r/5v/n/7z/f/9X/1L/ZP94/3n/Yv8//xn/9P7Z/sj+u/6q/pz+mf6V/oT+cP5m/mD+U/5C/jv+Pf5H/l3+cP5k/kL+Pv5k/nz+Yf5H/mP+iv56/k7+UP55/oX+cf54/pn+lP5v/nP+p/62/n/+U/5p/oT+Z/46/jv+WP5g/lX+Tv46/hP+A/4j/j3+Hv7y/f79Lv44/g7+8/0O/j/+V/5K/i/+Jf41/kb+Nf4P/gb+JP44/iT+Cf4E/vz93f3B/cL9uv2H/VX9X/2P/Zf9Yv0u/Sr9Pf0q/eb8pfym/Ob8Fv0C/dn87/wx/T39/PzS/P/8Q/1U/U/9c/2o/bT9r/3P/fz99/3N/cL92/3e/cf9z/0D/iH+Bv7g/dD9u/2T/YH9pf3O/b/9if1s/X/9m/2Z/YT9if28/e793v2S/Wn9nf3x/QL+1/3Z/Sn+bf5W/hf+FP5O/nL+V/4r/iH+N/5J/kf+Pf47/kX+Tf4+/hv++P3m/dv9zP3B/cX9z/3S/dT92f3R/a39gf1y/YH9lP2e/a79xv3S/cz90v3s/QH+//0I/jT+X/5S/iP+IP5d/pz+o/6R/qH+0v7t/tb+q/6b/rL+3P7x/uD+xP7I/u/+Cf/1/tH+1/7//hD/8/7b/vr+Ov9f/1//ZP+E/5j/gP9c/2T/jf+W/3H/YP+K/7X/l/9H/yL/Pv9V/zD/8P7R/tj+2/6//o/+a/51/qH+sP50/iH+Fv5Q/mn+Mf72/QP+Kv4g/vr99P0H/gn+Bf4a/iH+7v21/cv9Ef4Y/tj9w/0G/jr+B/6u/Z/90f3p/cr9qf2o/bX9sv2g/YX9Zf1N/Uj9Sv0+/Sj9Ff0J/QP9Af36/OH8u/yt/MT81vy5/Ij8hvy1/Mf8h/wr/Az8LPw3/AP8v/ur+7b7oPtc+xn7+Prp+tL6rvp4+iL6x/ma+Zj5e/kl+df40fji+Kz4LvjF96j3qfeM9033E/f79gX3C/fe9ob2TvZh9oD2XfYX9hL2U/Z39lv2RvZr9o32dPZR9mH2iPaJ9nz2qPYD9zv3NPco90f3ePeP95D3oPfX9yL4Vfhd+FX4c/i/+Av5NPlX+Z/5+Pk3+lz6jfrR+hf7ZPvF+yn8cvyz/BP9hv3X/QP+O/6S/t3+CP84/4T/zP/9/zUAgwC0AKoAowDaAB4BHwH2AA8BcwG0AZUBZwGBAb4BwwGZAZYB1gEXAigCLgJTAocCogKxAtwCIQNXA2wDfgOnA9kD+wMTBD8EgwS7BM0ExATHBOMEAwUPBQYF+gT7BAwFIAUqBSUFHwUtBUoFWwVLBS4FJwVGBXYFmgWtBcIF7AUgBj4GOQYuBkcGiAa8BsIGugbZBiQHZwd3B2UHXQduB4MHigd+B2wHZwd1B4QHdgdEBwoH6gbhBsoGigYyBukFwQWhBWMFBAWmBGoEQgQDBJoDKQPjAskCqwJZAtwBbgE1ARgB4wCKADIA/v/b/6H/Q//h/qH+g/5n/jH+6f2u/Y/9dP08/e78rPyH/Gn8PfwH/M77i/tC+wr75/qx+kz63vmY+WP5A/lx+Or3jvcx96v2EPaK9Rv1pfQW9GjzmfK68fnwYPDG7wnvQe6T7eXsDewY60HqjunN6O7nGOdi5qTlwuTe4xzjY+KJ4Z3gzN8P3zbeOt1R3KHbCNtc2qzZL9n02NPYqdiE2IrYy9g32cXZhNqM2+/cqN6W4I/iheSU5uDoW+vZ7VTw+fLl9fP44/ur/mIBBwRxBoQIUQrzC3MN2g4yEGcRThLXEh0TNhMCE10SYRFXEGQPdQ5vDVYMNQsHCsYIegcmBsYEaAMzAkABcwCj/9L+Lv7L/Yj9Mf29/FD8FvwO/BD89vvH+6/7w/vY+7r7cvtG+1r7gPtz+zD76fq6+pD6Xvo6+jr6VvqB+sL6HPtw+6X73vtN/PD8lP0u/vD+/v83AWYCfwOQBJkFlAaNB4wIfAlQCi8LPwxSDRAObg62DhoPaw9nDyQP6g7MDpsOOQ66DTgNsQwTDFcLgAqZCbII3QcbB2AGqgX7BFAEpwMMA4cCCQJ4AeIAbwAsAPD/l/9A/xT/C//y/rj+hP5x/mH+N/4A/t39zv29/ar9p/2t/aT9h/1x/Wv9ZP1W/Vf9a/10/WH9WP1+/cL9/f0r/mr+uf79/i//Zv+s//L/MwB/ANMAFwFMAZAB6AErAjoCMQI6AksCPAIEAsgBpQGPAWUBGwHBAG0AHgC3/yL/fP72/Zf9M/2w/Cn8wfth++P6Uvra+Xr5CPl3+O73kfdQ9w33zfag9nz2SvYG9sj1l/Vr9UT1NPU+9U71WPVo9Yz1vvXp9Qf2IfY89lv2ifbM9hv3afe59xr4g/jZ+Bj5Xfm6+SD6dvrE+iD7ifvu+078rPwB/Uj9lv38/WH+nf6+/vL+Pv9w/3X/ev+q/+n/BwAMABYAIgASAOj/w/+n/3z/Q/8b/xD/BP/d/qj+d/5A/u79iv0r/eH8rfyH/GT8M/z4+8P7mPtf+wv7vPqS+oX6bPo9+hr6GPog+hj6Afry+fL5/fkT+jL6T/pl+oP6t/rt+gD7/voX+2D7rvva+/f7Lvx7/Lb82Pz3/B79QP1b/YX9v/3v/QT+E/4q/jf+Lv4j/i3+Rv5g/nb+gv5w/kb+LP4x/iv+9f2z/aT9vP20/XH9Kv0M/fr8xfx3/DT8Cvzt+9L7sft8+zj7Avvm+sb6jvpa+kr6Tvo9+hL66fnL+ar5i/mH+Zz5q/mq+a75wPnL+cH5tfm1+bz5xvna+fX5CPoY+j76c/qI+m36Uvpk+or6j/p6+oH6tvrv+gn7DvsZ+y37RPtX+1/7Xftn+5L7yvvq+/H7BPwy/Fn8W/xM/Ez8Xfxs/HX8gPyI/In8jfyc/J/8e/xE/Cz8O/xF/CX87/vP+837w/uY+2H7R/tY+3b7ePtY+zr7PftY+2L7TPs7+1j7m/vU++r7+Psg/Fn8gfyR/J38sfzJ/OX8Cf0r/Tn9PP1O/XT9hv1u/Ub9Nv1A/UX9PP01/Tb9O/1C/UX9Nv0T/fr8Bf0f/SD9DP0M/S/9Uv1c/V79bf2B/Yv9k/2j/bD9rf2o/bL9u/2j/Xj9Z/19/Yz9af0j/e/83fzQ/K38gPxh/FP8Q/wp/A/89/vi+9n76fsF/Az8APwP/E78lfyv/Kz8xvwB/S79O/1Q/Yz91f0I/i3+VP5x/nL+Zv5n/nH+bP5Y/k/+Vf5Y/kn+Kf78/dL9xP3P/cT9if1R/V79k/2W/VL9Jf1Q/Zr9nP1X/Sz9Tf2H/ZP9cv1b/XD9pf3K/b/9kv16/ZH9rP2N/UD9Gv1A/XP9aP0y/Rf9Kf0y/RD93/zD/Lz8uPy6/L78tvyo/LD80/zk/MH8jfyD/Kn81fzu/Ab9Kv1Q/Wz9ff13/VT9O/1a/af92/3b/eD9JP54/oP+QP4L/h/+Uv5X/i3+D/4n/lz+ff5v/kL+GP4E/vP9yv2R/Xf9lP3G/dL9tP2W/Y/9iP1n/Tv9If0e/Sb9Mf1B/Uv9Rf05/Tj9PP0z/R/9Hf03/U39Rv0z/TX9UP1q/XH9cv2A/Zz9rv2k/YP9av1u/YD9gv11/Xv9pf3O/c39qv2P/Yn9gP1o/VP9Uv1g/X39rv3i/fX94v3U/eH96v3J/aL9t/0N/l7+fv6D/pX+rP6p/oP+Tf4Y/vf9+f0W/iX+Fv4N/ib+Of4B/ob9HP39/AD96Py6/Kr8zPz//B79Gv37/NX8wfzD/Lv8n/yd/OX8Vv2Y/Y/9gP2k/dL9zP2j/Z79zv3+/Qz+Df4X/iP+KP4n/hv++f3V/dT98f35/dH9oP2V/aX9o/2G/Wz9df2i/dz9AP73/dn92P0C/iP+Fv4J/kP+uf4a/zX/Jv8f/yP/Gv/2/r/+j/6R/tT+JP80/wT/4P7t/u7+lf7+/ZX9mP3T/fX95v3T/en9Hv42/gb+sv2L/bL97v34/d395v0y/oj+pv6M/mj+Xv5r/nv+gP51/mf+b/6Q/qj+k/5i/lD+cf6T/oD+RP4c/iL+Lv4b/vz9Af4w/mL+fP56/mf+UP5G/k/+Tv4u/gr+Ff5R/oP+i/6J/p/+sP6P/kv+Hf4U/hD+CP4T/jb+T/5R/k/+Uv4+/gr+3v3Y/d791f3V/ff9IP4i/hH+Hf41/hj+yf2l/d/9MP5C/jD+S/6Z/sP+mf5a/lP+gv6g/oj+Yv5o/p7+yv62/nX+Sf5S/l/+P/4L/gb+Mf5L/jT+Gf4j/jb+Jf4H/g/+Ov5W/lX+XP6D/qz+sv6k/qj+z/4E/yH/GP8E/xH/P/9f/07/LP8z/1z/b/9Z/0f/WP9u/2j/Uv9B/yn/A//t/gX/KP8h//z+8P4J/xH/7/7G/rr+wv7N/uH++P78/vD+/v4q/zP/8f6q/r3+Dv8t//j+z/77/kL/Q/8A/87+2v77/v/+4/7N/tT+7/7+/un+v/6j/p/+nf6S/pP+qv6+/rf+q/60/rz+oP56/nz+of6v/pr+k/66/uf+8f7h/tj+1P7H/rr+u/6+/rf+uP7V/vb+9P7X/sL+u/6o/ob+d/6N/rH+y/7g/vj+B//6/tj+uv6u/qz+pv6e/qP+v/7j/vD+4f7L/r3+pf50/j/+Lf5A/lP+Uv5V/nD+kP6O/mb+Ov4j/h3+FP4A/vn9GP5R/nn+b/5G/i3+MP4v/g7+5v3c/fL9Cf4P/gr+CP4J/gf++v3c/bT9nf2j/bb9uf2t/a39xP3c/eH93f3l/fH98f3m/eH96f3x/fT9/v0a/j3+T/5O/kv+UP5U/kf+Mf4o/jT+Tf5o/oX+of61/rv+u/62/qT+hf5v/nv+oP6+/sn+0/7q/gD///7l/sz+yv7h/gD/G/8x/0r/af+H/57/sv/F/9P/3P/z/x4ARQBQAFoAiwDUAO8AyACdAKkA0wDdAMwA1wAJAS8BLAEZARABBgHyAOcA9wASASMBNwFZAXUBbwFYAVQBZAFlAVIBUQF6AbEBywHKAc4B3AHaAb0BpAGmAbYBtwGzAcIB2wHZAbQBjgGCAXUBSgEWAQIBCAH9ANAAngCEAHoAagBNACYA/f/d/9L/zf+0/4n/cP9//5b/i/9n/1P/Zv+F/4v/bf9F/zX/RP9S/zz/Ef///hP/I/8B/7n+ev5W/jj+Dv7c/bP9mf2L/X79X/0g/c78iPxZ/DX8Dvzu++P77vv9+/X7zfuZ+3j7dft5+3L7bvuH+7f71/vS+737sfuu+6j7pvux+8P7xvu3+6f7lvtt+yL71/qx+qL6ffpA+hX6Dfr8+bT5UfkW+Rb5J/kz+Vf5q/kT+mf6svoS+4H75vtP/N38hP0f/q7+Wf8iAMkAHwFJAYcB1gEEAgIC9QH5AQIC+AHRAYwBKQG4AFMA+v+R/xD/mf5S/i/+B/7M/Z79n/3R/Q7+PP5g/p7+Cv+Y/yAAkAABAZQBTAL+AoMD4gM9BKIE/wQ1BUYFUAVrBZQFswWuBYMFQwUGBckEcQT4A4UDSAM8Ay8DAwPNArgCxQLXAtsC3ALrAhgDZQPAAw4ESgSRBPYEXgWmBdEFAwZKBosGrAayBqoGmQaDBnAGWAYpBuYFqwWEBU8F6QRjBOkDkANFA/gCrgJ6Al8CUAI4AgwC0wGoAZkBkwGCAXUBjgHRARsCRwJYAmACawJuAl4CPgIlAiwCSgJdAkwCJAICAuMBqAFFAdsAkQBkADkAAgDP/6r/kP9w/0X/Ef/V/pv+eP54/o/+oP6l/rf+4/4O/xH/9f7o/gH/H/8b/wD/+P4P/yX/If8K//L+2/69/pn+d/5X/jX+EP7u/c/9sP2T/Xv9Z/1S/T79Lf0c/QT95/zS/M/83Pzt/AD9Hv1J/W79fP16/YH9lv2q/bf90P0F/kj+ef6S/qL+s/65/q/+of6h/q3+vP7N/uD+7f7s/tz+xv6s/pD+dv5q/nD+gP6O/pn+pP6v/rL+qP6f/qj+xP7k/vz+Gf9I/3r/kv+R/5X/sf/V/+r/9/8QADgAUABLADcALAAsACgAGAAFAPz//v/3/9T/nf9q/0v/NP8X///+/f4M/xD/Af/r/t3+0/7O/tv+Af8v/1f/hf/C//3/HgAzAFUAhwC0ANYAAgE6AWgBfAGGAZYBnAGJAWwBYQFrAW8BXgFBASoBFwH9ANIAngB2AGwAeQCBAHoAewCUAKwApwCQAIwApADGAOwAHgFVAX8BmwG6AdQB0QG4Aa4BxwHgAd0B0wHZAd8BxgGSAWEBNgEFAdkAxAC7AKIAegBgAFQAOAAEANv/0//d/+T/7f8GACgAPwBPAGYAfwCWALUA6gAnAVMBbgGMAbIBxwHBAbYBvgHSAd0B3AHaAdUBvgGSAV8BLgH7AMcAngCHAHQAVwA5ACYAFQD0/8r/tP+9/83/1//w/yMAWABuAHQAkADAANYAyQDLAP0AOwFOAUMBTwF2AYABVAEhARMBGAEEAdoAwgDFAMIApQCBAHAAbQBlAFoAWQBiAGsAcwCEAKEAwgDaAOwAAwEoAU8BawF4AYEBlQGxAcMBxwHJAdYB6gH1Ae4B2AG/AasBngGQAX0BZwFZAVEBRAEyASgBKwEpARQBAQEHARsBIAEVARsBOwFUAUoBOQFIAWwBeAFhAVMBawGFAXcBTgE8AUsBVgE/AR4BFwEpATABHAH9AOwA6wDsAOUA2gDYAN0A4ADaANcA4gDyAPIA5ADkAPoACwH+AOkA8gAUASIBDwEDARsBQAFHATEBIQErATgBLwEbARUBJAE1ATMBJQEgAScBJQELAe4A7QABAQYB8gDiAO4AAgEBAewA4QDlAOkA5ADiAOwA+wAKARYBHwEiAScBNwFMAVkBXgFsAYIBkwGZAZ8BrwHAAckBzwHZAeYB6QHdAcoBugGxAagBnQGUAZYBnwGgAZABewFyAXIBcAFoAWUBbQF+AZUBrQG/Ac8B5QH9AQkCAAL8ARQCOQJLAksCVQJqAm0CUAIrAhUCBQLoAcoBvQG4AasBlgGHAXcBWgE3ASABGgEcASQBNQFNAV8BbQGBAZwBrwG2AcAB2wECAiECLQIuAjMCPwJGAjwCJwIeAiACFgL2AdYBxwG7AZkBawFQAVIBWAFOAUIBRQFNAUkBPAE1AUEBXgF/AZsBrAG5AcwB4gHwAfAB6wHvAfkB/QH1AesB5QHjAdsBxwGqAY8BfwF1AWkBVgFGAUABQAFBAT8BPwFFAVEBWQFXAVIBVgFnAXsBjQGdAa4BvQHJAdMB1QHJAbcBsgG9AcIBtAGjAaUBsAGuAZoBhwF/AXkBbwFmAWABXwFmAXwBnQG1AbkBsgGxAbcBvgHEAc8B4gH7ARICHQIVAgcCBQIJAggC/AHvAekB5QHdAdQBxAGsAZUBjgGTAY4BfQF0AX0BhAF3AWMBZQF6AY4BmQGmAbwB0wHeAdkBzAHDAcYB1gHlAe4B+QEMAhYCCALrAdcBzgHEAbcBtgHHAdQB0AHFAcABugGpAZ0BqAHAAc0BywHVAfUBFgIgAhwCHgIsAjMCLQIkAiYCMgI8AjwCOAI0Ai8CKAIeAhAC/gHuAeMB3QHaAdkB3wHoAeoB4AHSAcsBzQHSAdkB5QH4AQsCGAIhAigCLQIuAiwCLAIyAjoCPAIyAiUCIwIwAjkCLwIYAgsCDQIMAvoB4gHVAdcB3AHeAeEB4gHdAdgB3QHmAecB4AHgAe8BBgIZAisCPAJGAkcCSAJPAlUCUgJOAlMCXgJfAlYCTwJSAlgCVAJEAjICJgIhAh4CGAIOAgkCDgITAg8CCAIGAgkCCwIMAhQCIwIvAjQCOwJHAlACUgJVAmACbQJtAmECXAJlAnICbwJfAlkCZgJ0Am4CVwJHAkwCVAJQAkYCSAJWAmACYQJiAmYCagJpAmgCagJtAnACfQKUAqkCsAKrAqICnQKcApsClQKOAo8CmgKlAqYCmwKSAo8CjQKHAnwCcgJuAm8CcgJ0AnQCeAKBAosCjgKOAo8CkwKRAo4ClAKmArsCyQLJAsICvAK+AsECugKtAqwCvgLSAtMCxAK+AscCzQLHAr4CvgLGAs8C2gLlAugC5ALjAuYC6QLoAusC9QL5AvMC7gLwAu8C4ALQAtIC3gLgAtgC1QLcAtoCygK9Ar4CwwLAAr0CyALcAugC6ALkAuUC5wLoAu0C+gIHAwwDCQMCA/0C+ALzAusC4QLZAtwC5QLnAtoCyAK+AroCswKrAq8CwQLRAtUC1QLZAt4C3wLfAuUC7QLwAvQCAwMbAywDLwMnAxwDFQMVAxgDEwMDA/oCAgMOAwgD8wLnAu0C9ALsAtoC0QLWAuIC7QLyAvIC9QICAxcDJAMlAyEDIwMmAycDKgMyAz8DTwNfA2kDYQNKAzcDMwMyAysDJQMrAzEDKQMaAxIDDAP8AucC4ALoAusC5ALhAuwC+QL2AuwC6QLyAvoC+gL2AvUC+QL+AgEDBAMIAw8DFgMYAxQDDAMDA/kC7ALhAtoC1QLPAtAC3gLyAvcC5ALJAr8CxALHAsMCxwLgAv4CDQMJAwIDBAMJAw4DEAMLAwMDAwMUAycDKwMiAyADLgM5AzYDLQMpAyYDGwMSAxMDFgMUAxYDJQM3AzYDJAMWAxYDGQMQA/4C7wLxAgYDIQMtAycDIAMmAykDGAMBAwIDGQMoAyMDIAMwA0ADOQMkAxsDJAMqAyADEwMRAxgDIQMoAysDJQMUAwQDAAMHAwkD/wLzAvQCBgMZAx0DFwMVAx0DKAMrAyUDHgMeAyYDMQM2AzEDKwMwAz4DRQM5AyADFAMdAysDJwMRAwADBAMPAwoD9ALeAtoC4wLqAukC4QLXAtEC1QLhAugC5ALdAuMC8wL8AvgC8gL2Av4C/wL4AvAC7QLwAvQC9ALtAucC5ALgAtQCxgLCAsQCvgKyAq4CuQLEAr8CswKtAq4CrwKzAr0CxwLJAsUCxALJAskCwQK8AsECzwLZAtYCxwK3ArUCuwK4AqcCmAKdAqgCowKSAosCkQKRAokCigKaAqMClwKFAoAChgKJAoYCiQKTApgClwKVApcCmQKaApsCmgKUAowCiQKNApgCowKqAqYCnQKbAqUCrgKtAqYCpQKoAqsCsQK6Ar8CuwK5Ar8CwQK0AqICngKoArECsQKzAroCvQK2AqsCpAKgAqECqwK2AroCtwK7AsoC1gLXAtIC0ALUAtsC5QLtAuwC5wLnAuwC6wLhAtgC2QLcAtgC0QLNAs4CzgLLAsQCugKzArYCvQLAAsACxQLSAtgC0QLIAskC0ALSAtIC2QLnAvAC7gLmAt8C2QLUAs0CxgLDAscCzQLMAsQCuQKxAqUCmAKSApoCpQKnAqYCrAK4AsACvgK5ArcCuAK6ArkCugLCAtEC2wLTAsUCwgLJAscCuQK0AsECyQK+ArMCvALMAsYCrgKiAq0CtgKpApMCigKRApkCmgKXApICjwKPApECjgKGAn4CdwJyAnACdQJ+AoUChwKEAn4CdwJ1AncCdgJxAm4CcgJ2AnUCcgJzAncCdwJ1AnMCbwJpAmUCaAJsAm4CdAKHApoCngKUApAClAKUAokCfgJ/AokCkgKXApcCjgKAAnUCcQJtAmMCVwJQAk8CUQJWAlwCXAJUAk4CTwJVAlICSAJCAk0CYwJtAmUCWQJaAmcCcQJuAmcCZgJmAmICWwJWAlYCVAJNAkcCRgJKAk4CSQI9AjMCMwI2AjICJQIeAiQCMAI7AkQCSQJIAkcCTwJbAlsCUQJRAmYCfQJ9Am4CaQJ0AnYCZQJRAkgCQwI6AjICMQIxAikCHwIdAh8CGwINAgEC/gECAggCEQIdAicCKQIiAhwCGwIfAiMCJgInAigCKgItAisCIQITAgwCCwIGAvoB8QH1Af4B/gH4AfwBCAILAgMCAgITAiYCKwInAioCMgI0Ai8CMAI3AjYCKgIgAiECIAISAvsB6gHgAdYBzQHLAcoBxgHBAcABwAG3AagBoQGmAawBqwGtAbgBxQHJAcYBxwHIAcEBtwGzAbUBsgGsAa4BtwG2AagBnQGfAaEBlwGEAXgBdwF4AXYBdwF/AYYBiQGGAX8BegF8AYYBkQGUAY8BiQGMAZcBngGcAZQBkAGUAZcBkAGCAXYBbQFhAVQBSwFIAUgBSQFHAT4BLAEbARUBFgEXAR4BMgFMAVkBVQFUAWABaQFlAWIBdQGRAZ8BmwGYAZ8BpQGYAX4BaAFgAWABXgFWAUkBPAE3ATgBOgE3ATABLwE5AUkBVQFcAWUBdwGNAZ8BrAG1AboBugG0AagBlAF8AWYBVAFAASgBDwH8AOkA0QC7AKcAkQB5AGwAeACSAK0AzQD4ACABNAE4AUMBVwFjAWkBgAGqAcsB1gHhAf4BEwIBAtUBtwG2AbwBuwHBAdUB7QH9AQUCBQL/AfwBDwIvAkECQwJNAm0ChwKHAoYCpgLXAuoC2gLQAtQCvAJ1AisCDAICAuMBuQGvAbcBkwEuAaoAHwCJ//7+vv7d/iP/X/+r/x0AeABwABwA4v/v/yYAeQD+AKwBPAJ/AokCdAIqAp4BCQGpAHoAUgA2AEgAcgB2AEcAGgAMAAUA8//6/zkAlwDwAFEB0wFaArgC9AI4A3EDXgPsAlcC0AFGAagAIADb/7X/cf8G/5j+HP5k/YL82fvA+zP8+Pzk/d7+yf+IABIBUQE7Af4A9QBTAewBewLvAkgDTgPDAr4BpACx/9b+FP6e/ZD9uf3L/a79gP1e/VX9c/3H/Uz+6P6J/yQAsgAsAZoBAAJSAoQCnQKuAqoCagLfAS4BhgD+/5H/Rf8g/xf/DP/t/sP+n/6D/nD+c/6o/hn/tP9aAP4AlAELAkoCUQI9AiUCBwLcAa0BkAGIAYEBagE9AfQAiwAOAJr/QP///t3+7/5A/7D/CgBIAIIAvQDgAOUA7wAXAU0BcgGEAZMBlwF+AVMBJQHsAJEAHwDC/4b/Sv/8/rn+o/6s/rj+xv7o/hP/LP85/1T/f/+j/8D/+P9TAKgA2AD3ACIBOwETAbUAWwAkAPj/wv+X/4j/hv96/2b/TP8e/9z+qP6Z/qP+s/7Y/ir/kf/f/wYAIgA3ADMAGwAQAB8ALgAsACsAMgAkAO7/q/98/1b/Hv/f/rf+p/6T/nX+Zf5z/o3+pv7D/uz+F/84/07/Yf9w/37/kv+t/8f/2//t//n/8v/T/6X/cf87/wj/4/7O/r7+rf6j/qj+sf6u/qD+mv6k/rb+xf7V/u7+EP8z/1D/Yf9q/2//cP9q/1f/PP8i/xD/Bf/6/uj+z/64/qb+mv6O/oT+gf6I/pX+pP6x/sD+1P7r/v/+C/8O/xP/IP8u/y//H/8K/wH/AP/9/vP+6f7h/tP+uf6f/pP+lP6b/qT+tP7M/tv+3v7d/uP+6/7v/vj+C/8d/x//FP8S/xr/G/8J//L+4v7U/sD+rf6j/pr+h/5y/mz+d/6A/oD+gv6L/pH+jf6H/or+kf6S/pT+ov67/s3+zv7F/r7+uP6w/qX+m/6R/oX+ev51/nL+bP5l/mH+Xv5U/kX+PP4//kf+Tf5V/mH+av5q/mj+b/57/nz+cP5q/nL+ff55/m3+Y/5d/lD+O/4t/ir+Lf4p/iD+GP4T/hD+D/4R/hb+HP4i/iz+N/5B/kP+QP4//kP+Sf5L/kv+Tf5Q/k7+Q/42/ir+Iv4d/hv+Hf4h/iX+KP4o/iX+H/4c/iH+Kf4u/iz+Kf4p/ir+Jv4f/hf+EP4J/gP+/f34/fT99P35/fz99/3s/eb95f3m/ej97v36/Qf+D/4S/hf+HP4d/hr+GP4a/h3+G/4W/hT+FP4S/gz+BP4A/v399v3p/dv90v3R/dX91/3Z/d796P3w/fH98P3y/fn9AP4F/gr+D/4P/gr+Bf4F/gj+CP4D/vv98v3q/eT93v3X/c/9y/3N/dH90/3X/d/95/3r/er96f3p/ej95/3q/fH99P3v/er96v3r/eX92v3R/c39y/3G/cL9xP3H/cX9wf3A/cb9z/3U/dT90/3W/dv93v3e/d793/3h/eL94v3h/d/92v3S/cr9xP2//br9tv2z/bL9s/21/bf9u/3A/cL9w/3E/cj9zf3S/dL9z/3O/c79zv3K/cX9wf2//b79u/25/bn9uf25/bn9uP23/bP9sP2y/bf9uv24/bj9u/2//b79u/26/bv9tv2u/af9qf2v/bH9rv2u/bH9tf22/bX9tv26/b79wP3A/bz9uf24/bn9uv23/bL9rv2p/aP9nf2Y/ZX9kv2P/ZD9lf2a/Zr9mf2b/aL9p/2p/an9rP2v/bD9sP2v/bD9sP2t/aj9ov2b/ZT9j/2M/Yj9hP2C/YL9gf1//X39gP2E/Yb9hf2I/ZD9lf2V/ZT9l/2c/Z/9oP2j/an9qv2k/Zv9l/2Y/Zj9lv2S/Y/9jf2K/Yf9hf2D/Xz9df10/Xf9ev16/Xj9eP16/Xz9ff1//YD9gf2B/X/9fv18/Xr9ef15/Xj9df1y/XL9dP12/Xf9dv11/XX9df11/XT9dP12/Xf9eP15/Xr9e/16/Xj9dP1x/XH9dP12/Xj9ev19/Xz9dv1v/Wz9bP1r/Wn9Z/1o/Wn9af1p/Wn9Z/1k/WX9av1t/Wz9a/1s/W/9cP1x/XP9df11/XP9dP12/Xf9dv12/XX9cv1s/Wn9a/1w/XP9df12/Xj9ev17/Xn9eP16/X79gP1+/Xv9fP1//X/9ff18/X39fP16/Xj9df1z/XL9dP12/XX9cf1w/XD9cf1x/XT9ef17/Xv9ff2E/Yj9if2J/Yz9jf2M/Yv9jv2Q/Y39iP2I/Yz9jf2M/Yz9jv2O/Y79j/2S/ZP9kf2S/ZX9l/2V/ZP9k/2V/ZX9lv2Z/Zr9lv2Q/Y79kP2Q/ZD9lf2d/aP9o/2i/aP9pP2i/Z/9nv2e/Z79nP2d/Z79nf2b/Zn9l/2V/ZX9mP2c/Z/9oP2j/an9rP2r/az9sf24/br9t/20/bT9tf21/bT9sf2u/an9pv2k/aP9pP2l/aT9oP2b/Zn9nP2i/af9qP2m/aT9p/2r/ar9p/2n/an9rP2u/bH9tP21/bL9rv2t/az9q/2r/a/9sf2s/af9qP2t/a39qf2t/bn9wv3B/b/9wv3G/cP9v/3D/cz90P3K/cP9w/3D/cH9wf3I/dH90P3H/cH9xf3L/cr9xf3D/cT9xf3F/cn90f3W/dX90v3U/dn92v3X/dT91P3U/dP91f3a/d393f3d/d/94v3j/eL94f3g/d793v3l/e/99v33/ff9+v3//QP+Bf4I/g/+Fv4b/hv+G/4Z/hT+D/4N/hH+Fv4V/gz+//32/fP98P3s/ef95/3t/fj9Av4H/gv+EP4T/hH+Df4L/g3+Ef4U/hr+I/4v/jf+N/4t/iL+G/4b/h/+Jf4w/jv+P/4//j3+Of4x/if+Jv4v/jX+NP4w/jH+MP4n/hz+Hf4p/jT+OP47/j3+Ov41/jb+Pv5D/kD+PP4+/kP+R/5I/kf+Rv5D/kL+Qv5C/kP+SP5L/kr+SP5I/kb+Pv43/jz+SP5N/kv+Uv5g/mb+Xv5a/mT+bf5l/lX+U/5b/l7+Wf5b/mb+aP5b/lD+T/5S/lP+VP5c/mD+Wv5U/lv+aP5s/mn+b/6A/or+hv5//n/+ff5x/mT+Z/5z/nX+bv5s/nT+ef5y/mr+Yf5O/jX+L/5J/mn+d/51/nb+ef5u/l3+W/5v/oT+kP6c/rL+w/68/qT+jv6H/on+kP6c/qz+sv6m/pT+jP6R/pf+mf6f/q3+t/6y/qb+of6a/oL+ZP5h/n3+nf6s/rP+vP64/qP+k/6d/rH+s/6p/qr+uP7C/sj+2P7s/u7+3v7V/tX+yv6v/pz+ov6w/rj+wP7O/sv+sf6a/qL+v/7V/uL+8v7+/vH+1P7G/tD+3/7n/vX+Cf8M//L+1/7T/tz+2v7V/uH++v4D//r+/v4c/zf/Mv8U//n+6f7W/sL+wv7a/vb+//75/vr+CP8U/xD//f7q/uT+8v4S/z3/ZP92/2n/RP8U/+j+zv7V/gX/Sf94/3f/Sf8H/83+s/7L/gz/Uv97/3v/Xv8y/wT/7P7+/iv/TP9M/z3/Of89/zT/Hv8P/xb/J/8x/zP/N/9A/0P/Ov8w/zT/Rv9Y/17/WP9O/0b/RP9F/0f/Rf9E/0j/Uv9c/2P/Zv9f/1L/Rv8//zX/JP8Z/yr/T/9r/27/af9s/23/Yv9Y/2H/cf9y/2X/Xv9n/3P/dv9x/27/c/99/4L/ev9q/1z/Uf9C/zj/Q/9i/3z/hf+I/5L/k/9+/2b/Y/9s/2z/av93/4v/i/93/2r/bv9u/2f/bv+L/6D/lf98/3H/cv9v/23/ff+Y/6b/of+b/57/lf92/1X/Sv9R/13/c/+a/77/wP+i/4n/gf95/2n/bf+Y/8n/1v/D/67/oP+L/3f/f/+k/8L/yv/N/9D/v/+U/27/aP94/4v/pf/J/9z/x/+Z/3n/cv92/4D/mf+6/83/yP+7/7P/rP+m/6z/wP/V/9r/z/++/6j/lP+R/6j/yv/d/9j/y//A/7P/o/+g/6//wv/J/8r/0//e/9v/zP/C/77/tv+u/7v/3P/v/9//wf+y/7D/rf+s/73/1//k/+D/2P/R/8b/vP+8/8b/1P/l//n/AADv/9T/yv/P/9P/1P/g//L/8f/b/8b/w//I/8n/0f/o//7/AADy/+L/2//X/9L/0v/b/+3/+P/t/9b/yv/V/+T/6f/w/wYAGAAMAO7/4f/o/+n/3P/e//3/HwAjAAoA8P/k/+D/4P/k/+7/+P/7//L/4v/d/+f/+P8AAAQACQAPAA0AAADz/+r/6P/v//7/CwATABgAGgARAPv/5P/b/+H/7f/+/w8AFwAMAP7/9//x/+j/5f/0/woAGQAiACQAGAD9/+f/6//+/w4AHwAxAC4ACwDk/9v/7/8AAA0AIAAuACEABgD9/wMABgAIABkALgAlAAYA/v8QABoACgAAABIAJQAhABQAEgAQAP3/5v/m//v/EQAiAC4ALAAcAAgA+v/w/+7//v8cADAAKgAZAAsA+v/k/+T/CQA9AFUASgAxABsAAgDj/8//1f/y/xUANABGAEcAMQAHAN3/zf/h/woALwBIAFUATAAmAPj/5//9/x4ANwBNAGEAWAAjAN//uP+8/9v/CQA8AF0AUwApAAAA6v/c/9X/6P8dAFsAdQBhADUABQDe/83/5v8gAFcAaQBXADIABQDZ/8T/1f8BAC8AUQBlAGIAPgANAPL/9v8JACUASwBqAGUAPQAaABEACgD5//b/GgBJAFEANgAfABcACwD//woALwBMAE0APwAxACAACwAEABcANABJAFAASgA3ABwABAD8/wYAIgBEAFsAWQBFAC0AGQAOABAAJAA7AEUAQwBAADYAHgALABMALwBEAEwAUABUAEYAKQAXABsAKQA2AEUAWABcAE4AOQApABoACgAKACAAOwBIAEYAPwA0ACIAFAARAB0ALgA/AEoASAA9ADEALAAxAD8ATwBXAE0AOgApAB4AGAAZACkAPABHAE8AXABkAFUANAAXAAcABAASADgAXwBjAEkAMwAqAB0ADAAWADkATQA7ACQAJgAtACAAFQAsAFcAbABhAFAAQQAoAAkA/f8LACUAQABZAGkAYABAAB8ADAAFAAsAIgBFAF0AYABTAD8AKQAaACEAOwBTAFkATwA5AB0ACAAKACEAOwBLAFgAXwBTADkAJQAhACUAJwAuAD4ARQA4ACIAHAAlADMAPwBIAEYAMwAcABIAEQAOAAwAGgAyAEAAQABDAEoAQQAeAP3/+v8QACcANgBJAFwAWQA6ABgAEAAeADEAPgBJAFEASwA4AB4ACAAAAAYAHQA7AFEAVwBJACsABgDy//z/GgA1AD8APwA+ADkAMQAuADEAMQApACIAJgAtACwAJgAlACoALgAsACUAHAAZACAAKQAlABIACwAdADYAPAAxACsALQAoACIALwBQAGQAVgA3AB8ACgDw/9//9f8rAF0AbwBjAEgAJAAAAOn/7f8FACYARwBiAGoAWwA/ACkAHwAeACgAPQBQAEwALAAIAP//CgAUABMAGQAxAEkATwBCADAAGwAAAO3/+P8bADUAOAA4AEgAUQA9ABoACwATABcADwASACkAOwA2ACwANQBHAEoAQAA1ACcADQD3//v/FQAsADUAPwBMAEkALgAVABMAHQAlAC8APgBBACwAEwASACIAKwAvAEAAVwBSAC8ADwALABIADwARAC0AUgBcAEgALwAmACAAEgACAAAADQAfAC4AOQA7ADIAIAAPAAkAEwAoAD0ARwBFADgAJgAXABsAMgBIAEkAOQAqAB8ADwAAAAkALABJAEkAOgAxACkAFgABAAEAEwAhACgANwBKAEkAMgAdABYADQAAAAgAMABSAE0ALwAcABgAEQANACUASABNACwADgAQABsAFgAQACMAPQBCADUANQBJAFQARgAtABkABADs/+T//v8lAD0AQAA/ADwAKAAHAPT/9//6//T//f8rAGIAdgBmAE0ANwAcAAMACgAyAFEATAA2ACkAIAAOAAYAGwBAAFcAWgBZAFAAMAAGAPX/BAAjAD4AWABxAHkAZgA+ABMA9P/n//L/DgAtAEEARwBBADMAJwAbAAsA+//4/woAIAApAC4ANAAuABUABQAYADgAQgA4ADQANAAiAAkADQAmAC4AJQAuAEgARgAeAAgAHgAuABEA9/8PADsAPgAiACUARQBMADIALQBDAEAAFgD9/xAAJQAcABwARgBsAFUAGQD4/+//3//a/wgATwBlAEUALwA2ACUA8//m/x4AWgBUAC8AJgAnAAIA1//j/xwAPwA/AEUAWQBNAB0A+//2/+//5f8CAEQAZwBMACAACgDw/8T/tv/l/x8AMQArADMAOAAaAPT/8P8BAAAA9/8FACQALQAgABgAEgAAAPX/DAAvADMAIwAhACYAEADt/+f/+v/8//T/CwA5AEIAIQATACwAOQAbAP3/BAAXABIACwAfADkAOgAzADwARAAxABcAFAAbAA0A9P/0/xMAMQBAAE4AXABQACYA/f/w//r/AwAKABgAKwAyACsAKQA6AEwASQA1AC0ALwAeAPT/2P/w/yMAQwBIAEwAUgBCAB0AAwADAA4AEQAaAC0APgBCAEYAUwBhAGEAVwBNAEUAOwAoAAwA7f/e//D/GgBFAF0AYQBSADAABADp/+3/CgAtAD8AQABEAFkAcABrAE4AOwA6ACsAAADh//P/GwAoABUACgAMAAkABAAZAEYAXwBKAB4A/f/u//b/FwBPAIUAoACSAFsAEADZ/8X/yf/T/+n/DAAkAB0ADgAOAAwA/f/6/xsAQgBEADoASQBZAD0AEgAXAD8ARQAiABUAKgAkAPL/0P/f/+v/0f/K/wMARAA+AA4ACAArAC0AAQD0/ygAXwBbADgALgAxAA4A1f/L//z/HAAAANz/5f/3/9r/tv/U/xQAGgDp/9r/AAANAOz/7P8rAE8AIwD6/w8AGADU/5f/wf8IAAEA2v/8/z8AKQDL/6j/0f/f/8P/4v9HAH4AVAAjACIAEgDQ/6P/xf8BAB4ALQA8ACIA0f+J/3r/iP+d/9j/NQByAGMALgD3/7j/kf+//zcAmQC0ALcAqwBTALj/WP97/9L/AAAjAGoAmwBuAA8A2//X/9D/zf/4/0IAcwBzAF8ATgA/ADEAKgAmACoAOQBBACgA///v//j/+//6/xcASwBnAGMAXgBSACIA8P/9/zoAWgBMAE4AagBoAEkAUQCIAKIAgwBjAFYALgDx/+j/IwBhAIMAtQDvANwAbwAKAOP/zf+6/+j/UwCSAHkAXwB5AIAARAAPACUAUgBYAE8AWgBaADwAKAA3AEsAYACWAM4AsQBKAAcABQDx/8D/3f9WAKYAkwCHALsAvQBTAAEALQBtAE0AIgBbAKcAjgBNAGQApgCTAEwATQB6AFsAAQDu/yAAKwANADsAtwDyALcAbwBbADMA2v+0/wIAagB9AGEAZgBxAD8A+v/+/0UAeQB5AHMAcABDAPP/y//m/w4ALwBxAMYAzwBxABMA+f/f/5n/jP8CAIQAggBGAF4AlQBbAOT/5f9NAFwA/v/w/14AkgBCABIAXACMAEkAHgBmAKQAdwBWAJMApwA/APL/MQBpABgA1f82AKsAegAUADUAeQAUAGb/Zf/5/z0AHQBNANcA+QB7AAIA+/8cACQAPgB/AK4AnwBhAAsAw/+6/+j/AQD+/ykAcABMAMf/mv/x/wYAm/+T/1cA4QBtAO//WADVAD4ATf9r/zkAUQDX/xgA/gARARcAfv/b/yQA0f/H/4oAJgHOACQA+/8BALn/gv/c/14AawAjAAUAAADK/4z/pP///zQAIwD6/+b/7f8AAAsAFQA9AG0AUwDj/5T/t//r/8f/mf/S/yQAAACT/37/qv+M/zb/Rv+8//H/vf+i/8b/uv9q/1r/tv8FAA0AHgBSAEQA3P+S/6f/xf+3/9n/XQDYANcAigBXAEYALwAkAFMAuQAsAXgBdgE9ASMBTQFuAVcBZQHhAVcCRgIPAmAC9wIHA6oCzwKWAxUE9wMVBOoEowV0BeoE9wSDBd8FEQakBn4H5gekB0oHVAejB/IHSQjHCEoJhQlfCS8JeAlOCiYLiwu2CxcMcwxHDOULPwx0DZAOFQ+uD+IQDhKaEgkT5RN0FNYTrRI/EoIShRJZEtgSuBOnE3ISUhG6ELMP7A2YDFIMBAz9CmAKCQuqC8wKSgnACKoIZwdWBWsE1wTEBIQDigKlApcCewFwAJUACQF+AGX/3v6h/q79R/yh+9v7APzL++v7fPyg/OP72/r4+db4SPcR9sz17vWe9QD1vfSl9OHzb/JT8QzxzfDj7/Xu6u5R7xfvYO5M7vzuRe+17k/use7p7h3uBO2j7KXsN+yx6/Prw+xA7V3tne3L7VjtpOx/7L7ss+yk7EvtR+6Z7mzuuu5n72rvx+6V7vXu3+4m7untke4o7yTvOu/S7y/w4++a79DvBPDt7xrwyfBS8WLxmvFR8u/yHfNw8z/09vQo9U/1zfU/9mj2svZX9/f3afgM+er5k/oH+6z7SPxG/Ar8kPy9/ZD+Ef81AMIBUwLNAbYBlwJAAzoDrwMDBcsFWAUBBbUFYgY9BmgGtwfkCM4IlAh6CZIKkwpQCh4LOww6DMYLegz2DZwOaQ6oDl4PXA+fDmwOKg/0D1UQthAmETkRGBFWEeERShK9EoUTFBTPE0kTWBOoE4ATSxPWE6QUuBRqFLQUThUtFYIUVRSfFIUURhTbFAEWfBYyFigWbBYIFhAVxxRnFboVNBXFFPcUBBVVFH0TGRPbEksSiBHWEEEQ4g+tDzUPWA62DbENew1xDGgLOAvwCmIJfgfyBjoHjQYWBYgExATtA+ABfwBEAIj/zP2c/Gv8mfus+W/4lvhI+Iz2IfUq9dT0mPId8FzvPO/V7fzroes17KvrC+oI6dXoAeg+5sXkE+RQ4xviE+GQ4DHgxN963zffu9413trdT91H3CjbZtrZ2XzZ49k126bcwN0F323g0ODn31XfNOBI4Vnhp+HC42vmXecP59jnzOm16hLqEOrP65ft1+2W7WLuvu9O8D7wz/BC8pnzDfTF8zLzkfLm8SfxgvCN8J3xEvPq8xT0XvQA9Tn1w/SI9Er1fPZD98/31vg8+jr7p/so/BH97f1a/qH+Mf/j/zsAJAAQAGQAFwHyAeMC8QPwBJIFxgXHBccF1wUZBsgG1QfZCJMJPAoLC8ALDwwyDJoMMw2BDYQNxg2DDkkPyw9xEJ0R3BJ/E7UTQxQyFbkVoBXEFbYWuxcCGAsY0BgAGnIaJxpMGh8bdBvIGjIadBqgGtwZDBlWGRoaGhqmGdsZdRpMGogZURmiGX4ZCxlvGXsaxxpAGkga/hrLGlMZWxi6GNwYoxdtFocWyBawFR8UvBMdFL8T0BKpEj8TQhNhEpARPBHfEEwQ5Q+9D40PTg/wDgUOiQxJC7AK+gm5CNcH9wcCCNwGTAWLBAkErAIhAcUADwFvAAX/Kf68/WP8NPqz+Bz4MvfF9QH17vQm9GLy7PAD8EDuZutI6dLoeegJ57LluuUJ5gjlXuPP4lXja+Oa4uHhquEN4VLfKN3Y287bStxl3DHcWdy93Dvcido72cbZXdtm3EPdht/O4gTlx+Xl5vboPOrV6W3pUepb63LrxOt77VTvwO+Y72Hwc/FT8Zfw0PCj8Y/x3/Au8YnygPPX86z0AfaF9uf1QfUd9d/0cPSO9E718vVu9mT3ofhJ+X75J/oU+yr7gvpv+jH7oPtz++D7Zf3e/on/KQBHAQQCrQEAAdkA7gDVABoBOQKRA1wEzQRWBb4FvwXEBTgGzAYoB48HRQgHCa0JnAr4C0wNVQ5XD04QsBCFEJ8QRBHPERQS5RKDFPYVqRZrF8wY5BnlGZoZBxqzGsIawhq3Gywd7B0DHlIeth5VHncdRh3LHfUdkx2hHVEemx4lHvsduR50H2QfNh+aH9QfBB/fHagdHh4KHl8dMB2pHagdqRyfG18bYRvRGu4ZahkxGasY0RceF60WLhaZFTYVBRWtFBEUbBPTEhESBRHcD9kOGw6YDTANugwsDIgLqgpvCRUICAdEBl4FWASnAzEDLgKBADH/xP5B/sz8Pvu7+pD6RPkr9+H1fPV39H/yGfHx8K/wXO/77X3t8OxG61XpaOgR6BfnvuUp5TrlxOSV45niDuIs4affJd4A3dTbhtql2XzZodm12evZeNot273bEdxQ3L3chd1m3vneet+c4FHimeMS5Knk5eW75k/msOVA5mnnted55zro4enR6r7qIet77GftEO2Q7O/sie2B7VPt1+3K7nrv6O9j8Mzw//A88ZPxt/G78Sby7vJr85nzOPRj9UL2n/ZS95n4dfl0+Y35YfoY+w77MPtp/Pb9sP72/rf/nwDFAG8AnABWAeUBSwIeAz0EAgWPBZYGBQgaCa8JXApYCzIMvAxODScOJA8nEB8R4hFyEisTLxQRFZIVHhYBF8IXChhxGI8Z6hrRG44cqB2nHs0egx7BHnIfzR/THyIgkiCCIDogeyD4INQgYyCzIHEhOCEnIPMf8SBjIXEgoR8ZIJ0g1R/KHgcfyh9ZHwMedB22HUId2hv6Gj4bbRuoGsYZtRnxGY0ZphjnF2QXwBbrFSIVgxQPFMkTiBMIE1ASoRH4EBEQ7g7WDdAMoQteCloJlgi9B8UG5gUQBf8D2gL+AUgBUAA//4L+1f2E/M/6r/kt+S/4Wva99PDz8vLr8LrumO0W7fjrV+pV6RTphug359/l++QX5NHijuG24AXgIN8t3mvdtNzI27XapNmK2FHXBda/1JHTpNIp0hLSMdJ60v3SqNNg1DnVPdYq19bXn9jX2RHbx9tf3KndZd964LTgGuEZ4rbiU+L64dfiWeQ55ZTliuYo6E7prulF6p7r2+wu7SLtou2P7ibvRu+S72XwW/Hm8fDx3/Ei8rTyJPM9823zJfQR9ZL1zfV99q33nPgJ+Z/5tfqg++H7Ffzk/OT9WP6M/kP/WwANAUMBnwFGArUC0AIbA8wDiQQ3BTEGgQeuCJkJsgoPDB0Nkg3+DesODhDiEIURaRKEE2gU9hR7FTcWHxcLGO0Y0Rm9GpobQhzLHIwdoh6wH3YgRCFeIk4jjCN1I8gjYySQJGEkkiQcJTElySTIJE0lWyW3JHYkCiVVJaokLCTHJGsl1STPI7Uj+iM8I+whjyHrIWch8x8fHzofxx5QHVUclBy8HMEbkBowGu4Z2xiWFyAXHRerFgEWyBWwFQEV9hM8E7oS4BHFEOcPKQ8eDt4MuwuWCjgJ5AfXBr8FbARKA40CrAFhAFH/3P46/tT8avu++hn6hvid9nT1ovQJ8/rwq+/57q7tz+ud6j3qY+ma5wnmWuWp5EDjw+Hd4BLgzN5n3WDca9sx2gfZRNiH12DW/dSx03nSWdGK0AfQiM8hzyHPQs/6zqHOJ8+E0LXRftKz03bVwtZJ1yHYzdlI2+Dbfdzc3SHfed+639Pg/+Ew4hfi7uI/5NnkDeUH5ojnWuid6I3pMutb7Nzs1e2A76vwzvDc8InxQ/KE8szyhfNH9L70PPXu9XX2yfZq92P4H/mT+Xj66vsP/Y/9Lf5c/20A6wB3AZcCsgMmBGEE8QR2BXYFdQUtBk4HCghoCAEJ6gnGCpILjQyeDY4Ojw/REPsRrhI2ExkURxVVFjMXDBjWGIIZRRovG+gbXBwNHTceSh/VH0cgICEPIp8iJSMZJB8lsyUoJvomwyf3JwUonChfKYkpbCnTKW4qWirbKfIpaSodKisp5ChoKVUpSyizJzgocihQJ/YlvyX2JTol7yNvI6MjSyMuIj8hySAiIBgfRh7WHSwdCRzpGgUaChnnFwsXmhYiFlgVcxSWE5MSaxFpEJ8PxA66DasMnwttCiAJ4AeWBiMFxQO6ArgBawAq/2r+yv2S/AP7+/ln+Vv4tfZi9aH0f/ON8b/vxu7c7Tnsi+q+6UHp8ucW5unkfuSs4wjiiODT30rfLd7G3LPb4NrP2X7YSNdC1jTVG9Qx03rSqtGP0FrPZc7DzSfNZczCy53L08vky8vLJcxIza/O188M0bfSYtRT1dLVwNYV2O7YJNmg2b/apdvE2+Tbytzn3WXeqN6R3+TgsOH34Z/i6OM45Vzmweda6W7q0eo96w/sw+wF7VHtC+7Z7l7v2O+E8CnxufGQ8qnzZPSq9EL1ivbD92f4H/mB+uX7gvzp/Af+e/9RAMUAxAERA5MDTwN3A3gEegUHBsMGDQg5CcwJTApMC40Mqw3aDlIQuhHBEqUTrhSzFYsWcheXGL8ZrRp8G0Qc7ByIHVseYR9NIB4hJSJiI3YkRyUZJvkmtCdcKCop+imQKi4rISz4LC4tPC3SLXEuMi6aLeMtqy5uLlItGS3wLe0tfCyYK1AszCyPKzMqfyoTK80poSf0Jm8n1SYdJV8k6iS1JP8icCEAIXQg5R5cHcQcUxwtG+AZIxmPGKIXvhY9FqEVhxRYE2gSVhHvD6QOpA2BDBALtwl7COwGNwUOBEUDAAJaAFf/6P7U/fz7wPp1+qb5tvca9qv17PSr8kfwVe/M7uTsS+rx6KXom+eg5UPk5+M346PhMuBt33fe0txL237a0tmd2C7XEtYu1S3UCtPf0bbQy89Ez8HO0M2tzN7LRctsyn3J/MjQyIfIWcjByG7JwMkgynXLdc35zuHPGdG70tjTS9QL1VDWINc415zXpNhD2QzZM9mA2tfbKdxS3IzdWd+K4E7hpOJ85PzlF+dW6J3pceoY6yLsSe3o7TPu0+6072HwEvE08l/z+vOA9Lf1LPfp90T4Z/lA+5n8Kv31/Wj/vgCFAVACegOFBDIF9AX1BrUHEQiXCHcJMgqsCn0LyQzoDZAOUg94EIURTBJkEwkVmBa3F+UYYhqUGzIc5hwjHlgfBiCjIJUhaCLEIkcjaySXJTEmtSbHJ/0osCk1Ki0rWSwnLbstdi4UL2Qv+y8rMRAy9zG1MToyujIKMvswJTEUMukxmzD9L30wZjASLyQuii60LlotzSujK+Yr3SofKYoo9SiBKM8mdSUnJaokHCNjIW0gsB9pHgkdQhyhG1QaoRh8F/4WUhYcFfQTVRPTEsURPBDaDuIN8AyfCxsK1Ai7B2cG0wR3A24CIwFI/5L9uvxB/Br7Xfks+ML39vYX9RfzBvJj8Q/wKu687NPreOpz6L7m2OXw5F3jw+Hl4Dzg0d7q3JLb2trL2SPYydYz1orVEdRi0mjR0dCszxjOFc3JzDLM28qeySjJ0cjAx23G2sXXxW7Fr8TJxBTGb8cfyO7IrMqgzLvNZ87Bz5nRu9II043TkNQX1dfU8NQM1jPXhtfN1wfZntp72/jbRd1I39DgmOGH4grkkOXI5hXohOmM6hXrruuE7CTte+0e7kPvevCV8dnyJ/QO9dL1Lvfz+B36nvqa+2r99v6W/zIAjgH3ArkDfATwBWQHBQhsCIIJuwoPC/IKrgtFDZQOWQ9fENkREBPSE8IUCxYcF88XuxgOGiYbthtRHGcdkh5jHw8g6yDUIZciVSM2JA8luiVgJjYnLSgQKdQpoCqiK8osqi3pLektWS4nL44vgC/pLwAxoTEnMbowZDEeMoYxbzCDMCcxYDBpLpctXi6GLg0t3ytPLKwsRyt6KTcpmymWKJomsiXjJU0lkSNOIhoimSEPIJkeDB6SHVgc9BoiGmsZJhi3FtEVPhVeFDgTNhJUEUAQ/Q7PDbwMnAtdCgkJrwdvBk4FFwS4AoABkQBu/7z9GfxB+7z6ifnW97j2Kfby9NryMPGN8Mfv+e0b7DHrc+q46KTmneVc5XDkr+JX4dDgGuCs3krdfdyq20Law9jF1/fWwNVN1C7TXtJh0RvQ7s4kzpLN5Mz/yw7LScqryQTJXMj+x/3HDMgWyIbIk8m2ynjLTcy/zUjPAdAp0MzQ/dHJ0vrSeNOH1DTVGNVF1YXW+9eo2CfZidpV3FTdwN3s3gXhzuK2457kMObT59jomOmx6u3ruewd7Y7tOO7y7rXvpPDH8QTzNfQz9f716/ZA+Lf52Pq9+/D8dP64/4YAZQGtAv0D8wTRBewGBgjJCGEJJwoHC8ELbgxTDWoOiw+8EPoRFhMQFDwVpBbOF3oYJxlGGnobRBzxHBUeax9EILAgXSFhIiEjfCMXJDklTSbXJjgnBigqKSgq4SqgK5EshC00LpkuAS+wL20wwjDCMBQx1TE7MtsxkjEmMsEyMzISMe0wmzFhMe4v/y5hL4svVy4ILfUsDS26K84pISlVKYYoqiaPJZIlBiVBI8ohliFnIREgax6WHfMcchuXGYYY+hffFkcVNhS+E+oScREkEHcP0g6gDTEMDwszCjUJ8wefBmIFLgTVAk8B2P+a/mL97Pt8+of51/i39yT28fRc9H/z1fEw8F/vyO5v7anraeqK6SPoUOYJ5VfkOONv4fjfTd+l3mzdRNzI22bbW9rz2NvX8tas1SvU/9Ie0v7Qi88+zkzNYsxUy3XKF8oEysnJTsnpyOHIA8n7yOzITskkytfKJ8uoy8fM9s2BzsDOc89h0MPQ2NCZ0fTSxdPo05fUVdYA2MrYltk82/fc1d143vDfyuH54s7jUeU953joJelp6knsme0a7tTuGPD+8DrxyPEi82D06PSI9fL2gviI+ZX6XvxT/oz/TgBzAeoCBATOBO4FYweOCEcJ+wnKCnILCAzvDBsOFQ/FD40QkhGOEmkTYxSRFbsWzhfvGBgaDBvLG5UccB0aHoQe8B6GHywg0yCMIUsi6SJtIwwkzCSBJSAm0CaiJ3soRykDKqEqFyuEKwcsjSwHLZ0tXy7/LkEvWy+UL7EvcS8zL3kv+y8IMLQvpC/RL4Avny4DLvYtsS3KLPsrxyt3K2gqRCngKLwo6Ce1JhEmxiXhJIIjoSI4IjkhgR8kHoodvxw+G+UZVhnOGIQXBRYkFYgUcRMeEkYRvRDPD4wOkA3hDPILsAqKCZcIewccBsMEhQM1AtkAnv93/kf9LPw7+zT68Pi698n2yvV/9ErzcvJx8cnv/e2+7LTrJupu6G3n5ebL5RXkwOL/4ffgdd9d3v/dad0T3MbaIdp32RDYfdaM1eXUxtNm0nzR7dAY0AHPNs65zQnNHcx4y0bLJMvTyonKfcqryvnKXMvRy3XMdc2nzpXPD9Bj0M7QK9F10QHS5tK501HUINVc1ovXWthF2bTaN9xV3Wve4N9K4TTiGuOM5B3mM+dK6B3qKuxv7SXuQu+f8EHxT/EB8o3z1PR49XT2NvjK+Z36j/tN/RL/CQDAAAsCgQNPBL4EqwUDBw0ItQiNCa4KqgtsDEwNUQ4qD9MPnRCiEa8StxPWFP8VChcFGAgZ9hm6GoQbZxwaHWcdnx0XHqMe+x5lH08gfyFdItIiXCMnJN4kUiXUJaEmgSccKHQozyhRKd0pVirUKooreyxOLakttS3yLXouzi6pLn8uyC44Lz0v8i7qLi0vKC+oLjEuIi4eLrotIy2yLEEsbitWKnAp4yhzKO4nVCeUJqEllSSGI1Ei8CDGHxAfZx5THSIcWhunGlIZlxdhFrgVsRQeE/QRlBH6EHgP5g0hDYoMOgulCb8IPggmB5EFXgSIA0IClABg/8P+5v1y/BP7Fvro+Dz3qfWa9JbzKvKv8JvvuO6b7VrsROtR6lLpR+g75xzm5eSy44HiN+H23+7e993H3I7bsdoE2gTZzNf01nPWmdVJ1ETTztIw0vjQxc8jz57Oss3ezMXMDc0FzdLM/sxUzTjNxsyazL7MrsxQzAjM6cu4y5rL8MuszHPNUM6Gz9fQyNFv0kLTVdRt1ZfWANhq2Z7a7duK3fDevN+P4P7hZOMA5IHk5uWk55roMOme6ozsuO2F7nzwYfNa9R/2YfeR+f76AftV+x39C//o/6YASALSAyoEOQRJBcYGbgeaB3EI0wnJCkYLCgw5DWsOkg/XEBMSNhOPFBYWMxfDF2gYThnKGdUZeRoCHEkdqB0dHlgfRiAFILYfqCAJIlsiCCJ/IpIj7SOdI+gj+ySzJcMlJCYgJ84nxyfFJykoXSggKB8ouChgKbcpGyrAKjorXSulK0AsriynLIUsdCwmLJUrMisLK70qZSp4KqwqLCoqKcAo+SicKFAnQyb2JTwlcSPcIX8hSiEDIHke8h3RHb0cHBs5Gs4ZkBiXFiwVgRSUEzASJxGVEK8PYA5qDdkM8AuqCsEJNgk/CNgGzgU0BT4E5gITAuoBZwETALP+u/2J/LD6zvh390r23PR+84/yzfHo8ArwVu+W7rbt/ex47NXrBetK6obpS+jI5qrl9uT043/iSOGF4IDf4t1r3J/b6drA2afYPdgR2H/X29bJ1vjWlNao1f7U0NSO1ObTN9Pi0rvSZdLU0TbRqtAT0EHPP85YzbrMJ8xey6DKXcqByqXK3sqoy/zMOs4xz3HQRdIl1J3V+daF2N3ZqNpp27PcFd7C3ureXt8Z4FfgJuCK4NHhDOPD49Pk3Ob46EvqnOv/7dnw5PJy9K32P/nK+mz7kPxC/hD/0f4V/1YAKgH3ABYBPAIqAyMDeQMrBRgHGAgGCewK7QzYDVkOrw+BEbwSkBPQFDMW6BYrF8sXqRgoGWoZ7xmGGsgaChvAG4cc4hw4HRYeHR++H04gUCFgIukiOCPIIzYkCCTZI2YkMyVXJRUlPyWeJWcl1yTdJFolXCXnJAMl5SV9JjImuSXHJRkmMSYpJlMmoSbOJpsm4SXdJEEkWSR3JAYkmSPiIzIkbyMkIsYhMiLcIYMgnx+2H2Mf2B1IHLgbSBvmGTEYNhevFuIVGhXZFIEUSxOpEXEQeA9UDpUNwg3yDfkMWAtiCgAK+QgkB6MF9ARgBFkDLgIuAS4AEP/s/cP8ofvK+jL6UPkP+CD3sPbX9Tb09PLJ8n3y6/Al767uye697eTr6+rK6gTqkejQ59DnMufa5SblQ+XH5FrjW+JL4vvh5+Ak4DfgFeAl30/eLN733TfdwNwY3WLd3NwV3MXblNvt2hvasNmc2XLZHtnG2HXYQNhE2G/YitiU2KjYu9i52MzYFdld2YXZz9lg2sjas9qf2kPbftyT3UjeC9/736zgB+Gl4d7iOeQy5Q/mQed66Djp2+kv6wbtY+4J78Tv8/D18XHyA/MP9Ab1ivU89ob3tvg7+cH5//pn/Db90f3i/goAsQBCAVkCigM4BNwEIwaVB3kIMAlnCqELEQwuDP0MRA4EDzoPwg+7EHoR2xFoEkETAxSlFHkVaRYTF4AXBRiWGOwYJhmFGeUZGhp3Gj0b5BvhG6Yb/Ru6HBQdCB1KHeodNB73Hc8dAx4iHgMeIR6fHuIepB51Hrke7h6PHgce+x1NHnIeYx5xHoweWx7qHaAdlh2GHVgdQB1VHWMdQB3sHGYcthsaG8gaixoZGpYZUBkMGUwYOReJFlcW9xUxFagUlBQrFPYSwRFTEQsR+g+ODt4Nzg1ODTkMbgslC48KVgk5CLQHSQeDBroFSAXZBBMEKwNdAn4BfACy/zn/nf6Y/ZD82vsa+/j51/g9+OT3Lvcu9nj1IPWg9Lvz2PJT8vzxg/H68JvwU/DL7+/uEe507fTsRux/6wPr2up56oTpaOjM56TnYefk5pLmg+ZL5tPllOW35avlGeWF5H7kseSC5A3k3ePo47HjJOOn4lviBeKb4U3hA+F24LzfRN8e3+fecd4I3v/dTd613v/eGN8p35DfWuAQ4V7hj+EE4oDilOJ74sHiWuO748/jCuSJ5PPkOOW65ZPmdOdF6EnpbupJ69LrdexP7Q3ut+667/nwx/EX8qrytPNw9JL0AvVd9tX3g/jj+Nf5B/uY+8D7VPwz/aP95v3p/oEAiAHBATgCZwOABP4EjQXCBhMI3AhwCVMKOgulC9sLdwx1DWEOHg/jD68QVhHfEWYS0xIWE2kTChTiFLIVVBanFowWOBY4FsQWdBfKF84XyxfSF8AXkxdjFz8XPxeUF0IY7Rg/GVEZfRnfGToaQBrdGUcZ0xisGKAYYxgLGPoXQBhjGP4XURfoFuAW4RaxFnUWUhYsFuAVfhUnFdoUjxRPFBkUxRMzE4IS8xGTESoRjRDIDwcPZw7yDZENEw1TDGILbQp9CXsIaAdwBrkFSQUUBfUEogT2AzUDuAJcAqUBngDn/67/QP8D/nL8Z/vX+iD6R/nm+PX4n/iY95z2PfYC9lX1i/RH9F/0NvTC82zzJPOA8pnx9vCk8DDwjO8k7wXvp+7K7djsIexu66fqI+oF6tjpSemu6GPoOej35+PnOOiQ6H3oROha6IboNOiG5y3nXOeK51XnAefy5ijnYOdb5wDnduYb5hTmFubn5dblROb25mDnc+eR58jnw+dz5zfnPudK5y3n+uaw5irmluV35RDmGeco6AXplOnf6ULqFesW7Kfsuezw7Kntcu7Q7v7ue+838L/w9vA18bPxU/L48rrzqfSS9S/2bfaE9r72R/ca+BT5Cvra+oL7JPzV/Hb97f10/lz/ewBDAXcBdAGaAdAB8AE2As4CagPHAz0ENAVGBq8GbgZFBqMGNgegB/0HdQjmCC0JWgl0CW0JbQnOCZwKgwtCDM0M9gyZDB4MQgwHDZENaA0pDYENFA4fDrYNig3GDewN2A3xDVEOfg47DgIOQA6jDpcOFA6NDUcNLQ0dDQwN6QywDHgMQgzjC0gLwgqcCpoKMgpPCXgIGwgSCBMIKwh9CL4Icgi1BzEHPQdfBwMHTQbWBboFewXMBPQDTwPgAoICLwLWAUUBhQD2/7r/c//V/jP+/P3y/Yn9yPxF/Dj8MfzS+zr7p/op+tT5zPnc+XT5avhS99P27PYo9z/3Mff99qL2P/bu9ZP1FfWj9IT0p/Sr9FP0tPML83/yEvKx8Urx5PCR8E7wBPCn7z3vu+4f7pvtgO3O7RfuCu7T7c3t8u0G7gzuR+6+7ijvYe+R783v6O/O77jvye/E727v8+6j7m3uA+5p7eXsgewE7HXrNutm657rjut267frMOx57ITsnOzn7Eftse0u7pjuuu7I7kHvQ/BF8bjxqfGO8azx7/Ec8g3ywPFw8VvxcvFe8Qrx2fAV8XrxnPGW8c/xSPKc8rPy7PJs887zx/PE82H0fvVX9n32R/ZB9o327/Y191L3Vfdn97P3KPhz+Gf4Rfhd+JX4jfgx+NT3yPcD+En4fPip+PP4cfkZ+rP6Dvs3+2L7p/vt+x/8O/xT/JD8J/0H/rv+6/7l/jb/1f89AFQAlgAoAXsBIwGEACkA8/+P/zb/Uv+0/9n/uv+b/2b/6/6P/u/+0P9WAEoARQCWANIAuwClALgAqwCTAA8BHAK2AkUCjgFtAYABDAFjAFMArgChAB0Ay/+//37/If9N/9v/3f8o/67+7/4m/6H+4v2m/bD9Xv3U/K/8+/w7/Uj9Uv1G/ev8ePxv/OD8VP1o/Rf9jvwe/DL82Px+/Yz9Mv0H/RP91vw8/Mz7v/ud+xb7jPpZ+hb6O/kY+IH3t/cx+H74tPjv+Of4Wvh/98f2afZn9rT2HvdQ9zz3UPfj96X4BvkN+UP5zPkx+ib65PmX+fz4+/cO94f29vXp9NvzovMc9Ff0+vOh86Pzg/P58r7yivPj9K/1pfVo9Wr1i/XB9VX2SPci+J349PhF+Tf5lvjQ92T3Hfd89pD16/TU9AP1KfU09RH1svRp9LH0Z/W/9Uv1pfSo9FH1zPWN9eb0jPTa9Jb1NfZd9jv2SPa59jj3Z/dY91/3nff291T4nvin+HX4bfjk+KT5Pfqb+vb6Sftc+zr7J/sG+3P6ivkA+Tj5pvmS+Qf5j/hL+Ob3Zvdg9zH4W/n1+Zf5qvj19xH4Avky+u36NPvW+2L9Nf8wAEsAngDMAR4DpANwAxEDjwK5Ad4ARQB7/zL+ZP00/uf/fQBk/yD+/P1z/nv+IP70/Qf+Of6o/gv/m/5t/fX8Mv4qAEcBcQHfAUIDMgXaBm0HggbUBAYEvwScBRcFqQPfAgAD+gJYAscBwQECAkYCcwIwAlABkQC8AEwBCgH7/1n/tP9IAGsAYQCKANYAVQE/AikDSwPGApYC9QLnAtkBmgANAPT/pv87/xj/Jf8s/2H/2/8HAH7/1f7u/p//4/88/zX+if1p/Zr92f34/f/9Nf7E/k//Of9z/rr92P2z/l7/D//X/XH8kvt++wj8qfzV/Jb8qPyE/Yf+mP62/RD9af0V/gL+GP0T/IT7ffve+1P8UPyr+w37LPvn+4H8nvx3/Ev8KfwT/Pj7rftP+1j75vta/DD8zvvp+3H8yfy+/I/8Q/yu+wz7yvrA+mz64/nB+Sb6gvqF+on63fpO+5372vsH/OL7bPsX+zT7gvuY+2z7MvsC+9z61vrz+gv7/vrm+uL64PrD+qb6wPoX+3X7q/vS+yn8tPwo/U/9Xv2b/dr9rv0g/cT87/xO/Xn9cv1b/Rz9ufyR/NP8Ef3l/Kn87Px5/ZX9Kv3r/FT9CP5m/lT+MP5U/tX+gP/4/wUA3f/x/2UA5AANAfAA6wAyAYMBawHGAAQAwP8bAKIAzACKAD0AOwCHANkA6gC6AKYA7gBQAUYBzgCKAPIAswEaAvcBwQHrAWUC2wIYAzIDSQNgA1cDJgP2Au0C7wLAAlwCCQL6ARsCPgJeApAC1AIcA18DkwOeA3EDNQMyA4AD3gPhA38DMANrAw8EiwSnBMQEMAWeBaUFYAVBBVQFRQXvBJQEZARABAQEygO3A8wD9QMqBF4EdQRqBFkEYgSDBKMEqQSHBFMENwRJBHEEkQSsBM4E7wT/BP0E7wTOBKIEgARjBCgExwNtA0YDSANgA44DzwMIBC4ESwRUBDcEGAQ9BJcEvgSFBC8E+wPWA78D5QMxBCoEuQN6A9kDUwQ4BL4DpAMNBGUETwQABLoDggNrA58DAwQ/BDoELwRABFgEbASJBJ0EmASgBNUE7gSWBAwE7ANMBI4EQwTAA5cD2AMiBDMEDgTUA6EDkwO4A/gDHAQEBM8DwAP2AzoEQgQZBBcEZQTHBPsEDwUqBUwFaAWFBZYFcgUlBfcE9gTZBIEEPARABFEEPgRMBLMEGgUaBe8EFwWIBc4F1gXtBR8GNgY1BlMGeAZSBvgF2AUcBnQGogazBrIGkwZ6BqMG8QYDB8gGnQbBBg4HTgd9B50HpAekB8QH9wcUCCQITwiJCKQIpAiwCLoIlQhkCG8IpQinCHEIZwirCOcI6AjiCPcI+QjWCNEIBQkhCfMIvgjNCPQI3wikCJUItQjECLAInQiUCIIIeAihCOsIDQnpCLsIwwj0CBEJCQkBCREJGwn/CNUIzgjvCA0JEgkPCQsJ7Ai4CKQIxgjnCNEInQiECIMIfgiACKAIvgixCKAIzQgXCR8J3giwCMQI4AjPCK8IlghoCCAIBQg5CHQIbQhKCFAIZAg2CNEHmge8B/gHCQjvB8YHlwd9B54H7gcZCO8HrAeuB/IHFgjlB5YHfweqB80HrgdWBwUH6Ab+BiYHNAcOB74GbgZLBl4GeQZpBi0G8wXlBfgF/gXkBcAFsgW9BcwFxAWjBYYFiAWpBc4F3wXeBdoF1wXXBdoF0AWaBUEFBwUbBUcFKgW7BFwEUQRwBHUEYQRYBFQEPwQvBE4EgwSMBGgEYQSfBOQE2gSFBDMEGgQoBC0EEwTlA78DsAOxA60DkQNeAyUDAwMJAyUDKgP8ArQCigKfAtMC4wK0AncCdAK0AvcCCAP+AgUDEwP8AsgCrwK8Ar4CnwKEAoYCgAJTAicCLgJYAm4CXwJAAiMCCwIKAigCTgJhAmMCXwJNAi8CJQI/AlYCVwJuAsACEgMRA9ECrALCAt4C5gL3AhgDGAPpAsQC3gIWAy4DFwP2AvICEwM9A0cDHgPeArsCxALbAuMC1gK8AqcCrwLaAgYDEgMQAyMDRgNRAzUDCwPtAvACHgNeA2sDKQPaAs4C9AIFA/YC/AImA0kDVgNoA3wDcgNgA48D+gM2BAIEqwOVA74D4APhA9oD0gO/A7YD0QP6A/sDyAORA4EDkgOiA54DiwN0A2IDVgNRA1cDZANyA3QDbQNxA5EDxwPyA+4DvwOQA4YDlAOWA4IDbANiA1wDUgNEAzEDHgMbAyUDEwPQApIClgK+Ar4ClAKKArQC0QK7ApQCeAJdAlICiALfAu8CogJeAmkCiwKGAn8CkwKUAmsCZQKyAvYC2wKfArAC7gLwArQCkAKcAp8CigKBAogCdgJQAk8CjALgAhIDCQPbAsUC8AIrAyQD4wLIAvICFQP+AtwC2ALOArACuwL0AvkCogJbAoACxAK4AnUCXAJ5ApYCpwKtApQCcAKPAgEDXQNhA04DXQNVAxED7AIqA2kDPQPiAtICBgMmAyUDJQMgAxsDRwOSA4YDEAPYAlAD8AP/A6QDdgOOA60D1gMVBBIEnQM3A14DugO0A3ADeQO/A9UDxgPqAyYEJgQMBC0EYwRcBE0EgwS0BIIEUQSzBE4FWQXuBM4EHAVQBUMFQwVHBQIFrgTCBAYF9QTMBCcFvgXOBYcFzwWKBq4GIwYKBr4GOwfxBqsG7QYLB7YG9wZjCMUJ/gn9CTALBA3MDYcNpw1bDh0OUAxPCkQJjQgrB38FZASkA50CvQHZAXUCLQLhABIAnACEAa8BjAHnASwCZwFcAL0AWgIdA3IChALbBKQHRghbB64HCgqvDK4OAxHzEzQW0hf6Gicg6CMVI1MfoRzQG1oa9BbrEicPAAuJBvYCLwDV/Jv5mvmi/Q8CagPdAr8DpgaaCb4L2w0IEGgR7REwEuIRfBAYD4oPuRG9E5cUGhVIFn4YwxtGHxMhOiCYHk4eGx4LG2MVpxBpDlkMWgh1A27/WfxF+oj6Xv1hALgB4gIVBm0Kdw1iD7sSLhgkHRkfex5lHeQcdhyWG5MayBmzGKcWIhSRElwSSxJ9EeAQZxEJEj8RlQ/GDu0Ovw4jDi0OkQ6WDeQKSQhEB6wH0AgQCpgKUQq9CswMow5HDnQNWg88E3AVVhXYFaMX5hfUFXgUIRXaFMMRew5UDU4MKQmUBd8DwAIjAHP9Uf0v/54AOgE/AvIDDQbZCIkL5QsACqAJCg3VEG4QxQzLCpEMRw+QDzANrwrXCuQNaBCgDo4JZAa1B0MKSAqiCDoIUAlcCj4LUQw4DMgJ4gZjBt4HIAiqBbICYAIQBb0HYwcBBdQEjwiHDN0MEQvaCsQLpQrHBw0GJQV7AiH/Tv61/lf8q/jx+A38Ofsn9pj06/hv+6/3XvSj98H8JP1/+yP9YP8z/eT5yft1AG8A+/sW+v/7q/sU98/zZvUE+NT3K/d4+eP8R/3m+v75mvwBAMgATP97/kf/wP/l/mL+9/50/hX8PvvG/R3/9/rF9QH3Df1a/x/8ifoy/goCUQIyAvEDbQTBArUDOgj/CBoCPfup/I0CvQOm//v8W/6BAHkBLAJhApEBGQLRBTkJkAc1As3+a/9jAWgCTQLwAHr+kfwV/FD7XvmC+AL6BvtO+Vf3m/fA93b1H/R29yD8N/yV+G/2+vVB8wrvpu6S8jP1JfRp81b1e/a29P3z4fd3/SwAWwC6AMAAjv7T+8n7u/1M/kj9m/2r/2AAqP6l/ZX/IAJVAlwBEALYA7IDgAF2ABUC/QPYA3ECkwE1AY8ACwAyADcAZf+N/mH+zv33+2T69/oC/af+4v+LAaoCtwHj/7v/BQE3Aff/qv/8AHQBev+w/An7Wvo5+lL7LP1h/Sz7PvnI+fz6F/rd9//2tvcP+HX33vYx9tv0cfQQ9xH7G/xL+cr2qPey+a35i/gm+TH7FvyJ+2X7w/sY+xT6UvuK/gsAZf7B/J39zv60/Rn8F/2O////av7a/eD++v6B/c38wf1F/lv95/zH/eH9IPzh+vP7TP2V/ED7yPtI/WH9sfyb/bH/WwBp/xn/xv9P/2n9pvz1/ab+tvwt+sH5nPoT+iD4Nvdm+DX6M/t5+3H7CvuW+vj6S/yG/fr9If5w/m7+of2e/D38YfxZ/Pb7c/uz+of5avgK+E34r/hO+Zj6GfzE/JT8pfx5/Vv+2/51/zcASQCN/0T/7v8JAIH+z/zT/Lr9Zv0G/Kb7lvwb/c38RP3Q/nL/UP5w/WP+n/8+/yn+Kf6f/tL9N/yS+7X7Ffv4+QX64/py+qT46/cV+ef5IPm9+GL6QPwi/Dn70vsn/c78Mfvn+hD8AfwB+sb47/lN+4P60fjN+DH6ofpr+ST4+PeV+Hv5evrx+kz6Uvlj+U76j/rY+av50vra+xv7APlG9872LvfA9xH4tfex9uD1H/Yd9673TPe49vn2Kvhs+db5avkh+e35hvuH/PT7Z/pe+Yn5J/oq+or5Mvm4+Yr6k/qR+X74gfiy+Q77gfva+t75mflh+mH7cPuZ+jr6Lvtn/C38ePoG+Qj5tvmY+WH45fby9cL1IvaO9nD21fWs9a72QfgU+cD4Rviw+ML5V/rO+cj4ZPj8+ML5ovli+Nr2HvaG9n/3Kfgn+Oj3Bvhr+F/4ovcH95D3FPli+qb6Gvpi+eX48Pi8+fn6uvtw+4L6lPmq+Jn38vaV91L5tPqS+lf5a/im+K/5tfpc+9D7Mfwz/G/7C/rf+Mn41Pk4+w78//tC+0D6ZvkH+Sf5Y/lH+cX4Kvin9yD3jPZH9qf2ffc5+JL4yfgw+cP5Tfqv+t/6zfp++hf6tvlO+db4fPh3+Mn4P/mp+e35APrx+ej59Pnu+bL5ZflS+Yb5vvmq+T/5zfjI+GH5MvqC+gX6Mvmu+Jv4s/jr+IL5dPpO+6n7j/tR+zX7dvs6/En9Df4V/of90fwV/Cj7Ivp/+Z/5RPrP+tb6cPr1+af5jvmA+Ur53Phl+CL4H/g3+F74uvhO+cX5xvlv+Tj5bfn3+ab6cftF/NX8z/wt/EX7kPpj+rj6NvuQ+9/7WvzH/Jv8w/vS+jX6svn/+Hn4qvhw+Rz6WvpK+u/5Kflh+F34Ovkf+mn6ffoB+8z7Mvwe/BD8Qfxh/Dr89vu7+3j7N/sp+yz7xvrX+eP4Z/hF+C34PPis+DD5OfnD+Gb4hvjx+Gn59fl1+nD6pvmd+BX4IPhF+Eb4Yfi9+CP5Zfmw+UX6HPvr+2L8UPzI+yX7vfp6+hf6sfmp+eP5rvmz+JX3HvdD92P3Rfcu9y33C/fu9k73Lvjn+BD5Evlz+fr5GfrT+bn5F/qp+gb7BPua+t35LfkE+WH5svmJ+S35LvmU+eT54vnZ+R36ivrD+qj6Vvri+XT5bfkH+tj6JPvD+lL6U/p/+lH62vms+Qv6rfou+3L7hvt4+2/7mfvs+yD8CfzO+7L7tvum+1/78fqI+kD6Evru+dH5x/nb+RP6dfr4+nP7xfv6+zr8g/yo/J78m/zR/CX9ZP10/UP9wvwQ/Hn7IPvi+q76wPox+6X7vfub+5T7ofuO+4T71vth/LP8yvwU/Zf9xf1h/ef8yfzL/Iv8Rfxn/MX8zvxx/CX8DPy++wX7a/qD+hf7aPs5+xL7YPvO+7z7NPvv+lz7Evxy/HD8d/yq/Lf8Yvzf+437jPvF+yb8n/wS/WX9nP3E/df9yP2d/Wv9J/2u/Pj7PvvM+rH6svqQ+kr6AvrL+Zz5dvlu+ZD52Pk4+oX6h/o/+gz6S/rf+lv7mfvH+/z7GfwX/Bn8Dvy8+zz7+Pr4+sX6KPqh+bL5MPqa+r76uPqe+pz69vqO+9X7lvtp+8X7KfzY+w/7qfrX+v36v/pl+ir63/l3+UD5Vvll+TP5Avkv+az5Kfp3+qz6Dvu++2z8hPzp+y/71/qf+gj6LvmO+Dj43veB92H3aPdU91j32PeV+O743/j6+Fj5cPkb+eP4AvkJ+cT4rPgO+Xn5gvln+Xf5aPng+Bj4gfcp9/T2+fY592f3VfdA91n3cfds94n35Pcp+B/4C/gj+DP4G/go+HD4gfgj+Nz3IPiI+Ir4dPjf+J35CfoU+jT6dvqG+m/6kPrR+sL6fPqd+kX70/vL+1370foV+in5X/jn95f3XveD9x74u/jr+OD4EPmA+cn5sflj+SH5Cvkb+UT5cvma+cf5/fkp+jr6Pvpb+rX6QPu+++X7p/tO+yb7MPtF+2T7sPsi/IH8tPza/BT9Zv3H/SD+Of7h/T/9vPyK/Ij8pfwD/Z/9Hv4x/uj9jP1Z/X/9Hv77/o//q/+8/yQAsQAVAYYBXQJeA/4DMAREBDoE7gO+AyYEwgSgBLcDBQMBA/oCcgIOAmgC/wIZA/cCJgNjA0IDQQMGBP0EBwVKBOUDFQT6A1ED6gIhAzwDvAIfAtUBfQHbAIIAzgAoAfoAjQBVACAAr/9i/5f/9f8jAHIAGgGFASwBiwBJABsAbf+O/jH+Lv7T/S796/wU/Rz97fz4/Dv9Pv38/Nj8uvww/IL7ePv3+wH8UfvS+gT7I/uR+vn5IvqQ+lH6jvko+S352vgV+Lr3Ovjc+Nj4aPg1+DP40/cJ92P2JPbc9R31HvRF84DyhvF/8OLvvu+q73LvSO9A7ybvCu9I79Pv/e9379zuuu6w7i/ule2h7SLuL+6J7dPsUuyR63vqzOnq6SDqsekC6e/odOnZ6erpN+oQ6//re+yU7Kvs3uwS7VDtte0o7mrucu6F7tnuTu+o7/HvZ/AU8a7xBfJS8uDyoPNO9Oz0tPWe9lz34feD+HL5Wvrq+lH75/uL/OT8Gv2q/Y3+Hf8b/xT/ev/q/+b/w/8iAOEAVwF2AcwBcQLlAiID0gMsBXMGKAfQB+4IBgp0CpIKDwu6C+4L0QsNDIIMgAwwDIQMpw2eDtsOEw/3DycR/BGgEpETqhRtFd0VXhb2FmYXxxd3GG0ZIhoxGrwZKRmeGO4X7RbEFcYU9xP8Er8RwhB+EK0QyBDjEFYR4BHdEWMRNRGQEeMR6REbEqkS+xKqEjkSNRJcEi4SxBFkEfAQMxBkD7YO8w30DA8MfQvcCtUJwQgVCLIHUQcXBx0H/wZ/BgoG5AWIBYQEYgPSAn0CuwHQAG0AUwC2/5/+xv0q/SH8ufrL+Yb5JvlK+Hb38fY19vv00PMT81nyQfEj8FrvlO547UPsRetO6jTpQOii5/Xm6eXe5DrksuO/4n/hbeCJ33fePt063Hfbq9rc2WvZa9l12ULZIdl62SrapNrA2v/a3dsY3f/deN4n31rge+H74UziIOM/5PjkaOVO5pfnbOi26Grp0Orj6wvsOOxW7bDuH+/u7kvvXfBP8ePxs/La88b0U/X59bj29Pa89gH3IPhC+bL55/mQ+nX7Bvxg/PL8qP04/tH+vf+hAP8AHQG2AcgCjAOcA3cDrQMtBKkEJgXfBeUGHAhaCW0KNQvQC44MkA2sDq8PlBBoET0SKRMuFBoVyBVYFvwWgheMFzgXHxeJFx4Yexi8GA0ZQxkxGSEZeBkpGucatRvDHN0djh7VHjcf+B+2IAwhJSFrId0hIyIzImYi8iKEI6IjPCObIuQh+iDsHyIf1x6rHjAekR08HQUdVBw3G3gaWRogGkEZSxj3F+wXZReGFv8VuBX9FM4T8hKZEhYSMhGgEKMQcRB4D1EOtA1QDZEMvgtnC1EL6wpeCi8KJwqoCc4IOQjaB/UGbQXtA9ICtQFYABP/D/7x/Ij7LPoI+bf3APZK9OryjfHL7+HtQezt6qnph+iz5/3mIuZG5bDkQeSc48PiD+Kj4TnhfOBc3xHe6twL3FLbk9rz2czZHtp32oTab9p+2q7a4tov26HbD9xh3M/chN1F3sbeGN9/3wngjeDs4BzhOOGT4XfioeNx5MvkSeVB5jvnyudb6ITpGeub7BDuwO9s8anyv/M49dL2z/c4+Nn46fm7+vH6BPtV+5T7fPtT+077Mfvx+hH7y/uV/Pz8Xv0q/g7/iv/Q/18ALQHeAYcCcQNlBPYESQXiBbUGLAcfBxMHXgexB70HuAfzB18Iuwj5CDAJWwl1CasJRApTC6YM+g1ED6MQExJQEycU0hSzFcYWoxcgGIkYEhmAGawZ1hktGl0aIxrUGdkZBRoBGhMathqtG0UcZRyHHMsc0RyhHMgcbB0KHlgetB5NH6UfcB8lHz0fYh8KH14e3R19HdEc2xsDG2UavRnwGDIYmhcDF2oW+BXDFawVixVQFfkUmhRPFAUUjRP5EqASlBJhErcR7RBuEAAQLA8LDgwNKAz0CnkJPQhkB4kGhQXHBIgEUgS3A/sCkQJoAiECvAF/AXABVQEWAcMATQCW/7v+9f0n/f37bvrR+FD3rPW687rx/+917tbsJuum6WfoNOf45fHkQuSe47DimuHI4EDglt+Y3qzdNN383Inc09s72+baktod2r3Zltl+2U7ZL9lI2W/ZddmD2d7Zftom28jbg9xb3TjeH98c4AfhuOFb4jDjE+Ss5Abli+Vd5innw+d16GzpX+oT68zryuzH7XLuEO8V8FrxY/Iy8z30lPXG9qX3hPiN+XD6CPuq+4n8XP3e/U7+8P6B/6n/kP+Q/6v/sf/C/xoAmwD4AEUBvwE/AmwCXgKGAvUCTQN7A9YDcQTuBCQFbAXzBVoGYwZzBu0GiAfLB+cHZQg5CdEJ/wkkCmwKjQpoCmQKzwpmC9sLYQxGDUwO8w49D6UPXxAWEY0RABK2Eo4TQhTVFGUV2hULFhcWPhZ1FnwWaxakFj0XzhcIGB8YVhiJGHMYNRgiGDIYJRgHGCAYZxh6GEQYJBhIGFoYERiyF6QX3hcJGBMYKhhPGEsYBxilFzkXvBZFFgIW7hXSFY4VQhUCFa4UKhSME/wSfRL4EWkR0hA0EJUPAg90DtMNFg1aDL4LQAvQCm4KIQrfCZQJLQmXCNMHAgdRBsoFRQWqBBIEnwM5A6cC3gEEATUAY/9y/mn9Yfxr+5L62/lD+a74AvhG95L27fU89W/0ovMH85nyF/JN8VfwcO+f7rbtoeyP66/q/elb6b/oKOiN5+zmXubw5YjlEOWq5IjkmeSg5ITkb+SE5K/k1OT55CrlX+WW5d7lN+aC5qzm2+Yy55bn0efg5/jnNuiG6NPoJemL6fvpZ+rS6j/rqesW7JrsQu0B7rzube8c8NDwiPE58uDyhfMu9Nv0f/UU9qr2S/fq93n4APmV+S/6uPoz+737Wfzj/Er9ov39/VT+qv4a/6//QAC1ACYBsAE0AoMCtQIKA4sD/QNIBJQE+wRiBa0F9gVWBrUG9wY1B5MH+Qc8CGoIvAg/CcUJKwqECu4KYgvHCxgMXwypDAENbw3nDU8Onw7tDkYPnQ/jDxoQVRCgEP0QYhG+EQISOhJ/EtcSKhNkE5MT2BM2FJIU1RQJFUcVohUPFnMWvRb5Fj4XghetF74XzxfxFxIYIBgiGCMYGxgCGO8X+RcUGCUYKhg3GFEYYBhVGDwYLhgwGDgYOBgxGCkYJhgfGAQY1BeeF20XPBcHF9YWpxZsFhwWxRVtFQIVgBQGFKwTWxPwEnYSExLEEWQR7hCEEDAQ0A9KD7sOQA7NDUwNxAxGDMoLMQt6CrUJ6QgMCCUHRgZzBZoEsAPDAtwB8ADz//L+Av4k/VL8jfvf+j76k/nQ+AL4OPdo9oT1lvS+8//yQPJz8aTw4O8f71zupe0B7V3sq+v86mbq3elJ6bPoPejq56PnW+cb59rmiuY45gbm8uXb5bvlu+Xq5RbmEebz5e/lC+Yo5kDmZeaf5t3mGudd56nn++dZ6MzoS+nF6TzqvOpG69rrhuxS7Sju8u6074DwTPEC8qzybvNR9Db1B/bL9o73S/j9+Kn5Ufr0+pn7SPzy/IL9B/6q/nP/NwDXAGMB+wGeAjgDzANqBBQFwgVxBhsHrgcsCLUIXwkTCqwKKwuqCycMkAzwDGgN/w2XDh0PoQ8mEI8Q0BATEX8RBBJ8EuQSVxPREzQUfRTKFDIVpBULFmgWyhYsF4cX4RdBGJ8Y8Bg/GZsZARpZGp8a7BpSG78bEBw7HF4cmBzoHDAdWR1vHY8dxh39HR0eLB5GHnIemR6fHogebx5mHmwedx5/HoAecx5fHlQeTh46HhMe7R3YHcIdjh0/HfIcthx6HC4c3RuQGz0b2BptGgwaqhkzGawYMRjAF0AXpRYFFnAV2RQvFH0T1RI0EpER8hBgENcPRA+kDv0NUw2gDOgLMAt3CrQJ6AgeCFcHjAa3BeAEFgRTA4UCnQGgAKL/q/6z/bT8tPvB+tz5+vgT+Cr3QfZd9Yn00PMl82/yrPH48FjwrO/a7vbtJ+1q7KHryer66UPpk+jk50HnruYg5pXlH+XF5HDkDeSq42HjNOMM49ripeKA4nXie+J44mbiXuKA4r7i6+L94hjjVuOh49/jG+Ru5NHkMeWS5QXmfubs5lvn5+eO6Djp3OmK6kbrB+zO7JrtYu4m7//v/fD78dHyj/Nl9FL1JvbZ9p73ifho+Rj6vPp5+zr83fx3/TD+9/6g/y4A0gCRAUACzwJYA/ADhAQDBYQFIgbhBq8Hegg1CdUJXwrcClILxQtCDNMMaA3rDV0OyQ4qD3YPvw8jEJYQ8xA0EXoR0xEeElASjRLuElITlRPIExMUZBSVFLMU9hRsFeAVLRZxFtAWMhduF4oXvBcbGIQY1xgfGXcZ2RkmGlIaehq4Gv8aNBtZG4YbvhvoG/gbAhwcHDgcQBxBHFUcdxyEHHkccxyEHJUcjBx4HHIcdBxeHCsc+BvXG7wbkxtnG0wbPhsbG9YahhpEGgQasxlXGRAZ3BiYGDEYwBdcF/IWaRbLFTgVtRQqFJMT/xJxEtgRMBGGEN0PKA9kDqcN/wxbDKQL3QoYCloJnAjYBwsHOwZ2BcAECQQ7A1sCiQHRABIANf9C/k79VPxI+zb6N/lJ+Ff3XvZ19Zv0t/O78r3x4fAq8HjvrO7L7fPsLOxb62PqV+lm6Jjnxubc5frkQuSl4wPjZ+Lu4ZDhJ+Gw4E3gCeDI33jfMd8I3/He2N6+3qrenN6T3pbeod6t3sLe9N5C35Tf3d8n4HrgzeAj4YrhAeJ74gDjpONX5PLkeeUe5vDmxeeF6FjpXeps61TsL+0t7jvvJvD88PfxFfMf9Aj1+fX69uP3q/iA+W/6UfsW/Oj82P22/l3/9f+sAHUBJwLHAnEDHgS2BD8F0AVjBu0Gggc2CPUInwk0CsUKTAvFC0oM4wxwDdgNPA7FDlMPqg/cDywQpxAREU8RhBHJEQMSIxJMEpES0xLyEg4TSxOOE6UTlhOZE88THRReFI8UxRQPFWUVsRXmFQ4WRBaRFuoWPxeOF9QXEhhIGHgYnRisGLAYxRjvGBYZLBk+GVoZdRmFGZYZrRm+GcMZyRndGewZ5BnVGdYZ4BnXGbkZnxmQGXgZURkyGSYZHRkEGeQYzxjGGLYYjxhVGBQY0Bd9Fx8XwRZuFhwWuxVOFeMUdBTwE14T4BJ5EgkSfRHxEH8QERCCD9oOOg6lDQQNUwyoCwgLZQq7CR0JjQj1B0QHiAbUBScFcQSlA8sC9gE2AXoAnv+Y/pH9qPzI+9H6yvnX+P33IvdA9mL1gfSW87Ly7vEz8VbwXO967rnt7ewD7B3rUOqF6a7o4+cr52PmhuXH5EDkwuMe42/i6eGC4QzhiuAe4Mrfd98t3//e1d6S3k7eM9453jbeKN403lzeg96s3u/eQN9336Df7t9a4Kng2eAq4bjhTuLK4k/j8uOM5A3lrOWD5l7nEujW6Nrp6uq+63TsVe1V7jbvA/D48A3yAfPV88v05PXX9pD3Wvha+VX6FvvC+4f8Sf3o/YD+NP/m/3IA/ACsAWMC7gJhA/UDrARWBecFewYVB5wHEQiPCBAJfAncCVkK8ApzC80LGgx0DMwMHQ12DdUNJw5wDsoOKg9fD2APbA+rD/QPDxAPECkQXRCEEJsQxxAMEUYRaBGXEeMRIRIyEjkScBLSEigTWxOME98TRhSgFOAUFxVTFZsV7RU/Fn0Wnxa4FuIWFxc5Fz0XPhdYF4sXvxflFwMYHhg9GF0Ydhh8GHcYfRiWGK4YshimGJgYixh8GHAYaBhYGD0YKRgrGDAYGhjyF9sX1xfAF4cXQBcCF8IWdxYrFugVoxVTFQMVuhRkFO8TbhP5EokSBxJ6EfIQbhDfD0gPtg4iDnkNvwwKDFkLnArYCSMJfAjQBxwHdAbXBScFVwSFA84CIgJgAYcAsv/t/if+TP1X/Fr7avqS+cH45ff/9hv2QPVo9I7zrfK+8cHwze/u7hHuGe0T7Crrauqx6efoGuhh57rmH+aO5f/kZ+TR41/jDOOs4inip+FH4frgouBG4Pjftd9331HfRd8t3/fe0d7m3gzfAd/X3tLe/94p3zrfU9+D37vf/d9e4MXgCeFC4b7he+Il45fjGOTa5KrlTebm5qfneug86Q7qDesG7MLscu1k7nXvR/Dg8JrxjPJt8xn0w/SM9VD29/as94H4RPna+XP6OvsM/Lf8T/0H/tj+nP9LAPoArQFYAv8CrQNXBPYEmQVEBt4GXgffB3AI8ghQCakJHQqUCuwKNwuVC/QLLQxTDJYM8AwuDVANkQ37DVYOfg6gDvAOXQ+7DwQQSxCZEOUQMxGGEcoR9REhEmkSwRIEEywTWROgE/YTPhRuFJoU1xQlFW8VoRXCFe4VNRaJFtQWFRdVF5gX1RcIGDcYZhiPGK4Yzhj6GCkZSRlXGWkZkRm3GbgZmhmKGZoZqhmeGYkZihmRGXcZPxkMGesYwhiJGFkYOxgZGOEXpRd2F0kXDhfOFpcWXhYQFrMVURXtFIMUGBSuE0ATzxJeEuERRBGWEPwPfA/uDkAOlg0NDYQM1AsSC2YKxwkPCUIIiAfeBh8GSwWMBPIDUwOOAr8BDAFvAL//7P4L/jv9gPy++9z64vn2+Cz4bvee9rz12PT68x3zSPJ48Znwqu/Q7iTufe2j7KXryOoY6l7pf+ii5+fmPOaP5e3kW+S/4xXjg+Ii4sbhQ+Gs4DPg4N+W3z/f4d6P3lveSN4y3vTdod173Y7dnd2D3XLdmd3S3end8d0Z3kveXt5u3rXeGt9X33Xfyd9f4OjgRuG04VriAuN94/XjluRF5dvlduY85wrosehH6fzpxup46yPs9+zq7cfuie9b8EHxCvKw8mHzMvT/9K71WfYQ98H3YPgJ+cr5gvod+7L7XPwH/Zr9JP7B/m7/FQC6AGoBHQLEAmQDCASmBDAFqgUiBpwGHge0B1QI3whVCdYJbwruCjELZgvMC0wMmwy4DO0MWg2+DeoNCg5WDrcO+g4mD3IP6A9aELEQCxGAEfYRTxKUEuESOxOQE98TNhSaFPgUPxV9FckVHBZgFpAWyBYRF0wXYxdyF6AX4RcDGP8XBhguGFIYURhHGGEYjxifGIsYgBiVGKkYnRiDGIMYmhijGI4YdRhzGIAYexhaGDEYFBj5F88Xnhd3F04XERfPFqAWdhYoFroVXhUqFe0UgRQLFLoTexMcE5kSGBKZEQYRaxDuD4gPCg9rDtINTg28DAoMXAvRCk8KtwkRCW8IyAcMB00GpQUSBXQEvwMDA1ECpwHzACsAYP+s/g7+Zv2Y/Lf75Pob+kD5Vfhz9532xPXo9Bz0XvOb8tfxH/Fo8Kbv6u5M7qrt3ewL7HPr+upH6l3pqOhL6NvnD+c55rzldOX95Frk3eOQ4zbju+JK4u/hjOEk4dvgsOB94DngAeDc37ffk99732HfNN8U3yXfRt9C3zTfYN+43+vf6d/53zrggOC44AzhguHh4Rria+Ls4l/jpOP+46DkUuXT5ULm1OZv5+fnXugC6bLpM+qk6kDr8ut17Njsb+1E7grvn+848PzwyvF28hLzvfN79Dv17/WO9hz3tPdn+Br5rPk2+uX6rPtX/OD8cv0c/sb+bP8eANAAXwHYAW8CIQOxAxMEhwQ0BeUFaQbWBlMH1QdKCMgIYAn1CW4K6QqCCw4MUwxoDJcM/AxtDckNGA5rDsgOMw+qDxQQZBCxEBsRjRHTEeUR+RE8EqkSGBNyE7wTAhRIFIMUphS/FPIUURXFFSUWYhaAFowWlRanFr4WyhbSFu4WGBcmFwcX4hbXFtMWuhaiFqcWsxaiFosWmRa1FqQWaRZPFmsWdhY/FvUV2hXaFbkVcxU4FRwV/hTIFI4UZhRBFAgUvhN2EzcT8RKWEi0SxRFhEe8QZxDYD1YP4Q5pDuoNcQ0DDY4MCQx4C+MKTAqxCRQJdQjSBy8HiwbWBQ4FSgSkAxIDdgLPATQBqAANAF//t/4g/n39vvwA/FX7nPq++d34Ifh698H2APZj9eH0S/SZ8/DyWPK08fzwT/C17xfvau7L7UDtpOzq6zvrtupB6rrpNenW6IfoHeid5yvnzeZi5uTlcuUZ5cbkY+T6453jUOMS493ip+Jo4i/iDeL44djhseGe4avhvuG54ZvhfeFx4XnhkeG14ePhGuJV4oriuOLk4g7jL+NY46Dj/ONA5F3kf+TO5DDlcuWi5fHlaObb5jvnnecH6F7oqugX6afpJuqD6vjqpOtT7M7sNe3H7XruFu+Z7yjwyPBZ8ePxiPI989HzQfTC9Gb1+/Vh9sH2T/cF+LP4RPnL+V36//qm+0b82Pxh/fH9i/4p/8L/UQDYAGUBCwK/AlcDxgNBBPkEyQVrBt8GZQcQCK0IHgmLCRYKnQr/ClkLxQsmDFsMhwzhDFsNuA3wDTgOoA76DiwPWg+tDxYQbhCvEPQQQhGIEboR6REkEmESixKkEtASHBNmE4UTixOsE+sTDBTxE84T3hMDFPUTtBOLE5YTmRNlEyYTHRM2Ey0T+xLYEuAS4hK4EoMScBJvEksSBxLTEcIRqBFsETARERH0ELAQXRArEBUQ5A+HDywP7Q6wDloOAA64DXINFA2qDE4M+AuOCxcLrQpQCuYJYgnXCFQI1QdZB+IGbwb3BX8FCwWNBPUDUQPAAkYCxAEuAaAAKgCz/x//gv78/Yn9C/1+/Pv7jfsd+5b6Afpx+eT4Tviy9yH3ofYi9pn1D/WV9CX0pvML83Dy8fGC8QTxcPDk73HvBe+T7ibuze137Q3tlewo7MbrXOvv6pvqa+o/6vjpo+lm6UfpKOnw6KjobuhK6C/oDejj57znmOdy50jnH+f75tfmvua/5tXm4ObM5q7mrubE5s3mvua85uDmD+ch5xrnH+c852Dnfueh587n+Och6F3orej06CLpVOmp6Q7qV+qB6sDqKuuY69rrAOw+7KLsCu1e7a3tB+5l7rvuFO9/7+7vT/Cw8Cvxs/Eb8ljynvIW86rzJ/SO9AX1nfU29rr2M/eu9yH4ivj9+IT5Avpm+sv6Vfvy+3D8yfwj/ZD99f0+/oP+4P5S/8z/SgDDACABYQGqARACdQK7AvcCUwPLAzEEegTKBDwFuAUfBnAGvwYSB2IHqgftByUIVwiPCNQIFwlLCXYJqAnhCRAKNQplCqkK8gonC0gLaguQC60LtAuzC7cLuwuzC6cLpgusC6gLnwukC7wL0AvWC9gL2QvGC5gLbAtdC1sLSwsyCy0LNAsiC/EKwwqvCqMKiApqClwKVQpAChoK6AmqCWgJMwkICdIIiwhOCC4IEAjQB3oHOgcZB/QGsQZfBhEGyQV8BSkFzgRsBAYEpQNJA+kCgAIXArwBdwFDARUB3wCWADgAyv9R/9v+b/4J/qP9P/3l/I/8LvzN+4T7UvsZ+8j6ePo9+gH6rPlS+RH52Ph/+An4n/dM9/v2rfZ39lb2Jvbc9Zb1Z/U29fH0sPSM9HD0P/T987/zf/Mw89/yoPJv8jjy/vHY8cnxtfGU8Xzxd/Fq8Tjx8vDC8KzwkfBk8EHwP/A+8BTw1e+578fvzu+276bvue/P78bvt+/F7+Hv5+/l7wHwJfAd8PHv3e/z7wzwFfAm8E7we/Co8N7wCvEM8f3wG/Fe8XrxX/Fp8czxN/JM8jTyU/Kw8vjyE/My823zo/PO8xD0Z/Sb9Jr0oPTY9B/1PvU+9Vn1oPXv9SL2O/ZO9mX2gvak9tT2Hvd398z3Gfhx+Nz4Oflu+Yz5vvkE+jP6P/pQ+of60voQ+0X7ifva+x/8Tvx6/Ln8//w0/U79XP1n/Wz9Zv1n/Yf9vv3w/Rj+TP6T/tT+//4r/27/uP/z/ygAawClALMAnwCSAJUAiQBnAFcAcgCkAMwA7QAaAVABfwGiAcIB6AELAhwCFQIGAv8B+wHsAd8B+wFAAnQCbwJhAowC3QIIAwEDAQMjAzgDGAPkAskCwQK1Aq0CtgLBArcCpwKrAsEC1wLnAvQC/AIGAxoDLQMhA/0C8AIJAxgD+QLRAs0C2gLQAsAC0gLzAvIC3ALgAvcC4gKcAmwCbAJiAh0CxwGbAYIBQgHpALUArQCbAG0AVQB2AKgAtwCvALoA1wDcALwAoQCjAKsAlwBxAFYARAAhAO//zv/R/+L/5f/Y/8L/pf9//1X/Kv/7/s7+qf6C/kr+Df7u/e797v3h/d395/3i/cn90v0V/lL+UP4+/mL+pP62/pz+ov7L/sb+fv5E/kf+Q/4B/rz9uP3P/bn9if15/Xf9T/0d/R/9O/0g/dD8qPzF/N/8yPy0/NL89/zs/Lr8iPxh/FH8dfzH/Aj9Ev0O/Sv9VP1c/UX9L/0f/RX9If07/SL9t/xF/B78KvwR/Mz7p/vF+/P7+/vp+9z72fvj+wn8P/xe/Fz8YfyN/Mj86/z3/Ar9Nv1u/Zr9rf2r/aj9tf3J/c39u/2m/aD9oP2P/WD9Jf30/M78pPx6/G78jfyu/KT8iPyY/Nf8//zt/Nz8Dv1o/aX9uv3U/QT+Lv45/i7+FP74/fL9CP4X/gn+BP4y/mX+Vv4R/uf96P3S/YX9PP0l/R398/y8/Jv8gvxZ/D/8Vvx6/HP8WvyB/Pb8af2e/b39Bf5s/qr+mv5l/kL+N/4o/gn+8/37/Q7+Gf4g/jH+Ov4i/vr96/3v/dL9iv1P/Uj9Tf0x/Rb9OP2A/Z39if2c/Qv+mv7z/hD/Gf8b/xT/GP8x/zz/Iv8a/1X/lf95/yv/Pv/K/y4A7v9T/+7+w/55/g7+yP2i/WH9HP0m/Vz9Of21/HD8qfzK/Fr80/vq+3f8x/zK/A/9uv1K/n3+rf4X/3b/p/8EAL8AXgFvAUEBWgGVAW0B8QCvAMsAzQBwAAAAyf+s/4L/af91/27/Q/9I/7f/PABwAHMArQAdAV4BVwFWAY0B1gEWAm0C5wJPA3oDkgPPAyUEawSdBNIE9wTnBKEERQTiA3YDGAPgAsICnQJxAmYCjwLTAhQDTwOLA8YDAAQ+BHYEjwSABGMEVARLBDEEEAQSBFAErwT8BCMFOQVaBYMFmwWZBY4FjwWYBZIFcgVGBR0F+wTcBMUEuQSyBK0EvAT7BFsFqQW7BaQFnQW6BdQFygWvBbYF7wU3Bm4GlQbBBvkGNQdeB2MHRwcpBycHOgc/ByEH8QbFBpkGYQYgBugFxAW4BcgF6AX6BfMF6gX4BRIGEwb0Bc4FtQWlBZwFmQWPBXkFcQWZBd4FAQb8BRQGeAbyBi0HKgcvB1MHYwc/BwQH0AaYBlIGHAYLBggG9QXsBRMGUwZtBlUGQQZfBp0GzQbmBvYGDQcqB0IHTgdNB08HZAeCB5gHsgfoBzQIbwiECJIIqwizCI8IWwhECDkIAQicB00HNgcnB+0GqgaaBrwG0Aa+BqMGmgaXBpcGsQbsBicHSwduB6IHywfSB9YHBAhSCI4IsgjfCBIJHgkDCf0IJQk+CQ0JvgiYCJYIdggvCAMIEgguCCMI/gfnB+gH9gcYCFUImAjGCOYIEglICXIJiAmfCcgJ+gkgCigKFgoHChwKTwptCk8KFAr5CQUKAgrRCZsJjAmVCY8JeQl0CY0JrQnDCc8JxQmOCTEJ4Ai8CKgIfAhBCCcIOQhOCE8IVAiCCNUILQl7CcMJAwowCkkKUQpACgIKmwktCc0Iawj3B4IHKwfxBrMGXwb7BZQFIwWhBBoEmAMcA6MCOQLxAdMB3wEaAosCLgPuA7wEmAWMBpkHtAjCCagKVgvQCyMMVQxdDDkM9QuiC0QL4QqDCjcK/wnLCY0JTgkZCegIrQhqCDQIFQj8B90HxgfVBxEIaQjPCEYJ1gl4CigL4QuSDCQNiw3HDcwNgQ3oDCsMYwt+Cm4JUAhMB1oGWgVUBHcDyQIkAnoB8wCfAFAA6P+O/3f/jP+b/7D/CQCwAGoBGwLtAgIEOAVeBnQHigiMCVsK/AqHC+gL+Qu5C00LxQoZCksJdwivB+sGLAaNBRcFtwRnBEgEaQSqBOUEKAWUBSEGrQYwB8IHaggSCbEJWAoIC7ALRwziDIINAg5JDnAOlw6sDo0OQQ7mDX4N8gxHDKMLEwuDCuwJawkSCcoIfwhHCEYIcQicCLwI7Ag9CZ8J/wllCtkKVAvDCyUMfQzEDPUMHA1FDWgNbw1YDTgNHw0CDckMbwz/C4ML9QpPCpQJ1AgZCGcHvAYXBncF4QRcBPEDqAOEA4QDqwP6A28E/ASUBToG9wbLB6MIbAkiCs0KagvwC1YMngzNDOMM2AymDFkMBAyxC1YL5wpqCvMJiAkkCcQIcQgyCP0HygemB5sHogeqB78H9wdLCJ4I7AhRCdkJaQrjClALwAsnDG8MmQy5DNEM0gy3DIgMSAzsC30LDwumCjYKwQlcCQsJtwhUCPYHtAeHB1cHJAf/BvMG9wYDBxcHNAdWB38HswfxBy8IawivCAAJVgmfCdIJ8An+Cf0J7AnKCZQJRwnqCIkIJwi7B0IHxwZcBgQGsQVdBRcF6gTPBLYEogSiBLMEwgTHBNIE7wQVBT0FawWhBdQF+gUdBksGfgaoBssG9AYiB0QHTwdNB0UHNgccB/sG1QanBnIGRQYkBgYG5AXKBcQFyQXIBcIFyAXcBe8F+wUKBh8GLAYuBjYGTQZlBm0GbwZ9BpAGkgaEBnwGhAaIBnsGawZlBmAGTAYsBg8G9QXQBaIFfwVtBV8FSwU6BTYFNwUxBSsFNAVNBWMFbAVxBYEFmgWuBbgFvQXFBc4F1wXgBekF8QX4BfoF9gXrBeAF1wXNBbwFqgWgBZkFiAVsBVYFTwVKBTYFHwUUBRQFCAXsBNIEywTNBMMEqwSXBJMElQSRBIsEjQSYBKMEqwS1BMcE1ATVBNIE2gTrBPQE8gT0BAIFDAULBQoFFQUmBScFHAUZBSEFIgUQBfQE2gTGBLUEpgSYBI0EhgSDBHwEbwRiBGMEawRpBFoETgRRBFoEXARZBFkEXwRhBF0EVwRUBFQEUARDBDEEJgQkBCEEEwQEBAYEFAQZBBIEEwQjBDMEMwQsBDIEQQRIBEAENAQwBDEEMAQrBCUEIQQbBBIEEAQgBD0EUgRRBEUERwRZBGQEYwRiBGkEawRdBE8ESgREBC8EGAQUBB0EIwQeBBkEFAQKBP4D/QMBBPkD5APWA9gD3gPaA9UD1gPYA9MDzQPRA9UD0APIA8sD1QPZA9QD0gPZA94D2gPTA9EDzgPIA8QDyQPSA9MDzwPSA94D7APyA/YD/gMKBBMEFQQRBAsECQQOBBIEDAT/A/UD7gPjA9QDzAPUA94D3APRA8sDzgPQA8oDwgPAA8EDwQPCA8gDzgPNA8UDwwPQA+MD7APoA+MD7AP/AxAEGwQoBDcERARLBFAEVARRBEsESQROBE0EPgQuBCkEJQQYBAgEAgQCBPsD7gPrA/ID7wPaA8QDwAPJA8sDvgOwA6sDsQO4A7oDtAOvA6wDrQOvA7MDvAPDA8MDvQO8A8ADvAOpA5QDjgOTA5ADfQNoA2IDZwNlA1UDQwM8AzwDOAMyAzQDOQM1AyYDHgMjAyYDHAMQAxMDIAMjAxYDBwMAA/0C9wLtAuIC2gLUAs0CwgKxAp8CkwKNAogCgwJ9AnUCaAJbAlcCWwJdAloCWQJcAmECZAJlAmoCcQJ4AnwCeQJyAnECewKDAoACewKFApgCnwKYApYCpAKtAp8CigKEAocCfwJoAlMCRQI0AhoCAwL1AesB3gHUAdEBzQHEAbwBugG7AbsBuQG3AbMBsAGzAboBugGxAawBtQG8AbEBmwGOAY8BjQF/AXABaAFjAVkBSwE/ATEBIAEVARQBFAELAfoA7wDxAPgA+ADxAOkA6QDzAP8ABQEIARMBJAEuASkBJAEtAT0BQwE/AUABSQFNAUYBRAFOAVcBUgFHAUIBQQE8ATcBNgE1ASoBGwEUARMBDAH8AO4A6ADjANsA1QDSANEA0ADUANsA2QDNAMMAxgDKAMEAswCxALoAugCoAJIAiACDAHkAaQBgAF8AWwBPAEIANwArABkACAAAAP7/9//s/+X/5v/n/+D/1f/R/9f/3//j/+T/5v/o/+T/2f/O/8z/0P/O/8L/tv+4/8X/y//E/7z/vf/C/8T/wv/C/8P/v/+6/7z/wv/F/8L/v//C/8f/y//K/8v/0v/d/+L/2v/J/8T/1v/s/+v/2f/P/9X/2f/L/7j/sv+w/6D/hf9z/2v/XP9E/zb/Of84/yP/Cf8B/wf/Bf/2/vH+/v4L/wX//P4C/xb/IP8c/xn/IP8p/yn/J/8s/zL/Lv8i/xr/Gf8Y/xH/Cv8E//3+9v7z/vP+8P7k/tf+zv7I/sD+vf7D/sz+zv7J/sn+zv7O/sX+wf7L/tf+2f7S/tH+2P7e/t7+4f7r/vH+7f7p/vD+/P79/vL+8v4F/xb/D//6/vH++P79/vL+5f7l/u3+8P7u/vD+8/7s/t7+2v7o/vX+8P7f/tP+0v7T/tT+1f7R/sr+yf7U/uH+5v7u/gT/F/8O//f++f4Y/y7/JP8T/xn/K/8u/yP/KP88/0L/Mv8m/y//PP81/yf/L/9K/1f/S/9D/1D/W/9H/yj/Kv9K/1n/Qf8p/yz/MP8V//T+8f7+/u7+zf7I/uH+7P7e/tz+9v4I//7+7v70/v7+/P75/gH/BP///gf/Hf8o/xz/Gf8y/0j/PP8o/zL/Sf9E/yv/Jv87/0f/O/8p/yH/Hv8Y/xD/Bf/3/uj+1v69/qX+mv6R/nX+R/4n/ib+K/4j/hv+IP4i/hT+Bv4K/hP+F/4o/kv+Xv5P/j/+Sf5W/kX+Kv4v/kb+SP4y/iX+IP4G/uP94v0F/hL+7f3B/br9yf3B/aH9jv2Z/az9sP2m/Z/9ov2l/aH9mf2Z/an9wf3T/dj92f3g/eT92v3I/cH9xP24/Z79mP2z/cj9tP2R/YT9ff1X/Sj9If02/Sv9/fzo/Pb86Pyv/Iv8lvyO/Fn8TPyj/Af9E/3l/OH8C/0m/Sj9MP08/Ub9e/3o/TH+Gv7//Uz+uP65/n3+r/5Z/8n/rf+G/8H/HQA1ACsAUgCZALwAwQDhAB0BPAEvATABdAHhASsCLQIhAkcChgKPAmECUwKIArwCvwLEAv0CRAN4A8ADLAR6BJAEvQQcBU0FMQVABZ4FlAXMBEEEzwSvBboFfQVTBt0Hagj1B04IyQlCCqQIFgfMB5sJKwpPCiANDxPCGFEbXhv/GssaXxotGuca+RsoHF8behq6GacYRxczFo8V/xSZFMsUVhVpFQoVOBVRFl8XhhdCF4cXThjeGAoZXBkFGnMaNBqyGboZcRokGz0bERtgGycchBzxGxYbzxr2Grka8RlRGUAZVhkcGZ0YAhgyFxoW9RT6ExUTHBIVEQ8QEA8xDpkNNg3mDNYMYQ11DpkPoxDdEU8TfRQzFfIVGhc9GMcYCBnhGYobSh1pHugeMR93H6Efjx9XHzYfVR+gH/EfPSCcIBAhiSEEInoiwiLCIrci/yKSIyEkjiT8JFglVSX8JLskzCT1JBslhCU/Jt4mFScyJ5QnCygvKP4nsyc3JzomwyQwI6shFSBZHpUc4ho9GcAXkxacFZoUhBOUEuIRQhGaEBUQ1g+wD3UPQA89D08PKQ/LDocOfg5yDiEOqA1IDQUNvwx/DHUMlwyTDDwMxQtwCzQL4Ap4CjMKLgpLCmUKfgqqCgALhAsaDI8M2gw0DbsNLQ5FDjkOeQ4CD2APcA+ND/IPWBB/EKAQ+xBXEWMROhEqESwRBBGsEE4Q4g9KD6UOJQ6tDQQNTgzOC1gLgwpjCYIIAQhiB2EGYgW+BCcEOQMvAo4BVQEaAcAAiQCGAHIANAAJABQAKwAiABMAIgBAAFAARAAJAHf/mP66/Qn9UPxR+zT6Tvmg+OX3Ffdz9h/23vWB9S31GPUp9Sz1MPVu9ev1dfb59pr3bvhY+TT6APvH+3f89vw+/WH9cv10/VX99PxM/I375vpD+nX5jPjY93r3OPfX9m32J/YD9vP1FvaL9if3pvcJ+IL4EvmM+fT5dfoD+037M/vy+rj6X/rF+SP5vPhx+Oz3I/dS9oz1p/SV84LyiPGT8KLv5+597kDuGO4s7pLuDe9a75vvGPC/8Drxd/G28f/xEPLd8bnx1fHe8YXx/PCl8HHwBvBW77PuTO7/7a3tWu387H3s/Ou567vry+vO6+3rUOzi7IztSu4L767vN/DH8FDxmvGb8YrxgfFY8fLwa/DY7yXvVe6V7ersI+xS69jqzurZ6sHq0eoy63LrM+va6vXqS+tG6/vq/epK61DrBesP66nrN+xB7BrsG+zy60jrc+rw6Zbp8ugg6JbnZOdD50Dnq+dj6OLoBOks6Yzpy+mr6YDpuek06n3qe+p16pnqzer36i/re+ut653rb+tf627rcetp637roOtw68vqE+qi6UTpkuiv5x7n7uaw5kPmF+Zg5qfmjOZq5rXmN+d354bnyOcv6FzoXOif6C7pn+nX6TLq0OpK61rrQ+tH6y7rueob6p/pLOmQ6OzncOf55k7mnuVE5THl/OSK5DPkQ+Sl5C3l0uWF5hnnf+fm53voI+ml6fHpJOpT6nLqcupK6vzpl+k16ebolugo6J3nFueu5mnmN+YO5unlz+Xb5S3mveZO56nn5+dS6P3opukR6lfqt+o766nrzOug60Xr2up96kLqI+r46Zjp9+g+6LTngedz5zLnqeYZ5rHlSOWx5A7ko+Nt4z7jHuM8447j5eNR5AzlA+bV5mjn/eew6DvpgOnN6Vfq0+r56v7qHusP63bqo+kr6fvoe+iN58LmdOZJ5t7lW+UI5dXkouSc5N3kG+Uq5W3lReZi5zPo2+jz6Xzrx+yF7SvuEu/W7wrw9O8K8Cnw2u8f71fuju187Cfr7un66A7oGudi5gjm0OWS5Yvl+uXL5sfn3Oj76QnrCuwg7UHuK+/H7z3whvBW8KLvz+4g7lbtQew9657qIepn6aLoOOgL6K3nK+fc5rjmeeZQ5qbmROeT56nnO+he6U7qxep86+TsPO6r7oTuke7B7nruyO047b3sw+tT6jDpt+h16BPo5eco6H/onujW6H3pPOqe6s/qUesU7JDso+zL7F7tC+5Z7lPuau7S7kPvYe8s7/Tu0+6E7tHt8uxM7ObrbevF6jnqEupG6q3qP+vz66HsQ+0A7tzuou898M3wPvEv8Z7wL/BV8KLwc/Df72rvE+917qftJu3v7ITs2etr6zfrnOp96aHof+h16NnnDufL5ujm0Oal5hbnPuiI6bHqDOy77VjvkPCZ8bLysfNK9In0wvQd9WD1NPV99Hrza/I98cPvQu5J7fTsuew77Lfrc+s76+nq5OqF617s4+xI7RfuMe8J8Kjwg/GP8kHzgvO/8wH03fNP89Lyc/LA8bjw6u9h72ju2OyN6xLrtOqp6Wno9edZ6NboJ+mz6arq0+sn7e7uIPEu8530dfUD9nj25fZF93j3WPfc9g724vRH82Dxgu/77d3s8uvw6s7p4OiI6MfoVukQ6gLrJOxU7Z7uNfAN8t3zi/U+9+T4Dvp8+m36Nfrb+UD5WPgb94D1ofO/8Qjwl+6Z7RXtvOxX7D7s2+ze7aTuU++s8LDybvRw9Vn2t/cj+Sz6HPsk/JX81Ptu+kX5PPic9nH0evIH8cjvp+7k7Wftzewj7N/rG+x97Ovste3u7kLwc/Gc8srz3fTU9db24PfL+Jv5Z/oA+y77J/tW+6D7aPte+tb4R/fh9av0lfN58lDxZPDx76rvIe+L7pXuau958FDxK/Je87T0w/WS9oT31vhf+s379vz2/fb+2P88AAsAsf+E/zD/F/43/Cn6Xfi89iT1rvNu8lHxXvDN77Xv+++I8GLxcPKe8wP1oPYQ+P34t/nD+uT7Y/xA/Ef8tPzJ/BP8TPs4+3H7KPuI+ln6m/p8+qb5s/gw+PL3pPdW9zD3Dfev9if2ufWI9ZX13fVi9hz3+/fk+LD5WPoR+wf8FP3e/Ub+iv71/pz/XAD1ACgB6gBmALf/vP5m/fX7v/rO+fj4K/hs96f21/VC9T/1z/W49tL3APkK+uP61/sU/Tz++v6m/7YAxwETAsMBvQEkAgQC1gBY/1T+ff0y/Jj6Ovkg+AT3+vU89a70O/RF9Ab1Dvb19hn44/nb+1X9iv4RAKUBiQLhAn0DYwTNBJsEiAS+BGgEEANeAev/Y/5x/I76Q/lZ+Hr36/YH94n3Efjh+GT6Xfw3/tf/hAFAA84ELQZ5B4oIFgkdCboI2Ad6BgsF8QP5AqsBFQCv/qj9wPzM++r6MvqI+dr4Q/ju9wX4pfiv+cL6o/uI/L39K/97AKgB9AJqBKIFOAYtBsgFMgVYBCADpAEYAI7+7Pw4+6v5e/iq9zv3W/cO+PL4qvlX+kr7b/x6/XP+lf/QAPYBLgOrBAMGowbLBjQHyAe5B+8GTgYtBssFuwSyAywDcwLqAFL/kf4x/jv97Ps0+w/7zvqX+ir7R/zf/Ob8fP0P/7IAywHyAp0EFwaYBnEGSAb3BRkFBARPA9kCHwIpAWYA3f9H/73+gv5j/vT9T/3s/NH8pPxm/Hv87vxe/bf9Uf45//3/cAAFAQ4CNQMNBK4ERQWMBTEFcwTKAycDLwL3APz/T/+T/rL9HP0N/Sr9Iv0t/a/9pv7R/wMBJQIZA/MD+AQhBvMGKgc2B5YHCAjqBygHPgZlBVQE7gKLAXUAj/+r/uv9e/1K/TL9Of1u/cD9E/5x/vf+wf/WACMCcwOfBKcFjgY8B64HHgifCOIIkgjbBxUHKga4BM4C5wBI/8j9ZPxf++D61PpN+2f81v0h/18AEAIlBOIF/gYACDcJHApGCjUKdgquCkEKXQmQCL4HdAbiBKUDvQKhAUEAJ/+H/gf+i/1x/dv9b/75/r//+wCLAkkEOQYsCLUJsApYC7oLrQtiC1ALYQvnCq4JVAg3B9sF5wMBAtEA5f94/u38SPyc/P38Ev17/Y3+vf+iAKwBOgPhBCQGMwddCFgJvAm9CbMJcAmqCL8HNwfPBtwFdARcA9ACPgJUAYoAXQCxADsB/QH2AukDwASyBcQGkgfyBz0IsQgECfcIzwjFCIsI4QciB7EGPgZoBZwEewS0BHoE7QPuA5AE4wSRBH8EPgUCBvgFsQU1BlMHDQg1CHkI/wguCeYIzQgbCTQJvwhFCCsIBwh7B/MG2wbPBmkGJQaPBh8HAQeWBukG2wcrCHkH5gY5B7QHaAe9BpkG2ga8Bj8GKQa4BkkHXwdGB3EH1AcVCAEIqQdDBwEH0wZuBr4FJQUHBT8FZAVlBX4FvwUGBlYGywZUB80HRAjCCBgJLwlGCXMJQQlZCDkHhwYBBvsEvgM3A3ADdwMJAw4D9wPwBFsFCQbXBxUKegsQDOcMJw7FDjEOIg1nDOAL+gqUCfMHWAbpBM0DDQOSAl4ChgL1AnAD8wO0BLsFzAa1B4QITgkBCnkKrwrFCvcKYAu5C5QL8wpQCuQJTAlFCEYH1AamBioGmwW1BXMGBgcaB1IHHQgACVwJXgmBCbwJrAlHCdEIZAjjB00HrQblBeQE8gN5A5AD7wNcBNUEdAU/Bh8H8wevCGMJEAqLCrkKxAraCtkKmApOCkoKVAruCSYJigg1CKsH0AY5BjcGQgbaBVcFQgV4BZgFxgVfBjMH0wdSCAAJsgn4CeUJ5An0CcUJaAk8CR4JjQiaB+YGmwYqBksFhQRaBJMEyQQiBfcFIQcbCLkIQQn3CckKdgvZCxMMZwzfDCAN3AxIDMgLTwt1CisJ2ge8BrIFwwQ1BPoDnQMAA6EC0QI2A3YD1QO8BAsGZgfECCkKPgvBCwQMcAzKDJcMAwyYC1QLvwrICe0IYAjAB9wGDQamBXYFPwUnBWwF9QV1BuAGXQcBCLMIWgnyCYcKHgufC+kL/Qv4C9ELSwtnCo4J/AhdCFkHOgaNBVEFDAWaBEYEKgQXBBwEkAR0BV0GIgcFCA4J3QlYCuAKoQtCDIYMtAz2DPYMdwzQC1gL0QrpCdsIDghyB88GVQZYBrgGHAeKBzMI9QiGCfYJgQoSC2cLiQupC7kLjQtCCwwL2gqRClcKQgoFCnoJEQkmCUoJ5gg6CPQHAgi+ByYH8wZjB+gHNgizCJMJagr9CrELqAxQDUsNKQ2IDQ4OCQ6DDRwN/gzCDCAMPwtWCoEJ2QhhCOYHQweuBmgGTgYdBugFAwaJBlIHMAgNCdYJpQq2CwUNJQ7FDiYPnA/vD7IP/g5ZDugNXA2TDNkLVAvMCi4KugmQCXAJQgldCfYJqAr3CgALPgu4CwcM/gvuCxEMOgwvDAsM+gvnC64LZQsqC9wKVQrHCY0JqQnKCdoJHAq1CmAL3As3DJgM+QxKDZ8N6Q3bDVINowwuDNkLXQviCswKFQtVC2ILfQvEC/oL7Au8C5gLfwtqC1wLRQsVC/kKKgt5C4ALOQsOCx4LDguyCm0KhgqxCpQKVwpIClUKTQpbCsYKaQvmCzkMmgz9DCgNHA0FDcwMQAyQCycLCwvrCrwKxwodC24LnAvpC24M3gwTDU0NrQ3VDX4N9QyrDJYMXQz4C6kLfwtPCxIL6wriCuEK9AorC2ULgwupCwUMcgy0DOwMWQ3PDewNzw32DWgOmA5UDgYO6w2kDfsMbAxWDFAM2As5C/kK7QqTCgIKuwnBCbkJugkoCtEKJwtFC8gLowwODdcMxQxCDbYNlQ1LDWoNtQ2qDV4NIA3QDEUM1AvBC60LNwvGCtwKJgsHC68KyApGC4YLdQugCykMkgyuDOEMUA2YDYsNeg19DTgNlwwcDAgM7wtwC88KYAr5CWIJ3AisCJ4IZwhECJQIPAnnCaMKsQvnDNINYA7fDmQPsw+8D7APjA8FDwwO/QwjDGQLlArQCUkJ+wjPCM8IAAlCCYsJ/wmoCjwLjQvkC5EMVg2wDawN0g1ADnIOHg6xDY8NaQ3CDLcLwArrCfgI9wc8B8kGYgYYBjsGwgZQB9MHiQhpCSAKpApCC/ELTAxGDD8MPQzNC+UKIQrRCYEJ3ghXCEkITggDCMUHAwheCFQIMQiDCAkJKQkNCVAJ1wn5CbgJugkWCkAKKwp6Ck4L4gvDC3ULbwtTC7YK7wmACT4JxggxCNEHigcaB6wGkgaqBqIGrgY+BzMI+whyCQIK4QqvCxAMLQxWDHsMZgwrDBEMHQwADIsL5go6CmUJNgjjBv8FyAXdBccFowXxBccGswd5CHUJBgv0DK8O9g/mEIURrRFSEZYQgw8LDlUMtwpVCfwHiwZGBX8ELgQWBCcEfgQoBRoGUwfMCEkKjQueDJANHA7fDfYM/gtFC28KOQkICFsHCweeBhkG4gUFBjMGbAYBB+MHnwgeCcsJuApLCyULwwqyCrAKNQpyCRAJMQlSCSUJ6AjcCOgI4gjGCIsIIAilB1AHAgdeBmMFfwTuA2UDqQINAhACtQKeA6oEDQbXB68JQQuJDKENWA5aDqgNoQxwC9UJnQcjBfkCPgGu/1L+rf0F/gj/SwDcAfUDbQbWCPgK1QxbDlgPtw+ID9UOpQ0bDFwKcAhaBkgEeQIRAR4Arv/B/z4AEwE7ApsDBwWBBiAIsQnIClcLuwsFDMQLzgq0CesIEgivBiAFFgSMAwsDpALOAnYDDgSCBC8F9gVBBgYG4QX+BdYFMgWZBGAEMATXA8IDMwTEBC4F3wUpB5MIkQldCl8LSQx9DPgLIwsdCsoISwfRBUEEjgIgAU0Ax/8o/8L+IP8cAC8BUgLrA+0F2Qd/CQELMQynDIUMSQz0CxELpQlGCCQHxwUCBF8CUQGoACoAGgCzAK4BxAIdBMsFSQcSCFQIiwilCCEI8QaiBZgEmgNXAuwAz/9A/x//MP93/yoAYQHbAkkEnAX0BkEINAmkCbMJiQkXCUQIKwcGBu4E0wOoAoQBnQAMALf/e/+B/wkA/gDyAbYCkwOrBIcFugWOBY4FnwU9BWoEpAMLA0UCSwGVAEUA8v91/zz/e/+//8P/9/+5AKABHQJaAtMCeAPdA/wDIwRTBEwEFgTrA8EDaAMMAwcDQwNXAzYDOwN8A48DOAPCAoQCUALEAeoALADD/3j/Fv/L/uj+Xv/b/1kAPQGpAiIENAUeBk8HfQj1CLQIXwgYCC8HUQUmA1oBvf/t/T78Qfvp+tL6/fqb+3b8Pv0j/oH/KAGXArgD1wT4BbsG8Qa7BjMGVQU6BAADogEyAA3/d/45/gP+8f1S/hr//P/WALgBnQKKA5YEjwX0BaQFFAWFBI4D9AFZAGj/4/5D/rr9yv1B/pr+9/7I/9IAeQHKAUwC7AIlA/wC7wL+AroCLgK8AUcBdwCq/4P/xP+r/1z/nP9DAFsA0P+e/wkAKACX/yT/T/9S/5X+v/2O/ar9dP0p/Uz9tP3z/R7+c/7f/lH//P/QAFcBgQHLAT4COgKRAfQAugBCADL/Mv7F/Vv9bfyS+237gvsa+5b6tfo/+337jvsd/Cr9H/7H/mb/+f9AAEgAOQD3/3P/Bf/c/p/+If7O/dr9u/0Z/YX8bvxE/Ir75foE+0774Pov+jb6svqd+gr6/Pmg+iP7U/vd+/D85P1q/tn+MP/9/mH+F/44/hD+d/0V/SL98/w3/JL7ivvB+877/fud/F/94f1S/u/+ev+r/6j/oP9Z/5z+nf2r/MX7xvrB+dX4AvhN99n2zvZD90X4uPlN+9X8Wv6+/5UA0wABAWYBbQGgAKP/Nv/f/rP9DfwY++L6Xvpb+eL4Z/kY+nL6E/tm/Lf9cP4H//D/sADfAP4AewG3ARUBGQCK/xn/Gv7a/CT86ft1+8H6c/q5+hj7TPuW+xT8hvy+/NH82/zw/Cb9U/0S/V78wPuE+zj7fvrO+cf5KPpE+iH6Tvrl+nr76/ts/P/8fP0O/vT+5f9kAIMApgCrABIA7/7j/S/9efyZ++r6mfpt+lH6iPod+7P7LPza/NP9r/4n/33/8P88AAYAZ/+1/gn+RP1p/Kn7Ifu4+k761vli+Qz52vjJ+Pb4gvlM+gb7o/tT/P38LP3j/Mn8Jf1L/bH8/fsM/Hr8OPxQ++H6NftH+3H6a/kZ+Ub5Tvks+Tr5ePmv+dz5//ns+br54/mE+hH7P/uA+yj8t/yo/FX8S/xT/Pz7lPus+wL84/t2+3r7+Ps1/Pj75/tX/MT8xvyy/Nz8Cf33/Oj8Ef0v/Qf92PzX/LD8FfxI+6b6F/po+dH4jfhk+Bj4+vdd+O74M/lw+UL6fftc/LX8G/2//Qb+jf2+/Bb8g/vM+h76pPk1+bz4jvjR+Cb5Tfm3+dn6aPzK/fr+RgCJAToCRQL9AWgBPwCd/gL9o/s1+qn4dPfp9sH2l/aH9vn2FPiV+ST7nfwd/rL/DwHAAbIBUgHWAN//G/4F/En65fhy9xb2X/U99RP1w/Tb9Jf1i/Z998n4kPpK/JD9nv6m/1QAcgBdAFgACQAm/xH+PP1z/Fj7K/pq+Qv5t/h3+Ir45PhO+dX5jfo2+477xPsU/Eb8Efyn+1r7DvuK+gP6w/mV+R/5j/hJ+C746veZ95n32/cG+B34WPiW+J34o/jv+Df5FPng+EH5DvqG+oj6rPoa+0D71PpB+uf5nPkx+cH4R/ic9/D2pvai9mj2CPYn9uP2jPfB9/v3nPg++Wz5Z/mb+ej5+/nm+d35u/lN+cD4U/js92X35/an9pH2h/aZ9s/2A/dA9873v/i/+aP6mPuK/AT93/yN/FL82vsK+3n6f/p/+t75F/nz+C357fhI+DL4/Pjn+Vr6ofo2+wH8ovz4/B/9O/1w/bD9nP3+/Ej8FvxE/Cn8vvuw+z78xvzc/P78sv2o/lT/4v/aABkC9gI9A1wDhANWA4MCTgEuAED/V/5m/Z38J/wD/Az8H/wx/Fr8t/xG/ef9bv7G/vz+Mf9k/2z/Kv/E/nH+Hf6F/bb8EfzD+4T7EPuI+hr6rfks+eb4MPng+Zf6Xvts/Hv95v2J/fP8m/xg/Pv7iPtE+xv7wvoX+iv5GfgH9yr2l/Uz9en01fQR9Yn1EvaS9vb2Nfdi95P3pfdX97D2AfZ19dj06/PC8qTxvvAQ8GzviO5Y7VHs5evK60jrU+qz6djpKur+6Zvpw+mJ6lnr1+sV7DTsSOx67MfszuxZ7Nrry+vY61TrT+p76QzpiOi75xHnzeay5p7m3uaE5xvoaejf6OTpH+sP7NHsze3j7ozvnu9o7yTvx+5Y7gXu1e2f7Wbtbe3T7WzuBO+679LwUfLj8zX1SfZb93v4Y/nP+dX5wvmv+Xj5Dfmi+Gz4afiG+ND4ZPk9+j/7VvyQ/fj+fgD8AVcDnwTfBeMGUAcIB0wGbwWEBJsD8QK9AucCLwN7A8YD9gMaBI0EfgWSBloH9AfBCIUJmQn1CGIIXAh2CC8I0wf1B3kIwAiYCGcIaQhXCOsHUQfoBsMGoQZVBvwFzAW6BYEF/ARrBDcEZwSYBH4EQgQzBEIE/wMpAwYCDQFUAIL/Wf4Z/Rn8Qfsw+uf4z/cZ94f2A/bf9Sf2SPbY9UH1DvXZ9NfzL/LO8PHvw+687ILq4uiz51Dms+Rg44ni8OF74U/hcuHA4SvipeLa4mziYuEd4N3epd1q3DLb8NmQ2BnXldX201PSHNG00PzQidE/0mHT/NSr1gLYAtnv2fjaFNwa3e3do95232Hg8+DU4FjgKuBx4LXgxeAx4YTiceQz5o/n9+iv6mPsue3j7kTw1/FG83P0jPWU9j/3XPci9+T2mfYG9jn1qvSx9Cf1ofUA9p720fd2+R/7rPxs/o0AtQJTBFcFJQbqBmUHZAcdB98GqAZTBvUFtwWPBVwFNgVMBaIFIAbUBt0HIglvCrULBg1TDocPuRACEi4T9RNuFOIUPxUjFX8UuhMaE3MSmxHYEIQQlxDNEBMRexH2EVYSjxK3EtcS3xLLEqESVhLJEegQyg+eDooNjgyeC7kK4gkGCQ4IFgdOBqkF7QQaBGYDugKqATEA7v4q/kj9r/vQ+Wr4Pfds9QHz9PCn73bu9uya67rq++kd6X7oOOiy557mkOXy5CLkguKd4FLfcN443bvbmNrB2avYfdf11iLXVNdW167Xa9i+2BrY9tYA1kTVetSZ07jS3dEZ0XnQx8/rznLOG8+90HTS8dPU1WLY59rR3JLetODa4lTkNuX25X3mZ+b05dnlLuZa5g/mweX35bDmmueY6ODpx+tU7vvw9/IM9Mf0rfWN9vb29Pb69kP3rvcM+Dr4IvgL+JL43vk1+/z7tPxH/n8AJwK0AvgC0wMABbIFxwXiBZUGzgcGCcIJCAphCjILNgzgDDQNvA2tDp4PMxCZECUR+BEmE8MUiBb2FwoZORqNG2IcYhweHDUcZRwmHJ4bVxtSGy0b7hrrGg0b7BqYGocawxrVGpMaVRpQGkcaDxrIGXkZ/BhuGCIYARiKF6IWwRUVFRQUWRJFEF4OlwyyCtsIVwf7BY4EUgOGAsoBowBb/4v+CP4S/Yv7G/oJ+b33w/V/83Hxde847fzqKemc5+/lQ+QI4yziFuGY3y3eMd1L3P/af9lu2AfY1tdS13DWftWY1HzT6dEU0IHOg83uzGHMscv8ymHK6cmlybvJTcpey9bMiM460L/RENNQ1KPVENd/2MjZytqV22DcRd0T3pve+9553xDgfeC64CLhAeJI487kkOZ+6E7q0Osk7XXup++b8Hvxa/Ik803zBPOw8mDy5PFr8XnxL/Iv80/0zfWl9075evqP++j8Hf6r/uL+g/+SAEsBRgEOAWEBPgIKA3oD/gM8BS4HBAkQCqcKsQtlDQUPHRBQEWcTFhZpGAkaZBuyHK8dPR6ZHt0e5h7IHsUevh5LHncd1BysHMQc9BxhHfsdZh6gHvkeVx88H7oegx64HoQeZx0QHEcbzRoaGmEZCxnDGP4X5hblFboU+hIFEXkPGw5XDHQKMgl5CJEHfgboBaUFxgQuA74BtwA6/+D8ivrZ+BP3evSc8Wfvsu3L69rpiOi457fmX+Un5B/j0eEz4NveHN6h3Rbdndxq3Ejc19vn2nvZqdeN1TbTqtAZzuvLYMpbybDIcMi5yGrJaMrmyxPOuNBx0xrWodi52iHcC93a3areft+e4DDiwuPG5Fjl9eWM5rfmpeYc51Hokulo6kDrpexh7tjv4PDI8c/y8vP19Hv1U/XX9Ij0PfQ+83Pxy+8g7zTvbO/j7xTx2vKI9Nj1APcS+Pj4/fmN+2T9u/5X/8n/agDeAOUABQHlAWcD9gRWBqYH8AgeCkILhgz4DaQPtREyFNAWOxl6G68dsR81ITMi5CJtI9wjSCSvJNwkuyR8JDokwSMOI7AiLiM/JDcl9iW7Jk8nIydKJoYlNSX+JKckcSRhJP4jFyMSIishFSC9HpQdrhxrG5EZzReJFiwVVhPdEXkRVhFbEA8PqQ7QDgMOCAwsCuMIBwf9A8QARP78+1z5/vZ99UH0nvIr8a7wf/B1773tXuxV65Pp5OZO5IDiBuFj39/d1Nz/2wnbFdpA2T3Y0NY91dbTcdKw0KrO5szRy3HLkssdzETNWM9D0mXVJNh/2snc9t6N4Ezhe+GQ4eLhl+Kb46TkjuWc5gLoaelZ6gTrGuzN7Yvv1PDD8Z/yWfO988bzmvOI8/nzCPUb9m/2F/bG9ZH1x/RA8/LxtPEg8mzysvJ985f0UPWy9Xf2zfcZ+Qn6Afs6/DP9dv1N/U39of0q/gD/SADVAVQDuAQxBsgHVgnSCm4Mbw7sELATTxaKGJUaxxwIH94gJiJeI/cktSYOKMYoBykIKfgoASkkKT0pZykSKl4rrixMLVQtby3ULRQu0S08LbYsXywcLLIr4SqwKZgo/CeRJ8kmwSUNJbgkKCQdI/YhzSAoHw0dVhtoGmwZrRfdFfUUcRT8EnsQEw5HDF0Kygf9BGQC2P9R/T/7ofnQ97L1JfSJ893yLvEV77Lt0exG69Lobea+5GXj6eFy4ETfQ95J3XPcxNvv2tDZrtiy13nWe9S40b/ONcxsymjJJ8ncydXL8s5l0ljVudcV2rDcI9/14DHiSeOS5AbmSucE6Fro/uhs6kDswO0B79DwZPPL9RL3Yvd/95/3W/eJ9qX1Q/WL9TD2pfZ79rn1v/Sy82Dy1fCk7zzvV+9676/vKfCw8P3wgPHf8t30jvas99z4c/rO+1n8cvzP/Ib9Qf7t/q//iwCZATcDiQUKCBoK0gu8DQAQUBKGFNYWXRnoGzkeIyCAIV8iMCNhJOAlTSd1KFsp6ykcKjIqdSrTKjYr8CtNLeouHzDoML4xpzIlMwszrTIeMhYxpC9FLgktfCubKQUo/iYNJvskPST3I4AjfyJ+Ib4geR9IHS4bKhp+Gd8XoBUOFCAThBHZDjwMVApyCAMGfwNGAej+Q/we+tf4qvcI9qX0L/Ts87/y3PA279ntCuy16ZDn3OUt5FniteBM37Pd39tc2nvZ8Nhu2BPY6teP15bWG9Wg05/ST9Kn0pDTJNWC11TazNyM3jXgfuIg5TznpugI6rbrNu0k7srun++98B7y3PPT9Zj3F/nF+t782/4eAMEAQgGsAZQBuQBW/+j95/x1/Db8pfu3+tj5Ivkn+Mr2xPW+9XT2Q/ce+ET5U/qq+oD6ufqZ+3n87vxy/Xf+jf/2/6H/L/83/9v/4QDzAf0CYgSKBi0JigtgDUcPzhG8FIAX9RlLHIgeiSA7IowjXiTWJGolVSZKJ/AnYSjSKDApdCn0KeYq6CukLHwt3y5YMBMxITFiMSUywzKtMhsyZzFxMAovWS2KK54pxSdzJr8lOyWvJFskSyQJJFAjcCKIISogTx65HMUbiBolGEUVFBNeEQEP/guUCUcIHwdJBSYDQgFn/1H9a/sG+qf43/Yg9e/z3/JA8VDv1u3l7MvrMOpc6ILmjuSf4g/h49/B3qXd9NzI3Jnc6dv12lfaPdpE2gXaitky2T3Zj9n+2braNNyK3krh5uM15kboC+py67XsMe4L8CPyT/Ro9jr4ufkt++z89P4SAT8DdAVVB2IIfgj2BwcHxgVmBCUDCwL6ACAAxv+7/3D/tP7f/TD9dvyx+1n7wvuP/DX9n/3c/bP9D/2T/BH9g/4pAJgB8QIdBJcEMgSmA+QDMQUxB24JlAtpDekOUBDWEXwTQxVcF+EZeRySHvEf2yC9IdEiBSQeJQEm3ib1JyspEipyKpkq8CqBKxwsuCxvLT4uDS/PL2YwmDB2MHYw5TBxMZoxYjEUMZUwii8aLtcs5yv1KgAqbykjKWcoDyfbJTYlcCTtIjIhASD1HjQd4RrSGBQX8BRQEuUP3w2kCwoJvAYKBWUDgAHz/yT/d/5C/cz7jvoz+TP34PT+8qHxTfDg7oPtA+wK6t3nI+YB5Trk9+OX5LTlNeah5aPk9uOI4wfjquLz4tfjuOQT5fDkx+QY5Rbmnudp6U3rNe327nDwuvH78kb0w/XN94f6ev0TAGAC1wR9B7kJJwsRDO8M1g2QDuYOuQ4WDk0NsAwsDHILlwoNCvcJ6QmMCQoJpwhlCDwIPghKCBIIoAdqB5QHqgdpB1AHyQdiCGgI9gfDBxEIkQgtCS0KjgvZDNINzQ4ZEI0R5xIwFI8V/hZaGKIZ7xpgHBMeByDtIWMjaCRdJYcm0icSKT4qSSsJLFosSiz7K54rgSvnK6YsTy2vLe0tFi76LaEtcy2qLfotGC4yLnculS4pLmwt4iyKLOkr5ireKfEo1CdpJvUklyMcIowgTR9sHmAd4htnGlMZOxiaFrsULRO3EbYPRQ0ZC08JYAc8BYoDeQJUAaP/3/2B/Cz7Zfl99+71dPSR8oXw6u6o7TnsvOrL6Vbpn+iA57fmqubA5mjm8OXW5d7lgOXV5Hzkv+Rg5SXmF+c/6JLpD+uy7GzuRvBm8r/04vZu+JL5yPo6/L79Tv8xAZADMga2COQKtgxFDqwP4RC8ETsSphJCE/ETWhReFDYUKhRJFIEUwBQFFU4VgRVcFaMUbhMuEjURehDaD2QPIg/nDo8OSw5MDm0Odg6UDgEPbw9UD8UOew7hDp8PTxAXEUESnRO1FGoVARa7FqcXsBi0GZwafxuJHK8dux6pH7wgCiJTI3IkmyXfJtcnJSgIKAMoGCjlJ20nOyemJ08onihsKBIo8CcTKEIoRSgxKFUowSgYKf0omChiKIwo0yjbKH0osCeMJlMlJyTTIiUhbx8xHlIdMBymGkwZgxjdF9QWmhWgFMETiBL4EGQPsw1zC7UIDQbDA4gBMP8Q/Wf76fky+E/2h/Tz8o/xbvCD74LuRu0a7Evrq+rs6TLp3+ji6LfoGOhN567mV+ZQ5qjmROfU5zrosuhz6VzqRuts7CjuVPBO8p7zaPQg9f715fa496P47PmS+0L9w/5DABYCNwRHBhEIxQmKCyUNTQ4jDwQQARHiEZISRBMOFMUUSBWdFb8VjBUSFZkUPBS7E/USNRLEEX4RIxHcEAERfRHqESkSfBLsEioTDxPpEggTUxOPE8ATBxRnFNIUVRX7FakWThcFGNwYtxmIGnobpRzEHZIeMR/oH7AgWiH/IdkiwCNTJI4k1yRJJYMlViUjJUsljyVzJf8ksyTPJBIlLCUeJRolLiU+JS4lAiXUJLkkrySiJHokKiSzIykjoiIeInkhmiCTH4AeWh0YHNwaxxnJGMIXzhYRFmIVexR0E5kSxRFtEHYOawyoCtQIkAYhBPgB/v/b/bP74/lj+O32kfWK9KHzbPIS8R3wi+/N7rntyew67KHrt+rc6WrpIum46GHoYOhq6Cbo7udh6GXpXeor61XsEO7I7+/wuPG+8iT0gvWE9kz3M/hV+XL6U/sm/E793P55AOwBaAMwBRAHogjoCUELzAxBDnAPlhDyEUoTLBR/FKAU6BREFWgVVhVtFecVYxZHFpgVCxUeFXcVehUuFSEVhRXwFf8V0RXLFRsWqBY3F5sX2xcpGJcY8hgRGS8ZlBkdGm0alxoFG8Ybhxw7HUkewB8JIbAhByKLIhMjKyPrIuIiVSP4I3UkyCQXJXYl2SUNJuklliWAJb8l3yWFJQAl0yTiJK8kMiTnI/0jEyTfI4YjKyOoIt8h+iAdIDEfKh4uHUscXhtxGr8ZQRmWGKQX0RZSFroVrhR2E28SVRGyD8MNIQzTCmMJywd5BmsFDAQkAjkArf4r/VL7Tfl298X1D/R28i/xIvAw73Lu6O0y7Q3sz+rn6SrpJuj85jvm9uWl5RXlvuT85Hjlu+XZ5SnmoOb+5lfn/ufz6OTpueql67Xsru2A7nTvtfAQ8k/zg/TA9dz2xvfI+CP6n/vm/BP+i/9LAeICFgQ3BZ8GMgiNCX4KNwsMDBkNIw7UDjAPnA9WEA0RWBFcEZYRHhJ9EmoSMhI4EmwSghJtElASOxIyEmgSCxP4E8wUYRX3FcsWrRcwGEYYbhgeGSQa3hodG18bDhzbHEUdYx2/HYQeWR8BIJcgIyF5IZ0h4SFiItEi+SIVI2cjyiPvI88joyOZI74j7yPaI1MjrCJcIj4itiG0IOgfqx9sH5Yeeh28HF8c9BtkG9YaLBo5GTcYbhepFp0VlRQDFKoT+BL5ETIRpxDYD7IOow2wDGALsQk7CDAH+QU9BIYCcQHBANv/qf6S/cP89/vF+gD53/bu9H3zLPJ78KXuYu2t7KzrAepn6IvnCOci5vzkOOTa41PjhuLy4dbh4uHZ4fPhY+L14mvj5+Ol5IDlH+aC5g3n6ufE6FXp7+kH62TsX+0A7hPv4/Ci8qLzevQD9tX33Pgp+fD5ovtM/Tn+Df+OAFkCnANrBGgFoQaYBzAIvAhYCeAJWwrtCnUL1wtcDD0NEA5fDoMOKw8rEKsQjBCvEJQRlBL3EgsTjRN0FBEVJxU8Fb8Vehb8FkUXphc1GLAY9Rg/GcoZcRrjGhobVxusG+8bIhyUHGodVh4KH4sf+R8+ID4gJSAnIDcgJyAHIAMgDyD9H9Uf0h8HID8gPCD1H4cfDR+OHvkdOh1oHK4bExt5GtEZKhmVGCQY4hedF+QWjxUkFC4TbhJMEQEQUQ8uD58OSA0LDIgLGwsGCroI+AdpBzIGagTmAuAB2QCj/5f+yv3s/OX7zvp5+bj38vWg9GnzpfGf7y7uOe3V6/bprOha6BDoG+cg5tDlq+X25Afkm+OM4z/jzeLE4g7jIeP74hrjkOMI5HbkDeWU5bHls+VB5jzn8OdT6DHpzepQ7A/tgu1o7qnvofA88fXxEPNe9Jz1svag94X4mfnf+hL8Dv0S/k//hQBiAf8BsAKAA0EE/gToBfkG8gexCEQJtQkNCnUKCAujCy4M0wyhDTcOQg4kDoAOQA+tD6EP2Q/XEA8SohKUErISfhOYFEoVYhVvFRsWRBcEGOAXlhcoGFUZ5RmDGUAZ7hn3GnAbhhvwG54c9xz2HBcdWB1aHUEdiR0IHh0eyR20Hfod/R2OHT0dSB0gHWocnhsoG7waChpeGRAZ3hhqGNAXSBe+Fi8WxxVjFYYUNxMkEogRtBBED+wNWg0LDSAMswqECbsI7QfwBucF0ASwA8sCHQIWAY3/Pv6r/Rn9t/sX+kD55Pjc9xr2n/S185/yGvHb7znvqu7W7RLtiuzl6xbrfeoD6h/p9edU50Tn2ObN5RvlSuV15drkLeRm5C3lmuW25Rzms+by5vfmU+f/54voC+nl6e3qm+v1623sDO2D7ertqe6o733wS/GX8jr0cvUS9tX2J/h5+Tv6tfp8+378O/2X/fX9lf5Z/xcA3gDHAbECUwOGA4UDsAMiBJ4EAgV/BT8GDgeqBy4I7AjQCXIKqQrCCgsLbwuxC8QL5QtkDFENVg4MD4YPQRBjEWASuxLMEksTQxQIFUEVVhW+FWMWAheWFyEYZxhNGCYYRBh1GFUY+xftF10Y5hgZGQEZ+RgsGW4ZfxlNGfIYihgdGLEXWRcXF8MWPhasFU8VHBW5FBUUkRNxE1kTwhLNEQ8RshAyEDMPBQ4UDUgMSQsUCvAI9QcPB0MGqQUdBWsErQMSA3ACeAFIAF//5/6F/uv9Iv0t/NL6Gflu9wr2qfQm8+PxIfF18F7vLe6T7YbtUu2y7CLs9uvf63rr3Oos6kjpI+gc54bmIeaH5dPkcuRq5Evk2ONV4xrjM+N649bjQ+TK5JPlrubS54vox+j66IjpReqz6rbqruoA66brUuzZ7FntFu4o72DwbvFB8hDzC/QU9eH1W/a09jb3C/gi+Sn6z/ok+5j7Wvz//Cj9Mv3L/ef+wv8KAEgA4gCAAccBEgLcAtwDfwTcBHAFJQZtBk8GgQZOBzAItQgyCSAKaguhDJQNUw7oDmgPAhC0EEARihHHERUSPxIdEuwR+BE5EngSlhKBEi0SyBGrEeIRDhLyEcsR4xEcEjoSQxJCEgsShhH0EIcQEhB8DxgPEg/1DlAOfg01DX8N2Q0WDnQO2Q6+DgIOIw2FDBcMuwuJC20LBQstCkoJsQg9CK0HIgfNBnMGqgVxBD8DZwLAAeQAsv9x/n393vw9/Fz7YvqX+fv4Vvin9xf3pvYf9nL1wPQJ9C3zS/K18XTxNPHQ8JXwxPAa8TDx/PCm8Cnwf+/y7sTuou727b/ssOtM61DrM+vl6qTqWuqv6abowedn53Tni+ec59DnIOhq6Mbob+la6jXr2utw7PfsHu3J7GbsYuyS7Jfsnew67ZXuIfBG8fbxfvIY89nzs/R19fH1RPbJ9p73cPjj+An5K/la+Wn5TPkt+SH5/vir+Gf4jPgq+QD66vr9+zX9OP7F/jH/AwAjAdUBrgEmAfMANgGXAe8BcAJPA4YE6wUeB6sHmgerB4YIxQljChkKyAlICkwL1wuAC+YK2QpsC+ULoAvOCjIKIgohCrIJLQlXCVAKcwsjDFAMIAytCyQLvAprCgcKrQmlCcwJogkdCd0ITgkGClIKEwq5CaYJ2QkACrgJ3gjFB9oGLAaZBVUFmQXZBRQFLgNQAXEAMQCW/3P+a/32/A39cf2//W/9bPxp+yX7a/tF+xj6RvjH9kL2cvZX9lb1J/QB9Nr0XPXy9K/0jfXL9iD3rPZu9nH2BfZT9T/1svWJ9Wz0SPOy8iLyOPGk8PfwoPHR8Z7xivGL8VPxCPEL8WHxzfEt8l7yK/Kn8SrxsfDY77nuLe6w7qXvOPBe8GrwO/C0737vdvBi8hD0sfR/9B302vO/88zz8fP1857z+fJ48qXygPNa9Kz03/SY9Xf2ZvZw9SL1ifaz+P35F/rX+a/5ZPn3+L/4s/iN+H/48/in+dP5UPnZ+Av51vn++mn8wP1z/mr+TP65/pz/awDCAKYAewC6AGIB4QHBATYBqAAjAKz/sP9tADcBTgEbAaIB3QK/A9ADmQNkA+ICQwJWAhIDQANkAqMB5gE8AkwBk//a/tX/bgFBAtsBuADO/+n/0gBgAfoAlwBNAWMCJgJcAK3+aP4O/1v/3/4R/nn9Q/05/dP8sfs4+kn5S/nc+WH6i/pA+pT57/is+Kb4kfiZ+An5W/me+Of2ifV99Uv27vYQ9/729vb+9gf39vbU9gr31/eC+P33nfYS9gf32vfb9uT0T/Sb9bX26fUr9JjzlPR59eP0a/PF8sfzpPXk9rT2ePVa9C70k/RE9L3yTvGu8XvzOPRp8prvaO5D73nw1PDQ8E/xdPLP86T0EvQ78gbxMfKM9BL1HvOF8YLyj/TT9D3zLfLg8jL0rPRF9OfzXPTG9WX3GPig9/72E/dy91T37fbJ9rj2Y/ZH9r72xfZT9ZHz1vNv9vv4WfnV9y32qvWy9ur4FPu9+936Efqc+sr79/u8+lT5C/nA+SL6QvnM93H3D/mr+2L9LP2f+1n6tvp1/KT9vvzh+q36ffyH/dX7VPkw+XD7W/1Y/Qv8K/ri93n2uffo+tz8LPw0+238v/5g//f9mfxN/Or7gvoT+Qf5Gfq5+gH6fvha91r3qvjO+mP88Pu/+T74OPka+/b6EPnI+CP7l/xc+hz3+fbz+Ln4/fUK9YD3f/nu91v1qvU/+N759flb+lz7g/uY+rz59Ph89yP2ffbj9/33bPYp9Qz10PQG9Bj0I/Xo9LfywvHj9NX5l/u7+JL0lvIj8970sfaj99H2rPS58mLxt+8z7mPvy/M+95j1NfHR8Dz2Mvuj+fvzevFD9HX3Evcu9Xn1Rvch92n0CfJx8lX18fgp++H59/Qg8ATwkvR6+Ir3dfPr8PHx5PSH96343Pd/9Sbz6PEd8UHw5PBW9C34KPjq8xzw+vDF9V76bPtt+Mfzd/GD8xr3sfdw9ST1ffi0+s73Q/P78o32kPj09pz0YPM38pnx7fMn+F35KPZ18xL18ve097/1IPZY+Kz4yfa19Rj26PWL9cf3r/sA/On23fFu8sn2HfnW9132Gvfv+Hv65/ur/PT68vY89Jn17fib+Wn2z/JR8nH0APYx9U3z8fJm9WT58Pvy+n33CPXS9YL4M/oI+mb5F/k2+FL28fTI9WT4YPqI+ZP1+PAZ8HX1jf3oAGL8hfUA9DT42/s3+934wveg9ubzCvKo8zL2XfVl8nbyKfYt+AH2avS29xv8Bvtl9ajy2/Wa+XT4bvQf8771qvji+IH28fLj73nvTvJu9VL1AvP88nn2WvlY+LX1NvWB9tD2Bfb79U/2OvX182T1Hvgf9zXyYfAH9hL9Q/wD9APufPA/95/6q/g99SD03PV3+Df5x/Yf89/xxPOC9Ub0WPHE72TwQ/LS9Dr3TvdY9K/x9vJ/9jv3UfR28n30u/bI9MLw2vCf9mz8Qfzi9qjyLfQ/+X/7v/f/8e/wufVP+rb4PPKq7ZfvdvZA/an/KPy+9Hnu3O188pf3mfkQ+Zv3DfXC8fjw+PQ2+rH6S/aR87720fsz/Hb3IvNR85/2HvnO+N726fUJ9zL4j/YR80Ly4vVl+fD3oPOq8nr2W/rY+pD52fj/9+71zvP18iTzYvRe91n6lvlY9V3z//aK+9v6p/aH9W/4Tfnb9BvwbPHl99n8JPzi94X0+/OQ9XH4Dfxa/ov8+/Zs8uzy4va/+VT6zPpU+4z5ufWq8yr16fcT+vf71/uP9jnvDe9v+L8A2/1Z9Dnw6PPv97D4vfkJ/Bn7APY98gHzWfU690f60vw7+dzwWO5s9pX+dvvl8S/vHPVO+dD2GvQO9if47fUA8wz03PaX9973B/qD+tv1LvGX85H5APm18Q3vbvaT/u79ovgM+ID7bvs19yr1oPaF9iz0WvUg+wb+Zfnt8gfy/PV8+Xb6fflw9ubya/O++CT8Yvik8q3zrPpZ/nv6YPWL9vH8wQCN/EfzxO1E8dj4bPtm+CX4qv0FAGn4S+968az8hQJZ/QX2lPSp9jr4sfoA/oH8x/SU7wH0Afwn/fH3AvWa9iL3CPWA9ev5LvxX+bL3e/wfAun/Nvd78RnzmveD+lX8av0U+1b1BfKL9VL8p/8J/pn6mvdG9t/44/6lAcf76PIc8lH6fQBr/QT3+fWE+X37g/oe+Rj3iPN88hz4PP/S/XH0dPDo+WEGkQVy97TsiPDm+sH9yvgi94r81P9o+kDzHvQG+7z+H/3i+x39ovzX+A32VffM+jL+4gB4ALT6C/Td9H39AQTrAN/3CPEu8MX0IvzHAGX+DPkE+UL92Pt/8+PwD/vyBUgD3Pc886D40P1x/Xj8t/3M/L/3pPPd9AT65v/EA50BJPge70fxAP6kCFAIzwCe+XL0IfH98nX76AOlA4b6LPHP7333YgK0B60BwfPS6U7tgfrIA6QAOPeg9Nj8sAVnA573zO/n9N0AcwaGAF32RfIM96f+XwGl/dX4QPj/+sH81/wI/sb/mf0092rzO/di/jABlf7H+0f8a/7k/pr8ovmW+UL93/+S/Mf2Nffh/ksEDwHe+rn5jfwb/mb+K/9n/Yj3i/Rt+kACVQFz+vH4Sv1l/QP4p/cP/xgDVv79+tv/QgLg+ODvKPjgCVwMsfpZ7MzzXAWlCST9vvBN8T/7UgTcBrACLPto9nj4Dv6TAGv/Ff+w/2T8Mvb49cL+egZwA4j6YPej+6H/4P+P/1n/e/zn+Af6f/5x/0f9zv+WBsYFBPks7kfz9QE9CO8A9Pe39+X8fP6++hr44PsFAxkF3/7c90f5BwFVBGn/Nvox+1L+B/60/Mj+cgLcA1gDPgHu+vjy3fMjAUENzgnW+83zZvYS++b9NANGCTgGmPiQ7bfwQP6vCd0KggEZ9CjuS/frB7cOQgXS96r0pfs2A7oFAANl+0nyEPGw/ZgODBFd/0Xr4uv6AYIUHw0w9LHnE/aYDLkQcQH/85f1vf60A0ADNAEZ/of6qvrp/3wEggK3+8L2O/i2/5cHxwdD/r70hfa5AJAF6f9E+cb59P3EANcD/gaaA4T5ZfWK/j4IfgNp9z/38AMxCmoAAvX29x4EAQlOAj/6/viS/NEAlgWOCXcGy/nP7fjwcwK9DwcLyPxK9mn51/r6+Mn+eQzvDzr/K+xi7vUCcREADBv82PH08z//Sgp4ClP/ovZN+6EEaQOs+o36nATQCFwAC/jJ+Y3+M/9dAdMH+Aaw+LPtF/ifDZcT/gOP8yfzX/2IBaIIqAhCBCL84/dr/CYDLgPj/mL/iAQDBNn6t/Wl/6kO/w15+07tw/TuBncN5QTU+wj6JPpq+oMAXQn8B1P7DfRx+9IEdgPJ/hMCwgY8AR34Pfr0BL8I6gKG/rL+afw8+R3/JgvFDKX/HvS+9t7/2gMwBGYGDgdaARn6zvgK/UoCKgfzCXoGav4H+5r//QKd/j769v4bBxQHqv9k++H9pgGGA9EE/ANp/hf5mvz2BpoLWwQx+tL4BwAZBtwEzP9c/vwCJwiTBm7+Ifgj+hYBswXpBkEIVAiQAR72TfIL/X8LnQxv/+r0bfkQBVYIxQHu/OT+PwDP/JL8fQUnDt4J/vt685P20v6NBh0NEQ5tAyP0vPGrAHAP/g3dAiX+RAGBAZj8zPs6A7YKrwmcAVz6EvooASYJtwi5/sL2EvsHBQwGCP5U++sC9weuAdP6tf/LCKYGsPtb+GkADAZQAYH7l/2jAq0DqAPjBZkEyvyl+HAAKArUB6P+z/0CBJ8Cwvkh+kQHag4eBP32WPjgAgkHJQO7/5P+FP3O/kcGoArGA336avyiBQMHP//E+5oBzwasBLAAEAB4ADoBXQZ4DfoLQf8j9O72TgMNC3IHYv79+S3/qQkSD5QIrPow8S/07wGaEDcTxwMJ7gfp0vzpFJAXSwXN9En0tv10Bl4KLwf0/GH1CPzPC/YRTQeO+WT3mv9ICOgKlgW2++T3GQFsDE0I3PeW8Xr+UQ39DUQGXQGf/Rv4Vvn2BWkQyQqN/JT2kfs+A4AKOxBQDPD7xe4G9ZgGbw7zCLkDpwPGAIX64voxA8cI8gdRCIoKcwQE9mLwCf6rEYUXDA0h/of0yPOR/KUJbg8zCJ38ofjJ/KsBjQR0B2oIJAPf+lf5jgGGCoAK1ALM/Iv9bwECA44CNAQLCHQIEwJs+lD6gQIPCioJKgKu/UwAtAZjCqwHGQCw+Sj7IAVrDmYLWPy58Kf2cAjaESAJEPtj+b4DdQoOBWf8vPwlBQAKAQXd/VQA0wr8DOX9mu5H+PQVfSKkCPbk7OJ5AugZThDR+u33GwZ7Du8Hff0r+gD+xAMPB1oGrATiBRkH8gFp+e34xQIrC20K/gZaBowCUfne9icDlBAxDsIBqf34A+wGNgI7AIMFAwnHBHr/+//8At4CFwE0AgUGNwi7Bfr/jvxaAFII1wocBIb8Vf0tBG0IrQcdBX8B7fyN/HMEAA75DY8Ddfmh+G0ALwqpDkQKZAGO/XMB1wSrARP+dgEzB3sGRAHp/6ICZwOAAhcFLgkNB5X+Rvkc/u8J+xLBD3H/MvCE9LwKSBk5DiL4qfE//rMLdQ6/Ca8B5vg4+AIFIhLLDbn8gvSK/BMImQ2vDr4JofvB8Bn7khIdGTAG2/Qu+ywMkhD9B3MAqP7r/wcFdAtACSj+LPrcBLkNxQXq+HP6cQYUDFMKmgrWCGz7ge1H9UYPUh3iDyX6h/Ss/uYIzAsWCg8G7QCj/qMBrAZpCccInwTY/bX66AETDk0QvwRr+oL+YgnRCsgBcPtW/k4E5QduCtkK7APv+KP3AwX7EX4OgQDp+hwCoAhaBoAD2gcODRkKOQLW/lgBWgTABfMG7QZRBD8CywPSBWgErAJdBUoJ/AfuAhIBUQPUBPIE7AbzCAcG5AAaArUJWg3ZB7kA/P8QA5cD7gHiAlQHYQs5C+IFU/5B+2wBAgyaD9IHrP2v/N4EhwvDCLUAJv4TBSINygtuAv380wEACosMyQknBsEBS/2L/woLFxT7DeP+8fjxAPsJuAoXCI4HWgV6/7X9ZQUZDjIMcQFS+gz+0gfvDUMLkAN4AO8G9A79Czj/2vh2AoYQpREABmf94ADkCI8KlgVuAZcC4gZiCToHdQIXAXcG5wzqCrYAkPrFACwLpAyYBkoFGgplCJj85fbWA+MVxBX6AiL00vhvCQQVvRJbBWf4fPk0CfAUsQyg++T5qQhGEV4JEwBGAVYEAwKuA7cNlBCaAt71k/5XEmkXtQlD+zT4uf7mCsAWjRU6A2Lyg/erC4gWyw9sA0/7YPl+AWgSBBqUCTzy9PL+ChIaaBCoAbYAeQWAA54BTAlQEQsM1f5e+iMDJg4EEA0HLvt7+IID6xBgEWEGnf8QAwYH8wXeBjoMIwzrAi39GQTEDR8NcAV5AT4CUQNVBsUMmw5iBbb6gf3gC0QUWAwb/e72zf8oDggTNQrK//cAiAlJCmAB4v3cBrEOJAn2/yADkQ4oEKsDJvlq/qYNahVJDPb6cPS5AcwUwRbtBIL1BfpkCbAQpw2fCi4JvgKM+tn8XQq4ExEONgE9/MkDfA8JE+gIlvnW9pgHWBoCFyb/1+66+IwOSBaJC3L/Pf6RA3sHPglMCrEIvAPl/1IBwAZIDMAO5ApFAOL3c/49ERcagwq3817zbQrHGeMMLPag9AwKUBuzFFH/XPLU+Z8N8xqJFXsDQfd0+y0Ihw8JDhsJNwRsAAgBLQd/DNoKmQXsApMB7/6HALwKXxNuDVD/RPxmB9MOjQeT/UgAOwwgEnsL0P95+tUAwQ0KFFELIvwR+O4DxhELE9UIwP78/O4CqAmDCVcCEv5zBCEOPw34Ab76Rv+WB7IK5wneCLUF0P+B/e4Dpw78E0gOawCd9Rr6JAxsGGEQd/95+5sEkQhbA5YEHRA1EzUE5vVm+z0LLhBLCG0BbgFPAzwE3QQzBCsEcArJEpAN+/i97fT/EB6+I0AJeOw26+oDahz9HNIFPfBr9b0OmRoiCevzcPnuEDoZIwlV9zv2zgBYCy8RSg8iBFf47vdUAdkIJQvaDEELngD19Tf7mgyhFIoLCAA//fP94v7kBpwTJxS/A0r2vfsPCPsHRv9X/1oJiA3YBLn63PvWBksQ1g8AB5r+tf33AlUIYAsHDX0LMgSQ+7r6ZgSlEd8YMBNPACTtcO6uB50e5xgkAL/zXvxFBnIGuAf3Dd0KWvsN9CkAEA2ZCQsCCAduDjAHj/rx/DgK2Q0SBsUCagZXBH78pf3RCfgQXgtlA5wAb/68/AoEOBEUEmcBk/PF+fEI7wx3BhkEZAeTBWX+//3zBjoMMgbT/v4AugdPCDIEfgThCHsIaALh/xYE3gb5AwwDrgiXC6EDs/lX+6AF2grcB5MEegMJAa4AEwjBDr8GOvcd+OIMShoKDdL2fPSDBtgUfxA4AQX3gPrKBysRIgz7/6P9MQb8CHwA7vwgB44OxAXf++MCug51CeT6N/wTDCcQkAFJ9x3/0gkiCAwCGgR7CV0Hov+V+1z+kwW0DcEP5gXT9xv2igOiD/MNdAX4ANn+3fo4+8QFORFwD8MBBfdP+JoB1ArwDmoLcAFR+Hv4aQJjDb0Pxwei/cn7TAMUCfADH/ud/QEL3xB4BBv0MvXNB+IWpRJaATH1XvhNBcwOsg3RBicDygM9AjH9QP2DB8cRqw2V/R/0NfwFC4IPUghqAYYAJQDH/e3/kAhODZ8Go/2E/oME3AJ1/Pn/qQzFD4YCyPa6+6cHNQoABVcC8QCX+wD6KgUQEvoN0vxo9YD/kQpxCTUDUwKMBDQE9ALEAmoACP0aAewMdBFPBH3yQvLbBXIXChNN/frtKvaCDUca5A1Y9vLtQPz7DvQReQXD+Yn60QOsCMACyfpb/jEMcBK3BtX2T/YGA+AKYAdkAqYBhQDi/vICJQmkBcP6p/kiBbUJEv6v9aoBcxLXDpT7HfO8/Q4KswoDBRcBzv5h/ksDDwoWCV0Ap/uAABwGVQTG/1AAwgTqBkwFiQJlAFgABQTSCC4I1ADR+l798gR5CCAF7P/p/cD/igOMBrQFgwB++1388wKCCFAHPwFV/Z7/LgUkCBoGogGj/vH+BgLMBT4HkgTw/x/+HAFcBfQFfAJb/6wAuAUmCR0GJ/4S+Xj8UgSSB6YDqv7x/U4AWgMkByIJhQM4+Or0zAF5EToPUPyZ8Kz6nQx9EBEF/vpK/G4DFQh1CDEFlf4U+e37sAazDoEL1QBv+AL3dvtGAx0K1AmOAbn5h/ovAQAFOgTkA8AE7wGa++b5dAFzC3sNXgVN+mf1yPpHBs8NlgrqADD7P/2sAWcDmANnBCkEtQCP+9n4v/w2CMwTvxF6/hjsyfD3COQYqw8c+wTySfjjAXYGcQbzAxQBkwBiAUP/IPxq/xkHSQbT+pz1+QCZDcYJRP7J/ssHQwVC93D0uwSdEkELpPl79O/+AwmaB/3/oP3HAyIKrwZg+wD2QP6FCSQJlP+v+94BfwfJBIX+5fvG/doBRQXQA6390Pu6A7gKzgP99iL4FAfTDZoChfay+UUE0wZDAU/8//mr+Rn/uAg1Cl/+9vMf+hgJeQ2fAw75pveq/SoGIgzfCG/8KvTC+4kKPQ3vABz2ofhWAuYHwgaLAo7++v2fAggI8gby/3r7iv0tAWgCuANEBjwFuv7S+fn8zQOXBdABKv/NAK4DBgXrBPIC6P7Y/GQBnAgMCLb90PVk+zcIZQxXA0r4HPav+0ACZgbABqEBHPrC+JUAWAhPBhn+xfry/pgDLASbAloArvzf+Zz76P+DAfMAiwKbBPsBpP1X//oDNQAB9qX21QbYEaEG9POd9AkIgRPVCMz3IfXBABIMtg0eB5j+4Prf/vcEJgQf/en6AgKFB9MA7vTb8w8A1AqbB7X6YfKu9ogCswmuBAr54fTV/m4MuA1dAUn2TPhRAnEHmQOt/Zf8SABoBDYF3gEZ/Zz7a//cBIoGrgN8AFAA2QGgAeH+v/x3/oICPwP8/dv3NfjR/jcECgSPAW0AFP8S/B37bv9wBYMHYQXeAbP9nvpM/owJxhAhCCz2AO/5+i0MbRBcBdH2l/BC9ssCmgvFCDf+GPit+68BwgLiAZQEjQe6Awz7Sfdv/JsDCgVuAZ7+3f5R/+39D/1//wcD4wJE/7X9GgAYAc799PxFBHsLcgWN9R3vr/v8DBQPTQDZ7/Pq7PK+AKUKZAky/1L3Pfk+//r/Uf1tAKYIgwmR/c/xT/bxB7ESawpR+dTxqPheA6EIUgheBKD8lfVq+D0FVQ7oCYUAHP+tAhcA3vmk/KwHWQusAUr3J/e8/IsAcQMmBqUDavwH+jb/vwEN/af7OANBB2D+hvWt+2cH1gXw+dn16/uw/hP8Wv/AB4MGhfqo9fn+Owbn/3L4jv1XBpEDnvm+99v+CAN5AH/+cgAJAlsBoAA7/637T/pl/98ErAGb+TT50AEyB+kCufyA+yT7QfhK+ScC4ggaAxL4ovd9Ah8J4QJ5+X/5pQE1B4YENP1X+OL6wQN9Cm4GyvqW9er9ZQkMCvwAgvqn+1z+YP6q/ogABgCl/Hn8ugFTBYUBOvti+rX+RQKiAv0Agf04+Sr5QgBWCP0Hn/5A9Q30MPt/BHEIoANy+/v5UQF9B3QELv6B/qICcwA3+QP5agKECFgCWvjs9qb8Sv9W/M36C//3BCMGfABp9wLye/bxAh4MDwhg+qPxePe6BSoN3QXE9zfyNvvJCIsMtwOX+Fb1EvovAJUC0ADs/fT9iwFdAzD+DPYz9bz9AQUGAiv6APnF//wEdwIf/L74bvo1/9oD+ASWAdz98P5DA6EDyv0A+V/8eQSQB3oCDvwz+17+oP/h/Xf9SwBoAkcAfvyO++b89fxX/KH+LwJ9ABX57PT9+YsBfwHp+lP3TvpN/j3/Sf/d/2n+Fvsp+34AGQUMBNoAXwArAAz8qPfj+ekA0wPJ/z/7PPte/YX+5P85ApwC7v/H/Sj+6v2g+7T7ZgDIA6UAFfyy/W8C/ABL+Uf1t/kLAFEB5f4m/ev8n/2k/1ABkf8r/Bn9zAIXBlwDIQDCAJoAUfuv9nr6hwPZB0oEEv7B+bX4QPzjAgsFuP1H9AP0t/s/AIP+d/4WA04Eif2b9ln3B/yJ/ef8ZP71/6X9KvqM+h/9E/16+2j8Qf6w/Bj6uvwlA+8Erf9l+m36Gf34/jYBBQQKA4f8bfbv9jD8AQAOALv97vkj9lv2N/xeAmICnv3u+tn8gP+7/7j+Tv54/gP/sf/k/jn8Vfvr/nUC0P9O+ln7zAI1BcL9YPdG/IEFpgWU/Sf6DQB7BiQG7wFx/hT7w/dj+KD9RAHz/on6L/nR+Y756fmu/Iv+TfyX+ZP7/f+CANH8SvoA+9v7hPtZ/NT+BgDO/jb9qftV+Lz0GvY8/QMD5wCp+dz14PkdAn0HbAVx/bz27vct/zYDw/509/H1Kvrq/GH7Zvo9/bP/C/01+AL4Yv1RAikCqv4t/Fn85f0U//H+9P0w/scA0QIAAIP5SPb6+ZD/cgBx/cb7cPyb/LH8qP+uAxcDvv1H+uT7Af71/MD70vyI/I/4HfbB+a/+UP6L+x/9pAAh/gD32PWt/VYEaAHL+UH3YPtmAAACFACc/LD6ePwq/0X9RvcB9Z/6qAHvAb78bvnP+gD+1ADUAvsBN/36+N36wwCUAmT9TPfZ9n/7LwBlAc/+dfrn91j5ifxD/WT7APvU/W0Aif+0/IP7zPy3/kr/f/31+bX3kvmb/X/++fpA+JT6Jf/CAHn/FP8eAGn/JvwH+g78RgDzAa7+/viC9n36KwGDAtT7cvQp9az8RgHu/W741PjZ/ioD6wD1+iv4JfwbAzEFFv8I91v2y/33A0QBa/ns9b759P54//D7SPmn+s7+mwG3/0/6A/cY+uoAigT8ATD9E/u6+yn8S/uT+uP6d/ub+4r7o/sV/BH9NP4v/nr83vqm+1D+8f8e/3f9qPzu+xr6YPj8+MP7HP5q/qn9YP2f/aH9Nv2w/DH8q/sT+1j6xPle+q/8Bf+x/sT7xflR+4P+l//p/T78mvwI/pX+hP1/+xb6BftP/iQBdADH/Lj5i/kX+0T8Xfyg+6f64fpc/W0A5QCO/t/8EP78/6T/X/19+936+vpz+5j7gvpK+Zj68P2u/uv63vfU+ooAUgFY/Iz4PvoE/hv/df1g+/b5Jfrr/CQAT/8X+kH23/ee+178rvpP+mb7aPvb+nz8gP/o/+j8V/rk+tr85v07/ln+Ef0K+sP3iPgO+2f8FPzY+0z8CPyP+u75IPzF/wEBAv6b+Vb4Kftz/n7+uPt9+c/5ofvf/Kn8k/u4+sv6ePvO+3j7J/tj+7D7kftg+2D7CPtQ+oX6RPzT/Wb9IvyC/CT+F/6c+7v57/qL/TH+WfyK+tD6r/xE/jz+u/wh+//6rvzI/k7/hP3U+sX5l/uO/mD/Cf1a+mz6cvz//Cr7yPka+5f9X/4X/bz7zfs5/Q//5v+Z/gX8Bfvt/BP/Ef7H+nz50PuV/pL+6/zR/KD+yP/B/sH8g/tP+7b7h/xU/UX9Wvzk+7b8s/1Q/en7Pvvn+7D8nfwx/Df8gfyA/Dv8/fvX+xL8Qv3i/u7+QfzT+OT3+fk8/Dz8wfoi+hb7afz5/KP8sfua+j36SPsX/Sv++P10/XP9c/3S/Dr8wfz5/UP+Cf10+6r6iPqb+hr7Bvxo/LH79/p5+5r8yfz8+5/7Ivx6/Cz8D/yD/Jz84/tW+7X7OvwE/IH7afuI+5r7E/zy/AD9v/vK+rP7hf0x/pP9HP1A/TX90Pyh/Hz80Ps2+6f7WPyh+/H5l/kh+2D8wPtm+gX6jvoz+9b7Q/yr+y/6gPmI+tX7zfsP+wr7dPsQ+yH6GvpE+3T83/zC/Hb8MPxz/Gj9D/5//ZP82/wP/lX+JP0J/C380fzi/In8Wfwq/ND7v/sI/ND73vqZ+hj8+P3x/S78SvvF/An/qf9N/qP8Kvz3/Bn+hv7q/f/82vyM/QP+lv0V/YT9ef69/jL+6v1e/sT+av6n/f/8efxH/AP9aP7U/j39Avt5+vL7iP2w/cj88fu4+zr8Yf1r/j3+7fwE/HH8Kv3J/Lr7i/tr/N78Avzq+hz7f/yI/Sn99PtL+8X7l/y2/D78NPzk/Er9qPzj+1f8pP0S/hD9CPw+/BT9NP2N/CD8YPzM/AT9Uf3x/Zj+zv51/uL9nf3i/Uf+Jf6W/XL98f0H/ur8m/vJ+2D9iv4w/kL9If3K/Vb+Vv4B/ov9B/2x/LL8zvy2/Gz8CPx7+/T6DPv5++/88fwZ/Hj7u/t3/Ov88/zz/Cz9bf1m/Rz94/zu/A399vyr/HT8iPzx/If91f1I/RL8c/tV/OH9Tv4//TX8e/yB/fr9j/3h/Hz8mfxQ/Tf+ZP6W/dH8E/3c/fz9Wf3//IL9Tv6g/k/+qP0l/UP98v1W/r79y/zJ/OT90/5x/gH9vfuo+9P8QP6b/p39hPyS/GT9rv1a/Yz9h/4Q/2j+i/2X/RD+zv3l/Hz8B/3B/c/9Lv14/Dz8jvzu/ML8Kfz++6r8df19/e38lfyn/K/8lPy6/CX9Sv3p/G38K/zo+3/7afsL/Oz8Pf38/Oz8Y/3X/cz9mv3Y/Wr+v/6s/of+W/7R/e78V/xs/Lf8tPyV/Mf8KP1Y/W79sv3c/YT9Bv0o/dr9N/7X/VD9PP2C/dP9EP4E/of9FP1p/Uz+kP7J/fz8Fv2s/fL9+/0s/lL+Hv7g/d79l/3H/E785vyy/W/9hvxu/E79zP1K/ab8mPzG/Nj8Ef1k/Sn9XPz2+2/8EP00/T39i/2l/S/9zvwY/ZD9hP0//Wb9zf3i/br9wf3W/Z39Wv2L/fb9C/7f/fL9Of4o/rf9cf2d/fX9M/5R/lf+Tf5c/n/+Yf7k/Yn9z/11/uH+8f7g/rf+cf5T/oD+lf5I/gD+Mv6M/nz+J/4V/jn+K/4J/i7+af5o/oL+Kf/J/3f/e/4G/mr+0P7B/rf+9v4O/9n+5f5l/7P/Yf/z/gj/cv+x/6j/df8p//T+Ff9e/1b/Av/s/jf/Z/83//7+//4W/z3/n//8/8n/Kv/0/mD/tf99/zn/ZP+v/8L/2/8eABkAkP8c/0H/kv9p//n+3P4W/zf/G//1/t3+3P4R/2L/b/8c/8/+zv7U/qv+kP6t/r3+pP69/iL/Pv+1/h3+LP6h/rb+TP7y/fT9E/4M/uP9x/3d/SH+V/5M/jH+VP6E/kv+x/2h/fz9Pf4b/g7+Tv5K/rD9KP1S/cX91v2w/dL9Fv4N/vT9Rv7E/r3+K/7J/QH+f/7A/p7+VP5D/qH+FP///mX+Dv5u/vb+AP/I/tr+If82/z3/l/8FAAoA1P/+/4AAtgBpAB0AJwA/ABsA5v/T/83/vv+7/8T/qf9p/1b/qf8vAIMAgwBdAE0AXABiAEMAHAAXADAAPwBDAFIAWgA0APz/7f8AAPP/xP+1/8//1//H/+L/JABEAFEAtgBjAaUBKQGGAGIAnADFANUA8ADyANcAAAGGAc8BcQH7AC0BwAHYAVwBAwEuAYEBqwHMAf0BDALqAd8BGAJgAnQCSgIDAsUBsQHEAcYBmAFsAXYBhQFLAdcAjACSAMAA8QAcASMB6wCmAJ0AxQDCAGwA/v+y/4P/Sv/3/pn+UP45/kT+Q/4n/hz+PP5U/iz+2v2j/ZX9g/1K/fb8r/yc/ML84vy3/Fb8Ifw5/Fb8Qfwj/CH8Ffzj+8n79/s0/Dz8MvxP/GX8NPz1+wT8RvxV/DT8N/xh/Gv8XPyE/NL80/x8/E/8i/zN/MT8t/zq/B39A/3n/Dj90v04/lP+cf6u/tv+4v7k/ub+2f7i/jr/wP8RACIARQCiAAMBRQGIAdAB6gHRAdcBGQJMAkYCXwLcAl8DZgMcAxYDdAO8A6IDYANNA3wDzgMmBGwEmgS7BM4EuASIBH4EqgS2BG0EIQQvBGIEVwQ5BHEE3QTyBKoEjQTJBPcE1gSqBJ0EhARbBHgE2QT4BJYEKgQrBFYENATUA5EDewNlA0sDPwMuAwYD4wLdAtICswK1Au4CEAPcAo0CeQKLAm4CEAKlAU0B/QCrAFcABQDI/6v/jv9N//3+yv6e/kv+8P3I/Zb99fwj/Mb7zvtr+2f6nPmN+Yn5z/jX93/3lfdD94D2Bfb+9dT1Q/Wt9D/0pvPL8iLy8PHP8VTxqfAn8M3vYe/f7mnuAe6b7T/t9uyr7FnsLexU7K3s8ewN7Tntq+1K7rzuz+637truX+8K8KDwNPH08dDylPNA9BH1L/Zx95X4lfmf+s37AP0P/gb/HAB2AfcCawS2Bd0G7wf3CPUJ2QqkC4IMoQ3oDgoQ7BDREfESNhRnFWoWMhe4FywY0RiNGe4Z3xniGVEa0BrlGrgasxrVGscacxoOGrIZaxlPGUAZ4xg9GM4XqxceF8YVZhTIE3UTgxIeERoQcQ96DksNigwLDAMLiwmHCAIIGQenBZIEEgRMAwoCOwEoAckAnv+W/jr+kP31+4D6Ivrp+bL4TfcR92P3tvY19WL0cfQl9CrzePJO8q7xTfAx79LuTe4Y7Qjswet862PqEumT6LzolejY5wPnVuak5eLkI+Q54wDi3eBH4BDguN9b36Xf1uBo4tPjIOWJ5gXobenI6hTsAe1T7Wft6u377vbvZPC48JfxwvJv86fzZfQi9hb4a/ly+vH70/1k/4EAqAEGA2gEzAVKB34I/whICUYK3AsIDYoNRw6zDwARgxHIEYwSixMxFMEUwBXdFngXyRdsGBcZ8xgYGIcXoBeeF+sW9RVWFe8UWRShEwkTkBIfEssRhhHvENgPrQ7sDYYNHQ2eDDIMyQseCxoK6AjAB+EGiwavBtAGjAYgBg4GUwZ+BmkGXQaCBqUGogaNBmkGKQYbBrMGyweoCBIJswnsChQMcQxhDMcMsw2cDoQP2hBxEosTDhSHFP4U4xReFHMUZhUkFvIVjBXGFTIWGhbsFWcWFhcEF04WsxUMFaITvxFoEKEPdw7IDGoLXgqBCHwFfgJFAPv98/o0+Pf2pvaj9Xbz//Dh7uTstupi6BTm9eMr4ojgk95M3ILa09nY2drZvNmm2VLZhtix11bXTtdq10TYcdo93UnfMOC04G7hPOLc4kPjiOMN5HblsOeN6V/qQOut7T3xRvRu9tz49vuV/vb/0QAXAugDSQaACQ8NvA9DEbgSnRTuFf4V5RX/FhkZJxvHHPcdbB5tHjAfCiFiIvUhEiGpIfsijyIbIA8e9R2UHkYeRx2dHEYcjRtCGowYZRYWFIUSGhL3EQoRcg8gDnEN0AyHC34JUAfHBQwFVATIAs0Anv+c/83/Tv+A/kD+o/4J/+r+KP4U/WT8o/x3/Qr+Sf4B/4QAHgIhA7EDHgRxBPQEGAZ7Bz8IvghzCnENqA/XD5UPvhB/EvEScBLdElEUGxXHFKoUShWmFXIVwxXRFkEXgRbZFQwW2hUzFEESmxHFEScRhw/MDRMMlQk1BqwCWP8Y/ET5e/d79h31u/Ls76ftJOy76pzoweUV41Hhs9/M3M/Y4tVa1dXVRNX109vTR9VO1pjVH9SL0yHUKdVh1g/YENq425jc69w13b7dfN5t39vg9OIg5V7muean50TqxO2h8PfyOfah+nP+VgARAToCRwTIBn8JVQzRDrsQpRLWFGYWjRZsFvoXRBtKHscfniD3IWYj/yMaJL8k+yXwJkUnUCf/Jswl7CNbIpIh9yANID8f7x6JHkMdSRtmGfYXwRa7FQgVcBR5EwsSYxB7Dh4MqQneB9IGpQXJA9gBpwD//+7+S/0D/Nf7Xvyn/HL8PPxR/GD8H/za+w/8wvyc/Xf+T//l/wcAIwDUAA0CSAOQBG4GpQg7ChYLSAw2Ds8PiRCbEdwT8xVyFoIWGxiLGnEb1BomGwodOh53HY0cBh2eHeQc9BtUHB0drRyuG7IbBRy0GvAXxBWhFO0SAhAzDVALZAmjBrwDdAFX/7H8w/kq9+n0iPKp7z3ssei95YHjKuEx3lvbbdmp1wjVUtIq0W/Rl9F80XrSktTF1SzVd9Q81YTWfNY31UTUhtSd1dbWr9cp2BrZX9tP3kjgJ+G14tXl+ui16grsuO528s31ovjq+53/vAISBScH7QgBCvYKxQwrDywR4RJAFTgYuxqgHL0eEiGmInkjyCTWJkEoSCgKKJcoRCkMKV4oLCg+KLwnoSZ0JR4kSSJ9IJkfcx8ZH0kemx08HYQc9RraGLIWrRTYEjwRow+6DY8LmAkbCPoG+wXnBJEDGAIDAZYAQwBx/47+mv6Y/3AAdgAyAGAA4wArAQkBuwCSANgApQGmAoMDkwRgBogIFgodC7IM/w7BEHQRWhJHFP0VTBZxFjQYvBq3GxEb9BoJHJEcpxvlGpwbwhz9HNscYB38HaIduhw8HMgbWhovGEYWkBQkEgUPPAw1ClMIHQbKA44BNv96/EP5rPUp8kHvxuwP6jDnBuWH42LhH94w25rZI9iE1QLTitJi00bTTNKk0pjUztUt1a/UGdYd2EnYWNYV1CjT/NP01dnX/9hZ2jzd4uDl4sfiC+O25aPpoeyc7vHw9fPx9q35bvwf/7wBywQrCIIKKguRCzINXw/XEFASThVLGXgcrh4mIZUjXCTAIzAkiybFKDopESngKfMqtCpZKU4oBSjgJ48nDifrJfkjGiIsIbMgyx/ZHt4egR88H3UdChu7GFoWxhONEQ0Q1g5cDbkLUwpDCUYIAwdKBWwDLALqAfsBfgGiAFUA1ABrAaABxwE7AuACggP+A/kDRQOhAhkDjQTzBR4H4Qg7C/gMsw2XDkwQyhFYEicTMhU3F7sXyRdYGckbvRz6G7AbyxyqHS8djxztHHgdNB3QHCsdmR0tHXgcVhwVHHcazRd4FbUTfBFtDmcLJQlXB08F6AJ7AEH+2vuX+HL0gfCw7V7rb+hg5ZPjgeLy39HbEtlC2bTZj9dw1MjTEtWf1KzRuM/90EDTsNMH05rTVtX91XjUCNKm0F/Rs9P11dvWRtdB2drcnd8V4CDgPuIO5lTpYutx7S3wBfOi9V/4QPv7/ekAfgTjB78JRwoHC6UMaw41EOUSnBY0GgsdlB+qIT0iqyFEIgglwCc0KJgncChSKp4q6yi5J34olCkhKbYn0SZuJpUlLSTnIgQiXSEAId0gUiDfHuMc5BrDGFIWHRSvEp8RORCvDp0N0Qx8C3wJigc+BpUFUwUoBasE0wNBA2EDmwMjA04CIAK7AkIDKQPMAp8CqQLtAosDaQRUBWcGwAcPCRYKPwveDFoOCQ+DD8AQUhIFEw8T1BNuFWAWHRYJFgsXDhgCGKsXHhjIGJoY+xfpFwoYYBdNFgoWdhYWFmQUaxLoEDEPhQxVCZkGkwTWAg4BQ/98/W/7xPie9bHyYPD97bnqL+fO5JTj0uEM30bdFN7D33ffMN1s2yDbndqo2GTWR9UT1fHUDNXU1bbWwdbw1fjUYtRj1PzU09WF1oLXidkj3NDdX96Z36ziQuZz6IPpCetD7Qjv9O8O8Uvzo/aQ+kz+zwDfAdEC9wSnB0cJMQp5DLMQ4hRTF7kYYBoPHBAd+h20H6QhhSKIIvMi7SNNJL4jeSNvJPMlzibAJl8mCyahJd8kvyOfIiMinSJiI0MjziG1H8YdFBxKGm0YxxZwFUgUMxMVEsYQSQ/2DSQNygyLDAsMHwvmCbYIyAf6BhQGSQUBBSgFKgWvBPUDRwOfAg0C4wE6AsACPAPbA5cE+ATjBAoF8AUAB20HcgfQB2kIeQgHCPkHlQgUCQYJEAmxCUgKDgpZCRIJVQmNCYUJlwnVCd4JlQlECfkIWwhZB2IGsgXaBGADewG6/z/+wPw0+wb6fPkz+ZD4e/dg9nH1VvTI8iTx+O8s7ynu2uze63frDuss6mDpben36eDp3OjR53nnc+ci57nm5+a853XoZui15yDnLOea57rnZOdW50DorOmG6qHq9Oob7ITtfe5U76HwI/Ir883zrfTo9Rf3P/jW+br7J/3m/aD+sP+VAPkAcwGzAm8E5QX0BvoHCwnzCdQK+Qs4DRwOoA4tD9cPQBBEEEsQsRBPEdIRJhJZEmcSVhJBEioS5xF6ETIRRRF1EVsR6RBtECMQ9Q+sDzYPuQ5kDjMO7w1pDb4MPgwNDAMM5QulC1sLHQvpCqsKRQq9CUsJJgk0CSQJ2giXCKAI2QjzCNsIzAj1CDYJUQktCfAI0wjrCBcJIgkBCeQI+gguCTsJBgm/CKkIwAjBCIYINQgOCBYIEgjSB2sHFwfsBswGiwYcBpoFMQXvBLUEUwTAAygDtQJIAqABsgDA/wf/gv4K/o/9I/3R/JD8Tfz4+4H76PpO+tn5dfnq+Cr4bffu9p32QvbU9YP1Z/VL9e70WfTU84zzZ/Mx89zygvI88gTy0fGk8YfxcfFN8Rfx5fDU8OHw9PAH8SLxR/Fl8X/xs/ES8n3yy/L28iLzZPOu8+rzGPRO9KL0GPWS9eP1AvYq9pb2M/et9+L3EPh7+A35hfnV+Sr6mfoH+1z7pvv++2D8vfwW/Wr9r/3h/R7+gP7//nn/2v8vAIkA5wBDAZoB8AFNArQCIAOCA9ADFARfBLcEEwVtBckFKgaJBtYGDgdEB40H9wdzCOAIKwlgCZsJ5wk2CnkKtgr/ClILnwvVC/oLIwxbDKEM5QwdDUoNcw2fDdENAA4hDjIOPg5VDncOkA6UDo4Okg6jDqsOog6VDpoOpw6mDo4Oaw5ODjIODg7jDboNlA1iDSMN5gy2DIUMQQzsC5gLTQsCC6kKRgrkCYQJGwmoCDYI0QdyBwoHlgYcBqIFKAWwBDwEyANHA7cCJAKYARABhAD4/3P/8P5g/r79G/2H/P/7dfvl+ln60vlJ+bv4Kfia9xD3ivYL9pT1H/Wo9DD0u/NM8+Hye/Id8sfxdvEq8eHwm/Bb8CPw++/i783vtO+W737vb+9n72LvXu9h73Hvku+87+fvEvBE8IHwwvAB8UTxk/Hs8UPyk/Ln8kzzvPMq9I/09PRj9d71X/bd9lX30fdU+N34Zvnu+Xv6D/un+zn8xfxR/d/9bv7+/pD/IQCxAD4ByQFTAtgCWgPgA24E+gR8BfIFZgbcBlYHzwdICMEIOAmtCR8KiwrsCkgLpgsHDGYMuAz9DD8NhA3MDQ4ORw5+DroO9w4tD1gPeg+bD7wP1w/rD/4PERAgECcQJRAaEAkQ8g/XD70Pow+FD2APMw8BD80Olw5gDikO7w2tDV4NBA2lDEcM6wuLCyULuQpHCtQJYgntCHMI9Qd3B/sGfAb1BWQF0ARCBLkDMQOhAgwCeAHlAFEAu/8j/5H+BP52/eT8Tvy4+yT7kvoF+n/5/fh6+PP3bvf09oL2Evaj9Tf11fR+9Cv02POE8zXz6/Kn8mvyN/IJ8uDxuPGR8W/xUfE18R7xDvEH8QrxE/Ed8SjxOfFR8XLxnPHM8f7xL/Jj8pzy2vIZ81nzm/Pk8zL0g/TV9CT1cfW99Qz2Xva19hD3b/fP9y74jPjs+E/5sPkN+mf6w/ok+4X75Ps9/JT87PxI/aX9A/5g/rr+Ev9n/7r/CQBZAKsAAAFWAacB7wE0AnsCxwIUA14DowPlAycEawStBOwEJAVXBYkFugXtBSAGUwaFBrQG4QYMBzIHVQd4B5kHtwfQB+YH+wcNCBwIKAgzCD4ISAhQCFUIVghTCEwIRAg8CDQIJwgVCP8H5QfIB6kHiQdqB0kHIQfxBr4GjQZcBisG9QW8BYIFRgUIBcgEhgREBAAEuANsAxwDygJ3AiUC1QGEATAB2QCAACoA2P+G/zP/3/6M/jv+7P2d/Uz9+vyp/Fv8DvzC+3f7LPvi+pn6UPoL+sz5lvlj+TD5/fjL+Jz4cvhN+C34Efj39973yve69633n/eQ94H3efd59333gfeC94T3jPea96v3vPfM99v37vcI+Cv4U/h6+Jr4uPjZ+AD5KflP+XX5nvnH+e75E/o5+mP6kfrB+vH6IPtO+3r7pvvS+wD8MPxf/I78vPzp/BT9O/1g/Yf9sP3b/QL+JP5E/mT+h/6v/tn+Av8m/0b/Zv+H/6f/xf/g//r/FgAzAE0AZwCCAJoArwDCANYA7QAFARsBLwFEAVgBZwFxAXsBigGcAa0BtwG8AcABxQHKAdEB2wHmAfAB8gHxAfAB8QHyAfAB7AHoAeUB4QHbAdQBzAHBAbMBpAGVAYQBcQFeAU0BOgElAQ8B+gDnANIAuQCeAIcAcgBYADcAFQD3/97/x/+s/4//b/9O/yr/B//o/sz+sP6S/nH+UP4v/g7+8P3X/b/9pf2G/Wf9TP0y/Rj9/Pzi/Mz8t/yi/I/8f/xy/GT8UvxA/DH8Jfwb/BL8C/wE/Pz78/vr++T73/vb+9j71vvY+9v73/vj++j77vv1+/37BvwP/Bn8I/wv/Dz8SPxU/F78aPx1/Ib8l/yn/LX8wPzL/Nj86fz8/A39Gv0o/Tn9Tv1k/Xj9jP2e/a79vf3L/dn96P32/Qf+Gv4t/j3+TP5b/m3+gP6S/qL+sP69/sr+2v7r/vz+Cv8Y/yX/M/9D/1L/Xv9o/3T/gv+R/57/qv+2/8X/0//f/+j/8f/7/wUAEAAZACEAKAAvADYAPgBEAEkATgBVAFwAYABjAGYAaQBsAHAAcwB1AHYAdAByAHEAcABtAGkAZQBiAF8AWQBRAEoARAA+ADcAMQArACUAHAASAAcA/P/y/+j/3v/R/8P/tP+n/5z/kf+F/3n/bP9e/0z/Ov8r/x//E/8F//f+6/7g/tP+xP61/qn+m/6K/nn+af5c/k7+QP4z/if+G/4P/gX+/f31/ez94/3d/dn90/3K/b/9tf2t/aj9pf2j/aD9nP2X/ZH9iv2F/YT9h/2J/Yn9iP2K/Yz9j/2P/Y/9kP2U/Zr9of2l/ab9p/2s/bX9vv3E/cn90P3Y/d393/3l/fH9A/4R/hr+Iv4s/jn+Rf5P/lr+Zf5y/oD+jv6b/qb+sP65/sT+0f7g/u/+/f4K/xP/GP8g/y3/PP9I/1H/W/9n/3L/ef9//4X/jf+V/5z/pf+x/7z/xf/K/87/0f/V/9n/4P/q//L/9//6//7/AwAKAA0ADwASABYAGAAXABMAEwAXABsAHAAZABcAGgAeACEAIAAdAB0AHgAgAB8AHAAZABUAEgAPAAkABAAAAPz/9//x/+v/5//i/9v/0f/J/8L/vf+4/7H/qv+j/5z/k/+E/3T/aP9j/1//WP9O/0P/N/8n/xr/E/8P/wf/+v7u/uX+2f7K/r3+tf6t/qD+k/6N/or+g/52/mr+Y/5d/lX+Tf5F/j3+Nf4v/iv+J/4j/iL+Iv4d/hL+CP4G/gn+CP4F/gH+AP4A/gH+Av4D/gT+Bv4J/g3+Dv4O/hP+G/4j/ib+J/4q/jD+Nf46/j/+Rf5M/lP+W/5g/mP+Zv5t/nj+gv6M/pX+nf6j/qn+sP65/sP+yf7O/tX+3v7q/vb+//4E/wj/Dv8Y/yP/Lf80/zn/Pv9E/0r/Uf9a/2P/bf90/3f/d/96/4P/jv+V/5f/l/+a/6D/qP+t/7D/s/+3/7z/wP/D/8b/yP/I/8n/zP/S/9f/2f/Z/9r/2v/Z/9f/2P/b/93/3f/c/9n/1P/P/8z/zf/P/87/y//I/8P/vf+3/7P/sv+w/63/qf+l/6H/nP+W/5D/iv+D/3z/eP93/3T/bv9l/13/Wf9W/1H/Sf9A/zr/M/8s/yb/If8Z/w//Cv8J/wj/Av/6/vT+7/7n/t7+2f7Z/tj+0v7K/sb+xf7C/r3+uv63/rP+sP6v/rD+sf6x/rD+rf6p/qf+p/6n/qX+o/6j/qf+qf6m/qT+pP6n/qn+qv6r/qz+rv6x/rb+uv6+/sH+xv7M/s3+yv7K/tD+1f7V/tT+2P7i/uj+6P7m/uj+7/71/vn+/P4A/wf/Dv8Q/w7/DP8R/x7/Kf8q/yb/JP8o/y3/MP8y/zb/Pf9D/0P/P/8//0f/UP9R/0v/Sf9Q/1r/Xf9c/1z/Yv9n/2r/bv92/33/f/96/3f/eP98/4H/hf+K/5D/lP+V/5f/m/+e/57/nf+g/6f/rP+p/6X/p/+u/7H/sP+v/7T/uf+1/67/rf+2/8D/wv+//7//wP+9/7X/sP+y/7b/t/+2/7f/uf+5/7b/tv+3/7b/sf+p/6T/o/+j/6T/ov+d/5r/nf+l/6b/nv+X/5r/oP+e/5b/lf+b/5v/kP+G/4f/i/+J/4T/h/+P/5H/if+D/4L/gv+A/4H/if+R/5L/k/+a/5//mP+I/33/gf+M/5P/k/+Q/5D/kv+X/5f/kf+K/4j/j/+W/5j/mP+b/6H/pP+i/6D/o/+q/67/rP+p/6v/s/+5/7n/uf+//8j/yv/F/8L/xP/H/8f/yv/R/9T/0P/O/9X/3v/h/9//4f/n/+n/5f/h/+L/5P/p/+7/8v/x//D/8//5//3//P/7//3//v///wIACwASAA8ACgANABoAJAAkABwAGAAbAB8AHwAgACUAKgArACgAJwAtADQAOAA3ADcAOwBAAEEAPgA8AD8ARwBLAEgARQBGAEsATwBOAEkARgBFAEoAUgBZAFkAVgBYAF8AZQBgAFcAVABZAFwAWgBaAGMAbgBwAGoAZQBmAGgAZgBmAGwAdQB2AG8AZwBoAHIAeQB4AHAAbQB2AIEAgQB6AHYAeAB4AHIAbQBxAHoAewB2AHQAeQB9AHsAewCDAIgAggB5AHgAfQCAAIAAhACKAIwAiACCAH0AegB4AHoAgQCGAIcAigCOAI4AiACCAIEAhgCMAI0AiwCJAIsAjgCQAIwAgwB+AIEAiQCPAJEAkACPAI8AjwCNAI4AkQCUAJIAjACMAJIAmwCdAJwAngCgAJ4AmACVAJcAnACgAKMApgCmAKQApACmAKcApAChAKIApwCtALEAsQCtAKsArQCzALkAugC7AMEAyQDNAMsAxwDGAMoAzwDQAM4AzQDQANUA2QDcAN8A4wDkAOUA5wDrAO4A8QDzAPYA+gD/AAIBAwEDAQQBCAENARABFAEZARsBGAETARQBGwEfASABIAEkASgBKwEwATYBOAE2ATIBMgE1ATgBOAE6AT8BRQFGAUEBPQFAAUgBTgFMAUgBSAFNAVABTwFOAU4BTwFOAU4BUAFVAVkBWQFXAVUBUQFPAVEBVgFYAVYBUgFRAVIBUgFSAVQBWgFfAV8BWwFYAVkBWgFaAV0BZAFpAWYBXwFbAVwBWwFXAVYBWgFdAVsBVwFaAWEBZQFiAV4BXgFgAWABXgFcAVsBXQFgAWMBYQFcAVoBXwFjAWABWQFVAVUBVgFYAWABZQFgAVcBUwFXAVkBWAFdAWYBaQFjAV0BYAFkAWEBXwFlAW0BbgFpAWcBaAFmAWEBYQFlAWcBZQFiAV8BXgFjAW4BeQF9AXoBdgF0AXUBegF+AX8BfgF+AYMBhgGGAYcBigGPAZUBnAGfAZcBkAGWAaYBqgGjAaEBrAGyAasBpgG1AccByAHAAcIBzwHVAdEB0AHUAdUB0wHWAd0B4AHhAesB9gH4AfQB9gH7AfgB8AHyAQMCDAIDAvUB8gH3AfoBAQISAiQCKwIoAiYCJwImAiMCJgIvAjUCNgI5AkICSAJBAjICKQIsAjQCNwI2AjUCNwI+AkQCRQI/Aj8CSgJWAlACPQI0AkACTQJIAj0CQgJVAmMCZAJhAl8CXQJXAkwCPgIuAikCNAJFAlICXQJpAmsCXQJUAmECdgJ2AmECUAJMAkQCLQIfAi0CRgJNAjsCJwInAjECMAIiAhkCIgI1AjoCMwIsAioCHQIJAgQCFAIgAhwCGgImAigCDALqAeIB6QHeAb8BsAG7AdEB5gH4AfkB2QGuAZ4BpQGiAZ8BwwH7AfQBkAEwATsBjgHBAckBCQKkAjQDZQN0A7QD4QNsA18CfgFgAeEBowKHA3IE9AS0BPADHQNGAj4BSQD+/3sAPAHIARsCTAJMAiQCHQJbAqcCyQLcAgwDRQNdA14DWwM7A+wCnAKDAowCggJnAmUChAKlArICpAJ4AkICKwI7AkMCKAIWAjoCbwJzAksCOAJPAmICUAI3AjkCTQJQAj8CLQIpAi8CMgImAg4C+wHzAe0B4gHZAd8B6AHoAeEB4QHkAd4B0gHPAdwB4wHTAbYBqwG/AeAB7wHlAdsB5AHxAekB0AG9AbgBswGoAZ0BlwGOAYQBhAGFAXYBXAFTAWYBfQGBAXsBgQGTAaMBpQGYAYMBdwF+AZMBoAGcAZQBjwGJAXwBbQFlAWMBYgFgAWABXwFcAVcBUQFIAUABOgEyASQBGQEdASwBNwEzASkBIwEmAS4BMgEtASIBGQEXARQBCgH+APsAAgEKAQsBAwH2AOkA5gDuAPQA8QDrAOsA7QDnANsA2ADkAPEA8ADjANgA2QDiAOUA3gDUANMA3ADhAN4A3ADjAO8A8gDrAOQA4QDjAOcA5gDZAMYAvgDMAOMA5wDWAMYAxgDTANsA1ADFALsAvQDFAMMAuQCzAMAA1ADaAMoAtQCuALUAvAC8ALcAtQC3ALgAswCsAKYApQCnAKsArQCsAKgAqgCzAL0AvQC0AK0AsAC5AL0AugC0ALEAsQCzALEArACmAKUApgCiAJsAmwClAK0AqQCeAJYAlACUAJEAjgCNAI0AjwCPAIwAiACGAIcAiQCIAIUAggCAAH8AfwB/AH4AfQCAAIMAggB8AHUAcABuAGwAagBoAGkAbABxAHUAdABwAG0AbQBuAG8AcgB0AHMAbQBpAGkAZwBgAFkAVgBXAFYAVABWAFsAXABXAE4ARgBFAEcASgBHAEEAPAA7ADwAPQA+AD8APQA4ADIALwAvAC8ALQAuADIAMwAvACgAJAAhACAAIQAlACkAKgAmACQAJwApACcAIwAiACQAJAAhACEAJQAqACsAKgApACoAKwAuADIAMgAuACoAJwAmACcAJwAoACYAJgAoAC0AMgA0ADQAMwAxADAAMAAwADIANgA6ADwAOgA1ADEALgArACcAKAAsADAAMQAxADIAMwAzADEAMgA3ADkAOAA2ADcAOAA6ADoAOAA2ADcAPAA+ADoANQAyADIAMgAyADEAMQAwAC0AKwAsACwAKwAoACcAKAAnACUAJQAnACkAJwAgAB0AHgAfAB4AGwAcACEAIgAgACAAIAAgAB4AHQAbABcAEQAPABIAFQAVABQAFwAYABUAEAANAA0ACwAHAAUABgAFAAIAAQAEAAUABAACAAIAAgAAAP////8BAAEA/v/5//X/8v/v/+7/8P/v/+z/6P/o/+n/6v/s//D/8//y/+3/6//s/+3/7P/r/+3/7//v/+7/6v/j/9r/1P/X/9z/3//e/9v/2P/T/8r/wv/B/8L/wv+9/7r/v//F/8P/uf+y/7P/tf+0/7T/uf+7/7T/qv+o/6r/qv+p/6//tf+z/6z/qv+q/6X/n/+k/67/rf+i/5//pf+n/6P/p/+x/63/nP+W/6X/sP+m/5n/nf+q/67/q/+s/6z/pv+h/6X/p/+g/5v/of+q/6r/pf+m/6b/nf+T/5T/nP+c/5f/lP+S/47/i/+K/4n/h/+P/5z/nP+P/4T/hf+I/4j/kP+f/6X/m/+Q/4v/gf9z/3P/h/+Z/5z/nP+e/5X/hv+I/5n/mv+E/3z/kf+g/5L/gv+G/4r/ff92/4j/kf96/2j/fP+X/43/cf9w/4D/e/9u/3T/hP9//3H/ef+N/4n/c/9t/3b/df9o/2z/gP+J/4L/fv9//3//hv+a/6f/mP+F/47/pf+i/47/kf+o/6z/mP+K/4j/hf+K/6//5P/5/+3/7v8LACUANQBVAIEAkgCJAJkAzADqANUAxwD0ADgBTwE+AUIBdgG/AQYCRQKFAtQCOAOSA7YDsQO2A8cDnAMOA1cCvwFGAewA3QACAc4A7f/c/nL+Vf96AjIJEBMMHMweuxmpELoI+AOMAcgAAwLnBL4H6whXCDgHyAY/B8gHrgeUB7oIzwqzCz8KPQgXCIEJIwo2CWQI2QhfCVYINAbeBC0FJAaDBlwGwgYZCEIJ7QiAB6YGyQaABhgFHwT2BFMGIAbWBH8EAQUpBIIBaP9g//T/Y/9j/n7+X/+V/wL/yf5j/ywAlQC2AOEAVAEVAqICSQItAVMAMQD+/+/+b/1q/BT8IfyD/Ej9Lv78/s3/jgDcAMMA9gCuARYCdgFGAGf/3f4s/mT9CP0x/X/9uP3V/bb9Uv3+/An9W/3B/VL+Hv/Y/0MAiQDEAKAA5P/u/j/+v/0V/VT85Pve+/T76PvI+9P7RPwI/ZL9Wv2J/Mr7W/vj+kz6H/qj+kX7S/uz+uf5FPlD+KT3U/ce9/P2LPf198r4F/n9+AT5QPlN+fn4ffgU+M33qfeQ91r3EfcE91D3o/fH9/33fvjx+Oj4mvia+AD5avmo+eD5Dfr3+ar5dvlp+T755viz+Nb4Efkc+Rv5Xfnm+XL6zPrz+gX7EfsD+7f6L/q2+Zv51PkP+iD6N/qD+un6Kvsu+/76pPo0+tv5wfno+TX6lvr5+j/7Qvv6+ob6C/qo+W75YPl1+a75DPpq+o36Zfow+ir6Ofom+v/5Dfpf+qf6r/ql+s76I/t1+7z7EPxw/L387/wQ/RT93/yA/DX8Pfym/ED9wv3//Rj+R/6P/rT+p/65/ir/xf8dABkA8v/H/4X/KP/U/q3+uf7w/iz/Kf/K/lD+EP4K/gT++/0Y/k3+Tv4F/rf9mv2I/UT90fxh/Bz8D/wt/E/8VPw9/Br83ft2+w374Prv+vv63vqp+mb6EPq9+aL5yfn++Qz64/mK+Rb5xPjQ+DD5ovn5+Sr6NPol+jH6hPr3+kr7d/uY+4b7EPtw+hf6DPrt+aH5hvnH+RH6Jvor+j76J/rR+Zb5vPn8+ff5w/m0+cX5s/lw+Rn5svhB+O33zve695T3nfcU+L/4Ofl9+cn5EvoM+rL5Sfnm+Fj4mvfv9or2YfZ79vH2k/fv99r3sPfM9xf4U/iM+Or4RPlF+er4hfhK+Bz42veY93X3a/dk92f3h/e69+H3/Pcz+K74Wvn++Xr62Poh+zT76vpX+s75l/m1+fn5P/qE+sv6CPsq+0D7dfvm+3b84fwH/Q79Kv1X/Wr9Vf0t/f/8zPyi/JP8j/xt/DX8JPxN/IX8r/zx/Gb92v0K/v795/3K/ZD9SP0e/Q797Pyu/G38N/wI/Oz77/v++wX8G/xE/D785fuP+5z73/vZ+5X7iPuw+4H72/pT+kb6RPrj+Xb5d/m4+dD50/kP+lT6S/oj+kD6cvou+n759fi2+FT4s/dN92D3i/d190b3Lff99o72GPbX9a31cPVH9V/1jfWO9Wj1RvUi9eP0k/RD9OzzkPNf827zifN682DzevPH8yD0c/Sy9K30VPTy8+PzGvRK9Gz0w/RW9c719fUC9jv2kPa19pn2cfZ29rT2Hven9zj4tvgU+VX5evmG+Y35qPnR+eP50/nV+Sf6xvp7+x78q/wd/WT9iP2o/c394f3j/fX9Lv52/rn+Cv+F/xsAoQDxAPYAuAB0AIkAEQGyARACRAKgAhgDRAMKA9gCEgOAA6oDhgN8A70D/gP4A9UD7wNHBJcEwwTqBP0EtwQRBGkDCQPSApUCfALGAkADagMeA68CcQJaAjcCBALkAfMBIQI2AgMCmwE6AfQApQBBAOb/j/8Q/33+K/4u/h3+xv2U/cn91v0Z/eb7E/u1+jT6cvnz+NL4gvi699b2GvZT9YH0FPQe9An0dfPI8l/y6vEH8fXvGO9T7mvtlOwK7Jfr/uqB6k7q7unq6LLnB+fJ5i7mEOUn5OPj1+OW42bjqOMY5CDkoOP34mfi6eGW4b3hfeKB42rkQuVH5mLnNuiy6DPp/unm6rPrieyn7fLuO/Cm8WPzM/Wx9vb3T/mF+hz7Pfu6++b8OP5C/2oALQIzBLsFkQYaB6kHPAjECEsJ3wmSCn8LnQymDVYOqQ7PDu8OCA8DD9MOmQ6FDpkOng6SDtAOig9fEN4QFhFLEUwRxxAFEJYPeA83D+YOEg+5DzMQPRBQELIQ+RDUEJQQghByEEgQTxCmEPAQCRFOEdAR+RFyEbcQRRDeDykPag4GDtYNlg1yDZ4N0A3ADaANlQ0+DVMMNQtNCmwJWAhZB6gG6AXsBD8ENQQfBEsDKAJuAcMAZv+f/WH8ufvi+qb5gfiD9yn2Y/So8hLxUe+F7RPsyeon6WvnSuac5YvkEOPi4ejgHd9P3JvZs9cb1qjUXdTX1QvYtNn+2qXcOt6b3rTdqNxi3NrcpN2W3tDfjeHY4y3m9+d06YvrU+6x8PvxFfMa9bb38Pnz+77+ZwLHBfMHIgnwCZgK9wrgCm8KTgpSC3QNpQ9GEQgTjhXhF5oYBRioF9sXdRcFFrEUVRRHFKwT5BKtEtgSxxJlEvMRVhFzEK8PXQ8rD84OrQ41D/4PXRBhEHQQYhCeD0YOAw0WDFsLBQuNC+kMig4gEK8R+hKdE8YT/xNEFA8UYhP3EiYTehOgE/kT0hS8FTIWQhYtFuUVZRUQFS0VgBXHFTAW2hZzF7sX7xc3GDAYphcYF+EWfRZ7FYcUeRTlFMUUKhToE+gTKBOMESMQYg98DvAMagtuCnEJ6gc4BrsEEQP/AAv/bf15++z4r/ZD9azzHPGH7gzt3uuj6d7m8ORp44/gftw42Y7XM9aF1P/TudVf2PnZc9rx2rbbD9zN24DbltsY3AjdT96s3zfhieO75t7pIezz7S3wt/Lv9AH3wPk6/ZYAUgOuBdAHcQmMCoMLZgzkDAUNPw2yDRcOiQ6UDzYRzxIXFFoVdBauFuMVzBToE+4SqRGDEMMPKQ+EDugNLQ0IDNsKZQp6CjAKgAl+CYcKfgt5CwQL/AonC80K9QkpCaUIVQhECFgIPwgMCG4Ivgl4CxsN4A4SET8TuBRoFasVvxXkFX8WihdfGJAYfhiRGHUY0hc2F48XBhkOGyAd3x7cHwIg3h/RH4Qfth4KHikehx4UHtgc4RuoG6kbixuvGzccixxSHBccTxxxHNMb4BpsGiAa3xihFpwUURPWEZoPcA0ZDAMLjglBCJUHvAbyBNoCRQGk/yj9YPok+AH2M/M08MTtZOtp6IflpuMf4tnfP91R28LZm9cK1fTShtGF0HDQ69Gk1NnXVdv83hriAOTN5P/k/eRX5aTmzOgh61ntwu+A8lP1Jfgg+0z+cwEpBM4FKQYLBqYGJgjgCcMLRA7eECkSrxFKEJwOiAxgCh0JIgnQCZkKjwvLDBAO5w7QDrINQwxTC3MKjQjtBSsErQMeA/YBlAHkAtIEMgZIB1EISAinBtwEeQQ1BRIGVwfSCecM5g4ODx0OLQ25DKoMxwwtDV4OlhAhEyUV3RYkGekbJR5yH14gBSGrIDIfoh2sHPAbUhuwG3QdlB/vIJ0hGSInInchiCD5H8Efuh8wICgh1iGXIc8gKCCFH2Ue5hy4Gy4b5xp5GgoaDRqVGkYb4BtiHIIctBvwGbYXGhXKEWMOSwydC9YKVwloCJgIOgghBscD1AJMAnYAy/2++xX6vPcK9QfzdPF871Ltd+ta6WrmcONb4c/fL97Q3NzbadoH2NTVyNRM1NvTedQV17Halt2D33zh/ONz5i3oQ+nJ6sXtpPFn9DD1ofWF9xn6Z/uG+6L87P8cBDgHkwgFCbkJ9ArcC8wLjwtiDOkNYA7zDLgKEwk4CK8HSwctB08HUwe4BloFyQOeAqwBnQD+/20AFQGvAOH/dgAvAtgC9gGjAeYC5QMTA78BxwHZAqkDPARXBfsG4Qg6C+AN7w8eEUISwBPGFOgU+BSaFWMWJheDGIkaRxx7HRIfHCEoIoYhlSCbIPQgriBmICshsyL7I78kLyUSJTEk6yKSIe4fCB6QHO0buRuFG3UbvxtbHFIdrR7uH1gg1h/cHoIdfhsLGRsXcBbnFrwXSBhxGGAY7he7Fv8UixOOElIRqw9uDs0NmwxtCrYIbAgzCJEGVwTtArABOP8D/KP5OPjF9h31s/M28h3wwu2a6zPpIeYO47fgyd6e3F3ah9hC15LWXdYV1l7V2NQh1YPVG9XH1EHWydl03g7kj+qC8C70zvWg9of22/Tp8hLzu/Uh+QL8l/5DAd8DJAbGB5EIJwmXCoMMAA1HCyEJhAgNCSkJlghOCI0INAgfBmcCQv7n+rb4evc69yD4vflM+7f8RP5O/8r+M/01/Cj8t/uF+hb6TfsA/RP+G//PAKYCPwRwBpQJeAw4DsAPGRKRFCAWThdAGbgbhB0kHvgdZR3HHJwc+RyJHXEePSCTIiMkgSS5JGolryXKJGkjXyI8IXAfox28HHgcFByoG7Ub7xuQG4oahhn2GM0Y1hjoGPsYThkmGjgbwhuAGxEbBhv8GigasRjIFxMYuBidGBMYNhjlGNIYsBeiFgsW0BR5EkYQ+A5yDfYK3AhfCFUIEAcFBZoDhQJyAF39Wfq59xr1lfJ68HzuVOxa6qHoa+Zu433gDt5726bYs9Yo1uLVAtVQ1H/Uq9Tg09PS39Jf1PXWdNrO3svjO+ml7u3ybvX69n74XfnL+PL3uvjZ+mv8G/2A/lIBbgTIBpcIQwqIC+4LPQt8CUoHyQV/Ba4FZgWeBKIDDgJF/5/7WvhI9hP16vPG8nbyPvMi9GP07PTb9h75evnW92z2Z/ap9n32Nffa+VP9GgBIApkEFQehCZ4M3g9WEsETNRVqF8AZwBsGHtEgIiMvJGwkWyTAI80inyKiI7IkvyRBJC8kmyQCJTAlIiWvJMcjZSI0IBMd8RkWGIcXORexFmYWcxY+FpkVMRV5FQsWYRaJFsoWKheQFwQYnxhiGTAa5RpgG4YbPhuqGkkaZRp9GgwapBk9GlIbVhsrGlAZDhnDF9wULBL2EPkP8Q3oCwcLQQo1CKUF6gN/AjAATv3K+m34mfWn8gHwIO3L6QPnXOXX47Phxt/G3s/d29tL2afWpNOX0PnOSM820C7RldMS2Kzcf99y4Vjk9efP6qvsbu558K3yQfVZ+GT70f3A/10BVgKFAmgCeQLPAokDtgSvBZoFywSGBCEFZAVlBP8CbgI4AsMA6f1v+5H6Xfp1+R/4WPfh9vD19fTb9Bb1j/Ty86/0Lfai9ob2Kfiw+3j+O/+3/0MBuwI0AwoEeAZwCZkLdQ3lD1AS7BNkFZ8XJRoNHFMdLh5rHkkerR6hHyIgFCCiIOshUSI4IU4g1iCaIQkhtx/rHlUe9xwxGw0abBlzGBUX3BW8FEwTzRHxEOAQLhGBEcQRAxJsEkATfBS+Fa4WShe8FwcYBRi5F38XuBdNGM8YHhlmGYUZORnwGFYZ+RnDGegYrxj4GAMYcxUmEw4SoRDEDeYKdAlpCFsG9QNvAj0BQv/H/Ib6Hfgc9T7yE/Dk7RjraOhs5nLk6uF133/dVtuc2OrVK9Nhz8rKZcddxurGnch8zLjSbtnM3obijeST5K/jE+Q75q7oIesO72v0o/hH+iz7Z/1jAIECpAOnBJ8FHQY1Bi4G9QWVBZYFNgbKBlUGfwTLAf7+dPwh+vz3TvaZ9Un2KvgA+jT6tvhM9/j2JvZT8zrwxe+J8Zvyf/K98zP3n/rB/Db/0AKSBSsGbgYiCBgKrgrsCrwMyg9OEtATLBXeFr0YghqvG9wbsxtsHOYd4R5OH3wgoyJFJJskhCRiJFIjMyFDH+kdDhx1GZYXTRedF58XuRcgGAEY8xaiFWwU9xJyEcEQERGcER8SIhPGFIQWGRiTGZ8a2BqIGmEamhr8GmEbvRv+GyocMBzbG2MbiRtsHAwdvxwZHHcbFhqnF1kV1hMMElgP8QyWC/oJRgf/BFsE3wPeAVT/4/3e/Ln60/dn9TLzOPDH7Kbpk+Yc473f0dyq2dvVEdLLzuHL5MnkyWvLDM0Vz93SN9cj2bbYbtmB3P3eQN834KXkqOrp7qbxbPV/+oH+GwCqABMCewSjBuQH4ggcCq8KjwljB6wFjQT6AuEAOv8b/n38DfrC92z29fXm9dP1kfWC9f/1X/a99cn01fQw9efzXPE08CrxMvKo8q70Avkd/Uj/PwGiBAoI7QmGCzIOjRDWECcQmxAREiMT5hNNFRgXQhi0GPIYHBlOGQEaNhtRHEUdkB7fH28gryCYIXUiqyGfHz4egR2GG1AYUhZ7FtgWFRZuFfEVhRYKFjIV/xQrFTIVVRWzFccVYhUEFeAUoRRGFD8UmBQLFbQVzBb1F5QYuBjrGF8ZuRmZGRkZvxjdGOUYChiTFpwVMhUwFF8S5hAKEJQOWQz2CuAKTApsCPgG5wZXBtMDBQHI/+/+fvwH+Wb2n/Q88rfuvere5j7jzt8u3EDYDNWp02rT49Jk0j/TztT11KvT9dL60pHRdc6ZzOjN5dDx0yPYAN+i58rvDvYZ+lH87P3e/4wBFAJOAq4DogVGBj0F3wPzAiUCNwFEADj/E/5A/dT8TvyY+1b7uPsK/LH7ufo9+Sz3sPQq8tvv/O3B7B3sG+xk7VTwuPMU9vn3/PqL/mkApgACAowF5AgwCvkKIQ2zD+MQLBEzEusT+BTxFJkUkhTwFIsVMxYQF90YwhtaHkcfQR/IH2QgdR9QHfAbohvKGgUZyhelF1UXRBZ5FZQV2RWvFUsVvxT9E5YT/RNyFFAUiBQQFtUXOBiVF1UXbRfiFv4V2RVlFs8WJRf8F/gYShkpGWgZEBpyGkQa2xmZGXwZBxmhF3UVdhPyEREQdw1PC4YKUAq+CVYJqwnqCVsJ1QgGCd8IaAeSBXIEPwPZANb9SvvI+Fr1V/Gv7Vnq2eZp45XgWt6A3CTbStqp2VLZe9mb2fDYy9fB1tjU39BmzI/Ku8u7zYjQ4dYF4cPqx/CT9Nb45/yb/mH+vv7TAGsD/ARKBRUF3AQ0BLoCPQHtAGEB+gCA/2v+P/6m/RD8Evvv+1f9JP0h+974Pvdy9YHyM++p7cDuuvCl8UfyxvT++Hj8Qv7z/2gCQgTFBHcFUAf+CKwJ6ArFDXwQPRFBEY4SihQ4FXAUmBMxE9QSuRJvE8sUYxZAGBga8xpzGkwZCBiZFmgVHxUoFUEUthIIEksSJBKCEfYR2BNyFaIVKBXaFHsU8hPXE0wUzxRUFTAWDhdMFxwX/BahFrcV7RT5FFUVYxW/FRIXiRjqGFYYwRd+F2MXdBeBFxIXNRZlFXQUtxJwELYO7Q2KDTQN5wx9DCwMxAwvDvkOfA78DTUOpA0JC8kHvgVTBPgB9/6g/N36f/g+9dHxse7W60Pp8ea95NTib+EW4B7e7ttu2krZZNf31CvTp9H3zrDLgsp1zNPPmdMn2TPhtelo8Bv1cfht+mD7ZfzY/eb+Uv8HAIwBBgNWA1oCEwG3ADQB3gCi/hP8k/u//PX8cPtC+r/6aftQ+q33/PTo8hLxJO9v7aHsD+1n7mTwXvNm9zb7ff0C/4MBiQTEBRUFXQUpCDcLIwwHDDwNjA8WEXwRzRE7EiMSnhFNESwR6xDbEIARwxIwFEQVWRVHFC4TIBNCE/kRyQ+5DvsOow4CDdILSQxlDfwNcg5YDz4Q0RCfEekS9xNgFJoU5hTMFCkUlhNvE30TrRMsFLAUoRQeFO4TWxToFDUVfRUPFsQWHBepFn8VQBRqE7cSrBFvEHwPyQ77DSQNcgyyC+8K1QqSC0gMewzdDLQN6w3ZDGQLKApECEsFiQLdABT/DPy6+GP2ZvSG8TDuz+u06vfp2uha59jltOS74wTiO9+p3Hzbj9r611rUA9IE0TjPsMxyzMzPgNT12K/eq+aK7snzFvc7+gD9Q/5A/hT+Vf4j/2gAegGqAVoBPQHrAIX/T/1g+wv63/jC9wj3w/ax9qz2kfYF9sP0/vI/8d3vru5z7aTsTe2o73TyiPRz9mv5If0iAAkCsgN1BbEGUQcWCCoJBQoSC4MNDBGUExcUBxTIFIEVyBQBE7MReBHLESsSbxKiEg0TxxMlFGQT1RFREPsOqw3sDBgNSQ3JDJsMvw0ODxwP+g6aEGATChVEFY4VLxYNFjAV1xQ0FW4VixVCFiEXDBcmFnUVEhVmFJ4TVxNvE5MTJxRKFe8VUxU8FIkTvBJCEeEPgw+pD18Pqg4ADkkNUgyAC2ALFAxRDYMOIQ9oDwkQnBCyDyQNuQpoCcAHdgTEAHz+LP0p+1j4/fWL9CzzPPEJ7zXtB+ws6+bpzOdy5YHjj+HJ3p7bV9kK2JnW2tTk0+LTsNM40x7UO9da24PfhOQF69zxVPfS+ob8yPw2/G37bfox+YT4FvlQ+hv7LvvC+uz58fhA+JD3MfaO9MnzuPPu8iTxsu9p74TvFe8p7jntouyo7CPtjO3x7TLvrvGl9JD3zfpG/uwAggIbBOQFZAZABbMEdwYICQ0K8AnBCsAMVQ65DpoOlA6kDtAOBg/RDg8Obg1eDXMNSQ0KDaYMvAu2CoIK4QqECl8J+wjuCc8KmApICh8LxQw4DlEPWRAwEboROxKtEqsSYRKdEokTYBSmFMYUKhWLFXQV0xTrExwTxRLzEkITWhNNEz4TBxN1EocRahBwD+cOnw4JDhwNjgy2DA4NRA3aDf4O+A9mEMwQNhHCEEIPzA3CDBILVwjjBYIECQNzALH95/t++l342fXn82PykfCB7svsauvV6dznuuW04/PhVOBf3vjb99kB2UHYqNb81M7UttXg1YHVCddF2w3g0+PM5yTtS/ID9XT1e/X49W32fPac9mL3xPgU+qL6XfqR+Ub4bvao9MvznvMF863xhfBI8G/wCvAM71Xuru7M74HwIfCF7+nvLPFS8nDzivWS+Dr7DP3g/s4AtgFtAYIB2AJRBPgEpAU7B/wI3AlCCgcL6Qs4DCYMMQwoDL0LRwshCwQLswqACqMKvAp6Cg0KpwlBCfAI1Ai6CH8IngiOCdkKsAscDLoMiA0RDngORQ9REAARXhHsEXoScRIXEl0SYRNDFIMUkBS+FL8UXBTxE9UT5xPGE0gTlBL2EYsRDhFFEHAP9w7HDoMOMw4zDqMOZw9uEIQRVRLvEqsTShQEFNUSnBGVEP0OngxeCp0IiAa7AyYBaP/I/aL7kvlB+C33kPWb8+HxSvBz7l7sSupQ6JnmWeU65JXifuCm3hbdGdu42P7WXNYi1h7WLteS2Urc19774eLlPOkh62jsF+7c7wLxu/GX8qLzlvQ69U/1vPTI87/ynvGJ8ALwHvA78P/v0+/w78fv5+7J7THtNe1l7YDtqu0e7truqu+k8Ezy2PSK93f5zPpa/PX9l/5D/nP+BQANAmoDTwRMBQsGCwavBZkFugXnBYwG3gcyCeUJOQqdCtQKjgoQCrMJbgktCQEJyAhcCAoIMwiPCK4I4wjMCTALSQzmDGgN4w08DrkOow+rEGYRFBINE90T0BMdE58SqRLlEhkTTBNeEzMTFhNIE3UTShMaEz0TQxOYEn4RjBC8D9EOIQ4gDp4OKw/ND7EQqxFqEsgSxBKZErQSFRMZE3ESrhEqETkQRQ7sCwUKZgiCBmsETALX//b8Svo9+Hj2zfTA84LzQfMw8njwme6U7E7qJ+h85iHl6uMM45Di+uEH4Q7gO9873ind0dyM3eLen+Ay42nmDulR6qTqq+qI6oPqTOsw7bDvHPLd82v0pfP+8envke1062fqiuoM61/rxetr7N3sw+xK7KPr5ep86t/q4Ov67CXusu+Y8YTzVPXw9jH4YPkO++b8qP37/Er80vwB/tP+vf++AW4EZgYXB/8GnAYyBhoGVgZnBjAGSAbXBiAHygaEBrsG1QZSBp4FHwWzBHQE6AQBBgUHxwfXCDwKOgudCxUMAg3yDZgOSA86EDERGBIsE1IUGxWMFQ0WjxaQFhAWoxV2FRsVcRT0E/gTJBQCFIcT9RJ2EuwRDRHQD6kOEA7nDc0N0g1CDvEOew/pD24Q7RBPEecRwRI2E9gSGBJUERsQJA4JDFgKxgj9BlAF2QMAAnb/y/xv+gP4VfUk8w3ymfEM8Vzwpu9+7oLs+ekp5/PjnuAu3iXd1dyO3IvcCt2A3XTdQd1e3d/d/N784E3j+eQP5lrnsOg66Tzp2ekw62LsXO207vzvCfDL7kft5+tS6sroTuhP6S7r9+wA7h/umO247HXr7On76I7pauty7QTvY/Dn8XTzsvRj9aD1CfYu97342flv+k37zfxg/qv//QBXAjADnwNnBHMFnQWjBNEDBwR4BEYE7ANBBCAF7gVpBmUGvwX4BN4EYAXIBR4GLAcICdEKAwz1DPANwQ5bD+cPTRBlEI0QPBFHEjYTFhQzFUYWyxbWFuYWBhfwFs0WABdPFysXrBaEFukWVxdNF8oWDhZQFY8UeRPeEUoQkQ+qD7APQw8BD2YPGBCOEKsQmBCMEMwQTRGIETMRsRA8EFEPjQ1qC3QJdAc/BWQDOQIKARH/i/wC+kj3DvTl8KjuVu1d7I3rBet/6nHpr+dK5UPi5N7w2+XZoNgV2L7Yu9oh3dvel9+F3+PeFt6O3Vndid283lLhZOTM5rTozuqn7ErtC+327AntkezJ65TrC+yb7Cbt0u1Z7pDu2u5O70bvee6M7ensIewY65TqGetJ7M/t4e9f8nP0f/W19ZT1efWw9VP2LvdR+D367/xg/8EAigFXAs4CeALXAa4B8wFlAk8D1wRTBjAHrwccCDAI2geoB+IHJghBCIwIHAmICbcJAwpxCrMK9QqvC7MMag3yDQoPxBBHEgYTbBMXFPkUmhXPFe4VaBZKFxYYURgtGEgYtRjJGBcYCBcwFo4V4RQ7FNYTwRP0E1oUkhQ4FHkTzxI+EnkRpxA1ECEQMhCCEBcRYREPEbkQ0RCpEI0PDg4FDS8M4ApUCSAIEQeqBQYENwKv/zX8ofin9dDylu+a7LLqn+mv6MrnEOcr5tnkY+PY4brfH90j23rakNq22g3bw9t63CHdGN4f32TfAt8U3+nfjeCw4Gzhn+O85rDp/uuR7W/uz+7X7lPuTu2Q7M3soO0s7kbudO727nTvZe+a7nftn+w47NPrTOtA6zvs9O3O73/x5fLa86b0v/Xq9nT3mvdy+CX6mPs0/Lj8tP2w/mT/UQCSAWoCtgJaA5IEUQX+BH4EtwRTBbgFGgbUBr8Hrwi6CaEK4gq0CtoKfQsPDHYMMg1WDnMPhhDvEXkTjBRKFVMWbBeyFyoX6hZ2FyIYYhifGFAZKBqnGrAaThqFGYsYoRegFkcV7hM/E1kTsRPPE7EThBNYExoTpBLyET4RwRBiEAEQww+4D50PZg91D6sPMg+3DRcMEAssCt8IoQf9BnwGgQVCBPkCJgGL/uD7qvlW9270ovG772nuAu2s697qVupy6fbn9+WP4wnh3d4i3bDby9rm2rHbZNzf3Hzd5d1q3XncOtzT3HvdSd5F4JHj++aj6Z/rE+3m7VzuzO747tDuK++T8PzxG/Jf8RfxSfHh8JXvPO5o7drsSOzP66vr+Ou67Mjt1O6u72LwHvEQ8jvzUvQc9fj1fPdz+fr6wvtn/FD9H/6J/tr+R/+t/zoAYgHUApgDhwOaA1EE/AQABeMEbwWeBu8HEwn6CaQKNAvUC2IMswwDDawNkw5lDz0QZRG4EtQTuRSuFaAWLRdLF1kXixfWFz4YzhhXGaYZ2RkQGv8ZbRnFGIMYbBgLGJIXghe3F58XIxemFlwWHxa9FRMVOxS5E+kTQhTyEygTvBKrEh0S6BDfD2wPEg9mDo0NrAzAC9kK4QmDCNoGeAU+BDICMP96/Mz6HPmD9vnzzvKM8sfxOPCp7lztz+u96WDnA+X04pbh6eB24PXfiN8Q3wPeVty72qrZ6th+2A/Z+dqT3QrgTOKp5BDnFuli6v3qa+tP7Kft0u6W74bw9/Eq8yrzAfJ/8DbvF+7U7HHriurE6sjrX+wD7KrrTux87TXud+767uvv8fD/8T7zjPTG9Tz3Hvn8+l38W/02/u3+kv9jAB0BNAEDAbABVwONBJIEjwSaBdsG/QZtBqQG5wcnCb0JDwqwCrELxAyQDQgOog7TDzkR9REDElUSaxOyFJcVWBY/Fw8YpBhOGQ0aXRouGi8anBrCGkAarhmcGcQZxhnEGdkZuRlKGeoYxxiGGNUX7RZHFgwW6xVnFXQUuRO0E98TXxNmEvsRSRJWEoARURB/D/EOHQ7IDDYL8glJCckIqwf2BYAEeAPnAUz/mfy7+jH5K/cJ9ZzzoPI68WjvxO1M7HLqEuic5YDj1uFu4OreJ92e28DaFNrp2LjXr9fi2DjaP9ug3KTer+Br4ifk8+WS50DpVOtK7YHucO/P8BPyMvJy8ebwpPDg74XuZ+0L7S7tUu0p7bPsTOw87Dvs/uvk63rsiu2U7rjvUPH58hv09/Qu9qP3tfhg+TT6Zvuy/Oj98P6r/0kALQEkAnwCRQJ/Ao8DeASDBIIEeQXxBsEH4wdMCF4JeAoSC18L0wuXDJMNng6ZD4cQgxGOEoYTVBT/FIAV3BVWFisXERiDGJcY9RjFGWQaWhr3GbQZhBk1GeEYoRheGCUYOhiXGMQYfRgTGPcXLRhVGB8YqBdbF00XARcmFj4V/xQ3FSMVlRT5E2QTgBI5EcIPMA6qDKALGAteChMJ1QcbBzwGkQSNAtsALP8B/cf6AvlD9wz15vJ68VLwlu5h7GHqt+gL5zzlSOMc4QvfqN283G7budm52PfYo9kS2rraI9z+3drfouEe4xfkHeX35jzp6eor7AfuS/Cr8dHxvfHh8Y/xgvB27+zukO4c7t3tCu5N7kLu8u2s7Zfteu0Q7ZTsuuzP7UHvcvCJ8fryrvQl9iv35feF+Dv5JPoG+577O/xh/d7+AwDFALUB2QKGA6AD1QNtBOYE+wQvBfUFEAchCCkJSApmC2IMKw2zDRcOrA6OD2kQExHwEUATjhRhFRUWMRdrGA4ZKxlsGfUZWBqDGtAaOxtgG0kbYRubG3Ub7RqcGr4a1Bp/Ggoa8Rk8Go8amhpmGjIaBxqKGZUYmxccF+gWihYiFhAWFxa5FREVhBToE9AScBFIEEsPNw49DYoMuguIClUJOwiDBtsDOAFa/4j97fos+Fj2I/WH82nxZ++K7XfrUulp54PlduPH4cng4N963g/dPdzB2zTb+dqI26Pc8t2c35zhYeO65Cvm6Odp6Xrqm+v47BTuye6J71TwkPA58BrwavBd8JDv2O777mjvBu/s7UftmO327Xftm+yQ7HPtXe767ujvbvEG81T0l/XN9n33ufc8+EH5NfrT+o/7o/yy/Z3+qP+vAD4BjQFHAkEDoANpA6gD0gQkBvgGqgfMCDcKcwtSDOsMcg0mDgkPtg8LEJMQyRFQE4UUgRWzFvQXzRhPGdoZTBpiGnsaERvFG/gb8BtrHD4dmB1fHUIdbR1eHe0cjxyBHIwcmBzLHBMdOR0wHf0cjhz5G3sbCBtbGpEZFhngGHgY3Rd6F0oXzxbtFfYU7hOZEhwRxA9qDtIMRAv9CZAIkwZxBK0C4ACA/vf77/kq+BH20vPk8fjvku0Q6wrpN+cI5dbiV+Fk4E/fC97u3Orb79p22rvaM9uV257c095m4Vfj6+Tq5jbpFutP7CHtuO1I7iTvQPAT8WXxs/Fa8vPy4/I38onxLPHa8C7wOe9f7tLtdu047S7tU+2i7V3uoe/f8ILx9PEP86T0s/UT9qv29fdl+YT6f/tz/D79H/5u/6oABwHmAG4BoAJOAxkDDAPiAxsFIgYgBzcIHgniCe8KHAy3DMYMNg1sDrYPfxAkETwSvhNBFXwWTRfNF2IYRBn2GfgZyBlOGm8bOxx6HOsc2B2YHr8erR6cHjwelB1JHZAd1R3BHcsdWR4GHx8fiR7IHWodaB0rHVYcbhstG2YbPxuAGtEZlRlbGaYYehcdFsoUqxObEisRVw/ADZ0MMwsECa8G4QQwA/0AqP7L/CP7Kvkf92n1oPNE8cDusezR6p3oZOa55HPjI+Lb4LDfSt643Lvbh9tb2/naUNvm3Ozep+Bu4pHkleY76NfpOeu166zrauwL7jfvYe+u7/rwbPLH8h3ycPEy8d7w6u+Z7q/tdu137UHtDe0t7X/t1e1U7v3ug+/w78jwHvJZ8yn09fQK9jb3XPiD+VL6ifrm+jz81P1E/t/9a/5CALIBtAFuATQCqgPaBKcFZwYqBwwITwmdCjoLSgvRCzANow6FDy0QOxHLEoEU5xW0FicX4xcLGdkZ0xm6GXkauBuPHAYdxx25HjUfXR/FHyYgux/fHs8eph8jILEfUh//HzAhnCHZILYfOB9uH1kfPR7IHEAcrhzKHNcbkRrnGbcZRBklGIgW6RSzE8ESbBF4D4oNKwz1CkoJSwdhBYEDnQEHALL+7PyI+l744vY+9a7y4+/47cvsdOu06fTnW+bJ5D/jnOGG3yvdbdvA2pHaTNpT2lfbUN2f36jhFeMk5JrlnOcQ6TrpROnD6ivtoO7s7qHvavEJ82Dz2PJl8jHyw/Hi8OvvZu9j72XvI+/77jbvcO9Z707vme/N76Pvre9w8JDxn/LM8zH1cfZ194T4VPlK+fL4mPkX+8j7S/tX++v8m/7v/q7+X//TAOQBcwIyAyYE2wSKBbMGAgjGCEEJUwoCDF4NBg6mDtwPVBFxEi0T7hPlFO4V0BZ2FwcYxBivGZUaahtaHFYdER6PHigfuh+zHysfEh/GH2EgIiCwHxMgBiFHIWUgVx8gH20fEh+9HXocLBxGHLobrBoUGh8aBBpnGawYAxgrFyQWKBUVFLQSRBEGEKcO7AxICwMKfghMBh0EggLJACr+Ofvo+Ov2X/R38R/vhO0K7GPqu+ge53flxOPK4UTfqdzz2kXa19mJ2S7a8NvI3RjfYuD14UrjLOQd5UfmRec56KvpXuue7KPtEu9x8MnwcvCO8APxtvC071TvDvDB8IPw9+8n8ObwDPE38Hrv7+8d8anxcPHC8ULz4vSK9Zr1APbU9oz33ffJ95b33ffa+Lf5tPmV+Yz6Fvyt/G789fya/uf/NQDBAGMCIwT1BGcFjQZHCKkJZQoWC1UMAg5tDyQQnRCsETQTJhQfFDQUWRXrFsoXPxhiGTcbsRxwHRQe7h6QH9MfFSBpIHYgWyCxIHUh8yHpIeEhMyJqIv0hEiExIKMfQR++Hg8efR1FHSIdqxzwG0sbvxoKGjkZfRi0F7cW1RU7FXIUHhOxEZMQRg9SDTsLlAnyB9IFsAMPAmkAFP5z+yz58/ZH9ITxO+9X7Z/rNerl6CPnH+Wi42HiMOBK3X/bY9ty29Da2tq13ELf6+Dl4Tjj2eQD5ozm1+ZE5yDoiOkH6yLsLO2e7v7vbfAe8AHwM/AQ8JnvnO9e8CDxT/FY8eLxrvLh8mXyRvI282j0xPSz9Gv13/bW9/33Ovjd+DH5APng+Nf4Xvjj91r4YPms+Wb59PlW+wL8rPva+zb9g/4I/8v/hQE8AxAEvwQ4Bv8HJgneCfUKcwy9DY8OKw/OD4UQPRHIEQwSUxL4EtATYxS7FFwVXhZRFxEY/hgtGi0bzhtqHCMdkR2VHb0dYx4TH0wfUh+sHz4gcCAVIKMfgR+EHzcffx6yHRQdgxzLGwIbVRrFGVMZDRm3GOcXwBbkFVsVWRSsEjgRchCCD7kNywt/CkcJYwdNBcADTQI9AO39A/wu+tv3c/Wg8ynykvAL79LthOzZ6jfpxufy5ZXjnOGu4Dfgg9/w3kzfl+Ao4nXjY+RF5ZvmK+jY6Djoqeed6Enqz+pk6iTrle2P74vv/e7q76Xx+vHT8G3wxfEP87by9fG/8n30EPVn9If0CPY09wj3vvZ492v4hPgd+Pr3//fj99f3yfdR98/2I/ft99T38/YO9434n/lf+Yn5lfsV/hL/Sf/AADoDmwSABOIE2Qb1CLUJ3gkYC0gN3A45D3cPjhDqEWMS8hGcEfMRcBJyEkoSuxLME7gUHxWCFVQWKRd7F5kXJxj8GG0Zdxm4GUEabRoTGuwZWBqxGmsaFRpnGvsa7xpUGvsZFRoEGoIZ8RiRGEAY+xfKF1QXZBacFY8VcRUoFFMSchFAEewPSg1bC/oKZQpSCCoGfQVCBasDJQFg/2P+0fx8+pT4mvfK9o71MPT88svxdfDt7gXtu+qK6NvmbOXJ4zzijuEF4gbjxuMx5PLkfeYN6Fjobuf85vznEOmT6Gnn6Ocq6sDrdesq68TsG+/T7wzvDO+N8L/xXfGu8FjxxPJY8yjzoPP49Pz1OfaP9nf3UPjH+Fb5Bfo/+hr6VvrC+mb6hPmL+Y365PoT+sT55/r7+6X7Bfuw+wX9ff1l/Rn+hP9wANEAtgE+A1sEygSGBf0GRAi2CPwI3Qn3CoQLpAsGDMQMYw2zDQAOdA7pDlcP7Q+yEHERFhLKEqETaBTqFDkVnxVJFhMXsBcAGDsYqhg3GYEZYBkpGUYZrRnyGdkZmBmKGbUZzRmQGRkZvxiuGKgYRxiLF+YWnBZUFqAVuhQmFNATJhMZEjERihCBD9kNQgwpC/YJIgg9BvsE+QNyAqEATP9e/if9qft++pv5Vvih9iH1+fOJ8qPw/e4U7m7tdexr6+3q9erz6qTqW+pt6q/qsupf6hfqIOpB6h7q2eno6U3qh+pf6kzqteo+613rN+tv6yDstOzQ7NvsW+0u7s3uGe9z7xPwyfBW8b7xJPKk8lHzGfS69Bv1gPUb9pv2qfaf9gf3sPf49/j3afhM+cf5ovnA+aX6ivu0+7/7l/zj/Zz+w/5J/3cAkAEfAqYCpAPDBIcFGQbmBtoHigj4CJMJeQpHC78LNgwUDSsO8w5dD+oP3xDYEWcSvRJaEzkU4hQvFYcVMhbzFnYX0RdOGOoYWhl9GX8ZlxnDGdgZxhmyGcwZDRo2GikaFxo7GncaeBowGvEZ7xnrGYMZzBg+GP8XmBetFp0V8BRqFF8T1RGAEI0PVg6SDOAKqQljCJYGxgSNA3oC3gAM/8j94Px++6f5NPhY91v24vR+86by+PH68N7vG++t7jzuq+0v7e3svexe7MnrResM6+fqfur26dTpGuok6rPpcenf6XHqbOow6pXqaOu864XrsOuH7DPtS+2Q7ZDume/t7wvwxvDN8ULyQvKn8ovzL/RK9Gf00vQy9Vn1mPUI9lf2fvbp9qH3EPgC+Bv4zfiV+dj57vmO+qD7cvzY/GH9Wf5d/wsAmABhAVMCHAO1A2IEOQUABo4GDge6B4QIMwnACWQKOwsYDMsMYw0KDsMObw8CEIkQDxGSERkSqRIyE6gTHxSwFEsVzhU4FqEWEBd2F8oXEhhNGHsYrRjsGCYZSxltGaUZ6RkaGjIaOho7GjYaKxoKGr8ZVRnvGJIYHhiEF9kWIxZQFV8UWhMuEswQXQ8dDuoMdAvQCWgITQcNBm4E0AKFAVMA4f5N/fP70fqk+Wb4S/dl9oz1q/TY8yHzcvK08eDwCPA773TumO2m7M7rOOvG6j3qpelF6S3pGune6Krotujn6APpC+kn6VnpjenN6S7qnOr+6m/rDeyv7B7teu0L7rjuMe+A7wDwqfAS8Szxa/H88XPylPLS8ojzUfS79A/1xvWu9kj3qvdO+Cn5y/k0+s76mvs4/Kf8Vf1Y/j7/2/+SAJsBlAInA5cDRAQTBa0FFQaSBjYH0AdFCLIINwnWCXsKGgu5C2oMLA3XDVQOww5QD+UPUhCkEBsRvxFTErISCBN/E/wTUhSMFM0UHRVzFcYVDBY3FlEWehayFs4WxBbNFhAXWxduF1sXXRdtF00X8BaHFigWtRUgFXwUyhPxEvsREBEuECkP+w3YDM4LpAo5CcAHawYcBaYDIQLGAI3/P/7U/H77WvpL+Sr4Dfck9nr11PT38/vyLvKL8bXwhO9d7qDtAu0E7Mzq+ume6SPpT+ir56Lnx+eX51Tnf+f35zXoMuho6O7oXOmT6e/pmupE67jrNezn7Ivt6+1D7tHuW++d78vvM/Co8NXw2vAd8Zbx8fEw8qXyVvPx82X0/vTL9YT2FvfQ98n4p/k3+r/6efsl/Ij83/x9/Ub+8v6Q/1gAOQHyAYUCJwPWA2MEzwRKBdoFWgbCBjQHwgdgCAkJvQltChILxwuPDDYNng3/DZkORw+6DwUQfRAnEbMR/xFOEssSTROqE/oTXRTAFAwVTxWUFckV6xUcFmYWoRa8Ft4WHBdBFyMX8RbcFsAWWxbLFVcV9RReFIUTrhLxERkRBxDkDtUNvwyGCz0KAgnKB4YGTAUvBBoD8AG4AIv/Yv4m/dP7f/pG+TH4Kvcd9hT1L/Rv86Pyr/HD8AnwWO9x7nPtpuz46xXrB+pA6drob+jS52vnh+fJ57/npOfw54zo+egm6XrpE+qd6urqO+u66zvspuwv7eftje797nbvJPC/8ADxIfGD8RHybvKX8uTydPMO9JH0JfXl9bT2ffdN+CD51Pli+uf6cPvi+zj8l/wS/Yz9+v11/gv/mv8QAI4AKgHAAS8CjQIEA4oD+gNWBMUEUAXeBWcG+gaXBy4IvQhZCf0Jiwr/CnoLDQybDAYNYA3RDVkO1w4/D6wPMhDDEEoRyBFHEsISMxOgExkUlRT8FEwVnBX9FVUWgRaIFo0WoBafFmEW8hV+FRUVlxTkExQTVRKpEeMQ7Q/jDt8NzwyZC1QKLQkkCBcH/wUBBS0EWQNcAkwBWgCC/4j+U/0O/Oj6zvmK+Bj3tfWP9IrzePJi8XbwuO/87i7uae277AfsQeuR6g/qjunt6GjoSOhk6F/oReh46P3oYel06ZLp/ult6pLqsOok67vrDew/7MTsku0s7oDu/u7S75Hw6/An8Z7xMvKg8gDzkvNS9Bf14fW/9pr3V/gO+dX5i/oI+2v74PtW/Kf84vwv/Yz94v0//rf+Lf+I/+P/XADOAA8BRwGyATMCjQLYAlYD8wNgBKsEKAXXBVsGoQYHB7MHSgiNCMYIQAnKCR0KXArHCk4LugsgDKkMOw2pDRgOxA6JDx0QkRA7ERQSuhIJE1QT2BNYFI4UlRS7FAYVLxUPFcgUiBRJFN8TSBOzEj4SvxECERgQPA9nDlcNCQzQCtcJ4Qi7B5MGqQXeBPUD/wIsAm4BmwDC//r+Gv73/MT7x/rU+Zb4Nfci9lH1SfT28tHxDvFN8ErvV+677S/tY+yJ6/zqpeo96tXpuunq6RPqG+ot6mTqourU6gHrLutc653r+OtP7Izs1exc7Qrume4B737vKPDJ8DLxhfEC8rDyX/P686j0i/WH9mP3Hfjh+MD5jfok+6D7MvzS/Ev9if26/Qr+bP6z/tf+DP+C/xoAgwCpAOQAcgH/AR8CBQJAAs8CGAP1AgIDlgMrBEsEYQTvBJYFwAW1BRYGrgbIBo4G0AaVBw8IDghcCFAJLQpvCqgKcwtnDOYMLg3VDbgOTw+jDyYQ2BBWEZgR/xGlEjMTdxOdE8YTzROMEw8TeBLaETMRfBCoD8MO4g0VDWEMygtAC58K5wlBCaoIxQdpBhAFNASOA5UCewHdAKcAIQAm/07+z/0i/Qr8BPtH+lf5/ffA9uX18vSv87fyYvIK8jbxe/Bf8DzwbO+K7m3ui+7l7d3sn+wQ7fbsI+zK63DsI+0x7UPtGe5B7+7vN/C38HbxEfKF8iHz7fOe9BH1YfWr9fr1SPZ+9qH2+PbA97v4dvkN+gP7YPyJ/TD+xP6t/6YAQgGOAcwB/gEcAlECnwLDAswCSwNSBAgF5QSrBDgF6QWWBacEowSgBf4FNAXuBFIG4wfnB2wHowj6CqQL/wmUCOMI7Ai5BgUEyQOvBdYGiwb8BiwJIgtIC/UK8wuODRYOyw0FDo8OHQ7jDG4MBw1mDSQNZg2FDh0PXQ53DZoN+w1dDVAMIQxwDLwL6wl4CBIIvAerBpEFTgV5BQwF1QNvAk8BagCO/5z+o/31/Nv8//yo/Mj7KvtG+2770/rG+Sj5A/mA+Fn3RfbV9Z71BvU89MrzmvMb80TyrvGf8ZvxQPHs8CjxvfEF8vnxMvLo8pvz6vMq9Lr0XvXF9Sj22/ah9xn4gfhM+Tz6rPq6+jD7L/zz/B/9Wv0p/hP/d/+g/y0ACAGoAQkCkgJKA88DEQRgBNUEOQV4BbwFDQZPBoYGwgbjBtIG0QYaB2wHbwdWB5EH/gcgCAIIJwiaCNkIwQjGCAgJBgmLCCsIQQhQCOcHfAeiB/YHxwdGBzYHlgexB2YHXgfSByMI5gebB8QHEggDCM8HAQiDCL4IjQhcCF8ISQjiB2gHHQfcBmIGvQUmBZwE8QMmA3gCCQKtAS0BmAAjANL/Z//G/ib+yf2c/Vj98/yj/HP8JfyU+/L6avri+Tv5qvht+Gf4V/hI+Hb40Pj/+Oz4z/jA+I/4LvjP94z3Q/fn9qf2kPZx9jb2GPY09lH2P/Yp9kX2c/Z/9oX2vfYV92P3tvcz+MT4Q/nC+Wf6FPuK+9n7O/yl/OH8+/w8/bn9P/66/k7/CQDGAG0BGgLXAowDMwTYBHQF6gVFBq8GHwdoB5kH8QdsCL0I1QgGCXcJ2wn6CREKZQrFCt8KzQrjCicLWgt6C78LKwyDDLAM1wz6DO0Mrgx3DFcMEwyVCyIL5QqvCk4K+wkBCjwKRwoUCu4J5QmqCR4JlAhbCE0IHQjNB5sHgwdBB7gGHgahBScFfQSiA7gCzAHNAL//x/4J/oD9Ev22/G/8MPzb+2j7/fqt+lb6y/kd+XX4uvev9nj1lfQ+9CD0+PMP9KT0VfWR9X31svVB9qT2uvYG98H3YPhv+ET4X/iW+HX4Evjl9/f32/dy9xX3//YJ9xv3aPcN+NX4ifk0+ur6kfsL/Gz83Pxd/dL9Kf5h/n3+if6G/mr+Of4i/k7+pP7x/kD/xP9+ADMBxgFgAiID7QOXBCUFqwUfBnIGpwbABrsGqQarBrwGuwarBsAGAAc3B1EHlAcuCOwIkAk3ChYL/QuSDNcMFw1cDWkNOg0gDTcNQg0cDQENHA02DRUN6AzvDAoN7gyvDJsMsgyiDFYMHAwbDBIMwgtWCwwL0ApWCpcJywgFCBYH4AWHBDUD5wGEABr/zP2i/IX7bvp3+bH4C/hw9+72mfZT9uT1TPXD9FH0oPN88jzxT/CR74/uZu3O7BLtou347Wjucu/K8LDxC/Jx8iXzzPMy9Kv0ePVW9v32ifcc+Hr4ffho+IH4oPiU+JX48/iH+QP6ifpp+4T8df08/iP/FwCkALIAtADyADABOwFbAc8BXgKuAr8CvAKgAl0CJQI8ApgCCQONA0IEEAW8BTAGjQbqBkEHgweXB2YHBgeuBnQGMQbfBc8FNgbGBhMHKwdjB74H9wcRCGUIDQnDCVAKyAotC1ULOwsoC0ALWgtjC44L6QsoDCAMFgxHDIYMowzaDF4N2w3dDYcNTw0rDbMM9wuSC70L8Qu5C08LFQvZCiYKAgnlBwwHLwYLBcYDqwKzAZwAWP8p/kX9f/yP+376kPnC+MP3ivaF9e30ZfSK857yAfJp8Trwm+5T7Z/sA+xc61HrP+yC7WjuI+8k8BfxbfFl8ajxOPKR8rfyLfPr81r0avS39Gv16PXv9R720vZs92T3Tff19xz5BvrL+hf8yv0H/3n/rP/z//v/n/9f/5P/6/8bAGEA6wBaAWUBaAHMAVACjgK4AjwD9ANuBLsESQURBqYG+QZUB6oHigfqBkEGyAVABZoEQwR5BOkERwW5BV4G+AZZB7MHKwiICKYIxAgNCTQJAgnJCN0ICQn/CPgIRwmzCdYJ1QkLClMKTQouCncKFQuAC6YL9QtqDHkM+QtoCw4LoAr9CZEJmgmyCXgJJgkKCd0IPAhRB4sG8QU3BUUETQNsApIBrAC2/7P+vv3m/Az8DfsN+j35dvhy92X2uPU/9Wn0QPNf8s3xz/BE7xTu0e3s7entWu7E73LxdfII89LzePRD9KLznPMe9Eb0HvSU9KX1Q/Ym9kX2CPeP91n3Q/f698z49vgU+Qv6dPtV/MX8lP20/kT/D//A/rb+l/4//hf+Vv6x/gP/if9GANkAHgF1ARMCoQLWAvcCZQMCBH0E2QRWBfIFbganBqsGfwYdBpIFAwWNBD4EIAQ9BJYEKgXtBbUGWQflB4IIIQl2CW4JUwlmCYMJaAkwCS8JdwnOCRYKZgq/CgMLOwuRC/ULKAw+DKcMdg0bDjQOIw5hDpoOIg4XDUMM6QuJC+QKfgqyCgoL+QqeClQK7wkLCdMHzAYWBlgFZwR9A70C9QHqAKn/aP5S/V38TvsB+qD4Z/dC9gH12PM48xXz1fI48pLx9/Dj7y7urewj7EzsnexY7fDu2/AZ8ovy1fIp8yfz9PIy8+/zjvTm9HP1N/aI9kz2Z/ZK9zT4gPi1+IL5efrW+tr6Xvts/Fr9/v3I/rT/OgBIAF0AmwCZAEEABwAWAAUAr/+L/+n/fgAMAdEB7QLmA1MEgQTeBD0FQwUvBX4FDAY6BtsFVwXrBGgEvAM9AzIDeQPSAzAEkQTjBCwFlgUrBsEGSQffB28Imwg7CKEHKwfSBoIGdQbhBpkHRwjZCF0JsgnFCd4JOwqsCvUKUgsMDMQM4QyGDFkMYAwBDCkLkQqSCp8KRwr2CSMKcQpQCuUJpQlpCbMIiwdxBpMFrQSlA7gCGgKzAU0BuADd/9T+yf2l/Bz7Qvmb93H2c/Vl9IzzKfP18o3y7vEl8Qjwve7a7abtuu3v7dPul/A/8uLy7fIt81HzovKi8XTx/fE08hDyk/LP85j0nPQb9dn2yPjI+VL6Uvtt/Kv8GfyZ+4r7w/tO/Dv9FP58/t7+lf8GAI3/3P4k/zkA+AAtAb8B6QLDA9kD3ANGBI8EWgQ0BIIErwQ6BLUD3wNtBKgEqAQFBbMFDgbdBXcFFgWuBGEEdwThBFAFwAVoBigHjwd4BzkHGgcMB/YG4QbdBgIHhgdzCGEJ5QkyCrsKSAsXCxUKKwkKCVUJcwmfCWUKkgteDHsMSAwPDLYLPwv2CvQK/AruCvEKCgvwCn0K7gl9CQwJYQiGB6MGxQXqBCkEjwMKA4MC8wFUAYkAff8k/oz85fpw+S745Paa9c70sfSY9M3zlPKz8RTx7+9H7iztN+3N7Unu9e4x8HvxJvJV8oPyjfIZ8oLxZPGT8W/xHvFi8UzyGvOU82308PVV9/j3Svjd+FD5G/nA+CP5F/q7+v76mfuS/AH9lPwX/DH8iPy4/Bv9B/4V/97/owCXATMCIwILAokCDgPHAhsCDQKKApwCJQIMAqQCPANvA7IDMwRRBMADNgM2AzIDqQI8AsMC3QODBIwEsQQ/BboFuwV2BUEFPAVvBcgFDAYzBqsGtwfUCE8JPgk1CUAJ7ghICPEHMgi8CGEJSQpPC+cL7AvVC94LuQtQCx8LaAu9C7gLlQuVC2gLwwoKCrwJkwkBCSEIgwcyB6sGtwW7BBoEtgMvA1kCTwFDAEP/HP6s/C37/fkd+TL4Lfdg9tD1BvXS853ypfGO8C7vKu4c7rPuWe8m8G3xxfJu82PzHfOd8p3xcvDK76DvZu9C7/LvbvG58m/zUPTI9Qn3W/dR99X3u/hI+Yb5Dfrc+mX7hvuV+5b7Vvsa+1j73/sx/Jn8yf13/5IA/gDFATEDEgScA8YCxAIjA7ACkwEKAXAB1AGYATEBLQFpAZoBygEJAkoCrAJUA+ADvAMYA8IC6QLZAkcC6wFQAucC7wKiAq4CEgNZA48DKAQfBQQGsAZYB+gHEQjYB5MHXwcoBxUHZQfwB2wI+QjWCbMKAgvhCvQKVAt2CzoLKwuKC+QL5wvmCxEMBQyBC/AKrwpeCo4JlQgQCOgHhQfCBgwGpwVMBZYEdgM1AiABNwAk/6r9Fvzp+hr6LPkJ+CL3mPbt9cr0cfMn8snwY++J7pruNO/m79vwMvJT847z//Iq8i7xAPAL773u0+7n7kPvSvBw8cvxmfH58S3zOPSV9BH1X/bj96T4v/j3+HH5tPmk+Zb5nfmI+XT5t/lB+s76kvv9/NH+SAAsAesBiAJsApYB7wD9ACUB3wDHAIABXgJHAmYB2gDtAOQAeQBcAP0A3gF7AvUCdwO3A5QDbANrAykDdALRAbcB2AHEAbkBLQIEA9cDlgRfBQ4GhwYBB4sHuQdaB/YGAgccB84GjQYHB/MHjAjkCJ0Jkgr4CtEK6QppC5cLOwscC5sLDAzcC3oLcAtzCwILTwrUCZQJVAkcCf0IxAhKCLUHGQc7BhEF+QMeAzcCDwHi/83+lv0k/M/60fkB+U342fd897j2bvXw8z7yGfD27eTsKe3z7dPuQfAl8jLzkvId8fDv3O5q7VTsm+zM7azuDO+V7znwU/AK8D3wF/EB8tnyCPRd9R/2YPbu9tv3XPhd+Lv4nvn4+VH5wPg0+RL6lPpa+1X95v+PARUCcALqArUClAGZAKoAXQHVAQYCZQLnAgwDqwIZAqkBdwGMAeEBPgKCAtwCfAMXBD0ECgQEBD8ENQSfA/kCwgLIAqACdAK8AnUDMATSBJ4FjAY3B3kHlweuB5AHOQf6Bv4GKAeDB0AINwn3CXUKEQvDCwIMtAt/C8oLKAwsDCEMcgzjDAwNCg0WDQMNoQxADCYM+gtdC7EKgwqSCiUKKAk2CIcHsgZxBQ4E5QLqAdsAl/8w/s38iftk+nP56vi5+Dv41vbd9AvzSfH57pHsq+vc7Lfuvu848PvwfPGJ8FXuV+xh6yTrXOsj7Czt1O0W7mXuo+5d7vvtfe7y71fxIfLS8rPzSvR09NL0qvVs9tz2jPeW+AT5bPjs95j42fmq+nL7LP1d/5EAlQCKAN8AzgAtABAADgEuAnUCUwKdAv4ClQKPAf0ASgHbAR8COQJqAqICxALjAgsDMwN/Aw4EhgRTBHQDkQIdAuMBrgHNAZkCzAPSBHAFxAXiBd0F8wVBBoYGlQa0BiYHlQeeB5QHFwgcCQkKuQp8CzkMaQwKDLwLwAutC3sL0gvlDOQNIg4QDkwOgQ4MDjENvwzHDK8MPwzSC30L5wr+CSEJeAjFB+kGHwZ7BaoEZQPRAUIA3/6S/UD85/qr+Zn4c/fk9QP0UPIc8ULwpO9w77bvHPBM8ELw3e/S7kztD+xm67fqqekD6YXpj+oN6y/rAuyW7dXuL+8472DvT+/T7nHune4r7wPwaPEm82D0t/TP9B71PPUC9VT11vbO+EH6cPvq/P/9qP2G/DX81/wf/dH8Tv0e/74A6gB1ALwAeAGUAS8BSgHwAToC5QGFAUcBxQAiAB0AzwB7Ac0BQwISA5QDYwMLAyMDbQN9A4EDxQMIBPQD0gMaBKUEBAVIBdEFjAYHBycHRAecBy0I9wjnCa8KIQuBCwEMPAzYC1ILcwscDH4MdwzDDLcNrQ4jD38PNBDiEOcQWxC6DxEPHQ4IDVEMGQwADLsLWQvsClIKcAlnCGYHegaKBXIEHAOTAev/Nf6d/Fz7Xvoq+Wj3WvVk82rxSO+j7Ybt9u6+8OHxcfKa8s/xlu+K7N7pOuiX58Pne+hM6fvpt+qH6/zr9usv7EntrO4279HuZe5k7lruE+4v7invnfDs8fbyr/PN82/zc/Nm9Lr1xfb39+/58fuM/LX73PrQ+uX6m/qv+tP7Zv1u/vT+g/8AAAgA+v92AD0BiQFEAf0AvgAHAO/+UP6g/oH/lADoAU4DIgQrBOsDwwNoA70CZgLbApMDvQNwA1oDowPyAz8E5QTrBfUG2QeoCDgJWQleCcYJdgrnChALYQvcCwAMwgu8CzIMuAwiDdoNAQ/vDzkQYxDwEHgRWhHVEJMQfhD8Dw0PSg7rDZYNLQ34DPUMrwz0CyALbwqPCTcIswZ6BYEEVQO7Afz/fv5D/ev7M/pX+L72dPUw9PTyJvIG8lzy0fIr8x3zTPLP8CnvmO3i6y3qR+md6Xrq7OoI64LrZuwH7RftD+1j7fTtYO597mHuSe5/7hnvwu808LTwp/HF8lDzPvNk8zH0FPWa9VT23PeV+Xj6o/oA+437afuR+j36F/tC/Ob8dP2U/sL/DgCm/3L/rv/S/8j/BACUAOAApgBQADMAMgBAALEAqQHEApMDCgQ6BAoEhwMSA/oCJgNqA9YDaQTZBO4E6wQtBbEFTwYjB0YIYQkECkkKkArQCr8KjAq4CkQLsAvXCxkMmgwGDUwN1w3IDqcPLBCzEHER4hGcERARzxCjEAoQPA/SDsYOlA43DiAOSg4qDpwNEA2xDA0M1QpiCRUIzAYvBUwDhQEwAFn/sv7U/aT8cPto+jH5bPeF9Vv0L/Rd9Dj0sPMR823yg/EW8F3uDO2x7AftNu3m7JnswOz97MjsYex47Cft2u0u7kPuQe4b7uXt9e117jDv++/x8A7y4fIW8/Ly8fIo83Lz9vP19DD2M/cI+P740/n++cX5Evr++qf7rfvX+6n8df2G/Ur9hP0R/m/+sv4r/5b/lv+C/9j/RQBCACsAxADjAZcCnAKkAg8DYAMyA9wC2AIVA1EDiwPXAyMEeAQJBc8FfQb6BogHOQi7COcICQlbCaoJ1gksCsoKQAs/CzkLrwtQDIUMjQwrDV4OSw+ND7kPShDdEOsQrRCjEMIQpBBGEO4Pnw8rD7AOfA6MDokOVg4iDvgNlg3FDJsLTQr2CJoHKwaZBP8CpwGtANj/9f4o/p39IP1V/Cj7zvl1+DP3GfYh9TH0VvO38jXyc/Fr8JTvOu8R78Tuge6Q7sDur+5d7hXu7+3R7cTt3e397QPuDe5D7n3uhO6U7h7vFfDu8Gzx7PGr8kHzRfMD8xnzlfMJ9GX0CfUB9tj2W/fj96P4Tfmy+Sj67vqu+wL8FfxC/H38kfyi/Pn8hf0I/oT+Ef9//5L/gP+5/0UAzQAwAawBWALmAgYD1AKpArIC5gIxA5ADCASVBCcFrQUiBpQGIgfXB5gIQQm9CQ4KQgptCqQK8ApJC7MLPQzhDGkNsg3bDSwOsw5BD8UPXxAWEbYREBI7ElISShIfEgASAhLpEYER/xC4EJsQThDQD4YPlA+aDy0PUg5VDU0MEguLCd4HTgYHBfoD9wLwAQYBWgDU/zz/ev6Y/Z78iPtU+vv4ePft9Zj0kfOr8sLx/PCJ8FHwFPDH74zvbe9O7yHv8O6/7nfuEO6h7UTtAO3T7L/szuwL7XntA+567sruHe+r72fw/PBI8Yjx+fFq8ojybfKA8uvyhvM19An16fWe9jj3/ffW+Fb5g/n1+fH64Psp/BH8RPzM/Cn9Mv1K/b79d/43/9X/NwB1ANoAjgFFAqUC2gJIA+IDMgQRBN8D8QM6BJkEEAWXBQ4GewYJB6kHFghOCK0IZAkjCpUK0gojC40L5AspDHEMsgznDDMNqQ0QDjIOSA6yDmUP9w9CEI0QDhGREcwRuRGDEUcRDhHZEJIQHxCdD08PPQ8cD7QONA7mDbgNUg2LDIwLiQqICWsIJAfHBYIEegOmAuIBEQE8AHn/yv4V/jf9GPzT+qP5m/iE9yv2wfSs8/vyX/Kn8QHxqPCP8ILwWfAG8JPvLu/37r3uNu6A7RHtDe0I7bXsYeyB7ADtde3I7Tnu2e5s79DvIPBn8IzwlfC48BDxcPGx8fTxb/Id89DzdvQa9cf1g/ZK9wP4ifjk+Fn5EPrO+kD7efvZ+378F/1j/Zb9Df7O/o//JwC5AGsBMgLrAo0DHQSXBPQEPQV+BbQF2wUHBlsG4AZ9BxIImggoCcUJZArrCk8LowsHDH0M5AwkDVcNqA0TDmsOnQ7FDvgOLg9dD5EP1A8eEHMQ4xBoEdYRExI6EmgShxJsEhoSvBFrERsRuRBCEMgPYg8hD/MOtg5gDgkOvA1ODZsMsAu0CrUJqgibB5MGiQV4BHgDlwK1AbEApf+9/vv9Lf01/CP7Dfr6+OH3tPZx9T70UvOq8gLyOfGG8B7w1u9s7+/unO5t7iru0O2G7ULt2exk7DPsT+xp7GPshOz67IPtz+3s7Rruae627u/uHO9H74Tv8++O8CPxo/FB8iHzC/S49Df1yPV09g/3j/cU+K/4RvnW+Xr6MfvY+2j8Af22/Wr+//5+/wUApABOAfMBiAINA5gDNATNBEkFqwUSBowGDAd/B+kHVQjUCHAJHAq1CicLjAsGDIgM6wwpDXIN6A15DgAPcA/SDzUQnhAMEWsRqBHTERoSihL1EjATUROWEw4UhRTBFMwU1xTxFPAUqBQqFK4TWRMWE8ASURLhEYQRMhHUEFsQyA8qD4sO3A39DOQLrQqCCXEIWwcqBvQE4gP0AvwB3QC0/6v+xf3Z/Mz7sPqb+YT4VvcR9s30oPOS8qfx4PAy8JXvDe+k7k7u9e2R7S7t3Oya7FzsFezD633rXOtY61HrQ+te68HrQuyf7NnsKu2o7SDua+6w7inv0+998BHxofE/8uXyiPMh9Kz0L/XG9X32MvfD90P45vit+Wv6CPuq+3L8Tf0Q/q3+Of/G/10AAAGcAScCrwJRA/8DhATLBAkFewUUBp0GCgeNB0AIAAmdCRYKkAojC8ELUQzEDB8Ncw3KDSIOcQ7BDikPsg9XEAIRnhEeEoYS7BJYE7UT7hMWFFgUtxQCFRMVARUCFSAVNxUuFRQVAxX7FN0UlBQlFKsTPhPfEn0SBBJ1EdsQOxCHD7AOtg2wDLYLzAriCeUI0Ae0Bp4FhARVAxMC1wC7/7r+vf2p/H37Tfox+R749Paq9Wv0Y/OJ8qbxpfCv7/Xube7t7V3tzexb7BDs0utv69zqT+oN6grq9+m66Zzp4ule6qjqtOrZ6knrzesn7GjsxexF7crtRe7H7lfv9u+s8HXxPPLv8pvzT/T69I71I/bY9pb3OvjW+Jf5bfoW+5P7L/wO/e/9kf4Z/9P/twB/AQ4ClAI2A+EDdATlBEAFlgX9BYMGEgeUBxoIxQiQCUkK3gprCwUMnAwgDZgNDQ5vDrcOAQ9qD94PORCLEAMRpRE2EocSrhLpEkgTnBO/E8oT/BNfFLcUyBSlFJYUtRTPFLUUexRVFEMUFRSuEyMTnRIqEsURYhH2EHcQ5Q9JD6AO1w3pDOsLAQsqCkMJLAjwBrQFigReAxkC0ACx/8X+3/3P/J/7dfpf+Ub4HPfx9dr02fPf8uLx3PDY7+/uMu6Z7Qftdezw637rEeuc6iTqtOlY6R/pDukP6f7o6ugA6Urpj+mr6cfpI+qw6iLrYeuq6zLs4uyK7Sbu1+6t75zwifFb8grzqPNZ9Bz1w/U89rj2b/dQ+Bz5w/l4+lb7RPwf/e79w/6Y/2IAKwHuAZUCFgOUAzYE6wSBBe4FYwYAB6wHOwiwCDYJ7AnCCowLMAy7DFEN+g2WDgMPTg+sDzEQthAREUwRmxEaEqoSHhN0E84TQRS0FAMVKRVDFXAVpRXIFdMV0xXYFdkVzxW6FZwVdBU+FQIVxRR3FAkUgxMDE5QSJBKcEf8QXxDDDxYPQg5PDVwMeQuSCpEJeAhbB0EGHQXnA6sCeQFRACj//f3V/Kv7d/o7+QX43fa89aD0ivOA8n/xhfCO753uue3r7Djslev16lvqzulT6eTof+go6ODnqeeL54vnmeee56fn1Oci6Gvonujj6Fjp4ulT6rbqO+vp65bsNO3k7bnule9Z8BXx4/G28nLzHvTZ9KX1a/Yo9/L3zPin+Xn6TPsn/AT93v2//qL/dAA0AfQBugJvAwoEpARZBRwGzwZrBw0Iwgh6CScKzgp/Cz4MAA22DVYO3Q5fD+kPdhDzEGAR0hFZEuMSVBOqEwEUbRTlFEsVlBXQFRYWYxaZFqYWnRakFsUW4BbZFrwWqRajFowWShbrFZUVVBUSFbUUPBS7Ez8TuxIdEmURqhD8D08PjQ6tDbwMywvUCswJtAicB48GgAVfBC4D/AHNAJf/VP4W/ev7zfqo+Xv4U/c89i71HvQQ8w/yH/E28E/vZu5+7abs6etD66Dq/Olu6Qvpv+ho6Ajow+et56nnmOeC54bnsefs5yDoR+h76NToT+nL6S7qjuoe6+Xrp+w87cbti+6F72rwEPGr8XvycvNR9AD1p/Vy9lv3QvgZ+eX5ufqh+5v8jf1f/hv/5//QALcBeQIhA9kDrAR/BTYG2waNB1UIIwngCYkKLQvYC4oMNw3YDXEOCA+dDykQqhAhEZQRBxJ9EvMSZBPGExsUaRS1FP0UPhVzFZ4VxhXxFRsWMBYqFhoWFRYZFggW0xWRFVwVLRXlFHgUBRSoE1wTAROHEv8ReRHzEFsQqA/kDiIOaQ2oDM8L3QrkCfEIAAgFB/oF7gTsA+wC3wG8AI//Zv5I/S78Dvvq+c34w/fF9sP1sfSg86jyzfH48BPwKO9T7pvt6uwt7HDrz+pU6uvphOkd6cfoiehg6DzoGej/5/3nF+g/6GToiujA6A3paOnH6THqruo7687ra+wS7bftVe767rrvj/Bd8Rvy4fLB86n0e/U49vv21fe6+Jv5dvpR+zD8EP30/dL+of9qAEUBMgIVA9sDkwRXBSkG7wagB1AIFwnqCasKUAvlC30MGg2yDUMO1A5tDwkQmBAUEYMR7RFXEr4SJhOLE+UTKhRfFJIUwhTmFP4UGBU/FWoVgxV/FWcVSxUyFRUV6BSmFF0UHBTeE4gTCxN9EgQSqBFFEbwQGRCEDwEPaA6dDbQM4QswC3YKkAmOCJoHuwbOBbwEnAOUAqMBqgCX/3n+Zv1b/Ej7KPoH+fL37Pbu9fD09PMA8xfyN/Fa8H7vrO7p7TPtguzR6yjrlOoY6qPpKum36GPoMegI6Nfnruei56zntOe4587nBOhK6I/o3ehD6brpMOqo6jPr1uuB7Czt2+2T7k3vDvDa8Knxb/Iz8w/0AfXq9bT2evdd+FT5OvoL++r76Pzn/cf+lP9qAE0BIgLhAqIDdwRQBREGvQZsBzAI+wi0CVgKAAu9C3wMHA2WDQwOmw46D8QPKxCNEAYRiRHzETYScRLEEigTdxOiE8AT7hMlFEgUSRREFFEUZBRdFDcUDRTtE8YTghMrE94SohJgEgQSmREwEcwQXBDWD0UPvQ5ADrgNFg1eDKQL8Ao1CmQJhwi0B+4GIQY7BUYEWQN4ApQBowCy/8z+6v34/PX78fr5+Qb5CvgL9xz2R/V59J3ztvLX8RHxXvCs7/XuRe6p7R3tjezw61br2ep86ijqz+l96UXpIukB6d7oyejR6O3oEuk/6Xfptun46T/qj+rs6ljr2Oto7Prsie0k7tHugu8n8NLwnPGA8ljzFvTS9KP1ffZJ9wv42fi6+aX6jftx/E/9Jf76/tv/wgCiAXMCRQMgBPgEtwVhBg4HzQeRCEQJ5wmMCjwL5wt3DPQMeg0YDrkOQQ+2Dy0QqBAREVsRlBHVESESZRKUErISxhLWEuIS6hLuEvAS8xLzEuoS0BKpEnoSPhL6EbURcxErEc8QZRD7D5MPGg+NDgAOgg0FDXYM2QtBC7AKEwphCawIBAhjB7YG8gUiBVIEgAOkArsBzwDs/xX/Qv5o/YT8pfvS+gX6M/lc+In3vvb29S/1bPSs8+3yLPJz8cvwMPCV7/fuYu7l7XbtAO2D7Brs1uuj62jrJuv66vDq8urk6s/qzers6hrrQ+to65vr4us77Jns9exW7c3tX+7+7pbvLPDS8IjxP/Lu8qDzXPQX9cf1evY89wT4wfh8+Uz6LvsI/ND8n/2G/nH/RAADAckBngJvAywE3gSVBVIGCAewB1AI8QiSCS8KxgpXC+QLaAzgDFMNxQ00DpkO9Q5SD64P+g8xEF0QiBCpELYQtxC5EL4QuBCkEI8QgRBwEFYQNRATEPAPwQ+EDzcP3A51Dg0OrA1NDegMfQwQDKcLPAvKClAK0glWCdwIYQjbB0gHrQYMBmsFyQQnBIED1QInAn0B0wAeAGD/qP4C/mL9tvz++0v7pPr/+VP5ovjz90f3nvb+9WP1xfQj9IrzBvOP8hXykvEU8ajwTfDy75LvOu/37sPuju5S7h3u/O3q7d3t1u3f7e/t+e0C7iHuVu6K7rfu9e5X78jvJfB28N7wZPHr8Wny8PKQ8zj00PRi9QH2q/ZS9/T3n/hX+RX60fqH+zn86fyk/W7+OP/z/6UAaAE0Au0CigMpBOEEnwVDBtMGawcPCKYIHwmQCRIKngoXC3YL0wtEDLwMGg1aDZsN8A1CDm0OdQ6JDrkO4Q7fDsMOuA7DDsEOnA5rDksOOg4dDuUNog1kDS0N8wypDE4M7guVC0AL3wpuCvoJkAkqCb4ITQjdB24H+AZ8BgUGkwUbBZwEGgSbAxsDlQIIAnwB8gBsAOr/Yv/U/kP+vv1B/b/8M/yr+zb7yPpM+sP5QPnK+FX42/di9/L2g/YR9qL1PPXW9Gv0DfTK85PzTfP68rzynvJ/8kPyAPLf8d7x0fGj8Xvxf/Gc8aTxlvGc8c3xCfIs8kHybvK68gvzT/OV8+vzS/So9Ab1cPXk9Vb2xPY297P3Nvi2+C75pvks+sX6Xvvl+2D87vyZ/UT+0v5P/9v/fwAjAa8BKwKsAjoDywNVBNMESQXABT8GuwYpB4sH7QdUCLYIDAlcCa0J+gk9Cn0KvAr0CiELSgt0C5YLqAuwC7ULtguvC6ILlguMC34LaQtJCxwL6grACpoKZgobCtAJmAlkCRgJtQhYCA8IyAdyBxYHxAZ0BhcGswVTBfEEiAQhBMYDbQMEA48CJgLOAXEBAwGRAC4A1/94/wv/mf4v/s/9cP0O/ab8Qvzq+5n7QPvf+oX6PPr1+aD5Rfn5+Lz4efgn+NP3lPdk9zL39/bC9pz2gPZj9j32F/b59er14vXX9cf1t/Wx9bL1tfW29bz1zvXt9RP2NvZT9nf2qPba9gH3KPdi96/39/cr+F/4qPgA+VD5l/nl+T/6nPr4+lj7uvsX/HX83vxO/bT9D/5y/t7+RP+d//f/XQDDABwBdgHbAUAClQLlAkQDqwMDBEkEjgTeBC8FeAW4BfQFLQZkBpUGuQbTBvAGGQdBB18HeQeWB60HrwelB6QHqAeiB5AHggd1B14HOwcZB/oGzQaVBmgGTAYoBu4FrAV2BUcFEgXaBKYEcgQ3BPwDwwOBAzQD8ALCApICRgLtAacBfQFQAQwBvwB9AEUADQDO/4j/Pf/1/rn+hP5I/gD+vv2L/V39Jv3m/Kr8evxP/B/86Puz+4n7Zfs7+wb70vqw+pn6ffpZ+j76Nvov+hn6+/nm+d752/nT+cb5uPms+aj5qvmq+aP5nvmn+b350fnf+e35/vkS+iv6TPpu+oP6jvqo+tr6Evs3+1H7e/u5+/H7Ffw3/Gz8rvzk/A79Pf15/bf98P0r/mv+pv7a/hH/Uf+Q/8L/8f8sAG8AqwDbAA4BSgGFAbUB4AEWAlQCigKyAtcCBgM4A1wDcQODA5sDtAPKA+ID/gMOBA4EDwQjBDcELwQVBBAEJgQzBCEEDQQOBA4E8QPJA78DxwO3A4sDbQNuA2oDRAMTA/0C+ALoAsgCrAKiAqAClwKBAmACPgIlAhIC9AHHAaABiAFwAUkBHwEEAewAxACcAI4AjwB3AEIAFgAGAPb/yv+W/3r/cf9f/z//H/8F/+7+2P7C/qn+jP53/nH+Z/5P/jr+Pv5N/kX+J/4U/hj+Fv77/dr90f3Z/d/92v3T/cv9wf28/b/9wf2+/cD9z/3e/d791f3R/dP90/3a/fH9Df4Z/hr+I/41/jz+NP40/kr+a/6C/o/+nP6s/sH+4/4J/xz/Gf8a/zn/Y/96/3z/hv+q/9P/5//r//r/HwBGAFUAUQBeAIsAtQC2AKAApgDVAAABAQHwAPYADAEQAfwA+AAZAT8BQQEkARYBKAFAAUEBOAFHAXEBlAGfAaQBtgHBAawBhwF3AX0BdgFTATQBMQFAAUoBUAFUAUwBOAEwATsBRAE8ATgBTAFfAUgBFwH5APoA9wDdAMwA2gDrAN0AuwCuALkAuACaAHoAeQCNAJAAcwBPADoAKQAKAOb/0v/Q/8v/wP+8/7//tf+e/5H/lv+T/3v/Zf9l/2T/Sv8n/x//Lv82/zD/M/9E/1H/UP9N/0//Tv9N/1b/Z/9t/2L/Uf9C/zP/LP85/03/TP81/yr/Pv9Z/17/Uf9Q/2L/eP+F/43/mv+m/6j/ov+n/8D/3f/q/+3/+/8KAAQA6v/o/w0ALgAoAB4APgBuAHEASwA+AGMAhgCDAHUAggCiALgAwgDGAL4AsAC6AOUABQH+AO4ABAE0AUgBMQEaASgBTAFlAWQBUgFDAUUBUwFdAVsBWAFiAXYBgwGCAXgBcwF3AX0BeAFjAU4BSAFJAToBHwEWAScBOwE7AS8BKwEzAT0BRAFFATcBIAETARoBJAEcAQYB9ADyAPcA9QDlANQA2QDxAPkA4gDPAOEA9wDWAJEAdwCSAJsAcwBaAHcAiABYACgARwCMAJUAZwBfAJEAqgB+AE4AVwB8AJEAmQCmAK0AoACTAI8AhgB1AHoAngC/AMkA0ADeANsAwgC5ANMA6gDjAOMABQEgAQUB2ADdAAsBJgEkATQBXQFvAUsBHQEVAS4BQwFMAV4BhQGxAcQBtAGeAaoBzwHiAdYB2gEMAjsCJALiAcYB4wEFAg4CIAJGAlgCQgItAj0CTAIvAgMC/gETAhEC+gH8ARcCFgLwAeQBEgJGAkQCHwIWAjACQAIwAhoCFgIfAikCMgIzAiECCAIDAhACFAIMAhYCPgJbAkoCIgIQAhsCJAIaAgsC/gHwAekB7AHmAccBqQG4AecB9wHUAbEBvwHeAdEBmgFxAXoBnAGtAZwBdwFaAVUBYQFnAWIBYwF+AaUBvwHBAbQBoAGKAXgBcQFuAWcBYAFhAWQBXgFRAUYBQwFJAVYBYgFkAV0BWAFXAUwBMwEkAS8BQgFMAVkBfAGmAboBwAHUAfEB8wHVAcABzgHlAeUB2wHkAfQB6wHMAbwBxAG/AZMBYQFhAZcBzwHcAcgBvgHJAdYB4QEFAlQCrwLnAvkC9wLmAroCfwJdAmUChAKeAqsCrAKjApYCkwKdAqcCqAKtAr0CygLIArwCrgKWAnACTAJGAmQClQK8AsQCtwK4AtoCAgMGA+wC4gL7AhQDBwPgAsQCuwK3ArACrgK2AskC4gL0AuYCvwKnArQC0QLZAswCvwK1AqECiwKEAooCigKFAooCkwKJAmgCSQJGAloCagJbAjcCJQJDAnMCfAJfAlsCiQKqAoYCRAIwAkYCQAIMAtkBygHPAd4B+wEMAuEBjwFrAZUBxwHEAbQB1gEQAhUC4QG3AboBygHQAdwB+wEZAiACFwIGAu8B2wHiAQMCGgIOAvQB6gHsAeQB2AHbAe4B/wENAicCTgJoAmkCZAJrAm8CXwJKAlACcgKJAocChwKfArgCsQKWApECqgLBAr8CswKvAqwCoQKTAosChgKGApICqgK6ArYCrgK9AuICAQMFA/0CAAMOAxcDDwP/Av4CDwMjAyoDIwMbAxsDIwMrAyYDDgPwAuMC7wL3At8CrQKJAoQCiwKHAnsCeQKGApcCowKiApICggKIAqMCtQKoAo8ChgKRApgCjAKBAo4CrQK+Aq8CjQJ3AnoCiQKMAn0CcgJ2AoACfAJrAl4CWwJUAjkCEQLyAeYB6gHsAeMB1AHNAdgB8QEIAhICFQIlAkYCZAJrAl4CUAJMAkYCMQITAgACAQIQAhsCHAIZAhsCIwIuAjMCMgIzAjgCOwI0AiYCIAIrAkMCVQJaAmACdQKTAqcCqwKxAscC3gLnAuMC4gLlAuIC2ALUAtsC5QLtAvQC/gIDAwQDBgMPAx0DKQMxAzUDLwMjAxwDIQMqAzADMQMvAywDLgM7A0wDVgNZA2EDcQN7A3QDZwNlA2oDZgNWA0oDRQM/AzYDNAM0AykDFgMNAxEDFAMKA/oC9QL2AvIC6wLpAuwC5wLYAs8C1gLgAuAC2QLWAtwC3ALQAsICugK0AqsCogKfAqACmgKLAn0CeQJ9An8CfAJ3AnMCcwJwAmUCUwJHAkgCTAJIAj4CPAJEAksCTQJMAkwCSQJCAjsCPAI9AjUCLAItAjcCOQItAh0CFgIZAhoCFwIYAiICMAI2AjMCMwI5AkICRQJGAkoCTgJNAkcCRgJLAk8CTwJRAlkCYQJkAmQCZAJjAmECYgJlAmYCZQJoAm4CcgJvAmsCbwJ6AoQCiwKSApoCnwKjAqcCqgKrAqoCqgKsArECtwK7Ar0CuwK7Ar8CwQLAAr4CwALDAsACuAK1ArcCtwKyAq0CrgKwAqwCpAKdApwCmwKVAo0CiAKFAoQCgwKCAn8CfAJ7An0CfgJ5AnACbAJuAm4CZQJTAkQCPAI4AjICKgIgAhcCEQINAggC/wH2AfIB9gH6AfYB7QHnAeQB4AHZAdIB0QHTAdABxgG9AboBuwG6AbUBrwGqAaQBmwGSAY0BjAGLAYQBfAF3AXkBfQF9AXgBdQF0AXIBbgFrAW0BbAFlAVsBWQFdAV8BXQFeAWMBaAFlAWEBYQFkAWYBZwFqAXABcgFwAWwBagFnAWIBXgFeAV8BXwFgAWEBYwFiAV4BWgFYAVgBWwFdAV4BYAFjAWQBXwFYAVQBVgFZAVsBXQFiAWYBZgFkAWABXwFfAV8BXQFaAVoBXwFjAWMBYAFfAWEBYgFeAVgBVAFSAVEBUwFWAVYBUwFSAVIBUAFKAUQBRQFIAUcBQgE8ATgBNQE0ATYBOQE4ATIBLQEtAS8BLQEpASYBJQEiAR4BGgEYARUBEAELAQkBCAEHAQMB/wD7APcA9QD0APUA8wDxAPAA8gDxAO0A6ADmAOcA5gDlAOQA4gDdANcA1QDXANUAzwDJAMkAzQDNAMoAygDMAMoAwQC4ALMAsQCtAKgApACiAKEAngCcAJsAmwCbAJoAmwCdAKEAoQCfAJ4AnwChAJ8AnQCgAKcAqgCmAKEAoQClAKQAngCZAJ0AowCiAJ0AmwCbAJsAmQCYAJwAoACgAJ4AoACoALEAtQC2ALYAuAC5ALcAtgC4AL0AwgDFAMgAygDLAMsAzADQANQA2gDgAOYA7ADuAO0A6wDqAOwA8QD3APgA9ADxAPIA9ADzAPAA8gD2APYA8gDwAPMA9ADvAOwA8wD8AP0A+AD1APYA9gDxAO4A8ADzAPIA8QDzAPUA8ADpAOYA5wDnAOUA5ADhANwA1gDXANsA1wDMAMkAzwDVANIA0ADWANwA1gDJAMcA0ADXANMAzQDNAM8AzQDMANAA1ADRAMwAygDJAMYAwQC/AMAAvwC9ALoAuAC1AK0AogCcAJwAngCaAJEAiwCMAIwAgwB2AHAAbgBpAF8AWQBbAGAAZABnAGcAYwBfAGIAZwBiAFgAVwBcAFsAVABQAFAATABDAEEARQBFAD8APwBHAEcAOAAnACQAKQAqACkALQAwAC4AJwAgABgADgAKAA8AFAARAAwACgALAAoABAD6/+//8P/8//7/7P/X/9n/6f/p/9f/0v/i/+7/6f/h/+D/3v/Z/9//8v/8//T/6v/n/97/zf/I/9n/6//q/97/1f/S/9T/3P/e/8j/qv+q/8f/2P/I/7X/u//J/8n/w//D/8L/v//K/9z/1v+6/7P/zP/X/7r/o/+4/9j/0/+3/67/tP+t/6L/qf+2/63/mv+b/6j/pv+Y/5b/nP+X/47/jv+O/4P/fP+O/6L/mP95/2v/cf9u/2D/XP9m/2r/Zv9m/2z/av9k/2D/Wv9I/zX/Mf8y/yb/EP8A//f+7P7b/sb+tP6w/sL+zf6u/n/+hP66/s/+mf5g/nP+sv7Q/sn+yP7U/tX+0/7g/uz+6/78/in/Of8O/+n+//4J/7b+Nf7e/Z39Qv0T/WX93P3X/XD9Iv3K/Bz8/Pvv/egBFwZXCWUMow9MEXkPCwvaBpQEBATiBGcH+Ar3DWMPUA+gDfoJfAWzAtACUwR2BYsGcggHCiYJ1QWBAgEBAgGxAVwDhAZwCrkNvA+YEBwQyg0PCq8GkQVnB4wLjhBrFCAVRRLdDWYKCQgaBecBDQJuCOkS4BtIH6kcIxVHCib/+/dt98v8BAVaDLsPsA7eC5YJbgY6AOz5C/r2AQoL2g5SDnMN9gs4B/gAZf7yAOEELAeJCPEJVAoSCWYH1wUyA+D/QP9yA4cJXgxPCjcGmgNEA4wDkQITAMj95/01AUYGvQpbDdIOPRCwEJQNwAb3AEwBPgYnCWkHNwa0CtoRDRR6DocFYP8c/6oDiggdCfgFqQTQB8wKJwlPBgYIRAzmCwYGCAF8AEwB9wBpAc0DDwbAB1QLAhBSEAMKHAIB/lv96v0mAFQEnwfpB9gGAAYdBBMBAADjAfkCPQFyACADxQTFAKz6F/kD/OD+EAHPBPsHRgbMAS8BigRVBFX9NvbY9X76Af8oA/MIcA0+CzcDlPyW+/f8dfyk+6v+rQTiB10F/QDm/7gBAwIT/1X8mf0VAh0F6AJx/E/3M/kJAusKmwwXB/AA/f7m/kH7ivM+7onyGQDWDfcRegvCAcT6UfWb74vuW/glCe4TlBDWA9j3/fF08vj3kv9rBMgEhARxBhQGs/0l8RjsUPSJAikLgwrjBfQCaQE5/Xf1uO8F85z+EghIBjn92/k/AXUJ6wYR/Ef15ffS/Kj8w/m0+iEAIQUiBvkCufxt9r/1BP2wBaIGHgCK+yP+WAL4AEH7fvcJ+Jr6dv1ZAPcBLwGm/wf/GP0t9+zwK/LK/OYILg0nCH7//Pi19vf30/rz/BD9Hvzu+6b82vyC/FX+bATiCw8OhAdg/O7zOfEs8gf15Pq+AywLrAthBDv67fMH9Vv75gDPAWUAEwHmAhEA7/YY7vbsgPNJ/GgDnAd8B3ECVfve9TPyx+6t7UfzL/+nCnAPHg29BmT+BPVy7J7nWOmn8n0ATgsoDOcDJ/sx+Zb8V/4K+4D2Z/ZZ+0oASgDL+5v3V/cN+rb8L/5O/yAAWf+F/Eb5pPcW+F750/np+A74nPkl/koDGwbxBfADlwCO+3v1WPDT7Z7uIvNM+1oFzQ0CEewMfgJg9q3u4O2O8EvytPOx+CkBSQdeBoQAcfu9+Z/58fgL+KT4Kvul/T39jvkU9qj2sfri/Un+0f4KAi4FYwN8/C/1DfFw7+run/Bl9j7/WAclC44J7QPK/Gv2AfIJ8A7xIfWG+k7+NP8v//8AfgRvBi0Eqf5C+VD2dfUB9RX0LvN+8yf2cvsQApAHGApFCQMFHv1480rt1e7D9e766vrB+VX8RAGRAw4Cx/8w/nr7I/fm87bzOPXx9tP5Vf60ASYBRv5z/SsACQNoASD6F/Gc7L3v2PaJ+178tv3iAasEBQKb/fT97gEnAaj31uvV5ujqjPOa+3sA7gGsAUgCJgR1BKYA+flJ9FbyNfQV+H/7yfxP/Ez7kPlz9nL0OvjlARsKPAkLAFP2LvLN84z4T/5eAykGTQY7BOf/2vk19WX1S/m5+yT6A/i5+Xz+2AHUAbIADgGPAv4CDgFi/aj5H/e89cf0Z/Td9aP54/3d/8b+fPx++9b86v9GAzMFNATh/075m/Ii7tDtM/J/+R0ATwNEA8QBM/+L+rn0xvGs9Af7Xf9v/+j9gv1P/Uv7aviq9wP6Tf3T/qH9k/pn9431BfXr9H/1W/it/cwCOQWCBTsFvQN7/275LfRz8NztO+4Y9ID9kwR7BhkGRgY9BVwAO/nl8zHydvO79nv6UPyr+zH7tvzv/W38sfr4/BoCSgTcADL7O/cA9djyuPAI8Ijy8fmOBaEP+BDlCGL+U/dQ8tDrEeYr56DwCv0xBkwKxgq8CBEEr/z682Dtq+xP8u35X/7x/s/+vf/7/+/9P/ud+ij80P1I/q39zPvm96PyqO5I7oLx9PbK/UEF2go2C5sFUv1w9iHyR+/X7Y3vPfUg/TUELwjQByUDRfyc9lv0GfVW9yP6z/xn/sP+0v71/i7+Lvyt+hj7JPzC+2X67fkN+pH4T/Uk83f04vjj/kYF+AnjCRgEuPsG9aPxkfC58PrxsvQ3+eD+DQMYAzIAB/+AAXkDbQBw+nf3uPhi+Wj2JfM/9BP57fwM/Rf7gPro/J8A+QEa/5/6wfjA+bj5yfZQ9BL2EPuf/y4CAgN4AVn9S/kE+O73ufXB8j70bPvoAosFMQSuAiMC+wA1/hz6UfUr8brvbfEC9Kj1u/dB/OwBCgUoBKoBnABIAUcBRf7A+DX0u/NS9v338vbe9d73RfwFAMEBNgLqAbwAFP9w/W373/gt96D3Qvl0+r37cv4fAVkAQ/vn9Knwo++68a72B/02AvgEFwY8BsUEdgE2/Ur4LPJX7Knqtu6o9IT3gPc7+ej+FQUCBwEEYv9c/Fz7s/rn+FH2svQf9XP2sfYX9ob3sfy0AnUEsADi+wP7iv2L/i37G/Yv9Fb3P/20AboBkf2a+FD2qvau9un0nPNc9V754vwB//kAcQNSBRMF3wEs/Gz28fM19YH2qfQM8vXzWPskAxoGywOH/7n8z/xq/kz+E/vC9/z3M/p3+VH1VPML96j8mv4A/eT7ufyJ/QX9xfsw+oX4SPip+tj9vf4//f/7CfyD+xP57vXa81bzjvQa+Jr97QLcBdMFrQOgAKr9C/sh+Kf07/HP8VX0rfdb+kz8vv2B/pz+of7W/t3+W/5G/YX7SPmX93r3c/jo+Ev43PcG+b77jf6V/9T9R/qc94/3B/nk+Ur6PfwDAP0C5QJzAM39tPuF+Qb35/T085/0Cve5+pj+tgHrA18F6gUUBW8C3/0V+NLy9e8q8K7yX/Zj+vT9ZACQAbAB6ACi/9P+6/6w/ov8APlp9hf2Jvde+M/51vv2/Yj/cQBfAHH+rvrj9vv0L/Wg9gH5o/xDAYgFmAcWBk4BkPtr9xj11vI/8KDv3vJ7+FX9VQClAuIEFQZRBc8CUv+f+5P4hvad9BLyHPA18RX2lPztASsF1gZkB5EGugN8/rb3IvLG8Av0I/kB/Tf/BwGNAlUC2f/G/CH75Ppp+r34y/ZJ9hL4i/sL/+AAngCL/zn/kP/c/h38avh69b/z9vKe81r2PPqD/Q8AXgOZB0wKCwkXBGn9gPZ98Bntx+3/8bb3TP3xAeYEuAUkBTQElAJI/wX7Tfhx+Pr5ovrg+b74S/gW+Vr7g/4sAXkC5QLqApsB6v3l+Eb1kvT69U74s/uFAHYFCwjVBoAC//wu+DX1K/RJ9Pf0uvZv+qX/YATUBtwGaQUgAxIAePwT+f/2Ifda+Qj8Hv1h/P379v2HASYEsQRIBPoDJwPWAEv9ffnv9RzzQ/KJ9Hr5PP8pBIcH7QjoB4IEwv9P+6P4J/jd+Fj5cvmP+nz9owBnASH/1PvI+WH5n/nb+VH6a/sh/df+ov8W//X9s/3a/ioA5f/I/Vj7GvrW+fP4mPZE9LD0zfhP/usB0wL4As8DLgQaAuD9Bfp6+Mv4Ofno+L34bfqS/kgDPgX+Av3+L/2m/q0AgQBn/or8KPzy/C/+L/9D/4T+AP4l/tf9fPzy+03+AQLiAmX/vfq5+H/5kPpp+qL5rvnF++z/6QOTBHgB4v2O/A78nfkg9kP1HPjK+6v9Kf65/pD/TQDAACIApP2Y+tH5r/sh/fr7HfpC+tz7lfxT/Ob8pv4pALQAkgBj/6D8o/mM+A/55vjN92H4H/ztAP8D+ATNBGoDawDH/Nj5sfcD9s71Tfif/G4AwQJrBOgFXgYcBakC4P8u/Rn7QPpp+qn6CPvJ/BAAmAInAq//R/4w/4kAOwCl/oX9f/3U/fz9Qf76/ioAzAGSA38EwAPiAS8Awv5o/O34L/Yo9sj4pfzoAFwFKwn0ChkKBgduAhf9Q/hH9Yn0pfVB+Pn7wv99AgIEmwTWA0YBQ/4Y/fH9Xv60/FH6aPny+Vf6LPqY+nP8Rf8YAjgEHwWXBNkCOQAI/Sj69fi9+UD7cfzX/RQA9QGhATn/pPwB++P5G/mc+Rb87f/eA8MGswegBrsECwOtADH8pfZY8/LzovYK+Qf7kv1oAIcCxAOJBOEE9wSCBUUGXAWVAav8TPnH93b2BvUY9af3n/tq/yoCXAPVAosBwwAzAJH+SvzG+wv+2wCIATkA9/5//qz9hPt0+MT14vTI9gj7pf/RAqMEEQbtBv8FEgOJ/7P8kvqz+FL3JfeD+AT7nv0W/w3/sf6x/zcCmAQ5BRIE8wEd/4D76ffU9QL2yPcG+l38Nf+vAtAF2gbZBNcANf2F+1n7YPtb+0H8e/7GAFcBxf9T/XX7bPqT+b/47vhN+6z/IgSTBnQGCAXtA5oDOQPFASX/Rfwe+qj4G/dm9fr0W/ci/BwBtARMB9YJzwuHCyMIqQIa/RL5GPeF9kz2XPb69+j7mABoA54D/gIdA3wD9ALQAV0BAALjAiQDagK3AGz+TPy9+lD50Pcs9034cvr++7j87/1CALsCbQSsBe8GoQfvBv4EVQLT/lH62/Uw8wvzrPQN99v5Hv2XAMADCgYZB/EG/wW5BD8DogE8AGD/pP4u/dH6mfjD92H4Y/nh+Rj65/qp/NL+tAAuAmADBASNAwsCeAC3/3n/iv5L/KX5L/iC+Kn5T/pM+qf6Nfyg/vsAwgLzA3QE+QN7AnMAl/5l/eb8kfzF+5L64Plp+rr70vyF/ar+xQAzA9gETAUVBdEEgASLA5ABDv8S/Rv8nvv++oj66foS/Fn9g/7o/6cBdQMOBSkGMgbiBCgDUQI2AjwBk/5u+4n5Sfni+Yb6+/qH+8n8+P47AXgC7gLVAxgF8gSkAgYAD/8N//L9f/tz+QP50/k0+8P83f0Q/iP+UP9HAXQCYwJLAtkCEwMwAv4AZAC5/+r9iPss+lv6Pfsc/BX9Wf66/yIBswI8BEEFlwV7BfIEtgPZAf7/i/42/Zz7Bvo2+Y/5yPpc/PP9X/+OAJsBqgKcAw0E1wNlAxoDqAJoAWr/n/29/FP8efsZ+hH5P/nE+g39N/+OACEBvAHvAjIEjQT+A3YDbAM9A0oC/AAoAPH/yf9a/+H+2/6c/wMBUQKOApABVADr/zcATwDB/wr/xf4A/33/GgDCAE4BtgEmArQCLgNqA4MDrgPkA/QDqgPWAmEBhP/W/db8bfww/P/7JfzT/Mj9r/6a/9sAbgLjA98EbQW0BZoF1wRJAwEBRP6k+9/5QPlB+TT5QPk6+nD8GP8yAYoCkwOTBHkFLwawBtQGXwZLBbQDpAE//wH9efu6+mj6WPrM+vf7kf0c/1EARAE3AmoDzgTjBSYGnwXVBBQEJAO/ARUAl/53/az8SvyH/HH9xv4mAFkBUwIVA5QDtgN4AwkDrAJvAh0CeQF2AEn/R/64/ar9Av65/uj/YgGLAt8ClQJQAk0CNALLAWoBcwHGAekBjQHBAN3/Vf9t/9r/DgDt//L/fgBRAf0BfAIHA5QD5gPcA2oDiQJxAaAATAAGAGz/1v7j/nX/1P/E/9X/eQB1AUMCrwLHApwCWQJAAl8CgAKZAucCewPwA9oDRAOJAtIBCwEuAFv/rv44/gn+Lf6f/lf/UwB5AYcCQQOhA80D3gPLA3oD5wI2Ap8BOQHnAHwA/f+G/x3/tv5m/lj+jf7W/hz/e/8WAPIA+QEJA+gDZgSLBIYEVQTHA8sCoAGNAJ//w/7//Xb9P/1d/br9Mv61/lj/MgAjAeABWwLTAncDJQSRBJwEZAQWBMADRANqAicBy/+//iL+wv2E/Y39BP7T/sj/ygDZAegC2wOQBOIEygR1BCIE2QNjA6YCxwH1ADQAbv+k/uv9ZP01/Xr9Hf7j/q//kQCIAWEC9QJhA9UDUQSsBMQEiwQIBFsDnQLFAbwAqP/g/ob+W/4r/iH+h/5O/yMA3QCHASYCoQL1Aj8DigO+A74DigMmA5MC2gEVAWEAzv9c/wv/3v7h/hX/ZP+y/woAmwBwAVUCCQOCA8sDzwNxA8gCFAJuAb8A9v8x/57+VP5T/o7+5f42/3//1f81AIkAzgAfAYQB1AHlAcABjAFVAQUBjQAAAHz/Gv/i/sn+tP6R/nX+jv7l/lT/tf8TAI8AHgGRAcUBwwGiAWsBFgGcAAwAjv9O/1P/av9X/yT/GP9c/8n/JABxANoAawHvASwCHQL1AeUB7gHjAaABNgHbAKEAbAAkANz/tP+x/8b/9/9EAJ8A+wBmAe4BegLhAh4DTQNvA2EDDgONAgIChgEbAbcATwD0/8n/3/8aAF0AtAA2AdMBYwLWAjIDagNqA0ADCAPDAmICAQLRAcgBqQFcAQcBygCiAIsAmADDAPEAJwGFAfwBTQJtApQC2QL9AtUClwKAAm0CHAKdASgBvgA5ALL/Y/9K/zL/Ev8Y/0j/af9d/0H/MP8X//P+5P74/hf/NP9f/5T/qP+L/2P/RP8M/6P+Lf7W/ZH9RP0B/eb84/zY/NL88/wo/Ub9V/2K/dz9CP7v/b39pf2e/Yf9Yv1N/Vb9bP1+/Yj9hP1v/VT9Qv06/Tj9SP16/c/9Lf56/qv+xP7K/rz+m/5z/lX+TP5X/nD+l/7Q/hn/bv/M/ygAdwC9AA8BcAG6AcsBuwG4AcgByAGrAZMBmAGhAZYBjQGqAeEBCgIhAkkClQLxAkwDqQMPBG4EsATVBOcE6wThBMoEqQSBBFgEOQQlBA4E8QPfA+sDDgQtBEAEVwR+BKUEswSpBKAEogSXBHIERgQnBAUEuQNEA9YCiQJBAuoBoAGKAZgBmQGIAY8BuwHiAd4BswF7ATgB6QCaAE4A8/+D/xj/yf5//hj+ov1M/SH9//zS/Kn8kPxx/Dn88/ur+1j79PqT+kT6//m0+W/5Qfkh+fv42PjM+NP43vjv+Aj5BvnP+IL4WPhM+CL4yfd390/3MPf89tX24/Ya91L3hPe79+r3AvgU+C74QPg7+D34Zvii+Mj42Pjt+Ar5Hfkq+UL5Xvlv+Yr5yvki+nb60vpX+/j7hPzq/Ez9uv0k/n7+0f4k/3X/zP8vAI4A1gAXAXcB9AFyAucCYAPXAzkEjATkBDgFegXABSgGnwb9BkYHogcMCFgIggi5CBEJawm0CfwJUgqiCt8KEwtCC2ALbAtwC2ULQwsdCxMLGwsVCwgLEAskCyMLBQvfCrEKbAodCt4Jmwk5Cc0IewgtCLcHKwe8BmAG3gVABboESgS8AxQDjgIhAocBvQAPAI//+f4w/nL92/w3/G37qvoD+kj5ZfiT9+b2JvY/9XX07fNj86Ty3/FI8brwAfA+753uCu5l7cvsVezb6z/roeod6ovpzugc6KvnXecJ58Hmo+aP5mrmUOZY5lbmM+Yn5mHmueb05jHno+ct6Jjo9Ohw6Qrqp+pc6zfsFO3Q7Zbuk++l8I3xXPJV83z0oPWx9sj38/gw+of78PxC/nH/rQAXAn0DqAS/BQUHaQilCbEKvAvNDMENng6ND48QgBFrEnoTohSkFW0WMBcAGLkYRBm9GTYanBrhGhwbWhuGG5Ubnxu0G8Ebqxt7G0cbGBvjGpYaLhq7GVIZ6BhfGLUXEBeDFu0VMhVmFKET0BLkEfMQDxAiDyUOPg19DKwLqAqgCcII2AekBk8FKQQmA/8BwACz/9f+4f3D/Lb7xPqs+Vf4A/fZ9bL0bvMw8hvxG/D/7rDtLuyB6sXoG+d95eHjc+J54fngqeBe4C3gGuDx34jf8d5M3qfdBd113PjbftsQ29Pay9rO2r/av9rp2inbYduX2+DbN9ye3DXdFd4d3yXgQ+Gh4iLke+Wa5rTn6egi6kTrYeyN7cnuJ/DD8YvzRPX19tj44vqq/Pf9Gf9oANEBIgOABCwGFggDCu4L5A2+D0oRmxLmEx8VChaqFjsX5RebGEgZ7xmdGmEbOxz5HFQdRB0cHRodHx37HNEc4BwbHTkdHR3gHIscERyJGw0bgRqxGbUY1xcgF1AWXRWWFCUUzhNQE7USGRJjEXoQhw+yDtwN3wzrCzwLsgoECkEJugh0CCIImwf9BlgGkwWuBNsDKANyAroBLwHRAFEAev+E/rX9+/wc/B/7OPpy+aP4rven9p/1mfST85PylPGL8HLvU+467SHs+uqz6Uzo2uZs5f/jneJu4aHgO+AV4ATg5t+i3yffe96t3cnc7ttT2xLbAdvp2svaxtrN2sHatdrb2jTbltv724bcN93h3YHeWN+H4ObhQeOj5C/m1edn6eXqcOwW7r/vWvH58qL0P/bX95v5qPvH/az/ZgEtA+UENgYgBxsIcgn0Cm0MDA7yD84RRxN7FLUV2xagFyAYwhiOGRwaORoyGlgamxrCGsQauhqrGo8aUhrfGTYZixgZGNUXfxcAF4MWHBaiFfQUMBR3E7kS3hEBETYQVw9EDjANZAzQCykLZAq4CToJtggICEoHpQYoBtQFrwWZBWgFJgUHBQgF6wSZBEwENQQxBAoExwORA2sDTQNEA1oDZgNIAxsD/wLUAmUCyQFOAQsBygBgANr/Rv+Y/sj94vzp+9P6qvmN+IX3afYf9cbzkvKF8WTw/e5d7brrMuq46Dvn5OX35IzkaeQ25MDjDeM34kjhNeAC3+LdGN2s3Fnc5Ntk2wrb0dqe2nvakdrZ2ibbetsA3K/cU93t3dHeMeDD4SzjfOQJ5uTnuulJ67nsVe4i8OHxdPP99Kz2jPiW+rj8wf6IACgC2QOHBeYG/wdTCSoLJw3WDlQQ9xGmEwIVCRYFF/8XvhhGGdoZehrWGuQa/hpNG4UbZhsfGwAb/hrhGpQaKhq0GTkZwhg9GIgXtRYPFqkVNhV1FJcT5RJJEn8RjhC4DwsPVw6WDewMVAycC9EKNgrTCWYJ1AhdCCYI/ge1B2oHRgc5ByYHFAcJB+0GxAa+BucGBQf2BuQG8gb0BrgGXQYcBu4FtAV7BVUFIQW0BCQEmwMHAzMCJwEeACr/G/7O/FL73PmK+Fr3KPbe9Jzze/JP8cLv0+3j6yjqd+i/5lLlceTo42Dj3uKB4hXiTeE24BzfEN713OLbDtuO2lDaR9pa2lXaLdob2jXaONoF2g/axNrf28vcit2o3kPg2eEk44LkUeZc6Dfq2+t97RrvmPAe8uTz3PXV9+35T/y6/r8AZQIUBOYFjwf/CIwKVgwMDoIPBBHCEnYU4BU7F8gYPBoeG3QbthsiHJMc5hw4HbkdWh7ZHvMeph4uHsIdXB3cHEwc2RuCGxgbgxrpGWUZ4BhAGI0X1xYGFvsUyxOwEsoRAhE6EHcP1g5PDrQN7wwdDGsL5ApzCgYKlAkhCbsIdQhKCB0I8QfqBw0IKAgOCNUHrQeZB4cHfQeNB6wHxwfoBw4IFAjmB60HlgeHB0MH0QZqBhEGiwXCBOMDCQMUAuUAkv84/tX8ZvsF+sn4pvd49in1rvMK8kTwYO5e7GbqyOiq59fmDOZU5ePkmeQM5Azj2eHC4Mnfud6I3Xfc1tum25rbbts820bbgduV22TbOtti28nbO9zB3Ivdnt7c30nh+uLW5KfmW+gT6tTrbe3J7inw3fHp8xf2X/jb+nH93v8VAjoEOQbdB08JBQv9DLQOBhCDEYQTjBUUF1oY4BmFG7scah3tHXoe9x5cH8YfNCCUIOogOyFtIWUhMiHoIHgg1R8RHz0eWx15HMQbSBvTGj4ajhnPGOYXshZEFdcTlxJ/EXUQcQ+EDrgNAg1KDIULvAr/CVMJqQjwBy4HigYrBgAG1gWcBXEFXgU8BfYEsQSUBI4EiwSSBKsEvgS9BNEEGQV5BcYFAgY9BmMGUwYTBsYFfQU5BQAFzQSFBAoEVwNvAkkB3f9E/qv8K/vI+YP4V/c69if1F/Tf8kbxVO9g7aHr+ulR6PHmLebZ5XXlxuTy4x/jQ+JM4UfgWN+w3mreTt7z3Uvdwtyo3MTcytzo3HTdTd743kjfet/D3zHg3+D84YXjOOXp5q/ojOpC7KPt9u6s8Mfy5/Ta9tr4GPtu/a3/7gFLBKgG8whDC30NTg+5EDcSBhTHFSkXcRj2GX8boRxpHSce6x6WHy8gxCAvIVkhcCGgIcghvSGeIZghlCFaIdUgCiAJH/wdFh1GHFgbUBpxGcEY5xeiFioV0xOUEjYRtA8+DugMpQtvClcJVQhTB1wGkAXpBDQEXgOjAjYC/QG8AW4BMwEQAecAtgCbAJUAkgCoAP8AdQG5AcoBAwKQAikDggO6Ax8ErwQpBWoFjQW1BfgFTAaHBnkGKAbKBXcF9AQNBO8C7gETASEA8/6o/Wn8Qfsr+hP50vdU9rz0OfPB8SPwb+4A7Q7sa+u16qzpXOgJ59nlouQp46Dhm+BO4DTgtd/03pPewd4F3/rez97q3knfjt943yvfDt9l3yfgIeEw4lbjouT55S7nMugx6XDq9+ua7UrvJPEl8x31E/dh+SD83v49AYID+AVPCA8KaAv8DPgOCxEFE/AUsBYgGFsZhRpsG/IbexxpHW0e8B4BHywflB/gH/cfISByIKggnCBqIA4gWh9eHnIdwRwOHBkb+BnrGAgYKhcZFsEUWhMuEicR0w8DDi4M3ArtCdsIkgeHBu8FZgWMBI0DuQIRAngBAAG5AGYA3P9d/zH/Jf/o/qf+2/6A/xwAcgC4ABkBewHPASsCjwLpAlsDEwTeBFwFngUBBo8G6AbnBs8GxAaLBg4GhQUCBUcESQNjArYB1wB9/wb+6/z9+7z6J/mv93j2M/Ws8xDynvBj70DuEu2+60nqxugj507lguMo4kvhluDy36vfuN+B37ne5t2Y3ZXdYd0Z3Trdu90i3j7eTt6L3v/euN+44MrhveK14+bkNOZP50PogelP63Ltiu+I8aPz+/Vy+Nz6L/1+/90BWwTjBjcJMQsODSsPbhFpE/8UhhYtGK0Zyhq2G6ccfh0lHtEejh8OICogRSCyICIhKSHpINQg9CDmIHAgwR8XH34ezR3WHJobUhozGSEY1hZYFfcT0xKuEVEQ1g5oDf4LgQoECakHcAZEBTQEXQOuAvEBIAFyAAYAtP9F/9T+nP6M/mT+HP7z/Qb+NP50/vL+s/91ABEBrAFhAvwCVAOcAx4ExwRVBbwFJgauBj8Hxwc0CH4ItgjvCAcJtAj0ByYHhgbRBbUEaQNeApIBkwA3/8/9ofyH+z/6wvgn93z1x/MQ8lPwke7y7JDrQOrI6C3nm+UM5HXiHOFP4Ojfh98d3+Hevt5L3m3dldw43GPczdwz3Yfd591m3t3eEt8m35ffrOAU4kXjG+Ty5B/mjef26F3qJuyb7mvx/PMY9hz4YvrV/DD/cQHIA1AG7QhXC2ENMQ8WESYTGxXQFnEYCxpUGyoc5RzIHZseLR/NH7ogmyH8IQIiGyJMIlAiJSL/IechsiE/IYYgih9uHmIdZxxMGwsazBiQFy4WpBQfE68RPBDUDpcNagwJC3EJ9Ae/BqkFhgR6A7gCMAKjAesAIgB+/w7/v/53/jz+IP4e/iX+Pf5w/rv+If+8/5EAdAEyAtACewM3BN4EUwWxBSwG2AaUBy8IoAgVCawJOQp1ClUKEArGCVsJqQjGB+EGDQZDBXUEigNaAuAAZP8W/rb86frZ+Bf3wPU99Cfy4+8V7svsf+vQ6eXnKObA5FrjleGi3zvext3Z3cvdht1d3VDdCt1j3KDbFtv22kXb5Nug3FLd6N1w3g/f4N/N4Knhk+Lh44fl/OYD6CHp6+pI7cPvQfL09OH3z/qM/fb/DgIYBGQG5gg8C0oNXA+kEfcTIxYXGNEZYBvhHDYeCB9bH8EfkyBrIeQhUyIgI/UjQCQmJC0kSiQDJEwjmSIZInQhZiAhH/8dFh0iHNcaSxnhF7kWbRWaE4oR0Q90DvMMJQt5CT8IMgf6BbEEoAO+AswBwADN/wP/PP5e/Yz8Afy++5v7ivuq+wb8c/zK/Br9hf0O/q3+eP9wAGQBNAL5As4DmARABfQF4AblB8cIdwkICnQKpgqzCsIK0wrRCrYKjgpSCu8JZwm+COkH4wbJBaoEVAOTAZv/0f07/H36g/iq9i31z/Mt8inw6u2z67vp4ufN5Znj+uFE4dDg7d/63rfe+t7z3nXeAN603THdatzN24zbeNuN2xvcM91i3jHfp98p4Pjg6eGr4lLjUeTm5b/na+n76ursee9y8nH1O/jf+oz9PQCsAqUEdwagCB4LkQ3hDzwSnRTCFrEYnBpkHLYdox6NH4ggTiHLIT4i3CKjI4EkSCWyJbklrSW6JYslxiSkI7AiEyJrIUYgsh46HUAcdhsvGk8YfxYoFcoTxhFbD0ANmwsHCmsICAfhBbIEfAN8Ap8BjABJ/zj+gv3a/Pv7CftS+vj56PkA+iH6Tfqv+lL7+Ptg/KX8Iv0C/gz/9v+/AKgB0QILBBYF+AXuBhQIOgkrCuoKiQv3CywMQwxWDFkMOgwRDAQM8AuMC8kK1AnGCIwHIwapBBkDRgE3/y39QPsu+dv2pPTv8pPxCPD17XLr7uix5orkJuLL31veJt5E3rndv9wx3CHcztvy2hnawNnB2cHZndlg2S3ZQ9nh2QDbVtyT3bLe7t9Y4ZDiPOO44+Dk/eZl6YrrvO2G8MHz1vaW+T/89f6tAWYEAgdMCVMLcw3fD1oSoxTKFvYYNBt2HX8f7yC+IW0iWSMhJFQkVCTdJN4lpCbpJhAnRyc+J8QmDyZRJWckKSO7IVogBh+NHdUbFRqlGHIX+RX5E9ER9A8zDgYMewkwB3wFCwSCAgQB2v/s/vb94/zK+7D6kPmF+L/3QPfa9nH2JfYr9nr22vY89873q/ip+Yz6U/sc/PL83v0B/2UA3QFBA6MEGwaKB8MI1wnsCgEM9wzGDXIO6w4uD20P1Q82EEYQFhDzD+MPhw+wDqQNngx+Cw8KWwhxBkIE4wGc/3P9FPt7+Cb2VfSX8mPw0O08677oQebQ44Thid8+3tjd2N163avcCtzK217bddqI2SHZHtkF2bzYgNh92L7YWtlo2srbM92D3t7fWOGt4qLjjuQZ5mXo7upc7fvvG/N+9rn5wPy3/6cChwVSCO0KNw1aD6kRHBRtFqIY8hpGHU8fEiHIIkMkLCWvJUkm+yZeJ3YnuSc/KKgoxijJKLsoXyilJ8km2CWVJO8iLyGRH/odLhwsGjoYkRYLFUATBxGwDosMdAoYCIkFNANPAaP/Bv6b/Hr7ePpv+Xr4tff79hn2MvWV9EL05/Nu8yzza/P+85f0PPUo9lb3hPic+b366PsF/S/+l/8lAZ0CDQS8BZkHQgmZCucLRQ1vDj4P9w/EEGURoRGzEeARBRLQEVER2RBqELEPhg4WDYYLxQnIB6sFawPjACr+kfsn+Z322fM58QvvFu316nXoo+XC4jTgG94m3Dja8djf2GXZTNlp2KfXgtdk18nWFtbq1UrW0tY111/Xade117PYVtoX3KfdTt9l4aPjY+WC5qjno+mE7LHvtvLH9Uj5KP3fAPwDmwZACUkMeA8zElIUYhbYGG4bkR03H9ggsyKjJGsm1ie/KEsp2CloKoAq+il8KZcp+yn8KYwpEymgKOMnuCZBJZwjziHpH/sd8xvCGYUXXBVEEzERDw/BDEgK3AekBXIDCgGf/pr8Afts+bX3PfZX9cj0JfRm88/yZPLl8Ufx3PDa8A7xQ/Gk8WfyYPNH9DX1gPYi+L75I/t7/Ov9ZP/ZAGoCJgQCBv0HBArVC0QNjw4LEJERrxJmEyMU+RR1FVMV+RTdFNoUfxS/E+wSIBIWEaEP6A0RDAQKpwcKBUgCXP9M/FL5lvb881zxqO7f6xHpXOav48vgwt1B27bZm9g81+rVedXE1cLVB9VB1ALUC9T009PT3NMC1D/UvtR41S/W7NYm2Cjah9yX3jrg4OHk4x3mNOhG6s/sDvC+83f3Evuo/k4CDwbYCWINbBAOE5oVLBiWGrocuR7IIAYjZiV5J8woiyl3KtwrBC08Le4s9ixdLWwtxSzWKy0r6yrBKjMq/ShfJ8olSCR0Ig0gVB21GmcYVBYmFIoRpw4WDAwK5gcDBcABC/8d/Vn7QvkR9zj12/PS8t/xz/C/7yDvNe+W75TvG+/K7h3vz+9R8I/wGfFh8i304PUw91740fmd+4L9RP/dAI8CpQQMB0kJ9QpNDOUN2A+sEQMTFRREFZcWsBdCGE8YEhjUF6gXUBeEFlgVKBQeE+YRERC1DUwLCQmbBqIDNwC//Gb5HfbM8nvvRuw96WHmnOPT4AveXtvi2MXWJNXP03nSPNGU0JjQq9BQ0OTPAtCJ0L7QWtDtzx/Q8NDY0YfSU9PI1NrW89i+2pvc796P4Sbku+Zy6UXsPO+o8pb2hfok/t0BJQaeCn8OmRF7FJUXoxoZHdwehSC0IkMlZyfOKAYqlisjLQ0ucS7NLigvPC8VL98uYS5fLUQsoytGK2cqzSgbJ9AliSSBIpYfgBz4GccXGRXBEZIOOgxGCtEHygTjAXL/H/2d+hP4yvXZ80XyDPHw77LufO3D7Kjsxuy67Kjs6+yC7RLuYO6u7mTvnfAf8q3zL/Wx9k74HvoU/Pb9s/+SAckDFAYKCLoJkwu3DdsPyRGMEyYVgxa0F+YY+xmhGuIaHxthGzIbTRoXGRoYNhfcFeAToRFnDwUNPQo1B0IEfQG3/qT7B/ja82Lv9uq75r3iSt+43NXaGNlB12LVdNNk0YbPVs7KzXXNOc1WzavNq80mzZnMmsw7zTLOQc9h0KjRDNNX1FrVSNaY15zZQtxB31riheXq6JXsPPCM88L2gPrs/m8DhgdUCzYPFROGFmMZ8RuNHlohFiRjJj0o+Sm0KxYt+i2+LpYvJzA4MDMwaTBpMMYv6S5iLvIt7ixcK98pyCi2JzImNCQEItAfXx1bGusWshMAEWEOVQscCDMFewKT/538Ffr+9/P16PMv8sPwR+++7absPuwd7ODruesA7JrsG+1s7eftx+7W78jwq/G98g30gPUK97r4iPpp/Hb+xgAqA2kFlgf2CXUMsQ6MEEISDRTbFX4X6xgnGjcbKxwBHYEdeB0FHXUczButGu8Y6Rb/FB8T6BA/DnYLwQj7BfcCuv9R/LH4zfSl8CfsTeeP4qLetdtT2S7Xc9Uy1O/SLtEJz/fMZsuOymPKisqdyqbK78pwy8LL0csnzE7NF8/D0OPRvdLV00HVuNZA2EbaDt1w4CHk9+e/60LvufKh9uz6+/6EAhUGLwp9DkgSdhWKGOwbcB+DIsYkbiYPKOIpgyuVLFMtFC7HLjovby9lL/AuOy7ZLeUtoC19LAEr9yk0KeQnyiV1I2shmB+QHREbPhh5Fe0STBAtDZcJ/QW6Auf/bv0q++b4m/ab9BHzkPGl77btqeyz7ADt0ux17Kjsae377f/t/+2i7tjvG/Ey8k7zk/Tx9WH37Ph2+ur7hv2g/xoCfQSeBs4IUQv1DVkQVBIEFKkVchdCGbkarRtzHGUdQR53HuQdBh0+HGUbJxp7GIwWcRQoErEPBg0ICrYGWQM1ACP9sfm79arx6e1P6lrm0+Em3QfZ0tVO0yTRY89kzg3Onc1rzJPKwMiLxzHHnsd8yGvJYMqEy63MY82dzQjOYs+n0SDUGtaV1y/ZV9u43c/f4uHc5PHoQO0a8db0+Pgz/fIARgSgBxQLaQ6wES8V6xiLHKQfBiLNI0glqCbVJ9Qo+SldK38s3SyYLBwscSuKKrwpWSkUKW4obSdrJmwlHiRvIpwg0h4KHSgbGBnZFosURhLjDyAN8AmCBhwDFwCv/a37lPlK90P1s/MN8uPv0e3S7OrsKe0F7fbsj+2L7kXvtu9p8Jbx0/K683v0bfWS9sL3Hvne+tb8n/4tANkByAO/BZEHbAmMC+sNThB0EkIU4BWhF5AZQhtaHB8dEh4WH4MfDR8sHmIdgxwbGy4ZKBdBFUkTDBGKDrULcAjYBDsBqP3k+ev1KPLh7rTrG+gF5M7fytsN2KjUztGvz1HOb82czJLLSMrTyGHHY8ZQxg3H+sfQyO7Jhcv8zK3N9M3nzgfRrNPx1dPXFtoJ3fPfHOL947jmfupe7s7xUPVP+Tr9cwBXA5YGDgosDQkQUhMsF9gaoh3BH+ghLyTmJZcm5ybdJ20pgiqdKnIqoiqtKt8piSh6J8Em3CW2JJ4jeyLWILcerhz4GjkZJBf/FDgTqBGuDwANEAp3By4FuQILAK799/uD+sv47/Zo9Uj0KvPl8c3wOPAH8O3v6O8o8K3wRfHr8dfyEvRU9Xn2tPce+XH6hPu//Jj+3AD6AtAEqwaeCF0Kzgs9DecOvRCtEqUUWRaEF2QYiBn0GhYcqBwcHdsdjh6SHtkd3BzhG74aOxlQFxgVxRKPEHQODQz8CGsFyQEl/iT6nfXm8HjsdOit5NDgrdyb2EXV19K70GXOLszJyiLKesloyDzHd8ZWxrnGOcd7x8LHxsixyqrM3c2OzqrPjNGx04jVKtc92Tnczt854xvm6uhI7DPwJ/TA9/r6G/6DAVIFEgkcDIIOKhGaFDIY+RraHL0eUSEVJNslOCYhJsAm7SeDKBYoeidpJ5AnRyd8JmYlHCTYIvMhLSG4H3AdThsfGlIZxBdSFfkSeRFnEL0OHgxVCVIH4AXhA+cA3f26+1T66fha9xj2SvWx9DL03POA8/PykvLi8sHzgvT19Lb1PPcf+Zf6iPt8/M79TP+wAAcCiwNOBTQHGgnaCmMM3A2YD7YR5RO5FTsXyRiEGhccLx3/HfYeJSAsIawhpSFUIeIgQCA1H50dohurGeQX/xWZE8wQBw5RC0sI0AQnAYT9z/n99Rby1O3v6PXj/99A3bvav9fq1BfT4dEL0CTNHspHyOLH4sc/x0bGPMaQxxvJnclyyfzJvcvTzVjPf9Ag0q7Uyte22h7dWt//4V3lWumH7V/xtvTr92T7zP56AZUDMAbvCR0OiBHaE8sVNxgyG/MdvB/VID0iQiT5JYgmaiawJoMnGSjMJ6cmLyUVJL8jqSPTIhUhZx9UHgsdthoEGFQWzxVTFfcT8hHmDwoOMwxICmAIiga2BNkCCQFN/3/9oPsb+k/50Pi79/31oPSA9CT1h/WI9fD1Gvda+PT4J/nU+Wr7cP0r/18AYQGbAjIE/wXAB2YJIAsZDRQPkxCEEX8SGxQqFvcXMhkkGiQbMRwyHS0eJB/5H6sgSyGSIQchtB9ZHnkdmBwCG+AY7RZLFWET2xASDlQLeghhBR0Cpf7E+pX2b/JH7q3pveRI4N/cP9rZ14TVcNOn0efPy800y7bIO8fuxgfH8MYSx/zHSckwyrHKdsvQzGrO/c+b0WfTXtV819fZhtx533zijeX06NXstfD188r29fmT/fAAxAOuBjMK2g3kEEoTjBX1F1oaVRy6HdQeDiBYITYioyI7IzIk4iTaJH0kHiRkIzEiNyHNIDsg9R6UHbYc1Rs/GnEYUBeiFnEVghNyEZAPkQ1ZC0kJnQcPBk8EeALUAGL/7/2D/Gf7sfoJ+g/55/cV9+f2LfeT9wX4pfh2+Uf6+/qv+5L8o/3L/gUAOgEeAqwCigNgBc4HvAnsCkkMUQ4jEOgQThGfEtQUuxa/F2kYNhn2GYQaMxsYHMwcLR2dHSseMx5gHVccuhsVG5wZdBdxFcgT7hGsD2oNPwuxCJMFaQKZ/838gfm59crxxO146cnk+N+c2yrYddXk0krQNM75zBjMA8vsyTDJmsjcx2nH+cd7yTnL28ybzoLQIdIS04HTFdR81drXgdqG3M7dXt844hnmyem77M3vDPT2+NT8Cf8XAbYEdQlIDUMPpRD7EjQWChnFGukbNB1yHskeFR5THW0dLB73HuEf9iBGIRUgpR7iHmkg0CBdHxgedB7THhYd9hn3F9gX2RdGFlYTYRA9DrIMAwvBCEUGUAQkAzYC7wCB/6j+yP5m/4v/rf5P/Y386Py8/SD+C/4h/p3+AP/z/tL+Kf8VAGIB0QL9A3YEewQUBeUGPgn8CigMzQ0sEDMSEBNtE4EUaRYuGBgZUxlnGaQZFRqYGvoaPBuxG3Mc8RyBHFIbSxrUGV8ZUxjtFqwVbxSzEosQlA7mDOsKTgh4BdACCQCb/KT42vSW8XDuuupf5v3hKN7Q2orXUdSi0a/PB85IzJTKOMlFyNHHHMgKyezJWcrXyi3MR85b0O/RRdOx1BLWJtf71+rYS9pN3O3ezeFI5C/mVei26/zvqvMk9p74RfxTADED5QQdB6YKUg6tEL8RnhLnE0IVGBZfFpIWBhdzF3kXYhe2F0gYfRiMGE8Zkxr+GjsayRm2Gs4bYBvRGeIYAhnmGKQXyhU4FP0SrREOECEOFwxsCoMJAAkLCI0GZwVBBYsFSAVjBLUDxgMyBFMEFgTmAwIENwQ4BAEEyAOxA78D+gNWBIEENgTiA2QE3gVXBxMIrggXCu8LBg1NDfoNng9SEToSsBJWE/gTNRRqFAoVnRVgFZEUFRQQFMYT7hI/EkwSnhJbEn0RsRBUEAUQSQ8dDr0MPQuYCeQHLAZLBCEC4P+1/Wz7tfi+9RDzy/B07srrM+n65s7kYuI04Nve5t1v3J/aedkN2RzYFNZH1BPU3tQY1ZXUptTq1V/X+tcN2LDYOtr22xPdq92R3jfgIOKn4wPl3uYS6d7qNezd7Qbw5/Eu86704vb4+DT6UPte/QMAFAJTA5MEMgafB2gI8wjTCQQLEAyyDBINcA3QDRcOaA4GD9EPRxBEEFAQvRAPEckQZhCqEEgRQxGCEPsPHhAhEFsPXw4DDv0Ncw1hDIwLNgvSChcKeglaCVgJ/ghyCCIICQjXB44HcgeKB5gHhQd4B4MHlge6BwoIYgh1CEYINwh3CL4IzQjpCHYJQQqvCqEKtgpyC3sMHw1UDaoNUg7HDqgOZg6VDggPGg+uDkAOBw6rDQYNeAw+DPsLWAuXCh0KzAlNCagIHgioBwgHMAY9BTMEFgMRAioBBABh/pH8//qE+a33kvXJ85fymvFU8LfuHe3f6wLrL+or6ULo9ucj6P3nHech5sfl5uXF5S7lluRR5DDk+ePB47fj7eNe5AHlvuVz5hzn5ef76FHqoOuR7Brtq+3C7k/wsfGJ8kbzf/T09b/2pvad9pr3Qvlq+qr6xPp7+7D8zf2i/nf/iADBAdQChgPyA2wEGgXIBUgGtAYYB0sHWAeqB10I3wjACIUI6QipCd4JdglhCTIKTwvMC58LdAuvCw8MMQwbDB4MSQxHDN4LRgvnCskKoQpZCigKKQokCusJrgm8CRAKaAqlCs0K7QoHCx4LJwsJC8sKnwqnCrEKfQoZCtYJ2wn7CQYKBQouCngKnQp5Ck0KewruCjILIQsiC4QL+wsVDOULwwuwC2cL5wptCvgJTgmICAkI4AemByQHlQYXBm0FiwTqA9kD7gOMA7ECygEFAVAAyf99/wX/5P1I/MP6cfn091H2APUn9FfzPPIJ8RvweO/97p7uW+4l7uTthu0Z7dbs7+xC7WntJ+2m7Cjsvut364Lr1+sT7O/rpeud697rL+yc7HDtk+6F7wzwifBR8R3yevJ/8qzyNfPk8370C/Ws9Wr2OfcA+Kf4NvnH+Wv6JPv2+8L8Wf26/T/+Lf9GACMBvAFPAtgCHgMzA2IDswPlA+0DDwRiBK8E6ARQBQsG1gZMB0wHAQfABtsGWQfYB/UHvQeFB2gHSQctBzYHSAcYB6oGWAZQBl8GSwYnBi4GbwawBqgGYQZHBrwGlAc9CGQINQjqB38H/QbJBkMHFAhfCMAHywZnBssGhQcdCGQIRAjPB3YHtgdrCOoI2gigCMwITwmMCSQJggh6CDYJywlMCfwH8galBn0G9AVjBUoFXQXyBB0ElQOZA40D8gI3Ah8CogLoAngC0AGYAY8B3ABX//P9iP2h/Qz9c/up+Wr4lvfo9qD26PZE9xH3U/Z19bT0H/Tj8xL0X/RT9MPz6vIs8svxufGe8ULxuvA88N7vqe+37xbwrvBF8ZbxgPE78UDx0/HO8tvzrPQa9U/1tfVr9gL3Ivck93X35/cB+NH30fcy+K741/ig+JL4WPnG+rf7hvv6+h770PtY/Mr8qv2//lz/cv9o/zr/tP5F/qj+xP+dAHcAeP9Q/qf94v32/l0AYQGbATYBvADFALoBbgPUBL0EJwOAASIB/QEhA/8DiQR0BEoDTwG6/8r/qwEkBGYFlQSdAmUBEAIeBCgGBQeBBkoFWwRWBCsFWgZWB7sHRgfnBSEEJQMNBHIGPgigBwUFmgIIAk0DXQXgBsMGIQWVA6oDDgU7Bo8GfgYABn0EogKAAtcEnAc9CI8GVwTbAjcCaAJlA2UEOQRuArn/hf1F/SD/EAHMANn+9P3Y/iD/aP3N+3D8JP64/jT+if1K/FT6j/lI+3z9gf3G+2T6fvn091z2dfY1+M75FPoa+Uz3n/Wy9dX31/mm+RH4KfcS94D2lPXX9Yr3AvkA+TD43/c4+GT4y/e29vj1KfYU98z3jvfQ9vP2aPi7+XP5X/iD+AX6/fpV+tr4gffS9tT32PpO/Sb8k/gC9974D/tV+wj7SfuU+iv4aPZ190b6f/wn/VX8jfpL+dn5E/vF+pD5SfoY/bH+av1c+2/6D/pg+kD9rgHUAvP+Gfvw++f+Ff8m/TX9mf8zAd4A8/8f/57+l/8dAvAD0QNGAwYDiAE0/4r/gAPsBlkGZAP7AIL/M//xAWoH2QouCIQB3fx9/V0BWQSgBPEDoQQaBo4FYwLt/0gBAwXPBhIFkAI2AkEDIwPKAXoBpAL1AnIBbQCIAc0CJQLaALEAdgDc/vv94/8cAh4BUv7g/eH/tAA6/+39Ev5L/g3+VP6y/pT9wvvR+6r9YP76/KX7nPus+477rfxZ/ln9OvlM9uz39fs9/tP9Vfyk+uv4BPiQ+On5avsx/ZP+tv0W+gf2qPQD92H7ev7V/Wn6/Pd3+Gn5LviG9rX3u/p0+wf5Oven+Ej7APzY+t35yvnW+cX5IPq8+sT6Ufo4+jL6EPlU92P3z/m2+9n6Gvl/+Zb7qvzw+2X6Xvij9gr4s/34AiACbPyc+JP5zPtS/I780f1o/jj90PtM+yL77/vI/ikBK/+K+mL5ufwv/8/+TQBwBdwHbQKm+cb18/hL/44EPAaKA5r+Nfvw+rr81P+TAy8FggJb/v78rf0W/bf8tgDYBpwHtwHS/Bn+TwEBARr/6P/PAX0AO/03/fUAsgMoAxkCXgLvAZz/+f0W/+cAywCz/73/DQCo/vT8WP5UAkUEKwKi/97/owC8/ur74Pv0/d3+nP5///0A3gDo/zsAgwAC/jT6S/nY+4n+V/8D/3r+6f2r/an9+fyD+3L6XPrp+mr8+v5nAEX+8PmV9y75HP0UAX0DvwKC/nv5j/e/+av9zQAsAg8Bl/xg9obz//fIALEFNwJZ+gf1lPTu9n76sP4vAVf/mvq797j40/qZ+yL8jv3h/Wr7d/hD+Fb6Qvy8/WP/wf+a/fD69/mm+SX54vqD/9oB0f3I9wb3hvtM/0//yv1k/Uf+9P67/Sf77PoV/1oDJALZ/Gb5ffnT+pj9swK6BbkBw/qY+Yr+mQGJ/639qv+/Aej/cvxP/GwA8ARPBb8Ayfse/EwBLwQ5AGT6o/qyAKwEQALx/Zz9eAClAfb/IP9zAR8EbwNWAMH+gf+j/1T++v4LA/cFMwNx/fb6r/wI/gv9Uf1wAZoF3gOJ/EX3V/pmAkYG1wJK/qT9iv2D+q75ZQDuB/QE7PmZ9WH9EwWpAXP59Ph1/8kByfxE+Qz9bwJiAuT+z/02/x7/I/1W/In9o/5d/hT9efv3+h/9YwCMAAj9yPrE/Pv+Jv0c+i37ev/LAbEA3/40/aT6//hq+zIAJAJeAKj+5v06+6P3u/go/34DlgDr+qr5Sv3hAAkBRv5r+z77Yv1E/pb8aPx4APAD6wAo+mv3yfr2/2gD2gP0/3H5HPdf/EoCaABc+aH2XfoZ/mX+uP4FAZgB5f10+QL5pPwLAaADmQN/AeP+IP2G/Ir9ygAzBHkDYf6I+o77J/4P/40AsQNjA3f9c/nI/f4EfAZ4A/ABWAEt/gn7x/wRAmQGeAjUB3cCwfqE+FP+zwSjBVoDxAFY/6v7rfsdASwFGwIH/FH6gv0WAeICngNSA7AB5P/7/lr+2f05/8wC4AQEAtX8dvsY/zwCKwF6/04BaQMBADn5T/eU/GwCZwNEARP/Ufzw+E74XfwCAt8EUwM9/sv4BPgv/SUCUAGW/o4AJQR0AcH6LvqxADAEVQCi/C3+WP9Y+wj4wfyuBegH/P/J9uj2sP+sBUgBc/kY+jkC1gQM/Vz2WvuXBYoHxf+v+OP4Gv0lAPkAUQBy/k78gPvK/P7/twM/BLX+IPdJ9iv+6QWQBTUAM/0w/av8g/za/zIExgPF/nP73fwu/5j+Wf3d/xQFbwaTAFf5S/mFAK0GPAY7ApL/yP6A/pL+h/7s/SH/EwQbCGAER/t297X97AYBCm8F7P0R+VD6ZQDBBaQGuAQuAj7+LvoP+zQBLAUoA2QBTQSyBYAAtvvG/toDCQJ3/aP/swUnBYT+oPxqArAGBwNc/KD6b/8uBrEIJwQH/W373QDsBckELwAY/Zn8Ff8mBdUJZAV2+jv2sf0pBSMCKftO/CYEcwefAvb8xfzgAOEEngV0Amf+D/5NAZ8C/P8L/5oDjQeQA177//ic/iYFZgfPBdoAHfng9EP7ZgeeChQARfUU+IQDYgdD/7j32/syBt8IGABr9rH2+f5lBOMB4/0UANEFwwXq/WX3Gvo6AqUGLQVGAu//w/y3+hX+2gTyBmoB4fob+v/9gAFWAj0BvP9//4kAEgDj/FD7Yv/qBJoEp/8J/nQBJQO6/0r8Z/0IAekDggWIBGX/Nfrj+7oCQQVOAYn/eAORBDb+7Pln/ywG7gN3/kMAYATB/zT4J/1gC+cN4P6r8nn5iwfLCKj+PPqYAB8GdAMV/3H/DgEfAJoAWQVMCCUEUv5M/qUBDQLuAM8CEAUeA3gAZwIXBVsCqf3N/ZYAwQA+AaoFSQccADP57/0FCPsIUAEc/UL/PAE9AnUFlwboAAj8qwAqB3wDnPvu/TUHwgf+/rn7GgKDBmYD1QCGA2YFcgIO/9/+kwBjA7oGOwb9/z/7UP7bAoIAwvyoAboJmAbs+ab1zABMDBkJ4fzy95v+JQamBR0BbQFTBpAGWP7n9nP68wQ+CdUD1v4lAQcEh//9+E/7EQWqCR4Erf1o/ocB+/+h/ZwBlgdfBdf8SPo+AIED7P6l/N0D3gptBlD8kvlh/igB8f+OABsDEwKL/kL/fAMAA738DPosAMsHrwcdAcT8Of+8BNEGWAPq/Y77Gf6ZA1YIpgjEA0H+/v3zAQMDbf+E/ksEJgkqBRX9JPsDAA4E2ANNAuMAjP5c/cMADwY6BpUAu/xw/5wD0QLP/7oBNgf8BuX+fvkF/wsI7gfS/1D8vAGQBqQDtf5v/10DEQQnAiACXANfAmgARAFDBOgFyQXTBK8B/vwL/NgAXAVzBasFSAjqBRr8c/fbALQLRQgT/jv/VwkFCrj+c/g2/0gHkAb+Aa8ACgFJALsAWgNKBKMBAP/e/1kDGwZQBTUBnP73AUEHkQWI/fP62AL7CbQF4vwM/WgFXQk0BN/97PwE/34AFwJ4BCYFtwJk/5z9wP2+/yYDgQVdBDkB3P/jALkBpAGIAvsDmAJX/v78ZQJECeEIKwHM+6D/aweFCLoAXvnM+6UFRQvuBVb8EfpcADQFNwJi/an+2QPOBSsENAMqAgL+wPoI/2sHkgkPBNT/+wD6Adr/i/9PA6QFLwNmAO8A8gH9AGgAOwHEAGX/TgF5BfkE/P4C/JIA3QUZBaYBVwFcAkAAOP3J/owEgAgGB3UCuv9NAZoEowT3AJ//NwS5CJMFEP4//AsChAebByUFmgLl/lD8PQBaCF4KaQOk/U0AfgRCAvr+MgMPCo4IeQBx/WMBxgKS/pj9lQQmCygIj/6f+PL7JgWWC9kI//8v+7H+eANsAyUDLQeoCPsA8fgH/SIIlwoxA47/2QPhBL79rvnrAC0KKAnPAI/80v7zAEoA6gBuBFsGbAPN/pz9eADMA7YEugPwAq4CGgGW/Zv7pf9PCHoNGQlI/+f5+/xVA+0GlgdnB3EFsAAZ/cX/iwY6CagEe/+fAC4F/wQ5/8b7h/9XBQ0GOgIf/zX+Af7F/+UEqwj3BNf8Fvqp/0kGlAfmBBMCfQCcAAwCLAJrAG8B/gZhCaoCNfv7/cUFowWt/6IAOweLBSr8JvxRCL0MiP+t8277BwsMDPP/Cvrc/+EEZwIqALQDGQdVBIj+zvsd/mEEVQtoDDUEmfoA+4oD5AaBAZ7/sAfxDGADnvWp9goFyA06CbQCmQLrAqn+d/yyAcsHYQfQAwYD6wLJ/4j9QwE+B+4H6ALc/YL8Kv/ZBIsJhAfU//n7HQGbB2sGHQFJAW8GMwcbAWn8Av/XBO8HAQiDBoUCTP3H/EcDWQm7Bqb+5PuwAaQH6gV8/wT9GAF4BbkDJP5S/YoEwQt3CTkAU/uW/oMCWgIVA5YH3Ag2Akn7MvzEAOABhgKGB9EK2QSl+2b6AQCaA0gEQQbBBr8Bj/11AeYGBwRX/lEBpwjaBlD9IPpYAHkFEwWvBPAEwwA9+/X8ngPbBDUB8AJhCQMIIv1u9zT/cAk8CZYBvP3/ALYFNAbHAdP8yv29BSsMbAh4/pL6cQBLB5EH2QNMAd7/Vv4N/xMD/AXmA9v/JP9+AQEDGwMIBAcFAgPJ/kv9mwAPBaoGywXBBK0DaAHK/r3+pgJ7B+oHxAIB/gIASQYGCOQCg/4wAPMCcAEmACUFhgu8CcQAf/ot++T+WAMiCUUMMQfi/ef6DwC4BIYEYwSVBv4FIgGc/rgB/QS8BKoE/AUEAzr7r/gwAUoLWgsGBBIA0gG2Avj/nv7+AsAJqArhASH3GPjWBlkSYgpp9zLx//32Ct4I+/8M//UE2gY/Al79Ifx+/jwEQgrzCWsCXvxG/oMDbwUpBX4FDASBACIB6ga9B1T/S/pwApoL1gUG+Xb5AwfuDXoG2f36/Q8BHgG6Ab0EugSaAGj/kANTBvYDWAHVAVACWgHfAXsDWgJaAEwDhAhLBrH8bfgmAEQKkQsrBpsCZQJtAR//rv5TAVcFVQiZB/YBw/tb/IQErgsJCqwBzvqV+g0AaQYpCN0DCf/k/9kD2QLv/Nv7qQMAC7kIKAE5/tgAugLuAScC4AQ4B4kGuALp/Yn8mgGECGsIxgDM+ykAjwfXCH4EAAG+AMEBnQKVAlIBQAHSBDYIQgWH/uD8AQHbAgwBSQO+CRkJ9/3j9bj7eQfKC38IJAXGAvb+W/1QAt4I7QgNBFMC7AQaBRwAxvu8/Q4EfwigBwsD3f4z/sQASgNIAyICwgJkBOoC9P0K/FACFgswC6ABhPqz/i0H0weLAd3/6AUhCSEC/Pis+f8ClAkjCM8DbwHQ/yX+wP9bBR8JNgYEAHD97f84A8ADGQJsAeUDZAdMBrj+u/dJ+h0Flw2vDCoFKf2l+F76VwJqCnELcQbrAcj/Df64/ugDOwcFApP7vP9SCYUIpv61/cAIewwNANn1pv05CwsMZwQGAwkGQgIl+wX9rgX2BwoD3AFFBUkDPfwQ/M4DVgZzAJD/VQiKC2QAfPbu/J4IEwdY/Xv9pAYZCJn/gPwABLkIcgIm+zn9KgTTBhMFqwNmA+oCqgJgAk0ASf5ZAfIIugxpB6n+R/vR/awAGwKmBMYGPwMf/Nn7XgUgDK4FRvuA/EcGDwh+/6X76QJKCSEGGQGPAXUC9f98AEAGrwcKAYn9rgO3CDQEqf/6A9MHagG8+poAmArDCB3/ef3IA/MEKgC7AM8GjwYo/5v9PwXtCGIBUfmr+xEEkghIB4gDl/+M/tUCHAdyA0r84P7FCtgO0QNb+bT9yAewBwwAZf6kA4kFtAFl/2gB1AMKBbwFgAOm/eP6+v8/BsgFlQJBBEcHhQOw+1D5t/3dApAGYwn+BwsBMPyA/2EEbgIN/rL/ZQSFBJACqwSMBi4BN/oD/LEDXAZqA54CZQQdAx0A/QCNAyMCwP98AmMGwAN5/nkADQj/CYADDv2v/FAAdgTrBkUFpQAY/08CdgNx/zL+tgQuCkcGxP/4/7oC9ADp/7MF9gkNBF79XwHTBj0ADPijAJcQVQ7e+wj1FgGICKX/Hvk5AtoLVwfx/qX/rgKD/3P+ZAafCzMEkvuK/vkELQM7AM8F+gn6AO32yP3iDKYN6wCf+2MCHQWe/tP8HQXfCYoDyv3tAWEHhgTy/p7/2QODBBYCtQDpAKUCogagCHYCiPhP944A3QdVBpADUAVtBe//fvxCAOwDzAHTAJsGFQtNBhH/Yv8tBPMElwJtAvACJAE3AUgGegmSBKz9Tf3VAMEB+gF2BbQHuAPi/vT/5gJmAYD/PwNcB9UDdf2d/psFFQhkBAsCQwPgArz/6/5YAisGdQcsBtoBivsI+dP+Lgg5DEMJogRKARH+Dvy1/uIEkQgAB60DsgHZ/5D9a/46BC8JwgX5+yH3Dv6QCdgMcAWa/Qj+2gLiAvP98/y9Ay8KZwfj/tv7rAGoB6MF0/7J/NUCOQqQCrYDwv0K/w8EoQQtAM7+PAQ1Cd8GdQEFAJcAaf6C/aIDWQq5Bsf8XftPBAsJdAI3/DwBggrHCukBuPqE+yQB4QX4BtsE4QFDAGcA8QH0BPUHdgfoAvT+G//5ANwB+AOfCKkKfQUd/dL4WvrJ/+kHdg6kC6X/Efer+nwCIANQ/1EA9QS1BVUDJAOWAmP9Ufr7AUcNvA05BID+ewB+ASb/6ACIB/oJYAX/ABoAiv4Z/d8B3QnjCUYBdvzRANMEVwF6/C393ABXA04F6wWrASv8j/5nB5EJCgH++gYB+wlHCegB1/6cAcMDCgMmAhkCjQJSBNcFGQO//Z/99gMgB5oB1vvF/o4FdAZQAp8ARgLMAiwCPQMJBDEB+P0HAHUF+QZuAq783vrM/ocGUwtPBhr7/fZn/xAJeAiiAq0CtAatBD39//rhALQGaQdWBlsFnwFK/NH7eAFTBsMFIQMsAjcBgP7n/Fz/tgODBYIDZQCT/60BggN3Ac784fr8/ZUCLQU4BgkGtAJT/ZH76f+XBf0HMgibB+wDVP3f+WH9oAMHBzQHTAUAAdz8xf2cAqME6wJVA5wFKAIF+kf5xAKwCN8C9PxGAhkKqAY4/PL4rP4JBP0ERgRpAnD/nf/WA/EETQAn/zsGVwrdAmP74gFdDiQPcAQO/Hb5KvcS+YQGcBWTEs/+dO+E8Bf6VQOEC5gOxgV094bzlPsnAfP+vf8RB6UIif+1+fMAOwr1CMsCJgL+Air9Effi/BULWRHlCKj7lfV0+OL+GgSNBooGswSiAcz+H/5a/wUABwA7AtUFEgUN//z75QB3BooEdP/C/7YDRAT7AUoBmwBI/kcAjAg/C8QAIPe8/d0J6AYI+tD56QZXCxMBUvon/+IBJP3G/qMJngo2+3Dy+/8eEDALJ/uo+HoDBAjhAH36s/u3/xkDEAacBTYAVPwI/+0CfAIiAocF1AXa/iz6kP80BiMEVwCYBB4JxAE79vj3ywXvDTcJTwGR/Zn7uPqL/hcFgAcoBRADpwEf/k/7/f0hA5gExAOtBNADF/1r93D7qAO3BMsAcALLB08F6Pud+S4C2AhOBdv+rv3Z/w0CpAViCNoDz/rQ+ZYDMwoqBFb7RfzLAoQD9/6O/cn/VQBbAMMDwAXA/6P49vwKCQcMhQIe/EEBFQaTAGD6+v4PB0EGXwHzA+4ISgM9+En5wAVZCr4BJv0VBegJBADT9QX8NAl/CUL+/PhT/gkDAQJ+AUYDoQFj/aj+JwXsBrgBHv/8AnsEsf7N+hwB3gp7DIYFzf2V+SD5kP3UBTsLbgibAIT68Pj8+1QDXQpqCZoAJPoX/EcA4ACMAuwInwtFA7D4x/h4AMsDtgK+BfoJHQQi9zH0HwAoC0UJLQKfABQBr/zS+B/+6gclCkIDePwz+/j8qf+dAyMGZwNQ/uT9QwKPBJkCqQHDA80D7/8v/qEBLATBAYcAPAUaCMYA0PbH+NsF7w06CM79JPsYAYQHsgeAAeX6+vqRAe4FrwJ6/ngBNwcjBd37yPak+60EXArMCTQDOvvB+nkD6Aj+ALP2FPwVDS8T0wZv+VX5Rv9NACYAkAV3CiMGp/0j/PEAaAJ2/qD8rgCWBVYGEgSsASn/Dfy7+kr+fQX1CV4G0f0B+qL/ngdBCFkC9f53AdoDkwFf/ib/wQJwBRwGsgRdAA77NPrn/wIHYAmkBoEC/P9pALgCWgK//M34TgDsDpMSoAM/8mnxpP2iBfYEpgUnCgUI1PtP8nD2RAKPCbcJAgd3AiH8ZPnu/lMH1AgMA9z+ygBmAzEBm/2d/8EGoQpLBfL6ifVv+soFsw5SDsIEkvkg9kb83AMDBT4CtQImBdgBhvl59/MABAzZDIgEVvw8+ff6KQFhCY0MfAYw/SL6t/7pBE4IbwgVBev+Kvrw+uf/3gRiCPYJVQZM/Gjz6fVEA0wPPRAUCKT+qvic91H82gT5CpYJpwKN/E77v/6iBEMJYQjoAQT8S/xgAOIBNACFAG0E5Qb8Azn+Svot+kf+BwbnDCIMdAOK+1/7ff+7AKP/ugE+Bj4GhQCh/CT/vwLfAR0AHwOHB7AFZP78+Uz8ngGqBp0KBAqyAav38vZpAEEJjwpXCHYG+wF2+jb3y/yGBf4JVAkUBZ39HPer+I0BMQj3BxIGQQXhAG/5pvikAYAJDgiJA34C5P/V+Cf4CQWsEeUM0/ye9fr7gQM+BroJSw2PB1f5g/E3+FwEBAu0C5gImgCy94D3GgAQBSMBQP94BpILXAPY9vz1GgB+CJgKDQrbBeT7ePSt+dcFHAq2BLEBzgWjB1AAzfYv9kgAjgwAENAGsfka9hT+5wWUBfcCRAQWBFL9Hvic/UMH0Ai0A7oBTgKv/Qj3Ffp/BpENigcO/rn82AEnBIwAmvyI/gAGuQu0CBj/E/la/M0CrAOd/+b9TwH8BbkH0gTF/bv3KPteCK0RjApe+qH0t/5zCdAH0/8T/owC2AOT/978YwBSBqMIowXY/4z7Q/waAbcExwOFASECjwMpAXv8DPxwAY0GOQaFAkkAhwD+AHgAnf9R/3QA1AMYCPwIkAMz+5738PwFB5cNyws2A5b5GfUP+fIC7ApGCocCBPwj/IX/FwCu/pABYgkwDdwFkPmB9U/9NgfACf8FnQFI/lv8Dv9jBmgKDQWs/Ej7Uf9FAHL/rwVNEO8P+//t8OLy8gBRC0IMYwiDArT7hPlJ//UEYQHC+sj+PwtXDnQBafTK9vAC+wjfBBD/Bv5VASIG4weFAQb2hvKw/sIP3BTSCyQAufn395b6PgJlCcAIUwNnAkMFAQLj+Bv4fgV/EWMLufnb8Xz7KQl4DCgGd//c/Mv8v/2c/wgCOwWrCR0MRAZf+GnugvS8BpMTARBFA9P7uP02AS8Adf54AscJkgp4AWT4pPo3BUcK7QNg+9v6pAAMBScGpwZEBg4DBP+Y/Ub+M//SAQEHSwqSB+sBfP7G/O36pfwLBZINtgyXAw38Cvta/SwA+QNuB2cHOgQfATz/bP6tAIwGhgrDBtf9/fc0+Vj/KQcLDa4LggFI9kf0evzyBkcNLg4ACXj+p/UK98wAUggUCZ8IQAlxBBL5jPM6/RUMRg/mBcP8dPqE+9X+iAY1DXMJBv6D+K39XAREBjwHMAhiArb2MvOC/2UPqxJ4CTP/6/m/+KL7ZwJhCDkJzwZBBAQAVPlQ9h/9rwmoEI4Lr/4P9d337wVDEsYPiQA49Bz2EgKWDCQPWApPAnb8CPxm/kb/hgDYBl4OjQxYAFD22/ciAPcGkgsmDWIF6PWD7+r8YA9FEVYEb/ud/Hb+0f7NBJwMJAkQ/av6VwVYCm8AC/i6/2cMKwwTAa35zfpy/xwFZwodCfD+TfY5+uQFuQt3CMYDOwHO/en6eP55BlcJYAVLA04FNwJL+Jn1KQLdD4QO7ANY/0gAPv0p+sgBOA4hD6EE8v0a/6/+3PzxAwYQzw7U/efxofibBlgMGAojBqkAK/uF/PcDHQa1/yv9kAVjDCoFAfkY+U8EwwroBkkCOAK+AOz7T/wUBTMLIAbj/Tj9VwA4/xX/cQhmElUMAfp28Xj7/wi+CzMHpAPMAF796f3WA9sH9gSDAAoBKQR/A8T+QPwdAbcKJQ8nB8L4fPLt+RsGMg3PDSYI6vsn8n746wkAD+cAavdxA7MR4Qk89wX17gECB6oAjv8zBpAGwf86/38EdQHo94n5hgckDm4FT/yG/csBjwIUBOAG+gMy/dD91wXbB7IA/f05Br0MqQYZ/Az62v/aBJwGbAdkBgYCq/05/av/jALXBTEIuQUW/0f7wP2HAbUCQwT+BtsEBP3v+VABZAiwBET+5wH0CVcHAPxR+CsAQgayAzEBuARKB5YDyf8+ARkD5QCV/3gDDQeHBGIAQgEOBPMBM/3c/VAERggWBW7/tv1gAGYDpwNDAbj+rf6FAbIEGQVCAjn/zf/3A1cGMgI5+9/61wMKDcIMVQRn/En67v1BBVwLcwns/9X5V/8BCecJVgJH/Qf+n/2Q+jj9Twj4EO4MLwA29pn0Lvp3BOkOyBFaCSv82fQi95b+mAV+CU4JDAXT/kn6M/qx/jkFsgmGCE8Bdfik9ar9jQtmEq8Kcvxf9q37LAIJA50D9ggcDCAEQfZP8V76VQcXDW4KfwNA+7r1+PjxBE8PAw5EA3r5v/aJ+kADkQ0WEQkI6fm/9C77rAKCBDQFGwhrB6T/9vhP/G8FDQmwBLj//P4fAOwARQOMBygJiQQf/YL5q/tFAEkE9gaqBh4BLvlR96P/aQorDN0DYvtM+nr+wgIUBr8IgwgCBDT+efpB+cD7tgQgEDURBwIL8C7uEf3gC+AOPwlfATf5qfTv+W4Gvw0dCWf/CPrq+kcAOgjiDKAHWfxL9xP84wG6A4IGhgp+Bl/57fEv+koITA47DN0HYACr9tH0V/9XCmkKJgUPBF0Dy/yl92b9sgcDCh0FtwEIAHX8b/x3BZ0NAQcJ9/nwRPuICZUPBgyAAW707u41+HIH/wwTCKUE8QSg/8T1+PVbA2INsQk0A0UEtwRp/D32df7OC04NUQRO/sD9KPxe+9YBeQrMCY4AN/rk+0IBQQZJCIcDLPpv9wcAHQijBO78JP2sASgA1vsL/yIH1Qi+A6oAaADX/DH4d/tQBiMOxgxtBSv9P/gZ+zIEkwm8BQUB+APsBy8Cx/e59qb/5wVwBLkC+wOFASv6sPjBAgQNVQr1/kL5ivyx/wv/0QG1CmQPMQd4+Vj0w/psBNEKvAyaCCf+vPS99fv/5AgwCowGewGd+5v3v/nXAIoGqQfhBR4C6Pwt+1MBYQkDCCT95vVS+3EH3g5CDSIF2vrH8zf0rfoJAuYItw8lEDwCUe165pL2xgxfFIUNOwVk/y/4EfTd+6UKWxAuCMD9P/qp+gD8HgLzC0EOLwN99SfzBPxTBXgIlgZEAg79HPl8+K77BQLRCJQKaAT++yz6aP/3A3oDAgHr/1gA1wJzB3cJgARF/ST8GAB+AXYABgTPCogKBQFe+C/3yvne/WQGVA+8DHr9GvEO88P8FgSDCQEOZAnP+EDrQfBmAXwLQghkARz+D/xw+fv5nf/NBWsGLgCd+Ff49AFeDAwMGgJu+tb6Ov5iAcIHfg87DjYBJvXG9fn+/AUgCN8HRARH/fn57f+ACEAIsf699mb4oQBmB1cIaQTD/jf60vje+40CowhICckEmwCu/+3+i/wb/aID4AljCAoCnf4R/rT7O/q7/7MHkAeqADH+iQD4/Nz0TvheCU4SuwUf9ef1XwHVA3b9tvzzAVABefut/NkEuwZ3/776k/3R/wz+2P8nB6AJmAG3+Br6kQP4CscKSgTF+7T2VvkkAjsKlAugBeP87/df+p4AkAOUAYr/6f9o/7H8tPsS/gEAIQDTARUEOgBA91/1WwBXDMwL3wGk+iv5D/k1+7cD1w1XDvQChfYD9DP7UQMjBV4Bhf5bABcDzwEA/zQAQQPaAAj6tPifAIIJPwvHBtr/yvdg8vH1jAFYC44MPQeS/jX0EO8V9ysGaQv7Avn7iP8VA239U/hQ/vsFZAG69m32YgA7BnUDowD1ADT+zPcm9mT8QwPeBJUD6QLeAeD+UPvW+Wz8pAJlB6sE3vxK+vcALgg9B68A8Pom94/2RP71Cw0R9wTI83Hu9vTw/FcElQ2IEA0D6e2T5k7zCAUPDu0OxArB/5bx+exs93EFYgljBGoAFwAW/kH54Pex/V8F8AZ1AVL7PPrn/Y4CNAUWBKz+Pfj49k/8qgGBAXn/zwAJArf94/gb/MwCxACu92j2bwChB88Dr/4UABUAa/hr8xv7owYbCPMBOP+5/wj8OvYQ9/r+zwbRCgIKZAG/87LujPoyC40OLwTz+Uj3kfnd/qwF4QYm/pT02PUV/9gEWwT3AU79gPWr8qD7uAcUCrkEKgHM/eH0de5m9ogFJwrQAwIBBQQSAQL3kfJB9+b6t/pv/xcJmwu9AxD8gPmQ9mr0Yvu7BokGJvv+96EDDQxDBH33f/Pk9Kn1NftfB2cNZQU3+yP7gv66+i718ffV/isAOf4/AF0DaQFe/gEASgCF94ntzPBoAG4NeQ/lCsIEOP2k9f3xcvOZ+DkBfAsxEJYJJfx18uzxB/iU/yAEZAOd/4L9wv0c/SD8LP9jBDYDcPri9OX5ZgKDBFIBN/+2/n/9K/2s/tz9h/l1+Db+ugKS/h74D/qvAnEHNQQt/Sv2z/Ga9Or+JAgXCUwGoQbSBTv8OO9U7Ez2QwPsCwQQWw20APLw2OsO9Kz9FwAXAJcD1AayBHAAzv7Y/GX2bfCa8x7/EQnoCo4G4f9f+HPyUvKf+JcA+gWqCG8IkwIB+Arxu/QX/1QGrAd6ByEG2P5B8x7uU/X7ADkGLARTAPj8cfqU+2YApgGp+jLz2fUdADoGTQTtAO3/p/2l+P71g/mmAKUGEgjSAjP54/Np+UQEzAjTAyL8Xvcb9hf5pABqB/4GcAFt/Zj6PPQl7jvyJQA5CykLYAR7/Uf3WPIz8v/2P/xhAFAFigh5BHf7Ofe3+mf+Ev11+oT60PuA/SwBGQTBAM/54/hC/9oCm/5C+qH8EQH3AAT+W/xw++L6wv3ZAmQCWfpl9D/41v8MAU/8S/nb+i7+MgHEAqoAzPv1+Zb9SQAt/DL2Hfi0AlwMYAwXAwn4GPNA9jn8y/5q/gkAFwReBXsBLfwQ+fP3Xvhq+tX7E/vu/EcGWBDvDVj+GfDn7bjzM/rDAB4HVQhzAzT/1/4I/aP3lvUs+sP9Ivss+Uz+xwRBBeACygJLAYX6u/SI9ib7B/xd/XYEGQrIBBj6tfZY+pv6A/YF9f/5yP5dAWoFHwnPBYT89vUJ9br0SvRh+dwDCgs5CjcGGQN4/lL3hfIF86D1Y/iM/pcIhw8+DTwE8vpl9EbxBvNk+ZMAcAVcCKkJRwe0AJX5h/V99Fv1hfh4/UUBPgJmAt4DKAVOAwX+8vdO9An1y/kBAPgEpwe9B6oEpf9v/Pr8Nf6v/GL6d/sn/8AAC/+T/cD+5QBvAWn/Vfvb9/j4pv5mAg3/IfnA+fEBJAkjCAYAePag8O7xDPoIA18GewSaAs0BCf7L9gryNPSO+gkAJwOpBI0E0gL9/3D71/QC8JvyKPzWBLMG5AN3AVEAav42+5r3lvSN9DP6cgNqCbwI1QUyBRMECv7B9e7xAfQo+ND8cgOJCloNlwqgBWQAkvkM8rvuJvLA+Dj+0wJfCOgMSwyRBfn7j/P47o/vBPXF/G8DTAesCC8ItgUoAXP7aPbg89z08/gz/hUCawNYA6EDzAM4AQ77wPTH8ob1qvkp/RUB5wXsCEcH0QEp/CH5WPnO+2v+Pv+3/mP/JQIwBKsCwP7Q++f6h/ok+tX6rvwn/on+r/7q/kz+oPxD+1T7ffz1/T//nv+O/ib9Yv2C/30BkgHs/4T9BPs5+e744Pk4+0/9DAE5BbIGUQSbAF/+Wf2h+//4NffS9+T6E/9ZAm8D+AJeAlQBNv5M+aX1d/Vy9xj5OvpX/KL/agICAxEBl/2D+m/55vn3+Tj5vvnw/NwAYgLbABT+jfuz+en4b/mi+ur7zf10APcBNgAr/B35g/iw+OH3w/Y199L5X/3a/9j/wv2l++H6efrl+O724/Yy+dD7JP2r/U7+6P4N/73+sf2U+035jPhm+RX6qflB+d75oPpW+mH59viK+dP6TPwB/Q78Gfr5+Db5Svk0+Dr36vfH+V77bPxm/dv98vzv+tD4/PaU9Xf1YPdf+pL8QP0r/fz8lfzb+wf7Lvpe+ST5+Pkz+4b7w/o4+uz6Ovyf/JP7Dvpc+bP5KfoK+t75ofo6/Gr9WP12/IT7m/qS+az4Ovgq+IT4nvlD+1/8Ufzm+xv8o/yL/Mv7BvtZ+pL5LvnM+ez6iPvO+7j8Dv5Z/gn9L/ul+RH4UfZ59Wb2ePiR+mb87P19/qn9OPw5+576zPn4+OH4f/kr+sj6nvta/D78Zfu8+pf6VfqZ+fT47fhQ+b35Qvrl+k77UftB+2L7hPuM+8n7VPym/Ev8jfv3+pD6MfoH+kD6lfrP+kz7Tvwp/fb87fsh++76tvov+gz62voS/Nz8GP0d/eL8Jfwg+2r6M/o0+kb6jvoG+0T79fpH+pz5Hfm8+Hv4efjX+JX5m/qu+3/80/yr/C78dfuE+oj56vj6+JD5Q/ru+rf7e/yg/L77R/oZ+Zj4gPiW+P741/ne+qr7Ffwm/OH7Vvu5+kT6EPoc+mP6wfr3+uf6pvpQ+uX5evlH+VX5ZvlN+Tz5fvn++V76bfpP+j36U/qQ+uH6Kfte+5D7s/ug+1v7M/ts+977J/wm/Af87/vm+/H7Cfzv+3D7zfqM+sb6B/v3+tb6CPts+4L7Ivum+m/6fvqk+sn69for+237v/sC/O/7a/vH+oX6zPpI+6D73/tA/L78/fzD/EX88Pv7+zT8O/zu+4T7V/t6+6n7mvtS+xr7H/tN+2n7T/sL+9n66voq+1D7P/s9+5H7DvxJ/DL8Jfxc/Jv8mPxa/BD8xft0+z77Qftd+2f7dfu1+xP8SvxR/GH8jPyc/HD8M/wh/Cj8Evzc+7f7ufu9+6v7nPu4+/P7D/zf+3H78vqJ+kj6Mfo++mj6rvoa+6r7R/zG/P785vyi/Gr8Tfwg/L37Wvtc+9b7Zfyl/Kf8tvzW/MH8X/z7++b7C/we/AP86Pv0+xP8Fvz4+9/74fvl+8z7pPuR+4v7bvtA+0D7jPvr+yP8Uvy6/EX9mv2c/YX9h/2K/XD9Uv1U/XL9jf2h/a79m/1b/Q392fy0/H38QPwy/Gn8xvwS/TT9MP0c/Rf9Mf1W/WD9Uv1d/aj9FP5e/mr+VP5I/kf+Lv7u/aX9hf2Z/cH92f3o/QP+I/4n/gr+8P3q/eb91v3Y/QX+NP4t/gP++/0X/hP+1/2s/cD92P2y/Xb9cv2Z/Zr9dP1w/ab92f3n/fv9Mv5k/nP+ef6N/pP+df5Z/mT+g/6h/tD+G/9Z/2T/VP9P/0T/Ef/L/pf+cv5P/k7+gf62/rX+of6//vb+7/6h/mH+Xv5v/nP+h/60/sr+rf6J/oz+nf6U/n7+fv6L/ov+gv6D/o7+mv60/t7+9v7v/vT+Mf+C/5r/bf8x/wb/0f6E/kf+O/5P/lv+Uf48/iP+Dv4C/vn93v2z/ZX9l/2e/ZL9g/2T/cf9AP4i/ib+Gf4K/v796v2+/Yj9aP1k/WH9V/1j/Yn9l/14/WT9if2n/XD9Ev3+/D79Y/1B/TD9cP23/a39ev11/Y79f/1S/Ur9aP11/XH9kv3W/fz99P36/SX+Ov4a/vr9C/4v/jn+Pv5i/on+i/57/oz+sv65/p/+l/6v/rb+i/5X/k3+Xf5T/if+Cv4d/kb+XP5h/mv+df5n/kf+PP5Y/oL+nP6o/r7+4v4E/xb/F/8X/y//Yf+N/5j/m//D////DwDp/8j/0P/O/5v/av9z/5T/j/97/5n/2//v/8P/k/+B/23/SP82/0b/XP9l/3v/ov+6/7L/pf+Z/27/Lf8X/0r/jv+q/6//zv/+/xMACAD2/+P/yP+u/7D/yP/R/8D/sf+6/8X/rP91/1T/Zf9+/2j/N/8z/2b/gP9X/yf/M/9R/zT/9P7k/gT/B//f/sz+5P7n/rb+kf6k/sf+zv7W/gP/M/80/wr/1P6Z/lf+I/79/cb9hP1z/a/9+P0H/vT9AP4p/jT+EP7u/fb9H/5D/k3+SP5X/oH+nP6G/mH+Zv6A/mX+Gf78/TD+X/5M/j/+i/7+/jD/I/8r/13/gP94/2T/Wv9P/0n/Wf90/4L/lP+4/8X/lP9e/3X/xP/n/9H/1v8NAC8AFgAPAEcAfQB2AG0AqQD3APQAsQCdANsAGAETAfcACgFNAY0BqQGlAZkBnQG7Ad8B7AHhAd4B7wH+AfoB7wHvAfoBBwISAhgCEwIQAicCUAJnAl8CWgJsAnQCVgIrAiACMAI1Ai0CNgJRAlwCTgJEAkcCPQIiAh8CQwJiAlYCNAIjAiQCHgITAg8CCQL7AfcBBAIEAuYByAG/Aa0BbwEsASIBPQE8AR0BFQElARMB0wCfAI8AcgArAPP//P8ZAAcA0v+w/6f/hP86//j+4/7n/tr+sP5//mj+b/54/lz+Jf4J/h3+Of4z/iL+Lf4+/iX+3f2U/WT9QP0d/QL97PzR/ML8y/zL/Jn8Sfwb/BP8/PvF+6j7xPvo++b73Pvt+//77/vX+9775fvA+4r7fvuL+237JPv8+gf7B/vb+rn6xfrY+sj6ufrT+vn6AvsG+yr7UPtE+yT7Nvty+4v7b/te+4L7svvC+7/7xPvN+9D74PsE/B78G/wV/Cj8Pvw3/CT8LvxT/Gv8Z/xh/HH8k/zD/AP9SP1+/aP9zv0G/jf+Uf5j/of+xP4P/1v/mv/B/9v/9v8MAAoA/f8VAG8A3AAjAU4BjAHnATECUwJgAnECiwKwAuYCGgM5A1gDmAPgA+EDkgNUA28DrQOuA3YDUgNbA2oDYANIAyYDAQPzAgwDGAPlAp4ClwK+AqkCOgLaAdYB8gHWAZEBbAF3AYIBcQFHAQQBsABiACEAy/9Y//v+3/7X/qf+V/4X/t/9if0m/ev80vyb/Dz85/ux+237Bfup+oL6dfpU+iD6+Pne+b/5lfld+RD5wPiK+G34Qvjz95/3Zvcy9+n2mvZu9mj2dPaJ9qD2nPZy9kr2WPaM9qr2pfau9t72DfcU9//28vb19v32A/cG9wH3APcc90/3bvdo92n3mffb9/73A/gX+EH4YPhq+HT4ifii+Mn4Dvlf+ZP5rvnc+Sn6Zfp7+pT61Pod+0r7ZfuL+7X7z/vm+xD8PfxY/Hf8vPwS/UT9Uv1t/Z/9y/3k/Q/+X/6z/uv+Ef82/1L/Xv9v/5b/v//W/+v/GgBhAJ4AwQDcAP0AIAFAAWQBjQGxAcgB1QHkAfIB8gHoAe0BDQIuAjICJAIqAkoCYQJZAkwCWAJrAmYCUQJQAmkCegJ0AmYCWQJDAikCHgIjAhwC/gHhAdgB2AHMAbkBsQGsAZkBeAFaAUQBKQECAdMAogBvAEEAHQD//9r/qv94/07/LP8K/93+q/6C/mb+Sv4e/uP9qv1x/S/95Pyq/Iz8evxe/DP8B/zi+8H7nftx+0L7IPsP+wH73fqt+pL6lPqM+lz6JvoW+iL6E/re+bb5t/m7+Z/5fPl++ZX5i/lc+Tr5PflF+TD5E/kQ+ST5NPk0+TD5M/k7+UL5Q/k9+Tr5SPli+W75Yvla+XD5mPmw+bT5ufnI+dP50/nZ+e35Bvoa+i76RfpU+lz6avqL+rT6z/rf+vf6HvtD+1b7Xvt0+5/7zvvr+/37F/w+/GL8fvye/MT83vzo/Pb8GP06/Uf9Tf1n/Y39of2g/aj9yP3v/RP+Mv5L/ln+av6P/rb+xP7H/u7+PP+C/6D/uf/t/ycAQgBFAFIAdgCeALoAxQC7AKkAqADAANYA0ADDANMA+gAOAQcBAAEJARQBDwEBAfkA9wD7AAUBDgEEAeUAxQCxAJsAewBcAEgAPAAtABsACQD6/+3/4P/L/6j/gv9o/1v/Sf8n/wf/9P7j/sf+qv6a/pL+gf5o/lX+Rv4n/vX9zP2//b39o/1x/UX9NP0x/R/9/vzh/NP8zPzA/Kz8lfx+/Gv8WvxE/Cn8FfwM/AH85fvB+637qfub+3b7VPtK+0/7Svs3+yX7F/sI+/X64/rQ+r36tfq9+sT6u/qw+rL6tfqk+oz6kvq0+sr6wvq4+sf62vrW+sj60Pro+vD63vrJ+sT6w/q++r76zPrb+tz62Pre+uv68Pru+vf6DPse+yb7L/tD+1f7X/tf+2n7hPui+7z7zfvV+9f75PsG/DD8Tfxg/H38o/y6/Lj8t/zN/Or89/z//Bn9Qf1i/XP9gP2V/bP90f3o/fb9Bv4n/lL+bv53/oj+rv7K/sb+wf7l/h//Ov8z/zn/YP+F/43/i/+X/6f/sP+8/83/0f/G/8n/5P/5//L/6/8BABwAFgD6//H/BQAaAB4AGwAYABAACQASABkABADk/97/9f/5/9j/wv/a//z/7//B/63/wv/Q/7v/oP+i/7D/of93/1j/Vv9a/0z/N/8w/zX/L/8S/+z+0f7G/rz+pv6F/mj+YP5n/mf+Uv41/ir+NP46/i7+Hv4f/iv+Kv4S/vf98f39/f395f3D/bH9s/2z/aP9jP2A/Xv9b/1a/UX9Mv0Z/f/88/z0/Oz81/zE/Lr8qfyM/Hf8dPx2/Gn8V/xR/E78RfxE/FL8W/xE/CX8JPw6/Dj8FvwB/A38HvwX/An8EPwg/CD8EvwJ/Ab8A/wG/BP8F/wE/PL7+vsR/BP8APz5+wr8G/wb/Br8Jvw2/D38Q/xS/Gb8ePyN/Kj8v/zJ/M382fzn/Oz86/zz/Ab9Gf0k/Sv9NP1A/U79Yv16/Y79mv2m/bn90v3q/QD+Gf4x/kb+V/5n/nX+g/6U/q7+zP7n/gH/Hv85/0j/Tf9c/3X/hP9//3n/hf+c/6//wP/a/+7/7v/t/wMAJAAsACAAKwBUAG4AYABSAGoAmQC1ALsAxQDVANkA0wDRANEAywDKANoA8AD3APoAEAEqASkBEgEKARYBFwEAAe8A9wAGAQQB+QD0APUA8wDxAPIA9AD1APkA9wDpANwA4wD1APEA1wDHAM8A1gDIALsAxADRAM4AxADJANQA0wDIAMQAywDRANQA1wDTAMMAsQClAJkAiAB/AH8AcgBPADQAOwBPAEYAJwAaACYAIQD3/8b/tP+5/63/i/9u/2v/bf9Y/zn/MP9E/0z/Mf8N/wT/C//5/tD+uP7B/sT+pv5+/nH+eP51/mX+Vv5N/kD+L/4e/gj+7f3c/dr91/3K/b39uv23/an9oP2m/an9nv2W/aL9tf24/bb9w/3V/dT9yv3M/db91f3S/eD98/3v/dz93P3u/fH95v3u/RX+Nf47/j/+Vf5r/m/+c/6O/rP+x/7P/uD+AP8f/zj/TP9Z/2P/dv+U/6v/tf/E/+L//P/+//3/FAA7AFAAUwBjAIwAsAC6AL0A2AAJATIBRQFOAV8BdwGMAaABuwHgAQICGQIvAk0CbAJ7An4ClQLLAgADEQMMAxgDPANWA1UDVgN1A6ADrwOjA54DrgO9A7cDqAOqA8ED2gPnA+0D9wMFBA4ECgT+A/oDCAQaBB4EFAQQBB4ELQQuBCcEKgQxBCsEFgQDBPwD+QPwA+UD5APkA9kDxQOzA6kDnwOMA3EDWQNHAzIDDgPdArACkQJ+AmkCTAIsAgsC4wG2AY0BagFGAR0B8gDEAJEAWgAmAP3/2P+v/3//Tv8i//z+0v6a/lD+Bf7M/aH9c/06/QP90fyb/Fn8E/zT+5r7aPs8+xX76/q/+pj6dvpO+hr66fnC+Zj5Xvkh+fn46fjd+Mb4qfiR+IH4cvhg+E34P/g4+Db4Lfgb+BD4Gvgv+D/4SfhZ+G74e/iB+JT4vvjt+Av5H/lD+X/5vfns+RH6QPp6+rP66voq+3j7xPsB/Dj8f/za/Dj9kv3z/V3+wf4R/2D/wf8qAIUA1gA7AbUBKQKHAuECSgO5AxwEfgTsBF4FwAUWBnYG5QZSB7kHJAiUCPUIQAmICdwJMgqBCtUKOguoCwUMSgyGDMkMFA1gDacN6Q0uDnsOyQ4GDykPSA93D7QP7Q8WEDUQUhBpEHkQgRCBEH0QfBB8EHQQXRBAECYQCxDmD7sPmA93D0UP/w61DnMONQ7yDbANcg0uDdcMdQwcDMsLbwsBC5QKNArZCWwJ5whdCN8HbgfzBl0GsgUQBYME/QNpA8kCLgKZAfkASQCU/+L+L/5z/bf8Cfxi+7T6/PlQ+a/4//ck9yr2OPVa9HrzivKh8eHwQvCe7+DuHO5p7b7sBexA65DqB+qY6SjptOhF6N3ncOf25njmBOaf5UXl9OSq5GXkH+TY45rjaeNB4x3j/+Ls4uPi4eLo4gHjOeOW4xXkqOQ25azlGeaZ5jjn4OeI6EPpLOo560LsOe027krvYPBg8VTyV/Nu9IL1h/aL9534tvnJ+tn77vwE/g//DAAJAQsCEAMXBCYFQAZfB3kIigmTCp0LrAzADdYO6w8CERkSKhMwFCwVIxYbFxYYFRkSGgsb+xvkHMMdih42H9MfdCAZIbEhLCKTIvUiUiOfI9ojCyQ5JF8kbiRkJEYkIST/I+EjvyOTI1sjHyPnIqsiYCIDIpwhNyHfIJEgQiDuH5wfUh8EH6AeIh6dHRsdjxzuG0MbohoKGmAZkxixF8wW4hXmFNgTwRKpEYYQUw8ZDt8MqQt0Cj4JBAi/BmwFDAShAjMBy/91/jL99/u7+oP5V/gt9/j1vPST84fygPFg8C3vDO4O7SPsM+tJ6nrpwej75xnnMOZb5Zrk1eMF4zjidOGt4NvfCt9L3pzd8txK3K3bFtt42tXZRNnT2HXYI9jv1/vXQ9if2PXYUdnK2Vfa2tpQ29rbkNxm3UPeKN8j4CzhKuIT4/fj5+Te5c7mt+ek6JTpfuph60fsOe0u7iDvEPAF8QLyAfMF9Bb1OvZ298j4LPqT++/8Qf6Z/wIBbwLQAykFjwYLCIQJ2goLDDUNbg6nD8sQ2hHrEgYUGBUOFvIW3BfRGMEZoRp3G04cJR3wHbQefB9QICkh+SHEIpgjdiRTJSkm/SbWJ7IogylBKu8qkSslLKssJi2hLSIuoy4YL3Evqy/ML94v4i/VL7ovmy93L0Av6S55Lgcumi0dLXUsqSvXKg8qTCmBKLAn5SYfJkklUyRBIx8i8yDAH4EeOR3rG5gaRBneF0wWghSVEqYQvw7ODMcKuQi2Br4EvgKwAKL+mvya+pn4kPaA9HDydPCY7tzsN+uq6T/o9ea75X3kO+MK4vHg79/+3h7eTN163J3bttrK2eDY9dcJ1yHWR9WD1MzTE9NX0qXRCdF80PHPbc8Pz+DOyc6tzpjOrs77zmLPxM8k0KDQS9EY0vPS1tPP1OrVIddj2J/Z1toR3FfdoN7o3zLhg+LW4yLlYuaa58/oBeo863HsnO267tPv7fAG8hPzEfQN9RD2GPcf+Cn5Qfpm+5H8wv0D/1cAswH/AjkEdgXABgwITQmPCuwLbA3yDl4QrRHxEjYUbBWHFpYXrRjRGfQaDBwbHSUeHx8HIOMguyGLIkoj/yO3JHYlMibnJqIncihJKQwqrypBK9MrZSzwLHIt9y2ELg0vhS/pL0MwnDDwMDAxUzFcMVoxUTE5MQsxxzByMBAwnS8cL4su6S04LX4stivYKuIp6Cj8JxQnFSb9JOMj0CKxIXQgMh8NHvsczhtwGv0YjxcWFnQUuRIUEZcPHg6FDNoKOgmcB9AFuwN8AT3///yv+lX4GvYP9BTyBfDj7cDrlelR5wTl3+L74ETfrN1G3B7bF9oQ2Q7YKNdQ1mLVWdRg05nS89FT0b7QTdD6z6DPHM9vzrfNFs2SzB7MrctRyyTLHssSy+PKrcqfyrzK4Mr5yjDLsct4zF/NTs5dz63QOtLY02PV5taH2E/aKNwI3v7fFOIv5CfmB+js6dbrou1O7/fwqfJB9J/14vY5+J353Prm++P88f39/t7/lgBOASMCCwPrA8MEsAW9BtQH2wjZCegKCAwgDTEOWg+jEOsRGBNBFIAVwRbiF+8YDxo7Gz4cCh3SHb8esB91ICAh4iG7InUj8yNbJNYkXiXUJTAmjiYEJ40nGCiYKAopdinrKXQqCSuYKxUskCwVLZgtBC5cLrwuPi/aL3Ew8jBXMaQx3TEGMhMy8zGqMVYxDDHBMFUwwy8cL2gumC2bLHYrNirsKKYnZiYcJcMjbiIyIfEfeB7DHAkbbhnZFyQWWxSrEhwRkQ/rDS0MYAqGCJkGlQR8AlsAQP4n/P/5xveD9TLzwfA67r3rRemo5unjWOE030/dWNtf2b/XjNZr1RrUytLI0QvRUNB8z7HOEc6ozXHNUs0qzfTM08zVzMzMjMwzzAfMEswjzCTMMMxPzGTMXcxRzEnML8wHzArMV8y7zPvMOs3Vzd7O/s/u0MzR39I11J3V8dZA2LfZbNtO3TXfB+HQ4q7koOaA6DXq2OuW7WnvMfHc8nf0BfZ599b4K/po+1/8D/27/ZT+dP8aAJQALwENAvwCwgNrBDMFNAZGBzYIBgnsCRMLZgysDcsO4w8cEXMSyBMGFTEWXRelGA8aaxuEHG0dfR7THyEhHCLoItQj3iTEJXcmIyfXJ3ooBSmQKRoqhCriKm0rJCzBLCctii0RLp8uCy9qL+UvdTD4MFwxmDGpMawxzTEJMjMyPDJKMnMykDKAMkcy6jFaMagw/y9hL50usS3WLBssPSsTKtMoryd/JhIlfiP0IXAg3h5WHegbYhqjGN0WRRW3E/oRJRByDtIMDAsfCToHZAWGA6YB0f/q/dX7uPnD99/12/PE8dHv8+3s66/pc+dh5Xnjt+EM4E3eZNyC2t/Yc9ck1g/VRNSA04XSg9HL0EPQr89Ez1HPhc9Mz9nO786Pz9fPfs9ozzTQGtEs0dfQDdGL0SzR1M+cziXOGs6Fzg7QStJP0yvSkdB50CvRl9AAz/LOSdG702DUmNSm1uHZnttF2zLbQt2H4C3jIOWS59jqCO5r8D/yDPT39d33sPlx+yv9+P7fALMCQQSXBd4GDQgJCe8J8grrC44MAw3XDSEPPRDAEC4RMxKKE10UmBQFFRUWTxc+GC4ZhxoPHFsdjB7xH1khciJ3I9EkRSZLJwYoGimTKscreCwgLQkuyi4fL3EvGDDFMBcxTjG+MSQyGTLbMe8xRDJSMvYxnTGTMbIxwzHDMcQx2jEjMpYy5DLQMo8ycjJpMisyxzGLMXsxSDHOMDMwfi+DLkgtECz1KsYpbigZJ9MlZSSuItsgCh8cHfUavRiZFmoUBRKEDxsNzgqCCC4G0QNfAeP+d/wU+nj3kPSx8SjvxOwc6jjnf+QL4oTfp9yf2bbW79Mu0X3O98uayU/HLMVTw6HBw7+cvX+71bmquLu38Ladthy3O7heuUO6YrtLveO/isLtxF/HOspnzZ7Q09Mq15fa2d294EXjlOXc5zjqley+7qfwgvJi9BH2Uvc0+Of4cvnI+Qv6YPqh+pT6Vvo5+jr6APpr+c34d/ha+EL4J/gV+An4DPgw+Gj4hviU+M74OvmN+af54PmN+nr7Sfz//OT99f7r/7UAkAGKAm0DJQT0BAgGKQcKCL4IkgmNCmgL9wt5DEYNZA6DD3YQZxGJEscT4xTZFd8WExhgGbIaEBxvHacesR/AIPEhICMwJEIlhCbnJzwpeCqgK6gshS1ULiQv0i9BMKUwODHXMTQyUDJmMnUyQDK+MSsxozD7Lywvbi7YLS4tRixIK1sqWikbKMomoCWMJFYjBiLKIKkfhR5ZHTocHhvuGbAYgRdZFiIV8BPmEvYR+BDtD/YOBg7vDLILewpMCfcHeQYQBdUDjQIJAWz/3/1M/JT6z/gd92b1hPOK8Z3vsO2n66bp3ect5krkPeJZ4LTeCt0523rZ/teb1hzVmdNK0ifRBNDqzgPOQc1hzEXLHsonyWPIu8c6xw3HUMf0x9DIzMnvylPM/83gz9vR8dM51sHYedtD3hTh7OO+5mLptuvE7bvvuPGn83P1KPfY+Gv6r/uR/CD9YP0//dD8TPzU+0r7hfqR+Y/4hPdf9iP16fPO8u3xVfH78MPwrPDe8F/x+PF88hPz9vMU9S72R/ek+FP6HPze/bb/twGvA3gFNQcVCfoKrww9DtYPfhH+EjsUVRVnFlgXABhhGKgY/RhiGb4ZChpaGsAaLhuBG7gb8Rs8HIoc0hwrHaQdLh65HlIfAiCvID4htiEtIpwi/SJoI/QjjiQbJZ8lJiaRJrcmrSasJrImjCY7Jvcl1SWeJSUljiQCJG0jqCLEIfMgNiBsH40etx34HEccnhsBG2UauBn9GD4YeBejFtAVGBVvFLQT6xIuEn0RuRDZD/wONQ5wDZAMmwumCrMJsAiWB2YGLQX3A8ACcQH8/3f+/Px7+9P5GPh/9gP1aPOf8ePvWO7L7BTrZun856nmGeVY48HhZeAC34bdPNxQ23zaedli2HLXkNZ61T3UIdM50kzRRNBcz8TOVM7OzT7N4czFzMbM2sw3zRLOX8/s0KzSttQB11TZidvF3TPgx+JV5eLnmep67T/wtvL69C33NPnX+hT8Jf0p/gX/k//Q/9D/qv9g/+X+IP4P/dL7iPox+cX3X/Yv9UD0efPK8jry1fGa8ZDxwvEo8rvyi/Oo9Pn1Ufes+DX6+PvP/ar/pAHMA+0F3Ae1CaYLmA1SD9cQXxL4E2MVdRZSFzIYCxmlGfcZMhqCGtMa+xr7GgAbIRtHG1UbWxtzG48bkhuHG5UbuxvSG9Yb+htRHKsc4xweHYQd8R0wHlEeiB7THgofNx+DH94fECAXICogSCA1IOMfnR+KH3UfKB/MHpUeah4WHqAdLx20HA0cTRujGhEabxnCGC4YqxcHFzMWYRWxFAsUUhOPEtcRJBFrELIP/Q4+DnUNtgwJDFsLnQrfCTAJiQjWBxQHSQaABbgE6wMLAxQCFgEbABb/9P3B/JL7W/oD+Zn3O/bc9FLzrfEp8M3uV+2q6/zpeuj55k/lpuNC4g7hyN993m/dndy627Hav9kC2T3YOdcf1jXVe9TE0xLTjNI80vvRq9Fb0S/RPNF90e7RndKk0wDVjNYq2OLZxtvM3drf7uER5DLmQehi6sbsSu+a8azzx/X198z5CPv8+w39Ff6u/u/+TP/O//f/hv/O/iz+ff12/DD7Dvos+U74Uvdv9uP1o/Vq9Rz17/Qf9Zn1GPaP9kr3f/j5+WH7wfxk/kwAIAKzA0UFDQffCIMKFwzQDZAPDBFGEnsTrRSOFQEWTBa5Fi4XZRdSFysXDhfgFoQWFRa/FX8VJRWjFC8U8xPJE38TMRMkE1ETZhNRE2YT0hNLFI8UzRRLFfEVfhYDF7oXihgrGacZQRrxGm8buRsmHMgcRx13HaEd9x0+HjIe+x3eHcwdjB0hHbkcVBzQGzUboBoFGkwZgRi/FwQXPxZ7FccUEhRJE4wS8hFaEZ0Q2w9HD8wOMg57Dd0MXAzRCzgLsgo9CrsJLgm1CEEIqAftBjoGjAW/BNkD/AIXAgQB2f/E/qz9UvzW+pf5iPg395T1EfTW8nLxre/+7cjsrus46q/ojeee5lXlyOON4q7hoeBE3x7eb93G3MTbtdr+2XnZuti919DWDdZR1ZPU9dOR02jTgNPX01bU69Sf1YDWhNej2OrZYdsC3dbe6+Ax43vlvOcC6jvsOO4A8NLxs/Nc9bj2G/i1+S/7J/y+/En9rP2K/fD8UvzZ+0L7Zfp/+cf4JPhi94D2lvWu9M3zBPNj8vzx7/FL8uTyh/NG9Ez1evaF9374w/lo+xD9j/4uACgCKATIBSkHsQhYCrkLvQy2Dc4Ozg+EEBIRphEvEnkSjBKaErcSwhKeEmMSNhIVEuQRnhFiEUMRLBEPEQgRKhFPEVIRVhGSEecRDBIaEnwSNBPHE/gTLxTBFF4VpBXMFUoWBBeGF9AXShj7GHsZrhn3GYMaBxtJG4Ub6xtNHHgckxy/HNkcwhylHJ8cghw0HOMbrBtQG50a1Bk6GaYY1xfvFjcWkxW+FNITGBN3EqMRqRDjD1UPqw7gDUcN+wypDB0MhgsXC7kKSQrXCXcJGgmwCEAIwAcdB2UGrAXWBMIDlwKPAX8AG/+C/ST89/qC+bv3Kvb99LHz+fFO8CDvE+6r7CvrFepC6TPo+eYN5nTlvuTd4zfj4+J54s7hOeHu4J/gCOBW39DeZ97o3VHdw9xJ3OPbmdtr20/bUtuH29jbHdxe3MvccN053i/fcuDw4XDj6+SB5iTopukj6+bs4u648E3y7vOv9TP3RPgp+SL69vpd+4T7tPvZ+7L7SvvZ+lr6oPmw+Lj3xvbQ9eX0GfRe86/yMvL28cvxlfGY8RDyz/KF80f0Y/XN9jH4g/kI+9P8pf5TAP0BuQNpBfUGbAjRCQoLEQwEDe4Nsw5MD8kPKxBfEGwQaxBWEA4QoQ9DDwAPsg5NDvINuA2LDWANQw0rDQ8NEA1YDcMNCA4/DsQOmA9LEKcQDBHKEZ8SNBOzE3UUYBUUFowWEhexFzIYiRjnGFUZqxnjGSAaYxqCGoAakBqxGrIakRqGGpUaexolGt4ZzRmqGTUZnxg8GPsXkhf8FnoWHRa6FTMVnhQSFI4TExOlEjgSvBFAEdwQhhAhELUPZQ8uD+sOkQ46DvANpQ1XDRMNzwx1DAcMlgsXC3QKwAkZCWoIhgd4Bm4FYAQaA6kBUQAZ/7j9H/ye+lb5/fdk9tH0hfNS8v7ws++q7rftm+yB66zq9OkO6Sbonudf5/XmXeb/5ezltOUl5ZfkQ+Td4ybjXuLa4YbhIeGt4FDg+d9238veI96i3V3dZN2v3SLeud5830ng7uCG4WLijuPC5O/lY+cx6fjqgOwW7vHvsfH08u/zDPUr9uz2Y/f496n4DPkD+dj4p/gz+GL3d/ag9cX00PPj8hjyZPHD8Erw9++z74fvke/P7yPwn/Bz8ZXyy/MH9W32Aviq+WL7PP0Y/8AASwLyA5sF8gb+ByAJaQpzCw0MgwwQDXMNZw0aDdgMmQwyDKwLKAuYCu4JRwnDCFMI6geeB3YHUwcyB0kHpwcWCIQIMwk4CjoL+Qu8DM0N8Q7JD3sQbhGZEqATcBRBFRUWuxY3F7gXKxhVGEkYVxiBGIAYTBgrGDIYHRjLF2oXHhfJFlsW9xWxFXUVPxUqFSsVFBXoFNYU4xTgFMgUyBTkFOkU0RTVFPsUBBXcFM0U9RQGFb8UUhQJFNQTgBMXE70SZxIHEq0RUxHFEPgPPA+9Dj4OgQ23DCQMoAvmChMKXAmbCJUHewaeBdEEsANcAlIBlwCk/0f+6PzQ+8P6hPk++B33+/W/9JTzi/Jp8Rnw8e4r7nPtbOxK63Hq1OkR6SXoZ+fx5nnm0+Un5ZnkC+Ra46jiI+K+4UHhmeDv33HfEt+X3ujdP93e3LTcfdw63ELcx9yE3SPetN5633vgguGF4qrjBeWB5hTow+l46w/ti+4C8GDxfPJg8zv0E/W/9UT2yfZF92n3GveQ9vb1K/Uj9CnzefLe8QzxG/BZ78PuFe5P7b3shuyK7K3sA+2i7XTuaO+C8L/xEPNx9PL1k/dH+Rb7BP3q/pcAGwKgAxgFSwY+BzcIRwkZCnYKkgqyCskKnQozCrYJNQmfCPoHVwe3BhoGlgU4BewEnQRfBEsEYQSdBAsFpwVSBhAHCwhBCWwKZAtnDK4NCA8mEB0RNBJnE20UNxX0FaIWFRdTF5kX7BcEGMQXZxcYF70WPBayFTkVwBQ1FKkTIROIEukRfxFYETkRBRHsEBURVhF/EagR+xFoEsoSLBOiExMUaBTGFEwV0RUWFiwWUxaTFrQWmRZbFhkW2hWXFTwVsBQAFGcT+xKCEsYR6hAmEG4PnA7DDQoNWQyJC7sKIAqPCbwIwgf8BmQGmwWLBIsDwQLxAfEA7f/6/vX90/y/+7r6jvk8+BH3E/bf9Fvz+fEK8TfwHe/y7RjtaOyA62rqfem26NDn3uY05s7lPOVU5Hjj9+Kb4vzhBuH/3yTfZN6G3XfcgNsK2xzbQNsa2+La/tpn28bbG9zD3OTdPt+h4Cni6OO45XznRukQ66nsFe6Y70Hxx/II9ET1m/a19z34YPhp+D34p/fu9oL2M/Zs9SL08PIh8kTx6+9b7ibtX+yp6+DqReoe6l/qzeo+67jrX+xM7XDuuO8z8ffy7PTh9sr4vvqw/HH+CACxAW0D7gQQBhMHJggICXQJlgm/CeUJuQk0CZkIEgiJB+QGIwZMBW8EtwM/A+MCdwIQAucBCgJXAr0CPAPPA4QEgQW6BuQH6QglCtYLkg3UDsYP8RBOElQT5BN8FF4VKRaVFtYWHhc1F+oWehYmFskVLBVyFNQTPxOSEukRXhHVED8QyQ+EDzYPyw6UDsIOCg8kD1AP1g93ENUQGxGqEWgS9BJcE/kTwBRQFZ4V/RV7FskW0RbVFuoW2RaPFj0W+BWbFR4VqBQzFJATxhIQEnIRuBDmDzIPmQ7jDQ8NVQyzC/UKKAqKCQgJVQh+B9QGTQaHBYsE0ANeA7ECoAGiAPH/IP/p/bP81PsA++n51vgJ+C339PW49N7zG/Py8Zrwne/s7g7u9+wD7DnrSOou6TLoWedr5nPls+Qo5IHjouK04cfgyN/R3gvebN3d3Inckdy53MLc5txz3Tbexd5N31Dgy+FH47Lkduac6KzqYuz17XrvwvDo8VTz+PRC9hD37PcF+bn5kfkH+bT4aPir96728PVc9XP0LPP28fPw1u9+7jbtROye6xbrnOpC6jDqheoe67HrPewd7XXu6e8v8YryWfRv9l/4G/rg+6z9Sv/BAE8C6ANABUEGFQe/BxwIMQg2CD8INggRCM0HRwd3BqUFEwWMBMYD8gJ/AmICLALRAbcBAAJgArMCQAMXBOIEjQWDBvkHjAnWCgYMaA3UDvoP7xD4EQQT3BOOFFEVDBZ6Fp8WtRbHFqgWUhbtFYgVDhWEFAEUfhPlEkgSxxFfEfUQmRBqEFYQNhAiEEkQlhDLEPIQUhH7EZ0SChNvE/cThRTqFDIVgBXOFQ0WSRaJFrEWoxZwFjkWBBa/FWoVFxXWFLAUkhROFMwTNxPUEpgSPxLAEWERQREkEd0QlBBfEA4Qhg8KD8MOZA6qDd0MXwz5CzQLIQovCWEIWwccBgAFBwTYAoUBhQDP/8X+P/3l+yD7dfpm+UX4jvcJ9zv2SvWg9CT0bPOK8uzxjPHz8AbwIe9p7o3tYOwb6+vpsehZ5xHm8+TZ45viR+H/377edt013CHbbdo12mPautos2+bb4tzG3XPeYd8A4RLjEuUW54XpOOyM7mTwRPJb9Cj2ZPeE+O35S/sm/KD8CP08/ev8K/xO+1T6F/mw91j2AfWH8w7yx/CO7ynuwOyf67Xq1eks6QrpUOmV6dTpbep766jsxO0F76bwkvKQ9If2Z/go+uD7sf2L/zUBoALmAxUFHQbyBpIH6gf4B+0H6Qe8By4HaAbCBUYFrwTiAwIDKgJcAbYASwDw/3z/Nv+C/ysApwDhAGABZwKbA6AEpQXxBnMI8wlsC98MLQ5SD4IQyhHlEqUTQBT0FKcVEhYqFhcW9BXJFZgVQxWdFL0T/BJ7EvURMRFfEMcPYA/3DoQOIg7bDbkN2A0wDoUOvQ4RD7UPfxAcEYkRAhKmEmETERSjFA4VcBXtFXQWuBadFnEWfhafFnsWBxaGFSMVxhRWFNETShPXEogSOxK4EQYRfBBEECYQ8g/MD9gP2A+XD1YPXA9iDwsPmA6DDpcOKg5IDa8MjAwhDP4KsAnECOUHlgYeBQgELgMMAq0Ae/9c/uf8Rvsa+m/5qviN95b2EvaS9az0pvP58ozy/PFH8bHwOvCv7xvvr+5B7nDtPewa60DqY+lF6CjnXeay5avkM+Oq4VLgFN/o3Q7drNx/3EDcE9w43ILcj9x43NrcCd6h3yjhweLZ5Fznrelx6/vsw+658IXyLPQM9ij4+/km++z7oPwE/bv8CPyL+0n7qvp5+Tz4Uvdj9v30P/OQ8QTwee4K7errHeuT6l7qcOp16kfqPurB6rXrxOzr7WbvL/EB8730evYz+NT5eftI/SD/tQDyAQcDFwQRBcwFLAY9BjYGQAY8Bu8FagXtBHMEtwPDAvQBVgGgANz/ef+C/2r/Af/b/kr/yf/u/y8ACAEKAqwCVAOfBCkGKAfHB8gIFwrvCk8LBgw9DTcOog4UD9YPURAcELMPqA/LD7gPhA9nD0IP6w6RDloOCw54DecMqwyqDJ4MfwxwDHYMkQzKDAANCA0LDWMNBg55DpUOww5FD80PExBIEKYQAREjETURYhF6EVkRPBFaEXoRVhEWEQURFxETEf0Q9RDrENEQzhDuEPQQxxC0EPIQQRFWEUsRTxFCEQMRuRCCEC4Qrw9dD1MPGA9aDn8N9wxtDGwLNQpSCaoI2QcAB3EG4gXWBJQDvwI1AlYBOwCd/3z/E/8f/j79xPw2/Ez7bvrg+UH5V/iB9+r2G/bZ9Kbz4fIN8qLw/+7P7fHszetU6vzo7efa5o3lIuTF4pjhuOAX4Gvfhd6Z3fHck9xU3Bzc7dvX2xfc29zS3XLe3d7a36/hluPp5CvmO+j+6pHtgO8e8bzyVfTv9Zj3G/lM+n37Cf18/vH+U/6L/S79yvzQ+4L6efm8+Nb3kPYV9Yjz7PFZ8O/un+1K7BfrZupm6s7qJOs561Lr1+vM7NPtwu7/7wLyl/T49sL4UPoR/Pf9s/8xAZYC8AM4BWsGYgfXB8sHnQeOB2AHvgbLBe8ERQSZA8QCxwGeAF//V/6w/SX9evwG/Dj8yvwL/fP8Lv0J/gL/rf9fAIQB5wImBFgFswb9B/AIygnfCuYLYwyNDBAN9g2MDnkONQ4wDisOyQ06Dd4MpwxRDOMLlgtYC+YKUgr/CRQKQAoxCgYKIAqjCkkLvAv2Cz4Mtww5DZkN9Q2JDkYP4Q86EHIQnhCuELIQ2BAaETsRMRE4EWgRfxFRERIR/RD4ENoQxBDlECQRTxFuEaYR5BH+Ef8RDBIeEiESLBJQEm0SZxJWEkQS8RE6EXAQ4g9dD5IOrg0MDYgMtwuiCrQJ+ggYCAwHPgbLBVgFwARGBAwEzQNmAwwD1AKLAjICEAIhAv8BhwEXAdcAawCd/8P+I/56/YT8ePuN+oL5FviQ9j315PM28nTwCu/h7ZbsJevY6a7obOcZ5vHk+OP/4hLiaOEE4bzgjuCL4Jzgm+CJ4GrgJ+Dh3wvg2uDl4cfirOPY5AXm4ebD5yzp5upi7L/thu+K8RbzLfSh9bT3m/m/+of7bPwk/Uf9Iv0s/UP9CP2Y/Dj8qvuC+vX4k/dp9gf1VPO98Yrwf+9f7lDtnuxO7Cfs+OvF673rGOzm7APuXu8K8QLzA/Xb9qD4fPpe/CT+3/+zAYIDDwVRBmYHRQjICO8I3wimCEIIwQcwB3oGkAWUBJwDggItAeP/9P5L/qL9Ef3U/Mv8nfxk/JH8Lv3V/W/+Zv/SADQCQANXBMsFOAcoCN4I4AkTC/QLfAwaDdsNUQ5VDjcOGQ66DQ0NhQxlDEoMwgv7CmwKFgqSCcgIGwjiB/4HJwhJCH0Izgg2CbYJVgoDC58LPgwZDUAOZw80ELIQPBHzEY8SyxLREvoSTxOLE40TcRNKEwMTnhJDEv0RrRFPEQ4R+xDoEKYQThAaECMQXhCtEOwQABEKEUERlxHCEbURvBEBEj0SIhLUEZ8ReBEmEaIQBRA8DzgOOQ2FDPQLLAsyCl8JyQgiCEMHZAa5BT0F4QSsBIoEVAQdBBsEQAREBBUE5AO/A3sDGAPQAp4CNAKFAeUAZACQ/yf+m/xp+2D6AflA93v14/Nh8u/wke8o7p3sJOvr6bnoQee35Zrk/uN147ji9eFu4SfhAuHt4NngwOC84O7gPeF84b7hUuJW44fkhuUn5oLm3eZ+52joaul+6vPr4u3P7zDxK/Jc8+T0QvYr9+f3wfiW+Ub6DfsR/PT8N/3S/BH8FPvL+Vr4HPdC9qH15/To863yZvE68CPvC+4G7VnsHuwv7G/s+Oze7fjuGvBC8YHy1PND9fL26vj6+vn87/7QAGACigOZBNQFFgcPCLEIHglNCSIJtwg9CLEH8gYSBjsFZARrA2ACdAGpAN7/Df9D/mz9j/wN/Dj80/xf/dr9pv6t/2MAsAA1AWcC7ANBBXsG5QdLCU0KBwvcC8MMWw2dDeoNXg6eDnkORQ5WDnsOTg7IDTsNzwxhDNMLPgvKCnwKOwr8CcUJoAmWCbAJ+AljCtIKLQuAC+oLbgz2DHkNFQ7kDtIPtBBrEe0RPhJtEpESpxKmEp4SyRI6E6wTyBOHEykTyxJWEscRUhEdERERBBHtENkQ0hDbEPgQFREQEewQ1xDxECURVxGNEcoR6BHEEXURIxHIEE8QzQ9pDxMPiw63DcAM1Qv6CikKaQm+CB8IggfiBkEGqAUsBc0EdQQZBNUDsgORA2UDUwNeAzEDlgLqAaYBlwEjATsAev8f/6D+hf0h/Pb68Pmq+CX3svVr9C7z+PHB8FDvj+3W64rqeOku6LrmjuXA5PnjFOND4pDhv+DU3ynf4N633pPewd5g3wngReAk4BPgVODn4Ljhq+Kr48TkDeZg54boqOk/63Dtyu/h8cjzsPWE9yD5pvow/In9kP6N/7wAzAE6AgcClwH8AOr/SP53/NX6aPn992v2p/TY8j7x4e9v7rDs9OrD6TnpDOkc6ZPpiurW60Dtqu4N8IPxV/O39Wr4E/ud/SkAnAKjBCwGigcGCZYKAgwJDXINRw3hDIcMAwwIC8oJyAgICA0HnwUSBL0CjwFdACn/9/3M/O37r/vp+xT8E/xh/DT9Df57/s/+nv/yAHUC8wNoBa8GwQfdCBkKFAuHC+QLwgzsDagOyg7eDkAPlg9rD9wOWw4nDiwOPA4rDuUNgw0qDdgMZQzSC2MLVQueC/8LLgwQDM0LsgvXC/4L/QsKDHcMJg2fDaUNdw1qDY4Nzg0fDoAO8A57DxsQlRCtEIwQqhAsEbUR7BH3ETkSwRJEE4oTqxPkE0kUpRSkFDQUrROCE7UT4RPDE4ITQhPXEg8SHBFeEO8Plg8eD3QOkA19DHILrwozCsMJPgmzCDcIxgdWB+0GmwZkBjwG/QWVBS4FFAVKBXUFTQXvBJYEOQS8A0ID+ALBAloCywFBAawA4f8C/13+zf3R/FL72vnT+Ar4H/cL9vT0xfNW8rrwHu+d7UnsPutf6kXpvecm5vnkMORg42bijuES4dLgj+A04NXflN+L36nfqd9m3yffbt9b4HXhG+Ic4tHhvOEG4nbi8OLe48DlUeiF6rXrc+zH7ePvHfIH9OX1+vcM+tL7a/0M/5kA2AGwAgQDiAJLAQIAbv9u/yn/BP4b/M35Rfec9B7yLvD07jbugO1x7Ajrsunr6NPoMOna6ebqZuxD7k/wc/Ks9Pr2Zfny+4f+AwFgA7UFAggcCtALDQ3hDXYO6Q4yDyQPpw7hDfkM2gtdCp0I6AZhBeYDVgK4ACX/qf1e/Ff7fPq1+Sj5EvlY+ab5+/m++h/8t/0L/yQAVQG2AioEtAVkBx4JtQokDHINbw7yDjUPmw8mEHUQXxAkEP8Pzw9nD9IOMQ6DDcgMGgyEC+oKQwrECZcJjwldCQUJ3ggiCaMJFApmCswKZAsHDIIM3wxgDSIO8Q5/D8MP8A8qEGYQlBC7EN8Q8RDqENcQwRCbEGgQRBBQEJAQ7hBDEWwRZBFVEW0RpxHgERgSaxLMEv4S7hLSEtkS4hK3ElgS4xFdEcYQPBDYD3IPzg7vDQcNJgw2CzgKWQmqCAwIZAe8BiYGowUzBdoEmQRvBFsEWQRWBEcESgR2BK0EwwS5BLQEtgSSBD8E4QOTAz8DzAI0AnQBgQBy/2r+aP1H/Af72/nP+Kv3SfbX9JDzYvIc8bLvQu7g7JjrfuqS6abomOeJ5qjl5uQM5BbjP+Ki4RDhW+Cd3xjf4N683mTezN0t3cncrdy03Lfcp9yG3GbcftwZ3VveJeAo4vnjKuWo5RjmfOdF6ubtlPEI9UD43vpv/Ef9Zv5OAHMCBQTiBGoFuAWhBS4FqQQaBBsDQwGo/sP7FPnY9gr1i/NC8g3xs+8D7hzsdOp66T/phukX6t/q2usM7ZHujPDw8nr19vdU+o/8lf5yAF4CiQTSBtMIQQozC/kLvgxfDagNlQ1HDbgMvQtSCskIiQexBgkGPAUVBKACLwEcAHb/9P5l/v/9Cf5j/qn+yv4l//7/HwEiAuMCjANSBFUFjwbLB74IXgnzCawKVgunC78LBQyODAkNMg0aDekMpAxQDBIM/gvuC8QLqAvOCwsMAAycC0ALQguAC58LiwuPC/ELlQwiDVwNVw1VDX4Nwg30DRAOOA6EDtIO5A6wDngOhw7aDioPPA8XD/gOBg81D2MPeA+AD5cPxQ/9Dy8QaBC+ECYRgBGyEcgRyxG2EY0RehGiEfERKRItEgcSvBE/EZ0QDxC7D30PDw9gDpwN7AxKDKML8Qo8CoEJtgjgBxYHcQYBBsAFnAV/BVQFDwWvBEIE8QPhAx8EkAT9BDAFHQXpBMwEygSyBGQE/QOkA0oDvwICAkQBnQDc/87+fP0Y/Mv6mPlv+DL30/Vq9DDzO/Je8WXwUO9I7l7tgeyu6/7qg+o36g3q+unq6cHpe+kl6a7o7efo5vXlYOUh5e3kkOT+4xXjleF33zHdadtr2gba5tnp2Rzah9oh2+/bBt1u3hbg8+EZ5LHm3umr7fTxVfY8+kf9kf+YAcoDMAaPCJMK9At5DCcMVwt5CrgJ1ghyB0kFUgK8/vr6p/ci9T/zb/FU7wnt5+oV6ZXnl+Z15kPnkujO6dLq++uz7QrwyvK39aj4e/sT/mEAcgJoBHwG1Qg/CysNFQ4QDrgNmw26DbsNbQ3jDDEMKgulCdUHOQYhBWkErwPIAtwBJwHEAK8AzgDzAPoA+AA9AfwBEQM7BHcF3AYxCP0IFAnvCC4J7gnMCm8L1wsZDCgM6QtrC90KaAogCv0J0gluCc0INgj2Bw4IOAhECEUIcAjRCE8J2Al4CkALHwzsDJMNJw7XDr8PyhDIEY4SBhMpEwcTxxKXEoYSiBKIEnYSNRKdEa0QnA+vDvQNUQ3ADGEMQAwxDBAM7gvpC/AL2AuuC7gLKAzcDJgNTQ4UD+oPpRArEYYR0REgEn0S5xJHE3sTchM1E88SMRJdEX8Qzg9FD6gOyA20DJkLiwqDCX8IkAfNBjYGwwVxBUIFMgU1BUMFWwV4BZAFnwW+BRAGowZWB/4HhQjqCCMJEQmpCBAIiwc/Bw0HvAY0BoAFqwScAzwCngAA/4f9KfzJ+mj5JfgN9w/2G/U59HnzzvIb8lHxf/DQ72TvPu8+70DvPe9G71fvQO/R7hbuRu1y7HXrOeru6NHn4ubs5dTkpuNQ4pbgUd652zXZDtdu1YnUetTx1FLVUNVO1eHVK9fb2M7aPd1M4LfjLOfV6iDvEPQQ+XT9BQHxA2MGdwhmCmUMcw5KEKkRbBJiEkAR7g7WC6gI2wVtAx8Bu/4Z/Bb5tvVM8lPvH+2l65rqpemV6H/nzOb95kroZurM7CLvWfF384H1ofcm+jL9bABFA3UFIQeWCPYJRQuNDL4Niw6bDu4N5gznCwMLEAr5CMcHdAbmBCwDlwF6ANj/df8j/9P+e/4Z/tv9Dv7P/ub/EgFIAosDvAS5Ba0G7Ad5Ce4K8guRDP0MOQ1EDVsNxQ1fDq8Oaw62DcsMsAtxCmMJ4gjXCMUIUwiiBwgHqQZ4BnIGowb/BlMHggexByMI+wggClsLeAxTDdgNHg5jDt8OkA9BEMUQHRFTEVERAhGFECsQFxAUENIPPA96DrgNAQ1eDOILkwtMC+4Kdwr8CYwJMAkACREJUAmSCccJEwqUCj0L5guEDCANtQ0uDogO1w4tD4oP8A9mEN8QKxEhEcYQPhCgD/AOOQ6YDRgNowwZDGwLpQrNCfAIIwh6B/QGfgYMBqoFbAVaBXAFogXiBRUGHQb9Bd0F7wVCBrEGBAcTB9cGXQbGBTAFsARFBNcDUAOfAsQBywDC/6r+g/1X/Dz7R/p5+cf4I/h798H2//VX9dr0dPQH9KHzafNn82rzS/MX8+3yyPKP8kbyBvLA8TrxW/BG7yTu+uzO68Tq5+nw6HzniuWD46fhxN+L3Rjb1NgK19HVVNW21ZXWD9eU1oTVzdQQ1XnWSdnE3XHj7ugV7SPwTPMp9yT7d/5BAUQEzQd1C8EOoBEWFMMVDRbBFFUSmA8yDVoL3gleCIkGPwSDAV3+3vo/9+bzNPFJ7/ztFe167DHsRey97K3tI+/+8OzysPRe9jv4cPrk/G7/8gFaBHMGGgheCXcKigt4DPwM1wz9C64KXgluCNsHPwcyBrAE/gJQAbH/QP5Q/QH99/yw/CD8u/vi+4z8iv3L/jQAgQGKApED8wSXBg8IMglAClILHQxoDHwMywxaDcINuw1SDaMMqwtxCigJDQg1B5YGHgbBBWUF6gRABHkD0wKNArACDQN/AxUE5QTLBZEGPAcBCOoIuwlPCtMKhQteDCQNsg0HDikOFA7WDYoNNw3VDGMM3ws/C34KwAkqCbEIGQhXB6sGTwYqBvoFvwW+BRIGfwa/Bt8GJQezB2kIKgn/CfIK3wuTDAUNVw2sDRIOiw4RD3wPlg9XD/cOuQ6fDnYOIA61DVQN+AyFDPILZAv8CrgKeAooCtUJmwl+CWsJUQktCQgJ8QjvCAQJIwlDCW0JqAnYCdIJjQkyCfEIzwixCIUITAgWCOsHvQdeB6cGrwXDBBkEoQMyA8UCWgLMAe4A2//o/lT+Bv69/Ub9lfy/+wL7k/pn+jz68vmf+Ur5zfgS+FD3v/ZO9sn1OfXJ9GH0q/OH8jjxDfAJ7xLuMO1z7Krrher26EHnsuVh5E7jd+LD4e7gvt9G3tDcodvS2nLaiNru2lrbt9tP3IHdW9+c4QPkW+Zf6OHpOust7TTw8fOa97T6QP1V/+8AKwJkA9UETgZXB5EH/Qb/BT0FJQV9BYEFiwSlAkgAyf09+934I/dc9jn2+/Ud9cvzpPIT8vbx8PHt8TTy8vL78wr1J/aI9zD57vqf/D3+sP/RAKYBcQJdA08EJQXxBc4GggeYB+kG4wUsBQEFDwXbBEAEaAN7AoYBowAUAPj/GQAuACIABwDp/9f/CwCyAJIBQAK4AmQDegSkBX4GHgfRB48IBQkbCRoJRwmXCdwJ+wnvCb4JeAkuCdYIZgj2B6IHWAfqBmQGAwbjBdgFuwWgBakFzQX7BUgGxgZRB7gHBwh9CDUJCwrcCqsLgAw+Db4N+Q0MDhsOOQ5hDnUOZw5PDkkOOw7gDScNWwzMC3QLFQukClMKOwo0ChQK9QkGCj0KZQpwCocK0gpKC94LjQxODfUNXA6SDsMOAg9ED4IPvA/hD+APwA+XD10P+w6GDi8O8g2KDdoMIAydCzYLqAr9CYcJZglcCSsJ4witCIwIawhaCIAI3whHCY0JrAm3CcAJzwnuCR4KTwpbCikKvwlGCd4IhggmCKgHBAdLBp4FEwWNBNMD1ALBAdEA//8m/03+mf0C/VP8ePuU+sr5HfmJ+Aj4fffJ9g72ovWb9Z/1TPWx9B/0rfM688jygfJz8m7yMvKf8bjwou+z7kbuXO6J7kTuUO3R6yHqmehk53rmvOUL5T3kJuPa4d7g2ODY4RHjfePM4q/hL+Hk4bzjXeZd6SzsF+7V7gvv2O/J8W30Dvdn+XT7Bv0U/i7/8gAYA4sEugQ4BN0DxAOSA0sDVAOoA6oDzAI1AY3/TP5y/a/8yfvI+tL5+Pg4+KP3VPc+9yv3DvcQ90f3k/ff92L4UfmA+pb7jvyp/f/+VQBxAVcCJwPwA7gEfAUlBpIG0QYYB3kHyQfTB5cHNwfPBmgG+gVvBbkE7gM2A6ICIQKqAU8BGgH0ALoAWwDk/4r/k/8QALUAKAFwAeQBmgJGA7cDKgTfBKQFFgYvBkMGjAb9BoQHGQiXCL8IkghZCE8IVgg3CPIHrQd7B1EHNwdJB5AH5AcQCPwHxAenB9YHUgj3CJsJLwqwCiALhwvwC1sMvAwIDUgNfg2bDZENbQ1RDUwNSg0tDe0MkgwiDKALGQumClsKLQr9Cb8JgglVCToJMAlDCXsJygkgCoQK+gpwC88LJgyYDCINng0CDm4O6Q5HD2oPfg+4DwEQExDiD58PcQ9IDwwPxQ56Dh0Oqw05DdMMaQz0C5ILWQsnC8wKWgoUChIKJgojCh0KNwpeCl8KLwr9Ce4J+An9CfcJ5AmxCVMJ5QiOCEoI6gdUB6MG8AU6BYEE2gNFA54CzwH6AEQAm//Y/hX+e/32/Eb8d/vk+qv6evoC+mj5/PjE+IP4KfjV9473Nfe79jf2qvX89Cv0V/OV8tfxG/Fz8NnvF+/+7ZnsDut46fTntubh5VTlyeQM5CDjGOIO4THgvt/Z32zgOOEE4rzieONr5L/lcedK6QXrf+zW7UvvGPFG87T1IPg4+rX7i/wD/ZD9ff69//oA1AEPArIBCAFpAAAAwv+U/17/+v46/iL9/vsm+7P6bfoO+n353fhv+Fn4k/jy+Fv5t/nh+bf5YflV+eb56vr6+9n8if3+/Rr+9/3t/TD+lP7T/ur+Av8f/yn/JP8y/1X/X/8r/83+eP5T/mj+rf4D/z//S/85/zj/av/R/2cAJgHxAZYC8QIeA2YD8AOfBEoF7gWZBjUHkAetB8YHAwhICG0IgQifCLcIpwiECJEI2AgXCQ0JxAhzCC0I6Qe7B9kHUAjeCCYJFAntCPkIPwmgCREKpQpEC7AL1Av0C2QMHg3QDUQOkA7NDuQOzA7ADv8OcQ+/D7sPhw9TDyQP8A7IDr0Otw6NDjoO5g2tDYsNeg2FDagNug2PDTMN4Ay+DMkM5wwSDU8Nkw3FDdkN2A3aDfENJA5iDpAOoA6pDswOBQ8wDzkPNA8wDxcPzw5oDhEO3g3ADZ8New1NDQINlgwiDMALaQsKC6YKWAouChIK7Qm7CYsJZAk9CQ0J1QiiCHYIRwgECKwHVQcaBwEH6watBjQGlgXwBEkEkwPWAi0CoAEOAVYAhf+5/vD9FP0m/Ej7hvq9+dH40/fj9gj2NfVh9IzzsPLK8e3wLPB778Du+u1A7ZDszuv26iXqbemy6Nfn8eYq5oLlzeTu4/bi/uEP4TDgct/b3lHes90T3bPcxtxH3Qfe3d6y33TgI+H64WrjwuXg6D/sae808rD0+fYv+YX7F/7EAD4DSwX1BmUIrgnFCo4L7AvICxkL9AmJCAkHlwU/BPkCqQEmAEv+DvyY+Tb3NPW/883yLvKf8fXwMvCE7yTvO+/S783w8fH38sDzd/Rj9Z/2/Pc8+Uz6Qvsr/Aj96P3q/hQALwHdAfQBnQE3AQ0BMQGGAekBMgJHAiEC2QGgAZ4B0gEaAlACcQKfAvECaAMBBM4E0gXPBnYH1AdOCB4J/QmSCvwKmQtaDL0MiQw2DFMMzAwmDS8NDw3MDCQMCwvwCUsJHwkcCQsJ3gh4CLoHzwYoBhMGYwawBskGywbTBt0G5wYmB80HvgiPCfYJEwo7Co0K8QpgC/ALkgwBDQ0N5wzgDAsNOw1YDXUNkg2GDS8NtAxPDBMM5Qu4C5sLkAuCC1cLFQvNCogKTwouCiUKHwoMCvAJ4AnhCfQJIApoCrkK7gr3CugK3wrhCusKBAszC2MLewt8C34Lgwt4C08LGwvrCrYKcQowCgsK9gnQCZAJUgknCf4IvghsCBwI1weUB0oHAAfABoYGQgbuBZUFRwUMBdkEngRRBPADeAPqAlYC1QFsAQsBnQAkAK3/Ov/A/jT+mP3y/En8pPsH+3v6A/qX+Sb5ovgW+Jb3K/fE9kz2u/Ue9Yr0FvTG84rzSvML8+HyzPKz8ofyW/I/8iDy5/Go8ZbxtvHW8c3xqPGD8WbxRvEh8e3whPDC777uwu0G7YrsKuzD6zXrVOoR6aPnduba5brluuWY5WLlT+WB5fnlw+b855bpN+uB7Hftf+7w77nxlvNj9TL3APmb+uL7Bf1Q/r//+gC6ARACKwIJApIB9wChALIAxABcAHL/U/4p/dv7cvo/+Xr46Pck9yP2RPXh9Oj0DvUn9T/1XPVq9XD1tfWK9uX3YPmt+tv7Jf2G/sr/8ABBAtcDVQVIBrgGHAfBB4IIJgm9CW8KGAtMC+cKRArbCcQJtAluCfoIewj6B3gHFAfyBgUHHQcUB+AGhQYdBuAFAwZ6BgcHfwflBz8IeQiSCLYIDgmDCegJJgpDCjkKEAr+CTUKngrsCgAL/Qr9CuYKqAp1CogKzwoGCwwLBAsfC2gLxQsZDFMMdwyVDLYM1wz5DC0Ngg3mDTEOVg5sDoUOmQ6UDnYOTw4iDuwNtg2XDYcNXA30DGQM5wuYC1UL/AqYCkYK+gmFCeUIVQgWCBsIHwjuB5QHPQcIB/MG7AboBuEGyQaOBjUG7AXZBe8F9gXSBZgFXQUNBaIESQQrBCEE4ANkA/4C2wLGAoICJQL1AfwB+AHAAXEBQQEpAf4AtABtAE0ARgAwAPf/sf92/0H/+f6T/h7+pv0m/Zn8Avxq+836Kfp6+bv43vfp9u319/QH9B7zSPKB8azwt++77tvtEu067ErrXuqG6a7ovufD5tfl+eQT5CTjQ+KE4eDgQeCV39veKt6h3VHdLt0s3U7do90p3trew9/04F7iz+Mh5WHmwOdc6SnrFu0d7zjxSPMt9eb2jvgm+pL7xPzZ/fH+AADcAHkB6wE6AlECKgLiAZIBIwFsAGn/O/4K/eb72fro+Qb5F/gO9/r19vQZ9Gnz4fJp8u7xc/Ea8QTxPvG/8W3yJPPH81X04fR89S/2Avf89xL5IfoJ+8b7cvwo/fL9v/5v//D/RwCJAMUABwFgAdUBUQKyAuoCBQMcA04DrgMxBLcEIgV0Bb4FBwZZBswGbAcXCKYIGQmFCdwJBQoVCkQKkwrECrYKngquCswKxAqcCngKUQoICqUJSAn0CJYIPwgRCPkHvQdVBwkHDgc+B1MHQgcrByIHGAcIBwMHIgdwB94HQAhwCHkIjwjXCDQJcQmHCZkJvAnjCfgJAAoNCicKQQpGCiEK1Al6CTkJGAkBCdoIqAiDCGsIRggICMgHoweWB4IHVAceB/gG5AbVBr0GkgZOBgMG1QXMBccFngVTBQcFywSKBDsE7wO0A4UDUgMQA8UCfwJUAkUCLALmAYQBOgEZAfwAxQCOAHoAhQCMAIAAZQBEACcAGAAQAPH/tP+B/3T/Zv8q/9b+qP6e/nP+Df6d/U79Bf2a/CX8zfuG+yT7p/oz+tL5avn1+JL4U/gc+ML3S/fa9on2S/YF9qn1QPXi9JL0P/TW82Lz/vKz8mryCvKa8TzxAPHV8KDwYvA38DDwOvA38B/wB/AH8CnwZvCy8PrwN/F78dTxPvKq8hzzqfNF9MT0DfVG9aT1Mva/9iL3XPeB95v3pvec94X3b/df90T3C/e69nT2S/Yv9v71qvU99c30cPQ/9ET0bPSc9MT03/To9Ob0+/RD9bf1Ofaz9hj3ZPel9wb4ovhP+cf5/PkZ+j/6W/pe+m36qfoA+zf7M/sI++D61/ro+vf69vr8+in7afuL+4v7nfvo+0/8rfwR/Zj9Nf7M/mr/IADWAGcB8AGpAoIDLgSaBAUFmAUtBpkG9gZoB9YHCggECOsHygeeB3oHeQeHB3EHLAfUBnYG/gVsBe4ErQScBIcEUAQDBL4DmgOUA5cDlQOWA6IDpQOQA3sDlwPuA1oEugQJBUYFZwVxBYsFzAUjBnsG3gZOB6gHygfPB/EHOAh9CKwI3wgeCUcJQAklCRwJHwkUCfsI8gj/CAgJ/AjoCNcIvAiSCGwIYwhyCHcIYQg/CCQIEwgECP8HCQgZCBsIBwjhB7kHowerB8YH2wfcB9YH1Qe/B3wHLgcSBysHMwf8BqgGawY+BvQFlgVfBWEFagVBBe0EmgRgBDoEHQQHBPID2wO8A5IDYQM3Ax4DDQP2As0CkQJAAt8BhAE/AQABsABNAO7/mf9D/+D+c/78/X79Av2U/C/80PuJ+2X7NvvH+ib6mPk++fD4lPg/+Pn3jvfY9vn1KPVj9JHzzPIz8prxtPCB70buJe3567Tqkemt6M3npeZG5f3j7eL04ezg0t+k3lrdA9zL2tXZG9mC2P7Xi9cW143WDdbj1ULWFNcg2FfZ69r+3GTfw+H24xzmYOjE6i7tne818hL1CPil+o782v34/icAPAH0AWICzQIxAzQDowK5AccA1f+9/nj9JvzZ+pv5dPhk91n2S/Vf9LLzLvOn8ify6fEL8mzy2/JB85fz2PMQ9FH0rfQt9d/1xva392r4xfj6+EX5oPnd+fX5H/qB+vf6Qvti+6f7QPz1/Gb9j/3Q/Wz+MP/U/20ARQFSAjsD0gNOBPAEtAVzBh8Hugc8CJ0I4ggSCSUJJgkuCT0JMAn2CKwIYgj/B3cH9waoBnUGKwbSBZgFggVtBUwFQAVaBYYFugX/BVEGmAbWBiwHmAfsBxIIOgiZCA8JRQkbCdIItAjBCL0IighKCCYIEwjgB3YH/ga5BrkG0QbHBpQGZwZnBokGpAasBsgGGgeLB94H/AcGCCgIYgidCMsI6wj8CP8I/Qj3COMIvQiWCHwIXQgbCLgHTQfuBpcGRwYGBs4FlAVYBSMF9gTDBIkEXQRRBFIEQAQRBN4DxAPMA+QD6QPQA60DlgOBA1QDFwPrAtYCrQJRAtsBhwFlAVQBLgH1ALYAdAApAN//qf+R/4L/Xf8c/9f+qP6N/nb+ZP5b/kf+B/6b/TH97Py2/Gr8C/y++4r7Sfvq+pL6Z/pf+kL68vmI+Tz5KPkw+Sr5E/kR+S75PvkT+c/4v/jt+Af5zvhr+Cz4Gvj897/3ivdn9yn3rPYa9rD1b/Uo9dH0jfRi9CH0sPNC8xnzKvMq8wHz4fLz8hHzA/PY8s7y8PII8/3y/fIz837zr/PK8+/zEvQS9Pjz9vMb9EH0U/R39NL0VPXV9Uj2tfYO90X3avec9+z3UvjL+FL50/k0+mz6gvp/+mz6Vvo7+g362fnF+dj52vme+U/5OPlK+Sn5t/hC+BD4+Pe99333iffn90X4a/h1+Ij4q/jj+ET50fls+vz6jPsh/J789vxS/d/9kP4w/6j/CABgAKMA0QD3ABYBJQEuAUwBfQGbAZUBjwGoAcgBxgGqAaoB3AEiAmECpQICA24D1QMyBIsE1QQMBUQFmQULBn8G4wY7B4UHsgfEB84H4AfwB/kHDQg0CFgIawiKCNEIHAkiCdcIiQh9CKkI6whPCfMJuApJC3kLdAt2C40LswvzC1YMwgwJDSENKQ02DUINRg1RDW4NiQ2BDU8NDg3gDNYM6QwKDSUNKw0fDQgN5QyzDH4MZQx1DJEMhwxHDPILrgt0CygLygpzCicKyglHCbIIMQjWB5sHggeGB4kHWwfvBm4GBwbABYoFbAWKBeUFOwZHBgoGxwWsBaIFfQVCBRcFBgX2BM0EkgRVBBAErAMaA2YCpQHrAD0Ak//h/h/+Qf1D/D77WvqZ+cn4xPeu9sf1BPUV9ODytPHZ8CzwVu9P7mHtr+wB7Bbr7Omo6FrnBOax5GnjHOK/4F/fDd6z3Cjbatmf197VG9RS0q/Qcc+uzlDONs44ziHOxM1AzQvNl80CzzXRNdQU2Ivc9eDj5JPohuy78K30E/hF+7D+LwI7BaAHpAlvC5sMpgyRC+EJFQhTBpgE/AKXAU4A1f70/LP6SPju9d3zUPJ78VbxlvHl8SryhPIA83zz4vNY9B71KvYq9+X3ePgj+d/5ZPqI+mX6J/rT+WD57/i8+OT4SvnF+UD6sPoF+zr7b/vd+6b8vv0G/2kA6QGAA/8ENgYoBxkIPwl9CpELaQw0Df4Nhg6cDm4ORw4tDukNbA3nDHgMBAx7CwALrwpmCvgJdAkKCcEIfghPCGgI1whwCQUKkQoOC1cLUwstCycLUwuXC+YLSQytDNAMggzZCxwLdQrhCVYJ3giICE8IGwjcB5wHbAdVB1EHUAdNB1QHewfIBzEIrgg8CdMJXQrCCv0KGgsmCy0LOQtOC2ILZgtIC/sKdQrDCQgJZQjeB2cH/gahBjkGsQUbBa0EiQSfBNYEKQWWBfsFNQZJBmYGqQYIB3EH1QclCEoIPAgKCMcHdwcaB74GZQYABnoF2wQ8BLEDOgPLAmAC/QGtAXwBbgGAAbIBAgJpAtcCOgOBA6gDvAPdAxoEXgSKBKEExwT2BOkEaQSkA/sCiQIVAnYB2gB9AE4AAAB7//X+rP6a/pb+kP6d/s7+Gv9t/7//DQBeALQAEwF1AdABFQI9AksCRQIuAv0BswFmASkB+AC0AE4A6P+r/5f/fP84/+X+rv6V/n/+Zf5s/qv+Av80/yn///7d/sv+wP6+/s7+6f7//g7/Gf8Y//b+qf5G/t79bP3f/EX8zPuJ+1z7F/vA+ob6ffp5+k/6Dfro+ej57Pna+c356fks+nf6uvr0+ij7XPuY+9b7APwT/Cz8Z/ys/Mn8tvyc/JX8ifxb/BT81vu0+6P7l/uI+3j7dPuS+837/vsH/Pz7DPw+/F78Qfz5+8L7vPvT++L76PsO/G785/wu/SX9Av0M/Uj9ev2H/ZX91P0+/rr+O//G/1AAywA3AZoB5AENAjoCpwJOA+IDHwQgBCoEVQR0BGUERARFBGsEiQR5BEgEJAQoBEsEawR0BGIERgQyBCsEJAQRBP0DBAQrBFcEaARgBGMEgwSwBNAE2gTVBNIE4wQTBVgFmQXTBRkGdwbPBvoGAQcYB10HuAf7BxoIOgh5CM8IFQkqCR0JGAk0CVoJYglYCXIJygkwCmcKcAqGCskKGgtUC4MLzAsvDIkMxAzqDAcNFw0aDRsNHA0FDcYMeQw/DBYM3QuNC0QLEgveCpUKSQoaCgcK+gnsCeUJ2wm7CYwJbglrCWAJLwnsCL0IpQiCCEYIDgj7BwYIDggDCPYH9Af1B+MHvgeUB3AHVQdIB08HYAddBzgH/Qa3BlwG4wVdBecEgAQPBIsD/QJgAqQBzwAAAEH/ef6c/cP8CPxd+6T62fkT+Vz4r/cE91H2h/Wr9NrzHvNN8jHx2O+G7lrtJuzD6knp7+eu5krlpuPf4R3gZN6h3M/a/9g413vVzdND0ufQqc96zm7Nv8ylzD3Nks7G0PnTC9iA3MfgpORB6Nzrge8S8472KPr9/coBFQWXB3kJ/goSDGIM2gvVCs4J6ggOCDIHcgbMBQcF5gNgApMArf7q/J/7//rv+iP7a/u/+wb8/ftr+2n6UPlt+Mn3Sffc9pX2jPan9p/2PfaP9eT0dfRA9DD0WvTs9Pf1UPfA+Cf6evu+/AT+af/2AJkCRwQbBicILwrHC7gMLg13DacNqQ18DVENWw2ZDc8NsQ0sDX8MBwzdC74LfwtXC5MLFgxzDHsMdwyuDP8MIA0HDekM6Qz+DCANRg1RDSYNzQxcDLYLvwqlCc4IUwjvB3QHFgcFBw0H4gajBq8GDgdsB6gHBQivCF4JvQnxCV8KCguUC9MLGAylDD0NcA1EDSYNVA2IDWsNDw3ODL8MmgwjDIMLHAsVCz0LWQtsC54L8ws8DFAMOgwcDPoLyAuBCy0L0ApvChwK4gmxCWgJAgmRCBYIgAfjBnEGOAYLBtAFpgWsBasFWAXLBG8EcwSPBH0EXQR0BLsE4AS6BGsEKgQEBPAD4gPGA5ADVgNCA1kDZQNGAykDTwOuA/ED6QPAA8QD/gM0BDkEGgQFBAcEBgToA60DdgNlA4ADpAOhA2sDJQP5AuMCvAJ3AjQCEgIAAtUBiQFDAS0BSQGAAcMBBAIxAjkCKAIZAhUCCwIAAhcCaALRAhUDJgM1A2kDqQPDA7sDxgMABD4ESQQbBNgDlwNNA+wCdgL0AXMBCwHPALYApACVAJ0AwADWALIAVwD7/9P/4f/7/wAAAAAnAIEA2gD1AOEA6wAzAXwBeAE6AR8BVwGmAbYBfQFBATcBSQE4AQAB5AARAVoBZgEwAQkBKwFlAWsBSgFAAU8BPwELAfsANQF9AZABhAGRAasBlQFMARcBGwEoAQMBtwB5AFcANwACAMr/qv+o/7H/r/+e/5b/rv/d/wAACgATAEIAiQC2ALcAtgDkACcBPwEmASIBYwG+AeoB8gEjApcCCwNEA1gDhQPFA+kD5wPqAwoELQQ/BFQEeASUBJMEjASXBJsEaQQPBNkD4gPyA80DkgOMA74D2gOtA28DcwO1A98DxAOdA7kDEwRfBHMEdwShBOIEBwX6BN4E4wQWBWUFtAX1BS0Gbga+BgcHLgc1B0AHYgeSB74H5AcRCEcIgAi4COMI6wjQCLgI1QgZCTwJIAkACSQJdwmiCYQJcQnBCVkKyArdCuIKMQu7Cx4MJAwCDAcMNQxNDCwM8wvWC98L7QvnC9ELugutC64LugvBC7ALhgtjC2kLiwuWC3ULTwtXC4YLmAtsCzYLPAt4C5wLfAs8CxsLIwsyCysLGgsUCyILPQtXC2ILYAtuC6YL/AtCDFoMagylDAsNXw1rDUENGg0MDfYMtwxhDBwM8QvAC2kL6QpcCtwJdQkXCawIKgieBxwHpQYrBqUFGAWTBBwEqgMmA3cCqAHfADIAf/+P/m79Wvx0+5P6ivl0+Ib3uvbV9b30mvOX8rDxzPDr7yLvau6r7dXs9esc61Lql+nq6EjorecX537m0eUB5RLkCuPl4ZXgMN/93VHdWd0U3nzfk+FP5H3nyuoD7jrxmPQU+Gf7WP7yAGYDsAWGB6kIMglzCZMJbAnaCBIIfAdFBykHxAYABhsFOwQzA8oBIgCl/pr98vx7/Cn8CvwR/BD83vtp+6v6qvmI+HD3bPZg9UH0K/M08kTxNvAf70ru7+0R7pvukO/68Mbyv/Sw9nv4GvqM+8382/3E/q//wADwAQ8DBwTrBMMFYQaSBm8GSgZMBlYGSAY8Bl0GpAbnBhcHUgerByYIxAiHCWIKSgtFDE8NMQ6kDqEOWA7eDRgNCQz6Ci0KkQn0CF4I+ge+B2wH7QZpBgAGnQUqBb4EewRcBEoERgReBIUEnwSlBLAEywToBAIFIgVNBW8FbwU9BdUEQQSjAxoDrAJKAgMCBQJnAgADmQMlBLUEQwWxBecF8QXpBeAF5QX7BQwG/gXgBd0F/wUcBg4G9QURBm8G3QYvB2kHpgfqBxwIIAjyB60HfgdxB2MHNAf7BtoGuQZUBpoFxgT/Ax0D+gHNAPH/ZP/U/iv+tv2y/ef98f3A/aH9y/0a/kv+UP5S/nX+qf64/ob+L/7w/eX98f3s/eD9+f1N/sH+MP+L/9X/DwBKAJYA6wAwAWIBswFJAgUDpgMbBI8EIgW3BRsGOwYuBhYGBQbvBbEFNQWkBEwERgRPBDEEGQReBP4ElAXbBfoFNgaOBsoGyQaYBlAGAQa4BXcFKAW3BEIEBgQTBDIEJQT5A+wDGgRIBCkEtwNEAx8DOwNEAwoDxgLeAmcDBQRQBEUEPQRzBLAEhwTlAzUD6QLqArAC8AEAAXIAZQB0AE0AGQA/AN0AoAEhAkwCYwKhAvQCCwOyAhcCngF/AYoBcgEvAQ4BVAHdAT8CQgIjAkICogLnAtICmAKVAs8C8AK7AlwCKgI/AmYCcwJzApACxALbAqgCPALMAXABFQGhACkA3P/D/8H/vf/K/wUAawDRACEBaQG6AQwCRAJWAk8CPAIYAt0BjwE9AfcAzADLAPIAMAFuAaQB1wEEAhwCFgIFAgQCFgIhAhIC9QHfAc8BtAGHAVoBOgEgAfYAxgCqAKUAkgBVAAwA5f/R/5X/J//J/rb+1P7d/sf+zf4Z/3//t/+u/4j/Zv9A//3+l/4p/tb9q/2W/XP9Nv30/M/81Pzt/PT81/yv/Kj8yPza/Kv8TvwF/OX7s/s0+4n6Dvry+QX6/vnM+Z/5p/ne+QP64PmF+Tr5J/ko+fr4nvhe+G34p/i6+Ir4TfhA+GT4hviA+F74SfhL+E34NfgC+M33pveO94H3cvdT9yn3GfdH96D34ffl99n3/fdF+GD4I/jN97f33vfm94r3/var9rT2y/ai9k72LvZp9rz21fa+9sv2J/ea99b31/fa9wf4QPhZ+FT4Wfh9+Kj4t/io+JL4i/iU+KD4o/ib+JL4kPiN+Hz4Yfha+Hj4p/jK+OH4B/lD+Xv5mfmi+aj5svm7+cD5vPmr+aD5tPna+d35rPmA+Z755Pnw+a35f/mz+Qj6B/q2+ZL54Pk/+jH6y/mS+cf5EvoM+sz5vPn++Tv6HPrD+Y35mvmn+Xz5PPkr+VH5fPmN+aD52/kz+oD6sPrZ+hL7VvuL+6v7z/sO/Fz8kfyj/Lf87vwt/UX9Ov1J/Y391/3w/en9/P00/ln+Rf4Y/gr+IP4v/iT+HP46/nj+t/7p/iT/df/N/w4APgB6ANEAJwFhAYMBqAHSAegB2wHBAcMB6gElAlkCgwK7AhMDeAPGA/IDIQRwBMQE5wTZBNAE7wQQBQsF6wTeBO8E+ATjBMgEyQTnBAoFIwU7BWcFqwXwBRgGHwYnBkcGbQZ3BmsGdQatBusGAAfzBvsGMQdtB38HbQdrB40HrgeiB30HcweWB7wHwwe5B78H0gfWB8gHvwfDB8UHvge5B7sHsAeNB2YHVQdMByoH8gbFBrYGrAaEBkMGCwbmBb8FgQU3BfYEwQSKBEgEAAS3A2sDIwPnAq8CZQIHArIBegFIAfoAmAA/AP//vf9p/wn/rf5g/iH+3v18/fT8aPz5+5n7HvuG+vv5lfk4+cr4U/jm93f3/faC9gL2VfVp9G7zmvLQ8cXwb+8a7vfs1+t06tboSucB5unk0OOb4lbhJOAY3xXe6NyA2xnaANk/2JzX8dZi1jLWatbD1vjWGdeD13fY0tk424Xc893I3/PhHOQS5gXoPeq27B3vNPEe8zT1i/fW+bH7B/0P/uT+af9//1P/PP9i/6L/wv+0/5f/i/+J/3n/XP9Z/4H/q/+W/0D/4v6P/gX+Bv2++4j6Z/kI+Fr2zPTM8zXzk/LK8TXxFfE48UrxS/GL8TXyG/MA9Nb0tvWv9qX3b/j9+F/5wPlG+vH6rPts/Db9CP7O/nf/EwC8AG8BJwL8AggEIwUIBroGkAewCMAJWAqSCt0KWAu3C7oLiQt2C5YLuwuYCwcLMQqDCT4JGgmjCPcHtwceCJUIggghCCMIowgFCc0IPAjWB8AHswdoB+QGYgYbBgMGzwVTBckEngTfBCoFOgVCBZQFGwaCBqsGygb7BhsHEAf1BuQGywaUBmUGcQalBrcGmQaLBrUG5wbhBrUGrQbeBhAHFQf3BtsGzQa7BpEGRQbrBa8FqwXBBbcFkQWKBaoFrgVhBfIEsASYBGUEAASdA2wDXgNQAzcDKAM0A1UDaQNJAwADzgLVAuICqwJAAvUB2QGZAfwAQADO/6r/i/9J/wn/BP8+/4v/vf/K/9P///9FAGcAPAD1/+D/+f/z/6P/Q/8Z/xT/7/6d/lb+QP5A/jP+Hv4a/in+Nf43/jv+QP4y/gj+1v21/aj9nv2G/V79NP0V/fj8xPxs/A/80/u0+3/7Gfuz+or6mfqh+oD6X/pv+qj62Prk+uL69fon+1z7d/t4+3T7gPuQ+4v7Zfsp++n6tfqW+ov6ffpc+j76SPpv+nj6Sfok+lL6vPr/+vf68foy+4/7p/ty+0T7S/tJ+/j6cvoM+uX5yPmQ+V75X/l9+X/5Yvlf+ZT52/kF+iH6Xvq2+uf6zvqV+nz6f/pk+hb6yfmt+bX5rPmJ+XL5fvmM+Xr5UPkv+R35BPnn+OP4A/ki+ST5KPlY+ab50/nO+cz5+vk++mL6Yvpu+pj6w/rI+qT6a/o9+jP6Uvp5+or6ofr9+pr7G/xD/Fb8uvxX/aT9b/0q/U79qf2p/Tj92/zw/CT99vx7/Ej8qfw9/Yn9o/0D/sf+ff/F/9D/FACcAPcA4gCpALcABAEmAfAAqwCnAM0AxwB/AEMAXwDEACIBSgFiAbABNgKiArUCnwLCAjEDhwN3A0ADVAO2A/ADvQNuA3UDxAPoA7cDjQPHAz0EfQRtBGgEuQQuBWQFVQVkBc4FTQaCBncGkgb5Bl0HaQc7BzEHYgeCB1YHBgfoBgMHEwfqBqcGiAaXBrAGtga4BtUGEQdPB3AHbgdiB2MHbwdpB0EHCgfdBrEGZwb7BY4FOAXkBH0EFwTQA6MDcQM2AwkD9gLqAs8CqQKGAnACaAJgAkICDALZAcABqgFxAR0B4wDXAMoAkAA5APj/3P/A/4L/I//J/o/+aP4o/rr9Sv0Y/SP9IP3i/Jf8hPyd/Jv8XfwT/PH76/vT+477J/u8+mf6I/rS+Vr50Phf+Bb40fdu9/r2pvaD9mz2L/bB9U318/Sj9DH0lvP98oXyIvKw8SzxrPA+8NzvgO8l78TuWu7x7ZXtQO3p7JDsQez767jrfutR6yfr/Ory6jXrv+tS7MXsO+3m7a/uOu9Z71DvjO8P8GvwV/Ap8GLw9vBT8TvxLvG+8cTysfNt9G31/vbQ+HX63/s1/Xf+ev8kAHkAggBfADwAGAC9/xP/Xv7V/Ur9hfzG+3/7r/vl+/77Xvw6/Sn+qf7Y/iv/rv/o/5X/CP++/sr+1f6l/mv+fv72/or/8P9BAN8A9AE0A0IEIwUdBjUHHwieCNEI7wgACfwIBglHCa4JDgp2CiQLEwzmDGkN4A2cDmsPzg+tD3UPbw9cD+kOMA6IDQMNeQzoC4ILVgtQC4ELDwzQDFgNkA3TDU0OlA5DDqINQA0XDZcMkAuGCu4JmQkjCZsIbQjCCFwJ9wmOCkALFAzxDK0NKQ5vDp8OyA7KDoEOCA6cDVwNMw0KDe8M9wwoDXkN3Q0/DpUO6g5QD7EP1Q+gDzwP3g6EDgkOaQ3UDHAMKQzdC5ELYAtRC1YLYwt9C5ALews+C/0KyQqDCgcKaAncCHUIFwiqBz4H8wbeBvUGGgciBw0HDAc9B2cHNgewBjsGCAbOBTsFfQT7A78DcgPpAloCCwLyAd8BvwGcAXcBRQH2AHwAz//7/hb+IP0O/PP69/kc+T34Xvez9k/29fVw9fT00PTt9Of0nvRV9DX0+fNH8yby3vCS7yPud+yw6gbpmudj5kjlTeSU4zbjIuMy417jyuOB5FXlDeai5irnj+eO5wnnLuZF5WrkmePk4oviyOKT47zkM+Yi6Lnq1O0U8Ur0kvcC+0/+BwEIA4YEmgUGBogFRQS2Ai8Brv8j/r781vuJ+6D73vtM/CP9Z/7U/yoBeQLeAzkFMwahBpoGNQZiBRIEZgKYAM7+Gv2T+0n6NflP+Kj3S/cn9x/3Qfe294H4efl5+ov7uvzp/ez+tv9aAOEAPwF6Aa4B7wEpAkYCTAJQAkwCJQLaAZEBdgGRAdMBOQLQAqADmQSfBZoGgAdgCEkJKArWCk4LuQspDGoMRgzWC1sL2QoZChsJLgiOBx4HsgZkBmMGpgb0BjwHmAcXCKgIOAm4CSQKgwrhCi4LNAvdCmAK9Ql6CbMIwgcZB9cGqAZMBgQGIwaQBusGIgd+ByUI5Ah9CfsJiAolC6UL4gviC7gLdAsSC5MKAAptCe4IhQgkCMAHYQcYB+0G2AbPBtEG5AYKB0IHfgeqB7UHqwedB4YHRAfMBkcG5AWVBSUFlAQaBNMDkAMjA64CbgJdAkECFgISAkUCeAJ/AoACpwLWAtYCrgKZAqYCqgKDAk4CNAItAhIC0wGCAUEBGQHxALMAcQBWAGYAdABiAFQAdwC0AMgArQCfALoAywCnAHQAYQBWABkArf9F//T+mf4l/r/9hv1n/T/9FP0D/RD9I/0t/TT9SP1r/Y/9of2d/Zb9m/2h/Yr9Uf0T/e780vye/FP8G/wX/Cz8KvwO/A78QvyB/JP8jPyr/Pf8Mf0z/S39Uv2I/ZX9f/14/Yr9kP18/Wr9af1h/Uf9LP0V/ez8tPyQ/Iz8e/xH/Bj8F/wp/B38A/wT/FD8hfyT/Jv8wfz2/Bf9If0v/Ub9Uv0+/RH95PzH/Lb8pvyd/K/84/wk/WD9of36/WX+yP4W/13/sP8HAE0AeACbAM4AAAEMAesAywDYAPkA+wDoAAIBXwHCAfEBBwJDAqAC5QL4AgMDKwNkA48DpQOxA7kDwAPEA8ADrwOcA5gDpQOzA7wDywPnAw0EOARsBKsE7QQvBX4F4wVRBr8GLwenByIIjQjdCBIJMAlBCVUJcQmHCYoJgQl9CYMJgAliCTsJNAlbCY4JpQmqCc4JHgptCpAKlgqvCt4KAwsOCxALFwsbCxsLFwv+CroKXAoUCvAJvQldCQAJ6ggSCTMJLQkvCWUJwwkSCjkKTwqFCu8KaQuyC7ALlguYC5sLUQuzChoKzwmsCWAJ6QiVCI4IpwijCIkIhgiuCOUIDAkmCUcJcwmWCZkJeglFCfkIjQgFCHgH9gZ4BvcFgAUjBdoEkgQ/BO4DqwN+A2IDTQMxAxMDCQMVAw8D1gJ6AiwC9gGvAT0BuQBMAAEAwf9u/wP/lf5M/i/+Ef7I/XD9UP13/Zr9gv1V/Vn9g/2F/UH96fyx/Iz8Tfzq+377Gvuy+jr6u/lD+dH4VfjS92T3Hffh9on2H/bX9cH1ovVC9cL0cvRh9E30+/OM80LzJ/MC86PyIfK28XfxRvH68J3wVvA48CfwCfDf77fvle9372zvdu9572LvS+9X73fve+9V7yzvIu8z70PvQu8671Lvsu9O8NvwLfGC8TTyJfPV8x30cPQx9R/2t/bv9jX3v/dP+Jf4oviw+PD4YPng+Uj6n/og++770Px3/fP9mf56/0kA1QBLAeEBgQL+AloDrAPvAxoEQARsBIgEjQSmBPAESgWRBeQFZwbyBk0HkgcCCI4I7wgjCXQJ9glcCnMKbQqLCr4K1ArOCtcK/goyC2YLmQvEC+4LKgx+DMcM7wwSDVINoA3XDfgNJA5hDpkOwg7nDgkPGg8fDycPNQ86DzQPLw8tDyQPEg8AD+wO1A7CDsgO5A77DgIPDg82D2wPjA+ID3gPfQ+TD5IPXQ8WD/MO9g7kDpwOUA48DlgOYg5DDikOQA57DqwOvQ7ADs4O6A7xDsoOdQ4dDt0Now1JDdYMcAwpDOkLmwtICwgL4ArDCqIKewpRCigK9gmtCUsJ3whoCMsHBQdABp8FBQVGBHYD0wJmAvYBXgHEAF4AJgDt/5D/G/+w/mH+FP6T/c78/ftX+7n61/m++ND3Nfej9tv1CvV39Ar0fvPY8lHy7fF78fDwcvAD8HLvpe7C7eTs8evQ6pnpcehZ50fmR+Vj5JPj1+JF4uThmOFH4Qnh/uAS4RDh6OC74J3gdOAl4LXfQ9/k3pXeWt5N3pPePd8+4IPhCePM5Lfmt+jW6iDtee+x8bzzr/WA9/X47/mZ+in7l/u1+4v7Xfta+3v7p/vh+z/80/yX/Wr+LP/h/64AogGLAj4D0QNtBPkELQX6BKMEVATnAzcDewIGAtsBvQGVAZUB5AFkAuYCZgMLBO0E+wUSBx8IJwk4CkwLSAwHDYUN3w0tDmQObg5TDj0OSg5mDm4OXQ5VDm4Ong7ODgIPUQ/ND2sQExGrESgSmBIIE2UTiRN1E1kTTBMoE8kSWxIbEvMRnhEZEbYQkRBmEAwQyg/qD0IQbxBvEJEQ6BArESgRCxEOESgRIxHzELYQhRBdECwQ5A+DDygP7g7HDocOLA7wDfYNDg72Db4NqA3BDcsNnw1lDVUNYQ1TDRwN4gy9DJMMQQzNC1kL8gqGCgQKfAkFCaMIPAjFB1MH/wa9Bm8GEQbDBZQFbAUnBcgEcgQ2BPgDlgMTA5ACJALFAVUByQBAAOD/ov9Z/+f+Yv76/bn9ev0c/an8SPwR/O/7sfs++7r6Xvot+ur5aPnN+GL4Mvj794v3/vaS9lz2Nvbx9Yr1LvUL9Rf1F/Xq9Lz0yfQE9Sr1JfUe9Tf1YvWF9aX1wvXO9cz15PUi9lX2XPZd9pL27PYm9yv3K/dX96P35PcC+AX4D/g7+Hj4mPiO+Ir4ufgH+T75Vflz+bH5Bvpd+qn64/oa+2/77fth/KD8zPwj/Z/9/f0o/lL+pv4Q/27/v/8JAE8AnAAEAXIBtQHNAfIBQgKNAqcCrALWAisDewOpA74D0wMFBFsEtQTrBA0FWAXYBUUGbAZ7Br4GJwdoB28HcwedB9YHBQgoCEgIZQiFCK8I2gj1CAgJLAlkCZsJxAniCfQJAQodCkoKXgo9ChUKJgpcCmUKMAoQCjcKZgpTChIK8gkMCiwKLQocChgKLApKCl0KVQpDCkUKXgpwCm4KbwqLCqwKvQrJCuMK9QrnCs0KzArbCs0KmQpqClwKUgonCt4JlwloCU0JLwkDCdMIwAjWCPoIAAnlCMoIywjWCMkIlQhTCCcIFwgACLwHUQfyBrkGiQY3BsAFTwUNBfYE3gSYBDQE7gPnA+QDkwMCA5sChgJqAvMBUAHuAMgAfADi/zn/vf5R/sr9NP20/En84Pt8+yH7xfpi+gD6o/lL+f34vfh4+Bj4vveO92n3Bvdp9uL1j/Uj9WX0jfPo8mTywfEC8VHwrO/27kDuq+0o7ZXsGOz06xvsMuwc7BfsS+yH7JXsgex17HXsb+xZ7Cjs0Oti6wfrwOpk6ujpfOlN6U/pZemT6ezpZer46q3rfOw67dXteO5N7zXw9/CP8Szy5vKk80X0vvQi9Zv1QfYA96D3Gvix+In5ZPr0+kr7tftJ/ND8Kv1y/cj9JP56/sz+Ef9A/3D/w/8kAGEAeACgAO8APgFtAZgB3wEsAmECjgLHAv4CKANnA9IDSgSoBAEFgwUeBpoG7gZMB9MHZQjdCEQJuwlPCuwKeAvqC1kM3gxzDewNNQ54DuUOYg+xD8YP2w8YEFgQXRAtEAUQEhAxECEQ4g+/D+4PNhA2EPAP1Q8dEGsQVhAPEBUQeRDDEKgQaxBqEJ8QuxCcEGcQVxCBEL0QzBCiEIQQrRDtEOYQmxB3EKYQzRCfEFUQThByEGMQExDRD8APpw9aD/4OxA6mDngOKg7LDW8NHg3JDF4M2AtZC/8KvgprCvYJhAk7CQoJwQhNCM8Hcgc4B/IGgAb7BZEFPgXQBCoEbwPHAi0ChwHWACUAeP/P/jr+uP0o/X783/tm+/b6Y/rC+T750vhX+Mr3R/fF9h72YfXF9Ef0qvPl8j3y2fF78eTwMvCi7zLvse4O7l7tr+wA7FProurU6eDo7uch52PmjeWu5Pnjf+Mm49nineJz4l/iceKv4v3iO+N549rjVOS65P3kNuWC5eLlUea/5hTnXOfR55PoZ+kC6oXqUuts7GXtCe6i7nvvaPAa8ZDx+/Fj8qzy1vL38gnz/PLu8gPzK/NB81Lzj/MB9IT0B/Wc9U/2E/fk98r4tPmJ+lH7Jfz6/KX9Iv6Z/h3/kv/e/xQAUwCdAOUAKwF2AcwBNgK2AjoDsAMnBLkEYAX7BXwG/AaMBxoIjwjkCCIJVwmWCdsJBgoOCiQKcQrKCuoK6AoXC4IL1wv1CyMMkwwUDWkNrA0LDm8OsQ7lDisPaQ99D4QPqQ/LD7cPiw+KD6UPkg9PDykPMg8tD/4O2w7zDicPTQ9tD5wP1A8MEEcQfBCaELMQ5RAgESoRBBHwEPwQ3xB1EAUQ0Q+sD08P3A6lDqQOig5CDhAOFQ4kDhMO8w3mDekN5A3MDaMNcA1ADRQN1QxvDPoLmgtLC+sKeAoZCtcJlAk/CesIoghWCP4HrQdmBxQHtgZmBi0G6QWGBSEF1ASIBCQEuANfAw8DrAJEAvUBtAFgAfgAmwBNAOr/Wv+9/jb+vf0y/Yf80/st+5T67Pko+V/4sfcd94z2+fV59Rv11/Se9HH0SfQW9N7zufOh83bzOPMM8/zy2PJ+8hjyy/F88QPxhvA78Anws+9J7xHvDO/y7q3ufe6L7qfun+6G7ojupe7G7uDu8O7z7vruGO8y7x3v9u4K71fvie+G76TvFfCE8KDwqPAK8aTx//EW8lzy/vKb8+LzCfRq9Pj0aPWa9bf19vVf9tD2Gfc893f39veJ+OH4BflM+dj5Y/q1+vb6Zvv4+3T80fwt/Yz92/0d/mb+r/7k/g7/Qf98/6j/xf/i//v/CgAjAFcAlAC7ANwAJgGXAfoBNgJ1AuQCdQP3A1kEtQQuBcUFVwa+BgEHUwfMB0QIhgioCOwIXgnCCfkJJgp0Cs4KFAtQC5wL7AsmDFkMogz1DCkNPg1jDasN8A0ODhkOPg6BDsAO4w4ADzYPeg+qD74P1Q8AECEQHxAaEDYQWxBVEC4QJhBEEEUQDxDaD9YP3A+5D4QPaQ9bDzgPEQ8AD+sOrw5tDlgOUg4ZDrwNjA2SDYMNNw3jDLUMkgxSDPsLoQtHC/IKrQplCvQJZgnvCJcIKQiQB/8GmgZDBtQFWwXsBHYE7wNxAwYDjwL7AWsB+gCLAAEAaf/a/k/+vv0y/aX8APxU+9L6dPr5+Vb51PiS+Eb4uPcl99H2ivYK9nf1HPXb9GX0yvNZ8w7zkvLe8UXx5vB+8O/vb+8h79buaO7z7Y7tJu2m7Cjswutl6wnrvuqK6ljqI+r56dfprumN6ZPptenT6f3pU+q26vLqJuuV6ybsguy47DHt9u2a7vzug+9h8CjxjPHd8W/y9vIX8xnzaPPW8/bz4PP/80j0VvQq9CH0SfRk9Hz03fR09eP1NPbQ9rD3R/hx+L74gvlG+pH6rfol++X7dPy4/P/8cv3w/WL+y/4j/3j/+v+4AGoBzgETApECMwORA5MDkgPXAzkEbgRtBHAEowTzBCcFKAUgBUwFqQX3BR4GVgbKBlIHuQcHCGUI0AgoCXAJwQkWCl0KpQoDC2cLsgvuCzcMfwyuDNYMFA1WDXoNlQ3YDTMOaw59DqMO9Q5BD2EPcQ+dD+UPKxBfEH8QkxCrEMwQ2BCxEHEQTxBKECsQ3w+UD3APWw80DwAP0w6vDpQOiQ6DDmoOQw4zDkAOOQ4ADroNlg2DDVAN9wydDFYMEwzEC2kLCAujCkcK+QmnCTgJvAhWCA4IvwdQB9UGcAYbBroFRgXQBGQE+wOSAy0DzAJeAtsBWgHtAIAA7/8//6D+JP6e/eL8BvxE+6X6AvpG+Y349vd89wz3ofY69tH1bPUc9dv0g/QH9I/zPfP48o/yCfKZ8U/x/fCJ8BLwuu9y7x3vx+6K7lruIO7k7brtlu1X7QTtweyR7FjsEuzd68Xrq+uC62PrXOtW60brRetj64Trleuz6/PrNexY7HbstuwE7TbtXe2l7QTuUu6W7vjucO/O7xXwdfDx8FXxk/Hg8VbyzPIe82XzwvMs9I307vRT9a/1BvZ19vb2X/es9xD4nvge+Wv5q/kO+nv6yPoG+1v7vfsQ/F78wfwr/X/90f0//rn+Gv9r/9L/SwC1AA4BcwHmAU0CoQL4AlQDpgPwA0IElwTeBCEFcgXLBRUGUgabBuoGKQdYB5EH2QcaCE0IgwjACPQIIAlTCY8Jxgn4CTIKdwq0CukKIwtmC6QL2AsMDEEMdAylDNkMBw0sDVYNiw24DcwN3g0HDjcOSQ5KDl8Ohg6UDoEOdQ6ADoQOcA5aDlMORg4nDgoO/Q3tDcYNnQ2HDXUNTw0fDf0M5wzJDKAMdwxODCIM9QvHC44LSgsJC9MKlQpHCvwJwwmGCTAJ0QiFCEMI7AeDBygH4gaTBisGvwVjBQ4FrwREBNcDbgMLA6kCQQLSAWgBCwGxAEYAy/9S/+n+hf4X/p79KP27/Ff88ft++wb7m/pG+u35fPkD+Z/4Tfjw9373C/en9kf23vV19RL1rPRE9OjzmPM/89fyd/Iw8vHxofFI8fjwtvB18DDw6++k71/vKu8D79Xule5f7k7uTu487hnuCe4U7iHuG+4R7hPuH+4w7kTuV+5j7nDukO6+7t7u6+4B7zLvau+Q763v1+8Q8E7wivDF8PvwMfF08cDxBPI98ojy8/Jh87fzBfRr9OD0QvWS9fH1ZfbT9iv3hffw91f4rPj/+GH5xvkc+mn6vPoS+2b7v/sg/H380Pwn/Yr96f0z/nr+1/5D/6D/6v8zAI4A8ABLAZ0B7QFBAqACBwNgA6YD7gNKBK0E+wQ1BXkF0AUlBmYGngbcBiIHZQekB+AHFwhNCIQIuQjnCA4JOwlyCaUJzQnvCRQKPApiCogKsArZCgELKQtQC20LhAuhC8YL5Qv4CwkMHww0DEAMSAxQDFUMVQxTDFEMSAw1DCMMFAwDDOkLzgu2C5YLawtCCyMLAAvNCpUKZgo6CgMKxAmLCVgJHwngCKMIZwglCOMHqgd3Bz0H/Aa+BoMGRQYFBsUFgQUxBdwEkgRNBPoDnANGAwADtAJXAvMBmAFFAe0AjgArAMz/dP8f/8P+W/7y/Zf9Qv3h/HH8Bvyr+1T79PqO+iv6y/lw+Rn5w/hn+A/4xfd/9yn3yvZ39jH24vWE9Sv13/SO9DT04vOi82DzDPO48njyOvLt8ZnxV/Ej8enwq/B38EvwGvDp78Tvou92707vPe837yLvA+/67gbvDO8E7wHvCe8Q7xPvH+8x7zbvNe9O74Dvpu+w78Dv8e8s8FLwbPCZ8NzwHvFZ8ZPxz/EN8lDynPLi8iHzaPPA8xf0YPSw9Bf1gvXb9S32lPYE9173qfcH+Hn44Pgv+YD54/lE+pb65vpD+6P7+vtU/Lf8Ff1k/bj9Hv6G/tz+J/98/+D/QQCZAOwAQgGeAf4BWwKsAvYCTQOyAw4EWQSkBP8EWwWjBeIFLAZ6BrcG6QYnB3QHtgflBxUIUwiQCMAI7ggoCWYJmgnECfIJJApSCnsKpArRCvoKHQs+C2ILhQulC8QL5QsGDCIMNwxNDGYMgAyTDJ4MqAy2DMQMyQzFDL4MvQy/DL0MsQydDI0MgQxxDFMMLgwRDP0L4gu2C4kLaAtKCyEL7wrBCpkKaQouCvgJzwmjCWsJLwn6CMoIkAhRCBMI1weWB1EHDwfPBokGPAbxBacFWAUCBawEWQQGBK4DUAPvApACNALXAXIBCAGjAEUA4/91/wb/of5A/tL9Wf3m/H/8Gfyr+zr7y/ph+vv5l/ky+cX4W/j79573OvfS9nX2IPbD9WD1BPWz9F70APSl81TzAvOp8lnyGPLZ8Y7xQ/EG8czwifBE8A7w4e+s73PvRO8f7/Puw+6f7ofub+5V7kPuO+4x7ijuKO4w7jTuNu5C7lrube507oHun+7C7t3u9+4b70Tvbu+b79HvB/A68HPwufAB8T7xd/G88QryVfKa8ubyO/OV8+3zRfSf9Pv0XvXH9S32i/br9lT3u/cS+GL4wfgs+Y754/k5+pr6/fpc+7v7H/yE/Ob8Sf2u/Q7+a/7N/jP/lf/w/04ArwAKAV0BtQEZAn4C2wI3A5QD8ANHBKAE/ARRBZ0F6wVEBp0G5wYlB2gHtAcBCEUIggjACAAJQwmFCcAJ9gkvCm4KqQrZCgULMwtiC4wLswveCwkMLgxNDG0MjgyrDMIM2gzzDAoNHA0tDTwNRg1NDVUNXA1dDVsNXA1fDVkNSg08DTQNKA0NDesM0Qy+DKUMfwxWDDQMGQz5C80Lngt1C08LJwv3CsQKkApdCicK8Am7CYUJSgkKCcoIjAhKCAAIswdrBycH3QaKBjYG5wWZBUcF8QSZBEAE5gOLAy0DywJqAgsCrQFLAeUAgQAkAMn/av8H/6b+SP7r/Y39LP3K/Gj8Cfyp+0n76PqI+in6yvlu+RP5tfhU+Pb3nvdJ9+72jvYy9tv1gvUl9cr0dPQf9MjzdvMt8+jyofJb8hzy4vGr8XbxRPET8eXwv/Cf8HvwUfAt8BbwAvDm78vvve+476/vou+b757voe+i76fvsu+678Dvze/h7/XvBfAZ8DfwWfB98KXw0PD58CHxVPGS8dHxCvJM8pvy6fIr82/zwfMW9GH0q/QF9Wb1vPUL9mf20PYz94X31/c2+J34/PhT+an5Afpa+rT6Eftr+8L7Hfx8/Nn8NP2S/fH9S/6i/v/+Zv/H/xwAbwDKACgBgQHWASoCgQLbAjgDkwPkAy0EfATXBC0FdAW3BQMGVQaeBtkGEgdQB5AHzAcDCDUIZAiVCMYI9QgfCUwJfQmsCdUJ/AkkCksKbgqSCrwK5AoACxkLOgtkC4MLkQucC7ML0wvqC+8L7QvzCwMMFAwZDBMMDQwODA4MAwzsC9gLygu6C6ELggtnC1ALNQsUC/IK0gqtCoMKVwowCgsK4gm0CYMJVAkoCfkIxgiTCGEILAjyB7QHegdFBw0HywaEBj4GAQbEBYEFNAXmBJ0EWQQPBLkDXwMNA8QCeAIgAsEBZwEXAcUAagAKAK7/WP8E/6r+S/7r/ZH9Of3f/IL8JfzL+3X7JPvQ+nb6F/q7+Wn5GfnB+GH4Bvi192X3D/e19mT2G/bT9YX1NvXn9Jz0VvQR9MrzgPM78wLzz/KX8l7yLfIG8t/xtPGP8XTxWfE58RzxCvH78OLwxvC08LHwrPCg8JjwnPCl8KnwqPCp8LPwwPDN8Njw5vD88BvxPfFa8XTxk/G88ebxEfJC8nvytPLq8iXzavOz8/XzNPR79Mj0E/Vb9aT18fU+9oz23PYs93330Pcq+IP41fgm+YD53vk0+oD60vot+4b71vsl/Hv80vwl/Xf9z/0o/nv+zf4l/37/0/8lAHoA0gAnAXcBxQERAlsCpgL0AkADhQPLAxYEYgSqBO4ENAV7Bb0F+gU5BngGtAbrBiEHWAeLB7sH7AceCE4IeQiiCM4I+wgmCUoJaQmJCa4J1AnwCQIKFQowCkoKVApYCmUKfwqUCpsKngqmCqwKqwqpCqwKrwqpCqEKngqcCpAKfQpvCmUKVQo6CiEKDwr+CeYJyAmqCY0JbglMCSUJ+wjSCK0IiAhbCCcI8wfGB5kHZgcuB/oGyAaSBlYGFwbXBZgFWwUfBd4ElgRPBA8EzwOIAzoD7QKkAlgCBgKzAWMBFQHFAHQAJQDY/4j/Nv/n/pr+Tf79/av9W/0O/cH8cPwc/Mf7dfsn+9r6jfpC+vr5sfli+RL5xvh/+Db46fed91f3EvfJ9nz2Nfb19bX1c/Uz9fz0x/SN9FT0JPT688zzm/N081zzRfMk8wLz7fLi8tHyt/Kh8pbykPKH8n3yd/J28nfyePJ68nzygfKN8p3yqPKw8r/y2PLx8gPzFvMx81PzdfOU87jz3/MI9DX0avSi9Nf0DPVH9YP1vPX19TX2ePa69vz2RfeQ99P3E/hc+LD4/vhE+Yr52fkr+nT6ufoB+0v7lfvh+y/8efzC/A79Xv2r/fH9Ov6N/t3+I/9o/7b/BgBNAI8A2AAnAXABswH4AUEChgLGAgkDUQOXA9gDGARWBJEEyAQBBTsFcgWkBdYFDAZABmwGlAa+BugGEAc2B18HigeyB9UH8wcRCDEIUwhyCIwIpAi/CNgI6gj0CAEJFwkrCTcJPQlGCVUJYQlmCWcJawlvCW8JawlkCVsJUQlGCTkJKAkWCQIJ7QjWCMAIqQiTCHsIYAhACB0I+gfYB7MHjAdmB0IHHAfwBsMGlgZpBjgGBQbUBaMFbgU4BQYF0ASQBEwEDgTVA5IDQwP6ArwCfQIxAuIBnQFfARcBxwB8ADoA+P+s/1//Gv/W/o7+Rf79/bP9Z/0d/df8kvxK/AH8u/t3+zH75vqZ+lD6DfrJ+X35Lvnl+Kf4Zvgf+Nr3ofdq9yj34fak9nT2P/YD9sv1n/V29Ub1G/X69N30u/Sa9H30YfRA9CP0E/QJ9Pfz4vPX89Pzx/O086fzpvOj85nzlfOb86LzpPOo87bzxfPP89vz8vMN9B/0LfRD9GT0g/Sd9Lr03fQF9S31WfWF9bH13PUP9kj2fvaw9uP2H/dd95T3xvf89zv4fPi5+PX4NPl7+cP5B/pI+o361voc+1r7mPvg+yr8bfyp/Oz8N/18/bb98/06/oT+w/78/jn/fP++//v/NwB2ALMA7gArAWoBpwHiAR0CWgKVAtACDQNKA4MDuwPzAyoEXASNBMEE9QQkBU4FfAWsBdoFAQYnBlAGegafBsAG4Ab9BhkHNQdSB20HggeVB6oHvgfNB9gH4wfvB/sHBQgQCBwIJQgtCDMIOAg4CDUIMAgoCB4IFQgOCAgI/QfvB+EH1AfGB7UHoQeNB3sHaQdRBzIHEQf3BuEGxQafBngGWAY4BhEG5QW9BZwFegVTBSYF+QTMBJ0EbQQ3BP8DygObA2sDMwP6AscClgJeAh4C4gGtAXgBOwH6AL0AgABAAAEAx/+N/1H/Fv/h/q/+d/43/vr9xP2N/U/9DP3M/I78T/wO/M77kvtY+x373/qj+mj6Kvrr+bT5hvlX+SH56Pi3+Iz4XPgp+Pv31feu94T3YfdH9y33Cffl9sr2tvad9oD2a/Ze9k72N/Yi9hb2DPb99ez14PXY9dL1z/XQ9dH10vXY9d/15fXr9fn1DvYi9i32OPZK9mP2evaM9qP2w/bn9gr3LPdP93T3nPfI9/T3HfhI+Hj4qvjX+P/4K/le+ZX5zPn/+S/6YfqZ+tb6EftJ+4L7v/v7+y/8X/yU/M/8Cv1C/Xv9tv3v/SX+X/6c/tX+Bf82/3D/rv/n/xkATACCALYA5gAVAUYBeQGwAesBJwJaAokCuwL0AioDVwN/A64D4wMUBD4EZASMBLkE5QQOBTcFYAWGBacFxAXkBQgGJwY9BlQGcgaUBq0GuwbJBt0G9AYEBwwHFAclBzwHUAdZB1wHYgduB3oHgAeDB4oHkweYB5gHmgegB6IHnQeWB5IHkAeJB30HcgdpB10HSQc1ByYHGAcHB/UG5AbUBsAGqQaRBngGXgZCBigGDAbtBcsFqgWNBW4FSAUeBfcE0wSuBIMEVgQuBAoE4QOwA30DSwMbA+gCtQKEAlMCHgLnAbIBfgFHAQ0B1ACgAGwANAD//8//o/90/z//Cv/Z/qr+ev5D/gf+z/2h/Xb9Rv0O/dn8sfyN/F/8Kfz2+8z7pPt4+0b7Evvf+rH6iPpf+jT6C/rr+dD5s/mU+Xj5YvlN+Tb5IfkP+fn43fjF+Lf4rPie+JD4jfiR+JP4kPiP+JL4lfiW+JT4k/iS+JL4lfic+KT4rfi3+ML40Pjj+Pv4Evkq+UT5Yfl/+Zf5rvnJ+ej5CPom+kb6afqN+rL62voF+zH7XPuG+6771Pv5+yL8Tfx4/KT81PwE/S79Vv2C/bT95P0P/jr+av6b/sf+8v4f/0v/c/+b/8n//f8uAFsAhwC1AOIACwE0AWABjgG5AeEBCwI3AmMCjgK5AucCFgNCA2sDlAPAA+kDDAQuBFEEdASWBLYE2AT/BCUFSQVqBYkFpQW/BdkF8gUIBh4GNgZRBmoGfwaSBqUGuAbJBtoG6wb5BgMHDgcbBykHMQc0BzgHQAdJB04HTAdKB04HWAdiB2UHYgdeB14HXQdVB0UHNAcqByUHHgcPB/8G8wbqBt8GzAa0BpkGfAZcBj4GIwYHBuYFxQWnBY4FdAVYBTwFJAULBe4EygSkBH0EVAQrBAIE2wO1A40DYgM0AwcD3gK6ApYCcAJIAiAC9QHFAZABXAEpAfgAxQCSAGAAMAADANn/r/+D/1X/Jv/4/sr+n/53/k/+Jv79/dj9sv2G/Vf9L/0O/ev8wfyX/HP8Ufwr/AH83fvB+6b7ifts+1P7O/sj+wr78/rc+sX6svqk+pj6i/qA+nj6c/ps+mP6XPpY+lT6UPpP+lD6T/pJ+kf6TfpW+ln6Wvpi+nP6hfqP+pb6ofqz+sb62Prq+v36Efsk+zn7Uftr+4b7ovvD++n7DPwo/ET8afyV/L/84/wG/S79Wv2D/af9zP3y/Rj+Qf5t/pn+xP7u/h//Uv99/6D/xf/z/yAARgBmAIkAsADVAPsAIwFOAXcBoQHOAfkBGwI3AlgCfwKmAsUC5AILAzUDWwN6A5oDvwPmAw4EOARjBI0EsgTWBPkEGQU2BVAFawWKBagFwwXeBfsFGAYyBkUGVQZmBnUGgAaFBogGkAacBqgGsga5BsIGzwbeBuoG9Ab9BgUHDQcUBxsHIQckByQHIgchByIHIgcjByUHJgcnByUHHwcWBw0HAgfyBtsGwwavBqAGjQZ2Bl0GRwYzBhoG/QXhBcoFswWZBXsFWgU6BRoF/ATdBLwEmgR6BF0EQAQeBPcD0gOxA5IDbwNFAxoD8gLLAp8CcAJDAhoC8wHIAZgBaAE9AREB4gC0AI0AbABHABwA8//N/6n/gv9W/yv/Bf/i/r3+mf53/lb+Mv4L/uX9w/2k/YP9Yf0//R/9//ze/Lz8nPx//GT8Sfwy/CH8E/wD/PH74vva+9P7yfu/+7n7tvuw+6T7m/uW+5L7jfuK+4v7jfuP+5P7mvui+6r7svu7+8L7xvvK+9D72Pvg++z7/vsS/Cn8QPxY/Gz8ffyP/Kf8xfzi/P38F/0y/Uz9Zv2B/Z39uf3X/ff9Gv48/l3+gP6k/sb+5P4C/yL/Q/9l/4X/pf/D/+H/AAAiAEUAaQCMAK8A0gD0ABUBOAFdAYQBqgHNAe0BDwIzAlYCdgKSArAC1AL7AiEDQwNiA4ADogPDA+AD9wMPBC0ETgRqBH8ElQSxBNME8wQMBSAFNwVQBWkFfAWNBaAFswXCBc8F3QXuBf4FCQYUBiMGMgY8BkIGSQZTBlwGXgZbBlkGWQZZBlgGVwZXBlcGWQZdBmEGYgZfBlsGWAZUBkwGQAYzBiYGGwYQBgMG9QXmBdYFxQW1BaQFkQV8BWcFUAU3BR0FAwXoBM8EtgSgBIsEcwRVBDQEFwT8A+ADwgOjA4gDbANOAy0DDAPrAscCowJ/Al4CPQIbAvYB0AGrAYgBYgE2AQsB5gDHAKcAhgBpAE8AMAAJAOP/xP+r/5D/bv9M/yz/Df/v/tT+u/6h/ob+av5O/jD+Ev76/eb90v26/aL9jf14/V/9Rf0v/Rz9Df0B/fj86/zd/NH8y/zG/Lv8rvym/KP8oPyb/Jf8mPyc/J78ofyl/Kr8r/y0/Lv8xPzN/NT82vzg/On88vz3/Pn8AP0Q/SP9M/1C/VT9aP16/Yz9of27/dT96f0B/h7+O/5T/mj+gP6e/r7+4P4F/yv/TP9q/4j/pf/B/9r/9P8OACsASQBpAIkAqADHAOcACQEqAUkBZwGHAaYBwQHXAe8BDgIvAk0CaQKIAqsCzgLuAg4DMgNYA3sDmAOxA80D6QMABBQEKgRGBGYEhASeBLgE1ATsBP8EDwUfBTAFPQVFBU4FXQVzBYgFmAWmBbgFywXdBesF+QUHBhYGIwYuBjYGPAZDBksGUQZUBlQGVgZZBl0GYQZlBmsGcQZ2BngGdQZsBl8GVQZRBkwGQAYxBiYGHwYSBgAG7gXjBdoFzAW6BakFnAWTBYkFeAVjBU0FNwUgBQUF6QTQBLwErQSeBIwEdgRbBD8EJAQGBOMDvgOcA3wDXQM7AxoD+ALVArECkQJ3Al4CQwIpAhAC9gHWAbIBkAFuAUoBIwEBAeQAywCvAJIAdABXADkAGwD8/9r/uv+g/4j/bP9K/yr/E/8C/+7+2f7I/rv+rf6e/pD+hP51/mT+Vf5J/j3+L/4h/hf+EP4J/gP+/f31/ev93v3P/b79rf2h/Zv9l/2Q/Y39k/2c/Z/9oP2k/az9sP2w/bP9vP3J/dL92v3m/fj9DP4e/jD+Qf5U/mn+fv6O/pr+p/63/sX+0v7g/vX+C/8e/zD/RP9a/27/gP+T/6n/vv/P/9z/7f8DAB8AOwBVAG8AjgCvAM8A6gAGASUBRwFmAX8BkwGmAbYBxwHcAfUBDgIkAjkCUAJoAn4CkAKfAq0CvQLQAukCBAMcAzEDRANYA2oDfQORA6kDwAPTA+UD+QMSBC0ERwRhBHoEjwShBLIEwwTVBOQE8QQABQ8FGwUlBS0FNQU5BT0FRAVPBVkFYwVtBXUFdgVxBW0FbAVtBWgFZAVlBWoFbQVtBWwFagVlBV4FWgVWBVEFSQVDBUAFOgUvBSMFGQUNBfwE6wThBNoEzgS+BK4EoASOBHkEZQRUBEAEJwQQBAAE9APmA9IDvAOnA5EDfQNoA1MDPAMmAxED+QLfAscCtAKkApACewJoAlgCRwIyAh0CCgL2Ad0BxQGyAaUBmQGHAXEBWgFHATgBJgERAfwA7wDnANwAzAC6AKsAngCOAHwAbgBlAFsAUABHAD8ANAAnABsAFAASAA0AAgD1/+f/3P/S/8v/xf/A/7z/t/+v/6b/of+i/6b/qP+p/6b/nv+T/4r/h/+I/4b/hP+E/4n/jv+Q/5P/m/+i/6f/rP+1/8H/yf/P/9f/5P/x//r/AQAIABEAGQAkADIAQABLAFYAYgBvAHwAhQCNAJUAoQCxAMMA0gDbAOMA7wD/AA8BIAEyAUYBXQFyAYcBngGzAcQB0wHjAfUBCAIcAjICRwJYAmcCdgKJApsCrAK+AtAC4gLyAgEDEAMbAycDNwNNA2IDcQN7A4UDkgOdA6gDtAPDA9QD5QP0AwEEDAQVBB8EKgQzBDsEQwRMBFYEXwRnBG4EcwR2BHgEegR9BIAEggSEBIUEhQSCBH8EfgR8BHgEdgR5BH0EfAR2BHEEcgR3BHoEeARzBG0EZwRgBFgEUARKBEYERARABDkELQQfBBEEAwT4A+wD3wPQA8IDtwOsA54DjwOBA3QDZgNWA0YDOAMsAyADEwMFA/UC5QLXAs0CwwK3AqkCnQKRAoMCcgJjAlYCSgI9AjACJAIYAgkC+QHoAdUBwQGxAagBoQGWAYYBeAFsAV8BUAFDAToBMwEpAR8BGgEXAREBBwH/APcA7gDfANAAxwDCAL4AuACxAK4ArQCrAKcAngCTAIYAewB1AHUAdQByAHAAbwBwAG8AcABzAHgAegB3AHEAbgBvAHIAdQB4AHsAgACFAIcAiACLAJIAmgCfAKQAqwC1ALsAvwDDAMsA1gDhAOkA8QD6AAMBCwEQARcBIQEsATQBPAFFAU8BVwFbAV8BYwFkAWYBbwF+AYwBkwGYAZ4BpwGxAbwBygHXAeMB7QH4AQcCFwImAjECOAI9AkMCTQJYAmICbAJ6AooCmAKhAqcCrAKyArQCtAK2Ar8CyQLRAtcC3QLiAuMC4wLjAuYC6QLqAukC7ALxAvYC9wL1AvEC7gLuAvMC+gIAAwUDBwMJAwsDDAMNAw0DCQMFAwUDCAMLAwgDAQP7AvcC8ALmAt4C2wLaAtgC2QLaAtcCzwLHAsQCwAK4ArACqwKnAp8CmQKZApwCmQKQAokChQJ+AnICZQJeAlwCXgJdAlgCTQI+Ai8CIwIbAhMCDAIHAgAC+AHyAe8B7gHqAeQB3QHYAdIBywHEAb8BvQG9Ab0BvAG2Aa0BoQGXAZEBjwGMAYUBfwF8AXkBdAFsAWUBYQFhAWQBZgFlAWABWwFWAVABSgFHAUkBSwFGATsBMwEwATEBMQEwATEBMwEyATABLAEoASIBGgETAREBFAEWARcBHAEhASQBIwEhAR8BHAEZARcBGwEiASgBLAEwATYBOgE6ATgBNwE4ATwBPgE/AUEBRgFJAUkBSQFNAVMBVwFXAVcBWwFhAWYBZwFpAWwBbwFwAXQBewGBAYQBhgGJAY4BlAGcAaIBqgGwAbQBtQG2AbcBtQGzAbMBuQHBAcQBwgHCAckB0gHWAdYB2gHhAecB6gHrAfEB+gECAgMCAQL/Af4B/gEAAgQCCwISAhUCFQISAhECDAIEAv4BAAIHAgkCBAL9Af4BBgILAgkCBAICAgECAwILAhYCHQIbAhUCEAIPAg4CDAIKAgwCEQITAg8CCgIEAgACAAIFAgoCDAIJAgQCAQIAAv8B/AH5AfoB/AH7AfUB7QHnAeUB5AHhAd0B2QHUAc8ByQHEAcIBwgHFAcYBwwHAAbsBtAGuAacBogGdAZkBmQGZAZkBlwGSAYoBggF8AXkBdwFzAXEBcQFwAWsBYQFYAVMBUQFVAVoBXgFeAV0BXwFiAWIBXwFaAVkBWgFZAVUBUwFUAVYBWQFbAVsBVwFQAUwBSwFKAUUBPgE6AT0BQAFCAUIBPgE4ATYBOQE8ATsBOwE/AUEBPgE6AToBOwE5ATUBNAE4AT0BQAFCAUUBRgFDAT0BOAE2ATcBOwFAAUUBSAFLAUwBSwFJAUYBQwFEAUsBUQFQAUwBTQFTAVUBTgFCATsBOgE7ATwBPgE+AToBNwE3ATwBQAFBAUABQAFBAUEBQQFEAUgBSAFGAUUBRgFKAU0BTwFPAU0BTQFQAVUBVgFUAVMBUwFSAU0BRwFDAUQBRwFLAVABUwFTAVMBUwFSAVEBUgFWAVkBWwFaAVoBXAFcAVkBVQFTAVQBVAFQAU0BTAFNAUwBRwFCAUABPwE9ATwBPgFDAUQBQQE+AUABQgFCAUABPgE/AUABQgFHAU0BUQFSAVIBUQFPAU4BUAFSAVQBUAFHAT0BNgE1ATUBMQEqASUBJgEpASYBHwEbAR4BJQEnASUBIQEeAR4BHQEcARwBHgEeARsBFQEQAQ4BEAETARYBFgESAQsBBQECAQEB/wD7APcA8wDyAPQA9wD1APAA6wDoAOQA3wDeAOEA3wDWAMwAygDLAMoAyADMANMA1QDRAM4A0QDSANEA0wDaAN4A2gDSAM0AygDGAMAAvgDBAMUAyQDLAMsAxwDBAL0AuQC1ALQAtwC7ALsAugC4ALUArAChAJwAnwClAKgAqwCxALcAuAC0ALIAswC2ALYAtACzALYAvgDDAMUAxgDLAM8AygC8AK8AqQCqAK4AtAC7ALwAtwCyALAAqwCfAJUAlgCdAKEAnQCZAJgAlQCRAJEAlgCaAJYAkQCSAJYAmACXAJkAnACcAJoAmQCXAJMAiwCGAIUAhQCDAIUAiQCHAIAAeQB7AIAAgQB+AH4AgwCIAIgAhgCEAIIAgQCAAH8AfQB8AH0AfwB/AH0AfQB9AH8AgQCDAIcAiQCIAIQAfwB8AHgAcwBvAG0AbgBzAHkAfQB/AIAAhQCHAIQAfwB9AIAAggCBAH4AfgCBAIEAggCIAJIAlgCRAIoAiQCPAJIAjQCEAIAAgQCBAHwAcgBsAG0AcAByAHIAcQBvAGgAYgBjAGkAbgBtAGgAZABiAF4AWgBZAFsAXgBhAGYAagBrAGkAZgBlAGQAYgBjAGcAagBoAGQAYQBfAFwAVwBRAEsARwBEAEEAPgA6ADgANQAxAC4AMwA8AEEAPAA2ADgAPgBCAEEAQgBCAD8AOwA9AEUATABMAEoASwBLAEgAQQA+AEAARABDAEEAPgA7ADYAMAAqACcAKgAwADMAMgAuACwALAAtAC8ANQA8AD4APQA8AD8AQAA7ADUANwA+AEQAQgA8ADgANAAvACsALAAvAC8ALAAnACAAGQAVABYAGQAZABoAHQAhACAAGwAYABoAGgAVABIAFgAaABYAEQARABUAFwAXABoAHwAfABwAGgAeACAAGwAVABAADAAHAAAA/f/6//j/+P/6//n/8//u/+7/8v/1//b/9//4//j/+v/+/wEAAQD///7//v/9//7/AwALABAADwAPABUAHAAdABoAGAAUAA0ABQABAAIAAwAAAP7//P/7//3/AAACAAEA//8AAAIAAQD//wEACgAQAA0ABwAEAAEA/v/6//r//P/6//f/9//5//b/7//o/+T/4P/d/97/5P/q/+3/7P/p/+X/4f/d/9r/1v/T/9b/3f/f/9r/2P/f/+f/6f/o/+v/8P/z//P/9P/2//L/6f/k/+X/5//k/+H/4f/i/+H/4P/f/9z/1//V/9n/2//W/87/zP/O/8//zf/P/9P/1v/V/9X/2//j/+n/7f/w//D/7P/r/+//7//m/9r/1//d/+D/2f/P/8z/z//T/9P/0f/S/9T/1P/Q/8n/w//B/8L/w//D/8X/yP/K/8j/xf/G/8z/0v/V/9T/0v/P/8v/x//E/8L/wv/A/7z/tP+t/6r/q/+s/6z/rv+z/7X/r/+k/5j/kP+I/4L/ff95/3X/cv9x/3X/e/+B/4n/jf+M/4j/h/+O/5f/nP+c/5r/m/+c/5v/mf+R/4f/gv+I/5P/mP+X/5n/nf+Y/4v/gf+A/3//dP9n/2L/Zf9k/2D/X/9l/2v/bf9t/2v/av9s/3T/ff+C/4X/jf+S/47/hP9//4H/gP98/33/iP+R/47/hv+A/3v/cf9l/1z/Wf9a/13/YP9d/1P/TP9N/1L/Vf9W/1n/Xf9d/1r/Wv9d/1z/Wv9e/2f/av9h/1b/U/9V/1X/UP9N/1D/Wf9h/2T/Yf9b/1b/Uf9L/0f/Sf9R/1P/Tf9D/z3/Ov82/zP/OP9D/0r/SP9C/z//Qf9F/0n/Sv9I/0f/Sf9O/1P/V/9c/2L/Z/9r/2z/av9g/0//P/83/zb/Nf8x/y//M/85/zr/Nf8x/y3/Kf8l/yf/LP8t/yn/JP8j/yT/JP8k/yb/Kf8t/zL/N/87/z3/Q/9K/0v/Q/85/zP/L/8l/xf/Ev8Z/yX/Kf8h/xb/Dv8I/wT///78/vr++f72/vT+9f77/gD//v73/vL+8/73/vv+/f7//gD/Af///vr+9P7v/u3+7f7u/vL++v4A//z+8f7n/uH+2P7P/sv+zf7N/sf+wv7C/sX+yP7N/tX+3P7c/tn+3f7n/u7+8P7x/vL+7P7f/tT+0P7P/sv+xf7B/sD+wP7E/sv+zf7H/r/+vP6//sP+xv7G/sL+vf64/rb+s/6u/qn+pv6q/q3+sP61/r3+wv7E/sb+y/7Q/s7+yf7G/sf+x/7E/sL+xP7K/s3+yv7F/sX+yv7P/sr+w/7B/sL+wP62/rD+tf6//sP+wf69/rr+s/6p/qD+nP6b/pr+mf6Z/pj+lv6U/pT+kf6Q/pT+nv6m/qr+rf6z/rb+s/6u/q3+rf6n/p3+mP6Z/pz+mv6Y/pn+mv6W/o3+gv58/nr+ev54/nb+dP50/nT+df51/nT+cv5x/nH+dP54/nj+dv50/nT+c/5w/mv+av5u/nP+d/56/nv+ev52/nD+av5n/mX+Yf5b/lf+Vf5T/k/+Tf5O/lH+Uv5N/kX+Pf43/jL+Mv43/j/+RP5D/kP+Sf5T/lb+Uv5Q/lf+YP5g/lr+VP5N/j/+Lf4i/iL+Iv4a/hD+Df4P/hH+Df4H/gH+/f39/QL+Bf4B/v39//0H/gz+DP4P/hP+E/4N/gj+Cf4N/hH+Ff4b/h3+Gf4R/gb++/30/fX9/P0D/gX+AP73/e796f3o/eT92/3U/df93/3e/dT9zf3N/c/9zf3O/db93f3d/dv93v3k/eL92/3Z/eL96/3s/ej95f3m/er97/3u/ej94f3i/ef95/3g/db9z/3K/cr90P3Y/dn91f3T/dX91/3a/eT99v0B/gD+/f0C/gf+AP7x/er97v3z/fP98f3v/er94/3j/ev98v30/fb9+/0A/v399v3z/fT99/34/fb97/3n/eb97/38/Qb+D/4Y/hz+Ev4C/vj99P3s/d790v3M/cn9xP2//bz9uP2y/a/9tP2+/cj9zf3P/c79yf3D/cH9w/3H/cv9zf3J/b79s/2v/bX9vv3B/bn9rv2m/aL9nP2S/Yn9h/2J/YP9dP1q/XD9fv2E/YH9gP2J/ZD9jP2D/YD9g/2A/Xj9df17/YP9iP2N/Zb9nv2l/a79u/3A/bj9rP2o/aj9n/2P/YD9d/1v/Wz9c/1//YL9ef1w/XD9dv18/YL9if2H/Xf9Y/1Y/VD9Qv00/TP9QP1Q/WD9bf10/XT9df2A/Y39jf2C/Xv9d/1r/VX9SP1O/Vn9W/1Y/Vr9X/1b/VD9TP1P/VH9T/1K/Uf9Pv0x/SP9Gf0T/RH9F/0m/Tb9Pv0+/T79Qv1H/Uj9Rv1E/UL9Pv00/Sn9Iv0f/Rz9Fv0T/RP9FP0P/Qn9CP0M/Q79C/0G/QT9BP0F/Qf9CP0G/QX9Cv0V/SD9Jv0n/Sz9Nf07/Tz9Pf1D/Uf9RP08/Tj9O/08/Tj9Mv0t/Sv9Kv0u/Tb9Ov01/S39J/0i/Rr9FP0a/Sb9Lv0q/SD9Gv0a/SD9Kv0w/TD9MP00/Tf9L/0l/Sb9NP0+/T39N/02/TT9Lf0o/Sv9Nf08/T39N/0v/Sf9H/0Y/RD9Bv0C/QT9Df0Y/Sf9Mv0z/S39Kv0w/TL9Kv0h/R/9If0e/Rn9GP0a/Rb9Df0I/Qj9CP0G/Qf9C/0N/Qv9Cf0L/RD9FP0W/RP9Cv3//Pz8AP0F/Qj9DP0U/Rr9Gf0U/RH9E/0X/R/9K/02/Tv9Pf1A/UD9PP02/TL9L/0m/Rr9Ff0a/SD9Hf0U/Qz9Bv39/PT88vz6/AP9CP0N/Rb9Iv0u/Tn9Qv1G/UX9RP1G/Uf9Rv1H/Ur9Sf1D/T/9Qf1C/Tr9Lf0m/Sj9Kv0p/Sb9Iv0Y/Qv9Av3//Pz89vz2/AD9Dv0T/Q/9Dv0U/SD9LP0z/TX9Of1B/Uj9Rf0+/T79Rv1F/Tf9Kv0o/Sv9I/0S/Qj9Cf0J/Qb9Bf0G/f/88vzq/Oz88vz0/Pb8/PwB/QH9A/0N/Rz9J/0t/TX9PP09/Tn9N/05/Tz9P/1B/UL9QP07/Tv9Pf0+/T39Qv1K/U39Rv0+/T39P/08/Tf9OP1A/Ur9Uv1X/Vj9Wf1c/WL9ZP1g/Vv9YP1p/Wv9Zv1k/Wn9cP1y/XH9c/10/XL9cv14/YL9hv2E/YL9f/10/Wj9Yv1m/Wj9Yf1Y/Vb9Wv1e/WD9ZP1q/W39b/1z/Xf9eP13/Xr9gv2D/Xb9Y/1a/Vv9X/1i/Wf9b/1x/W39aP1p/Wz9bP1r/Wv9bf1t/Wz9bf1z/Xf9e/19/X79fv1//YH9gP16/XP9df18/X/9ef10/Xf9eP1w/WX9Yv1n/Wz9bP1r/Wv9bP1x/Xn9gP2E/Yf9jP2S/Zf9nf2l/az9rP2o/ab9pP2g/Z79oP2h/Zz9lf2V/ZH9g/1y/W79c/1z/Wr9Zv1q/Wz9af1q/XP9d/1v/Wf9av1w/W79av1s/W/9bP1s/Xj9iP2O/Yz9j/2V/ZH9hP18/Xv9dv1p/WH9Yv1g/VT9S/1O/VL9Tf1J/VH9Xv1i/V/9Zf1z/Xz9ff2A/Yf9hf16/W/9bv1w/XD9df1//Yb9gP14/Xb9eP11/XD9cv16/Xn9c/11/YP9kf2T/ZD9lP2d/aT9pv2l/aL9oP2j/az9s/22/bn9vv29/bD9pf2o/bP9t/22/b79zP3P/cb9wP3E/cX9uv2t/af9pf2g/aD9qf2z/bD9pf2g/aL9pf2n/az9sv2w/av9rP2w/ar9nv2Z/Z39nP2Q/Yb9iv2R/Y79gP12/XP9c/12/Xz9hP2J/Yn9iP2H/Yb9jP2c/ar9rf2o/af9q/2o/aL9pv2z/bn9rv2i/aH9p/2q/av9sv26/bj9r/2p/ar9q/2p/ar9r/21/br9wP3D/cP9w/3J/c79zf3N/dn96/30/fT9+v0L/hf+Fv4U/hz+I/4c/hD+Df4R/gr++/3v/ev95P3b/dn93f3W/cT9t/28/cf9zf3U/eX99/39/fz9//0F/gb+A/4I/hf+If4f/hf+Dv4E/vb96P3h/eH95v3x/fz9//32/eX91P3E/bf9sv24/cL9xf3C/b39vf3B/cf9z/3V/db92P3e/eb96f3p/fD9+/0D/gP+BP4L/hH+EP4M/hD+GP4e/iP+Kf4t/iP+Ef4D/v79/v3+/QD+Bf4I/gf+Cf4R/hT+E/4Y/ib+NP45/jz+Q/5J/kT+Pf5B/kz+Uv5T/lr+ZP5k/ln+UP5P/kn+O/4y/jf+O/4t/hf+C/4M/gz+Cf4M/hf+IP4g/hz+Hf4j/ib+Jf4l/in+MP42/jj+N/44/jz+Qf5G/k3+Vf5X/k7+Pf4u/iT+G/4S/hH+F/4a/hT+DP4K/gz+Dv4O/hD+Ef4P/g7+E/4Z/hb+D/4S/h7+Jv4k/iT+Lv48/kf+Uf5h/nD+df50/nX+dv50/nH+dP52/m/+ZP5h/mb+Z/5f/lr+Xf5f/lT+RP49/j3+Pf49/kP+UP5a/lr+Wf5b/l3+Xv5h/mz+fP6F/ob+hP6G/or+jf6S/p7+rf60/rH+rv6u/q/+q/6l/qH+nf6R/oH+dP5v/mv+Z/5l/mf+a/5t/nP+ev5+/nr+df50/nb+ef59/oD+f/54/nb+ff6F/oP+e/55/oH+i/6N/oj+g/6D/ob+if6I/ob+hf6D/n3+dv5y/nb+ff6E/oj+iv6G/n3+eP58/oP+hf6D/oL+gf58/nP+af5g/lr+V/5a/mL+aP5t/nD+cP5u/m3+bv5v/m/+cP5x/mv+Xf5S/lP+Wf5W/k3+TP5U/lr+V/5R/lD+U/5Y/lv+Vv5K/j/+Pf4//jv+Nf43/kP+UP5Y/l7+ZP5k/mD+YP5o/m7+a/5i/ln+Tv5B/jb+LP4h/hT+D/4X/iT+Mv5B/k/+Vv5U/lH+Uv5S/kz+Rv5G/kX+P/44/jn+QP5H/k/+Wf5g/lz+VP5T/lj+Wv5U/k3+R/4//jb+MP4v/i3+Kf4o/i3+Nv48/j7+Pv49/j3+Qv5L/lP+Wf5c/mH+Z/5t/nP+e/6E/o3+lf6b/p3+nP6b/p3+of6l/qj+rf6z/rj+uf61/q/+qv6p/qj+pf6j/qP+pv6o/qP+nv6f/qr+uP7A/sP+yf7W/uL+5/7o/u7+9/7+/gD/Av8H/wz/Dv8N/wn/BP/+/vf+8f7o/uL+4v7m/uX+3/7c/t/+4v7i/uT+7v74/vr++P75/v/+A/8E/wj/FP8g/yP/H/8e/yP/Kf8s/y//NP88/z7/NP8l/xz/G/8Z/w7/AP/4/vb+8/7s/uX+4P7c/tf+1f7a/uX+7v70/vn+Af8J/w3/DP8F///+/P79/v7+/f77/vj+9/71/vH+6/7o/uj+5v7h/tv+3P7f/t/+3f7h/uv+8v7z/vT+/v4L/xL/Ef8Q/xX/Gv8a/xL/Bf/8/vr++/74/vL+8f70/vX+8f7w/vb++v7z/ur+5/7q/ur+6f7s/vD+7P7l/uX+7/73/vz+BP8P/xf/GP8X/xb/E/8Q/xD/Dv8C//P+7/72/vr+9f7z/vr+/v74/vL+9P73/vP+7v7v/vP+8/71/v3+BP8F/wj/Fv8n/zD/NP89/0T/QP85/z//TP9N/0f/Rv9L/0f/O/84/0D/Q/88/zv/RP9L/0n/Sv9U/1v/Wv9d/2b/aP9h/2H/bv91/2z/Z/91/4P/gf9+/5L/rv+6/7v/y//l//L/7f/s//f/+f/r/9v/1v/U/87/zP/W/+H/5P/k/+f/6f/l/+T/6v/x//P/8//1//L/6//p//T/AgAJAA4AFwAeABoAEgARABYAFgASABEAEgAPAAkACgAQABAACAAGAA8AFwASAAYAAgAGAAEA8f/f/9j/2f/X/9H/zP/K/8T/u/+3/7v/wP++/7v/vf/E/8n/yv/M/83/zv/O/8//zf/L/9D/3v/p/+b/4P/l/+7/7//l/+D/5P/p/+b/5f/q//D/8P/v//T/9f/t/+H/3P/b/9j/0//T/9f/3P/h/+b/6P/q//H///8MABYAIgAyAD0AOgA0ADMAMwArACIAIwAlAB0AEQAQABUAEAAAAPr/AAADAP///v8DAAAA8f/p//P/+v/t/97/6f///wEA9f/4/w8AHQAWAA0AFAAbABMABwAIAA0ACAABAAQAEAAUABIAGAAmADEANgA/AEkARwA5ADAAMQAtABsACAAAAP//+P/y//f/AQAGAAcADQAZACMAKAAqACgAIAAZABgAGwAaABgAHwAsADUAPABHAFcAYABgAGIAbQB0AG4AXwBXAFgAWABTAFAAUgBZAF4AYABjAGsAeACCAIYAiACOAJQAkQCIAIUAjACSAJIAlACeAKgAqgCmAKYAqQCnAKEAogCnAKYAmwCSAJEAkgCNAIgAjACWAJ8ApQCqAK4ArACqAKoApwCbAI4AjQCWAJcAjQCHAIwAjwCIAIEAggCEAHsAcgBzAHUAawBZAFQAXwBlAFwAUwBUAFgAVwBYAF8AZABhAFwAWwBYAFAASwBRAFsAYABlAHAAewB/AIIAjwCfAKgAqwCuALMAswCzALkAvQC5ALYAwADOANAAzQDTAOAA4gDaANwA6wDzAO8A8AD+AAkBBwEHARMBHwEhASIBLgE4ATYBNAFBAVIBVwFUAVkBYAFZAUoBRgFPAVIBSQFBAT8BOQErASIBJAEnASUBJwExATkBNwE0AToBQwFGAUgBTwFWAVQBUgFWAV4BXgFbAVwBYQFdAVQBVAFaAVgBSgE/AT4BPAEuASABHgEfARYBCQEHAQwBBwH7APgAAAEBAfcA8wD/AAoBBgEDARABJgEyATYBQgFRAVMBSwFKAVUBWgFWAVcBYgFqAWkBZgFtAXgBfAF9AYEBgwF/AXsBfgGDAYEBfgGAAYcBhwGDAYIBhQGJAY0BkgGWAZkBngGlAaQBmwGYAaEBqgGoAaQBrAG6AbwBtgG5AcYBzQHJAcYBxQG8AagBmwGaAZQBfwFsAWsBbwFlAVMBTgFTAU4BPgE2AToBOAEqASEBJAEiARIBAQEAAQUBAQH8AAQBFwEjASYBKgEyATUBNAE2ATsBOwE2ATUBOgE6ATQBMgE4ATwBOAE0AToBPwE4AS0BKgEuASwBJAEfASIBKgEyATsBRgFUAWUBeAGGAZABoAG4Ac8B2QHdAegB9wECAgsCGwItAjcCPgJNAmECawJtAnUCiAKVApECigKMApACjgKIAokCjgKQAo0CiwKJAocCiAKRApwCoQKfAp8CnwKgAqUCtALEAswCzgLYAuwC/QIDAwkDEgMYAxMDDAMPAxwDIAMYAw8DDQMNAwkDAwMBAwID/ALzAu4C7gLqAuEC3wLlAucC3gLVAtgC3wLeAtcC1wLeAuQC5ALjAuQC4wLiAuUC6wLsAukC7QL1AvYC7gLnAuYC4gLUAsgCxgLIAsUCwALAAsQCwgK7ArgCvAK/ArsCtQKxArACsgKyAq8CrQKvArECrgKmAqICpQKmAqICoAKjAp4CjAJ5AnICbwJhAk0CQwJCAjwCLQIhAhwCFgIKAgECAQICAvkB6wHlAeMB2gHLAcEBvQG2AagBnwGeAZ0BlQGKAYQBgwGAAXoBdAFyAXABaQFgAVsBVgFSAU8BUAFTAVQBUwFTAVQBUgFQAU4BSgFDAT4BQAFEAUABOAE3AT0BQQE+ATwBQQFEAUEBPgE/AUEBPgE9AUYBUwFZAVoBYQFsAXIBdQF8AYsBlQGZAaEBsQG+AcEBwgHJAdYB3AHbAdoB3gHkAeoB7gHzAfoBAwIKAgwCDQITAhwCIgIlAi0COgJDAkUCRQJLAlMCWAJdAmgCdQJ8An4CgQKLApgCpgKzAr0CxALMAtkC5gLvAvMC+AL6AvYC8QLxAvkCAAMEAwoDEgMWAxQDEwMXAxsDHAMfAygDMAMuAykDKgMxAzUDNQM7A0YDTANKA0oDUgNXA1ADRwNJA1EDTQM9AzIDNgM8AzUDKwMqAy0DKAMbAxYDHgMlAyADFwMYAxsDFAMJAwUDBgMBA/gC9wL+Av4C8QLjAt8C3gLYAtEC1ALYAtYCzQLHAsMCuwKtAqUCogKdApEChwKCAn4CdgJrAmMCXgJZAlQCUAJIAjoCKQIeAhkCEgIGAvkB8QHpAd0BzwHEAb0BtQGrAaIBnAGTAYoBggF7AXMBaQFhAVwBVQFKAT8BOgE4ATMBKAEgAR8BHQEQAf0A7gDmAN8A1ADJAL8AuQCxAKkAoQCdAJoAlwCWAJQAkACIAIAAegB5AHcAcABkAFoAVABOAEYAQABDAEgASwBLAEwAUQBRAEoARABGAE4AVABaAGEAZwBqAHEAfgCOAJgAoACrALkAwQDFAM0A3ADpAPIA+QACAQkBDQERARgBHwEmAS4BOQFCAUoBUgFaAWIBawF2AYUBkgGdAawBwAHRAdsB5QH0AQQCEAIdAi0COgJEAlECYgJxAnsCiAKaAqcCqAKpArcCyQLNAsUCxwLXAuEC3gLcAucC9gL6AvoCAgMPAxMDEAMRAxgDHgMhAygDNAM9A0IDSQNWA2UDcQN7A4UDjwOSA5IDkQOUA5YDlQOUA5UDlgOUA5ADkAOUA5cDlAONA4kDhgN+A3IDawNoA2MDVQNIAz8DNwMpAx0DGwMaAw8D/gL0Au8C4QLNAr8CugKwAp8CkgKPAowCgQJ3AnMCbQJeAlACTAJJAjoCIwITAggC9gHfAc8BxAG0AZ0BiQF7AWgBTwE4ASYBEgH9AOsA3ADHAKwAlwCKAHwAZwBSAEIAMAAZAAUA+//v/9r/w/+0/6n/mP+H/4H/gP92/2X/Wv9Y/1H/Qv8z/yj/Hf8M//z+8/7s/uD+0v7F/rv+rv6f/pP+jv6M/of+ff5y/m3+bf5r/mf+Zv5q/m3+a/5p/m7+df52/nf+gP6O/pL+jf6N/pr+pf6j/pz+oP6y/sL+yv7S/t3+6f70/gD/D/8c/yb/Mf9A/1P/Y/9v/3z/jv+k/7j/zP/l/wAAGAAsAEIAWwBwAIAAjwCjALgAzADkAAQBJQFAAVwBggGqAccB3wECAiwCSwJaAmkCgwKeAq8CvQLSAu0CBwMjA0ADWgNtA38DlwOwA78DxwPSA+QD+QMNBCMEOQRNBGIEfASXBKwEugTLBOUE/wQTBRsFHAUhBTAFRQVUBVYFVAVZBWQFbQVyBXYFfQWDBYYFiAWHBX8FcwVpBWEFVQVEBTEFIAUQBQIF+gTzBOQEzwTABL4EvQSwBJoEhgR3BGkEWARFBDEEGwQFBPED4wPXA8QDrAOUA38DbQNVAzIDDAPsAtACrgJ/AlACLAIPAusBvgGUAXMBVgEyAQkB4QC6AJIAaQBEACcACgDp/8T/o/+I/23/TP8o/wb/5f7H/qj+hf5g/jr+FP7w/cz9pv1//Vv9Pf0i/QP94vzE/Kr8jvxs/Er8LvwW/P375fvS+8D7pvuE+2n7WftM+zn7Jvsb+xT7Cfv6+u/66vrj+tn61PrX+tf6yvq9+r/6z/rd+t/62/re+uv6+/oI+w/7Fvsf+yz7PftL+1X7XPts+4v7r/vI+9f77fsV/ET8avyJ/K782vwJ/TT9Xv2G/av91P0F/jv+af6R/r/+9f4r/1z/jf/A/+7/FQBEAHkApwDKAPMAMgF3AasB0AH9ATgCbwKeAtECDQNJA3sDqgPhAx0EVgSKBMEE/QQ/BX8FtgXkBRIGSgaFBrcG2wYBBzEHZweSB7MHzgfrBxIIQAhqCIYImAiyCNcI+AgMCRwJMglKCVwJbwmICZ0JpwmtCbwJywnMCcMJxQnRCdMJxAm0CbQJvAm7CbEJpQmYCYkJdgljCU8JPQkrCRMJ8QjKCKsIkAhrCDwIDwjtB80HpQd5B0wHHAfoBrgGiwZUBhIG1AWgBWwFLAXoBKwEcwQxBOkDpgNlAxwDzgKJAkcC9wGdAUsBCAG/AGYACQC5/2//G/++/mH+C/61/V79Cv25/GX8Dvy5+2j7Fvu5+lb6+vmo+Vb5+/id+Ef4+ves91f3BPe89nf2LPbX9YL1NPXr9Kb0ZfQi9NnzkvNa8yrz9PK58ozybvJJ8hTy3/G+8abxiPFk8U3xRPE58SvxJPEm8STxG/ET8RbxHvEl8SzxO/FU8W/xivGn8c3x/PE28nfyuvL/8krznvP180n0lvTo9En1tfUj9ov29vZp99/3U/jN+Ff56fl0+vb6gfsa/LH8Nv22/UH+1f5k//P/jAArAcMBWAL3Ap4DPQTRBGkFCwalBjAHuQdNCOUIeAkJCp8KLwu4C0gM6gyMDRkOmA4gD7QPPhC4EC0RphEZEoYS9BJnE9MTMhSMFOsUSBWaFeUVLRZ0FrQW6RYSFzEXUxeCF7AXyhfQF9gX6xf4F+8X3hfZF90X0xezF4cXXBcyFwQXzhaPFkoWCRbLFYgVOxXxFLAUbBQYFLwTaBMZE78SVRLnEXgRBRGTECoQwg9LD8YORw7VDWAN2AxHDL0LOAutChcKewnZCDQImQcGB2gGuAUDBVwEvwMXA2ACowHoACwAcv+6/gL+RP2H/NX7Jvtq+p752/gs+H33uPbk9R31bfS98/jyKvJm8a/w9e8x72Luju287PnrROuQ6s7pB+lX6L3nGedh5rHlKuXD5Fnk4uNx4xHjuuJj4gziquE24cTgbeAo4Nbfdt8w3xjfE98B3/LeBd8z313fgN+q39/fFOBT4KjgBuFb4bHhI+Kr4ifjlOMX5L3kZeX25YfmNOfr55HoM+nn6afqYOsj7Ant/O3S7pTvevCQ8ajymvN+9H/1mPam95z4hvlz+mn7b/x9/X7+Zv9QAFwBfgKNA3sEagV0BooHjQhyCUQKGwsDDPYM3w2uDnEPRRAuEQ8S0hKEE0EUEBXhFZ8WRRfeF34YLBnVGV4axhovG68bOBymHPYcQB2YHfgdUB6OHrIe0B4DH0wfih+kH7Uf6h9CIIggmiCWIKgg0iD0IAQhDyEWIRkhICExITkhGSHcIKwglSByICIgvh9yH0AfBR+vHkke5B19HQ0dmRwjHKMbGRuWGikaxRlQGcIYMBiqFygXjxbXFRYVaBTMEyUTZxKjEfAQSxCcD9kOCQ41DVwMggurCs8J4QjkB/gGKgZgBX0EigOlAtAB8AD7//n+9f3o/Nz74vrw+d/4qveF9pL1rfSc827yYPF/8J3vmu6N7Yjsget56o3pvejf5+fmEOaF5RDlaeSh4wLjk+IU4mnhvOAt4KrfKd+93lze2d003avcXtwN3ILb7NqZ2nzaR9rt2azZptmu2ZvZgNl62YDZe9l72aPZ7Nkx2mjatto028jbPtyU3AXdvt2b3l7fA+DH4MPhx+Kr443kk+Wm5qHnlOim6czq2OvM7NXt++4N8PXw1/HV8uTz7PTx9fz2BvgL+Rb6Jvso/Bf9Cv4M/xYAKwFSAn8DmQSpBdAGCQgeCfgJxwq/C8sMwg2lDpIPkRCYEaASnBN1FCsV4xW0FnoXFBikGF4ZNxr8Gp4bNhzKHEcdrx0YHnQeqh7PHhkfhx/eHwYgKiB2INAgDCErIUkhciGfIc8hASIiIisiOSJmIpYinCJ4IlkiXSJnIkwiESLeIcohvCGQIUEh6yCeIEwg7h+QHzkf2h5nHvUdlx06HcMcOxy/G0wbwxogGoQZ+BhgGLUXExeLFgQWahXPFEUUtBMEE00SqxEIEUoQgw/eDkgOjg2tDNwLMwuFCqwJxQj4BzYHXQZvBYcEoQOoAqQBuQDh/+v+zP27/N/7B/vv+an4jPev9sT1mfRk83HypfG08JbvhO6J7XfsTutK6nPpgehb517myuVR5YjkkePl4ofiA+Iq4U/gtd8y35reEd623VTdvtwm3Mjbc9vP2vrZZNks2QDZqthX2DfYMdgg2BDYE9gR2PXX29fp1wjYDNj91w/YW9jE2CTZednV2UHartoN22nb3Nt23Cbd3d2t3qPfouCA4VHiTONz5InlfOaD577o+ukN6yDsZO2y7s3v1/AS8mbzfvRa9Vb2ifej+Hz5XvqC+7X8sv2a/qz/1wDgAc0CzgPbBMEFjAZ3B4UIdwkzCvcK+AsVDRAO5Q6/D7AQnBFnEhETrhNUFA8V3RWzFnsXJhi4GE4Z9hmVGv4aOhuRGyccxxwkHUIdah3EHSoebR6MHpwerh7RHgYfMB8sHw8fGB9gH68fzx/LH9Uf8x8JIAgg+x/pH9Mfzh/pHwUg7x+yH5Afpx+/H5QfOR/1HuIeyR5+HhYewR2AHTQd2hyIHDgcyxtCG80achr6GUcZlRgkGMsXNBdjFrAVOhW7FAIUPBOaEgISTxGcEA8Qhg/PDg0OgQ0ZDYcMwAsHC3sK4gkWCT0IfwfFBvUFKgWBBNUD+wIKAjsBgwCp/53+lf20/Nv76Prr+f34EfgR9w32I/VC9DvzDPLu8AjwLu8l7v7s/esv61jqUek76D7nS+ZI5VjkquMd43HiuOFB4QjhpuDu3zjf3N6p3j/epN0n3dXcd9wC3KDbUNvb2kPaztmP2TrZq9gw2BLYJdga2ALYHdhZ2GfYOtge2DHYQdgx2DnYjdgC2VjZm9kM2rPaTNu02xfcqNxX3fXdj95i34HgtOHS4vbjReWY5q/nmeij6dvqBuwa7Vru3u9Y8Y3yr/P99En2Tfcx+D/5Xvo++/z7/vxA/lP/HgAMAVACiQNrBDAFIgYdB+oHsQivCbsKmQtrDHMNjg5lDwQQyhDBEZ0SPhPeE5sUVRX4FaIWWBfyF2oY8BiSGRsaZxqjGv0aYxuwG+wbNByCHMgcDR1dHaMdyh3gHfkdEx4gHiEeJx41HkweaB5+HoEeex6FHpkemR58HmMeXB5LHiEe+h3sHd8duh2QHXkdaB04HfIctxyRHGkcLRzlG50bWBsQG8MacxomGtkZfRkNGZoYNBjEFzAXjxYRFqoVJBV5FOUTghMVE3MSyhFGEcUQGRBjD9kOXQ6xDesMWAz0C3ILvQoUCpEJAQlFCIYH6AZHBoEFvQQkBJMD1QL0ASQBbQCm/8D+2P38/Bn8J/tC+nn5q/i397b21fUN9R/08PK08a3w0+/s7ubt6uwK7CjrL+o06T7oK+f55ejkJeR646DiueEa4cfgaODW3z3fxd5Z3ujdfd0T3Yjc8tuS22vbJduY2g3aydmV2SLZjNgl2OzXpddQ1yXXJNcP197Wzdbs1v3W4tba1hLXXNd413fXn9f912nYx9gp2abZQ9r32rTbYdz63J3db95t33DgYuFQ4lzjkuTW5fvm/ecN6Vnqzusq7VPucu+u8P7xR/OJ9Mf1/fY0+IH52voK/Pz86P0J/0sAdAGAApsDzgT0Bf8GBAgFCfEJ2ArdC/cM7Q2zDoEPcRBXEQ8SxBKjE4YUMhW0FUQW5BZnF80XRRjbGGkZ3BlMGsYaKBtgG5Ub7BtTHJ4c0RwUHXkd4B0iHkcecR6yHvoeLB9CH1IfaR+BH5IfpR/EH9wf3h/XH90f3h+8H34fUx9JHzgfAh/HHrEerh6IHjge8B3RHb4dhh0pHdEclxxlHCEczhuAGzkb6xqbGlMaCBqcGRcZpxhZGPsXYReyFjgW8xWeFRUVfxT8E30T8BJnEuQRShGVEPoPkQ8kD3sOuw0nDbQMIgxkC6wKEgp1CcAICQhbB50G0QUXBXUEwQPtAiMCegHFAN3/5f4b/nH9ovyj+6/65/kk+Tf4L/cs9jD1JvQV8xPyEfHp76jui+2s7M3rq+pl6VHocedw5ifl1+PI4uXhAOEu4JXfE9923trdft093bfc9dtl2zPbAtuN2gbatNl32RjZs9h72E7Y8deC10rXONf/1p/WY9Ze1l7WUNZf1o7Wn9aA1m7Widai1pfWldbK1hjXXNeq1x3YmNgB2YvZY9pR2wHchNw/3UXeSt8f4P7gJOJ/49vkK+Z457no5uka63fs6+1L74zw1vFJ88v0L/Zu97f4K/qy+xX9S/58/7wA9AEQAy8EcgXDBv8HMwl9Cr8LwQySDXkOiQ+DEEoRFxIYEx4U4xR2FRsW4RaYFyUYpBgrGbAZIxqMGu0aRhuiGxkcoBwRHVYdhh28HfcdKB5NHm8ekx6+HvseQR9uH3YffB+nH+wfGCAYIAogFCAwIDwgKiAMIPsf/h8JIAog+B/WH7Ifkx94H1MfHB/aHqYejR6CHmQeKR7nHbgdlh1iHRcdzhyXHGAcExy8G3YbPBvuGosaNhoAGsUZWhnRGFsYAhibFxIXiBYdFr8VSxXKFFUU3hNGE5kSCBKaERsRchDHD0MPzQ45DpEN+wxwDNALIAuHCvcJPglbCI4H8AZKBnAFiATLAycDYgJ2AYwArf/E/tP9+vwx/Ez7RPpF+Wb4gfd09ln1VfRg81zyTPFA8C3v/O3A7KPrm+p56TPo+ebo5dTkjuMz4gLhAOAF3xHeVN3M3Djcgdvl2pLaS9rG2S3Z6tj+2PXYnNhC2CXYGNje15/Xnde216HXaddT113XP9f41tzWEtdS113XTNdM11fXUddC1z/XTNd018zXQNiU2L7YAtmQ2T/a29qC21/cUt0l3ubext+94KXhl+LS40Tlleam57zoC+pn65jsve0e78PwdfIC9Gf1t/YK+G756fpv/PH9b//sAGsC4gM6BWcGiQfYCF8K2wsMDQ8OJg9REFQRHhLnEtkT1BS0FX4WPRfYF04YzhhzGREaexrVGlgb9htnHJccwRwYHY0d8h01HmMeih61HuEe/h4DHwUfIh9cH5MfrB+wH7IfvR/UH+4f+R/tH9of3B/vH+sfvx+FH2UfYR9fH04fNB8WH/Yezx6gHmYeJh7oHbYdjh1oHT0dDR3WHJwcZBw3HA4c2huVG0kbBxvRGpcaTRr6GbEZeRlFGQEZpxg+GNAXZhcEF6QWNRaxFTAVxxRnFOkTRxOmEiQSsBEpEY8Q9w9tD+gOXg7ODTgNoAwUDJEL+gpCCoMJ3whDCIQHpQbZBS0FcwSOA58CyQH3AAsAGv89/lz9WfxT+4D6w/nM+KD3mPbc9Sb1NPQp8znyUfFH8C3vKu4l7fvrz+rd6Qjp+Oek5mLlXuRe4y/i9ODk3/Pe99373CTcb9vJ2kDa79nK2aTZb9k92RHZ2diX2GfYWdhX2EvYO9g12DXYLdgV2PDXzte717vXvNem13vXWNdb14XXv9fq1wXYIthQ2IfYs9jb2BLZZ9nY2WTaBdun2zjczNyI3WreR98O4OHg3OHn4ujj9OQn5m7npujf6UXrzew+7onv5/CH8kz09/V79/b4ffoF/Iv9Jf/VAH4CBQR9BQYHjAjVCd0K+AtlDe8OMhAgEQUSBBPzE68UYxU7FhwX5heoGGsZ/Bk6GmAaxhpfG+YbShy0HCIdYh11HY0dtR3MHd4dKR6lHvYe8h7iHv4eHR8THw8fRR+KH5ofjx+hH70fqh9/H4Mfth/VH9Af1B/eH7cfXx8kHyUfIh/uHrkerx6nHmUe/R2oHW4dNB0BHe4c4hyuHFkcFBzuG8IbfxtAGx0bBRvbGp8aVRr+GaIZVxkgGeAYfxgNGKkXUBfkFl4W2RVtFQoVkxQBFGsT2BJDEqoRFxGGEOoPTQ/KDlQOug3oDBkMgAv+ClEKfAm6CA8ISgdXBmEFegSAA28CcwGbAK//h/5W/U/8Ufsx+gn5/ff39tj1vvTQ893yo/FR8EHvZO5a7Rjs9eoN6hXp5efC5tjl5+S143XibuGD4GzfLd4E3QHc/9rx2e3Y/9cq13zW/9Wi1VfVINX71NLUtNTT1CvVdNWU1dLVYNb11jvXWNek1xjYb9ix2B/Zn9nc2eLZH9qt2iLbPdtM26nbP9zC3B/dd93h3WDe+N6b3yvgruBN4RTi4eKm44HkdeVf5kbnWOiL6YzqT+s07HHtsO6T71jwbfG78tjzwfTb9Uf3rPjQ+ef6Kfxw/Yr+mP/cAE8CsgP1BEgGtAf5COoJxwrwC14NoA6BD1AQXBF4EkUT1hORFIwVdRYmF9oXmxgXGToZehksGvAaRRtaG7gbYRzSHN4c5RwuHYQdsB3OHf0dIB4gHiMeUx6dHtseDx9FH3Ufnh/PHwIgGiAjIFUguCAMISkhMCFKIVshRyE2IUwhYyFEIQYh5SDZIKYgRCDxH88fvB+KHzEfwx5XHgEevh1tHf4ckRxGHAocthtGG9YacBoDGo0ZFhmWGAYYfBcWF8AWTBa3FSsVvRRJFK4T9xJJErYRLxGbEOcPGA9NDqQNDw1dDHILZwpyCaoI7Af7BtUFugTfAxYDCwLAAI3/lf6Z/Wb8IPvr+bL4c/dp9qP1t/Ra8+/x+vBG8DbvwO147J/ryuqm6Xboh+er5p3leORz43LiQuEB4OLezt2O3Dbb/9nf2JLXD9aU1EPT8NF40PXOms1wzFrLQMowyU/It8dlxzzHIccTxyPHX8fOx2vIIMnfybrK2cs/zbrOHNB10QHT3tTk1srYfto/3Ezeg+CC4jvkGuZk6Mjq1Oyl7qbwzPKh9BL2mfds+SL7b/yz/VT//QAhAugC8gNIBUQGogb1BrwHmAjiCLQIwQhTCewJEQrpCegJEgoLCq8JTQkuCTAJFwn1CAUJKAkACYsIRAh1CL8IoQg/CCwIhAjBCIYILghHCMwIPglbCV4JjQndCR8KUgqSCukKTwvPC3UMKw3HDUIO0w6kD5wQfBE1EvgS8RMPFSEWGBcRGCcZThpkG18cUB1LHk0fTSBEISYi6yKcI1kkMiUTJtImZCffJ1AooijGKNUo8ygjKUMpPikcKeMogCjqJz0nqCYyJqwl5STnI+kiAiIQIfEfxh7GHesc9xvSGpkZWhgEF6sVlRTJE+wSwRGOEKgP4w7bDaUMuQsxC6oK7QktCY4I3AcEB08G5wWABdwEOgTuA8UDSwOCAtgBggE+AdQATwDJ/zX/i/7a/Rv9PPxS+4367/lB+V34SvcZ9tH0hvNQ8hzxye9v7kHtKOzG6gHpPOfO5ZLkNuO84VbgAN+E3d/bQNqu2AbXT9XI04LSNtGqz/3NeMwvywDK1ci3x6XGlsWMxJDDncK3wRPB7sBCwcbBTsLuwrLDfsRaxZrGesi+ygzNf89t0rXVz9il28nemuKx5oDqFO7D8Xf18fhl/DQAMgTHB+UKCg5SESkULBbPF60ZthtzHbkesR9pIN0gLiFlITwhfiBzH4EeiR0aHC4aOxiIFugUIBM1ESoP5wyDCkQIMQb+A5IBUP+L/Qr8YPqS+A73CvZF9Wr0c/Ob8hPy3fHc8f7xUfLw8t/z//Qg9ib3Hvg7+av6X/wR/pr/MAEYAzcFLwfiCJQKjwzHDvMQ3RKDFA8WxBfCGdcbrB08H84gjSI/JJollSZiJzkoRymRKsgrdyydLMMsRS3QLeUtlC1PLTctAC1/LM4r+Cr0KesoJCiPJ7UmWCXCI1UiDiGzHzEephwyG+cZwhiKFwEWOxSbElQRIhDADlANDgzsCsMJqQjFB/AG8gX2BFUE/QN/A8ACKAL+AQMC6AHKAeUBJAJFAlECgQLdAjIDaQOjA/ADOQRsBJoEyQTgBNAEswSgBIAELQSmAxMDiQIDAnMB0gAPABL/5/3I/M/7wvpg+cX3TPYH9aDz4/Ec8J7uR+2+6xTqlugq52TlS+N34S3g5N4X3R/bpNmR2DTXWtWN0y7S69Btz+7NxszGy4bKH8kJyFPHjcZ7xYDEC8T9w+TDosOOw//D9MQ2xqzHYslny7LNMNDj0t7VKtm+3JHgpeT26GDtrfHH9c/5//1nAtkGGAscD/sSqxYDGvAcmB8VIkokGiafJ/go/ylqKkMq3SlQKVIotya3JJoiUCCpHbwawhfCFJIRMA7EClkHzwMmAJX8PvkY9h3zZvAE7uLr7ekz6MvmtOXg5E/kCeQX5ILkVeWC5vDnkulw64vt1O858q/0MffI+ZP8mP+eAmwFFQjXCrgNcBDZEisVmxcLGkMcQR4eINYhVSO0JA8mUSdJKP8opilQKtEqBisIKwIrAyv3KrsqOiqJKdsoRiiiJ8wm3yUOJUkkWSMxIvggwR9/HkAdKRwwGxsa2BidF4sWdhUxFOMSzxH7EDkQcQ+rDusNLA1+DOwLZgvdCnAKPAolCvgJuwmkCcMJ7gkLCjYKhgrlCjULeQvGCyEMiAwCDYgN/A1JDnkOnQ62Dq8Ogg4+DvYNsg1nDfgMVAyAC48KlAmMCF8H9gVjBOECkAE3AIr+oPzf+lz5q/eH9UvzafG579HtxOv86W7oqOaj5N7ifeH83xfeS9wI2+3Zd9ji1rfV19Sz00HSBtEh0CXP5s3BzOvLGMsTyh7Jb8jGx9zG4cUrxbLEPcTkw+/DcMQ8xT/Ggcf7yKXKoswkzyDSZdXr2NDcFeGD5ezpV+7f8o/3XfwxAfEFhArgDgkTCBfnGpse9iHMJCMnIynKKuYrayyNLH4sKCxdKwcqIyirJbEicB8HHFsYWhQ0ECMMGAjeA3L/Afu39q3y8O5z6xPo1eQB4sLf5t043OLaNdoj2mDa29rK2z/dD98t4bnjq+bE6ensQ/Dk85v3RfsK/w8DOwdNCyEPtRIJFisZMBwPH6khBSROJooofSr/KystKS7rLlwviC+BLzsvty4bLoAtyCzSK60qcikWKH0muyT5IkQhmR8HHqAcThv0GZUYPBfkFY8UYxN3EqURyhAIEJEPSQ/jDl0OAw74DQwOGA40DnsO2Q45D68PRBDXEE0RxRFfEv4SchPDEycUqhQoFYkV4RU7FoQWrBa9Fr4WphZ/FmsWeBZ6FkgW9RW4FZ4VcRUMFYYUCxSaExUTchK/EQQRPRB4D78O8Q3ZDH4LIQrXCGYHpAXIAxYCaQBz/kL8LPo1+Ar2nfNa8XXvi+1H6/7oI+d95YDjR+Fv3wreftyO2s/YqNeg1ifVj9N90s3R0tBzz0XOkc3nzPfLEsuIyh7KbcmCyJrHrcacxZPE4sOVw4vDycNkxEPFOcZXx8fIisqJzOHOvtEF1XXYGtwt4Jnk+Ogi7VrxzfU2+kL+CwLxBRYKRA43Es8V/hi4G/cdwR8lISoi0SIdIyAj4SI4IuEgxx46HJIZyhaUE94P+gs5CJEExQDH/Mn4AvVw8eHtP+rC5rjjNeES31bdQtzh28nbr9vU26DcAd6g35LhPuSf5zjryO6F8ov2i/pP/h0COgZ3CoEOVBIVFrcZHR1RIFojDCZJKDEq5StJLUQuAS+jLwUw/C+qLzUvdC4zLacrOSrvKIIn3yU5JKQi9SAVHx0dLRtUGaMXIRa+FHATSxJOEU0QQg9zDgkOvw1RDQMNNA20DQcONg66DqUPexANEcIR0BLUE3YUBhXyFRcXCRi4GGwZNhrsGnQb1BsLHCAcOxx2HJ8cghwyHN4bdBvUGhcaZRmmGLIXsRbsFU4VghR8E48S5hFGEXkQmg/aDjAOeA21DAcMcQvRCgEKDQkgCEAHOAbiBHcDRQIhAZj/sv0D/Lf6MvkZ9wX1jfMn8v/vae1t6xfqa+gi5ibk7uKk4Zbfa93y27za9djz1qnV/NTt00TS2tAV0EjP5s1ZzCrLGcqpyPjGcMUbxMrCncHVwFjA8L+yv9S/NcCbwEXBosKlxNHGBsmpy+nOYNK41SvZE91V4anlIerr7r3zFvj8+/r/PwRRCMkL6g4eEkYV5hfEGQgb3xtWHHYcORxoG+MZ6xfZFZQTuRBFDboJbAYRA0n/NvtB94Hzzu9G7C3pbea44y3hR98P3vzc49to2w/cYN2h3vDf8eGz5Jznc+qi7V/xTPUo+TP9lAHxBf8J9w0REv8VXxlLHBAfqiHvI/Il1CdnKXgqICuDK3gr4ioQKl0prCinJ1QmCSXMI0wicCCDHs0cTRvPGTMYjhYbFfwTBxMHEikRzRDhEN8QjxBVEH4QxxD6EHMRexKcE0IUnBQyFeYVKxYbFnUWbxdfGNAYFBl7Gb0ZkhlSGWoZqRmvGZcZrhnDGW8Z1BhtGDoY0hckF48WORbdFVoV7BSxFIIUWRRZFGgUNRTCE2gTRhMSE6USORL5EbgRTBHMEEoQog/JDvANLA1KDCcL3QmOCDoH3wV5BOoCIQFh/9X9L/wP+sL33vVL9GnyPfB97jvtreuU6cPnuOaw5fjjMOIw4YngRd+R3VLcktuF2gbZv9fP1o3VxtMb0tPQXc9ezVnLtcn+x6jF/cKWwGq+HbzruX+4+LfDt3q3drceuDq5XLqqu8i9+8DOxNnIVM2R0jXYjN2A4rbnh+188/z4Iv53AxQJcg4iEz0XCxt5HiIh0yLMI2UknSQ5JC4juCHxH4wdNxoiFtARbg28CLwDA//5+ir36/Jp7mrqGufU427gtt1E3Jbb9tqm2lPb09xt3hLgVuJW5ZTo6+vG7z300Pg1/bcBcwb2CugOeRLkFRgZFBwEH88hGCTXJVcnkCgWKeModygNKGonfiaXJbUkeCPdIVEg2R4KHfUaMxniF3oW6xTdE3oTBRMgEnQRgRG5EYoRZRHsEeUSwBOQFKgVxhZ4F/AXoRhsGeQZJBqkGmobERx/HO4cUh1nHUgdTR1aHfwcRxzYG9kbtBsRG2caHBrJGfEY2BcIF3IWvRUaFe8UDhXuFJsUixS7FKYUOhQAFDYUdRRiFDMULRQpFOoTfhMUE64SLBKFEc0QHRBxD5UOZg0jDCwLTQreCNQG/AS3A0AC+/+f/R78B/tK+Rb3dvVX9KbyWvCq7uTt3ewP64jp7Ogm6EXmNeQX40Pig+BH3tjc+9tY2s3XldUS1DvSi8/dzNjK0sgCxs/CBcB/vZS6TLdetCKyM7A6roSslquLqx+sN60Kr72xFLXQuA+9CcKgx4PNydPM2mri8ukA8dP3n/4LBdIKWRAXFr0bmiCKJOEnmyo9LKEsOSxeK+gprifaJJQhsh0VGf0Trg4mCWgDqP3290XyzOwK6AjkRuC03ALab9gv16HVdtSg1NfVStcn2SPc7N+B4+fmC+v275T0mvgL/V4CkwfFC3APSBPsFrsZ9xsoHgIg+SBOIaMh7yGxId8g3h/ZHqkdOByQGs4YPxctFlQVLxTxEkcSGRKREawQiBCGEYwS7BKZE2kVXxdEGM4YYBqXHPQdcx5vHyAhOiI5IioivCIzI+UiSiLnIVwhVyBLH4Iegh0KHL4aAhorGaoXFxYrFYkUjxOMEhsS4xE9EXkQWRCsELcQnRAkET8SHROOEywULBUMFp8WRRcXGLoYHBl9Gb8ZfhnpGI0YXBi/F6cWmxW/FKgTQBLcEHYPwg3qC10K6QgCB9YEDwOgAfH/FP6f/HX7/vly+Hz3s/Ya9R/zLfIr8mrxke9F7iXuee0a64joUOdn5i7kX+Gw37LeiNwY2QDWudMH0XHNFMqPx/zEjcHJvWa6Hrdus5SvKqxfqRCnOqX+o2ijkaObpHumCak9rCGwsrQHukXANMdQzofVZd305T3uifV2/NkDPQujEUYXKR0qIwIoMyuPLYwvhDADMKIu+Sy4KnYnfyMpHzQaYxQIDoIH4gBo+oL0Eu+T6U7kNuBE3Uja9NaS1OLT19N9067TgdVY2BTbCd4J4n7mXOof7vnyfPgw/RwBnAXJCicPCxJtFPkWBRkRGroagBv1G7QbExtPGhwZZhebFeQTAhIkEM8O5A3XDPEL7Qt6DIkMRQz5DMYOVBBIEf0SDRYdGTMbQR0UIJ4i3SPZJM8m8ijeKRkq+Cr+K6krJirxKDIoriYzJPwhdCCjHhoctRnoF/4VnROIETgQBg+EDV8MLwxzDJAM0gyhDaQOdA9mENURcxP2FMMWFBlCG7Mc0h0zH3ogBCEXIW4h/CEcIrEhGCFLIPIeLR16G+gZJBgxFmAUuBLyEP0O8gzOCqkI5gakBWgE6gKsAQoBbABE/x3+tP2Q/eL8HPwm/IH85vuT+gD6M/qF+XD3fvWV9F/zn/Bg7STrXemG5sPiat+X3BTZlNQt0IfMCMkixTTBnb3/ufK1rbGQraWp/6UHowGhuJ/knqCeMJ+MoHyiCKV7qAOtY7I5uIa+psWRzXzVwNzZ47DrAfR2+64B6AcCD+8VOxtHH3gjuyd8KhMruyqqKnMq+ygrJtwikB/3G3YX5BHXCzUGQAFJ/NT2qfHC7Zrq8Ob64kHgHd8c3pDc0dvd3HjeQ98X4Hvi5uWu6Nfqz+238S71z/fI+pb+HwKXBKkG9wjrCs4LAAxFDL4MJw1hDUsNtQzQCwMLLwr9CMYHRwdnB3IHdgceCDQJyAkJCjwLig2gDxQROROsFgcaNxxDHkIhRiQTJlcnUClnK1UsiyxRLUcuCy65LKEryCr6KDkm0yMLItMfAR2xGhYZ+hb9E10Rvw8xDi4MyAq5CgULtgpuCgcL9AttDPQMVA4iEKQRPROEFd4XbRmfGlYcMR4rH3Af/B/VIBIhiyD+H6gf+R68HVsc/RpqGcMXZxYuFbYTLxIFEfUPgA70DO4LIQvhCYoI+gfzB2wHaQbmBfIFjAWDBMADggPnArwB4wByADH/u/xa+rz4mvb38gfvOezL6S3mtOHg3bna+NZw0ljOJ8v1x0TEysAIvmG7OLjntPexRa9zrKipVKeipYOk76Pgo1ykmKW9p6Cq9q3asa+2gbzowpPJgNDG11rfBedh7hL1RfubATkIXQ5rE9UXQxxUIBcjfSRVJeclqSVZJHIiPiBbHXkZ2BTUD3UK2QRV/wH6tfSW7xXrQOey41vgnt2R2+rZv9h+2BHZ5dkJ2zHdQOAW40bl2Od760fvTPI09Qb5NP14AOUChAVGCBUKwwplC4AMRQ0SDWMM4gttC50KaAnxB1cG+gQrBJcDuQLtAQMC3wKOA+kDzQSLBmcIIgqHDNcPJBP5FSkZEh2HILYitCScJ3sq4itlLJEtES8zL9EtfCy1K0wquycQJfUiqiC3HeYasBhNFkkTihC3DgMNuQqvCOMHygdoBxUHsAfiCLUJXArYCyUOTBAlEoUUmxeGGrwctB7SILgiCCT+JN4ldyaKJicmbyVZJOgiOSFTHz8dORthGXUXSBUyE38R4Q8DDkoMMAtYCjMJHgjJB+QHmwcmB3YHbwj5COQIKQkJCnUK9Ql9CZkJUwnhB/kFXQRZAg7/Fft499/zWO856o/lM+EQ3C3WudAXzGnHTcKcve+5pLYDs1SvOKybqQ+npqTUor+hMqENoXmhsaLPpLSnHav2ro6zJrl8vxzG/sxl1DjcBeSD67Hydvmw/4QFIgtCEIEUFRh2G2keHCBvIDcgASBWH6UdQBvOGFcWXROhD2AL+garAoP+VPoM9hPy9e6U7ELqzeff5frkreRW5BTkbeRv5cDmPej76eLryu2476nxUvOK9K31Ffd++H75Pfog+/37Rfzs+3/7Ufsv++j6oPp/+nz6hfqR+pD6jPrG+mX7RPxW/eH+9AAbAx4FhQevCucNchDuEmQWXRpmHXgfDSKMJWgooClfKvAriC2sLa8sFCwFLEYrWiklJ0MlPCOuIO0dSBulGCUWJRRzEm8QMA6MDKwLyAqZCfQIWAkFCkcKowrRC2sNpw67D2MRgxNgFdgWaxgoGpUbnhylHbkeeR/RHw0gKiDHH+Ee4x3tHLkbQRrrGNcXrRZHFe4T2BLeEe4QPBDgD8EP6g9uEAURVhGhEWoSghM4FIkUJhUlFrQWchYTFhIWyRWIFL8SIxFnD8oMXQnPBUQCWP76+W/1q/B06wbmwuB/2+nVXtCXy4jHhcNvv9S75LgitmOzLbHPr9Suyq30rLis4qzlrK2suqyWrVyvurFdtGC3PbsZwGDFiMrnzzXWXN2A5CvrtvFl+NH+iQSjCWIOwxKeFtgZRBzKHb0ekx8lIN0fxx6jHaQc9Rr7F1cU9BC0DeYJhwVFAWz9mvmG9XDxzO3X6oXoneb45MzjeOPd41Tkn+Ra5QDnDunA6ifs0O2271Xxm/Lp80H1T/Yf9xr4MPnU+er5Avp1+ur6+PrH+rr67fo0+2D7Z/uL+zX8Y/2P/oD/0QAHA4sFkQeICYAMVxDNE4gWiRlEHb4gMiNCJaUn1ykdK9MriSzOLAkssCqAKRoo1CUoI/AgwR6oGxgYVBU6E2wQ2gwaCsYIfAdNBVUD1AIWA9UCYgL4ApUEHgZHB9wIOAu9DeAP2hECFDoWPxjwGUIbShxCHSkelR5CHpkdCh1RHOsaFhmBF0gW6hQ5E54RWxBGD0AOZA29DFcMeAw8DTEO5A6uDyMR+RJeFEIVVhbAF94YcBn1GYkakxrdGfoYGhiNFvoTFBFsDoALwgewA9r/xfvg9q3x7+w96NTiPN2m2PPU5NA/zCrIMsViwva+qbt2uQe4ZLZ/tCOzhbLwseuw8a/Kr3+wdbF1siy0T7d4u5e/hcNVyKTOcNWR24ThkeiK8OT3CP77A1cKJxB9FOAXNhs7HjMgWiFfIhIjsiJLIaIf2R1JG8cXFBTGEH8NpQlTBSEBSP1s+Tv1DPGz7Y3r9+kx6JXmKubl5mznGuch57Ho9epR7OzsUO648JTyCPMy8x/0F/X+9Er0L/Sn9Jz00fM481nzg/P38hbyzPFL8u3yUvP284T1zvf8+br7r/1uAI8DagZDCd0MHREbFYgY6hteHzwiUSREJl4o8ymuKkUrBSz0K2UqSSitJuwk6SFJHo0biBm8FgoT8A/zDdQL4whIBgYFZwRyA6MC5QLrA9sEwQU2BxoJ3AqTDLUOIxFiE3AVmBevGUAbPxzkHCUd8xycHEsclBs2GroYkxcxFuYTQxFnD0gO9wxSCz8KGwo2ChMKGQqxCqsL2gxpDlAQNBINFDQWkRiJGu8bLh1kHh8fQh89HxgfPR6fHPcaaRkKF2UTZg/sC2YI/AMk/9T64fZb8jjtQeim4+TeBtrE1U3SCs+8y9/InMZexNbBmb8svie93Lttuoe5QbnouPu387bAtpS3sbiRufW69r1UwpzGVsrezkHVUtxJ4oDn3e209Rb9vALGB6ANoBMDGHYaRBxNHh4g+SDkIGQgwx/NHhgdcBopF98T1RDMDZ0KjAfCBP4BE/9A/Lr5UvcH9VzzkvIZ8mHx0fAQ8czxJPIH8jXy5PJo81vzJfMs8zTz/vK18mbypfFO8PHuA+4h7cLrVOrF6SLqbuoS6rvpZer264Htx+698DD0c/g3/F7/DgPCB2kMHxCgEwAYwxyMIEgjGiYmKT8r+StuLEMteC01LGQqICnLJzIlvyHiHrQc/BlrFh8TwRCtDlAMKAq+CMoH5AY5BggGKQaMBnMH0Qg4Cp8LdQ2kD3ARshIrFCQWvxdqGNIYixnhGQgZlBeCFoYVvhNvEaAPQw5gDOMJyweGBmwFNASLA94DogRUBTkGqgdpCS8LJQ1oD7sRCBR7FuAYtRoBHF8d2R6rH4kfJx/9HnweGR1GG5YZwhdKFW4Sow+vDDoJnwVlAlH/4vtJ+Pr0vPEd7mTqG+cL5LDgYd3W2srYQNYq033QfM44zCrJKMYYxIPCVMB4veq6SrkNuFS2QLQcs+Sz9rXdt365fLzUwRHIRc310WXYDOG66crwUvcU/4sHpA6ZE6MX5xv1H6QitSMDJFokfiSIIychJR5bG5IYFRUYEZsN5Ao4CEAFnwKzAN/+s/zV+tb5Ofl0+BH4qfiN+cL5qflJ+lL7d/up+lD6B/uX++j6l/nP+GP4M/fn9FTyOPBv7nrsV+qH6F7nnObe5UvlceVu5sHnQOmZ60Tvl/Oi95X7RgChBZkK0Q4IE7YXTRw6IKEjsCYUKZ8qrStVLBgs4SpvKSooeiblIxQhwh59HH4ZKhZ6E3ERVw8pDakLBwurCk4KSAqwCi8LyQvoDIAOBhBnER8TKhXVFtIXmBhrGd8ZuBlSGdMY1RdDFq0UOBM2EWkOtgvGCfQHggUSA7oBSQG+APv/z/+IAJ0BwQJBBD8GewjxCrsNfBDAEsgUExdLGa4acBtqHH0dsh38HG0cQhxUGysZ/BavFU0UvxG/DqkMMwsRCS8GowPAAbj/LP2p+m74DfZr8wLx0+4+7CTpM+ak48HgI9132WTWgNMM0C/MnMhixebBAb5Yun+3RbUhszKxRbDMsCiygbM0taK4N76JxEzKQtAO2HbhX+q68dD4AwGICXUQWhV4GbYdbSF2I6Qj3SLmIYogDR5gGm0WARPSDzAMWAgmBbkCXgDy/TT8efsf+8r6D/tD/J79df5P/8oAXwI8A7kDqAS/BQ0GkgUaBaEEVAMiAfb+HP3L+pn3WPTE8WTvauwT6V7mt+SX43Hie+F84eLiKOVt56Lps+wt8UD20foO//sDswk1D98TFBg0HPYfFSOoJZAndSiZKLYotiikJ00l1yIFIRMfJxzdGFUWhhSlEq0QQw95Dt4NeA2zDXsOWg9bEOIR0BOcFScXtRgiGg0bnhtDHL4cdByMG7waAhqUGEIWyROcEV0P0wxqClwIVwZVBNgC8AHvALP/J//V//AApAFtAi4EpgbaCJoKcgyPDqEQkRJ2FAUWAhfaF+0YnxksGQoYRxfIFoUVchOzEaUQSw8mDSQL7Am2CMgG6gQeBOIDDAPIASMBGAGOACj/uv2//J773vne9+31rfPL8KHtfuoK5/bit97Q2vjWpdITzgLKhMbwwgS/crvjuBK3VrXLs12zjbTBtii59rsRwJrFl8tg0aTXPt+o55Xvufbm/UsF4AvoEP0U4xg7HDIezR62HgweZRy4GYEWFhN2D8ELOAjiBKgBxP6S/AX71vkO+fb4gvlX+ln7rfxQ/goAzQGbAyoFLQbIBkAHXAe4BpAFegRfA5YBDf90/Bz6evdE9CLxu+7H7K/qnug054XmEeal5azlmeZL6E3qa+z57lzyUPYT+nX9OAHaBYsKNw40EbYUthjTG4Ad2B65IFIijyLSIRYhVyD3Hg0dMRtqGXUXkhUcFMgSOhH8D7EP6g/uDxoQPxH1EicU8hRqFnwY1hkhGo0aoxs4HG8bKxp3GcIY+BZhFAwSFBDODTIL5ggfB4EF9wPGAuoBJgGgAKsALQHPAZwC4AN6Bf8GWgjDCTwLnQz4DWYPqxCZEXQSaRMLFPkTpBOhE5wT5xLGEQ8RsBDID0UOCQ1iDH8L9QmHCNoHYgduBlsF1gSfBAQEDgM8AoEBbwAe//b92/xG+zr5NvdK9e7y6u+07LHpteZ+4xXgldz62EzVqNH3zQbKC8aSwsS/O724upy4YbcAtyq307c6uaK7Ib+iw9vIiM6r1HHbruLe6bjwcvcw/pcEOwoJDw4TGBb7F+sYLhmkGBIXwBRJEtkPDQ20CUQGYgMwAUz/aP3O+yL7mfub/G/9Ov7F/ywCcQS7BYcG0QeHCZUKcgq3CQwJMwiABtUDuADD/R37gfiR9WHyiO9t7azrsOm255bmiubt5kTn6OdT6VXrcO2C77vxPfQL9xT6Jf0WABIDSQZyCQ8MOw6CENsSphTWFSIXwBjjGRAa+Bk1GkAaeRlmGNYXjBfpFjQWBxYIFpYVJxWQFWAWkBZzFkYX3Ri8GZAZrhmbGgobHxrhGFIYrhf1Fb8TIxLIEK8OFgwBCnsIwAbPBHED3AKTAm0CsAJJA+IDnwTTBTYHSwhYCecKowy+DToOxg5yD6kPXg8gDxMP2g5+Dl0OQw6uDfIM0QwLDbQM8QvfC5UM1gw1DMMLEwwxDGMLdwovCuAJyAiNB/gGZQbnBAMDvAG5AOv+f/yL+h75SPfM9GHyOfC77dHqHOi/5R/jI+B03Tzbvtic1XjS3c94zc/KFci6xb3D98F1wFS/mb5vvh2/lMCOwiHFpMgAzczREtcy3fLjierK8E/3KP5mBHcJ/A2LEnsWxxiRGdAZxRnHGIAWkBPAEBIO/gpRB5wDowCC/qb8zvqo+eP5A/v5+7T8H/5wAKoCJgSIBXAHNgntCcMJdAnqCH0HJAV6Ar7/tPxm+SH26PKy797svurs6P7mf+U/5fPlo+ZO5+TokOtk7tDwUfNS9m/5VvxJ/1kCFwVxB/IJpAyrDqoPhhD+EXQTFRRDFNcUsBUQFu0VwxWeFUYVCRVDFZcVixWGFScWBRdNFz0XxBfVGIcZyBlxGpMbMBz2G8kbChzMG3ga4hjkF/kWRRUQEykRig+jDXYLdAm3By0GFQWcBGcELgRPBBsFIQbnBsIHKwnUCjUMfg0JD2sQFxFmEewRSBLNEeEQaxA6EGkPDA4dDb4MFwwFC1sKXwpUCvoJCQq9Ck8LYwukC1kMtgxIDL8LlgsYC8IJTwhcBysG/QOMAcz/L/6r+7v4q/Zi9ZPzBPHe7p/tXOxW6h7ob+YS5WPjR+EF37zcZtry1zTVDNLEzsbL+cj2xdHCK8Bevj29qrzjvB2+VMCMw8vH5Myu0kfZxOCu6H7wP/gRAF4HcQ17EhMX1hrGHPkclRzmG+oZJha5EcwNEgrEBTIBb/3n+kf5Rfji9zH4c/nc++v+pwH/A/UG3QpcDjIQ/hD7EdMSEBJrDxsM8wh9BTkBgPzW92PzNu916//nq+Tu4YvgbOC74DLhdeLg5NXnm+pI7U7wuPMw93b6dv0+APMChgWgBxUJSAqQC5oMDg1uDWMOgA/fD80PaxCoET0S5BH0ESsTghQLFXgVqRYTGNcYTxkxGh8bhRvuGwodMh5rHi0egh76Hk8erRxqG6saPxnnFs0UWBN4EaYO5Qv1CR0IvQWXA4YCGgKSATEBhgFNAg0DFQS9BYMH4whcCoIMrw7kD2QQMxFMEqsSAxIfEZAQARAJD8YNgwxmC5EKAwppCacISQjBCI4J+QlBCh8LXQwYDTkNfw0IDhIOXQ2NDOMLtwq4CIwGrASkAg8Aaf0o+/b4cPYA9BLySfA67lDsDesJ6pHo1+aH5ZjkW+OQ4ZLfoN2R2zfZe9Zd0yPQP82hyrHHbcTLwWHAh7+rvp++b8Ccw+/GkMqtz1DWL93O4xPrZPOh+7EC0AiNDpYTRReWGeAaMhuGGgUZqRY5EwsPDQukB0gExQD1/ZL8LPwR/Hv8Bf6MAHkDrAY9CroNoRAcE3QVHxdXF04WzRTLEoMP2gq4Bc0A4fuj9mrxwezH6F3li+J64FjfTt9V4CXiguR65wnrwe438oX16Pgf/Mj+/AALA8MEwwUoBlIGLgaIBcEEbQRkBC8EFwTMBCIGQAcbCIkJxQsKDgEQQBL+FJEXmRmNG5Ad7x5nH8MfbiCeIMMfqh4gHowdEBwcGp0YWBeRFZQTNhJLEQsQrw4LDuQNNA34CzwLQQsaC2AK0QneCfEJlQkkCdoIUwiAB/gG3gaBBrIFUgXMBTsG3wVoBcYFmQb6Bg8HqwfaCPkJ1wrBC6sMUA3fDaAORQ9tD4MPEhCqEH4Qzg+DD4QP4A6RDaIMaQzwC7EKgAkGCZMITwerBYgEvQOHAucAhv95/jH9dfuY+cD3t/V38z/xGO/b7JHqY+gr5qXj+OCG3kjc5Nlb1xPVHtMa0dHOjcygygvJu8fDxkTGXMY7x+jIJMvOzVXRHta821nh8OY77Uf0B/u5AOIFLQsVEHATBBWoFe4VahWKE4sQRg03ChAHWANO/+377fn7+Gr4Xfin+WP8j/9uAnQFQwloDewQqxMZFgAYiBhwF1UVoBL6DiQKqQQ6/+T5ZfTc7sjpk+Ve4hfglt7U3Rreud9x4pPlyuhs7LjwJvXf+K37GP6ZAPACbgTSBK4ErQSmBMsDAQJhAN//AADE/1f/3/+VAWgDuARCBsAItQtWDsMQfhNUFq8YgxoLHCgdph3CHbMdKx0BHMUa2xmmGIYWIBRpEgQR8g6CDAQLpAooChMJaAjMCGUJXwk5CcsJ4QrKC3cMMw3eDTwOZw5cDrENdAxxC/cKMgqRCO8GRwYJBhMFrwMzA+IDtAQwBRYG8AcnCg0MvA2OD2IR9BI8FDcVxBUAFhMWtRV7FK0SAxF6D10NsgqBCEcHMQaPBAMDbQJwAiUCngGlAVYC+gI3A1QDaQMcA0QCEQGH/3D95fpH+JL1YfK27hnrz+d65NrgUd1g2vzXyNWv0/3R5tBG0MnPPc/TzvHOq8+W0FvRTtL10xjW59cf2YHaw9yU3yPiV+Ts5krqy+168GTymfS19/L6PP3U/vsA6AM9BhcHigf+CPwK+AvmCzsMgw2VDqcOlA47DwQQCBCeD5EPpQ8sD3MOOQ5FDqkNVgwOC/0JeQhhBnoENAMNAoUA2v5a/cz78fkT+Jr2gfWX9N/zYfMB87PyjPKJ8ovyuPJZ81j0UPU79oD3L/nP+hv8XP3E/hMAJQE8AnoDnwSUBZ8GtwdZCGsIjggeCaQJ0wlACmMLrgxzDQQOBg83EPgQiBGhEiIURBXuFasWeBezF0MXuRZCFnkVXRRtE6QScBHXD4IOfw0fDGAKKQnJCGcIiwf3BjEHdwcWB6gG7AZgBzgHzwbsBkEHAAdjBjsGWwbnBfUEcgR6BDYEdgMNA2EDzgPRA8MDAwRnBMQEQwXUBTMGnAaHB54I/QjCCAYJ/gl6CuEJSwmgCQMKTwkPCHgHTwdkBrEEUQOHAm8Bs/8c/iT9MfzA+jf5DPj+9rH1WPQ98y3y4vCF70Lu0uzn6rLoneab5DziTt8m3DbZktbh0+3QJs5PzIrLGsuGyoXKGMwRz1/SwdUP2rPfweUk6/Pv6PQM+qL+JALJBPoGoggyCVUIhQasBBgDLgGh/lb8X/tc+xr7qvqN+2D+0QGfBHEHegtFEDIUwhbsGEYbBh00HdwbpRnlFn0TTw+DCo4F8gDW/PL4LPX88env1+5i7pvu4O8L8nf01PZY+RX8m/6HAOsB/wK/A/UDfANfAt4AUP/C/fv7APpl+KP3c/dZ94v3m/hu+lv8QP6WAHoDXQb9CLILhg7iEHcStxP0FLkVphUyFfAUnBSpE0gSHRE4ECcP5g3nDE8Myws9C+sKBAtaC8ALOQzUDIkNQw7XDhkPLw9+DwUQKxCdD+IOhA4MDq8MsAobCSsIBgdEBaIDxAI0AkkBTADz/zcAhwDLAHUBqALyAwIF/gUkB1cISAnOCQQKMgp6CqIKTQqZCRIJ5giECH0HVgbZBeQFrwUgBfMEcwXrBcMFbAWLBdsFqwUPBcEE3wStBLsDjwLLATcBIABw/tr85Ps3+x/6hPgJ9yf2bvUU9BHyPvAj7y7uj+yF6hDpYOh+58nlDeRa42njIeNr4mziteNC5fzlWOaO55TpG+uS6/vrSO3S7lrv8e7G7k3vou8S7z3uIu7A7lzvxO+F8AfyDfQo9jj4XvrD/HH/MQKhBJwGbghECqsLFQy2C0AL0grdCT4InQZuBUUEqAICAQAAfP/X/iL+Cv6z/nH/2v9PADgBPALAAr8CrgK4ApMC9gEAAQgAPP9u/lj9B/zr+lf6H/rn+cr5Q/pm+7f82f0D/4QAOgLIAyMFgQbuBz0JTwokC70LIAxeDHsMaAxGDFsMsQz8DCUNfg01DucOOA97DzUQRhEbEpQSGRPSE2cUixRSFPATiRM7E+oSPBIcERMQfg/YDnkNywvQCnkKtQk9CA8HwwaQBsEF8ATrBEoFMQXPBOoEdgW+Ba8F3wVuBuEGAAf9BtUGZAb0BdIFnQXbBAsEBwR5BDkEOQPCAl4D/gPBA1MDqwNtBKcERATUA2gDrwKyAZ0ANv9T/X/7N/r1+AT3zfRS84PyYvHJ78LuzO757mLufe0S7bfsV+vt6JDmr+RJ4mjeodlN1abRnM3HyJnEyMIcw9/DhcSRxlfL+dGb2P3ec+Z374P4zP8cBXEJPg3YD2MQ7Q5lDJkJZQYoAir97vir9vL1qvUL9mz4Cf1aAi0HQgy6EswZUx9oIhMkKiXIJJAhxxs/FScP1wg1Acv4j/Gg7BTpwOVd47Lj5+YN66/uevJ+9/r8GQFfA8gEzAWEBSwDUv8D+4v2nfFf7K7nWeR54qPhqeEC4zvmC+te8I71//odATkHIwyfD2YSvxQUFu0VrhQBEyoROQ9vDQ8MNgsFC5kLwwxCDjYQ6hIhFioZxhs6HmUgiSFUIWUgRx+rHSUbFRgfFUsSQw8rDIEJbQfDBYQEyANdAwID4gI6A7MDtQNEA+kCsAL+AYsA7/7Z/T79ofza+zr7Cfsx+3H7qfv3+5j8q/3y/vD/ZwCcAPAATgFIAdYAkQD0AK4BHAJHAtwCEwRVBTYGLAfDCJwK8wu3DG8NIA4wDmUNQww1CwIKXgiABskEUQMBAssAo/+Q/tz9yv0H/gP+1/05/kT/BgDM/w//o/5m/or96vs6+gT5Efjr9n31GvQW84byRfIv8lzyA/Md9Fz1i/ay98/4w/md+o37cvzq/AL9Sv3k/TH+0P1b/Y39Hv5M/iX+eP6I/6IAOQGhAWECVwPwAwYEBgRJBJUEdwTpA2EDIAPJAu4B1gArAPv/pf/o/lD+Qf5J/tj9JP29/Jf8Pfyp+zr7+vqT+uX5Jflq+KL34PZI9sL1PvX/9C71W/UZ9dH0MvX/9Vv2SPa+9gv4OPmF+ZX5Tvpe+9n7y/sY/BH9Bf5z/sH+gf+LAFgB2wGTAtMDUwWXBpAHoQj1CTEL5Qs6DLIMZg3cDcANVw0MDdMMWAyPC8gKQQr0CasJSAnsCOEIMwmPCa8JzAk/CssK2AplChYKIArsCRwJNgjBB1YHWgYSBTwE6wOWAyYDDgN1A/kDXwTMBEgFrQUKBowGCQc5B0kHjAfFB3gH1waHBn8GIQaDBXYFGAaCBlYGZQYwB+0H6QfIB10IKglACd8I5QgjCa4IjwewBjQGRgWtA0MCeQGoAFH/8P0E/SX80PpJ+Q346fZr9bPzG/Jw8DruhevL6DbmgOOZ4NndlNvX2ZDYyNeb1zHYntmy2//dTODi4hjmtOkU7eXvaPLX9Mb2gvcO92P2Zfbg9gb3zvYe91/4wPmL+n/71/1rAfQE9AcgC6cOdBHCEkUT6xNhFMoTORJ3EKcOTgxzCcQGrAQDA6QBrAAVALn/rP8dAN0AiAETAp4CzwIeAqUABP9q/X77O/kp93j1u/PD8RbwOe8C7yDvve8V8e7yzfSV9m34S/r6+139gP5g//X/RQBkAGcAcwCgANwAHQGaAYwCyAMJBYEGkQgCCx8Nsw46EOcRMRO3E90TEhQTFHUTahJjEVcQBA+eDZAM0QsBCyIKkAllCVwJQwksCSkJIAnqCGMIbgcwBv8E6wOcAugAPv8C/uj8c/ve+dP4avgc+L73wfdY+A35e/nr+bb6l/sT/EL8ovxA/Zz9dv0+/XH95v0W/vX9Cv6s/o7/QADaAMIBBgNGBEEFEQbXBoAH+QdECFoIKwjRB3sHFgdyBqQF9QRvBNkDNAPIApcCSwLaAaQBugGgAQ4BcgAoAMz/2v6P/Yf8vPut+kX58vfq9vb1/fQ29LbzUvMI8wTzNPNG8zLzUvPE8yT0KPQT9EH0j/Sa9GP0S/SE9NL09fQH9U312/WE9iP3yPeg+Kv5t/qN+y38yPx9/S7+pP7Z/g7/cv/Y/+z/tP+e/+r/TgBtAGgArwBEAbIBvQGqAcoBAQILAuIBswGUAXwBVQEGAYoADADL/6r/WP/U/o/+vf7y/sT+eP6Q/u3+9P6G/i3+Q/50/lf+FP4M/jr+Q/4E/rb9kP2X/cH9Df5n/rP+//5p/9P/+f/q/xEArQBgAboB3wFDAuQCPwMeA/ECJwOOA7gDqAO9Aw0ERQQyBAYE+AP0A9YDrwOlA7ADsgOxA70DxQOrA4IDcANpAzkD5wK5Ar8CrQJeAhYCFAITArkBMAHwAPoA5wChAIgAvwDmAL8AjQCOAJcAfQB8ALwA7wDdAM0A/AAWAckAcACFANIA0gCgALsAEwEqAfwA9gAlAS8BFAEuAXYBhQFZAVcBfgFoARYB/gAmASEB8QAQAXYBkQFjAZUBOAKFAj0CKAKsAgcDnQIOAhECPALhAUgBEQERAc0AhQCrAO8A2ADFAFQBGAIvAsABwAFSApgCKwKxAbMB2QGgAQ0BcwAHAOj/CwAlAAUABQCMAE0BqgGuAfcBoQIaAxED3QK7AnoCBAKsAY4BTwHDAEMAFgD6/57/N/8z/6j/SgDMABUBPwGDAegBIQLvAZUBigHEAcgBXwHYAH8AQwAAALX/Y/8Z/xX/hf8dAGUAbwDHAJABOwJfAk0CgwL3AkQDQAMYA/0C/AIBA+QCmQJLAikCLQI+Am4CxwIYA0UDmAM7BLcEmwRlBO0E9wVuBgsGwQUnBooGJwZgBQUFHQUsBRAF7QS0BGUEYwTGBPQEiQQkBHsEGAUFBVkECwRoBLAEXQTOA4EDbANFA/gCjwInAv0BGwIeAsUBdAGnAQQC4QFpAV4BugGwARYBwgAcAWQB+wBhAE0AfgBAAJ3/Mf85/17/Wf8t/wD/+v4w/2P/QP/r/u3+W/+U/0D/4v7+/kD/D/+K/j7+OP4S/rL9Yf07/Rf96vzM/Lb8lPx9/If8kfx6/GL8afxk/C385/u++5T7RvsA++D6sfpY+h76M/o/+v75yvkF+mD6U/oN+h76gPqq+oD6avqR+qn6iPpi+ln6Wvpq+p760vra+t76Hftk+2P7UPuc+yP8WfxA/F78yfz2/LH8gvzI/CD9Ef3S/OP8SP2Y/aP9qv31/XT+0P7P/p/+pP7r/hX/6f6z/sb+9f7c/of+Rv4u/hr+FP42/lb+Tv5Y/rL+DP/8/sr+Cv+j/+v/v/+x/woAYABWACYALABfAIwAnwCYAIIAkwDsAEcBXwFrAdABYwKjApcCtQINAzoDKwM8A30DngORA6UD2wPhA8ADywP3A/ED4QMwBKMEoARWBIIE+wTHBOEDdQPjAwwEPwN6ArMCLAPCAtIBcwGSAUoBngBNAF4AJACT/zv/Cv9G/uv82/t3+xr7UfqQ+UP5B/lG+Bf35/XQ9KXzavJE8SzwAe/J7bfs++uX61jrHusj68Dr1+zf7cHuGPAy8kz0c/W59db1BvYD9tz19fVT9rH2Gved97X3C/eK9oX3r/li+yH8Rv2Q/54BAwKFAe0BVwM9BM4D0gIwAtoBXwG6ACwA8/8rAJ8AsQAnALf/LAA8Ae4BEQJcAvEC8gLjAYUAw/9z/9v+5/0h/bT8Pvx/+836l/rl+mX7zvsX/GT8xvwl/Wf9mf3K/er96f3T/aj9VP32/PT8bP3s/Rz+V/4W/xkA0wBdAUoCnQO0BFkF+AW2BiQHGQcMBzsHQQfgBoQGkAbCBsAGsgbSBvwGEAc5B4QHqAehB+MHewi3CCoIbQcnBwIHSgYnBVgE/wOZA+sCPgLCAWYBNgE+ATYB4wCVAMEALgE8AdsAnAC8AMIASgCN//v+s/6V/oT+dv5m/nD+sv4Q/1L/d//D/1gACwGVAeEBEgJWArAC6wLkAsUC0AL/AhYDFAMyA4AD0AMbBIYE/QQ1BUEFkQUwBpcGhQZvBrAG5AaQBugFcQUyBd8EdgQhBMwDYgMgAygDHgO3AlMCZgKkAnAC4QGQAZQBcgH9AIcAMwDE/y3/uP5s/gL+f/1J/XL9hv1H/Qz9I/1R/Uj9I/0h/TH9Kf0b/Sf9Kv33/L78yvwB/f78ufyf/PT8Z/2J/W79jv0M/oX+qP6p/t/+Pv99/5f/vf/p//f///80AG4ATwD1/+T/NQBiACgA+f8+AKsAuwCAAF0AaABwAG8AegB2AFAAPABZAFwABQCn/6//8v/1/7P/lf+p/5z/Yf9D/1T/Sv8c/xb/Qv9A/+z+r/7W/hP/Af+9/qn+zv7h/sj+tP7L/v3+K/9K/1f/UP9F/1D/b/+F/4P/gf+a/8T/3v/h/+v/DgA2AEkATwBZAFwAUQBaAJIAxwC5AI0ApADwAP4AtACRANwAJwEAAa4AsQDsAOkAsACpANkA2wCdAIEAnwCXAD8A+/8LACYA/f/D/87/AAAHAOz/4//p/9j/x//e/wAA+v/e/+X/AADs/6P/cf97/5H/hf9r/2P/Zv9i/1X/Rf80/y3/O/9M/0j/P/9P/2//ef93/5H/uf+0/4P/bv+Q/57/aP84/17/p/+m/17/Nf9X/3r/Y/87/0b/g/+2/7z/qf+i/67/uP+s/5D/gv+J/5H/i/+H/5H/l/+Q/4//n/+k/4//gP+W/7T/rf+R/4v/lP+I/27/a/94/3L/Zv96/5r/kP9p/2v/oP/B/7H/qf/O//H/6f/V/9r/3//P/8b/1P/Q/63/pv/f/xoAFwAAACMAawB8AE0ANgBpAK0AvQClAKAAvgDXAMgApACXAKwAugCnAJEAoQC+ALcAngCuAOIA9gDiAPYATQGXAZcBhwGtAd4BygGNAXsBkgGFAUsBKgE4ATwBHQEMASgBRAE2ARwBJAFEAVsBaQGFAbIB2AHoAd0BwAGcAX0BawFeAVIBSAFHAVYBagFmAUIBJgFCAYQBrwG/AfIBWQKnAp0CawJkAnsCcAJHAjsCSQI2AvUBvgGkAYYBWgFQAXoBrwHQAe4BEQImAiwCQgJkAmUCSAJHAmcCXwIRAtIB6wEfAgkCuwGVAZ8BiAFCAS0BeAHaAQgCIQJZAoUCWwIHAvsBRgJ+AmUCPwJUAm0CMgK9AYIBqAHpAQYCEwI4AmsCjAKdArQCzQLgAvECAwMGA/ACzgK3Aq4CrQKoApICZwJFAk8CcgJ2AlkCXAKjAu8C+QLXAtQC/gIdAw0D4QK7AqYCogKhAokCXAJGAmUCkAKFAlMCQwJoAn8CXAIyAjwCYwJoAkoCQAJbAmsCUwI6Ak4CdwJ0AkICJwJMAncCaQI8AkEChAK1AqICfAKLAskC9wL4Au4C9AIDA/wC0QKTAm0CfQKoArMClwKNArQC1QK9Ap8C0AIyA1UDHwP2AhsDRAMUA7sCrQLsAvwCpAI7AikCYgKVAqgCugLXAu4C8gLUAoICHwIKAmUCvAKYAjcCNQKJAogCAQKeAeQBXAJeAhcCJAKEArUCmwKSArICsgKBAmoCfwKDAnMCkALVAuMCowJxAnECXgInAikChQLRAsYCuQLxAiED+gLHAvMCUANpA04DWQOHA4YDVgM+Az0DFwPSAroC0wLbAtEC/QJgA6ADlgOJA6oDwgOhA38DmwPOA8UDgwNSA0ADGAPFAoEChQKzAskCwALGAukC+QLfAsYC2QL4AvEC2ALZAuECtQJgAisCJgIUAuABxAHbAe4B0wG1Ab8BzwG5AZgBmwGrAZ4BeAFdAVIBUAFXAV4BUAE6AUcBYAEvAbMAaACRAMEAigA4AFQAuQDGAGgANgCCAO0AFQEdAUsBewFsAS0B+QDSAJkAYgBgAJAArACYAIoAtwADASwBLAE3AWsBowG2AasBpAGnAaEBlAGBAVEB/gC+AMUA7ADoAMIA0wAsAXEBXQEnAR4BPgFMATMBCgHxAP0AKAE9AQ0BuACNAJIAgAA8AAoAHgBSAG0AaQBKABEA5P/u/xIACgD4/0AA1QAYAdQAlQC+AOkArQBmAJkABQEZAe0A/QBFAVsBQAFaAbAB7gECAioCaQKFAocCpAK/Ap4CdAKbAt0CwgJ0AooC9AIIA6sCiALgAhgD0gKTAs4CIgMTA+kCDwM+A/sCeAI6AjcCCgLBAcABAAIQAtYBnAGAAVgBKAEeASoBGAH1AOwA0ABmAPT/+f9OAFYAAQDo/zQASgDX/2j/iv/f/87/gf90/4T/MP+c/mb+of6+/o7+kf4H/2j/Of/Y/u/+b/+4/5X/gv/h/2cAkABZAC4AQQBTACMA2P+z/8D/2f/u/wAA8v+x/3b/ff+d/4b/WP+F/wwAYQA4APn///8OANP/cf88/yb/Cf8I/z//ZP89/xT/MP87/9b+ZP59/vP+J/8h/1r/rf+D//X+qf6o/lv+1/3k/Yf+yv5g/jL+t/4M/4r+BP5j/hb/Iv/h/kD/+v8IAHz/Uf+n/5v/Cf/l/o3/FgDk/5///f9/AFwA3P/W/1EAnQB2AE0AZgB3AEoADgDw/9L/rP+o/8f/wf+B/2H/nP/U/5j/Iv/7/hb/4/5W/hf+bP64/nn+Gf4l/kD+yv0S/fP8Wf1f/c78cfyi/KX88vsq+wn7R/s0++X66Poy+0H7Bfvm+vj64vqR+ln6Yvpx+lT6Ivr++er53/nF+YT5PPlN+dD5Vfpw+mT6sfo5+1/78/qK+qr6Jvt7+437tvs6/Ov8YP1x/Wv9rv0v/ov+nf62/h7/mP++/53/mP/K/+3/5v8LAKUAewEfAoQC9AKEA98DxwOGA5gDBARcBGUEYwSWBNcE5ATYBP4EZQXpBXoGCgdyB54HvQf3BxkI9Qe/B8MH6gfyB/cHRgjUCFkJ0glqCv4KSAtjC64LLAyNDMgMFg1nDWsNJg3qDMoMnQyADM0MbQ3yDTsOhA7LDtYOwQ7YDv4O6w7hDkoPsg9MD14O8A37DV0N7QsACzkLYQt8CncJbAmUCZgI9QYfBgMGUwX+A1kDrQOXA04CvACm/0P+xPvd+LL2FPUM83nw+O2S67ToduXF4kjhvuDE4G7hxuIo5LjkKeTT4gThmt5k26nXHNRV0XzPk87OzmXQHNNS1o7Z2Nx54Izk4ugc7cHwTvNC9EPzc/C47H7px+et5/bou+vy7630tvgH/Lj/MARnCGoLqg3zD8QR7BF+EOAO7Q0WDbMLLwpgCXYJFgoYC38MCQ5CD+QP1w8HD6MNRwyACzgL5AouChEJkAeWBUQD7QDW/g79jPs7+uH4RPeD9Qf0CvNY8rTxTPFz8QnyjfLI8g7zjPPB8yPz9PHp8BXwBe/V7Vnt2u2Q7uHua+//8EHzQfUF91n5Sfzf/oIAnQGsAocD7QMOBDQEZgS2BFcFPQYjByYIrgmoC3YN3w5VEP0RThP9E4cUSBXJFZkVHRXXFIAUoBOIEtgRfhEAEWkQIhAJEKMPAQ+jDngO7g39DFMMJAy+C5UKJgkgCFYHDAYoBFoCFQEIALv+S/07/Ln7ePsz+wT7EvtQ+6f7GfyY/Ov8Av0P/Rn9wPzP+7v6Evq7+VH5A/lV+Tv6IPvf++n8X/7Q/xMBkQJoBAoG/AZuB6sHggfCBrgF3gRaBC0EagT4BIwFJQYIBxUIyAgcCa4JrwpwC3MLHAvSCjEK2Qg1B84FfwQZAxMCxwGYAewAQwBCAEYAPP99/Vj85fvz+jT51Pd29xL3tPUH9BvzrfLV8cTwaPC78KrwvO+h7t/tAu2f61Hq+emM6lTrF+wr7Yzuru9N8LXwDvEL8ZbwL/Ah8PnvUe+j7p/uF+9l757vdfAf8g/03vWc9zX5WPoI+4P7nvsG+zT6EfqN+rz6hfrs+kj8jP0P/qr+CwBWAaQBrQFvAjMDrAJUAbQA0QBGAOf+N/7v/uH/AQDl/1IA2wDOAHkAbwBqAPX/Yf8j/9j+9f3l/IH8x/z9/Or8B/2O/Sn+jv7J/uj+7P7z/g//AP+U/iz+UP7h/jv/Of9f//f/lwDeAB0B2wH3AtADJARUBLIE/QTiBLcELAVWBoYHQAjeCNkJ5gpmC14LZQuxC+cL0QueC3ILTAtWC7cLGAwXDBEMnwxjDXAN4wzRDF4NTg0ZDOIKfgr0CUkIcwbdBQ0GigV3BEwEKgWKBcsEFwRQBKoELAQ3A6kCawLPAbMAif+j/v79e/39/JH8d/yr/Kv8M/zR+/z7EPxP+1/6X/rZ+mP6OPkZ+Uf65voc+pP5f/pb+3v6+PjM+HX5Cfmi9xn3tPfH98X2JPa29lH3B/ex9jD3xfdk9132ffV+9KHyAvBQ7ajq2+dP5ZjjkuLB4UTheOHz4fPhoOHf4djirePi4/7jYuRf5DvjdeEs4KTfRd/r3jvfeODw4QvjMeQM5lToQerL647tmO8/8V7yq/ON9XX36vhQ+gX8jP1//oT/YAGlA2QFxQaSCI8KtgsRDN0Mkw5LEIIR/hInFfcWkhfHF5sYeRlCGWQYJRhfGLkXEhbbFL4UpBS+E94S6hI9E9ASARLWESoS5xHPEKoPxg5/DX8LbQn+BxYHNgY2BTsEbQPfAn4CAQJVAfUAQAGmAUwBbAASAFoALwAz/4b+6v5i/9r+F/52/o//5P9x/7H/9wDUAYgBUwFkAv8D6QR4BcEGjwitCewJVQpuC4wMNw0CDm4P4RB9EWwRlBEsEo0ScxKVEpUT8hSvFbAVohWaFdAU7hLGEB8Psg0ODL4KbAqICgMK/AhhCCUIZAc+BuMFeQasBsMFfwQ3A9oA8Pzc+On1bfN68Obt1exo7PXqvOg753rmM+Vn44HiyOLu4lPixuGM4aDgmN5+3Afbodn+1/DW1dbC1hzWjdWE1UTVidSN1C3WhNig2i3d3+Cb5O7mR+jh6X3rEewC7KbsAu7z7lrvN/C58QbzEfTk9d74OvyU/18Dhgf6CiINcQ41DxMPDQ7pDCgMlws5C20LAwxQDG0MIw1uDm4PGRB5EagTQhV5FSIV4RTjE4wR9A5MDRwMjwpACSYJmwlCCTYIkAdVB5IGSwWLBJUEjgQbBMkDtAMgA+oBDwE2AcgBGAJuAlgDjAQ4BRIFmARsBLoEJwVVBXcFLAaTBwAJBAocC8AMbg6BD1kQqREgEwUUsBT/FYoXCRh/F1AXBRiXGH0Ytxj5GV4b4RvmGzIckByCHGwc3BxyHXodDh2nHCYcMRvyGcsYwRfTFigWiRV7FEATuBLBEh0SmBCkD8UPWA9FDQQL/AnZCNQFFQLR/2j+s/tI+Mr2NffI9t70/fMK9W71nfPI8drxCPId8Fjt7Ovu6kPoyOT54rviAOLn4ILhveMK5ZTkTuQd5STlK+Pb4NffE9/03CvaTtgw16rVE9St02jUINW+1R7XGdlk2prantra2prak9nB2PjY2tnq2obc99544TPjg+Qk5rXnXuhy6CDpgepr62nrieue7AfuE+968Dzz1vYE+rj8yv/jAnsEJgRaAyUDrgIXAYD/k//+ABQCkALRA0oGqggiCq0LJw6LEIsRmxHgEf0RwhB7DroM6Av7CqkJIQnwCRALtQt6DMsNtg6ADg4OUQ6NDs8N3AzrDGENxAxfC8wKOgtbC+8KLAtpDHINsg0BDrQO4A49DuMNRw5gDs4N4A1KD7EQBxFlEeMSWhRfFN0TdRSSFZ0V9xQ4FRIW0hWHFPoTfxSXFPsTTBQdFswXTBi/GBQaIBujGmkZ3Bi1GMsXQRZGFTEVJhWHFLkTaxOyE+wTjRPxEvsSjxNDE2ARLQ/nDXwMVAl+BW0D8gKRAfT+pf2K/v/+RP1i+2z7uPvb+eT2Y/Xl9Pryn+8N7a/rt+m75ofk6uOI44Tiz+Hy4cfhcuCt3jTdids32d3WDtVp06DRMdBpz9bOUs5xzl7PWdAA0ezRaNO51GDV+dUF1/fXTNiX2I/Z69ow3Lfd/d+L4q7kkua06NHqWOyQ7SfvAfFp8ljzhfQ39vr3h/k8+3r9HQDDAi4FVAdDCQULaQwoDWsNtw0fDiUOwA3ADYQONg85D3cP8RDFEmQTMBPqE4wVFBbXFL8THRSAFFETqhF7ETgS3RFnEKsPDhDtD6MOpA3fDSMOQw39C3kLWguxCsYJhgn3CYEKGgsBDOEMTg2hDToOmw5HDtcNFQ6fDrAOlA4OD9YPMBB0EH4R/BL/E84UZxZqGGsZUxl6GSoaLRoyGZMYDxmjGacZDhp7G88cGB1PHYce1x/nH1MfoR+AIDsgjR4CHVwchhuzGdIXGhcoF8UW1BVQFXcVIBVhEwoRdA9IDuMLIggGBacDKgKh/nH6Zvgh+Kn2cvNk8e7xcfJx8Gjt2+sI65Xo3ORF4jfh1d+I3dHbVNvH2mPZG9iv12vXl9aO1arUktMo0uLQzM9lzuzMcswhzfHNc86Lz7HR2tMC1YTVGNan1vvWe9dV2PzYWdlI2gDcWN3R3ePeyOFa5evnCOos7bnwuvI+8y308fXm9pf20faM+D76nfrV+m78tP4rACAB4gJkBYEHAgmXCi0M/wwIDQANAA1zDGwL1QoaC7ELCAwoDFcMuAxADasNqw2UDT0OuA/RELEQLhBiEM8QOhDlDjoOgg6iDhoOrg3IDbcN/gwtDMcLgQspCzEL0wueDE0NOw5yD04QnRAUESASHBN2E5kTEhSOFHAUzhMiE6ESYxKiEk4TEBQHFb8WARm2Gn0bNxxmHTAe5R1PHV0djB3YHI8bthpEGmwZShjjF5wYwBmcGiwbrxs2HJQcVxw1G8gZGhn8GPwXsRW1EywT1BIzESUPUw5EDlYNugvaCoEKTAl+B4UG7AXdA7kA3/6C/jX9XvqB+K/4XvjS9S7zmvJs8lHwnO3e7Dbt5us26dfnGuiS53Llp+M045ziyeDC3oHda9zp2pXZydjS14HW29VN1tDWvtb+1lfY4dlr2kHaaNrt2iTb9NrV2uvaFNtk2+vbfdwz3Y7enuCl4jHk1OUP6Enqxevb7FbuCvAa8W7xzfGp8qDzVfQI9TX2+/f5+aP72fwa/tT/lwGiAjcDbARoBgEInwgtCWkKkAvQC9sLrgzKDSwOMQ7YDtIPDhCyD94PoxACEdAQ5xCHEQQSQRLeEtgTYRRdFJUUKRVIFcMUexTRFP8UghTsE7kTiBMYE/USehMlFJIULxVCFikXZRd+FxgY0hgBGc0YzhjwGLoYQRgNGDkYaBiDGMkYRxm3Gf8ZUhrcGosbLxyeHNQc/Rw6HWEdLx2+HG4cUhwZHKYbPxsKG9ganRqSGrEakhobGr0ZnRkyGSEY9BZQFu4VGRXgE+8SWRJ/ESsQ8w4xDnUNWgwxC1QKVwmyB8QFTwQ5A7gBuf8P/hL9+/s2+mP4VvfA9r71R/QR80LyR/Ho75Lubu0k7JLqCemY5/PlN+Tz4iriNuH13xTfxt5G3jbdcdya3O/chNzW29zbSdwW3GDbOtvi24jc0txR3T/eBd9Y36nfSeDy4H7hMuIQ47TjJOTX5Nzlw+aO58nof+oN7Eftt+558OXxvPKg8+X09vV/9ib3Z/ir+Vr67PoN/G39bv5G/4sAIAKDA7ME8gUNB7kHSQgdCdYJ6gm6CQ4KyQoiCwwLWwtpDIgNEw5LDr4OdA8OEGYQnxDgECYRXBFqEU4RJBEKERMRURHAESwSXRJ7EtYSTxNvEzATJhOTE+4TwhNzE5AT5hPsE70T5BNZFJcUjBSwFCoVlRWtFagVuRW5FYIVQBUxFWIVyBVJFrkW/hZBF6sXGhhYGHkYtxj+GAQZuBhEGLQX+hY6FqcVNBW6FFUUMBQbFM8TbBNEE0ITGBPPEp8SWhKeEZAQqA/WDpkN/AuoCtQJ+gjQB8gGOAa7Be0ECQRhA7oC1QHuADkAWP/2/X/8d/uY+k/5x/en9gH2RfVC9FzzxvIw8lvxcfCH72buDe3Z6/nqIeoR6QvoY+fs5kTmcOXE5GDkFeTA42zjH+PE4mviReJZ4lviGeLE4a/h0uHi4dDh8OF24hjjcuOW4+TjgOQ25eDljOZB5/Pnteif6YLqFeuD61Hsju2c7hDvU+8B8Ajx5vGG8lHzfPTD9d72y/eY+Ez5C/oB+xX8/vy3/Yj+mP+rAHYB/AGAAi4D9gOdBAEFTAXKBYAGFwdfB5wHHwjGCEYJsQlNCg4LrAsiDKAMCg0ODcsMxgwXDTgN5AyYDMcMIQ0XDcgM0gxhDQUOcA7cDpIPYRDaEOYQ2RDxEAUR2RCTEJIQyRCzECIQpw/ND0kQbRBBEGoQEhGhEa4RmRHSETgSehKlEuASBRP+Eg8TYBORE04T7xL2Ei8TAhNpEvUR5xHSEWIR0xB0EC0QvQ80D+EO3A7yDu0OzA6dDlgO2Q0fDVwMuQsfC18KhAm4CPUHEwcfBlIFrQQCBGYDGQP/AqMC8wFWAeQAKAD2/s/9D/1b/GD7ePr3+Xn5lvi190L3yPaz9Xn0+fP+85PzpfIB8tLxU/E08CTvpO5S7tDtZO097QTtgOwH7MjrZ+u86j/qOOo76uvpmuma6Z7pS+nb6KzoqOio6Ovooel+6jjrAezx7I3tje1/7QHuxu4w72Lv6e+i8OfwrPCW8P/wo/FQ8ifzJPQI9c71rPaM9xX4T/iv+F/5/vlB+mL6v/pl+yf83/x3/fr9lv5S/9v///8pAPEAJAL9AjgDZwPwA4AEwAT9BJ4FagbtBjkHsQdHCJMIkAimCPYIKwkSCesI9QgHCf8IEAluCdkJ/wkIClUK1goZCwYLDAtoC7MLfwsIC9wKGAtlC5ALuQvqC/gL0QuoC6ULuQvRC/QLJgxZDIwMvgzXDMEMnQyZDKgMoAyMDIYMawwKDJgLfAunC6YLagtfC6cLyAt+CywLKwstC80KPwrjCZIJ8ggxCMoHxge8B4UHUAcwB/8GuAZ3BikGtQVUBUYFNgWNBGADfgJYAmIC6gEGAVEACQDj/5D/Jf/e/s3+xf53/qP9Yvwt+3r6QvoL+nn5xfhu+Ib4gvjx9yP3yPb09gP3ffax9Sv15fR49NHzRfP38qXyJPKh8WDxbPGp8frxMvIj8trxmPFt8RHxWvCr76DvO/C78G7wgu/U7uzue+/j7w3wVvDm8GvxjPFU8R3xMvGc8R3yYfJf8n7yG/P484f0svT49JH1FfYz9ij2QPZZ9lr2mvZM9/T3Evj/92v4Pfm++dL5JfoJ++n7LvwE/Pj7N/yH/KD8Xfzp+8L7P/wO/aH9//2p/pr/QwCQABoBCQKrAqkCrgI6A6sDWQPoAlIDKQQjBCsDiALdAlEDDAN4AngCJgP4A5QE5QTxBAcFjQVSBooG5QUsBUEF8wVZBhAGgAUkBQ0FCgXtBLMEjgS6BCgFigW4BccFtgWCBXgF0AX/BVAFRQRABFwF4QWyBCEDAQPrA/oDwQLJARsC8gIyA9oCfAJGAhgC2gFWAXcAz/8OAOsAMgFgAEj/2f4T/2P/UP+S/k79WPxp/OP8dvw4+8768/sg/bT8Sfuv+lj7Dfzh+yn7jvo3+vT5hvmw+In3wvbv9qz39Pdj96T2j/Y59+z36Pcs94n2t/ZC9/r2ofWC9Mv06fU69jv1EvT388T0YfUu9ZX0UvSL9Ln0YfSj8wTz5PJO8/vzZPQj9Kjz/PM+9Q72SPXP82TzCvQk9CHzXPLc8sXz5vNy80bzgfPU81f0H/XI9Tr2DPdO+Oj4GfjC9hr2Dfbo9cD17/X+9X71PPUO9iP3I/d/9tj2XfiR+cj5A/r4+tT7q/vP+hr6zfm6+bv5jvn2+Fb4b/hL+S36s/oo+5r7nvs6+xH7UfuD+6L7QPw7/X/9zvxw/E79bv5w/q39e/3v/dX9v/zJ+/77+vye/Xz9Hv0l/Yf9zP3M/en9Z/7N/nv+wP19/bb9hP3X/Pj8h/76/4T/z/0l/Sv+H/+c/nr9Lv2M/W39p/wp/GT8yfzR/Kj8mPyE/Ez8OfyO/Ab9NP1D/c39yP4r/yv+h/zg+478Cf0I/Gv6Cfr2+m/7kvqS+ar5K/q2+Yr4Hvj0+CD6z/oY+zL79vqK+oH68foZ+2H6MPld+DP4QPje98v2lPVJ9Tb2Q/dQ9/D2j/cQ+bP5ufif98b3Xvjo96j2CvY+9jz20vX+9e72Wfd69lf1LfWg9ZX1LPWH9cz2uPd298X2r/bl9n32u/Xa9Qz3/Pe49/T2q/aZ9hL2d/V89aj1A/X089nzzvR/9X715fUo9/X3R/cg9gD2wvZL92X3ovf99/T3kPdG9yL37vbX9gj3G/fH9n72qvbW9pH2Vvaf9tb2d/Zw9sf3dfmg+Y/4U/ht+Rn6X/mw+Eb53/na+Cr3FPe4+Lv5kvhp9mX1HvZ691H4gPij+DD57PkX+l/5cvhP+PX4Yfny+E34YPgL+Xj5cfmL+fj5I/rG+Wf5Vfn7+Bb4nfd4+Nn5MPp6+TT5+/mm+i/6O/kG+bD5Wfpi+uf5ePmn+YH6Pvv/+vT5Lvkt+V35QfkV+SX5R/ld+ZD5t/l2+SL5i/mD+sz67/n/+P34jPng+df5l/kn+ff4jvlC+rv5R/jW99L4CPkt90f1u/Wp95P4Kfj793b4xvgF+dj5avp3+dv3mfdo+BL4TvZp9W/2iPcX9xH28/V+9sP23/Y594r3uPdY+Er5VfkU+OX2yPbH9tf13PQr9U/26fb09kv3pPf+9rv1Z/VD9tj2TPav9Sf2IfdL97D2m/aj9734mvhe92j2n/Zp9473uPbA9aD1cPZj96D3GPeg9gH36fc5+KL3R/cn+H/5rfmD+H73rfdd+EH4Mvcd9sv1QfYG95P3lvci95T2XvbA9p/3dfi3+IT4hPji+PD4QfiH95r3J/gz+Kn3Y/fD90L4Y/hD+CT4JPhk+M34xvj+90f3qvfU+Gv5CPmZ+Lf44fiu+In4rvif+D34Qvjr+D75m/jz91D4BvnZ+ED4yfhp+jj7VPpS+eH5K/sZ+3L5Jvht+D35O/nc+GP5lPrt+vH5wfg6+Oj3VPcY97D3Xvhk+HX4lPkc+4H70PrJ+jn8v/3T/bn8o/vt+jf6jvlN+TT5rfj59wX46/iZ+WX5Ivnj+UH74Pto+/n6bPsq/Cf8W/uJ+jf6aPrd+gb7V/pN+U/5qvqZ+6f6EfkW+Xb65vrJ+Qb5tflt+g/6vfmc+pX7VfvL+mb7Q/yW+wD6t/nY+kD7Nfp5+Rb6ovrb+eD4Jfno+af5//jK+d/71fyB+7T5ifl9+pj6o/lt+e/6z/xk/df8Vvwe/IT7Uvrw+KX3v/YL99L4tvoO+zX6/fnM+ib7Vfqn+TL6HPtO+0D74PvK/Bf94/y+/GH8R/vg+e74T/if91b3Evhk+Wz6Pvtc/HL9x/2F/Wb9cv1D/QP9D/30/Br8+vqD+qj6t/qw+vj6L/ur+sH5PfkH+aj4tfj9+b77fPxp/PD8Cv4d/t788/s7/I/8D/yS+9L7Dfy0+6T7Z/zY/BH8Hvso+1/7mvqr+Qr6L/uC+y37x/tq/Xz+W/4e/nX+qv4w/pX9UP0X/dD81/z3/I387/sr/P/81vxY+z/6zfoM/K789/yb/VX+3v7f/2IB2QFxAPD+Kv/7/xf/8vwC/Lv8Lf20/OH8Lv62/nv9VPzi/Of9sf07/Wf+XACZAA7/Tv52/24Aaf/L/fX9kv8hAKH+qvz3+2L81Pzn/N38/Pyt/Tz/5wAyAQAAKv/V/3QAQv9a/SL9W/6q/rj9m/3K/hb/v/0i/ZL+wf+n/kP9Vv6kAPgAUP+T/uX/ggHkATIBzv8F/vD8Sv3a/Uf9pvzB/az/HwB9/x8A/gGKAg8Bu/++/7v/0/4Q/vn9sf1M/Sn+/v+pANP/ov/VAFMBAQDI/gX/Pv9e/hj+tf9gAWABNwGcAsMDNgJw/8/+KQA7AA3+OvyM/J790/3g/eX+IgA5AIX/fv9ZAL8A/P81/8L/GQGGAbYAIQCdAAkBWgCL/+L/mQAqAAb/0/5+/3n/vv7l/h8AywBsAIIAnQElAiUB9//u/1QAGACl/8H/FAAJAOP/8//s/9f/RQD/APcAMQAGAOUAjQEzAZUAUgARAPT/vADsAfQBBAEyAeMCtgNeAtoAEQHTAVMBSQBKAN4AswArAGsAFgEoAfwAcQENAvQBqwEdArwCigIBAikCiQIKAigBRwFCAogCrwEcAcQBsQJmAugAvv8BAAEBKQEwAJP/YQCkAfoB3QGXAsgDDwSqA/IDiwTQAxwCtAHcAhMDVwEDAOcAPQKxARcAxP/gAMYBvwFcAfoAtgAGAfgBmgJVAu0BNQLFAvcC+QIfAzMDOwOZA8gDrALAABEAJQH+AUsBawDfANgB+QGoAd4BRwJfAroCiQN+AxMCFwEDAnMDagOHAosCNQMjA5cCuwIKA0ICDAEOAdIBbwEMAMf/DgHkAUMBpABEAS8CKAKiAa0BUwIJA44DpgMXA3gCwQKMA0oDywHcAHwBNAJ8AUEAYACmAUMCrQEmAZIBRQJLArABJQEVAWoB0QEBAgECJAKCArwCmgJ2AqICxwJqAssBfgF/AVoBIgFiARUCdAIaAqQBxwFBAl4CFgIKAnoC7gL/AuAC3gLfArMCjQKpAtcCvAJjAhIC0AGBAVUBkwENAlkCbgKXAuACFQMwA0MDLAPfAr8CEgNVA/kCbgKeAmEDlwPdAiQCPAK3ArYCNQLsAUUC6gI6AwcDywIGA4kDrgNVAxgDOwM+A+QCzwJWA7oDXgP4AmED9QOMA4wCawJZA+4DVQNTAvQBQwK6AgYDEAMAA0sDAgRjBNMDCgMsA/YDKQSPAzUDlQPoA5oDJgMTAy4DLgMsAycD8gLCAgcDjAO2A5UDtAP0A7QDKwM+A+MDHQS7A7ADSwSIBNcDJgNhAxcEWAQNBJwDIQOrAo8C0gL3AtIC3QJEA4cDcQONAxwEewQzBNMD9AMoBLkD6gKWAuQCOwM4AwkD8wIJA0QDhQOSA2UDQwNaA3IDTwMVAwwDOAN4A7cD4APQA5ADZQNuA4QDhwOJA4kDcANTA2IDggNfAwMD1gL9AikDJgMcAykDLwNHA60DMARDBNUDfgOPA6gDegNBAzkDMgMaAzADYAMqA50CiQI1A8EDewP8AhYDgAN1AyEDPgO+A+UDlwN8A9IDDQTOA2wDXgOYA8kDuwNxAyEDFgNZA4sDZAMnAz0DiQOiA3sDcAOfA8sD0APRA+UD7APRA60DmgOUA5kDoQOUA2sDSgNYA4IDjwN0A10DcQOlA9UD5gPlA+0D+APcA5YDagOEA6UDkgOKA+IDVARLBNIDhwOgA6sDbwNRA4sDvQOgA4UDtQPiA7gDdwOAA8QDCARNBIYEcQQXBPwDSQRpBPoDgwOYA90DtwNtA6ADGgQjBLoDkAPTA/QDsQN6A6ED4wPzA+0D/QMTBBsEJgQ0BDMELQQsBAcEuQOpAxoEhgQ4BHwDSAPAA/8DkAMvA38DAATqA3MDWwO3A/8D9QPeA+UD4gO7A5EDhAOjA/ADOgQ6BPwD6wMnBD0E4AN3A3cDmANNA80CzAJnA/MDAQTcA+sDHQQnBPsDuwOMA5sD7QM4BCwE8gPwAyUELQTtA74DygPAA3cDRgNxA6sDjQM9AyoDZwOqA9ID/wMuBDYEGgQQBDcEbwSIBG4ELgTwA+ED+AP4A8wDrgPBA9MDtQOmA+wDRQRCBP4D/QNZBJYEcAQ4BEMEZQRUBCQEFQQsBEoEYARkBEEEBATtAxYERARGBDIENARJBFUESwQkBOcD1AMgBIYEiwQ0BBEEWwSjBJMEegSuBOkExgRvBEYESQQ3BBkEGAQXBPID3QMQBEwEQgQsBGYEvwTCBHwEXwR6BHwEXARXBGMEOgQBBCoEpwThBKoEgAS0BOkEtQRKBBkEMQRSBFkETgRBBD4ETwRlBHIEhgSmBKQEZwQuBEMEegR5BE0ESwRzBHcEVQRSBHMEdQRbBGkElgSRBF0EVARyBE8E8wPnA0gEgARDBBAETASOBGMEHwRHBKQEoQRJBCIETARgBDEECQQlBF4EaQQwBOQDygP3AywEIQT0AwkEZQSYBGwEOgRRBHEETQQQBBYESgRTBC8EKwRTBGEEKATaA8oDBAQ9BCUE3APWAzgEhARGBOEDBASJBKMEKwTbAxcEWgQuBO8DEgRTBEAE+gPhA/MDAQQcBE0EVwQkBAoENARJBBsEDwRaBHsEHATNAx8EoQSSBCoEJgR5BHIE/QPCA/8DNgQRBNoD2QPsA/ED/QMVBBYEDgQnBEwEQgQhBCsETwRMBDQESQRqBEQE9QPoAx8EMQQDBOkD/wMGBPED/AMmBCkEAAT5AxwEIAQJBCoEggSWBEEE/AMdBE0ELATrA/QDMAQ1BOgDpAO9AxwEWAQtBNcDyAMFBBEEuwOLA/EDdAReBOUD3ANUBIEEFAS4A+sDOgQUBLgDrAPrAxcEHgQeBA8E6APUA+0D+QPTA8EDAQRMBEEE/APgA/wDEAQABO8D9AMHBB4ELQQbBPAD3QPwA/oD5APfAwwENwQuBBEEEgQeBBMEAgQLBBwEFwQHBP0D7QPdA/MDHwQRBMYDrQP0AygE8wO9AwcEgAR2BPcDtgPsAxYE6AO/A+wDJAQWBPYDFQRNBEYECgToA/sDGgQpBC4EKQQWBAYEBgQDBPoDEARQBHEEOwTsA+4DNARNBBsEAAQxBGQEUQQpBDoEXgREBP8D6gMPBCMEDwQKBCcEMQQcBB8ESwRcBDQEEwQpBEkERQRIBHcEkARcBCMERQSLBHsELAQuBJcE0QSDBCEEMQR3BGME+APGAwkEXQRdBCsEIwRQBG0EWwRIBFwEgQSIBHkEhASyBNAEtwSEBGwEdAR1BF4ERARABFMEbwR4BF4ENgQ4BHEEoASKBFoEaASqBLkEeQRMBHsEuQSkBGIEXwSXBKIEbARUBIkEtASNBE4EUwSBBIYEZwRuBJoEoQR9BHsEsATQBK8EjwSpBM0EtAR9BGsEdwRxBGMEdwScBJwEfwR5BJEEnwShBLQExwSyBIkEiwS3BMYEoAR4BHgEjASeBLMExAS7BKYEqwTEBMIErASyBM8ExwSQBG8EiASpBK4EsgTIBMsErAScBL4E7AT/BAcFEAX7BMAEmQSoBL4ErQSYBKkEwwS5BKMEuATlBO8E1gTLBN4E7ATjBNQE0ATLBMMEwgTKBNcE5ATrBOIEzATCBNIE6ATqBNwE1wTkBPIE9QTqBNoE1wTmBPgE9gTsBPMEBQUHBfgE9wQJBQ8F/ATqBOoE8ATyBPkEAQX1BN4E2ATpBPgE+wQGBRQFDQX7BAMFHgUbBfQE3wT6BB0FJQUrBUEFSQUvBRQFFgUnBSkFJgUpBSMFDwUNBScFQQVBBTkFNwUtBRgFFAUlBSsFFwUPBSgFPQU6BTgFSgVTBTkFIAUpBTwFMwUbBRQFHQUkBS8FRAVSBUwFRQVMBVEFRwVDBVQFYAVSBUEFRgVSBUgFNAUuBTIFNAU4BUUFTgVIBUEFRQVFBTgFLwU0BTgFMQU5BVcFaQVXBUIFTAVjBV4FSAVIBVoFVwU6BSkFMgU/BUAFQgVNBVAFQwU2BTkFRAVKBUwFTAVHBT8FOgU+BUgFUQVTBUwFQgU/BUUFRQU6BTcFRgVRBUEFJQUfBTIFOgUnBRMFGwU0BUEFNwUmBSAFKQU6BUYFQAUtBSMFKQUtBSAFFQUqBU0FTgUkBf4EBQUgBSYFGwUkBTsFNwUXBQsFJwVEBTkFGgURBSEFMAU2BT0FQgU7BSoFIAUiBScFLQUxBSwFHQUTBRQFEwUNBRQFLgU8BScFCAUFBRoFKAUmBSYFLgUrBRwFFQUYBRYFBgX4BP4EDwUaBRoFEwURBRoFJAUeBQoFAgURBSEFGgUNBRYFJgUaBfME2wTnBP4EBgUIBRQFHQUUBf8E9wQCBQ0FBwX5BPME+AT3BOsE6QT8BBMFEgUBBfsE/ATqBNEE2gQDBREF6gTHBNsEAAX6BNkE1gTvBOwEyAS5BM4E1gS7BKkExATnBOMEyQTDBNAEzgS4BKwEtAS7BLIEpASiBKYEpgSeBJkEmQSXBI4EjgSgBLMEsASbBJAElgSUBIAEdwSJBJYEhARwBH0ElwSTBHwEfQSOBH8EVgRMBGsEeQReBEsEYQR1BGQETQRdBHoEcwRVBEgESgQ9BCkELgRGBEkEMgQkBCwEMAQlBB0EIgQhBBYEFgQoBDEEHQQIBA8EJwQpBBMEAQQDBAoEBAT6A/4DDwQXBAcE7QPhA+sD+gP9A/ED5gPlA+kD6gPkA90D1gPNA8QDwwPLA9ADxgOwA6MDqwO+A8sDxQOyA6ADmQOdA6IDoAOeA6cDsQOsA5wDlQOcA5kDhQN5A4kDnAORA3YDcwONA5wDjQN5A3sDhwN/A2UDUQNYA28DfANvA1UDRQNJA1EDUANQA10DZgNXAz8DQANVA1kDPwMpAzEDQgNFAz8DQQNCAzMDIQMhAywDMQMtAywDLAMgAxIDEgMeAx0DCwP/AgEDBgMHAw4DGgMVA/wC6wLxAvgC7QLiAu8CAAPwAsoCwALaAvAC5gLPAssC0wLUAs4CywLFArUCrAK7AssCwwKyArYCxgLCAq0CqwK7ArgCnQKUAq4CvAKgAn8CfwKMAoQCeQKMAqQClgJyAmsChAKPAoMCggKTApQCfwJ1An0CdwJaAlACagKAAnUCYgJpAnsCdwJkAlkCWAJVAlMCWQJYAkYCNgJCAlwCZAJXAkoCRQI+AjUCMwI5AkECTAJTAkkCMgIlAi4COQIyAiUCJAImAh0CFgIeAiQCEQL5AQECHQIjAg4CBwIZAiACCgL3AfsBAgL1AecB8AH7Ae4B3AHlAfoB+AHkAeEB8AHuAdMBwAHLAdoB1gHHAcEBwwHCAcABwwHDAbkBrgGuAbQBtAGvAasBqQGmAacBqQGmAZwBnAGsAbQBpQGNAYoBmwGiAZMBgAF6AX4BgwGCAX0BeQF/AYsBjgGAAXIBdwGIAY4BhAF6AXMBawFnAXABewF2AWcBaQGAAYkBcQFWAV8BfwGNAXgBYgFkAXUBcQFUAUIBVAFyAXABSwExAT0BVAFVAUwBUQFZAUoBLwEqAT4BSgFCATkBOAE1ATYBRwFcAVcBPAEvATUBNAEnAScBNAEtAQ0BAAEVASMBFAEKARwBKgETAfYA+wARARIBBQEKARkBFAEDAQMBDAH9AN8A2QDoAO4A5QDkAO0A6gDYAM8A1ADXANUA2wDiANwA1gDkAPYA4wC5AKsAwgDWANIA0gDjAOIAwwCtALwA0QDLALgAtgC7AK4AoACvAMkAygC1AKcAqACkAJUAiQCKAJYAqQC4ALEAkwCAAI8ApgCiAIcAeQB+AIMAfwB5AHAAYwBlAH0AkAB+AGIAZgB8AHQAUQBLAGsAdwBVADoAUQBzAGkARAA5AE4AVgBIAEAATQBaAFcAUQBQAEoAOgAzAD0ASABDADoAPgBHAEIAMAAqADcAPwAtABMADQAbACIAGgAUABoAGgASABQAJwAvAB4AEQAcACsAHAACAAAABgD0/9f/4f8KABkA/P/i/+3/+v/l/83/1//v/+z/1f/M/8//yP/C/9P/5P/T/7D/s//h//z/3/+1/7b/2f/p/9j/yf/S/9z/z/+2/6//t/+0/6L/nP+y/8b/uv+g/5v/r/+5/6f/i/9//4f/m/+x/7P/lf9s/2P/fv+X/5P/g/+E/5P/n/+f/5P/ev9n/2v/f/+I/4T/hv+M/33/YP9j/4z/n/95/03/Uv9x/27/Tv9D/1f/Yf9S/0j/Uv9Y/0j/OP85/0H/Qf8//0H/R/9L/0n/Qv89/0T/U/9b/1b/UP9J/zX/Hv8k/0X/T/8u/xP/Iv83/yr/G/81/1j/SP8Y/w//M/9H/zP/IP8k/yb/IP8p/zr/MP8Q/w3/Lf86/x//Bv8O/xz/F/8O/xT/HP8V/wr/Av/4/vr+Fv8z/yf/Bv8H/yb/I//2/uH+A/8c///+1v7V/vD+B/8Z/xz/9/7E/tL+H/9A/wf/1P7y/iD/Bv/S/tz+Bv/9/tj+5f4V/xj/8/7u/v7+5f66/s7+Df8L/8j+u/4A/yT/8f7J/uv+Bf/P/p3+0f4p/yP/1f68/vH+Ev/r/rz+w/7l/u7+4f7b/uH+4f7W/sP+sf6x/sn+5v7s/tT+tP6p/rv+2v7l/s7+uP7P/v/+9/6l/mj+mf77/gT/pP5m/qb+Cf8H/6n+c/6g/t3+0/6V/m3+ff6w/uX+8f6z/lT+Ov6I/tn+wf5j/j7+d/64/r/+pP6R/of+hv6h/rz+nv5Z/lD+nv7Y/qL+Qf4s/l/+fP5s/m7+oP7N/sX+mP5w/mj+f/6b/pP+Zf5Q/nr+p/6F/jX+Jf50/sD+sv5w/lT+df6d/p/+hv5y/mb+WP5W/nH+jf5z/jP+LP6G/tb+pP4n/gX+Wv6Y/mr+N/5s/rz+oP41/hT+a/69/pv+Ov4Y/lD+i/6F/mn+g/6z/pj+P/4y/pT+w/5c/gT+X/7O/mH+oP3h/e3+Df/k/UH9OP5G/8b+qf3J/cj+4P4F/tP9nP7z/lf+CP6W/tP+D/58/R3+9P66/v39DP7G/g7/uP55/mf+EP6t/ef9gP6O/gL+xP0t/o/+bf4w/kX+Zf5B/h7+Rv58/l/+Ff4H/kP+df5n/kH+Rf5u/mr+Ef7A/fj9jf67/jj+tf3c/V/+iv5X/jP+Kv4O/iH+qf4f/9T+Kv4Z/on+fv7e/ar9Ov6W/i/+0f0i/nv+Nv7p/TD+X/7L/Vj9Gv4//yH///2f/XH+9v5T/pX9tf0i/gz+1/0z/sP+y/5d/gP+4v3r/T/+sv6d/t39X/3U/ZD+gP7E/V79t/1R/qX+nf5b/ij+Xf7N/rP+yv39/EH9N/6z/kX+kv1R/aX9Rv60/ov+Cf7i/Sv+Kv6j/XD9Cv57/uj9Lf2U/aL+1f4Q/pv99P1R/k3+a/6w/mL+jf1G/ej9eP5K/gL+Qf6Y/oH+U/5v/nn+MP4c/of+t/4Y/mP9mP1c/n7+zP1Q/cb9p/77/o7+Df4n/r7+Af9v/pv9jv1t/jX/Cf81/rb9Av6h/tX+cv4D/hH+X/4//qX9Wv3H/VL+c/6R/g//SP+s/gX+XP4S/8L+qf1k/Tz+sv4E/mf97P3N/sX+7v1P/Wb9AP6z/vn+iv4A/jj+2f64/t39rP2C/vH+LP58/Q3+6f63/gH+B/6C/m7+H/6C/hL/oP6d/Yf9Wf6l/hj+3P1M/m3+CP44/jH/hv+K/qb9F/7x/sP+7P3D/Vb+p/5y/kX+O/76/cL9HP6k/nP+uv2r/Yn+Gf91/nT9cf1t/jv/Kv+8/rf+G/9S/x//7f4c/2L/Pv/F/oj+qP7D/r/+5v4A/2n+ff2R/db+sP+E/5wA+AQ1CoMLwAcCA0gBBQIrAoMAOv6c/AX8NPxY/IT7Cvp8+YX65PuK/Cf9R/6h/jT9rPtN/Fb+Gv8d/m79G/7y/gj/+v7y/vL9CvwN+9L7vPxe/LL7LvxL/b/9xP00/nj+ov3H/Mj98v9/ANb+wP0o/+8AEABi/YD8i/6iADkAbv69/Vv+t/5c/iH+MP4N/i/+Xv+kADoAmf4v/nT/BwC5/o79O/5S/xT/j/5A/+3/7/63/YD+GADN/17+0P7PAOkAov6L/SL/IAAj/sv7XvyM/vr+oP0F/c79bf5a/m/+nP4S/nH9Jv6u/+H/Vv4k/bb94P7r/gf+l/01/kb/8//X/xj/Yv5n/hL/jP83/27+Fv6d/oX/0/8B/779dP2s/iYAEwBM/q78Bf3l/iUAev/z/Yn9kP5w/wD/Ff4v/lT/PQArAIv/Av/C/rv+vP6C/jv+m/6j/wMA4f6c/TP+MgAgAQgAn/53/hn/jP/J/8j/+/7O/dr9W/9HAIb/4/76/xoB2/87/R78tvy8/Mv77fua/bv+i/4B/+AApQGc/0X9yf0AAFMAV/4v/b/+UwFzAocBX/8l/UH8Uf3U/q3+Tv1E/Sv/gwCc/xn+Cv6t/jP+Gf0o/Vj+Df/V/qP+2P4a/63/2wB3AUUAoP4C/w8BzgFIAPr+qf+bAK3/xP1B/YX+DADRAM8ANACI/7T/tAA7AasAGwBKAFMAx/8CAJkBdAILAY7/sADlAmECQv+t/af/XAKXAroADf+Z/hT/3P/9/+z+3/2M/jkAawDq/l/+AACsAbABSAGbAUwBe/9I/mP/mABl/6z92/7GAfgBqf4H/PD8Vv8iAGr/A/9//z0AzAC4AHj/pf3t/NP94/7t/p/++f63/x0AIQC9/5H+Lv0x/en+QgCX/0L+m/4sADsA8v3d+5/8eP9oAewAev82/z8A7QBNAGD/cP82AIgAQQBFAMkA9ABoAAMAewA5AT8BiQDm/83/CABKAKEASQElAqcCcQICAiACkwJMAiUBZwDEAAMB7f9w/lH+Zv8AALD/k/86AA4BsAFAAj0CEQHG/xEAgwHBARoAsv44/5sA8wAKAP/+qv5G/1wArgCP/4v+o/++AZoB4P43/dH+7AAfAGf9LPws/Vz+mf6E/oD+cP7d/hwAAAFfAFr/4//GATMDiAOYA6cDKQMAAiMA+Pzp+E32bvY297f2XPeI/A0E4QeYBlQF8QftC00NcQztC90LzAooCX8IhQibB3UFLwPHARYCtQQuCCYJhwbSA5wEdQc5CCIGRwTABJAGJwjhCAIIGgXPAZsAWAGPAVcARv8p/9D+4f0P/vX/UwE4AAf+fv0c/xMBwQHXACH/OP58/1kCngRHBZ0FtQZYB+0FQQO6AWMCKASPBRoGFAbwBa4F1AREAxcCuwIqBR8I/QoSDvQQXhIoEp4ROhH6D6wN5AuYC7ALKAu0CuUKowoyCeEH6wd2CH8I3QgqCqsK5gi8BsMG1QehBvgCGADD/08A+P8Q/2P+4P3A/ZX+if/A/kj8mPpJ+1z9f/+uAY0DfwMeAbP+bv6J/+j/Tv8W/7z/igAwAdEB5wHLAE//OP8IAW0DLQVZBjYHRgc1Bt4EZgS4BOwE6ASJBQUHIAi3B1YGWwUlBSgFfQXxBk4J+wrWCmAJkgfLBWIEAAR/BMkEswSUBcAHGAnVB24FhAQJBfsELQRzBB8GUQcmB+oGRQfVBuUEHwMCA54DiANBA7MD/wP3Aq4BBAJ6A9cDrALMAUMCFgNxA+0D3QQtBSkE+AIBA+wDagQ5BCkEjwT3BBEF7ARhBF0DhwKgAkwDgAM+A60DGwUiBp4FcARJBFIFLAYHBpIF0wXlBgoIRAj7Bp8EwAKbApsDBwRbA/AC7AOSBWYGJQbXBUgGSgdUCA0JRQnvCC0IHAezBRoE3gJPAhICxAGyAUIC9ALbAg0CmgHwAVgCcQL2AkkELQVIBFECQwGOAXsB5v8R/tn9Cv/C/wL/lf2Q/A38v/vg+/r8Mf8iAiYFdAePCKEIDwinBu8DVwBc/Qn8B/yF/E39W/5A/9//DwFoAwIGlQdVCFwJego7CigIngXgA7MCgwGiAJAA4ADUAH0AfQAFAdYB1wISBFIFTgYIB4QHiAcHB2YG8AVTBTUE+AJkArkCcQPIAy4DkAG1/+f+v/9eAZACPQMmBF4FAQaBBUgE3gI+AYf/cv6T/nX/IwBdAIMAwwDdALoAjwCHAKMA9wCKAQ8CHwLGAVMBzwApAM3/WgCcAYUChAIeAucBjQGIADD/XP5T/sb+m/8PAfwCpwR3BV4FmgR1A1QCmAFDAQsB5AD/AEkBTAHWAE0ALABmALUAEAGbATkClgKPAkwC+AG4AbkBGQKjAu4C1gKhAqICuQJuAmsB8P+r/jf+of51/zYAtgAWAYgBCAJLAgYCWAHZAPwAggG9AVoBpwASAL7/lv+G/3H/Rv8x/4D/NgDoADABFQHRAHcAAQCG/yT/5v7H/sn+3/7s/u7+CP9A/3b/r/8QAJAA2gDCAIMAWgAxAOT/mf+P/7P/wf+Z/0j/1v5X/v/95P3L/Yj9WP2V/R/+cv5F/tX9if2L/cH94/2m/Qb9ZPww/GP8lfx+/Ev8SPyB/L/8tvw9/Hf72/rS+lP76vtN/Jv8Dv2O/cv9tv2S/Zn9pf1w/fr8k/xw/HD8V/wp/CL8Wvy8/D396P2T/tD+bP7C/WL9bP1+/VL9EP0B/Sz9W/1v/W79X/06/Qv95vzI/I78LPzG+4z7gvuP+6r74Psv/ID80/w4/aL90f2V/QP9WfzE+0/79/q++rH65/pi+/j7aPyd/LH8rvx5/Bf8z/vO++v77/v9+1b81vwN/cr8SvzF+zH7hfr3+cD5y/nb+d357fkd+lj6hvqh+rH6vPq8+qH6Xfrs+Vb5qPgL+MP37PdO+JX4rvjD+OD42/ib+FH4L/gp+Av4zPeT9373d/dK9+P2Yfb99dD1wPWv9aX1tfXG9aD1N/Wx9Cj0mvML86/yqvLZ8vfy7PLg8vvyO/ON8+nzTPSg9Lb0cPTa8yTzcfLK8UXxCfE68c7xnfKC82H0GfWY9ev1NPaE9tz2Qfey9w34Nvg/+Fj4gviN+GH4KPgd+Fb4zfh3+TX64/qE+zv8/fyH/bn91/0z/rb+Cf8d/zf/eP+q/6D/iP+w/ygAzACGAVACEwOxAykEgASlBIwEXgRPBFwESAT5A5cDVAMwAw8D5gLFAtECMQPjA6MEHAU7BTQFHQXCBPgD6ALjAQgBQwCI/+X+ZP7x/XX97fxv/Br88/vU+4b7+/pU+qn58vg3+J/3MPe59g72OPVA9APzcfHL717uKO34697qFeqh6Uvp++jB6I3oI+h657/m4+WZ5NfiFeG034PeKN3A27naHdp82Y/YgNeG1ovVadQ80zjSWdGL0OnPnM+Bz07P/s7gzhfPYc9/z4nPrc/gz/zPGNBo0O7QkdFg0oXT9dSJ1kbYOdok3KfdyN7m3yrhYuKW4zTlgOcx6ubsm+9Z8tP0xPZm+CD64/tT/W3+kf/sAEsCgQO3BDEG8gfICYELDg15Dr0PsRA1EW4RrBH9ES0SMhJOEo4SmxI+ErwRWBHiECUQbQ8ZD+oOXw6ODQgN9Qz0DNgM3AwEDeQMMQwSC70JMgiJBh0FLASdA0sDPQNpA58DvwPOA64DMQNhAoABmwCL/2z+o/1O/Sv9F/07/Zn95/0B/gn++/2M/b78APyS+zn72Pq5+vn6K/v7+pr6OfqP+Wj4Gff29b/0J/OD8VHwcu+A7pntHe3f7FLsSOvy6TXoxeXT4u3fN91t2prXNNVZ05HRhs9hzT/L7shRxqrDRsE9v7W9/bwnvdm9t76jv4jAIsE6werAfsBJwJvApMFFwy3FL8dVyZDLt83jz27SfdXL2BnchN8l46Xmmuki7LruhPFS9Eb31foK/1QDMwefCpENtw/8EOAR7hJLFPgVHxi3GlcdtB/bIb8jHSURJiMneCiKKRMqeCr1KiYryCpLKhwq8ilsKcMoUSjWJ9gmYiXdI2si3iAyH7UdqRwCHIMb7BohGgwZgxdaFacSxA8FDY0KdQjiBt4FQgXcBIcEHwSPA9kCDQIxAVQAiv/D/t397PxA/Ab8Lfyy/L39O//CAPABqwLrArICTgI0AoECAQO8A+UEPQYtB5EH1AcLCLIHmAZCBRAErgLRAOb+Z/0p/Nb6l/ms+Mv3ifYW9c/zf/Kt8GXu9OsW6T3lgeCP27jW3dFRzd3Jtsc8xtjEh8NAwofAAr4Qu3a4urb7tTK2WrdMuYu7U70hvh2+1b2svdy9wL6awDDDFMY4ybnMW9DJ0zfXMNvx30vl3Ooi8LD0lfgk/Ev/xQEIBAcH+go0D1EThRfJG7MfNyOQJpYp+Cv7LRAwDDKgMx815zafOPE5KTtrPDg9ej3oPaQ+wz7gPcU81ztaOgI4zzWHNLkz6zJYMv4xLjGTL4YtGysNKJ0kfCHJHi0cuRmsF7gVdhM2EXQP3Q3lC9EJNgjRBvAEmwKEAO/+i/1B/E37sfoY+k35gvj197j3t/fl90H4wPg5+Y758/nB+gb8e/0Q//MA9AJkBOsE6QS8BFUEyQOkAygE6QSQBUYGBAcwB3QGPAXsA1QCYwCw/qX9y/x5+7j52Pel9cjyhO9f7FDpBOaa4mbfKtxW2P3Tyc8GzIbIUsWrwnbAOr7KuzC5Ybaes76xg7EEswK2KbqLvrzBEcPzwt/BHcCTvoW+N8D0wnXG4cqUz3zTnNbq2djdK+Lh5gjsHvHJ9XL6Ov9dA4QGkAksDcgQ6xNAF04bbR/aIrElNyg2Krkrcy31LzIz8TbVOik+bECyQRdCb0EjQEw/LT/LPrk91TyKPOo7dDoVOXw4+TflNqE1jDRLM6Yx2i+vLZIqrCa5IvIeOhv7F7YVExSAEhwREhC3DnUM4wngBy0GDwTEAS0AVP9t/iv9+fv9+sv5NfjD9gb2+/Vs9mP37fiq+v37ufxD/fz9yv6B/4MAbAL+BDAHcwgsCaQJZwlSCGQHrwcnCSsLew3XD2sRfxFEEEgOywsmCSAHFwZnBT4EggJYAGL9RfmE9APwAOwr6ITkV+GH3o3bQNjE1N3QOcw5x6XCpr74usq3bLV1szexxa6VrMmqsalJqiCtgLFatia7Sr++wf7BhcAkvtq7LrtBvZHBwMYvzLLRkNYy2j3dr+C85Hrpce9m9tP8twHFBc4JYA0pEC0TYxc0HIYgHCQwJ6QpfCtGLXUvFTJONV457j06QsdFV0iaSapJRUm7SIZHpEUoRJZD/EKUQRBANT+dPrg91Dw3PGI75DnjN3Q1UzKOLokqZCY0IngegRvJGMUV2xKCEC8OMAv4B30FyAM1ArYAq//d/pv93PtB+gD5qvcj9uj0NfSX88DyGfIo8uLy+fN+9ab3Ovq6/On+6wDkAqIE2QWPBhwHsQczCLEInAkzCw8Ntw47EMYR/BJ0E3cThBN8E/USChIZEQAQTg4ADG0JlQY1A3//+Puv+Cn1N/E57VzpZOVf4dDd3NoM2PjUbdHzzC3Hu8CxuoC1ZLEur1mv67CFstez47TrtJ+zSLJVsrKzs7VVuJO7kb6IwJLBDMJGwgDDE8WMyAXNZtJa2MjdFeIH5mbq4O5I84T48P4iBbYJKA2MEMQTURbgGIMcKCHjJToqIi55MTs0wjZaOQQ81T7gQchEJUcYSbNKZ0veSsNJtUhcR4hFH0TBQ6dD7kLfQQBB/z9yPrE8IDuXOdU3pTWjMqcuTio9JlAiYh4JG5IYGxblEooP1gxwCs8HlgWVBD4EWwPHAToA1P4M/eP6+vip97P2+fWr9cz1EvZs9h33N/hr+Yj6zPuZ/QMAuwJHBXMHYAkjC2wM/QxSDSkOlQ8VEWoSsRPgFM8VpBaKF08Y1BhkGRYaSxp2Gd0X+BWREzYQKQwhCHEE6gB6/VL6ePeL9EPxs+3n6bflP+EC3SHZ+9QJ0FfK+MPUvGq1464lqqKn46f0qmavQrOxtb+2K7bes+Owsa77rfquwLGctTG5rLstvfi9Yr5Gv4HBMcUxynHQMtcl3QPi4eZL7HbxEvYe+wsBoQatCo0NDRAfEsYTAhazGXQeiiMQKUMvdTWkOoo+aEGAQylFskb6R9hIrkm1SiBLPEq3SHlHPEazRNFDVERDRWdFDEXPRBREAULePnQ7AziANPUwRC1iKcwlzSK5H/gbGhjjFAQS7g4aDDUK0AgQBxYFdgPtAdX/b/2d+4b6hflc+Gf3o/aE9ezzlPIq8rDy+PMk9kf55/wyAKECMgQmBcEFSwYhB5kIrgoCDTQPNBEQE7UULhbVF9YZ0BtwHd4eKSDYIL0gdSBlIO0fiR7QHHIbFRodGMoVoBNOESUOKwrsBZ8BN/36+Fb1HvKj7qjqj+Z+4hreONkR1IzORciMwTW7g7WYsIetTq0sr5CxBrRytpG3gLZptNeysrGksJ+wR7KftL22/LiRu9W9jr9MwULDZcVgyNHMEtJK18Hc1uLV6Avu9fIh+An9NQE2BXUJMg3gD2kS/BVeGpcemCL1JpQrzi93M+o2aTr7PXVBQ0T7RRJHKUj7SBRJ90g6SU5Jf0g8RxZGvkQdQ/lBlkEHQcw/cz4hPSc7dTjSNVgzdTA9LTwqOie9I1kgzh16G0UYbhToEJwN8wmEBnEEmQPlAg4CgAHkAG3/af0G/I37RPvj+s763/p3+qf5Pvmh+Y769PsR/rcASQODBaIHwAmoC1MNDQ8DESUTYxWvF9UZkRviHOodqB4fH48fRCBFIVgiLyNyIwIjKyIxIeEfER47HOAaoxmzF/UU7BG1DvoKwwaFAmr+Nfr19R/yz+6A69jnDeQi4Ifb2NWAzxnJ58JOvca4J7UPstavCK8/r9OvEbE4syC1l7XqtL+z5LGxr7eu0q87sl21fLkRvsPBQsRhxnDIacoFzdLQBtUA2ZbdYuNQ6WXuT/Op+Gj9pABOA6IGaAoZDkISXReQHP4gEiVhKXAtyzAINK03Jzu5PWw/akC5QOBAdkEcQjlCZkJtQ51E0URhRE5EbUTzQ91CiEHTP6o9aDv1OL417zFdLiArnyf6I/ogwh7kHGobjxq3GQsYsBVEE5cQJQ1qCVoG9wOXATT/U/3p+4n6Z/kS+Wb5vfkA+pT6ifuL/Iv9wf4+AOMBlQM2BYUGbAc3CDsJgArdC2UNbQ8fEisVDhiSGt4cAh/EIPYhzSKnI5AkSiXIJUUmsiaOJpQlPCQKI98hdiAZHyQeSh3zGw4a4RdZFTUSjg6XCi4GKQHH+2n2FPHI6xXnmOMQ4bHeLtyi2ZfWP9KpzJzGc8Bcukm1OrL+sMmwjLFOswS1orVjtcC0VrMSsQCvyq0Erc2sSa6wsbm1kbmQvazBHsXlx7rKrs1r0GzTT9d62xTfs+Jk57TsbfGO9eX5Y/5PArgFSgkwDTkRlxVzGmkfGSStKDUtLjE6NIE2CziwOM84FDmkOVU6ZjsKPbI+2j/BQJVBzkE7QYRA+T8SP5Y9FTzAOh05Ijc7NUgzyjDzLUkrkShfJUUiDiBXHkkcHhqcGIMX+hUJFFoS1hDRDkgMyQliB80EYAK0AKb/qv7V/YD9b/05/R/9rf3X/k0AIAJlBLkGrQhLCsQLAg3jDZsOeg+jEBQSuxN9FVAXPBk6Gy8dGR8LIeciTyQJJUQlTCUpJdEkhiSWJNok9iTWJHEkXSNMIcAecRxTGgsY7hV5FD4TXRG4DrgLPAjeAwH/bPor9rzxQO1k6RLmd+J63vTaNdiD1UbSps6wyhLGDMFcvEa43LT5smWzUrU/t8y4KrqMug65V7a2s3qxla/MruevhLLLtXW5cr1jwdDEVsfcyA/KIMxMz5/SvdWv2fbeV+SY6DLsHPAt9Mr3Mfvl/soCoAaiCvMOLhMWF/Aa0B6AIhwm0CklLZovjDFnM440ezQ3NA41wTZfOOY5lzvDPNA8QTyOO0E6NjhvNp81PTWlNPgzUTNRMsgwxi4aLMAojyVQI4ghVh8VHbMb8BqvGc0XIxbyFJETrhGmD5ENKguoCKsGSQUYBBUDqgLqAnYDDgSkBBUFSAVdBW8FcQWUBVQG7gcPCi4MAA6HD+AQAxLPEmcTXRQYFk8Ybho/HM4dFR8XIA4hEiLfIlAjtiNZJOwk/SSfJEgkDSSDI4IiayFwIDEfZB1pG6MZ0hevFacTIBKAEOANUAqQBtACuv5x+pb2VPM28PLsqelZ5sLi7d4w24LXetP7zl3K9cX3wcW+nLwQu5m5Rbght7q1+bPAsrWyO7Ops1u0ibVPtvu1MrXotDO1+bWVtzO6iL1MwSvFgcgtyw/OmdH71M/XLtvJ33jkLOiu693v1/O59o35nv1AAh8GeAldDaQRRxUqGBcbfB4aIo0lkSgnK5Yt9y+8MXkyqDLiMv0yuTKeMigz6zN7NCk1/zUZNvg0WTP5MZ8w+S5aLQQsvSpZKdknAya1I20hkh+0HWobSxn7F+cWHhXhEhoRzw9VDrQMiAvJCtAJcAgeBwcG5ASrA8gChALKAloD6ANHBIwE3wQjBUQFpgXEBmoIAApzCycNLw8xEfUSjRTxFekWbBfJF2gYexn1GrUcrR6zIFwiTSOiI9MjHyRdJGMkWCRxJIMkNiSUIwkjmCKlIeMf5h06HHwaNhjdFRoUhxJGEHoNAgvjCDUGqgL+/rf7XfhT9NHviuvF50PkxuBB3c3Zh9Zr00nQBc3vyWPHNsX2wm/Amb1UutG2ybOqsSuwM69przex+7O+tvu4WbqXugu6ULl5uKS33rcdusa9psG4xXrKS88103TWotlZ3E/emOAX5PfnYetO77v0nPpv/24DcQf9Cl0NPg+eETkUfxbgGOwbIh/UIUkkLCd1Kost0y/rMO0wcjD6L3kv7C7NLlsvFTBaMOEvmS7JLEgrkyrPKe4neSW+I68iQCF8H24eGB5THbEbshlgF0kU3xBBDpsMIwuiCawISwi0B3cGDgUIBHoDOwMZA8kCMwKoAX0BmwHMARwCrAJlAxAEhwS7BNEEOQVTBgsIDgotDF4OhxCJEl0U+xVeF6kY9Bn5Gl4bUBt6G0Eceh3fHm0gHiKwI9gkcSVvJdwkBSReI/YiaiKHIawgJCCJH1we3Rx+G/EZnxe/FBUSyg90DSMLSQm2B7AFJQOoADv+Mvty967zNvB/7DHoxuPD3yTc9tia1g7VoNPA0ZPPW83xyjPIasXvwufAV78Wvre8E7vLuZC5HbqUusa6f7tfve2/+8HYwhfD88PixR3I5smUy+vN+NAl1OjW/Nij2uTckuDp5F3oBeug7rnzpvgd/O/+QQK+BXsIdgorDNUNwQ9zEsgV1xgVG80cYh7XHyEhOiIhIz4kOybiKOkqkiuYK8srsCt4KmUoRCZYJIoi7yCOH2Ae0B1VHlAfVB/pHfwbVxrDGO0WGBV4E+IRUhDjDj0N+wqiCDsHwQYRBp8EJANGApABbQBO/x//CgB7AQgDmwTIBeEF2QRyAzUC8gCm/yP/LQBcAqoExgYeCdALTA4XEEcROhIxEx4UwRT5FBEVgBVjFn4XuBgUGlEbLBzcHMMdrR4GH9YexR4GH+oe7B2qHDMcmBzWHDQcChvcGWMYLxapE5sR/w9FDn4MNQtCCtcI0gbwBIcD/QHV/1v98/pr+IX1fPKw7ybtp+oa6IzlFePX4OLeMt3D22/awthW1oPTLNGjz2vOR82zzO3MS80bzXfMx8sRy1nK88kJylfKxsqkywnNjc4F0ODRdNRf1+bZodu/3MbdA98n4LzgM+Gr4n3lxujG68TuF/JJ9dH37fkO/CX+CQDsAecDtQVIBw8JRguIDVoPvxAHEmcT0BQKFt8WWxfBFx4YURiEGCkZZBrfG0gdex4oH+MeqB3hG+UZ8BddFmkV2BRbFBEUJBQ/FA8U2hPZE38TMBJVEMgOiA0QDIoKrAl6CTIJhwjvB6YHRAeKBs4FawU3BdwEXgQBBOsDIQTABPIFkAfzCHMJDwlsCBUIBQgKCDwIzwixCaoKvAsUDaEODRAiEfURrhJdEwcUwxSeFWIWuxaTFjEW7BXOFbUVthUoFhEX2RffF0MXuRaKFkUWnxUOFQEVBBVVFA0T4RHnEHcPVA0ZC1IJ2wdrBhoFEwRCA5gCFwKCAWQArf7C/N/6yfhm9hz0UfLG8OLufOwq6q/oOugw6NTn7+bE5Xjk6eId4WvfG94z3aDcQtzC283an9nT2KHYsdjF2A7ZrNlh2hDb9Nsn3WDea99P4O/gCuH64MLh1eNI5tHnROiI6DzpB+ph6o7qU+sP7XfvJfLm9HT3cPnV+gv8Rv0v/on+tv5A/zMAJgHGATMC7QJrBH4Gbgj3CaQLqw0FD6gOIw36C7wL4gsrDMsMew20DdYNwA42EPwQmBDCD/IOww0TDLgKcgrwCl4LbwuNCyEM8AwsDVgMIAu7ClcLuQvgCj8JAQiaB6cHtAeEBxUHxgYvB0MIJgkvCckIxQg7CZAJZQkICfgIQQldCccI0AeeB/oIKAt/DE8MlwuaC2IMJg2pDVUOPg/iD/wP7A/8D/kPxg+9DxUQbhCEEMAQjBFbEjESDBHxD4APNg+BDsoN3A2kDlEPhw+hD6wP+A4tDTcLRwo2Cs4JpwjHB+0HNwhBBwoF4AKMAawAyf8w/1H/2f/s/+X+yfw5+g74p/al9bH0M/Sk9Dj1R/Ra8fbt1OsX673qXuqJ6rfrme1475bwPvAF7nLq8ubY5IbkquWv57TprepZ6sPpKOpv62TsM+wc6+XpQumR6aLq2+sL7azu0fBn8knyyvBB71TudO0d7PnqXevS7UHx7/Mr9bz1Z/bB9v71XfTr8j7yPPLQ8gz0xvXH9wr6I/zq/Jj79viY9jz1o/So9If1Kfcm+Wj7/f0zAPIANwBV/zf/Jv/b/WP7Nfmn+Mn5v/uu/UD/ewBmAeEB9QH1ASACSQImAtcBwgEKAm4CuQISA9ADJQXJBuAHdwdyBeQCPwEXAeEBzQK6AzkFugfLClwNzQ45D7QO1QyOCQkGzgMxA04DgQMOBFsFWgfhCbYM+w6DD0EOmQyqCwoL7gnMCLEIcgnBCQUJ+gdPB+AGswaZB9gJ6Au6C0sJ6AaJBpsHGghOB5UGdQd4CWQKhQiuBMoBBgJrBN0FnAQAAlUACgARADUAagHYAygGBAcrBtUDZQA5/S78U/0x/sj8avoN+in8Cf5e/ev68vhf+Iz4wfiz+PL3XfYR9W315PYZ9+D06PF78LXwafGi8kL1QfjF+NT1G/Kx8FXxW/HC73fuY++f8Zjyj/HE8JvyOfYz+Kv2VvPV8G3vyu3x63/rFO1X7+nw7fHy8ovz1vLn8L7uKe1R7F3s4u0Z8eT0Hfds9qLz4PCJ72zvt+/77ynwKfDh72/vQO8B8DXyYfUC+A75Evkg+fn4ePeS9MPxQ/AU8PXwFPNE9oP53/so/Y79Iv0Q/Kf6Cflc90T2f/b399T5dPvV/Dv+1/97AUcCHQEj/ir7+vm4+ov88P6NAZADfAQlBYEG2wdpB84EwAHw/zD/Y/5r/UH9Yv76/wgB7AEiBEAIiwwnDtALJgf6ArQAvv8Q/17+yf2m/fz+5AJmCCMMxQvaCJIGYQU0A8f/yP3//tQBBQR4BeIGfgdRBlYEQwPjAqMBV/+M/S79bv12/QL+fADPBKMIPQmIBswDKgRBBiAFo/5G96j1zfoiAUoDlgH4/40AFwK/AnICQgLFAlkDrgIjAAn9uvvc/Dj+d/1Z+7T6nfw+/2AApf+6/Sj7ufjI99D4Zvq7+u35wvke+7f81/y5+zT7IPwB/Q78xPk6+OP3Xfa08TDsFOu48Nn4qfya+gr43/nM/bb9kfjG80TzPfT88d7sYuke6pztYvF19AT3lvl0/Kf+OP6W+v715/Lu8AvuZ+ry6Nzr4PHC94f7ef1u/sP93/nJ8ofr5ee26Enr3ezl7QXxNPfo/aABpwElAFb+Rvoi8tTodeRL57zs+u4h7l/v5PX0/j0FMgZqA+n/Cf3s+Ur1pu986+zqj+018ab05Pj8/kAF+AdSBan/5vpj+LL26/RU9IL2VftCAWAGzAi8B6EEngGG/mT53PKG7+nyvPobAeUCCAIMAtcDLgXCA2IAnf5dALECxwBu+jr1JPbc+/EAHQKhAIv/fgC+AtsDuAFD/Zn6tvxFAQgDsQDF/iMBCwVTBKr9ifaW9Kb3YPvh/Cr9+P5VA9cHMgi+AlP70feP+Vz8l/xk+137MPxZ/Nr8tf+rAzAFXwPRAFH/3/28+zP61vnL+An2NPRo9n37bP/SAAwChwQHBswDP/7b90TyJe5v7K3t7vAo9br6owE0BwkICwQ3/qb4b/Mv76Pt1e6d8D3y+fUv/fYE6AjsBywET/9V+e7yQe677IztOO+U8Vb1P/qx/h0BngHSARgDnQRRA5r8svED6Nzka+jw7Zvx5vRp+3gExAp/CiMFDv6G9i3vfOp86oLtm/Ar9Hj6CwLUBY8DYP7b+eL1SPFd7U/sLO6j8er1+fka/G/80f15AcIDeABU+aX0kPWP+Df4SfNh7Tbrl+4z9Sn7Jv/9Ao0H2QmJBvn+FviJ9G/yGO/d6sToxetk9Hr/awecCNkE0QBn/oL7q/YI8njwrvEc8+LzwPUg+pf/LwOpA3MCQQFs//T6LvSw7qLtWvAW9A34qf0OBcoLhw8TENMNNghY//D1uO8N7lPvePHJ84D20/ne/akCuAfiC+ANvQwJCCMAs/aU7tLq2uws8zT6Vf8oA9gH9gxnDpQIO/3r8n3vZ/Nc+gAAlQPhBgcK+QkWBFH63vHs7V/t5O1e74fzgfsrBn0PmhFLCZr6r+4i69LsH+3S6lLrVvNKANYJuQldAsj80v4hBKsDtvsf9EHzd/Wk81nuyOwn8vX55f6VADwB8QH9AkYErwNG/uD01ewk6onrJu5S8gb6iwQ9DhcTLxAsBaT2Guyh6N/n3eWb5kXwAACKC4MOzA5WEX4R1wil+rbwze5Q74bs8Ocw51XtkfjOA5IJ1AcCAiT9/vnL9ZDwUO6i8L/zw/R69s37KQEOAcv8kfq3+2D7PPcN87jx/vBz7yLxe/lsBMYK7QqrCEAGjQLs/Cn2Yu5C5t7hoOVH8C38PAa4DisTeA6aATn2uvPt9RT0Ru5/7ar2WQNdCRYGAACK/kgCJwXmAbr62vYQ+X/7hPd27zTspPGB+r0AWAVwDIgUhBYaDuP+fvAl6Nbm/eqF8Z/2b/hq+e/9lgaBDoUQzgysB+cDLwAO+nrxi+m+5tzr6fbNASQIbAvXDmQQzQqc/gv0cPHq88r09PIU8434nwFzCb0LCAgCAwcCyAMYAa73UO+Q75P0GfUf8Y/y7v5rD/kYPBeZDf8Bt/g18uXrk+UB5TrvBP+0CKQI4QbhCe4MnAiT/jz2L/IX8InwMPfvAkEMDw13Bhr+9/gE+WT8eP6z/Cz6RftE/t/82/VO8OrytftYA/oFkAUdBeMEBAPn/Sz2WO+n7fzxoPgk/Z3+JP9pACkC9gIlAQ78xPWL8qb0jfnm/Iz9nf1d/pf+Nv0F+yP5lPdI9iT2Fvjy+8EAGgXKBuIDHP0/9uHyd/OC9ln74QH1B30JWQQ2+3XzvPD+8v/3gf0JAtoE4gWsBeoE7wNIAub+Y/nF893xlPX5+7//z/6Y+9b4wvaq9eP38P07A08DHwFxA44J7Alt/zLyzu1+8tH2EPZs9S769wGdB9oJbgkxBcb8OfRY8GPxU/Xg/B4JgBXFGZgSSQQM9afo/OGZ47zsAvnCBOYO1hXNFroR1wmYAKn0lOgq5d/v+AH0DvsRjQ9ZC6oDJfiK7v/s9PLl+nIAMQKQAI7+/ACQCNMNJAgc+T/s9ukf78rzEfYV+hMCTguSEbkR+Amw/GDy1PIF+3D/4vov9V33w/4gAtb/Sf/DBDML5gsrB3kCMgGsAa3/y/je7+frDPH3+m4BQwKAApIFiQgZCPsFmwTfASv7YvOr7ynwZfHH83H7Jwj2EgsWcRLbCzUD1Phh8NHt+++P8qP0APm+/2YEawTBA3kHwQ0lD3gHbfr77tvorudL6nTwffnGArsI9wlsCbMLvxDiESIJv/ly7f7oLegx50fqwvYRCNYStBKqDggOjA4sCf781vAB6wvreOxo7f7wCvv+CZsWwRqSF8ASXg5aBv/2ZeOo02fOeNWp5s78BREGHigjxyL1HaATLgSg86Lm8N4W3MveIemo+tgN6BpqHf0W0QwzAzf74fMX7WvpeOyV9oUCTwkXCa0G+waKCNQFYv2y9Enyl/b/+/r8oPmG9+X79ARlCvsGkQA9AoINSRYBERABW/Rm8l31BvS37TTqXvAU/xQOLhV2E2cPcA6zDSgGd/dY6gfnIu289on/6QWRCK8HNwasBWECGflT72bvEvvnBxgMbAk9B3IGMQJN+nb1NfhS/x0FugcCCHEG/gPGAsEChQBp+mL0RfM39s34H/pt/TwE4AsvEQUT0xBLCicB4Pc87lnjGtwi4jv4FBOQImEhjxdwDjQHgf6j9EDuO+5A8vL12Pcr+lH/cQbxCxENYgopBosByfyj+Tr6aPyP+bPuSuNK48DxNQUUE0AaEh+mIM8YWgZo8Q7j1NxY2xDe2ufV+MkLghpcItkj2x+xFrwILPcA5dfX7tUG4TDzlgLTCcMLTw6HEvcTlA8OCE4BX/rO76XjVd5Y5frzogD0B+UOmRnCI5okpxjJBB7wN9720KnM2NXW6noDrRgQKf8zAjSPI44G7emX2P/T6Ncz4Z3uxf34Cm8TgRZtFYYSBQ+BCaQAmfdf9Bf4M/zn+RjyQOvS6fHt//ZSBZsX0iiCMYArWhZw+bLfsc+UyYvNaN9x/9wi+jnuPckzaiISC8HtRtBWvZi9QdLE8wkVDCtQM6oxLyhHFTf7sOTk3GjkfPH9+sH/3gI/BFIA4fZj75LzLAXZGqYoFyosIv4T4P/z5w3Tpsjwy9fb8PR2ERMqQDnzPCo02h0k/XPch8iPx03W0+xEBMQYDihLLz4rPxwaCSz6j/CD5t3a/9Yy5C7+EBZJIUEgQhjsDdUF7QLCAYT7l/Bl6u/uRvhT/fb9FwBbBLQFAAOBAbQE4wldDX0OZgxLBLL2lOom56jsI/ar/+IH3w0yEYsSCxEpCT36QusY5ZLoNu++9bv/AA8vHeYh6xsgEFYC7vMn6GPkf+oG9l0AWQYhCXgL8A4vElERgAlN/dXz8/E/9d33YfjW+ncB8gdoCA0Dg/3w+2D+2QM1C0AQiQ3DA+X6U/gT+HX0tPAq9W4Cdg/2FCgUnBDjCRn/mfPk69DokOlu74z76goxGMUfsh9+FioGHvZY7dfriO3S8c36EAazDMoLAAi3BuwHDAmyCWoKkQnABDf8CfMV7ZTtYPUBAYAKtA4lDxgOfAtFB5ADxAHy/xf8Kfi098P6XP4wAX4EjwiPC34MXQxnC4kHUf9B9ZDu9u4W9iEAbQiaDFAOzRCEE/EQrQXO95Dy5fiRAKH+wPVz8jn6EAVICZ0HsQeoDNYRwhB5B7D6XfPL9vX+tP8O9znyFfx3DG4SmwuLBe0HJQoiA8b4cveaANwJKgoHAun4Jfe//w4MsxC8CscDYwSSBxsDDvhS8TPzufbD9g34GgDuC0EV2hqDHXkZdQrR9PTjV99D5T/w2/w1CfsSTRjHGF8UQwvs/yH3BPQx9XD3Svq6/3EH7AzgC/sFQQKzBS0N/Q8PCZ/88fPq8/P4cvzh/N3+JwYyD6oREgoj/1j7VQEtCScKkwRM/5X9+vto99Hyh/MK+60GmBJqGtUZqxDJBFP8X/c888bxYffvAaMIEQeXArQBQgN+AmL/yP0d/+UBoQVsCgsOuQ0JCk0FnP+p+PvzCPZ4/RcEbAbIBVMDA//6+0b/XwfzCqoE0/vl+8oF4w4wDhkGQwBUAkYIQAlwAar2TPIK9/r+5gMwBnAJPQ0VDQQHWv/S/PMBggodD9ILggM4/KH43fZb9dT1AvouALMFLQsKEzkc6CBSG/0KqPUz5OPdQeSw8qcCkxD7G6MjzCO6GTwI1PbR6/Lnc+gu7MX0sAI4EnMdEyDJGIEJRfig7WzuSPelANcGaQs7D1cPVQn+/0j5r/i1/EcB1gNeBSAIKAsHCg4DnPtq+qv+xwH5ATgF2Q6RF/UUiAaU9qLuFe9d8v30yvg+AbsNJhhIGqcUCA4MC34ITgDo8qbolulF9TYD+QrTC0AMORHhFlAUGgfG97zwa/Na+cH9xgG2B00OhRJ+E2gSZw8vCLD6lumf3STgG/JRCd0YYRxSGbgV+hByB4j6qfFq8tD5fP8r/+78C/+HBUYK+wgmBB0BmAERAzUDtgK8A+QGVApuCzwJ5wTT/5/6GfcR+QQCuwwKEacMzwS0/rL6hvjQ+pYCFAuwDqANhwv3CBwEGP6l+iz7c/4kBN0LthHvEPQJDQEO+Bfv7Opq8nwD9BFUFfkRJBCgD3sK/P8/9qby7/VU/kMINw4HDSEIFwWyA6H/jfnq9wb9hAKWArwALARCDKsQzgywBakCQQQ6BY4C1P7g/dL/awEYAKz8+vq0/nMHmw8DEZoLlgXvAwkF0ARVA5EDUAUTBesB9v4q/vn9U/3W/RsA/AEEA3gGiA0YE4AR3QnQAYL8G/pM+83/FgOWAND6q/i7+xv/eACHA+4JKA4WC2MEJQJnBqILTwwQCOIBwPxA+gH6//kz+a75Yv4IB7APJxTkEhkNggXD/q75ifXH8j301PuvBhcPCxIMETMOPgmcAU35bfPp8Mjwl/O3+/0I+RX5G3gZXxI7ChkBFPfO72DvN/Xz/JEDGAmEDUwPfQ3uCAYDjP1/+wT/oAW1CbQI/gTjAMP7BPaf8yT3dP1cAsoG2Q23FX4YpRNMCkwAY/dT8XXwzPSY+6YCLgl/DWMNYwkSBPj9Wfax8L/zfgC2DvoVbRb3FJcSZAzmAaf2cO7L65jw4vsJCFIPwBGfEjoRjwnW/LbzAfWM/UUEcwRYAQQBeAXGCiQLRQUx/sP7L/4fAWkCLQTwByULOwrVBK79fPis+O3+gwZmCJYDkv80A1ELHQ4aB/v7nPU792f9SwNCB4oKjQ3BDbwI3wBO/PP93AEgAqv9hvhk96P8VAd7Eh8XnxK2CXECDP3A9uPxJfW2AWUPShUAE5EOxQu2CO8BwPc972/ujvYqAoAKaQ5zEUgUKRIhCE37L/Rt9XP6h/69AVcG2QtyDrwKtwEN+YT2o/qxAKkEIgfgCdQKTwaT/fr2VvZy+K/4gPiQ/TIJRhWeGuwX5BC8CPn/vva77nbqHOyF9I0Big0dE1kS3A8WDlIKMQIo+Sv1l/ei/OcAHAS1BjwIRgiVBoYC7vyt+eX74QD3Ao4BqgGOBQQJGAjGBOcCngJtAvgCuwRlBdYDdwOtBuEIEwST+s/0A/Z4+Vb7z/2YA8kKsA/EEJUN8AWe/An3R/eJ+Vf68/sBAoMKSg9eDWYHYgEx/Rr7CPt7/On+PgISBtUI+QihBlADkgCJ/38ALAKqAjICCgNZBU8FKQBM+Q33BvvmAPoELQg6DBgPMg3WBmQA6Pzp+t73I/X99q3+0gcTDaINOAz6CYMF1/7z+IH2SvdH+pn/sgaqDKIOnAx0CHUDqv7J+7/7O/2K/rP/JQEYAh0CmAIyBMYEtAJeAPMAHwMIA6EAhP+1AFQBFQBa/2oAHgFnAPMAZAR4B5wGagPvAYkCggI5AZgA/wCqAGf/XP+UAboE4QduCwwOGQx9BMH7Xvdw9w34+vdA+pQA2AcwDNYNvA5oDW8GRftB87rz3Png/mEAlAEvBY4JGgtACGoCofyF+ZH5UPva/cUBWAbhB04E4v/2AOoG+wmTBWL+qvtN/sEB4gL3AeX/ZP0n/Dn9xP6K/gn+xgCTBugKywoxCFgGNQV0Amr9XPiR9tT5zwBHBw0J4gW1ATwA8wBeAMb80/gq+Yn/YAi9DeEMbQiKBOcBIv6X+HT0EfXd+X//HwRtCEkMpgzoBsr9Sfhr+rYAuwTgBNAEkwYrB6MDLv4j+/f6kvoX+br5BP+GBtsKKwkjBEEB/ALSBasE+//G/VIBFQaiBQ8A2vpm+Zn6e/zY/V79mfvu/FYEvAy5DWgHkgJcA1ADtvze9OH0z/zsBJYIYAkxCaMHtQTxAFD7rPOJ7jbxf/oCBGQKFQ9FEhUR6wolA+r7cvRh7vXuj/eZAQUGhgV9BawHPglbCHIGUgXeBNUDXgER/gD8e/yR/ST88vib+I/9KgXbC0QQlxDkCdz9x/Sr9Jf5wvum+jT8uAL6CREOEA8cDbAGpfyL8/zuru4u8Qz2IfxmAfQFuAuwEfoS2wy6Au35b/Tl8ajyhvaR+uT72ftO/uIDfgghCHUDx/5V/UH+Gf4j+6T3hffx+zoCugbzBwcHAgadBU0EHwAN+un15PUO+Bb6Gv3BAoUIDApIBwgE8QF//xD9bf0CAOf/Wfu893D6/QBeBBsChP60/gEDCgftBXD/O/lC+aH+ywJdAu0AgAJbBX8FBgMwAT8BlgGAACP9jfeB8t7yA/qUAkcGIwWyA9UDfQMwAab9Yvmp9Krx8/LH9zb9fQJhCF4MdgkU/1TzrOxg7KLwafhkAgEL7A5rDsULgwf6AL/5jfVO9g76tv1jADIDewZ/CN8GHAHC+fv0b/X1+bj+JgFOAlUEYQY0BT4AiPu++o78bf1C/cj+HwIbBDQDOAE+//n76fcq9yj8ewMdCEwJPwkuCGgEIv7Q91rzqPHX8wb6cwGpBvUIZgmFBxcCjfqo9MLyxfTh+VYAmwRvBGkCpQIhBO4BU/vb9Z71L/jB+RP7j/6vArsDcQER/4H+wv66/pH+Sv56/Zv8oPw5/Vn9O/3+/Vv/zf8D/yf+uv0v/en8JP5CALUAqf6o/Bn9+/4fAL8AbQLJBNwFJwWEA54AnfuD9l31yvir/Br+g//IAxwIHwcUASD8yvvA/Nr6l/d+9177tP/CAR4CNQIAAtAAn/7r+3v5l/hB+r794wA/AkECAQLTAUsB6f+G/dr6hfma+gz9mP6a/pX+dv/T/yb+pPsy++H9vwEqBAkE9QFd/7L9bP1z/Xv8Afvt+s78x/4c/7v+uf/kAZQCJQBO/CD6vPrB/J3+MQAOAucDdwTYAp7/cfy0+oL6CvuQ+xb8Gf3l/vkAGQIhAVj+jft8+hb7EvwB/b3+XwEKA/EBCP8a/Vj9Lv7+/Xz9Q/78/5cAJP8I/RX8cvwg/cn9Cf8cASoD8gPYAi0A3Pzq+R/44/d1+eX8hgGXBTAHnAWRAUr8HffQ8/jzcPcw/GUA6QPcBugHewVuAN/7+flE+lf76fxA/6wB4QJjAsMAsv6T/MP6jvkn+QT6tfyjAHcDEgMWAGD9wfxl/cH95/3x/s4AAQJ9Adf/LP7A/Cv7n/km+X76L/0aAHMCzQOFAxwBUv0P+qv4xPhq+cH6fP39ADoD6ALQAHv+ZvxT+rD4oviV+o79GwB5AaMB6QC//6f+4v1M/cP8lfws/Vj+Sf90/0f/mP+FAEMBJQF2AAYA//+z/5H+//wR/Hf8yf3e/vT+hP6y/r7/mQBQAGj/CP8u/8T+mv3u/Ir9gf6n/kr+Y/7I/nD+Nf39+0D7qvoq+k76Sfue/O79Kf/H/xv/wf1u/bH+GABjACwAXQAzAHL+xPs1+nX6YvtB/Kj94f/iAacCawLQAa8A0v4L/az8Af4QAKsBNQKfAS0AT/5X/Gj61vhE+Bj57vrw/J3+9/8IAZgBUAEpAKX+nf2b/UX+v/63/qj+4v7Y/tj9Kvzv+uv68/ty/QP/WwAtAWEBNwHgAC4A8v6I/bP81fyN/T3+ov7E/n7+kf0w/BL7uPr2+mb7LPy//f3/5gGOAgIC+ADg/5X+CP2x+yP7avsh/BH9XP7p/wgB/wDU/z7+8fw8/Db81Pyu/Tn+X/6S/vP+8/4f/vb8cfzT/IH95f0R/m3+B/9m//v+0v3N/Of8HP5f/9v/xf+x/5r/Gf8y/kz9mvwr/Fv8gP0x/5cAcwEjAp4CKgJnAAL+E/ww+137cvw1/jkA8gHOAnQCEAFn/y/+b/3R/HH8xfzT/Q3/BQC0AP8AqgDv/27/WP81/8H+b/6e/vz+A/+3/nH+ZP6i/jn///+MALoAtQBvAIT//v2u/Dz8dPzV/Gz9ff7W/wkB9AGBAkIC+wBK/xb+i/01/QH9bP2i/gIAxACWAKT/S/70/O77Qfvr+iD7HPyz/V//rABqAYMB+QD+/8/+k/1+/Or7+ftO/G/8ZfyP/Pz8W/2V/f39uP5V/07/s/4X/tT9rv08/ZX8T/yw/Dv9P/3A/FP8Jfy+++T6Gfrq+TX6ivrn+oL7OvzC/Cz9xv13/sr+hP7P/eH80fvO+gj6jflz+fr5IPtX/AP9Kv0u/Rf9uPxU/Hn8Lv3s/XD++v6S/7//N/9P/nr9wvwX/MD7F/wN/TT+Hf+T/5z/cP8//xH/9/5K/1kA2QEFA3gDWwPSAq8B/v9g/o39uf2o/v3/RwElApQC1ALaAkQCKQFoAK0AkAEjAioCLgKIAt0CoQLIAdMAUwBzANcADwEvAbQBrwJ1A3ID8gKuAtQC+gLfArQCrgK1ApwCOQJdAQoAwf4o/mn+Jf8RADcBggJ7A60DFgMOAvYAEAB9/zj/Nf94//P/VQA3AG//IP6P/BH7EvrO+RL6gfoR++b7vfz7/Gz8h/vY+mv68/lb+d/4u/je+NT4MfgQ9x/20PXc9cv1yfVS9kP35/fw96j3K/c99gL1FvSq80Lzv/K68nXzJvQP9IzzUvM+87zy9/Gq8Rry7vLv8xj1GvaG9nH2OfbK9dH0mfPx8inzw/ND9Ln0XPUd9sv2WffV92T4J/np+S764PmR+bn5BPr3+df5MPrJ+vf6z/oR++j7t/wq/Zf9OP62/tb+2f75/if/cv8bABgBAAKlAjYDqQOuA08DFQNOA84DdQRuBboGBggaCfIJbgpmChkK7wnkCb0JtwlGCjoL5wstDJAMOg2/DfcNNA6HDqkOvA42D/oPaxCNEAYRzREMEpARMRFaEUsRbRBgDwEPLw9WD2EPfA+AD0AP5g6ODhAOew0sDRkNvQwADF0L8ApCCkQJdAjMB6QGCQX4A68DKQPaAagARADt/8v+W/1g/In7Sfr7+P/3yvb29EHzOfIB8c/uf+xE66Lqcun850znFuc75tXk0ePo4gbhmd423fDcINxA2t/Y5Nj32LjX+dVg1enVRtby1ZfVr9Xx1QDW+9Ug1nTW39Zg1w7Y8tjk2bfaotsp3Vbfa+Hl4lbklOY/6SHr/uv37OXuNPHp8gT0OPXM9l34jvl/+pX7G/0E//UApwIlBJcF4wbjB7kImwlcCsQKKwscDFUN8A3JDd8Nzw7BD58PzA6iDncPMxASENEPehDFEYYSbxJLEpESsBImEm8RPBFOEQsRpxDSEG4RrBFtEYURWxJLE8ETIxQGFTIWEheYFxQYjRjXGBIZeRkBGogaNxtBHIAdnR5+H0wgOCFYIoAjSiSRJNoklyVOJjgmtiXlJb4m/CYxJpAl1SUCJjclVyRmJI4kfSOnIVMgLx/4HAga/BfzFmEV1xKrEGAPhw0sCmUGVANOAFj8Ivjy9Ijyve+J7OnpB+ju5Qnjzt/E3KzZ7NV20e7MI8lCxsbDUsF0v/m+lL8UwBTAdMC8wQnDSMOswkDCfsIWw7nDjMT4xUrILMumzUHP79DF0wjXAdnR2X7bm94w4SDiYuPx5mbrNe7C71by5PUB+AL4D/iX+VX74Pvr+8L8QP6K/5EA0gF0A20FiwcHCTEJrgi9CCUJlwhVB0kHzAjCCQMJSAgeCSAKcgkUCBQI4whZCIEGfwXuBTEGkQVgBWQGWwchB1YG6gWSBcsEDgT6A0AEXwSZBFMFPgbvBrYHGQnjCm8Mhw1nDjUP5g93EAYR2RFDE0cVbRddGVobsh33H5Uh1CJRJNkl1SaxJ3MpDCxyLnEw1TKTNXE3Fzi2OPk59joIOxs74zt2PPw7YDuqOxQ8ZzspOnI5qjiENokzWDHkL7ktySp9KOMmRSQjICIcPBkuFvcRzQ35CnQIhAR5/936w/bo8Szs6ubJ4uzendpo1uXSls+1y2fHV8OYv7C7k7fts0qxbq+9rRysAauZqlqqu6kOqRKp3anVqsyrVK2+r36yBLWGt226fL1BwO3C/8VlyazM2c9V0xbXotrm3Ufh6uSI6BvsAPA59ET41vsk/y0CewTnBQoHcgj+CW4L9Ay1Dk4QZxFKEkAT4xPsEwgU6hTvFekVCBWaFNsUhRT+EnUR8BCcEC8PBA1vC5gKiwkcCDwHPwc6B4MGowUrBaoEhQMgAk4BDwG3ABAAm/+r/wAASwCiAE4BWwKaA9IE8AUBBx0ISQmBCtgLbQ0+DycRHBMpFUgXXxlvG5AduR/GIbcjqyWlJ6opAyztLh4yGjXkN8M6ZD0GP7U/XUBkQRdCE0IjQvdC5EMNRNpDJESFRORDW0LzQLQ/lz11Om43/zQ5Mo0u1SrQJ8sk6yCsHOYYOBXCELwLAgdyAi79NfeA8V/sKOee4YvceNjL1LLQL8ywxyPDIb6SuNSybq3bqGqlGqPEoX6hcqI5pN+lv6YHpyqnNqcAp7mm96Y9qKqq5K1tsRi1OrkPvhTDhcduy4nP+NPd17XaTd2u4LXkmuhT7JzwkvVJ+gT+CwH1A7EGtgjnCc8KBAx+DcAOoQ+nEGYShxQOFqkWHxcAGIsYzxdTFoEVihU+FR4UNBNEE2ITWxKPECMPBw42DJ4JYAcMBukEZgMfAsMB5AGwATUBAwEKAaoAwP/R/i3+lf3o/I784Pye/V/+Pf+VAF4CGASCBfMGwwi6CmgM5w3KD0cS4xQcFxMZJBs+HQcfjSBHInUk+Ca4KcAs8i8TMyY2STk+PIg+J0CaQfVCy0MnRNBEKUaER0ZI0kieSQxKRkmzR2BGS0WFQ/ZAlD61PHk6TDfcM9sw3S0+Kj8mbCKIHv8Z5BSiDygKMgQf/of4UPP37Z7o5OO+32zbrNYT0tvNTcm+w4e9c7e6sS6sIqd2o6qhWaHAoXWiZKNXpM+kfqTIo26jwKOEpKiliqdXqoytqLDts9C3/7vJv0jDRcfZyyrQ29O413LccuHI5ZPpq+0f8hH2CfmV+2v+eQE/BJEGxgg3C8EN3g9IEV8StRMsFQcWCxbyFVIWpBY3FpAVzBXbFoMXPhfhFvEWjxbbFHESeBDgDr0MCAq3BzMG4ARoA2YCPwJYAgYCgQE5AdAArv8l/iL9v/xC/HH7Dfud+438H/2X/bD+UACcAUYC/AJPBO4FZwcFCWYLeQ6VEWsUPxcmGqwcdB63H94gCSJOIw4lnCfOKk0uDjIINrY5kDzPPg9BQ0PJRJFFYUacR7BILkmoSctKPkwVTSRN2kw9TNJKkkgJRohD50AgPnk75Tj7NbUyiC97LPUovCRdIB0cTxdTEa8KSAQc/pb3AvFw6zznmePD3+jbV9iL1KXPhMnYwj+8ybVyr6ipIKVHovOgnqDpoLmh8KIlpM2ktKQ7pAukgqR8pbOmVqjsqoGuPLJJtf63Z7uhv5HDnMbHyUfOn9Na2Ezcw+BS5sTr3e8M84L2SPpR/S7/rgC5AkEFoQefCa0LRQ4wEZQT5xSXFWgWRRdQF1kWdBV/FeYVqxUhFXYVrhZqF+UW1BXlFHMTrxAwDT4KGwgYBhkE1QKAAlkCzgFDARcB0wDj/5f+of3z/PT7uvoe+nr6Hfto+737xPw3/j7/vP9yAMoBOQM5BDsFAQd4CfELOg7SEOsT+RZ8GbAb/R0+IA8ihSMWJfQmEymSK6QuKzLKNVc5xzzFP+1BcUPtRH9GsEdpSEZJl0rWS4xMHk0STgVPME+HToZNHEzISadGfUOkQLk9mzrJN3Y1ADPlL28s+CgVJTUglxrRFNoOPQgkAVH6GfQ47qHo0OMF4LbcLNk01dbQ0MvExcO+XbdCsPqp46Q3oQ2fa54rn8ygiKLXo7akW6WypXalyaRbpOWkdKaDqNGqxK3JsXW2wbpQvtrBDMZxyiPORdED1evZLN/Y4yvo+Owy8tL2Nvri/KP/eQK3BBkGRQcPCXsLzA2aD20R3BNqFvgXThhsGAEZYxm/GJwXKxdxF1MXbhawFbQVpRV9FIQSmBCqDgAMwAj6BSoEvwJLAT0A6f+5/wf/F/6F/SP9UPwn+276TfoU+nT5H/mn+YP63/ru+oz71vwC/rP+lP9DAWMDSwUoB6YJywzhD38S8RRzF7UZcxv/HNkeASEvI20l9Ce9KpotoTACNI834jrhPahA/EJ+RGpFf0b8R2VJdUqlSz1NqE5GT2pPsk/sT2BPAE5WTHJK1keJRFBBlj7zOxs5dTZDNOgxpy6iKlkmqCEIHJgVCQ+nCCICZvvu9CPv4env5HfgotwX2S7VgNAMy93E972MtiivlKiGo0igtZ6CnoKfeaHOo62lmaazpmWm4aUgpU6kAaTtpESnhaoVruixYLZguwLAnMOkxgfK2c1f0WfU3NeE3PLhKefk65jwa/XE+Q39b/+HAawDqAUuB2UI2gnmCy0OIxDSEb4T4RVoF9QXxxcfGJ8YaRiEF+AWyBZTFtwUDRPJEcUQGQ/LDLcKHglUBwAFvgIjAeP/cf7v/Nn7K/t/+s75dPl7+X/5Uvkv+TH5Dvmc+Dj4QviP+MD4+fjB+S/7yvxQ/iAAmwJwBQoIbAoaDS8QFhNbFUUXUhl7G2QdGh8jIcEjryaOKVosPC8/MlI1ZThjOzg+4EBWQ2lF70YeSG1J+0p0TK9N7E5AUDVRcFE/UQxRmFBgT45NtUvLSTtH/0PeQEg+uDupOHQ1mjK/LxksiyebIncdwhdeEcQKYAQm/u/36fFb7ELndOLj3Y/ZSNW50JfLw8VYv6W4G7IerBWnfKOtoYKhZKLDo1ul8aYWqGao6qcQp0mm0qXFpVem4qeqqoqu87Jft7i7GsBHxMLHhMowzVjQ3NNW1+DaAN/O477oS+2L8cz16vlf/ef/zQGHAyIFYQZKB1kI+Qn8C9oNbQ8NEc8SMRTHFOkUKRVpFRAVFBQVE1cSSRGGD6ENVAxdC+8JAAhOBg8FlANlAQz/Qv3q+3L62fiw9z73NvdW97j3a/gx+cn5KPo8+tf5DflU+AP48/f292f4z/kY/KD+HAHrA0UHqAprDaUP8BF1FLgWaxj6GfEbRx6fIPgitCX6KG4soS92MgQ1ZTeuOeg7Dj4mQF9CxkQFR7lIC0p+SyJNck4wT85PlVAKUalQy08cT31OOk1ASzJJOUevREBBmz11Ooo3PTSoMFctNyqUJhAi/By1FyYSKAzqBbz/wPn583XuPulL5JPfFduz1i3SOc2zx6zBY7sutVuvPapLpgakkKNzpA2mBagpqv+r6KyprJ2rSaoFqR+o+qftqCKrmK4Usw+48bx0wZnFPskXzC7OHtB/0mTVndhE3J7gjuWI6hXvJ/PW9gn6jfxg/sr/HQF4Ar8D6wRABgIICwrhC1ENnA7jD74QxBBCENkPlA/qDrcNiQy7C+IKggnrB8YGCAYNBZoDIgLzAKj/0v21++f5iPhQ9zT2hvV39dv1gvZm93L4XPn9+Wv6qfqB+uv5aPmB+Sb68/r6+8n9gwCIAzwGzgi/C+0OqxG8E6UV4RdAGlwcRx5xIAUjyyWRKFArCC6qMCwziDWgN3Q5VjuhPThArkLjRBlHVUkfSzFM50ywTW9O0U71TjVPdk9PT7RO+E0gTb1Lpkk3R6xEw0FVPsw6nTevNKgxhy56K0ooeiTkH8waYxWVD34JjAMQ/vT4AfQ978rqj+Y54ofdddgg04rNkcc4wey6aLUksRuuM6ycq3KsKK7Gr7iwHbEksaCwba/prb+sUKyYrIetOK/RsUe1RLlQvQ3BccSXx2vKyszizj3ROdSt10nbD98m42HnQut87jHxnvPN9Z33DflY+tj7r/2h/1YB3AKLBG4G/QfNCCgJmAkECuYJPAmnCH4IVQjGBxEHkQYLBg8FvAONAocBQQCt/jL9+Puf+vH4Vfcu9lH1dPTL87fzH/Sj9D31NvZ995D4NPm0+Tv6dvop+sT54/mU+nz7pvyR/l8BiQSFB2EKaA13EB4TURV9F+0ZeRzkHj4hsiMzJpco1CoELSsvPTFKM3Y1xTcrOrI8cz9YQhZFckdXSbdKhkvoSyNMYEybTPFMm016TgtP/E6FTtxNr0yQSrtH1kQGQuU+YzsaOG019TIpMCAtKioCJwIjDx61GFsT3g0vCMQCH/4h+jz2HfLi7Yvps+Tu3ljYjtENy9jE5r6oueC11LP4sqSywLJ+s420DLVvtBOzrLF9sFOvK658rcytI68JsRGzQLXZt9i6x71DwHvC8MTMx8TKuM330M/UAdkF3aTgA+Qq59fp5euT7UnvM/Ew8yf1O/eq+WL8+f4OAb4CXwTnBdgG/wbdBgMHTwdMBwwHGQeMB9UHlwchB7kGCga7BCoD7wHuAJX/5/2S/NH7/PqL+ez30fYl9kj1GfQ18xnzkvMt9Nv01vUo94n4mvkp+kL6Kfoj+jv6WfqZ+nD7Lv2Y/ysCyQS8Bx8LhQ5wEe8TcxYjGbAb5B36H0YixSQzJ3wpyCswLpUw2jILNUI3iDnZOzc+nUD4QjlFU0cmSZhKv0vKTLNNSE6DTqJOvk6JTsVNsEyrS55KJEk0Ry5FOEP5QDc+OztaOHk1SjLNLjYrdidFI50exxn2FB4QSQvBBrwCCf89+yz36fJw7nrpvONX3eHW3dBXyx7GY8HNvbW7mbqoubC4JbgruB64Tbfitbi0S7REtBi04LM9tHi1Dbc6uPm4/rm2u7C9Tr/DwOHC98VwybvMHtAp1K/Y29w04BHj4+WF6Ijq9Otd7T3va/Fv8yX16/YS+VX7K/2A/tL/cgEPAzEE6wSwBZsGXQfKBwwINwgaCKMHBgdKBiUFjAMGAvwAFADB/jf9Lvy0+wb7vflt+MH3dvfY9t/1MPUY9TX1HPXw9Af1ZPXA9fH1+fXq9eD1BvZn9uX2fPd3+B36P/xh/mAAkgInBcwHDgoCDBoOfxDkEgkVGBdUGbQbAx5BIJYiBCVzJ+QpeCwpL8cxRDTBNkw5szvCPX0//kBIQmVDbkRuRU5GD0fbR65ILEkTSaVIR0jhRwlHtEVQRApDjEGNP0Y9Bju1OBo2SjNyMGct4ykJJj4ijR6iGngWkRJEDzMMwgjbBOUACv3i+PHzSO6F6DHjRN5k2ZjUhtC8zfrLcMq+yEfHcsbmxerEUcOxwaHAEcCIv9G+Pb4svoS+w76hvmq+l74yv+a/osDNwbfDLMbRyLHLA8+j0hHWCdm621DeoOBk4qzj5+Rs5i7o1+lC67rsnu7Q8MnySvS99aL31fnD+0P9sf5VAAQCbwN6BBsFVAVSBUQF9wQEBJUCdAEKAcUA/P/+/qb+Av86/8r+K/77/R7+B/6F/ev8gvw//PX7ifsC+4D6J/ru+aX5NfnO+K/45PhJ+dD5lfqu+wv9iP4KAI4BFgOmBDYGtwcYCWAKpAv2DFgOwQ80EcYSkBSGFoUYexp9HKMe2yAMIz0lfie/Kdkrwy2JLxExMjIGM9kzwDSDNQ82qzaQN4c4NTmbOfs5aDqvOrA6dToLOnI5wTgBOP02gDW/MyUypjC2LhYsOymlJh4kFSGIHRIaFxdUFFcRJA4YC2UI0wUAA7X/DfxM+Ir0mPBW7BHoVeRT4cHeTdwL2jzY0dZ71QzUntJd0U7QXc95zpDNpMzTyzrLy8peyufJjMlvyX3JismUydLJgcqyyzjN5s650M/SJdVv12DZ+Np33AXeg9+74K/hnOLA4xjlbuad58zoQ+r/66ft/e438KzxSPO59PP1Ovec+M75pvpY+wH8YPxI/AH86Pve+5L7Hfvt+if7gPu++/b7Sfyp/P78P/1X/Sj92/zC/N38zPxk/Av8I/x7/JL8TfwR/DP8nfwC/UP9hf0U/hL/TABaAR4C+AJDBMIF3QZ0BwsIEQlPCkoLAgzwDFsOBxCXEQoTnhRjFiYYzxl+G0Ud+x56IO4hlCNRJb4mwCe5KPkpQSsZLIAs9CzRLeUuvi8zMJYwRjEzMtsy0zJWMg0yKTISMi4xzi/KLlEuny0VLBEqXCgSJ40lXSPMIGgeTxwkGpQXuxT9EZsPdw06C7cIBgZWA6kA4f3a+pX3O/QV8VDuwesQ6T3muuPa4VPgmd6l3Pza69kS2enXbdYR1RzUYNN90mnRcdDXz4DPEc9mzsXNhc2izdXNDc6KznrPstDq0RzTbdTc1ULXh9jA2QDbONxH3TDeG98t4FPhWOIz4y/kluU155TonenS6o/scu7U77Dwp/Ea86r0w/VY9tr2oveO+Dj5Z/lX+Yb5Kfrk+jT7JPtL+/v7zfw8/Wj91/2t/n3/5/8HACcAVABvAHEAawBiAGEAigDjADQBTwFiAcQBeQIlA5IDAgTQBO8F9QatB1kITgl8CogLRQzoDLoNtw6hD2EQJBEhElsTqRT1FVUX3hh+GgEcTx2JHtQfJCFBIhsj7yP3JA4m3yZfJ+onySjJKYkq/ip9Kzos/yx1LZAtki22Lewt8S2iLSQttyxjLN4r7Cq1KZsotyezJkElgyPZIVcgqx6SHDEa5hfUFcYTdxHpDmcMMAorCAIGgwPjAID+YPws+pX3x/Qz8gnw/e2j6wTpoObV5GXjvOG83+zdwtzt27Pa+thy157WH9ZH1RTULNPl0svSTNKE0QLRCdFF0VrRXNGn0VjSLtPf03bUMtU01lPXYNhc2WPafNuR3JPdid5/34fgseH84kfkf+XB5inok+nC6sXr7uxM7o7vfvBh8Y7y4vPz9K31ZvZQ9zn42vg/+an5Ovrh+nj76vtK/MP8a/0S/nz+vv4n/8f/UwCOAKEA1wA0AX8BnQGqAcoBBwJXAp8CvgLDAvECcgMUBIkE6ASSBaIGuQd/CBoJ5wnuCt8LiAwWDc8Nvw63D5QQYRFIElYTbxR0FW0WgRfIGCsahxvWHC0elB/xICUiKyMgJB4lGSbwJp8nTigZKeEpeSrpKmgrBCyNLOAsGC1aLZUtmy1mLSEt4iyZLC0smyvqKhoqKSkKKKsmCyVCI3EhlR+aHX0bWBlEFz8VMhMKEcYOhAxpCm0IWgYIBJwBWP82/fL6aPjI9VfzF/HK7kbsquk+5yjlRONa4XDfz92Z3I7bVtr22MDX09b11ffU+NMs05DSBdJ+0f7QhtAo0AnQJ9BQ0GvQsNBV0TTSA9PC07HU6tU613LYmdm/2uTbAd0Y3iDfFeAU4T3igOO35O3lQeek6ODp+eoy7Jbt2e7W79XwFPJg81/0H/Xy9ez2y/dt+Pf4jvko+rH6MPuu+yr8rfxJ/fT9lP4m/8D/WADNABgBYQG8AQkCOQJrAroCBwMyA04DfwOvA78DzAMSBI0EAAVjBfUF1wbWB68IcQlSClQLQgz8DJUNLw7WDoYPNhDmEKERfhKGE5wUoxWnFs8XHxlnGoobrhwGHnwfxiDHIbgizyPnJK4lICaRJjon7CdeKJko6ih2KQ4qeCq6KgIrXSuqK8MrrCt+K0Yr8SplKqMpyCjkJ+UmriVGJMgiOSGBH5sdqRvGGewXDxY1FGUSkhCuDr8MygrCCJkGVQQFAqv/Qv3b+oL4J/a981nxH+8I7e/qzOjO5hDlf+Pz4WXg7t6j3X7cZNs72gfZ69f41hPWF9US1DPTitL90YrRTNFO0WvRktHf0WDS89Jx0/bTs9Sh1YvWWdci2P3Y5tnR2rXbj9xs3W3eld+34LbhuuL541vloubO5xjpjero6/7s+u0L7xzw//DA8YnyYfMw9PL0sPVk9gf3qvdh+B75xvln+ib7B/zi/KD9Tf75/pv/IQCOAOQAJAFYAYwBvAHZAekBCgJTArMCEANsA9wDYwTtBGcF1QVQBu4GogdPCOIIbgkWCt0KnQs3DLwMWw0mDvgOow81EOwQ6REFEwoUAhUZFlgXkBioGboa3hv6HPId2h7TH8kgkSEuItMilyNVJOokYyXqJYYmICebJ/InNSh8KMko/Sj9KN4ozCjHKJkoJiiXJxQniibJJcwkuyOpIoghSSDuHncd5xtTGskYMRdtFZATzBEgEFcOVgxACkAISwZABBwC+v/g/cX7pPmF92n1VPNP8WTvi+276wLqcuj75oTlDuSt4mDhEuDD3ondatxX20jaT9ly2KrX9NZf1vHVn9Vg1TrVKdUm1TzVgNXi1UTWp9Yv1+HXk9gr2cvZjdpa2xfc3tzG3bPejd974KPh2OLV47DkveX/5h/o9OjB6b/qzOu07IbtbO5g70TwIPEF8tryi/M19Pn0v/Va9tv2ePc3+OX4b/n4+Z36Sfvi+2389Px1/e79aP7c/jn/h//k/1UAugAGAVQBvAEnAnoCxQIqA6YDGwSCBPkEkwU4BskGSwfZB4MIPgn1CZwKPwv6C9YMug2CDjAP8w/kEN0RqxJREwsU+RTyFccWiBdmGGUZWRosG/ob1hyrHWQeDx/AH3IgESGhIS8itSInI4kj4yMtJGEkjyS9JNMkwCSeJJMkiiRVJPUjoCNgIwMjYSKbIeAgKiBUH1geTR0+HCYb/xnFGGwX9BV5FA0TlBHuDy4OgQzoCjYJWQdxBZ8D0gHu//X9A/wm+lX4iPa/9P3yS/G17z3uzuxU69bpdeg45/7lpOQy49nhs+Cm34reZd1j3Jjb59os2m7Zy9hO2O3XqteH13XXX9dS13jX0Ncj2FHYg9j32KHZN9qh2hDbttuH3FfdFt7V3qbfk+Ch4bnis+OD5F7lbeaI52boB+m/6bnqv+uK7Cft3O3D7rHvfPAq8d7xsfKg84T0OvXQ9YP2Zvc++M34NvnQ+aH6WPvG+yf8vfxy/Qj+ev72/o3/IACfABUBjQEBAnMC6gJiA9QDSgTPBFYFyAUyBrYGTgfRBzoIsghUCQIKmAonC9ELkwxYDR4O8A7CD4QQQxEXEvASqxNKFPkUyBWVFkgX+hfGGJgZTRryGqgbbRwbHaodPB7lHoofDiB6IOggXSHDIRAiSiJ1Io8inCKhIpkieiJJIhMi4iGrIWchFCG0IEQgyh9GH64e9x0oHVQcdxt8Gl0ZNhgcF/cVqhRDE+gRnBA4D6gNCAyBChEJlgf7BU8EsAIrAa3/FP5f/LD6K/m89zP2ifTw8onxMfC57i3tyuuf6n3pOOjl5rvlxOTR48DirOHJ4B3gdt+t3t/dQ93Y3G3c7NuC21LbOdsG287aydr42hjbFtsr24bbAtxj3K3cGN243WneDN+k30Tg8+C24YfiUuMF5LTkfOVV5h7nzueE6E3pF+rV6pnrb+xD7Qfuy+6j733wP/H28cHymvNe9An1uPV59jP3zvde+AT5v/lz+hD7ofs8/Oz8of1B/sj+Tv/s/5UALQGtAS4CwgJXA9gDTgTKBEUFtAUkBqQGKQegBxEImAg6CdwJdgoaC88LhQw0DeUNoA5TD/QPlhBPEQwSshJDE9kTdRQCFX0VAhacFjcXwhdOGOsYhhkLGoIaBxuUGxAcdBzbHFMdwh0MHjweeB7GHgIfER8JHwwfHB8VH+IelR5PHhge2B15HQMdjRwbHKMbFxt0Gr8ZARlCGIAXrRa/FcQU1BPwEvsR4RC4D6MOmA1uDB0LywmUCGAHCwadBDwD8QGmAE3/7v2V/Dn71fl0+Bv3v/Vf9A3z1vGp8HDvNe4O7f7r9urz6f3oE+gr50jmeOW85AbkTuOk4hjio+Ez4b/gS+Dj35TfX98t3/Hevt643tfe8N7q3u3eJN+E39ffD+BU4MbgT+HF4SbimeI34+rjjOQX5ablUuYM56/nNujH6HzpRer/6qrrXuwi7efto+5i7yfw5PCU8UryC/PC81709/Su9Xn2MvfS93P4JPnS+XL6FfvK+378Gv2r/U3+BP+z/0YA0ABoARECswI8A7UDOwTfBJIFNQbCBlYHCQjLCHsJGAq8CnELIAyzDDkNzQ1tDgMPjQ8dEL8QXxHoEWQS6BJ4EwQUfxTtFF8V3BVfFtkWQxelFw8YfxjjGDIZeRnMGSYaaxqRGq8a3RoQGyobJRseGywbORsnG/MawRqmGo4aWhoGGq8ZYhkMGZUYAxhzF+wWWxayFfoURhSTE9YSDhJGEXwQpQ/CDuINBg0iDDALOgpECUYIPgc7BkIFPwQjA/4B6gDl/9D+p/2E/HX7a/pU+Tv4NPc99kf1S/RR81vybfGJ8K3v0e727Srtbeys6+DqGupx6djoNeiN5//mkuYl5qblLuXZ5JrkU+QF5Mjjo+OA41TjL+Me4x3jHOMc4yjjRONr45njz+MS5GHkuOQS5XHl2OVL5sLmO+e55z/ozOhY6eTpeOoS66rrPezP7GftCO6y7mDvCPCn8E7xDPLW8o/zL/TP9Ib1Qvbm9nr3H/je+Jf5NPrL+nf7Mvzh/IP9Kf7Y/oD/GACzAF0BCQKnAj0D4AOOBDYFzwVoBg4HuAdTCOAIbgkECpIKEAuJCw0MmAwcDZYNEQ6SDgoPcQ/TDzwQnRDjEBkRYRHDERwSUxKDEtESNRODE6gTyRMJFFQUfBR/FIEUlhSrFKoUmxSRFI4UhhR0FF0UQRQcFPITzBOlE3ETKhPgEp0SVxICEqMRRRHsEIsQGhCjDy4PuQ46DrENKg2kDBoMiAv4Cm4K4AlECZ4I/gdoB88GKAZ5BdEELAR9A7oC8AEtAXQAvP/6/jj+gf3X/Cz8dPu3+gn6cPna+DX4hvfg9kT2oPXu9D/0ovMP83Ty2fFR8dzwYvDb717v++6g7jLuuO1T7Q7tzOxz7BXszuuf63HrN+v+6tLqruqG6lzqPuos6h/qE+oT6iHqNupI6mHqkOrR6g3rOutm66Tr7+s47H3syOwh7YDt3+1D7rDuHu+J7/vve/D88HHx5PFp8gbzo/Mx9Ln0T/Xz9Y/2G/el9zv42/h1+QX6mfo6+9/7ePwB/Yr9If7C/l//7v9yAPcAgQEPApsCHgOUAwsEjQQVBZEF+AVYBsEGMQeYB/AHRgioCBQJfAnVCSEKbArBChMLTgtzC5oL0QsGDB4MJwxBDG4MjgySDJoMvAzeDNkMuAyoDLYMvAyjDIMMegx8DGkMQwwmDBYM/gvOC5gLaws8C/wKswp0Cj0KAgq+CXoJOAntCJ4IWAgXCMYHWAfrBpwGYQYQBqIFNwXrBKkETgThA4UDSQMHA6MCLgLPAYUBLgHBAFgACQDD/27/D/+9/nT+IP64/VL9/vyv/FX89Pua+0f78fqa+kz6CvrD+XH5G/nO+Ij4QPj497f3gfdN9w/3xvZ/9kP2DfbV9Zz1Z/U09QD1zfSk9Ij0cfRU9Dr0KfQb9AP05PPP88vzyPO786vzpfOj85rzkfOY867zwPPI89Lz7fMN9CX0N/RP9HT0nfTI9Pn0LvVe9Yb1rPXc9RP2S/aC9rv2+vY593f3tPf29z34hPjI+Aj5TfmX+eP5Lvp7+sz6G/tm+7H7BPxg/Lb8/vw//YX9z/0Y/l/+p/70/kH/jP/S/xIAUQCSANUAEwFIAXwBtQHtARYCMAJPAoACuALlAgUDKQNTA3kDkAOfA7MDzQPpAwAEEgQkBD0EVgRlBGUEYARkBGsEZwRZBFEEVgRZBEwEOQQtBCYEEwTzA9UDwgOyA5QDbANIAy8DIAMRA/0C5QLKAq0CjgJoAj4CFgL0AdEBqgGAAVwBPwEjAfwAzACcAHMATQAiAPP/yv+q/4j/W/8m//j+1/66/pz+fP5e/jv+Ev7q/cz9sf2P/Wn9S/01/Rz9/fzi/NP8wPyg/H38ZfxS/DT8Dvzx++P71Pu8+6b7m/uQ+3b7VftD+0L7PPsk+wv7AvsC+/f63/rP+tH62PrU+sv6y/rX+t/62/rT+tP62fre+uT67/r6+vz69/r4+gX7EvsV+xX7Ifs1+0D7QftH+1z7dPuC+4r7nPu2+8v72fvs+wX8FPwY/CL8Qfxn/H38h/yd/MT85/z0/Pr8Dv0w/Ur9Vv1i/Xz9nf23/c396P0G/hz+KP41/kn+Xv5s/nr+k/6z/sz+2P7l/vz+Ff8l/y3/Of9N/1//bP99/5j/sv++/8H/y//e/+n/6v/t//3/DwAXABwAKwBDAFIAUQBPAFsAawBpAFgATwBYAGUAZABZAFYAYgBwAHAAaQBnAGcAXgBOAEQARgBHAEAAPABEAFEATwA9AC8ALAAqABoABwD//wEAAQD5/+z/4v/d/9j/0v/L/73/qv+W/4f/f/95/2//Zf9g/17/XP9S/0P/Nv8s/yT/Gf8L/wD//P74/vH+5v7d/tf+0f7K/sT+v/63/qz+pP6h/p/+mf6R/oz+iP5//nL+af5n/mT+Wv5R/lL+W/5c/lH+Rf5D/kr+Tf5L/kr+Uf5b/mL+Y/5h/mD+Yf5k/mr+bv5t/mj+Zf5p/nD+df54/nv+g/6L/pH+lf6Z/p7+pP6r/rL+tf61/rj+wP7N/tb+1f7U/tv+6f72/vv++/7//gr/GP8h/yT/Jv8t/zb/Pv9D/0n/VP9c/1z/WP9c/2r/d/99/4D/if+V/5b/jv+I/5D/of+s/63/rP+z/7//yf/L/8v/zv/T/9X/1f/Z/+H/5v/k/+H/5P/q/+r/6P/s//j/AQAAAPz//P8BAAYABwAIAAsADQAKAAcABAABAP7//v8BAAcADAAOAA0ACgAJAAoACwAIAAUABgAJAAoACwAKAAkABAD9//j/+/////3/+v/8/wAAAAD3/+7/7//0//L/6P/h/+b/7v/v/+z/7f/0//n/+P/1//X/9P/y//L/+P/8//n/8v/x//b/9//z/+//7//u/+r/5//n/+T/4P/i/+3/+f/7//X/8v/1//f/9P/z//f/+//7//r//P/+//3/+v/5//z/AAABAAMABgAKAA4AFQAcACAAIAAhACcALgAyADUAOQA/AEUARwBKAE8AUQBOAE0AUgBaAF8AYgBnAHAAeAB9AIIAiwCTAJUAkwCSAJMAkwCVAJoAnwCjAKUAqwC0AL4AwgDCAMIAxgDMANAA0QDSANcA3QDjAOUA6ADqAOwA7QDtAO4A8QD0APoA/AD5APUA9QD7APwA9QDtAOoA6QDkAN8A3gDgAN0A2ADYANsA2gDUAM4AzQDOAMoAxgDEAMUAxADCAL4AuQC1ALMAswCxAK8AsACzALMArQCmAKIAngCXAJAAjwCRAJEAiwCHAIcAhwCDAIAAfwB/AHsAdQBxAHEAcgBvAGwAbwB0AHQAbQBkAF8AXABWAE4ASgBMAE8ATwBNAEwATABLAEoASgBMAE0ATABKAEkATABQAFIATwBNAE8AVwBeAGQAagBwAHIAbgBmAGIAZABnAGgAaABoAGYAZABlAGoAcQB2AHkAfAB/AIIAhgCNAJUAnQCjAKkArQCwALMAtwC5AL0AxQDRANsA4gDmAOkA6QDmAOYA7QD0APgA+gABAQwBFQEbASIBKgExATkBQwFNAVEBTwFNAVABVAFXAVsBYgFrAXMBewGCAYkBkAGWAZoBngGjAakBsAG1AboBwQHHAckBxQHCAcIBwwHDAcQByQHQAdcB3AHfAd0B2wHZAdoB2wHbAd0B4gHjAd8B3QHhAeYB5gHjAeQB6QHpAeQB3QHbAdoB2QHXAdUB0gHQAcwBxwHBAb0BuwG6AbcBswGyAbQBtgG1AbABqgGkAZ8BnQGcAZkBlwGYAZkBlQGPAYcBgAF4AXABaQFkAWABYQFoAXABcQFtAWsBbAFpAWEBWQFWAVIBSwFEAUEBPgE5ATMBMAEwAS0BKQElAScBKAEmASABHAEbARwBGAESAQwBDAEPARMBFgEaASEBJwEpAScBIwEiASABHQEaARgBGAEZARoBGwEaARcBFgEYARsBGgEWARUBHAEmAS4BMgE0ATYBOQE8ATwBOAE1ATcBPwFHAUkBSwFUAWEBZwFlAWUBbgF5AX0BfQGAAYcBiwGQAZoBpgGtAbABswG4Ab0BwwHKAdEB1AHTAdQB2QHcAdoB2QHdAeUB7gH0AfsBAwIKAg8CEgIUAhYCGQIdAiQCLAIzAjYCNgI3AjwCQQJEAkUCRwJIAkUCQQJBAkQCRgJFAkcCTAJNAkUCPAI6AjsCNwIvAi4CMwI1AjICMQI1AjYCMAIrAiwCLgItAigCIwIbAhQCEwIVAhACAgL5Af4BBQIBAvoB/AEBAvkB6AHgAeYB6wHkAdsB1wHVAdABzQHNAcsBwgG4Aa8BpwGeAZcBkwGQAYwBigGHAX8BdQFtAWkBYwFeAV8BYgFeAVUBUQFSAUwBPwE3ATYBMAEiARkBHQEeARYBDwERARMBCQH9APoA+QDtAOIA5ADtAOsA3wDaAN4A4QDfAN4A4ADjAOQA5ADgANkA1wDbAN4A2ADTANgA3wDdANQAzwDRANMA0ADRANgA4ADlAOkA7ADwAPUA+wD8AP4ACAEWAR0BGQEWARwBIgEeARwBJwE4AT8BOwE8AUcBVAFcAWUBcwGCAYoBjAGOAZQBngGnAa4BtwHFAdIB1wHVAdsB6gH0AfQB8wH8AQsCFgIdAicCMQI6AkQCTwJYAl4CaAJ1AnwCeQJ8AosCmQKbApgCnQKpAq4CrwK2AsECyALLAtQC5gL2AgADDAMdAysDLgMsAy0DMwM2Ay8DIAMSAwoDAAPvAt4C2gLiAuQC1gLMAtAC0QK+AqQCpQK/AtMC2gL2AjgDjgP2A5EEcAVgBh0Hngf9BzYIHQirBwIHNAYxBf4DzQLEAdwAFACV/3X/kv/H/yUAwABkAdEBEwJeApkCegL8AXIBBQGAAMf/Gv+8/o7+WP4v/lH+uv4r/4L/2P81AIQArACyAJ4AcQA0AP3/x/+E/zr/C//9/vL+zf6i/pH+kf5z/if+1v2h/XT9K/3c/Lb8w/zc/AL9Yv0L/sX+Yv/4/6cASwGrAdEB7QH1Ab0BSwHcAIoAPADt/7j/qv+u/8f/DwB3AM8AEwFpAdQBGgImAioCQgJNAikC9wHaAcoBuAG2AdUB/AEZAj4CcwKeArQC1QIPAzsDRwNbA44DuQPAA8wDAQQzBC0EDgQRBCQEDgTTA6sDogONA18DNgMlAx8DIwM+A2gDiwOyA/0DYASqBNQECQVaBZgFngWDBW8FXwU8BQoF4QTHBLAEmwSTBJoEpQSwBMME5AQIBR0FJgU2BVQFbwV0BWkFZgVqBWUFVAVOBV0FcAV3BXoFfQVzBVYFPAU2BTYFJwUSBQQF+QTfBLwEpgShBKEEogSqBLEErASiBKIEpgScBIEEYwRFBBcE2QOaA2UDLwPvAqgCYwImAvcB0QGyAZoBjQGGAXYBUgElAfUAuABgAPD/cv/j/kT+qv0y/eT8vPy8/On8Lv1x/a/9+v1X/rP+A/9L/43/tv++/7v/t/+k/3f/Q/8e///+0f6a/nP+Wv43/gf+5v3j/en96v3z/RH+M/5J/l7+hv67/uT+Av8t/2j/nv/D/+j/GABOAH4ApwDLAOQA7wD6AAcBCQH8AOwA5QDfANcA3AD3ABQBJAE1AWABmAHAAd4BDAJIAm8CdgJ3AokCngKoArkC3wIOAzUDXwOdA+IDDQQlBEkEgASqBLEEqQSqBKkEkQRuBFsEWgRbBF4EdASZBLkE0AT2BCsFTwVUBVsFgwWzBcgFygXbBfcFAwYBBhAGNAZVBmoGhAaYBocGTgYeBgkG7AWmBVUFJQULBeIEtASiBK0EtQS4BM4E+gQcBSUFJwUqBRgF5gS2BKkEugTOBOMECwVDBXAFfAVtBVMFNwUSBd0EmQRRBA8E1wOhA24DRQMtAyADDgP1AtsCxgK1AqIChwJkAj4CGQL3AdMBqwGAAVwBRgE6ATUBNgE+AUcBRwE2ARgB9gDUAKwAfgBSACoAAwDa/7X/n/+V/5H/jv+T/6P/tf+3/5//fv9l/1P/Ov8V//b+5v7b/sn+tv6x/rn+wv7I/tH+3P7e/tP+xv6//rv+vP7E/sz+zf7L/tf+7v4D/xT/Mf9a/3z/jv+i/8L/4P/q/+v/8/////7/+P8BABYAHgAVABEAHwA0AEQAWQB+AKcAwQDLANEA2wDnAPYADAEkATgBSQFcAXMBiQGeAbYB1AHsAfYB9wH5AQQCDQINAgoCEAIjAjgCSQJZAmsCegKCAosCogLBAtYC4ALoAvcCBgMNAxMDJgNFA2EDeAOVA7wD4AP2AwYEGAQsBDYEPgRRBG8EjASnBMcE6gQGBRoFLwVDBUcFOAUrBTEFOwU1BSoFMQVKBV4FYwVoBXgFhgWKBY8FmwWiBZgFhgV7BXAFVQUwBRUFCgX/BOoE1QTLBMYEwAS5BLIEpASRBIIEdgRhBEAEHgQGBPUD3wPGA7cDtgO1A6wDmwOFA2YDQwMjAwMD3AKrAnoCVQI2AhEC5gG/AaEBgwFeATQBCQHiAL0AlgBrAEIAHwABAOD/u/+W/3v/Zf9O/zf/IP8I/+n+yf6t/pX+dP5L/iv+H/4d/hP+Af71/fD95P3I/aj9lP2J/Xr9Yf1G/TD9Hf0G/fH84/zb/NP8yvzG/Mn8zvzQ/NL82fzi/OT83vzZ/N787Pz6/Ab9Ef0Y/Rz9IP0p/TL9Of1D/Vb9bP17/Yb9m/29/d799f0M/jH+YP6L/q3+0P72/hr/NP9K/2T/gP+a/7f/2/8AACEAQQBlAI8AtwDdAAUBNQFtAaQB2AEIAjUCYQKOArsC4wIGAykDUgN+A6QDxQPtAx4ETQRuBIoEsATfBAkFJgVBBWQFiQWpBcYF6QUOBjAGUgZ+Bq4G0wbqBv8GHAc3B0gHUwdnB4AHkQeZB6YHuwfNB9QH2wfsBwMIEwgeCC8IRghZCF0IXAheCGMIZAhgCF0IWwhXCFEITAhHCEAINggrCB0ICAjqB8kHqgeLB2oHSgcsBwwH4AaqBnEGPgYOBt0FpwVwBToFBAXJBIsETgQYBOcDtAN6AzoD+gK+AoYCTAILAsgBhgFCAfQAmwA/AOL/gP8X/63+Sf7s/Yz9KP3F/GT8Afyb+zv75fqT+jv64PmH+TP53viH+DX46vek92D3Hvfg9qH2YvYm9vL1w/WT9WD1L/UE9d70uvSa9Hz0X/RA9CX0EfQC9Pbz8PPx8/Xz+PP68wP0GPQw9EX0WPRt9IX0n/S/9Or0HfVN9Xr1qvXm9Sn2bfa19gD3Tveb9+v3QfiX+On4OfmR+e/5S/qk+gH7a/vd+0/8vfws/aH9HP6X/g//g//1/2gA3wBXAcoBOQKoAh4DmwMWBIoE9wRlBdcFRgatBg4HcgfXBzgIkAjmCD8Jmgn0CUsKoQr0CkQLlQvmCzMMeAy3DPgMPQ2CDccNDw5VDpMOxA7yDiQPWA+MD74P8w8lEE0QaBB6EI0QohC3EMsQ3hDxEAMRFhEnETIRMxEsESARERH+EOMQvRCOEGAQNBAFEM4PkQ9RDwwPwg5xDh0Oxw1uDQ4Npgw5DMcLTwvSClAKxgkxCZoIBwh4B+IGQgabBfIERASLA8cC/wE2AWYAkf+4/t39+/wX/Dj7Xfp4+YT4jvej9r/11PTl8//yJvJN8W7wje+y7t3tDu1J7Inrx+oF6lXpvegt6JPn+uZ25gbml+Uh5bLkV+QL5MLjeuM24/jixeKf4ofiduJo4mTiceKI4pzirOLE4uviIONd46Hj7uNL5LvkPOXG5VHm4uaC5y/o4+iY6VXqH+vx68Tsmu1y7k3vMfAe8RDy/PLj8870xPW59p/3ePhP+Sr6B/vg+7b8h/1X/if/9P+4AHQBNwIHA9kDmwRNBQIGwAaABzUI4wiSCUIK9AqnC1kMAg2jDUcO8w6cDzIQvxBTEe4RfRL6EnAT7xNwFOoUWhXEFSMWdxbIFhcXXBeXF9YXJxh/GMgY/xg4GXwZxBkGGkIafBq1GvIaNxt9G7Qb2hv+Gy0cWRxyHIAclByvHLscrxyVHH8cchxjHEwcKxz/G84bnhtrGycbzxpsGhMaxRlyGQ4ZoRg9GOcXkBckF6QWIhasFTgVrRQFFE8TmxLjERgRNBA9Dz4OOQ0zDCULBQrMCIUHQAb2BJADCQJ5APv+jP0X/Jr6I/m/92n2GvXT85HyTvEJ8M7uoO1u7C3r6em46JvnfOZT5S/kHuMa4hvhIeA031Led92k3OHbKdty2sLZJdmf2CXYqtcz19LWi9ZR1h3W8tXd1d7V69X71RbWR9aK1tbWL9eg1yrYvdhX2Qbay9qV21rcLd0k3jXfROBR4XDioePQ5PHlEuc96Gjpj+q+6/vsMe5Q72TwgvGo8sbz2PTr9fz2BPgE+Qb6B/sA/PP86P3e/sz/sACZAYQCZwNABB0FAAbcBqYHaQgyCfoJrgpOC+sLkgw9DdwNbQ76DowPHBCXEPQQRhGeEfIRMxJmEqES5BIWEzMTWBOQE8ET1RPjEw0URhRnFHEUiRS+FPMUFRU0FWkVtBUDFlEWoxbzFj4XiRfaFyQYWBiDGL0YBhlFGWsZhhmsGdwZBxopGkMaWBpmGnAaexqEGoYaghqJGp4apxqNGl0aPBo0Gh0a2hl+GTUZBBnMGHkYHRjIF3MXEBefFiEWlxUMFZQUKRSlE/8SXRLlEXwR5hAgEFkPrQ7+DSMNGgz9CtcJpAhbB/IFWwSjAucAN/92/Yj7gfmQ98P1+fMV8iPwSe6g7CTrwuli6AHnueWl5LLjquJz4TvgO99q3oXdbtxT22vaq9nf2PjXFNdR1qzVE9V91OfTVtPi0qXSitJg0hzS9tEa0mLSi9KX0sfSN9O80y7UndQm1cbVcdYr1/PXsNhl2T7aT9tk3ErdId4435bg+OE243LkzuVE577oOeqz6yXtn+5B8PzxjvPf9CP2jfcA+UD6S/tQ/Gb9d/5w/04AHAHnAb4CogN9BEMFBQbWBqoHcAgsCecJlQorC7oLUgzcDD0NhQ3SDRoONg4kDgQO6A3EDZYNag1CDRkN/Qz2DPMM7wwEDT4NdA2GDaQNBQ6DDtUOCA9jD+MPORBREHEQuhD3EBYRSRGfEd4R+BEyEqUSBBMhE0kTuBM1FIEUzxReFQAWbRbIFlAX5hdSGMYYghlLGroa7hpZG/gbYhyJHMwcPh2SHakdyR0THlAeZh6CHqwesR6IHmgeYR5DHgge4B3JHXwd7BxYHNIbIRs7Gl4ZlRihF4MWhxWoFHwTABLHEBEQSw/4DYIMhwvgCukJfQjzBm8F0AMcAnEArf6i/JX63vg+9yL1ifIT8Aju+OuC6fDmw+T94j7hR98f3eDardi11gTVYtOV0bXPF87SzJPL/skoyJjGssU5xZvEpsPTwqDC9sJcw5nD68OfxL/FIceJyMvJ/cp3zHDOmNBn0s/TTNUo1xfZp9rd2xfdj9464Pjho+MT5VLmr+di6S7rq+zn7V3vTPFX8w/1gfYY+AH6+fu2/Tv/vABeAhEErgUWB1EIgAm9CvYLBA3XDYYONA/tD50QKhGKEdARFBJREmgSSxISEtURihEUEWgQiw+SDpgNpwyiC2YKCgnTB8UGlwUkBLgCmQGQAFT/F/5L/d/8Y/zC+2D7XPtj+1P7ivs1/Pf8g/0l/jT/dwCWAa4CEwStBTIHqQhGCucLTQ2lDkMQ8xFIE2MU0RWVFxAZBBr3GlUczh33HgEgVyHjIkckiiX9Jp0oDyo8K3os+y13L58wkDGUMp4zYDTQND810jVANjo20zVDNYE0aTMzMjYxWzAyL6otFCx0Kmco7CWRI5khjR8eHb4awBinFvgTJhHDDmwMdglEBroDqQEY//P7HvnA9vXzgPBY7fzqoei85QvjG+EU3y3cNtlS1wDWBdSf0RrQf8+AzqvMAcsSyhbJfMfoxdrEqMPDwfO/Hb+7vrC9DbzMuvy5m7hLthO0DrM/sxG0VLUtt4C59btkvuPAkMOYxlbKEc+d1GzaEuCf5Urr8fAc9pT6xf49A+AH8gsND5IR/BMkFpIXORh5GIcYShi4F+EWsBUBFAYSGhBGDjwM9gnjB1MGFQXIA1QC7wDU/w3/cv65/c38CfzO+/T78fub+1b7ZvuH+1v76fpl+tb5M/mU+Pv3L/cc9hP1ZfTc8wnz5fHX8B/wie/D7s7tDO3V7Brtcu2v7RzuG++J8PjxXfMP9SL3QvlK+3z96f9HAocEDgf3CbgM8A7+EE4TiRUoF2cY5BmeGxwdSx5/H78g0SHMIvYjGCXLJT0m7ia8JwYo0yfjJ3woDilFKY8pKyqeKocqOyoPKr4pFSmMKIEogCgAKEwn9CbNJkcmbiXCJEYklSOlIsMh6iDZH7Ee3h1OHYMcaxt5GtoZKxkoGBMXNxZ9FbgU6BMNExESDRE9EJwP3g7rDQENNQxGCwsKpgg0B6YFEwS5AoQBCwA4/m781foD+bL2RvQ78nHwhe5+7J/qzOi95ozkjOKq4JDeUdxk2t/YStda1VrTodEK0DzOMswiygvIrcXvwvG/2byyuZG2tbNVsWevtq0qrOOqAqpyqSOpYKmbqvesNbAftMa4JL7kw8HJ4c+K1qXd7ORN7NPzRPs7Ap4IjA7rE3YYOByCH2QiiyTRJXYmmSbwJT8kuCGpHhsbFRf0Eg8PXAuvBygE9ADc/Yv6IfcX9KDxle/y7ebsdOxk7JPsCe2q7TzuwO5271jwFvGW8RryxPJR84Tzg/OB813z7fJh8v3xrvEw8Yjw9e9/7+nuKu6d7aTtRO4+72vw2/Gb84H1UPcJ+fv6a/08ADkDXwbECTENRhD6EpYVKhhyGl4cPh4qIMMhwSJmI/8jViQvJNAjoSOGIygjoSJIIvshTSE/IEAfcx6dHc8ceBy3HDAdpx05HtQeGR8BHwAfTR+dH9wfeCCVIZwiGCNoIw4kxCQHJQglWCXfJQYmtSVqJVclKCXDJIkkoCSvJHckMSQIJL0jGCNMIpoh7CAYIEEfoR4jHpEd6BxGHJAbghoGGVUXrhUbFHYSpBDCDgcNawubCWEH7ASEAg4AOv0X+gH3FvQk8TDuhesj6ZnmwOML4cjendwe2pHXfdXR0wTS/88uztXMxsvcyjDKs8kGyeLHXsabxHzCA8Cove6727oEuhS5Fbgetwu2qbQmsxqyErIfs/u0hLfiuh2/3MPLyAPOzdMp2s3gkueO7r717fwHBB4LDBJpGOsdpCKrJscpvyu0LP4ssSyLK1EpFSYgIrAd3BisEzoOuwhOA9X9Gfgd8izsn+a34bPdttqY2BLXHdbn1VjW/Nar19rY8Nqh3VDg5+LL5Sfpsewi8HfzrPaa+S78bP42AFwBAQKeAmoDEgQ1BPIDsAOgA5sDdgMxA+gCugKsApMCTgIQAk8CTAPdBLQGpgieCogMZA4+EPkRdhPvFMwW8hiwGqcbWRxYHWge8R7vHtkevB4iHuQcXxvfGVYY3BbJFSoVlRTGEwETlxJsEkQSMhJtEg0TEBRxFQwXtxiaGgwd6R+JIpUkdyaQKIcq5SvoLB4ufy+MMCYxozEMMgMycjG3MP0v7C5OLXMrvCkeKGomuyRXI0AiQCEyIBYf7R2+HKYbwBoRGokZIRnVGJYYShjaFz0XiBbaFSIVMBTwEoQR9w8IDpUL4gg/BpADmgCK/bj6+vfQ9Dfxpu1E6rnm9uKM39bcgdo02C/Wu9SO00PSAdEn0JPP6s5DzvfN582mzT/NJM1YzU3Nq8yzy5bKFMn3xp/EnMIXwcq/db4QvZq7ErqRuGW3D7f/t0S6g71awbbFj8qpz+LUp9qN4X/pyPHk+eMB1glhETsYnh7ZJMIq1i+0My82KDeyNjk1JDNtMN4sgSiRIwYekxcxEGUIygCW+YzyduuC5Bzeg9ip04zPg8zeylbKRsp/ymTLMc2pz6fSj9af20rhuua/67vwzfWo+i3/nAMMCBsMYA+4ESwT2RMJFBYUEhTEEwwT/BGZENUO0QzfCisJsAd4BpwF9wRIBLMDtQOEBNwFfgd6CbwL3A2jD2ERZxOPFaAXwxkVHCAeTx+5H/AfKCAeILQfHB9ZHh4dQhsAGZ4WOxQPEnMQfw/nDlMOuQ0xDcMMewx6DN4MxQ1fD8QRqRSTF2UaaR2wINIjgybwKGMrvy20LzoxgDKNM0s0xzQiNT811zTQM0syXzAMLl0rgCipJRAj1yDyHh4dNRtlGeAXiBYhFbkTlBLUEV8RJxE4EYwRCxKsEmUT/RM9FDIUExTmE40TBBNVEloR2w/pDcILYwmiBqkD5wBb/oH7Gfh29ODwKe1A6aHlvOJX4AHe1ds22vrYodcj1gDVZdTm0yrTWdKw0SDRndBY0GzQh9A40FbP4c28y97IpMW1wn/A375KvUC7obi5tQmzEbFIsByxu7PIt368HMFQxUzJwM2V01jby+Qy7/D5pwTRDsEXUx8hJs0sVDMrOdk9KEEGQ5ZDM0MHQs4/KjwbN9MwQCk+IEIWYwyEA7r7b/QO7Vnld93B1Z3Oc8jOwzPBpcB5wd7CfMR8xiHJo8xH0SfX69375O/rmvLD+Dv+QwNfCKYNkBKHFmQZPxskHCkclRu7GrwZgxjaFogUnRGGDsELdQmKBwgG/AQVBOICgQGeALMAtQGVA2kG3gkODV4PERGxEkwU0hWbF/MZbBw0Hv4eDR+WHqwdlhyuG9canhniF9AVZhODEIQNLgvgCTYJvAhqCFgIbgiaCAMJ1AkSC8EM5w5QEacT+RW9GCkc2h9UI2Um6yicKlorfit9K4orvSs5LM0s1yzVK/IprSc2JY0i6x+mHbUbyRm5F6gVvBMKEsIQDRDND7kPqg+mD7IP2A85EPQQ+REnE3gU0hXsFp8XIBisGCAZORn4GHQYjhcuFo8U+BJIEUsPMQ0sC+AIywUkAqb+ift2+Gb12PLj8PPupexM6jLoJeYI5E3iSOGY4Mff9t523hTect3B3GvcT9zs2yjbR9o+2bfXw9Xu033SFtFJzwnNbcpYx6/DtL/xu9e4hbbftMWzNbNFswG0erXzt7i7rMBGxiPMatJn2RfhZumP8r78egfWER8bIiPjKYwvkjRaObA980DAQgdDpUFTPkQ5RDMLLa4m1h85GLsPdQbL/EDzLeq64TXa8NPIzjnKCMaVwmHAoL9fwJvCAMYFyoTOxNPE2QXgSuYP7bb0mfycA2AJUQ7QEswWKBr5HEYf5SCuIXMh9h8yHa0ZKRYDExMQJg00Cj4HSQR4Aen+mPyr+qD5vvmH+kL79vtL/YT/OAIiBXEIJAypD5ES/xQZF6sYuhniGoccEx6mHkUenB3QHFkbCRl5FkMUTxIyEN4NowvXCaIIBQjcB/0HUgjSCGYJAwrWCiQMEA6kEOETkRcoGysepyDuIvMkYyZWJ1UolymrKh8rDyu7KgkqxCgFJwol3SJwIO0dkBtcGTsXShW0E2cSNhEkEFQPzQ6EDpYOHw//D/sQDRJRE7sUIRaBFwIZqBpAHJ4dpR5AH2wfRx/bHg8e4BySG0oazRjfFq0UiBJUEMkN+gpDCKcF4AIBAHv9cfuX+cj3QfYX9frzt/J/8Xrwhu+c7vrtou0u7Wrsp+sZ617qKOnW5+rmMeYQ5XTjvOHp35Ldptqc183UENIozyfMNck7xhHDy7+yvPe5jLc2tdCyjrDkrjKus67EsOG0Brtaws/J9NDl17PeXuVZ7GX0yv0KCGMSUBx5JYstZzQYOok+ckGqQjtCMkCcPNo3nDJRLdAnsyG9GskSvQnL/4z1wevh4h/bftTQzs/JeMUNwtO/976wvyPC78VPytrOytNU2UTfb+Uw7Nnz+fusA4AKlxAcFu4a4R7vIRMkQyWDJdEkHCOPIK0d4RoSGOoUVhF7DWEJGAX8AGb9TPqf97r17PTF9Jj0j/R99ZH3E/qM/F//3gKABpgJQAziDnMRuRPhFSMYIBpRG9IbFhz7G/QaERkYF3oV1hO7EWIPRg2DC+kJdAhZB8UGuQYYB78Hmgi5CTML/wwSD4QRYRRnF0waIx0tIFAjFiZOKDYq5Cv7LCctjiyKK0AqvSgjJ4MluSOtIYcfYB0AGzQYNRVtEvYPuQ3PC4EK9AkTCr0K0QsPDTsOXg+kEA8ShRMKFcEWoRh7Gi8crB3iHtIfmCAsIT0hiCBBH8YdGhwCGpUXORUTE+sQnQ5SDCkKDwj9BQwENQJMAE3+bPzI+lX5Ivhb9+j2ffYG9q/1XvWr9IPzTvI98fTvM+5X7NTqh+kQ6HzmB+V/43jh9d5g3OfZYNfI1FbSFtDBzS3LkMhCxnXEKcMwwj7BDcCBvo28PLoBuMS2QrePuVm9dcLLyM3PttYs3WDjfOl072r1z/v3AtoKXBNoHI0l5y2INPg4Jjs6O5o53DZ3M7EvyCvRJ2Yj4B0OF2wPYAe+/k31fuso4srZaNICzNvGQcNDwZPAsMBKwZ/CLMUCybTN+tL/2NjfIud97gH2z/2kBSQNTRQXG/IgQCUfKCcqeyunK3YqVSjMJQgj+x+dHOkY6xTCEFYMSAeNAeL7N/fB8ybxXO+n7uTuiu+E8DfymPQV93z5QPxo/zoCbgThBnIKwQ7IEjMWNRmIG4kcNxxHGzwaFxnmF94W3xV7FKIS1hCBD4IOiA2GDI8LpAq6CdgIJAgCCPAIAAuXDQcQRBKfFPEWsRjMGdIaKhyaHcoewB+mIG4h9yE4Ih8ihSF2IC0ftB3OG3cZFRcMFWQTDhIeEZoQShD2D5IPDg9RDpMNWw3gDcoOwQ/dED4SpRPHFMUV4RYGGPoYshkiGgMaOxk6GHwX5xYbFiQVThSGE14SuxDrDiYNZAumCf4HUwaTBAcDCAJ1AeYAYAAwADEA1//3/gj+Vf2f/L77/Pp/+vH5EPkN+Bj37fVE9EbyNPD27WDrqugp5t7joeGG36zd5Nvp2cfXtdWw05PRfs+rzRLMcMq+yELHL8Z5xfPEd8TgwwPDuMH2v/29d7w2vKy9zsBkxTHLsdEa2PfddePl6EruvfPH+esA7wgbERcZ+CCCKOQuRTNgNXc1ADRsMQUu5ik9JXkg1BvVFqcQCgmbAAr4au+Q5r3dqdUEzwLKVMaYw87BVcFewoTEQsexyljPVNUU3AjjFepE8XX4qf8QB5MOoRXOGzgh/yWjKYMruCsAK8gp0ie5JJIg7hthFx4T4w5cCqoFNgEB/Yz4svMx7+3rAeoO6RbpTepu7Ofun/Hq9KT4MPxh/7gCbQb6CfoM2A8WE3oWYBmaG1Ydih73Hp8exh2GHNka6xgIF0IVfxPUEXkQbw9+DoUNlwzQCzcL0AqeCpUKvQo7Cx4MRA2cDkIQKhLmExAVwBU/FocWeRZSFnwW4Bb1FoYW3hVBFZ0U8hOBE2cTWhMDE1oShhGoEPsP1w9YEEcRaRKmE9UUsxVAFtEWjBcuGIAYqRjQGL4YThjJF4gXZhf+FjgWORX7E2kStxA9DwMO4QzWC/0KLgovCScIcgcdB98GoQaQBrUG0gbJBr4GwwbFBr4GuQaQBhMGYAW0BPYDzAJAAbH/Kv5F/Of5g/dn9VHz/vCz7rTswep/6CTmHeRi4p7g4t6V3b/c6du82l/ZGNjt1rjVadQJ06PRQtDiznPN8ct4yhvJtscFxt3DU8HMvvm8j7zZvbbA/cSmykXR3dee3bDi2Od/7YTz7PkvAZkJtxKxG9ojzio9MNAzTzXNNLYysS88LG4oJCRjHzkabhSXDZ8F6fzW84fqSOG+2HvRjsvIxizD28C/v5C/N8Dbwa7Ezcgvzo/Ug9vF4kzqDPLC+U0B3AiFEO4XjR4mJMUoTyyILnUvUi87LhQs1Si+JCcgVxuDFroR4gzjB8QCgP3492Hyce3K6V/n2eVD5dXlQuft6MnqV+2s8D30wPeE+5j/bwPFBiMKBA7sEScVyhc9GiUcwRwhHCIbPBoaGYQX5BWPFD0TmRHJDyEOpAwsC9AJuwjpBzgHrAZsBpYGNgdKCK8JLAufDP8NLg8CEI4QJBH2EeoS0xOeFDgVfhVuFTIV5hSLFDAU/RPrE7ATJhOGEiQSGRJQErUSOBO9EykUZhRtFFYUcRQHFfUVzhZfF8sXGhgbGM8XiRdyFz0Xnha2FbQUdRPoEXEQhg8AD1cOWA0/DC8LEQrmCOoHQgfjBroGtQaiBm8GVwaUBugG7AakBmkGTAYNBqMFVQUyBekEQgRcA0ACywAU/3n9Hvyn+tH41vYA9S3zHPHp7tXs1Oqt6F3mE+Tt4fffVt4R3ejbj9oN2ZLXEtZb1ILS49Cyz8fO4c3tzPjL/srXyVHIXcYzxDzCzsALwBTAJMFpw8zG+sqAz9/Tu9cY21re7uEl5nHrY/Ih++cEVA4nFr4bEx+PIOQgwyC+IEUhdCK0I90jHiKaHg4a5xQGD1MIGAHE+any/uvx5bHgfdyI2YvXpNUS0xLQqs2pzC/NI8+E0hrXPtxU4SXmueov7+zzcPmo/6wFpAqfDi0SZxXaF1YZRxojG8MbmRtOGh0YkhUME2UQQQ2hCf8FvQK6/678yPlw97r1a/Rt8+TyzfII87rzJfUZ9xz5Gft7/WIATAPLBRYIhQrlDMIOExA1EVUSURMMFIAUmBRJFL8TKBNoElAR/w/GDrANkAx1C7cKkgrzCpkLQQycDHoM/Qt3CxEL0grrCqYL+gx1DqgPexACEUERMRHWED8Qkg8VD/8ONw+ED+UPdBAKEVARPBEXEf8QyBBuEDgQThCAELsQUxGAEu8THxXpFWMWexYWFmgVzRRnFCUUAhT2E9ATbRPzEpASGxJJERUQrA4RDTwLgAlXCN0HxwfhByoIhAisCKMIqgjgCCAJVAmPCc8J8QkACjYKmQrrCv8K2ApkCnEJBghiBpkEgQImANz9vPuG+S/3HvWR8yzydvBx7mjsb+ps6HTmveRZ40LihOEJ4X/gu9/43nXe9N0B3ZHbAtp42LnWotR40pjQIc/rzbzMaMvUyezHmcXfwgXAnL04vD684r0nwb3FEsuk0B/WLNt/3z7jMOcl7FDyZ/kzAaYJYRKHGg0hRyU8J5UnDSffJfcjtCH8HycfLh6UG/cWNREYC4MEKv1q9Sfu9uez4tDd/9in1K/RgNBq0FfQCtAt0CzRrNJa1KvWUdpL3+/kmOr27/X0vvmx/vADBwlQDZwQJRMPFUUWyxb4FkcX9BfCGAAZARjDFfMSHRAhDb0JQwZmA18Bwv8V/kv8ovpf+a/4dPhH+AP4G/j5+EL6Q/sE/FX9of9jAvMERgeCCWMLiQwQDWMNtw0ODpMOYw8oEGQQGhDSD+IPFhAXENIPXA+oDpQNMQzdCioKfwq/Cz0NRg6eDnkO/A0jDRkMYQttCyEM7QxZDXYNqw07DvoOjQ/ZDxAQQhA4ENEPYQ9yDz8QmBEnE6gU3hWrFicXfBekF4YXTRdfF9MXWxiyGPEYURnCGfcZtxkDGQkYBxceFikV7xOQEn8R5xBjEIUPbw6NDe4MOQxCC1MKyAmtCcMJzgmzCYgJhwnYCWgKCAuxC3MMNA2hDYEN5AwCDAwLKQphCYwIhwdzBosFrQRmA4ABR/8N/cf6Qvik9VvzrvGN8LPv2e7S7arsgus/6qTou+b75MXj9OI04o7hQOEv4ebgF+DP3ifdIdvl2M3WDdWF0wfSnNBZzyXOzcxQy+HJqciIxybGT8RVwgrBOMERw1nG28p00KbWedwj4b3kLuhh7LDx5ve6/gcGnQ3tFCgb0x8XI2Ml0iYtJ2EmvSSlIlQg0x0HG6UXWhMsDmcIKgJU+wH05uy95qThN90w2afVz9Kx0DTPOc7SzV7OQtBc0/jWg9ob3iXioeY46+Lv+vSo+owAGgb0CucO6REmFOkVTRc3GKUYuxiHGOQXthYUFSgTCxHRDoMMAQoyB1IExwG5/wX+pfzF+2T7Pfsl+zz7nPs0/A79Yf4gAOMBXwPDBEIGrAfSCOQJHAs/DOMMAw3dDG8MpAvKCmkKigqmCmUK7AlnCa8IqAehBhEGIwa1BosHcwhQCSYKDAv3C8EMYw0GDr0OYQ/ODxYQahDkEHcR9xEtEvsRdhHHEPUP9w7pDQ8NiAxDDCcMMAxaDKgMKQ3YDX0O4g4rD64PchA6EQASGBOyFIcWMBiLGZcaOxtnGz0b1houGmQZxRhfGMcXmhYGFXMT6BEoEDwOgAweC+YJrAh6B3IGtgVqBZkFDwaCBuwGdgcgCL8ITQn5CdAKqAtQDLUMxAyADBkMwQtRC4AKUAkACJAGrwRGAq//N/3R+lv48PW486/xyu8b7pPs7OoW6WPnCubS5HTjJ+JT4e/glOAa4LTffd9B38Pe8N3H3E3bp9kL2HzW3tQ508HRhtBQz+DNKMxGylDIUMZWxInCTMErwYfCQMXVyNjMG9GA1c7Z4d3p4Wfm0Osk8uD4Y/9nBRQLexBMFS4ZJRxjHtwfQyB4H60dMBtCGBsVwRHoDToJzgMj/of45PIs7arnuuJd3lHadtYE02rQD88Bz93PK9Hf0jrVOdhq24ne6OH+5cTq1O/h9Nf5rP5IA5UHYwtiDoIQGhJ+E4wU5hSNFOwTTBOMEmcR0Q/uDeQLygmUByYFowKGAC//aP63/Qb9qPzG/DP9zP2y/vb/bwEAA6sETAadB6wI6Al6C+oMtw0ADjIOVA4UDmQNmAzzC2ILtQrOCaEIUgc9BqsFdQU8BfUE8gRSBcMF/wVBBgoHkQiKCoUMTw4AELYRVBOfFI0VYxZrF5sYqBliGtQaDhsHG6ka5hm8GE0X4hWyFKoTlRJxEXkQ0g9fD+sOZQ7cDXYNTQ1PDVUNbw0FDl0PIxGwEs4T0RTqFc8WOxdnF7sXRRjEGA4ZIxkNGdcYlRhCGKsXrBZrFSoU/xLnEfgQTxDQD0oPqA7qDQEN8Av+CnwKXwpPChoK0wmUCUgJzwgrCHYH0QZNBs0FEAX/A+UCCwJIATAArP4U/aL7JPpk+Ij23PRy8yTyzfBa787tQuzU6m3p2OcP5ljk5uKZ4T7g5d6+3bvcnttA2qbY49YE1RjTItERz+DMuMrNyDLH28W+xNbDB8MxwkXBScBcv8++Kr/SwL3DkccRzDTR29aP3LvhJuYm6lDu9PLr9wX9cwKKCPkOpxSSGLAasxsNHKMbWRqEGJ8WvhR/EncPhwv7BlECyv0g+ebzGe496OXiL9742UfWV9NY0TzQr89ZzzXPuc9s0TzUfNep2vrd5uFl5vXqS++l81j4WP05AogGGQoZDcwPJxLHE24UaRRFFCUUuRPCEmgR9A94DtIM4gqoCE8GIQRCAogAxP4p/Sv86/sV/Fz8y/x7/U7+IP/8//MA/AEdA30EBgZPByEI0gi7CaoKIwsnCx8LJQvjCjUKcAn3CMwIyQjdCP0ICAkBCRsJfAkRCs0K2As8DakOww+ZEIARnBLNE/4URRaVF6gYRRmOGcwZEhotGvIZeRnvGEwYVxf6FXsUPxNcEo0RmRChD/kOuQ6bDkoOyQ12DaANMQ7QDm8PahAAEusToxUKF3QYDhqJG4QcAB06HVkdaB1/Hbkd/R0UHuMdWB1bHOsaRxm8F1oWBxW9E5MShxGLELIPHg+/Dk4Ong28DMkL4QorCskJtwnPCfYJEgrrCVUJcAiNB7sG0QXHBMgD4ALjAcEApP+Q/k79wfsi+p74F/dk9ajzE/KU8ATvcu0A7KvqXOkd6OzmkuXn4xXiZeDd3l3d9dvY2vLZ6diP1/jVOtRH0ivQI85rzA/L/MkeyVbIeMdoxibFycOHwsjB+cFPw7nFB8n9zEPRcNU62Y/ckd+Q4vblEuru7ln0Fvrg/1EFBwq/DVYQxhE5EiAS1BFHEVIQNQ9dDqcNQQyTCdsFvAFs/cX44fM/70jr8+f35CTikN953Q3cPdvL2o/ajNrU2n3bxNzr3uDhMuWf6FDsVPAx9Gj3Pfps/RwBkAQNB7QILwrLCzcNDQ5WDoAO1A4ZD80O1A2yDPELdQuwCmIJ4wegBrQFEgW/BLgE6gRWBfsFnAbiBtgGAQewB5oISQm2CSwK0gqaC28MMw22DfcNLg5dDhcOFw3eCzgLLwsUC4oKCAogCrcKQQuGC7sLGAyRDPoMOQ1hDcANsw5NEB8SnROnFI4VmhasF3oY8xhPGb4ZIxooGqYZ6xiGGMQYWxmwGWYZqxjdFwcX5RVrFBITeRKuEiYTXxNlE6ETOxT2FIIV0hUYFo0WQxcVGMoYYRkjGkwbmhx4HaAdXx0fHekcghzjG1Ab+xrJGm8auRmkGGUXSRZ1FckUDRQ9E4MS7RFPEX0QhQ+dDu8NbQ3kDCsMWguqCisKpgniCOwH7wbrBbkEUwPmAZgAcP92/rT9EP1U/GX7UfoQ+Yn30vVC9CLzcPL/8a7xU/G08LTvbu757Fjrpeki6OXmr+VD5MXifOFX4Affcd3G2yfaedin1svUB9NZ0bHPEs5/zPHKc8kyyF7H8ca3xoDGUcZextDGmseeyPrJE8wpz/vSC9ct24zfNuTI6M3sN/Bw8/D24/oY/zoDGQenCrMN1A+rEFMQYg9kDoANkgxvC/gJGgjRBSED//9h/JT4IPVI8sTvK+2A6i7ohOZs5Zvk6ONx437jKuQx5TLmOefO6EPrLu7e8C3zf/UX+Lr6Ff0m/yIBLQNBBTkH2ggFCt0KowtODI8MQgyrCyoL3gqjClMK6Ql0CRIJyQhyCO8HbQc8B2cHpAe+B88HBghhCM8IUQnVCS0KVgqUCg4LkwvrCz0Mvgw8DT8NqQzKCwULgApGClMKfwqgCsYKFAtrC4MLXwtiC8YLRgyNDLkMQw13DiUQ2REwEwkUfBSsFJ0UThT/EyUU/BQ1FjIXmxeKFzwXuhbbFZYUNRM0EtMR7BEdEi0SLBI5EkQSIhLLEYYRuRGKEqATdRTlFFAVDxYHF98XkhhyGZ0avBttHK0cuxy5HKAcZxwMHJQbHRvaGuQaDRsJG60a9hnvGKwXShbtFMATABPGEtUStBI0EpURFRGAEIMPKg7eDN0LDgtJCpkJHQnUCJIIDggPB6IFEwSTAgoBZP/c/cL8B/xf+7X6Hfp9+Yz4Qvfs9br0kPNv8pXxG/G78DLwnO8u78ruM+5f7WPsMeu/6T/o8+bb5dTk4uMU4yniwuDX3sfc2Nr82CPXe9U81FnTiNKP0WPQFs+3zVHMA8sYyunJocoYzAvORdCa0tHU1Nbc2DPb5N3T4BTk2ucY7G7wkfR3+CP8Yf/uAb4DAwUUBkEHnQjeCaIKygpzCpsJGQgABsEDvgHt/wf+7Pui+TT3wfSQ8sbwRO/x7e7sWez/65nrO+s767XrgOyK7ePug/BB8hr0JPZD+DH65/uw/aj/hQEBAzQEaAWrBtQHyAiSCUsK+gqKC8ULiQsCC4gKRgoaCugJzQnlCRIKIAr7CaUJOQnoCN8IAQkNCQYJPAnCCTkKXgpxCsUKMAtJCwoLxgqdCm0KLAryCbcJYwkWCQkJHQkECcwIyggCCQcJsAhnCJIIGQm4CXIKXQtTDCcN8Q3VDqUPLBChEGURZBIwE68TTBRYFY4WaBfGF+wXHBhPGF8YQRgdGCYYYhibGJEYRhj/F/0XOhh5GJMYpBjeGDgZaRlDGfQY4hgtGaEZBBpZGrQaBBsfG/MaiBrvGVsZBhnsGMQYZRgGGN8XwxdbF6oW+hVwFe8UZhTkE3ETBxO/ErMSrxJiEtgRbhE8EesQRBCIDwsPwQ5nDt0NLA1iDI8LugrBCXoI/gaoBZYEhAM5AuIAxf/X/uD9w/yD+y768Pj69zf3WvZc9Zv0NPS188HyrfH+8J/wHPBg76ruAO4g7QTs6erb6bDodud05qDlmeQ949vhquB43xHemtxV20baRtlG2EDXLdYl1VfU2NOe07zTadSb1ezW/9fY2LDZsNry25rdxN924p/lEul27ITvUfIZ9cb3AfrK+4/9k/+WAVoDAwW2BhwItQhxCKkHpQZyBScE9QL/ATUBXQAq/3n9jPvP+Vn47faU9cj0vPTu9Mf0XfQn9DP0MfQq9I30j/Xz9nX4A/p5+538bf0n/uT+kP8xAP0A/QEBA+0D0QScBR8GZAatBgMHKwciB0IHtQcsCFYIVwh6CMMIDAlOCZcJ1wkPClsKswrZCrsKrgr0ClQLgwuiCwUMmgwADQ4N8AzADG8MCwy+C5ILdQtrC34Ljgt6C2ELbguLC4YLegupCwMMLwwoDE8M1QxtDdENLw7SDpsPLxB4ELoQKhGuERkSZRK3EiQTnxMBFDsUaBSoFOwUARXhFL4UzRQFFUAVeRXIFTIWkxbRFvoWNxedFx4YlBjrGC4ZeBnJGQ0aPhpmGooanhqXGnoaURoYGtYZmBlLGb0Y5xcKF2AWyxUVFVoU7hPYE8ATbRP9EpcSIhJ5EbQQCRCdD3wPoA/VD9kPoQ9ZDwYPew6wDeIMNgyOC8kK/Qk8CXQImgfGBvQF7ASjA14CUgFYAD3/G/4j/U/8fPuu+u/5MPly+N/3fPcL92n22/Wa9WX12vQH9E3z0PJk8vDxf/EF8WLwnO/B7q3tPey26orpwuj15+rm2OX05BDk6OKD4SPg+N4P3mXd4dxY3LfbHdus2lXa9tmp2cfZjtrF2+jctN1k3kvfXOBV4VriDOTV5l/q+O1F8V30Rfe6+ZX7D/2C/h4A6wHvAxMGDAiPCZIKLwtVC9QKtQlcCCwHMAYrBeoDfgI5AVkAt//r/tj95vxl/AP8Ofse+lz5Tfmg+fn5dfpU+4j80P0D/wYAyQBhAfsBjgLqAiYDpwOiBM8F1AapB2II5AgSCQkJ9gjaCLkIvAj4CDQJOgkqCUgJmAnqCSwKewrpCmkL3AscDBYM+QsMDFIMlQzdDHoNdA5SD7IPsQ+MDyAPPg4pDWUMIgwzDGsMvQwLDSsNCA2ZDM4LxgrtCaIJ2AlVChILHAwrDdUNEQ4xDl4OgA6vDj8PMBABEUoROhFCEXARhRFxEXURwxE7Eo4SjRJaEkUSahKGElES+xH8EX0SJhOpEyUU4BTFFWkWiRZTFjUWcRbfFigXPhdzFwkYxBgmGQ0ZyhiWGEcYohe/Fu0VUBXgFI8UShTkE08TvBJLEs4RERFAELsPhw9TD/kOnA5PDvwNpQ1fDQYNbwzRC4kLdAsMCzgKaQnUCBgI7waoBacE6AM1A4YC0gH9AAUAEP8O/sT8Q/v5+Q/5OfhU95/2LfaW9Zn0kPPO8g/yA/Ho7ynvq+4K7kDtiuz262jr5epz6uTpNOm+6LXoq+gi6FLn1ua65nvm3uVD5fbkxuRr5PPjleNX4yjjFuM042DjX+M44y7ja+Pa413kB+X35THnpug86sbrHO1b7tLvhPEG8yD0O/Xm9gT56vpH/IP9Ff/MAAICcwKkAjYDBARjBDkEQQT3BMcF5wWEBVQFWwXtBN8D1QJAAtMBJgFWALb/Xf8r//P+lv4y/gv+Fv7g/UT92Pwf/bH95P3r/Xn+gf8yAEYAUgDOAG0BvwHaARICiAIfA6sD9gMEBDYEzgRrBYYFZAXIBbgGUAckB94GIQeQB5UHcwe8B1IItAjwCHMJGApMCgwK9wlXCrgKuQqpCgsL3QueDOsM3QzbDCYNjw24DaENvg1ZDhsPiA+sD+IPORBrEHIQixC+ENgQ1xDvEBkRCBGyEHcQiBCbEHYQUhBqEIkQXhAJEOEP7w/0D+QP8A8YECQQARDlD/UPFxAzEGMQrRDfENUQthCyEMMQ0BDqECwRghHFEe0RChIbEhES9RHfEdUR1xHlEfwRChIKEv0R1hGJES0R7hDLEJkQSxAKENwPiQ/5DmIOBA7MDYUNJQ3DDFsM3wtfC+cKbgrxCY8JVgklCd8ImwhwCDkI1AdcB/wGpAYxBq8FPwXQBEQEpgMcA5sCBQJcAbQAAAAf/xb+A/3z++j67fnz+OL3yfbf9R31NPQO8wbyWfG/8OjvBO9h7tvtLO1z7Pjrm+sa66Lqiuqp6ozqPeot6mzqjepj6jvqTOpu6nfqfOp/6lvqFerj6crpkOkz6QjpOelv6VfpE+n16Pzo9ejv6C/pu+lg6g3r4uvp7ADuI+908ADymfMY9YL26fdZ+dj6VPyo/cb+3f8DAQQCpwIWA5MD+wMEBMUDmAOEA0MD1AKCAlsCGAKhASYBuQA6AKz/Pv/8/s7+zP4R/1v/Vf8r/0P/g/91/yn/LP+c/+n/zP+0//L/KQD1/47/W/9J/wr/sv6D/nT+WP4v/hL+8v3G/cP9Ef6E/uf+Vf/2/6MAJwGjAVYCMQP+A7wEhgVCBs4GTwf5B68INwmkCSkKpQrVCs8K3wr/CvUKzQrLCuMK0gqcCogKlAp7Cj4KLwpiCpEKqArsCnkLAAxKDH0MyQwfDWkNvA0kDoYO1A4hD2QPcA9ND0QPaA9wDy0P3Q69DqsObg4eDvMN5A2/DXgNKg3WDH0MPwwsDCUMCgz8CycMcAycDKUMtQzTDOAM2QzjDAwNQg11DaUNxg3EDaYNjQ2ADWwNPw3/DLIMWAz8C6ULRwvLCikKbwmvCP0HaQfnBlcGvQVGBf0EqgQdBHwDDQPNAoQCIALEAX8BLgG6ADAAqv84/+b+pf5B/p394vxN/NT7RPuf+hL6ofkj+Zf4IPi19x33Wfa19Vn1BfWC9AH0z/Pe89Pzh/Mu8wbzCPMB887yfPIp8tjxa/HL8BPwfO8f79jufe4Q7qntQO2u7OvrJuuW6jrq8Omq6XTpTuke6eno3uga6WfpfOle6V/psekx6qjqF+uy647shu1Z7u/ucO8U8ObwtfFY8ubymPN+9GX1D/Zx9rf2DPdv97/37fcb+Hf4+vhw+bz59fk3+oL60Pou+6L7F/x//On8Xf3D/Q7+V/63/hr/Y/+V/8H/5P/5/wYADgAFAPn/FABZAIQAZwAtABAA+P+x/1z/SP91/5P/g/+A/73/BQANANn/uv/o/zkAawCDANIAcgEHAicC8AHvAWUC9QIyAy4DTQOrAwwENwQ3BD0EagS7BAwFRQV6BdEFPgZ9BnoGbwaVBtoGHAdjB68H2wfeB/sHWAixCL4ItwgECZMJ6wneCboJuwnECb0JyQn5CSUKMAo1CkIKLwrdCXYJLQkHCfMI5QjACG0IEQj1BwAIxQcrB60GoAasBlkG2gWwBdUFvwU1BZkESgQ9BDsEKAQABMYDnAOaA5UDVgP6AtUC7ALtArQCegJjAkoCGgL+AQUC9QGpAV0BSAFHARwB3QDKAOYA/gD7APIA8gD4AAEBBQHvAMEAnwCbAJYAcAA6ABEA8//W/9P/6f/j/6T/Zf9n/33/TP/e/p3+uP7p/uX+v/61/tL+9P72/sr+h/5j/oH+tf6x/nb+VP5v/ob+XP4V/vT99P3e/Z79UP0Q/eH8yfzB/LX8nfyO/JH8gvxC/OH7hPs6+wn7/PoF++36ovpd+lf6b/pl+kD6M/o5+h766fnS+eL55/nQ+cP5yfm4+Xr5OfkV+f/45vjN+KH4R/ji97731vfE91z39fbe9t72nvY89hb2JvYX9tn1rfWl9Yz1UvUr9Sr1I/UD9QT1QfV99X/1dPWe9eP19PXO9cL1B/aA9uv2Jfcx9zT3UfeQ98f30PfD9973LPh3+I74ifik+PT4U/mH+X/5Y/lz+b75Efop+gL65PkW+pD6Bvs8+0j7b/vB+w/8OPxo/NH8Vf2n/b392v0q/ov+1/4V/1z/qv8AAGkAyQDyAPQAHAGEAeQBCwIqAncCyALhAugCIwOCA8ED2APvAwkEFwQ8BJUE5wTsBNUEBQVtBacFqQXTBTsGiAaOBooGpQbBBtQGDQdlB5oHogfBB/AHzgdXBxwHbwfjB+sHpgeEB5oHqQeWB3cHWwdQB2AHaAcwB90G3QY7B3IHOQf7BhYHQQcUB8YGxwb3BuwGsQalBsEGpwZPBgoG8QXOBZoFkgXABdkFpAU3BcUEfASABLoEwQRWBMgDhANvAyIDqgJ4ApICfwISAr8B0QHaAV4BmgA5AFwAeQAhAJP/Qf81/xD/pf43/g3++f2b/fP8a/xG/E/8O/wI/OD7wfuB+xX7pfpc+kj6Sfoo+tP5evlV+Ub5A/mV+Fv4bPhk+Pj3a/cY99/2cfbb9X71gfW99QD2JvYI9qT1N/UC9fn09fT79A714fQp9CLzavJM8onyyPLx8hPzJvMU887yU/K48TPxCPFX8QXyv/Ir8yPz5PLD8rryhPIt8ijyq/JV87jz+PNp9O30GfXo9Mb09PQ99WP1avWB9cf1Svbu9nr31Pco+JT41fic+Cv4JvjH+KP5UPrW+l77xfvf+8b7vvvc+xX8cfzj/C/9LP0Q/SX9X/2B/aD9FP7b/m//Z/8F/8z+0P6//oH+af6//mL//v9jAIwAfQBPAC0AHQD9/9D/3P9FAL0A5gDfAAsBdQG/AcIBwAH8AVACdAJUAggCtQGNAbcBFwJkAo8C1QJDA3wDPwPaAssCEQNGA0QDTAODA7ADmwNpA28DwgMrBGYEYQRCBEkEjgToBBYFDAUABRgFLwUOBckEsgTpBCgFJwUBBQoFUQV7BTYFmgQBBK4DtQMKBIEE0gTHBGIEywM5A+0CFQOHA8oDmgMuA9kCowJyAmoCtQIaAzED/gLgAvYC6gJ4Ar8B/QBVAO//8f86AHkAnQDbACQBBgFbAJ3/Qv8m/+X+ev4W/rf9Sf0J/UX96v20/o3/UQB0AHj/wP1P/Kn7ePto+677bvwz/Xf9V/1S/Yb9lv0x/VD8CvuV+WP47vda+F/5mPqb+/n7ffuC+rP5Wvkk+aL4zvfj9gz2bfVI9cD1ifYR9xT3xPZu9hn2jvWs9JDzgfLO8aLx+PGp8oHzQ/Sg9GD0nvPE8ibywPFh8Qbx3/AB8UDxZfFv8XjxdPE08arw/+9t7wXvuu587knuLu5S7uLu3u/38MPxC/Lz8b/xlPFy8V/xgfH88cXypPNx9EL1Kvby9j33+faR9mX2ZfZJ9hn2JvaT9if3p/cK+FP4b/hV+CL4+/ft9wH4Rfiw+CD5hvn5+ZD6O/vm+4f8Dv1s/av96P0d/if+Ef4p/pv+Pf/Q/0gArQDZAK4AVAAOAOH/rf+D/5H/3P84AJQA+gBYAX8BcQFkAW4BagFLAUUBhAHsAT4CcQKlAuYCGgMrAycDJQMkAxAD4wKzAqICsALBAsQC1wIeA4ADtQOlA3sDYQM6A9sCbgJXAroCOwNxA2YDcgOwA+MD2gO8A7cDswN2AxID3AIFA18DoQO8A80D6QMDBPoDwwNzAzMDGQMMA/gC+QIxA4wDwQO4A6MDsAPKA7YDagMNA8YCogKXApgCoAKwAr4CqQJVAuUBlgF6AVsBCQGYAEIAJgA8AGcAegBTAAQAyv+w/4P/Jf/M/rD+q/5q/u79mP2c/br9l/0l/az8Z/xI/Bf8uftS+xD73Ppv+sP5N/ka+T35LPnG+Fb4F/jt96j3TPf99sL2jPZc9jb2DPbM9Yn1YfVB9fv0hvQe9PzzDvQP9NnzjfNb80bzIPPS8nfyPvIu8hbyzfFo8SXxJvFE8Tjx8/Cx8LDw4/AK8QDx3vDP8Nzw6vDf8MXwxvAL8YLx4fH88f3xLPKD8rvysPKP8onynPLA8gzzg/Px8yX0NvRK9FT0O/Qr9Gv04/Qt9SP1F/Ve9dr1M/ZZ9o329vZu97/37vcs+JL4CPlx+cD59/kY+jL6afrX+l37xfsE/Ef8qvwE/SP9GP0h/VT9h/2S/YP9i/3L/Sz+dv6C/mL+Tf5W/mL+Zv6G/tb+K/9N/0H/Nf83/zf/Qf9v/7L/3f/s/wkASQCIAKoArwCiAIoAjQDKACABUQFgAYwB2gH4Ab8BcwFgAXkBjQGiAc8BAQIXAiYCRwJbAjsCBwIBAisCUgJnAoYCsQLBAqcChAJ/AqUC6QIeAwwDugKJArkC/gLjAoACYQK4AhQDDQPNArwC4QLxAsgCjgJ1An4ChwJyAkECFAIBAvgB3AGxAYwBbwFYAVIBZQFrATcB3QCVAGYALQD0/+v/BwD0/5D/M/8q/03/Sf8c/wD/AP/v/r7+jf56/of+p/7J/tb+xP6k/oT+Yv5B/jP+N/4t/gn+7f3s/d79of1a/TP9EP2z/Cn8u/uG+2L7J/vg+qP6bPom+sv5XPnb+Ff44vd29wb3mPY+9v71y/Wd9W/1PfUN9fD03/Sv9Ev05fO587fzm/NR8wzz7fLT8o7yHvKr8U/x+PCF8OPvLu+g7lfuMu4C7sjtp+2g7Zjthu1+7YXtkO2t7fbtYu7I7ibvre9u8Dzx7PGL8ibzofPi8wr0SfSg9Pn0WfXR9VT2yvY897v3LPhU+Cz46ffE98n3+PdW+Nz4cvnz+Un6cfqA+pz62vor+3f7vvsU/H/8/vyS/Sn+nf7c/hD/cf/x/1UAiACqANEA7gDzAPgAFQFBAWYBfwGJAYABbgFlAV0BOAH4AMUAswCrAJ4ApwDSAP0A/gDmANwA4gDpAP0AMAFxAZoBrgHPAQoCUAKcAu8COANlA5AD1gMYBB0E9gPuAxoEPQQ2BEAEiwTfBOcEqgR8BIAEkQSNBIkEogTQBPcEDAUZBScFNwU6BSYFFgUvBW4FoQWwBboF1wXpBdQFvgXVBQAGBwbvBesF/AXzBdEF0QX8BQ4G5QW5Bb0F0gXDBaEFmQWiBZUFcgVUBT4FIwUMBQoFDwUCBeoE1wTEBKoEnwSqBKUEcgQ3BCYEJgT8A7wDrwPZA+UDsAOCA5YDuwOkA14DLgMiAwwD1wKmAo8CggJvAlwCTgIsAuoBoQFuAUUBBAGnAFIAIQD//8L/Zf8H/8L+kv5j/jD++f20/Vr98/yO/DD84Pul+3b7N/vW+mT6APq0+XP5Nvn7+Lf4ZvgS+MH3ZPf09of2L/bd9Xj1CvWv9GH0BPSX8y3zxPJH8sXxbvFI8R7xzvBv8Cjw+e/K75TvW+8s7x/vS++W79Hv/O9D8KTw3fDX8N3wOPHF8SnyXvKn8hTzdvO18/vzZPTK9Ab1KPVX9Z719PVg9u72mfdH+OL4YPnP+VD69Pqe+yb8mPw1/Rz+G//r/30AAgGWASECewKqAuwCaQP5A0oEUQRmBMoEQwVnBT4FMgVqBZEFXwUJBd8EzgSVBD4EEQQaBCcEIAQfBCMEBASyA1kDHQMCAwEDGQM6A04DawOvA/oDDQT3AxIEagSZBGMEJARFBKAEygTOBA8FlwX+BQ0GBQYeBi4GEAbxBQwGSwaHBtYGWQfaBwYI8Af6Bz8IcwhyCIUI4whRCX4JhwnCCSUKWQpSCmYKtArfCqQKVwpwCtMK+grNCrkK+AozCxcL2QrRCuIKswpQCh0KMwpICikK/wn2CfAJwQl+CVEJMAnxCIsIJQjfB7kHmwdwBzwHGQcPBwEHyQZzBiwG/AXEBX8FVQVcBW4FZgVIBR0F1QRpBAYE1AO8A44DSQMNA98CmwIwArEBOwHXAH8AIQC6/1H/8v6I/vT9P/2d/CL8oPv5+lf66PmI+QD5W/jK90P3mPbf9Vr1AfV39J7zw/Ic8nLxlvDF7zvvuu7M7X/sS+td6mPpIujo5hDmfuXV5BXkkONP4+biD+It4dzgOuHv4d/iXeSE5sbogOrO60/tOu8a8ZXyC/QP9qT4Rvue/br/rQE9Ax0EWQRWBIEEBAW0BVIGxQYcB1MHPAe4BucFEQVkBOYDmwOGA5gDswPRA/IDBwQKBC4EsQSGBVcG8wZ4BwcIhAjKCPYIQgm8CUAKsgoOC0ILPAsBC6IKFwpUCXgIvAc0B7AGBwZLBZ4E9gM0A10CngEKAYgABQCY/1f/MP8D/+L+BP9p/9H/HQCKAFgBXwIzA68DFgSpBFgF8wV9BiYHAwj1CMUJRApsCmMKVQpEChwK7QnrCSUKZgqDCoIKbAorCsAJaQlOCUEJEwnzCCoJpgkICiwKRAp9Cs4KJwuFC9QLBQw+DJ8M9AzyDMYM8Qx+DdsNrw1hDWkNhw06DZoMKQz4C6ULIQvRCtoK1Ap9CiUKIAovCu8JewlBCVUJYwlACRwJKQlVCXkJiQl6CUEJ9gjICLQIhQgpCOQH5gcBCOEHhAcwBwcH3waTBkUGJgY3Bk8GWAZTBj4GEAbUBaMFiAV8BXsFhgWPBXoFPQXuBKIEWAQIBLgDZwMLA58CMQLIAVQBywBEANX/Yf+6/uj9If2B/PD7WfvO+l769Pl++QX5kPgH+GP3zfZb9uD1MvWF9C/0HfTm82Pz4/Ko8oDyG/KI8QjxmfD/70LvxO657t3u0O6a7nvuZO7o7eTs5Oue6xPsnezi7GTttO5u8I3xxvH98Q7ztvQk9jr3p/i5+sz8K/7//gsAqwF9A/wEEwYDB+4HrQgiCXsJ+gmWCgcLRguzC4kMbQ3TDbENbg00Dc0MMwzaCxgMpgz9DPQMywy/DNwMCw0WDbkM9QskC5EKKQrOCbIJBwp2CmkKyAkNCXsI0wflBv8FfAU4BdoEaAQ7BFgEVATdAyoDuAKsArMCfgInAgUCKQJQAlICbwL2ArwDQgRVBEwEhwT+BGsFvwUoBrQGPAehBwgIoAhgCQoKdwq9CgQLUQuRC8EL9gtBDJkM9gxaDcYNMw6fDgEPLQ8FD74Ovg4WD2sPhg+sDxcQcxBKEM4Pmw/FD8QPVg/mDscOrQ49DrANdQ1sDSMNjQwGDLALUQvPCmMKMAoGCrIJPgnVCIUITQggCOgHoAdoB2AHZgc9B/MGywbGBpwGOAbkBdQF1QWlBVoFKgUIBcYEcgREBEAEMATyA6oDggNxA0cD9AKiAo4CuALWAqwCXwJEAlECKAKrATwBIgEZAcMAQQD1/9b/hv/4/oL+PP7N/Qn9P/y0+yX7QPo0+W748fdf94z2p/XN9NbzqvJv8UzwNu8j7jvtnuwi7Ijr4epw6jTq2+lG6dnoCunY6eDq8usy7bjuR/Cf8cby8vNE9bz2Ufjw+YX7H/3k/r8AUwJeAxoE3ASVBQQGRwbEBo0HRwjDCDUJtgn6CdUJlwmcCcEJuAmnCewJeAreCvgKFgtuC9YLGgxQDJ0M+wxPDZgN2g0HDhcOJA5EDm4OiA6KDnsOXg46Dg0OvQ01DZEMDgy6C1kLwgojCsoJsAl1Cd8IIgiZB0kH5gZNBsgFtAX6BS4GIgYeBlgGmQaeBpMG0wZUB70H/AdeCPsIfgmrCcoJNwrfCl8LkwuyC+YLGQwrDDEMWAy1DCsNiA2xDbYNsw2vDZ8Nkg2mDdwNGA5RDpoO7A4ZDxUPFA87D2kPdA9zD5YP0Q/sD+EP3Q/2DxQQJBAvEDoQNxAiEP8Pyg+BD0IPLg81DyQP+Q7eDtIOlQ4SDpUNaA1jDTENyQxuDEIMIQzpC6gLdAtECwcLwgp0CiEK4QnXCfQJ/wnaCagJkAmKCXoJWgk2CRcJCQkcCUIJTgk5CTEJSglRCSMJ9AgDCTQJQwk5CVQJfwlyCTkJMwllCWAJ/Ai1CO0ISwlCCe8I1Aj7CPUIkggrCA8IHQgYCP8H4QenB1IHEwcOBxYH8QatBoIGcQZNBgMGvgWpBbsFygW0BXgFOAUkBUAFWgU3BegEswS3BLMEZATuA6wDrwOjA1MDAAP5AhoDAgOkAlgCRgIxAuUBmQGWAcQB1QG5AbEB4AEgAjwCLgIaAiMCSAJnAmACUQJ+AvACSwNCAwkDBQM5A0UDBgPPAuYCGwMfA/YC2wLeAtsCvQKaAokChQKCAnUCWAI1AiECIAIeAhICFwJEAoECngKYApsCxQL2AvkCxQKdAsECHANPAzYDLQOJAwMEAgSLA1ADpgP8A7oDPANKA9QDDQS2A4QD+AOFBGQEvgNsA8IDPAReBF0ExQSnBW4GjAYxBjAG+wb4BzUIxwfEB7YIvAnUCWAJkwmRCj8L8wpuCq8KiQsQDO0LnQuNC6ILoQugC+ALYQzfDAwN4wyiDIMMcQw+DA8MPgy+DP0MsgxkDKMMGg3yDCEMkQvbC2QMSAynC2gL1ws1DNgLJQv7Cm4LugtlC9sKuQrsCvYKswp6CnkKdwo2CtIJlAmNCZcJhglUCRwJ9wjVCIoIIAjpBxAINwj1B38HXAeSB4wHBQdyBkwGZwZKBuQFggVSBUQFKgXJBBAEWAMfAzwD6wLtAQoB6wAKAYMAgf/q/uH+n/7D/d38ZvwS/Hz7z/pK+r75CPl5+ET4A/hJ91j2qvUn9Xn0xfNv81fzBvOH8lXyYPL78fvwJ/Ah8HrwefBU8NrwDvL08tzyVvJn8kXzUvQx9Tr20fe1+VT7hPyV/cr+EABOAY8C6QNUBcwGVQjXCRQL7QuIDBwNuw1hDgEPcQ+JD3EPiA/XD/YPsQ9tD38PiA8DDzQO2w0KDgwOhA3kDJYMYAz/C8AL6QsWDM4LSwsQC/0KjwrZCXgJmgm5CYAJPwk+CUMJAQmMCAkIbgfcBrsGCgcYB3wG1QXtBW8GUgaBBQwFjgVDBjwGzgX8BegGuwfvB/EHUAgECcUJkgp2Cz8MyAxMDQoOxA4kD2APAhATERAStBI7E80TOxRzFK8U8hTyFMoUHxUYFtcWoBYIFhIWjRZkFmAVkxS9FEsVYhUHFcYUxBTAFJsUVxToE2kTMhNWE28TORMGEycTYBNLE/QSkBILElkR3xDlEPYQhBDaD5wPnA8PD+IN3wx1DCcMdgueCv8JigkUCbgIcgjxByUHgAZCBgUGawW8BGgETAT/A4UDJwPfAnUC9gGIAfYACAAO/4H+Mv51/S/8/Poz+nT5X/gw9z32UvUP9IDy9/CF7xTut+yA6yPqUehQ5sjk4OP54oHhkd+Q3YfbT9kg15jVENVK1cXVNdaa1hXXuNdn2OHYENlq2aDa9NwJ4ITjZed86+/u9vDy8SHzNPXJ9236Zv0DAb8EtwfRCaILWQ1zDrAOrw47D2kQxxELEzgUKxWJFSEVORRQE7YSVhL3EYYRKRH1ELMQHBBKD5QODA5zDb8MTwxVDGQM8gsBC/QJ+QgHCEEH4Aa3Bk8GfgV6BEoDrAGg/6b9GPyy+hf5fvdg9rD1yvRG81fxb++87TvsBOtN6ijqbOrU6jjrnesf7L3sYe0C7sLuzu9B8R/zWvXR90f6ffxZ/ur/XQHdAnEECgawB3wJYQsNDUMOLA8REOAQURFtEaYRNxLSEhYTBBPTEpsSYBI5EiwSGBLwEdgR1BGhERsRjBBJEDgQCxDGD6UPqQ+UD1IP8g5eDnwNhwzgC3sL5woDCiIJbgiaB2UGDAXXA6YCNQGc/xv+sPxB+/75KvmT+LL3afYv9VT0nvPG8v7xo/Gs8c/x/PFe8uryYfO58yj0uPQw9Y31KfY994f4nPlq+h/70vuG/En9Ef6y/in/xf+mAGkBqwGvAQcCvAJRA5ADwwMZBGkEmQTIBOkExASHBLMEVAW5BXoFGQUzBYYFbgXtBJYEnQStBJgEfwRXBOoDXAMcAycD7wI9ApYBcAF8ASEBYQC9/2z/Lf/M/lX+3P1d/e/8r/x5/Pf7K/uS+of6vfqn+jL60/nY+QT68/mn+YL5vvkw+oH6l/ql+uf6YPvZ+yT8Tvx+/Lr89fxA/cH9ZP7n/jb/kP8UAIIAkQB1AKEAHgGFAZ8BtwEdArQCIAM7AyMD+gLXAssC1ALhAu4CEQNFA1QDHwPTAqgCjgJRAv8B0AHKAa8BZgEbAe0AuABWAOH/kv92/2b/Qf8G/7/+fv5U/jv+Df67/XT9b/2V/aL9jP2S/c79//3l/ar9qf30/U3+jv7R/if/cP+R/6f/2v8dAEoAWgBwAK4ADAFqAa4B2gH/ASACJwILAvUBIgKTAgcDSANdA2MDXANGAzQDNwNIA1wDewOmA74DrwOMA28DUQMjA/ACvwKOAmMCVgJZAiUCoAEfAfMA5gCGAOT/f/+C/3b/+P5Q/vv96f2f/f/8bfws/AT8r/tK+xT7+/q3+kz6CPoA+uf5kPk/+T75Z/lf+Sr5H/la+ZX5m/mM+Zf5u/ng+QD6D/r5+dn56/kp+kn6LPoX+kL6dvpv+k76VPpq+lH6GvoN+iT6IPoK+iz6efqH+jn6/fkf+lv6TPoQ+gz6TfqL+p36ovq3+sn6xfq4+q76rPq9+uj6E/sY+/z66vr2+gz7Hvs0+0T7J/vZ+pj6mPq4+rL6hvp1+pH6nfpl+hT6/fkh+jf6EPra+dr5HPpu+p76rPq0+s367fr8+gD7H/ts+8P77/v3+xT8YPyu/Nj89fwr/Vz9V/0u/Sn9Yf2f/bP9tv3V/Qb+Hv4Q/vf99P0H/hr+Cf7X/bP9y/0G/hr+/f32/Sf+Sf4X/sb9vv3z/fr9tf2A/Zz9y/3C/Z79p/3Q/dD9lf1M/Rb96PzE/Lr8yPzT/NX82PzP/J38UfwU/PH7yvua+4n7qPvQ+9z72fvb+9P7sfuK+4P7m/uu+637qfu3+9j7+/sN/AT85vvB+5X7XPsg+wH7Cfsh+yD79/q2+nf6RfoR+r35S/ni+KL4evhF+AT43PfO96n3S/fQ9mz2Jvbd9X71GPXF9I/0ZPQy9P3z3fPG83/z7PJA8sLxcPEZ8b/wm/Cs8KHwT/D078zvru9P78DuWe5A7kvuWO547sTuKu9z73XvPu8X7z3vkO+677Lv3u988Djxm/HA8Rvyr/IH8/Py5PJF8+nzZ/Sw9P70ZPXD9RL2Zva69vv2LPdZ93z3jvet9/f3Tvh6+Ir4uvgL+UX5Y/mc+fD5CPq8+W75iPno+ST6Nfpi+rT63frD+qT6qfqm+oD6Xvpd+lv6S/pj+rX65fqn+jX69fnj+bj5ePlp+Yv5k/lu+VX5WflJ+SH5HPlE+Uf5Dvn5+EX5nfmg+X75pPkF+jn6L/o7+oX6y/rb+t76CvtU+5T7xfv++0P8f/yj/Kv8oPyf/L/89Pwp/Wb9xv02/nj+cv5a/mz+ov7P/vD+JP98/+X/PwB9AKUAxwDuAA4BEAH5APcALgF8AaMBmgGTAaABmgFlASUBAwHlAJgAJwDX/7n/mf9V/w//7f7H/mn+6v2R/Wr9Nv3T/Gv8KvwH/OD7vfuw+6/7mftl+yX74fqW+kr6Dfrr+dn5y/m9+bb5t/mo+Wr5/fiQ+En4EfjE93T3Vvdg90v3/fa19p32g/Yp9rD1Y/U/9QX1rvR49Hf0dfRI9A/09vPm87PzXPP78pjyLvLI8X7xVPFB8TzxLPHn8Fjwpu8G74PuDe6q7XHtVO0f7b3sUuwG7MTrYOvc6m3qQepM6m3qleq76r/qfuoO6r/p0ulD6ufqpetr7BTtfe207fPtW+7Y7lLv2e+S8IXxlPKS81/08PRR9Y/1tvXi9Uz2F/cT+OD4Vvml+fv5RPpZ+lf6efrK+h77X/uj+/X7QPxx/JD8p/yz/MD87PxA/Zv91P3j/dn9wf2q/aL9q/20/bz90/3z/fr9z/2P/Vj9FP2o/Cz83/vO+8T7nPtg+x37vPo8+sT5c/kv+dj4gfhR+Dn4C/jP97j3xve/94X3TfdI91/3YPdY9273lvek96b32PdD+KL4zPjl+BP5Ofkz+SD5OvmD+c/5EPpe+rT67Pr2+vD6+voQ+y77XPub+9n7Bfwn/E38e/yz/Oz8EP0V/Rn9Pv13/ZX9lf2j/dH98v3r/eT9Bv40/jL+Af7U/cH9rf2K/Wr9Wf1C/Rz99/zb/Ln8iPxU/CT87vus+3j7X/tP+zH7Cfvj+rT6bfoi+vP52fmu+XH5TflT+Vz5PPkC+dz42Pjb+Mj4nfhs+FD4VPhq+HP4avhy+Jf4r/iS+F74Tvhf+Fn4OPg7+H/4y/jg+Nb43vjq+Nb4tfi/+O74APng+ND4//hH+WH5TPk5+UH5R/kx+Q/5B/km+VL5ZflY+UX5SPlY+WH5XflZ+Vv5XflZ+Uz5MfkM+fj4EPlF+Wz5dPly+W/5UvkO+cD4lPiQ+JX4kPiK+I/4nvis+Kr4kfhn+Dr4Dvje97L3pffH9/v3GPgR+P/3+/f99/b37Pfx9wP4B/jw99T31ff99zf4bfiV+Kb4mPhz+FL4SPhV+HL4ovje+Af5Cvn4+O345vjU+Lf4ovid+Kv41vgU+TD5APmu+I/4vfj8+Bz5K/lF+VL5Ofka+Sj5YfmL+YX5ZvlY+W75ofnb+QD6Afro+dL5zfne+f/5H/or+ir6NPpT+nP6gvqI+oj6bfo2+hT6QPqs+gz7JPv0+qn6cPpj+oD6tPrq+hL7HPsF++v68foK+/z6ufqJ+qr67vr9+tv62foC+wX7uvpr+m76qvrF+qT6ePpr+nH6dfp4+oH6iPp9+lv6L/oX+iv6WPps+lP6Mvow+kD6Ovoe+gz6DPoD+uP5wfm1+bX5s/mp+Zf5f/lp+WP5bfl1+Wz5WPlI+T/5Nvku+S35Lfkk+Q75+/gB+SH5Q/lK+TH5CPnf+L/4uvjn+DP5YPlA+e/4s/ir+L34xPjB+Mb40/ja+Nn43Pjo+PD46PjL+Jr4avhg+JX48Pgl+QP5rfh1+Ib4svi6+Jv4g/iI+I34g/h/+KD40/jr+NP4ovh5+G74gfif+K/4pvie+LL43Pj4+PH40vix+J74oPiz+MX4y/jR+Of4/vj4+OH44vgD+RX59fjM+NT4B/kp+Sn5Kfk/+VH5SvlA+VX5fvmP+XX5RPkb+Q/5JvlU+YP5ovmz+cX51vnc+dL5wvmv+Zb5fvl4+ZT50fkW+kP6Q/oe+vn5+fkf+kz6Y/pb+kH6J/oc+iz6XPqo+vr6L/so+/D6tPqW+pH6j/qU+rX67/oh+0D7V/tn+2D7Pfsa+xP7H/sq+zP7QvtU+1r7VPtP+1X7ZPt1+337dvtq+2f7bPt2+5D7xvsC/BL88PvV++77HPwg/PH7wvu4+8v76fsT/EH8V/xD/BT86Pvc+//7QPxu/F/8KvwM/B78O/xE/En8ZvyK/I/8ePxs/Hj8hfx9/Gv8Zfxx/Ib8ofy+/Mz8uvyP/Gj8Yfx3/JD8nfyh/Kj8svy2/K78lfxz/Fj8Wvx9/Kn8v/y2/KT8mPyN/Hr8bPx8/KL8uvyp/IP8dvyS/LT8rfyA/F/8a/yL/I78bvxU/GP8hvyR/Hf8V/xV/HD8hPx4/Fr8SvxV/Gb8aPxc/FP8Wfxl/Gb8VvxJ/Ff8gPyc/Iv8Y/xX/G38ePxX/DD8Nfxi/IX8hPx4/ID8ivx5/FH8PPxX/Iv8rfyt/KL8p/yw/KT8i/yG/Jz8r/yq/Kb8wPzo/PX83vy8/Kj8qPy8/Nf84fzJ/J78hPyK/KH8ufzL/Mz8svyU/Jf8uPzI/LH8k/yT/K38wvzM/NP81/zN/Lb8pvym/LX80fz0/Aj99/zS/MP84PwG/Q39Af0M/Tf9Vf1B/RH9+/wV/UD9WP1d/Wb9ef2J/YT9bP1T/VP9cf2T/Zz9lP2b/b792v3R/a79mv2m/cX96P0L/iL+Iv4X/hv+L/45/jH+NP5R/mr+YP5F/kX+Y/54/m/+Zv54/pX+oP6Y/pf+of6k/p/+of6y/sD+xP7K/tj+2f7A/qz+u/7Z/tT+qP6O/qn+0/7Z/sH+sf6v/qP+j/6S/rX+1f7U/r7+r/6q/qf+qv69/tP+1/7I/sD+0v7w/v/+9v7n/uL+7P4A/xH/Hf8h/yD/HP8X/xL/Ef8Y/yb/MP8s/yL/H/8s/z//Rf81/xf/Bf8O/yv/Pv8u/wz/Af8c/zz/Pf8n/xj/GP8Q//z+9v4L/yj/MP8l/xn/Ef8G//z+Af8T/x3/Gf8S/xP/G/8f/yP/Jv8j/xr/Gf8n/zT/Lv8i/yj/Ov9A/zT/Lv82/zb/If8S/yP/Pf83/xf/C/8m/0n/Uf9E/z//Sf9W/1f/TP89/zr/Rf9R/1H/Tv9Z/3L/hv+I/37/dv9y/3z/lv+t/6T/h/+F/7H/4P/k/8n/vP/C/73/qv+k/7b/yv/N/8X/v/+3/7P/wf/X/9b/sP+H/4L/l/+k/6H/of+x/8P/yf/B/6//m/+P/5j/sP/F/8j/w//B/8H/tP+a/4j/jv+k/7P/s/+u/6//r/+i/4//iv+Z/6z/sf+m/5r/mf+j/6z/rf+o/6P/pP+r/7T/vP/D/8f/yP/I/8r/0P/Z/+L/7//9/wUABAAAAAIADAAWABcAFAATABcAGwAmADkASQBJAD4AOwBJAFkAXwBjAHEAfQB1AF0AVABlAHwAgQB6AHcAfAB+AHoAeQB3AGwAZgB3AJcApQCQAHMAbgB+AIUAfgCAAI8AlACDAG8AdACKAJkAmwCgAKsAqQCXAIkAkgCqALYAqgCXAJYAqwDEAMsAwACyAK4ArwCvALUAwwDKALoApQClALYAwAC8AL8A0QDaAM0AuwC6AMUAygDPAN8A8wD2AOoA4gDiANsAzQDLAOAA/QAQARQBEAELAQkBEAEYARgBEQENARIBHgEsATUBMwEjARABCgEQARIBEQEXASQBKwEmASMBJQEkARkBDQELARQBIQEvATYBMwEsASsBMQExASwBKAEqASwBLwE5AUYBSgFGAUkBUwFTAUQBOAE7AUIBQAE9AUMBRQE3ASYBKgE/AUwBRgE4ASwBJAEhASgBNgE9AToBOAE+AUIBPAE3AT4BTgFdAWQBZwFoAWYBYgFfAWABZgFuAXQBdQFvAWgBZAFmAWsBcAFyAXEBcQFzAXUBdgF7AYUBjAGKAYUBhwGTAaABqwG1Ab4BxwHNAcwBxgHDAcsB2gHiAdsB0gHWAekBAAISAhsCGgISAg8CEwIYAhgCGgIlAjECMgIsAi0CNgI9Aj0CPAJBAksCUQJQAk8CVgJnAnMCbgJfAlsCaAJ2AncCcAJuAnICdQJ5AoEChwKFAoEChgKWAqICnwKYApkCpQKuAq0CpwKqArcCwgLAArYCtQLEAtsC5wLjAtcCzALBArcCtwLEAtACzwLDAroCuQK5ArgCvgLMAtUCzwLFAsQCyQLJAsICwQLPAuAC4wLWAsgCxQLHAsMCuAK1Ar4CzALTAtIC0QLSAs8CxwLEAtIC5wLsAuAC1gLhAvYC+wLrAuAC5gLxAvQC8gL8Ag4DFwMNA/wC8ALyAvwCBgMHAwMD/wL/AgAD/wICAwsDFQMVAw8DCgMKAw8DFwMhAygDKQMnAycDJwMhAxkDGwMsA0IDTANIA0ADQANHA1ADVANTA1ADUQNaA2YDawNmA18DXgNkA20DdAN5A3wDfAN2A20DagNyA3sDewN1A3UDfgOIA44DlgOhA6cDngOPA40DngO1A8MDwwO/A78DwwPCA7cDrgOuA7QDtQO4A8cD3gPsA+kD3QPXA9sD5APvA/oDAgQCBP0DAAQOBBsEHQQYBBwEMARGBFAEUQRSBFkEXQReBGIEbAR2BHgEdARxBHQEfASEBIUEfgR6BIUEmASiBKMEpgSuBK8EqwSpBKwErQSqBKsEtAS+BMEEvgS9BL8EwAS7BLAEpQSlBK8EtwS4BLoEwQS+BKoEmgShBLcExATCBLoEuAS+BMgE0gTVBNEEygTFBMMExwTQBNQEzgTEBMQEzwTRBL4EogSZBKYEtwTBBMcEywTGBLsEtQS2BLgEtAS0BLsEwAS7BLEEqwStBLMEugS7BLIEowSaBJ0EpwSuBLYExATQBM8ExQTABMAEtwSlBJ4EsQTNBNMEwgS1BL0EzwTWBNAEyATEBMQExwTNBNUE2QTTBMgExgTVBOgE7QTmBOQE6gTvBOkE3gTVBNEE1ATdBOQE5wTqBPAE9AT0BPAE6gTpBPIEAAUIBQMF+gT9BA0FHQUfBRQFAgX4BP8EDgUUBRQFHgUwBTIFHwUTBRwFJAUgBSEFMwVBBToFNAVABUoFOQUcBRQFHwUqBTEFPQVEBTwFMgUzBS8FJAUxBV0FdwVbBS0FKAVKBWEFXQVZBWEFYwVXBVIFZAWABY8FgwVlBUoFSAVdBWsFYgVSBUsFSgVNBVcFZwVzBXoFfAVvBVMFRAVcBYMFkgWCBXMFegWDBXoFZwVVBT0FLQVNBZcFuAV6BR4FEQVZBZAFeAVBBTMFUQVsBWwFaQWCBacFrQWWBZMFtAW7BXoFLwU+BZoF1gW6BYMFggWwBckFrwWOBZkFwAXCBY4FZwWLBdAF3QW3BboF9gUGBrgFcgWbBfsFEAbJBYcFkgXaBRsGJQb+BdcF1wXpBeUFzwXUBf4FFQb0BccFzgX8BQkG5AXKBeQFEgYkBg4G7QXuBSYGbgaFBm4GZwZxBk0GCwYLBlkGeQYwBvYFPAasBqwGTAYnBnkGzQa3BmYGUAaKBr4GtwacBpsGrQa+BtwGEAcyBxQHygakBtcGRAeIB2oHLQczB3cHmAd+B4AHxAf9B/cH6Af5B/YHywfTB1gIBAlNCSkJ9gjvCCEJtQmYChkLiwpSCXwIagidCMQI4wioCOoHhwdWCHQJXglYCOYHMwgGCCQHtQZBB/0HJgjSB3EHTQd9B8IHvwdyBysHLQeOBy8IkAhACLEHyAd5CLwIJwiFB4UH2Qf6B+AHsweBB38HzgcHCLYHMQcxB5YHnAcpB/gGXQfLB70HaAc9B2MHuAfyB+MHuwfKB/gHBggaCHEIoAgzCK4H3AdYCAgICgekBggHlwZFBHsBPQBuANAA5wEnBWYJcAuiCqYJCAqQCrUK3gsfDnMPUA+vD2gRoBLeESoQIg/gDogOsA3IDGgMUwyhC1MKrQkXCgwKlggqB1UHHAijBzIGjgVKBlIHsAd3B0MHkAcwCFgIlAeqBtMGFwgqCfkI5AdJBwMIYAnHCZ0IKQcNBy8IDAnXCDMI9wcwCGoITAjbB6kHVAh5CcIJqQhzB6QHBgnuCUoJwAfXBlEHZAioCNQHDQdRBywIdAjNB/oG1AZNB5sHOgeiBq0GdQdDCJIImAi1COQIAwkVCQkJqwghCBgI6QjVCZ8JJAjMBu4GFAiGCIwHVAY/BgYHQQdfBmQFnQX5BhgI5gfrBqwGsAe+CIAISQeDBsIGUwd1BwsHPwZpBRgFUgUvBTMESwMiA3UCAgBp/bX9bAEgBqoJmwvcC5AKKgkkCZEJjAjeBmwHtgq0DQwONA0WDvcQJBNiEr4PZQ65D6IRYBH6DqIMkQspC7oKSQreCTIJLAjIBvcEEAPsAf0B1QLSA6MEBwXbBIcEigSLBI0DdAGu/8z/twGpAy4EuQOjAyAEKgRvA/sCkwOHBNUEgwRZBMQEcgW6BWQFFwWCBSAGzQXdBBMF4QZbCP8H+AYiBycILQjUBu8FNgf3CZsLvQpNCUsKYQ3jDhMN2AqoC+UOXhGNET8Qdg67DIMLtgq0CY4IFwg8COUH4QZbBs8GRAcLB6IGawY9BpUGawglC14MywoNCJgGugbWBigGygWsBqkHpgZnA0IAqv9zARQDagIFAHD+FP9yAC0AbP6y/Sn/5gDdANn/5P8gAQ8CFgLvASECoQKdAxcFMgYfBnIFUQXBBd4FYgXtBA8FxwW6BlgHMAeWBnAGBQeMB2EHCgd8B78IzQnCCdsIQgjICOUJVAqxCewI4ggwCfIIIwiTB8kHcQjWCIsIxAcYB/YGLwc7B+YGdAYoBvoFvwVfBewEnASeBMsEvQRLBMYDkQOgA5IDJANcAoQB+gDmAAIB6wCgAIMAugDuALsAPgD2/yAAfwCnAHwARQBMAIUAqACWAHgAfACOAG8AFwDL/8j/+/8hACMAKwBWAIgApAC1ANQA9gALASMBWgGoAfIBMQJnAo0CogK+AukCCQMaA0MDiwO0A44DQgMRA/cC0gKxArsC1wLHAokCSQISAswBgQFiAXYBhwF4AWYBcAF/AXEBRAEcAQ8BFwEfARIB7gDGAK8AqgCbAGkAIgDv/+L/5//g/9D/0f/i/9r/pf9r/1r/b/+I/5b/pv+5/8b/0f/g/9//wv+n/7n/5v/1/9f/t/+y/7f/tf+2/8n/7f8fAFoAfgB5AHEAmwDgAPEAxACxAPUAXQGTAY0BfAF9AX8BbAE5AfAAtACuANYA7wDXALAAowChAIUAUQAjAAIA4v+//6L/i/+D/5r/y//l/7v/ZP8a//X+3f6+/q/+xP7n/uX+pf5L/hT+EP4c/hP+AP77/ff91v2f/YH9lf3G/fv9MP5k/oD+dv5a/j/+J/4S/hD+LP5T/mv+cf5w/m3+aP5Z/jX+//3V/dr9/v0L/vL93P3m/fH91f2w/bP90/3b/b79p/2w/bz9uP2z/cD90v3W/dX92f3T/bX9k/2E/Yb9g/1z/V/9TP1A/T79Qv01/RH97/zl/Nr8sfx+/G38gPyQ/Iv8jvyh/KT8hvxq/HX8kvyd/KH8vvzn/PH82vzN/Nr83vy+/J/8rvzf/Pz88PzX/NL82vzM/Jz8ZvxQ/Gn8mPzB/Nr84/zf/NH8yPzK/M78zPzR/Of8/vz5/Nv8x/zM/NP8xfyr/Jb8gfxn/FP8Tfw+/Aj8v/uW+5z7pvuN+177Q/tD+zz7F/vo+tH62Prq+vT67/re+sz6xvq++p36Y/o6+jr6Sfo6+g767Pnj+d35y/m4+a75q/ms+bf5wPm4+bD5yvn8+QX6zPmS+aL57/kt+jL6Ivop+j76NPr8+br5nfmu+cf5wvmg+X75dPl6+Xb5UPkS+ev4APkz+Tv5Cvnb+Nb40/ir+Hz4dviJ+I74jvib+I/4S/gQ+Cj4Wfgr+LD3eve49+33ufdo9273uffh98H3h/do93T3mPeg92r3Kvcz93n3kvdZ9yT3MfdG9x/34fbM9tH2yfbF9t/29Pbh9tX2E/d196L3lPeZ99b3HPg3+DL4P/h8+NP4CvkH+fT4DPlK+W/5bfl8+cD5F/pQ+mH6V/pF+lX6nPrt+gz7F/tZ+7n70fuU+3P7rvv9+xP8Fvw7/GP8Y/xa/Gr8cvxV/Dv8Svxh/GH8bPyW/LP8p/yX/Jr8h/xc/GD8n/y5/Ib8bPyw/PH80PyZ/Lz8C/0R/dn8yvzq/Pz8Af0k/T79Gf3s/Av9Qv0p/er8Bf1k/Xn9Nf0o/Y398P0F/h3+gP7m/vX+4f4E/0r/Yv9O/0//bf9s/0H/Hv8W/wT/zv6P/l/+Kf7o/c/9+v0r/hb+3P3X/QD+8/2u/bn9Uf7g/tL+e/5//rn+hv7v/Z39qf1u/br8LfwS/Nr7JfuA+lz6NPpz+YH4GfgK+Kr3B/ep9nz27/UJ9WD0C/SN89XyVvIM8lvxJ/Ai76zuP+5r7ZbsK+y+67/qeemg6DHoj+eQ5qnlEOVr5Ibjy+Kh4r3iguLM4QPhe+Ah4OTfCODg4FfiDOTD5ZDnkOm36+Xt+u+48e3yzfPY9Dr2ovfX+Bv6gft6/Jb8cPz7/CL+A/9w/ysAXQESAuUBFwL5A/8GfwnfCtkL3QxiDfcMDwx0C34L4AvTC50KhgjPBiEGiwUDBDYCgwGRAbUAuP5O/V/9tP0j/V78bfzj/NP8kPzk/GD97fx9+/n5u/hp9wz2LvXh9KT0K/SI87PyrvEE8Trx/PF98qbyD/Po87b0PPXd9fX2Y/jJ+e36zfuR/GX9Jf6A/n/+jP61/qH+fv4Q/2kAgwHWATsCWwNYBEkE/QPABDQGFAdjByAIRQnpCRcKqAppC1oLuAq+CkYL2QpVCVwIfwhCCOMGygUABl4GxAUqBaIFEAYSBa0DrANmBM4DHAKaAd4C3ANJA30C7wLdA78DsQLoAcgBvQF/AUAB+AB/ABsANACnAP8AQAG5AUYCbAIiAuAB8AE8AswCzwMBBa8FuQXbBY8GOAcdB6cGxAZYB14HmAYFBk4G2gb3BvIGRAeMB1MHHQeXB0UIQQjVBwEImgh7CI8HCwdqB64HHgdTBtcFKAXzA/kCsAJPAkYBeACcALAAk/81/jP+Ff8L//f9fv3//ef9jfxl+3z7vfv8+vf5xvm8+ab4Ffd89rP2UPYu9ZT00/Sq9IzzqvLl8kzzvPLF8Y3xuvEG8YDveu5O7sDtE+wy6hrpUOjx5k3lN+Rt4+7hr9+83cPcpdxr3WLfP+Iq5cnnQepF7GTtZu6v8OzzKPbO9qf3t/lK+9f69/kV+4r9u/5P/nD+BgCMAQUCoQJ0BM0G5ghBC1MOaBH/E5UWFRlAGsoZShmrGZUZFxjtFrgXuBhWF6cU+RNRFUkV1RIvEYUSURR5E0ARCRH4EiIUVRNzEusSoRMWE4ER1g8kDvsLdQkFB+EEMgNBAgEC5gGWATYB2wBRAMH/yf+jALQBcwIgAw4E1QTcBGcEWgQIBdMFBgafBRQFqgQ5BIIDuQKGAmUDFAXeBloIuglDC8YMxw0SDgAOLg7pDtkPehDEECMRpBGuEeEQug/eDkQOkA3nDJ8McwzgCyML8wpQC4oLcAuMCwYMMQyIC00K+wi4B5IGhAU/BJMCJwG5AMQACQCP/qT9ef1r/Kz5+vY79tL2CPfw9q33t/hT+J/2q/Ui9kr2GvUI9Dz0KPQQ8orv9O/W8074H/sI/VX/QgFaARAAbP9yAFsC8APABOQEyARGBfkGSQnvCogLtAuHCzYK9wfEBhUIzQq2DE0NnQ0FDvcNuA2BDmwQ2hF7EZ4PEg0gCmcHLQbiBkEI9Aj7CJ4IUgf3BBMDEAP5A78DPwIhAf8AvADx/+3/cwEeAyADjwG6/y7+ovxT+/n6dvuq++v6z/k7+VL5sPlA+kv70Pw0/sf+if40/o7+qP/hAKoBIgLLAsEDjATVBO8EZgUmBn4GHgacBcoF0AY8CKoJ+goLDK4M+QxLDeQN0A4UEJwR+BKEEwYT4xG6EPcPtg/SD/cP8g/cD80PjA/tDlkOdA4xD80PzA98D1APQA8bD+8OzA6ADuENKg2YDP8LNwukCrkK+wpGCkkIDwayBAgEaQMlAzoEmQbECJcJeAk6CcUIwgfKBr4GZQfgBy4I3QiACQIJoQcBB8oH0gg6CcgJIAstDLgLbgrQCQAKQArPCpUMNg8nEb8RsBFzEZgQ7A4sDSoMEwyzDJ8NKw4WDgMOfg7hDmcO3A2wDnAQCxHMD0kOxw2ODbUM+AtpDJENMQ79DWANXQz1CusJwwmkCZYIUAc9Bx8IdQgdCKwImQoHDFkLjQmQCG8I0AeaBjEG+wZ2B4kGOwUjBSAG7QZRBzYItQmMCvQJyghGCH4I1QgrCcQJmQpxC0MM5AzODPwLTgs2C8YKQgndB1MIIgoJC3kKWgrFCxUNpAyHC9ALJQ1VDcELEApxCSwJbgjZB1EIZwn0CY4JqAizB+YGegaJBuAGTAfRB0cIVQggCGEIbQmdCjkLYAtmC+0KhAnVBycHvQegCCEJiwkzCrYKsQqBCsEKfwtnDE0NGA6KDp4O0A57D0gQthDrEGURBBI0EusRsBGlEUkRdBDOD9kPOhCLEC8RnBI8FAIV6RTsFHkV5BWeFR0VABUWFcwUOxTyEyMUgRTPFPAUqhTtEykT0xK0ElQS6BENEpMSmBL3EaoRPBLXEqQSKxJKEoESmRG5D08O1g0vDbELcwqbCoYLzwtcCx4LLgupCmUJXwg0CGAIWQhhCI8IJQiwBggFOQQEBIMDwwKAAnACYAEu/079x/z3/BX9y/3d/yoCtQJvAUYAIwCk/7H9xvsG/Pf9Hv+d/kv+oP8+AQUBW/+r/gAA2QHGAnMDIwVdB4oIYgg4CPEI+wmlCicLvgu4C10KJwgvBugELAQlBCcF0QZMCEwJEAqBCjsKlwl9CQoKZwpCCncKmgvkDE8NDA3fDLAMzAtLChYJmwhqCCwIHQhOCEoI3AeRBwgIIQlXCnsLowyYDd8NSA0ZDLgKfAm1CIsIwgjzCAgJLglQCfEI4QerBg0GIAZxBr8GOAf1B6kICQkzCXUJ8wmsCqQLsQxSDRsNLwwPCwAK/ggwCAMIpAi2CawKUAu9CwcMKQw8DHoM9Ax0DccN/g1BDnsOdg5FDlcO3Q5wD4IPGA+rDmIO3w3wDPkLfwuHC7UL2wsVDI4MTA09DisP2A9BEJAQuBBTEEYPHw6HDXUNcA1tDcYNbw7MDogODg7kDfkN/Q0EDlgO2w4dD/kOww7DDvcOWQ8GEPYQ0REzEg0SghGlEJIPqA5TDpwOIA+VDwEQbBCkEJYQlBD/EL0RYBK1EtYSyBJmEsERNhEGESIRXRGbEb8RqBFZEfkQnhA6ENUPmA+KD4gPiQ+zDxMQfBDKEBIRYhGREX4RRREQEdMQZxDODy0Pmw4mDukN7w0VDjoObg7EDgwPAg/ADqsO4Q4DD8QOYQ5LDnwOkA5rDmcOvg4XD/0OgQ4QDtcNog1eDVUNrQ0bDk8Obw7TDmsP3Q8cEHUQ9xA8Ef4QihBPEEwQOxAaECEQThBnEF8QbBCtEP0QOBFxEb8R+xH0EcMRvBEHEnESuxLzElUT3RM4FDcUFRQQFAYUshMlE8QSsxK2EqoSvhINE18TgROgE/4TfBTNFOQU+hQUFfEUcxTpE7ETyhPqE+kT4BPuE/0T6RO3E4wTgROIE48TjBN4E1wTUxN8E8kTCxQtFEwUdxSHFE8U4xN2ExwTvhJXEv0RvhGWEYoRoRHGEdERxRHMEe8R/RHQEYQRRhEOEa0QHRCSDzsPFQ8HD/4O9A7gDrgOfw5CDgAOtQ12DVwNYg1eDT4NKw1KDYANkA1qDTcNCQ3DDE8MygtWC+8KiAo0ChAKDwoRCiAKYArACvQK2gqjCocKbgohCrAJXgk+CSIJ6QimCHkIYghTCD8IFQjIB2kHEQfCBm8GNwZOBrsGTgfhB3AI8AhBCVgJUQk0Ce8IgggVCLwHZQcJB80G1AYZB4MHAwiKCAYJawnBCf4JDQr7CewJ6gnaCboJqQnFCQIKRgqFCroK3gryCvYK5ArBCqkKswrVCgILOQuCC9YLMAyaDAkNVw15DYwNoA2NDTsN1wyeDIsMdQxcDGUMmgzYDAoNNg1hDXsNfg18DYENgg11DWANVw1aDVwNVw1ZDXANlQ2wDbgNsA2dDYENWQ0sDQYN9gz9DBQNMQ1TDYANuA3vDRoONg5GDk4OSA4sDv8N2g3NDdEN1A3dDfwNLw5eDoEOnw6+DtEO2A7eDugO8A7xDvUOAA8KDw4PEw8lD0MPYw94D4EPhQ+JD4gPfg9xD3UPjw+uD8UP0A/XD9cP0A/CD7IPog+VD40Pfg9iD0APKA8aDwkP9w7wDvEO6A7TDsMOug6pDooObA5ZDkIOGg7sDcoNsw2cDYENZA1FDSQNAg3dDLgMmQyFDHgMZAxJDC0MFAz+C+gL1Au9C5wLdAtOCyoLAwvaCrgKogqUCoQKcgpfCksKNgokChQKAgruCd4J0Am/CasJmwmaCZ8JogmhCaEJpAmlCaIJnwmbCZMJigmHCYsJjwmQCZYJqAm9CcsJ1AngCe4J+QkECg8KFwoeCiYKMQo8CkYKUQpeCmoKeAqJCpoKpQquCr0KzgrYCt0K6gr8CgkLDgsYCykLOwtKC1QLXwtqC3QLfQuCC4gLkwufC6oLtAvCC9ML5Av0CwYMHAwyDEcMVgxbDFoMWQxdDGEMXwxeDGcMcgx0DG8McwyCDI0MjQyLDI8MkwyNDIIMegx1DGoMWwxPDEoMSQxFDDoMLAweDBEMAAzsC90L1QvOC8MLtQuoC50Ljwt/C28LZAtaC0wLNgscCwIL6QrNCrIKngqTCosKfQpsCl8KVQpLCj4KMgolChUKAQrwCeIJ0gnACa8JpAmdCZUJiAl8CXMJaglhCVoJVQlNCUQJPQk1CScJGgkVCRcJGAkTCQ0JCAkFCQIJ+wjwCOEI0QjCCLMIoQiPCIAIcwhiCFEIRQg4CCUIEQgCCPcH6AfSB7gHnQeFB2sHTAcrBw8H+QblBswGrwaVBn0GYwZCBh8G/wXiBcQFpQWIBXMFZAVQBTMFFwUEBfYE4gTMBLkErASZBIAEagRaBE4EQgQ3BDEELQQlBCEEIwQoBC0EMgQ1BDUENQQ5BDwEOwQ6BEIETgRWBFkEXQRoBHkEhwSRBKAEtwTQBOAE6gT2BAcFFAUYBR0FKgU7BUYFTwVfBXQFhQWOBZYFoAWpBbAFtAW3BboFwgXKBc0FzQXQBdoF5QXnBeAF3gXmBesF4AXPBcgFyAXEBbYFqQWmBaQFlQWBBXcFdgVyBWYFXAVVBUwFOwUkBRAFBwUCBfkE7ATdBNEEwgSvBJ8ElwSSBIkEewRuBGcEYQRVBEgEQwRFBEcERgREBEAEPAQ7BD0EPAQ7BDwEPwRCBEAEPwRCBEcETQRTBF8EbQR0BHIEcwR5BIEEiASNBJUEnwSnBK0EswS6BL8EvwTABMMExQTGBMYExQTBBL8EvwS9BLUErgStBK8ErQSjBJgEjgSFBHoEbQRgBFAEPAQqBBgEBATtA9kDyAO4A6QDjgN4A2EDSgMwAxUD+wLjAsgCqwKRAnkCYQJKAjMCGgL/AeQBzQG3AZ8BhwFzAWQBTwE0ARoBCQH6AOgA1gDLAMMAtwCpAJ4AmACSAIwAhQB9AHQAbgBtAG8AcQByAHQAegCCAIkAjACNAI4AkwCXAJgAmACdAKYArgC4AMUA0gDeAOgA8gD9AAYBDAERARcBHwEnAS0BMQE1ATsBPwE/AUABRgFQAVcBVwFWAVgBWQFVAVABTgFPAU4BSwFFAT4BOAEzAS4BKgEmASEBGQEOAQMB+QDzAOwA4QDVAM4AygDDALYAqQCfAJMAhAB2AG4AaQBeAFMATgBOAEoAPgA0AC8AKQAfABMACQABAPz/9f/s/+X/4f/d/9j/0P/H/8H/vP+2/63/o/+g/6D/mv+R/4r/h/+G/3//dP9t/23/bf9o/2H/XP9Y/0//RP87/zb/Mf8r/yb/Iv8h/x//Gv8U/w//DP8H/wD/+P71/vb+8v7m/t3+3f7c/tP+yv7I/s3+z/7H/rz+t/63/rj+tv6z/rD+rf6q/qj+pf6n/q7+tP6z/rL+t/6+/r7+uP60/rX+t/6z/rD+tf68/r7+u/69/sj+0v7V/tb+2v7g/uP+4f7e/uP+6f7r/ub+4P7e/t7+4P7j/uX+6P7t/vL+8v7u/uz+7v7z/vX+9v76/gD/Af/7/vT+8v7z/vL+7P7o/uj+7P7t/uf+4f7e/tz+3f7e/t3+2/7Z/tr+2v7Y/tT+0f7P/sz+yf7I/sj+xf69/rP+q/6l/p7+mf6X/pf+lP6R/pD+kP6N/of+fv52/nP+cv5r/l/+Uf5J/kX+Qv48/jj+Ov49/jn+Mv4u/ir+If4X/hL+Ef4N/gX+/P33/fL96v3i/eL95v3m/eP93v3X/c39w/2+/bv9t/2y/bD9tP22/bP9q/2l/aD9mv2U/ZL9kv2Q/Yz9h/2E/YL9gf2B/YL9hP2G/YT9f/18/Xz9fP13/XH9cP1w/Wz9Zf1i/WX9Zf1h/WH9af1v/W39a/1s/W79av1h/V39Xf1f/WL9ZP1l/WL9Xv1e/WP9af1r/W79cf1y/XH9cf12/Xz9fv19/X/9gv2B/X39ev19/YP9iP2I/Yb9iP2O/ZH9jv2K/Yv9k/2b/Z79mv2V/ZX9l/2Z/Zj9lf2S/ZL9lv2a/Z79of2m/av9rv2u/az9qf2m/aP9of2f/aD9o/2n/az9rv2r/af9p/2r/a39q/2r/a39rP2q/ar9rv2t/aT9nP2c/Z/9nP2W/Zj9n/2i/Zv9kf2P/ZD9jf2E/X/9gP2C/X/9ev15/Xz9ff17/Xj9d/12/XP9bv1p/Wb9Zv1m/WL9Xf1X/VP9U/1S/Ur9Pv03/Tn9P/0//Tr9N/04/Tn9Nv0v/Sz9LP0u/S39Jv0c/RT9EP0N/Qf9AP3//AT9CP0I/Qf9CP0N/Q/9DP0H/Qb9CP0I/QH9+fz1/Pf8+vz9/AH9Bv0H/QH9/Pz+/AP9A/39/Pb89/z7/P78/Pz1/O386fzp/O388fzz/PX8+Pz7/P38//z//Pz8+/z9/AP9Cv0M/Qv9C/0M/Qz9Cv0L/Q39D/0M/Qj9Bf0F/QX9Bf0F/Qn9D/0S/RD9Df0O/RH9D/0K/Qr9D/0T/RD9DP0M/Q79DP0I/Qn9D/0R/Q39CP0I/Q/9E/0Q/Qj9Bf0I/Qv9Cv0H/Qv9E/0V/Qr9//wB/Qr9Dv0J/QL9A/0G/QX9Av0C/Qj9Dv0O/Qn9Bf0G/Qj9B/0E/QL9Av0C/QL9A/0D/QL9/vz6/Pz8Af0D/QD9//z//P389/zy/PH88vzz/PH88Pzy/Pb8+Pz2/PD87Pzu/PP89Pzv/Oj84/zh/OD83fzZ/NT80vzV/Nn82fzX/Nf82/zc/NX8zvzO/NT82PzU/M38zPzQ/NX81PzP/Mr8xvzE/MT8x/zN/NL81fzU/NH8zfzK/M380fzU/NL8z/zR/Nb82/zd/Nz83Pze/OT86vzs/On85Pzl/On87Pzp/Ob86Pzu/PH87/zv/Pb8/fz//P78Av0K/Q/9DP0K/Q39Ev0U/RL9EP0Q/Q/9D/0R/Rb9GP0T/Qz9Cf0M/RH9Ev0Q/Q79Ev0Z/R/9Iv0i/SH9Hf0a/Rf9F/0Y/Rv9HP0c/Rf9E/0V/Rv9IP0i/SD9Hv0c/Rv9HP0e/R/9Hf0a/Rr9Hv0h/SH9Hv0a/Rn9Gv0c/R39HP0a/Rj9F/0X/Rz9IP0g/Rv9Fv0V/Rb9GP0Z/Rv9Gv0W/RX9GP0b/Rf9EP0Q/Rb9Gv0a/Rn9Gv0X/RH9Ef0X/Rn9Ev0N/RP9Hf0b/RP9EP0R/Q79B/0E/Qn9Dv0L/Qb9A/0E/Qj9D/0V/RH9B/0A/QX9Df0N/Qj9A/0D/QT9B/0M/RD9EP0N/Q79Ev0U/Q79B/0I/RL9Gf0V/Q39Df0T/RT9Df0J/Q/9F/0X/RD9Df0R/Rf9F/0Y/R79Iv0i/SL9KP0y/Tf9Nv0y/S/9K/0r/TH9O/1B/UD9Pv1B/Ub9Rf1A/T/9Qv1D/UL9Qv1H/U79UP1P/Uv9SP1I/Uz9U/1W/VL9TP1O/VT9V/1V/VP9U/1U/VX9Wf1i/Wb9Yv1a/Vj9X/1l/Wb9Yv1h/WT9Z/1n/Wb9af1v/XT9df1z/XT9e/2B/X39c/1u/XL9eP15/XX9cv1z/XP9cf1y/Xf9e/15/Xf9e/2C/YT9f/14/Xf9e/2B/YT9hP2D/YL9gP19/Xn9dv14/Xv9fP17/X39gP2A/X79fv2D/Yf9h/2H/Yj9if2E/YD9g/2J/Yv9hf1+/X39gP2D/YP9g/2H/Yz9i/2F/YL9h/2R/Zb9kv2K/Yf9iP2L/Yz9i/2K/Yf9g/2A/X/9gP2C/YL9f/1+/X/9gP18/Xb9dv17/YD9gP1+/X79ff15/Xf9e/2B/X/9dv1v/XD9cv1u/Wf9Zf1s/XH9cf1u/Wn9aP1s/XD9b/1o/Wb9cP1+/YL9ev1w/W79cv10/XX9d/16/Xv9fP1+/X/9fv18/Xr9e/19/X79gv2J/Y/9k/2T/ZD9iv2E/YL9hf2J/Yz9if2G/YT9hf2N/Zj9nv2Z/Yz9iP2R/Zv9m/2U/ZH9l/2g/aP9oP2d/Zv9l/2R/ZD9mf2k/af9oP2Z/Zz9qP2z/bP9rP2k/aP9rf26/bv9r/2i/aP9q/2u/av9qv2s/a/9r/2z/br9vf22/az9qP2u/bn9wf29/bD9pv2n/a/9tf2y/a39qf2l/ab9rP2w/ar9n/2g/a79tv2r/Z39nf2m/ab9mf2N/Y79l/2c/Zr9lf2R/ZH9lP2W/Y/9hf2C/Yr9lP2T/Yr9f/1+/Yf9kv2S/YL9cf1y/YH9i/2G/YH9if2M/Xv9Yv1g/Xf9iP16/V/9Vv1l/Xj9fv16/Xb9d/14/Xj9d/10/W/9bv12/YL9f/1q/Vr9Yf10/Xb9Yv1X/WX9df1u/Vv9VP1g/Wv9bf1v/XX9ef15/Xr9ev1u/V79X/1y/X79dP1j/V79ZP1n/Wj9bP1v/Wz9a/10/YD9gP10/W39c/1+/X/9e/16/Xz9fP17/X/9iP2L/YH9cf1t/Xn9h/2E/W/9X/1m/YL9mf2U/XH9Uf1X/X/9nP2O/Wn9XP11/ZT9l/2C/W/9bv19/Y39jP14/WT9Z/1+/Y79hv13/XT9fP19/XT9b/14/YP9gP1r/Vr9Y/2A/ZD9gP1p/Wr9f/2E/XH9Yv1m/W/9bf1k/V/9Xf1g/XH9h/2I/W79WP1j/X/9hv1y/V39Wv1n/XX9ev1w/WD9Wv1n/XT9bP1Z/Vb9Z/10/W/9Yf1f/W/9g/2H/XL9U/1L/Wf9hv18/Uz9Mf1P/Yf9kv1e/Sf9MP1x/aH9iP1H/Sz9Vf2Q/Zb9Y/0z/Tn9ZP1+/Wr9PP0h/Tf9Zv1v/TL99fwe/Z/91/1n/eb8Mv0W/kn+MP0G/H/8Wv5W/+r9Y/uA+ir8Uv5s/nf88/rU+y/+Yf8//l/8Cfx7/db+i/4d/T78tvyt/eD9C/0A/Ln7bPxr/br9+fzm+8T79/xO/kf+9/wv/Dr9Bv9b/7n9AfwO/G/9Of6K/V/8CfyR/Pn8oPwE/B38Jf0k/v/99fyD/H/91P7N/l/9R/zD/Av+cv54/Sv8v/tZ/CL9Rv2w/Bb8Nvz2/Ir9bv0K/Rj9n/3+/cv9Xf1D/Y79zf2d/Rf9r/yy/Pj8Ef3D/FP8Ovye/CT9Vv0k/fH8Hv2P/cX9h/0n/Rv9W/1x/Sj90PzL/P78/fyo/FT8YPzC/Bj9Ev29/HX8jPz8/GX9Zv0B/aX8vfw0/ZH9c/0I/cz88/w0/Tj9BP3a/NH8yPyw/Kj8vfzL/K/8f/xr/Ir8xvz+/A/97vy//L78+Pwz/TD9/fzc/Or8Av3+/OX80/zL/MX8wfzF/NP84/zq/OX82fzb/Pr8KP0+/Sr9B/39/BL9LP0x/R/9BP3u/OP85vzr/Of83PzZ/OT89Pz9/AP9D/0e/Sf9Kf0r/TP9O/07/TD9H/0S/RD9F/0b/RD9/fz1/AL9F/0g/Rj9EP0W/ST9MP02/Tn9Of06/Tv9PP07/Tb9MP0s/Sn9KP0m/ST9Iv0h/SH9Iv0m/TD9Pf1G/Ub9Q/1D/Uj9T/1T/VH9Sv1C/Tv9Nv0z/TD9Lv0t/S/9Mv00/TP9Mv00/Tr9Qf1H/Ur9Tv1S/VT9Vf1T/VP9Uv1P/Ur9R/1F/UT9RP1E/UT9Rf1H/Un9Sv1J/Uj9S/1P/VL9VP1U/VX9V/1Y/Vf9VP1R/VH9Uv1S/VH9T/1Q/VH9Uv1S/VL9Uf1S/VX9Wf1Y/VT9UP1R/VT9U/1R/VD9Uv1U/VP9Uv1U/Vb9VP1Q/U79Tv1P/VD9UP1Q/VD9Uf1S/VL9T/1L/Ur9S/1O/VL9VP1U/VP9U/1S/VH9UP1S/VX9V/1V/VD9Tv1P/VL9Uf1N/Ur9S/1P/VL9Uv1R/U/9T/1S/VT9U/1Q/VD9Uv1T/VH9Tf1J/Un9Sv1K/Uj9RP1C/UX9Sf1K/Ub9Q/1F/Ur9Sv1D/T39PP0//UH9Pf05/Tj9Ov08/Tr9Nf0w/S/9MP0y/TH9Lf0q/Sn9KP0m/SX9Jf0o/Sj9Jf0h/SP9J/0p/Sb9IP0b/Rn9GP0X/Rf9F/0W/RX9E/0Q/Q79Dv0Q/RL9D/0K/Qb9BP0G/QX9A/3//Pz8+/z6/Pf88/zx/O/87vzs/Or86vzt/PD87/zr/OX84vzj/OT84fzc/Nn83Pzd/Nr80vzM/Mr8yfzK/Mv8zfzM/Mj8xPzD/ML8v/y8/Ln8t/y2/Lb8t/y2/LL8rfyr/Kv8qvyn/KP8oPyd/Jz8nPyb/Jn8lfyS/JH8kPyP/JD8kvyR/Ir8g/yA/IT8h/yF/H/8efx1/HP8dPx1/HX8cvxs/Gj8Zvxj/GL8X/xd/Fz8W/xa/Fr8WvxX/FX8U/xU/FX8VfxT/FD8T/xO/E38TPxK/Ef8RPxC/EH8QvxD/EP8QvxB/ED8QPxC/EL8Pvw7/Dn8OPw4/Db8Nvw0/DP8Mvwx/DH8MPww/DL8NPw0/DL8L/wt/Cz8LPwu/DP8NPwx/Cz8Kvwp/CX8I/wk/Cj8Kfwl/CP8Jfwm/CL8Hfwe/CL8JPwh/B38Hfwd/Br8FvwV/Bj8GPwW/BT8E/wQ/Av8CvwO/BT8FfwQ/Av8CfwI/AX8AvwC/AP8Avz++/z7/fsE/Ar8Cfz7++777vv5+//7+fvv++r76vvq++r76/vp++X74vvh+9v71PvT+9f72fvU+837y/vM+8j7wPu7+7z7wPvE+8L7t/us+6v7r/ur+6P7oPul+6X7mvuT+5b7mfuT+5D7mPuh+5z7kPuG+3z7avtc+1/7bvt0+2j7WPtU+2D7bfto+1X7SPtM+1P7S/s++z77RPs4+yD7Gvsq+zT7JfsU+xT7FPsF+/f6+/oG+wP79/r4+gX7CvsC+/36AfsL+xH7EfsI+/r68Prq+uH60/rM+tH60/rG+rj6vfrL+s36wfrA+tj68/r7+vT66vrf+sj6rPql+sL66Prq+sn6qvqm+rL6wPrO+tD6vPqx+s366/rL+oX6efqx+tL6v/rK+gf7EfvB+o36wvr++uf6x/r4+kf7e/vA+w788vuL+6j7Pfzr+w/63vdb9s/05PJl8p70sPcz+RH6k/zJ/54ACP/5/Vj+6f3y+9r6x/tf/Mr6sfgG+NP3s/Y29pj4nfy//vD9fvxB/HL87/uB+6P8Tf8mAhsEmAQ9A58AcP6C/X38Ifqn97b2K/YO9P/xx/NQ+Vn+IQHNBAcLzg8nD0ALiAiwBngCYfwF+I/1gPFh62DnzOfC6ZjqLuzV8Jv2Tvpp/GH/7gLdBBcFaAXsBQ0FoQIOAJf9Ufqs9l30nvPf8nDxbfCq8KHxv/I39Bv2FPgb+l38VP41/yj//P7G/uj9cvxF+8b6Z/q5+RX5D/ms+Xz6HPuH++f7N/w//P773PsD/AL8jfs7+7z7pfwH/ff8YP1h/gX/1v6L/r/+8f5o/k39TPyu+1T7Ivv++rr6Zvpj+tj6Yvum+9P7UPwY/bv92P1x/df8bfxS/EH86Ptb+wD7A/sa+/76xPqu+tH6BPv9+ov61vlH+Qz5wvj69/z2gPbL9nD3EPjE+Lv54/oe/FH9Lv5h/hD+vf16/cn8gfs++pD5Jflb+Dr3h/bD9pf3Qvhz+Iv4E/kQ+vz6cPuX+9z7c/xG/Rv+mf50/uX9ef04/Y38RvsR+nb5BPkt+Fr3RvfR92n4F/k1+nX7Rvzm/Nn9o/5T/jP9jvyk/FL8D/vX+X75ZPm7+AD4Mvg++Tn6vvob+3P7jPtY+w77y/qZ+sD6dvtp/PX84vyN/GL8evyr/Lz8lvxm/HL8mfxS/F77V/oY+rH6YPud+7H7Ffye/Kb88Pvt+iz6vvlr+TX5WPnT+Uz6gvql+v76d/vN+xH8hfwK/Sf90vya/Mf8vvzi+7H6Qfq3+hv7x/o7+jX6oPrt+un6yfq++uv6aPv6+yP83PvG+0T80fy4/Bb8j/tW+yn7+Prq+ur6v/qC+m/6WfrY+RP5t/gL+Y75wfnV+UH6+/p4+3T7Zvvm+938iv2A/S39I/0n/Y/8Y/tr+gb6r/n4+FD4QfiI+ID4M/hB+PP47PnR+rf7u/y1/Wb+x/7o/rr+Mv58/dD8GPwL+7P5k/gh+D34Yfhi+Jv4YfmE+o37QPy9/Eb9DP78/qr/jP+V/mr9rPxL/NP7TPtC+9z7dfxP/GX7SvqB+Sn5Hvkv+Uj5o/l/+p77V/xo/G/8Hf04/tf+j/7e/Vb93fwR/Av7Yvp8+ij7/fvI/HD9t/19/Rr9/vwK/b38GPyz+6v7PPv3+an4VPjE+A/5Ifmr+cb6s/sc/H38Kf3Q/Tr+lv7d/rH+FP54/ef8Dvw8+1/7oPwH/tr+X//H/3b/7/2v+4X5wPeb9nn2Kfey9333E/cj95j3Pvh9+Z/7+P2X/z4AGgAF/+f8Xfow+JD2ZvUA9bD1+/bz92j4/vgm+oL7h/w5/f396/57/xP/3f3Y/MT8PP1W/fb82/xY/cX9n/1b/YP9tP1E/Wr84fuT+8H6evnf+Jz5Bvsy/C39cv7K/3sAYgAJAM7/iP8W/6f+U/7Y/Qf9G/xw+xr7E/uF+5j89f3m/v7+dv6w/bf8evs3+k75yfiC+KP4cvmv+q/7Lfx3/K/8iPzt+0H7tvoH+kL5FPnI+Z76yPqa+t76g/vV+8/7H/zo/HX9Sv2r/Ob78voL+t75oPq++9P8Jv6O/9v/P/66+wP6afn9+HT4o/gD+tz7Vf1j/lT/JwDQAFMBfAHlAKH/Mf7K/Dv7v/kW+X75WPok+wL86vxT/Sz9Rv0Q/rz+c/6z/X79s/1h/X78FPy0/K/9H/7k/Ub9XPww+x36ePlZ+dz5LfsI/ZH+L/8r/w3/tv7A/Wj8afv6+pb62/n7+Df4kvc797n3OPkY+6b8y/2i/sn+0f0p/OX6g/qO+oP6f/q8+vD6tfo/+in6svqW+438ef0a/hX+Xf1L/Cz7Cfr6+Fz4avjq+HT57fl6+if70vtg/ND8KP1U/Tn9yvwz/L/7f/s9++z64/pa++n7BPzc+xr8x/ww/Qj94Pwr/Xn9L/1//AL80Pue+3b7qfsq/Iz8h/wq/Jr7+vqE+lD6MfoY+lD68/p1+0L7sfqg+jP7s/uy+6H75/sd/LD7x/oE+q/5mfmq+fr5dfrT+v/6Jvta+2n7P/sS+yD7XPuS+6r7rfuk+4v7Wvsb++T6xPqz+pX6W/oZ+ur5zvmp+Xf5Vflx+dr5Xvqq+pD6Nfrk+bX5kfl2+YL5tvnn+Qr6Svq6+iL7R/tQ+377vvvD+3v7KvsG+/P6wfp5+lL6dvrf+lv7tfvl+xr8gfz3/Cn9+/yo/F78/PtV+5v6K/oW+hr6E/om+nH6y/oF+zX7hvvx+0b8cfyN/Kv8wvzF/LP8kfxs/FL8PvwQ/MX7hftp+0f78/qg+q/6I/uN+7P72vtK/Ln8nPzw+1f7QPtl+077Efsp+6v7EPz0+6L7ovvy+x/8//vc++n77vuu+077Ivs2+1X7aPuc+wr8hPzG/Mj8v/zG/LL8UPy5+0v7OftZ+2v7dPuX+8X70PvI++77SfyN/Hn8Lfzx+9T7u/uX+2/7S/sn+w37BvsD++z6x/qx+qz6nfp8+nv6xfoz+3H7aftX+1z7P/vY+nL6afqZ+pD6U/pp+vP6V/sd+676svoL+wj7efro+cf53Pm6+Wj5RfmJ+Q36evqZ+oX6i/rA+tf6jfok+g76N/ok+sX5n/nx+UH6Ffq1+bv5Ifpa+jH6Cfoy+nb6c/oq+uH5u/mc+W35RvlB+VD5UPk6+Sj5LPk9+VD5evnG+Q/6Lvop+if6L/op+hn6GPog+g363/m9+af5bvkJ+bb4o/iw+Lj42fg6+b/5Hvo4+iz6F/ru+aT5Q/np+LP4nfiM+G34WPht+KP40Pjo+AL5Hvka+fD4xvil+GX4/fe599r3L/hi+Hf4u/g9+a351fnX+eX57fnA+Wj5H/kH+Rr5TPmi+RP6hfrj+iX7Qfsu+/36zvq0+qL6kPqK+pf6s/rf+i77nfsM/Gn8x/wo/Vz9O/3f/Ij8UPwm/BH8NfyZ/B39p/0x/qf+5P7j/sX+qP6J/mH+OP4d/hP+E/4O/gH+BP48/p7+6v4C/w//MP8z/+7+mv6A/nX+K/7V/eX9Tv6R/pn+3/6E/wAAAgD5/0wAsgCuAGIAPgBDACYA6//K/77/n/+J/7b/AwApADUAXwCJAGkAHAACABUA+P+d/2n/ef9z/zH/Dv9F/4f/dP84/zX/V/80/6z+FP68/ZP9X/0c/QD9I/1V/VT9Gv3U/Jv8S/zD+yb7p/pL+vH5lPlH+RP58vje+NL4wPi2+Mj41/iW+AP4ifdm90T3wfYf9uP17vWa9bn04PN88zzztfIZ8ubxFfIt8vDxpvGT8Y7xTvHe8I/wf/Ba8Mvv+O5e7iHu4O1Y7fPsPO0B7n/ude6B7g/vie8v70PutO2y7Xrttuwq7H7sMO1i7TPtZu357Sjuve107b7tFO7t7Zrtlu2l7U7tsexf7IrsBe267a/uxe/S8MLxXPJN8rjxQvE38TbxD/FC8Rvy9fI781rz7vOd9Mn02fSa9cr2cfd+98L3X/iW+DX4GvjQ+ND5jfpO+3L8qf10/tP+GP9g/6T/7v89AJMAFQHUAYACzAIDA5oDVQSmBL4EUwVdBgwHNweuB8oIvQntCfcJjgo9C0AL7QooC/QLjQzFDDMNEg7UDgwP/Q4BDwQP2w6iDpAOqg7bDiMPfQ/YDyYQZRCLEJMQkBCTEJMQixCTELUQ0BDPENEQ5hD2EPcQCxE5EU8RQRFFEWsRaBEcEdoQ1xDAEEsQwQ+TD6UPlw9rD2UPdw9cDwoPqA4yDp4NIw3xDM8Mcwz8C6YLPgtoCkoJXAirB98G7QU9BfUEsQQXBE4DsgJNAswB+AAKAGv/Jf/A/t391vw7/Nb75PpV+Q/4effQ9nf1FfR68yXzGvKF8GDvte6p7SbsGOvQ6nPqdOlm6NTnRuci5rDkmePi4hriHeEj4Erfed6m3drcCdwr21Tantnx2BfYCtcQ1mzVA9WQ1B7UJNTV1NzV+dZ/2LXaId0Q33jgpOFM4vvhCOFe4FTgmuBC4dDiOeWX5yvpCeqb6gvrYuvM64fsze2s77jxI/OT85bz1PMg9Bf0L/RN9VP3EPnP+R76m/ri+lv6jPmo+d76IPzH/G/9q/7H/8v/K/88/yoAyQCZAJsAmAHDAgIDtQIPAyQE5ATWBLUEFQWBBWoFIwVQBeYFbgbmBqMHmAhkCQgK8ApADJUNsA7AD+IQxxEtElQSohIZE48THRQIFT4WURcJGJwYURkTGqcaHRu6G4wcVx3rHVoeyh5LH98fgiAfIaYhHiKAIpkiUyLwIbwhoCFrIT4hViGWIa8hnCGcIbkhySG7IaohmSFyISYhuCA6IN4fyB/LH60fjB+iH7EfQx9pHq8dNB2VHLcb/hqPGhAaTxmRGAIYahe1FiEWvRUtFT0ULxM3EiYR3g+tDs0NCw0rDFQLrArzCeMIsQe1BuMF7wTZA+MCFQIzARcA3f6t/Z78qfuv+p75mvi498D2h/VM9F3zgvJT8f/vBO877gzthOtP6o3plOga56nlp+So40PixOCu3/HeLd5V3Zbc3Nvj2pvZPdjs1pzVWtRr0/jSu9JR0tLRptHT0RjSxtKa1ILXdtrp3DvfLeFa4Unfq9w326TaM9rn2iXeDeNI5/fp8euW7Tjuwu1Y7SDuRPA/83D2W/m7+0z9sf36/AX8t/se/AP9pP7nAKkC8gI9AlcB9//S/RX8HPyE/fn+QQDiAWgDygMuA7gCzwLxAv4CagMcBE4EvQMEA6MCiwLVAu8DxQWDB5UIIgk5CXAI9gb6BTgGCAe3B60IOApBC7MKRQluCE0IIwgmCDkJOQsODT0OJw/2D34Q6hChEZkSgxNUFBAVcRVMFfcU1xTcFN4U9xRFFZ4V1xUEFkcWuRaBF6MY0xm8GmYb8RsuHO4bgxt0G8sbKRxqHLMc8BzFHAAc3hrAGd0YOhjLF5cXsxcSGGUYXBgAGJ4XVhf8FnEW4hWPFXEVQxXeFGcUDxTBEy8TUBJ4EdoQQRB6D8EOYg4xDtENRQ3aDJAMFwxnC9wKqQqKCjYKvglQCd0IOQhjB4QGwQUgBZEE+AM6A1ICOwHk/z/+b/yt+hv5xPe49gT2pfWG9Yn1iPVl9SX1yPQr9DnzNPJt8c3wCvAw75LuIO5r7U3sE+v06dfoqeeP5qfl/eSj5HrkJuSP4x7jDuPu4mPi4+Hz4T/iK+Ld4dTh5+GZ4Rbh4+D34PTgAeGK4W7iOePr49Lk4eXQ5qTngOhI6e3puOrP69rsmO1a7m7vjfBK8bPxLPLc8pbzI/Rz9Lb0MPXS9TP2LvYm9m/22PYe92f35vd5+Pr4kvlN+uT6Pfuq+0381vwN/Sv9Wv1t/V/9eP27/dz94v0z/tj+Sf9K/0T/if/W/9P/qv+3//7/TgCZAOsARgGvATACuQImA3UDzwM8BJIEugTXBAgFRgWFBdMFNAaKBsQG9QYiBysHCAfoBu4GCAcfB0oHnQf0By4IZgi1CPAI6QjNCOQIFgkbCfgI8wgWCScJEgkCCQ0JGQkjCUwJlAnSCQcKXArQCioLVAuDC9gLLgxpDKoMCw1sDbYNCw56DtQO/Q4uD5MP9g8dEDMQfRDmECURQBFzEcIR/REdEkQSdBKLEokSlBKuErcSpxKeEqMSoxKbEp0SphKkEpYSjBJ/ElgSHxL2EeMR0BG5EbIRuxG+EbMRqBGdEYERWhFBETURFBHREIsQVRAWELQPSA/zDq8OYA4MDsQNgA0qDcsMeAwiDLALNAvQCn0KGQqjCT0J4ghxCOcHZwfwBmIGvAUqBbMELQSLA/ICdQLvAUcBlwD0/0D/av6W/d38JfxN+2z6pvnw+Cv4Xfeh9vz1X/W/9Bj0avO18gTyVfGk8PfvX+/Z7lPu0O1f7fnsiOwP7KnrW+sI66TqRuoG6tjppulu6T7pH+kN6ffoz+ib6G/oVuhF6CroDugK6CToROhb6HPolujD6PLoLul+6dfpLuqP6grrjOv361Lsvew+7bztLu6q7kDv4O998BvxuPFH8s7yY/MB9In0AfWO9Tv25PZ19wf4svhm+Q/6s/pc+/77nvxQ/Q7+t/5N//v/ywCMAR0CpQJEA+ADXQTVBGwFCwaRBhAHpwc9CKgI8whMCbkJFgpUCpEK4Qo2C4UL0wslDHYMywwuDZQN6g0xDoEO3A4vD3APtg8OEGoQvBAIEVgRpxHuETcSiRLcEiQTaxO+ExYUYhSnFPUUURWtFQAWTRaYFuEWJxduF7MX7xcoGGYYpxjbGP4YGhk/GWkZkRmxGc0Z6RkGGiIaMhozGisaJRogGhcaARrhGcAZohmAGVAZFBnaGKoYexhAGPoXrhdeFwQXoRY7FtQVaxUBFZsUNxTJE0sTyRJLEskROxGkEBUQkA8MD4IO9A1lDdIMOgybC/IKPwqHCdQIIwhqB6gG6AUxBXoEuwP1AioCXwGVAM//Bf8z/mL9m/zV+//6H/pA+WH4d/eF9pb1pPSi85jynPGn8Kjvoe6x7dvsBuwp61jqmOnW6AzoSueW5trlGOVr5NvjTuO34i7iyeFu4QbhoOBV4Bng0d+F30rfHt/x3sneuN673rzevN7Q3vfeGd8z31vfnN/l3y3gguDr4FzhzeFM4t/id+MH5J/kUOUO5sPmdOc16Ajp2+mo6nfrTOwg7fXt1e6474/wYPFA8izzBfTG9In1W/Yp9+T3nPhl+TH68fqp+2v8Mf3s/Z/+WP8VAMkAcAETArcCWQP6A5gENAXQBXIGFAeoBysIsAg9CcAJLgqWCgoLgQvpC0QMpwwQDW4NwA0VDm8Ovg4AD0QPkg/dDx4QYhC1EBERaBG9ERYSeBLdEj8TnxP/E18UwhQiFX0V1RUwFowW4xY0F4MX1RclGHIYvxgQGV0ZohnkGSgabRqqGuAaGRtWG5IbxRvuGxAcLhxGHFUcWRxaHF0cXBxNHDQcHRwEHNwboRtnGzAb7RqXGj8a9BmlGT4Z0BhxGBgYrBc0F8gWZxb5FX0VCRWgFCsUpRMhE6MSGxKAEeQQUxC+DxoPcw7WDToNmAz1C1oLwAolCpAJ/QhjCMIHJweTBvcFUwW3BCUEjQPpAkoCtgEbAXAAyP8t/5D+5f03/ZL87vtF+5z69/lM+Zz49vdY96z28fVA9aD09vM083byy/Ed8Vjwke/e7i/ub+2y7A7scOu76gLqYOnI6BvoZefD5jLmluX25Gvk8uN14wDjreJx4jLi9eHZ4dPhv+Gi4Zzhq+Gt4aPhsOHS4efh9OEh4m3irOLd4jDjq+MZ5Gjk0ORo5fvlaebk5pbnVuj06JPpYupD6wDsseyJ7XPuPu/479LwwfGQ8kbzFvT/9M71gPZH9yf47/iX+U36H/vg+3/8J/3t/az+TP/u/6cAWQHrAXcCFAOqAyMElQQcBaQFFQZ9BvIGawfVBzkIqAgaCX4J4AlNCrUKCgtcC7kLEwxZDJoM5wwzDWwNoA3hDSMOUg59DrcO9Q4hD0YPeg+6D+wPFhBREJsQ4hAhEWkRuxEKElUSqhIJE2MTtBMLFGkUwhQVFWsVxBUZFnEW0RYwF4IX0BcpGIQYyhgDGUcZkhnOGfgZJBpaGoYapBrEGuca/BoCGwobFxsUGwIb9BrwGt4auRqZGocaaBoyGgAa3xmyGWgZHBnoGLAYVRjsF50XWxcAF40WJxbTFW8V8hR1FAMUhhP2EmgS5RFYEbkQHhCUDwsPdQ7dDVMN0QxKDL8LNQupChsKkAkGCXEI1Ac+B7QGJgaLBe0EWATFAykDhwLiATsBkgDu/0n/nv7w/U39s/wY/Hn74PpL+q/5D/lz+NL3IPdl9rX1DfVW9JHz1/Iy8onx0fAb8G/vwO4E7kztluzR6//qOuqJ6dDoB+hU58nmR+a35TXl0+R35Anko+Ne4x3jxeJ14lLiQOIR4uHh4uEG4hXiEuIx4nLioOK14uTiNeN446Hj5+Nc5MrkGeV65RHmrOYg55PnNOjj6G7p6umI6jnr0etc7AftzO1+7iPv5O++8IXxMvLu8r/zgfQq9d71qfZr9xr41vio+XL6JPvb+6b8av0Q/q7+Wf/8/4QAAAGEAQYCeALmAlwD0AM4BJ8EDQV4BdcFOgaoBg8HZgfABygIjAjfCDcJoQkKCl4KrgoPC28LvAsBDFYMsgz+DEMNlw3yDT4OhA7WDjMPhw/TDyoQiRDfEC0RhRHmEUMSnRIDE3AT1RMzFJcU/xRfFbgVGhaBFuAWOxeeFwIYVhijGPoYVRmeGdwZKBp5GrAa1BoFG0IbaRtyG4UbrRvDG7QbpRuyG7kbmxtvG1wbTxsjG+UauhqcGmgaIhroGbsZehknGeEYqBhaGPMXlhdHF+gWcBb6FZMVIRWUFAgUjBMJE3ES2BFSEcwQMxCXDwoPgw7vDVcNxww6DKYLEguBCuoJSgmtCBgIegfPBioGlAX3BEcEmAP4AlcCpwH4AFwAw/8b/3H+1v09/ZT86ftO+7f6E/pr+dD4NfiF9832IfZz9bL06fMv84HyxfEB8Uzwo+/x7jbugu3V7CHsaOuy6vbpMelx6MLnE+da5rTlOeXO5FTk4uOY41/jEeO94oziceJB4gfi8uH54e7h2OHu4TDiY+J+4rfiGeNo44zjw+Mm5HzkpOTf5Ffl1OUi5nbmDee55zToneg96f3pjer36oPrNezJ7D3t0e2R7kXv4++f8ILxVfIK89PzvPSN9TL23/ar92b4+fiW+Vz6I/vJ+2/8NP32/ZX+J//K/2UA3wBKAcMBOAKSAugCVAPGAygEiQT9BHYF4gVKBrsGJQd/B9sHQgihCPAITQnGCTwKnAoCC4ILAQxiDLsMKQ2YDegNKw6ADtwOIg9eD7EPFhBuELwQGRGFEeoRQhKgEgUTYRO3ExQUchTHFBoVexXkFUUWohYJF3MX0xcsGIkY4BgmGWsZvRkLGkQadxq8GgIbMBtOG3obrhvOG9ob6hv8G/gb4BvPG8gbshuJG2QbTRstG/YauhqGGk8aCxrHGYcZPhnlGI0YQBjrF4AXEhe2Fl4W7xVuFfYUhRQHFHkT7xJuEuURTxG9EDMQow8HD28O4Q1ODbIMFAx5C90KPgqjCQQJVwipBwwHbga5BfoETwSzAwYDSgKfAQcBYQCt/w3/hP7t/UP9sPw+/Lz7GfuB+gz6kvnw+EX4tfcl93b2wfUl9Yz02fMk84zy+fFF8YXw3O8974Tus+3u7Djseeuw6vLpQOmS6O3nX+fc5lXm0uVi5fjkgeQH5JXjJ+O54lniD+LO4Y3hZuFn4XTheOGG4bfh9OEe4kHidOKt4tTi+eI344LjwOMA5GLk2uRB5ZjlCeaS5gfnXufG507oz+g06abpR+ry6oXrIezp7L7tc+4d7+vvxfB48RPyyvKT8z701PSO9Wj2LPfY96T4j/ld+gL7tPt+/Cn9qP0w/tX+Zf/Q/0QA1ABVAboBLQK6AjcDlQP9A3gE2QQZBWwF4gVKBpQG9QZ/BwAIXwjICFMJ0gkuCpEKDwt9C8YLGQyRDP0MRA2YDRcOkQ7iDjEPpQ8ZEGIQnBDyEE8RkRHOESYShhLPEhcTehPkEzgUhxTtFFkVrRX5FVMWrBbyFjoXmRf2FzkYeBjPGCgZXBl9GbQZ9BkZGikaRxptGnwaeRqHGp4amRp9GnIaexpnGisa8xnXGasZURnyGLcYhRgsGMAXbBcpF8sWVhbyFZ4VMxWyFD4U2xNmE9sSXRLyEXgR6hBlEPIPdQ/oDmQO6Q1ZDbUMIQyiCw8LZArICUUJuAgSCHUH7gZfBrsFIQWVBPkDSwOuAicCjwHdAD4Avf8q/3b+1P1a/db8KvyH+xH7mPrz+U/53Ph2+Of3SffS9m725fVC9br0Q/St8/zyYvLg8UfxlPD072/v1e4a7mXtzewz7H7rw+oZ6nbpz+gr6JLn/uZw5vLle+X95IHkF+Sz40Hj1uKS4mjiNOII4hPiSOJx4ovizeI745XjyOMJ5G7kweTq5CHlhuXf5QjmQOa55jnnfOe45zjozOge6UzptOlJ6q7q6OpX6wTskuzx7HftPe7u7mXv8e+88H3xBfKP8krzBPSW9DX1A/bK9mP3CPjn+Lv5RPq8+m37Lvyo/PL8Yf30/Wf+tf4S/4v/+f9TALYAIgF+AckBGwJzAr4CBgNbA7QDAgRZBMwEQAWcBfUFawboBkcHmQcDCHkI2gguCY8J+AlVCrUKLguoCwcMZAzgDGENuQ37DVkOzg4oD2oPvg8rEI8Q4hBBEa8REhJtEtoSUhO1EwYUZRTQFCkVchXNFTcWjRbPFiEXgRfFF+kXFhheGJYYqxi/GOoYDxkYGR8ZNxlFGToZMRk5GS4Z+xjHGK4YhxgyGNgXpBd0FxQXoRZOFggWmRUYFb0UdxQHFHsTFBPMEmES0RFgERYRshAgEJ4PQA/NDjEOpA08DcIMGgx+CxALmwr4CVUJ3AhoCNAHMQewBi4GkAX1BHkE9wNSA7ICOALAASABfAD7/37/4P47/rT9Lf2F/N37Wfva+jn6mPkl+cH4OPii9yz3wfYw9o71CfWN9OrzOfOy8kHypvH28HfwIPCn7wTve+4c7qftBO1l7N/rReuK6t7pVOm76ALoWefc5lrmr+UB5Xfk/uN64/vimOJK4gvi6uHk4d/h4OEM4mDiqeLb4iTjh+PQ4/XjMOST5OPkDOVY5evld+bB5hHnsedi6MfoBel66RHqb+qY6uLqVOup6+XrUOzm7Ffto+0h7t3ud+/W70/wDfHB8Tjyt/Jw8yv0t/RO9Rr22vZZ99j3mPhc+dP5LPrB+nT77fs3/KT8Nv2n/fT9Wv7Y/i7/Wv+d/wIATwBrAJEA4gA7AXsBuAEMAm8C1AJDA7QDFgR0BOsEbAXMBRMGbwbmBlEHqQcVCJoIFAl/Cf0JjwoMC3QL8wuQDBYNdw3iDXEO9A5SD7cPRhDVEEIRrBE2EroSEBNXE8QTQBSZFNoUNhWrFQ0WVBakFggXZxezF/wXRhiCGK4Y2BgBGRwZLhlGGWIZdRmBGY8ZnRmdGZQZjBl9GV4ZMxkEGcwYhRg5GOwXjhccF7MWWxbvFVsVxxRVFNwTMBN5Eu8RdRHJEAAQYg/nDkcOiA34DJUMDAxSC70KZgr5CVAJvAhtCBoIiQf5BqsGaAbrBVwFAwW8BEAEpgM1A9sCVwKpARABigDo/yD/W/6i/dX89/sn+136gfmd+NP3G/da9p71A/V89ObzUfPf8n3yB/KQ8UXxE/G/8FDwAfDQ737v++6B7ijuwu0s7Yns+Otc66Dq3ekx6Yjoxef75j/mhOW65OrjKON64uLhaeEJ4bLgd+B14JzgveDd4DThw+FE4pji+eKI4xLkbeTO5GblBuZ05tnmcOcR6HTovuhB6eLpSOp66s7qS+uZ667r3+tH7KLs2Owt7bbtLO507tbude8M8HLw4/CP8TzyufI68/XzvfRj9Q/26/bJ93X4Fvne+aT6Nfux+1H89/xt/cX9M/6o/v3+P/+Q/+D/DwA0AGgAlgCtAM0AEAFQAXYBrQERAnUCtgIHA40DEgRhBLAEOQXNBSYGbAboBnoH0wcLCHII/QheCZ4JCAqhCiMLgQv3C5YMJw2YDRUOsA5CD7sPPhDVEGAR2RFaEugSaxPhE1sU0hQ2FZUVChZ/FtQWHReEF/gXRhh0GLAY9RgdGScZORlOGUEZGxkFGfYYwRh1GEkYOxgTGM0XnxeNF2AXFhfsFuYWvhZlFicWFRbaFU4VyhSNFE0UvRMXE6oSTBKqEeQQTBDNDxsPSQ6lDSMNdQyeC/YKhAr4CTYJhggLCJAH8AZUBtwFagXoBGwEBgSeAysDyQJ/AjQC2wGGATUB3AB7AB0AsP8f/4n+Dv6K/c/8/ftT+7/6Afom+XL44Pcx92n2yfVI9Z300/ND8+7ycfK58S7x9vCu8Bfwhu9G7xTvn+4U7r7tfu0O7YrsMezs63rr7Op+6ibqpen26EvotOcN50nmeOWn5NjjF+No4r7hIOG24IvgduBg4G/gv+An4YrhCeK84nDj/eOY5HDlTObl5m7nQOg26erpaOob6wvszOw/7cbtku5P78PvMfDW8G/xuvHw8V3yz/L08vfyM/OO867zqfPe80v0m/TT9Ej1+fWP9gL3qveQ+FL51Plt+kn7FvyT/Pf8fv0D/lf+lv7l/jP/a/+o//f/MwBSAHcAuAD1ABgBQgGFAcIB6gEXAk4CcgKFArYCBgM/A1kDkAP4A1YEjQTXBFcF3AU9BqQGNQfCByUIiQgbCbAJFwpyCvUKgwvoCzgMpQweDX8N3g1cDtwONg+RDxwQsRAUEWAR1hFjEsQSABNYE8oTHRRRFKIUEBVeFYcVyBUpFmsWfBadFuQWFxcTFwsXIRcmF/wW0BbHFrUWdBYvFhIW8xWhFUkVJxUVFdIUdBRAFCYU4RN3EygT8hKbEiQSxhF5Ef0QXRDkD44PCg9UDsINag37DFIMuwtaC+4KUgrBCVoJ5QhGCLgHWgfyBmAG3AWOBUIF1QRzBDcE8QOJAzAD+QKlAh0CpQFdAf8AZADL/13/4v4w/oH9+fxh/Jj74vpk+tH5+fgw+LX3PPd+9sH1UvXy9FH0pfM+8+LyPvKT8UHxCvGC8Nzvju927xnvh+447iTu0u047cPsgOwB7DPrfuoG6mnpf+ij5wvnceai5d7kW+Tx437jK+MO4/ri4+IH43Dj1uMf5JXkVeUI5nvm9ua253zoCOmR6VXqIOuu6zbs/uzM7Urure5b7ynwqfDm8E3x3PE08kzyf/LZ8g3zGvNQ86rz0/PX8xv0nvT39CX1mfVf9v72Yff+9+z4qvkO+pr6h/tM/Jb84PyM/TH+Y/51/tf+TP9t/2r/n//k/+X/zP/w/y4ANAAcADcAdgCMAH8AlgDRAAABIwFkAbUB8QEyAqICIQN9A9IDWgT5BHEF1wVoBhQHnAcNCKEITAnNCS0KqwpCC7MLAAxqDPMMYA2pDQkOhw7vDjcPkg8KEG8QtRAFEWsRxREREnAS5RJME6QTFhSfFBAVYhXBFTcWmBbPFv0WMxdXF1sXWhdkF18XQhcmFxgXABfNFpkWdhZRFhoW3hWqFW8VHxXPFIwUPhTUE2sTHRPQEmAS3xF3ER8RsBA1ENMPgg8cD6wOWQ4RDp8NGQ2/DH8MCQxcC9EKeAoAClAJuAhZCPAHXAfhBpsGRgbIBWkFRAUHBY0EJAT0A6kDFAOEAiUCrAHyAEUA1f9K/3X+s/1B/cj8Afw9+8v6Yvq0+fv4ffgC+Ev3kfYQ9on1vvT4833zB/NI8nzx/PCW8PfvSO/W7nbu4O0/7d3siezt6zPrv+p16uzpKemK6BjohufG5hHmdeXO5CrkueNp4wXjqOKU4rXiv+LC4gzjmOMT5HvkG+Xt5ZrmI+fw5wrp9OmD6jTrTexU7eLtW+4/70Dw0fAf8brxifL/8ijzjfMx9Iz0lfTQ9FT1nPWJ9Zn1/PVF9kb2YfbD9hX3NPd99xD4jPjR+Ej5FfrK+in7kvtR/BP9gf3S/Vb+5f43/2P/pv/t/wYABQAUACsAIQABAO7/6f/k/+H/6f/2/wsAPAB8AKoAzwAaAYUB1QECAlIC1AJBA3wD1gNxBPwEQgWdBVMGEAd3B84Hdwg+CbcJBQqPCj4Lswv9C28M+wxSDYEN2w1ZDqwO1Q4iD50PBBBHEJkQChFzEdERSxLeEloTwBNBFN4UXBWoFewVSxalFtsW9hYPFyQXMBcyFyYXBxfgFsQWrxaIFkgWBxbQFZYVThUAFbEUYhQOFLsTaBMNE6sSUxIPEs8RfBEfEdUQoBBoECIQ4w+zD38PRA8QD98OkA4tDuQNsA1UDcMMQgz2C6QLFAtxCvoJmQkaCYoIEgioBygHpwZFBuwFcgXqBH8EJwS2AykDoAIeApIBAAFwANL/If+E/gn+fv3G/BX8m/ss+4/64flX+dr4PPiT9wP3bfax9fz0cvTe8w/zN/KX8QbxQvBt78HuIu5d7ZXs9+tb65Pq1uli6Qjpfujf53fnN+fW5kzmyOVZ5ebkbOT644bjDOOo4m7iReIg4hbiQOKQ4vfid+MJ5J7kSOUi5hTn8+fG6LbpwOqx63fsLe3x7bjub+8P8KLwNvHS8WPy3PJP88vzP/Sc9Pb0WvWq9dX1APZH9o32rvbM9gv3VfeK98b3KPiZ+AP5hPks+tL6X/v1+6v8V/3b/Vr+7P5s/8D/CABYAI8AnwC0ANwA6QDQAMUA2QDZALYAqwDTAPgA+AAKAUoBhgGeAcEBDwJVAnoCtAIlA5UD4AM+BNMEYgXCBTIG4QaPBwYIgwg/CfkJawrKClwL+QtYDJkM/wx1DcIN9A1ADpgO0A77DkIPlA/MD/4PThCrEPcQSBG3ES8SlRL+En0T9BNLFJwUABVYFYcVqBXgFREWFhYEFgEW/BXYFagVihVrFS0V4hSpFHEUFhSpE1QTFhPDEk8S4hGOET0R3BCAED4QBxDCD34PUQ8rD/AOsQ6UDokOYQ4eDvEN2w2sDVwNGA3tDKkMQgznC6ILQwu/Ck0K/AmSCf8IfQggCLIHHgecBj8G0gVABcAEYwTvA1MDzQJyAgECZQHdAIUAHwCS/xL/t/5C/qb9KP3U/Fb8nfsF+6n6J/pW+Zn4Kvir9932EPaB9eX0/fMZ83ry1fHk8PXvWe/J7vDtE+2J7BrsZ+ue6hvquukk6XPo/+er5yDncObu5ZDlB+Ve5Orjq+NW4+TimOKE4nTiZOKS4gbjieMP5MnkteWW5mLnVOh06XzqVOs87EXtK+7X7pTvgPBM8crxSfIN88nzJvRj9Oj0jfXs9Rj2b/bn9i/3Sfd998b36Pf49zn4lvjI+On4UPnl+Ur6j/oY++D7efzX/F/9Iv64/v3+Uf/h/1IAawByAKgA1gC7AIQAdQB4AFwAMQAiACUAHAATACAAMwA6AEsAdgCfALoA5gAzAXkBpgHpAWAC0wIeA3kDDQSlBAoFcgUaBtAGSgexB1EIBQl6CcsJSgriCkULfgvdC2AMwAz4DEcNtg0PDkcOjw74DlsPrg8JEG0QyxAsEaYRJxKVEgAThhMPFHEUtBT+FFQVlBW3FdQV6xXvFeAVyxWrFXMVLhX1FMEUexQeFMYTfxM4E94SfhIuEuoRnBE+EeQQnBBZEA8Qyg+XD2sPQQ8jDxQPBA/vDukO8g7qDscOsg65DqoOaw4pDggO3A16DQoNxAyLDCYMnwsxC90KdgrzCXcJEwmuCDkIwQdOB9sGaAb2BYAFAgWJBBoEoAMVA5ACIAKwAS4BqgAyALj/L/+q/i/+of0B/XT8+Ptb+5b66Plm+cn47vcZ93X2wvXQ9N/zK/N38onxlvDe7zPvV+537c7sMOxh64rq5ulL6YTouucf54XmuuXu5FTku+Pm4hDiguEX4X/g2t+F333ffd+G387fWuD+4LDhhOJq41DkTuWA5sLn5Oj86TTrbux27V/ube+S8IPxOfIG8wD00vRN9cD1dPYl93n3mffn9034b/hW+F34ifiS+H34kvjK+OH46/gy+aT57fke+pb6SvvU+zP8xPyI/R3+ev78/qv/JQBbAKYAHAFhAVIBQQFjAX4BZAE+ASwBEgHgALoApgCBAEkANwBRAF8ATwBYAJMA0QD4ADUBogEVAngC+QKrA1AExQRIBQUGwAY8B6oHTggACX8J3wlbCt8KPQuTCwwMgwzMDAoNcw3hDRkOOA6EDu4OPw97D8gPHxBnELcQKBGaEfIRUhLeEmwTyxMRFGoUyxQNFTkVYhV9FX4VeBVxFUwVAxXCFJcUVxTsE3wTJBPJElMS3xGHETQR1BB8EDsQ+Q+oD1wPKw8HD+EOvA6kDpoOmQ6cDpoOmA6fDqkOqg6hDpcOhQ5kDkIOJQ72DacNVQ0aDd0MewwIDKoLWQvzCn0KDwqoCToJywhjCPgHhgceB8YGbgYLBqkFUAXvBIEEFgSuAzUDrwIyArUBFQFbAL3/Ov+d/tz9Lf2d/PL7H/tk+tb5MPlZ+Jz3EPdj9nb1p/Ql9JbzvvLx8Wvx5vAl8Gjv5+5j7qbt6+xp7OfrJ+ta6rrpH+lL6FrnhOa85dTk0uPb4vXhCuEq4HXf8t6V3mnefN7D3i7fwN+A4F3hT+Jt47nkDOZU57DoLeqe6+jsMu6h7xHxTfJe83D0hvV09i/32feK+Cf5jfnD+fH5GvoY+ur5vfmh+Xb5Nfn/+N/4ufiU+Jb4tfjE+Nn4KfmV+dj5D/qL+jj7uPsT/KX8Z/36/VP+yv5x/+3/HQBPAKoA6wDpANQA2gDYAKkAbQBJACYA6f+p/4X/aP8//yj/Pf9a/2L/g//o/2MAvgAgAcQBggIOA4YDNgQNBcIFXAYYB+sHlQgeCbUJTwrBCiYLrgs3DI4M1gxEDbAN4A39DUkOpg7YDvkOPQ+OD74P6Q8+EKgQ+xBIEbQRLBKKEtkSNBOZE/MTRBSUFNsUEBUuFTIVGhX1FNAUnRRPFPQTmhMzE7MSLhK5EUkRyRBOEPAPnw87D9YOnA6HDnEOUQ5FDk8OVw5XDl8ObQ53Do0Ovg7sDvsOAA8WDysPJg8RD/4O5A6+DpsOeA47DuoNpw1tDRsNswxUDAEMoAssC70KVArhCWQJ7wiFCBEIjQcLB5oGMAa3BTEFsgRABMYDOQOfAgMCaAHQAC8AeP+0/v39Tv2C/J37yPoI+jT5RPhc93/2jPWP9Kzz1/Lv8Q7xWfCm78zu9+1g7dbsH+xq6/DqhOrn6UTpzOhb6MHnHOeR5gHmSOV25JvjqOKd4ZTgid9x3nDdr9wb3JXbQ9td28XbRNz73CPemN8Q4Z3ieuSJ5nzoZOp87KjuofBq8in0wvUX91L4kPmj+m77IPzJ/C39Of0m/Q39zfxn/AH8lPsF+2/69Pl2+dz4YPgz+CT4Afjs9wv4PPhj+KX4GfmS+fj5bvr7+mr7qPvw+2r87/xa/cD9N/6g/ub+IP9d/4L/hf+R/8P/6//Q/43/Zf9Y/zH/7v7D/sD+wf7D/uD+FP9M/6H/NgDnAH8BFgLiAsADdQQcBfIF2gaXB0kIIgn3CYMK8QqFCx0MdQywDAwNaw2RDZoNwQ3rDekN4Q0BDiEOEg4DDjAOfw67DvcOZA/uD20Q3xBXEdERSRLGEkITphPzEzsUehSYFJQUhBRuFEcUChS2E0MTtBInEqYRHhGGEPQPcg/oDkkOsA06Dd0MjgxgDF4MaQxjDGIMhAy3DNkM8gwmDW4Npg3GDeUNCA4lDj8OWg5sDm4ObA5rDlgOLQ4EDu8N4Q3HDaINdQ06De4MmAw6DNMLZQv1Cn4K/AlxCd4IRAimBwQHXQa1BRUFfgTfAzIDhwLzAW4B4ABNAM3/V//E/hb+dv3v/Ff8pPv++mr6svnI+Or3Mfdf9mH1fvTO8/7y8PH88Ezwje+T7r3tRO3R7Bzsb+sR67zqLeqh6VnpHumy6D7o8eeW5/3mT+a55RblPeRG403iQuEi4BffM95v3ePcu9zm3Dndvd2b3sXfFOGW4m7kfeaR6MHqKO1/73zxU/NZ9Wf3DvlR+oz7xvyv/TH+if7U/vH+0P6G/hX+cP2m/Nb7Bfsu+mv52fhu+Af4m/dE9xb3A/cB9x/3dvfz92b4xPg1+cb5SPqh+gP7nfs0/Hz8m/zx/G/9uf3K/f79cP7C/sL+tf7M/tf+sP6V/rf+3/7b/tj+Af8o/yb/Pv+p/y0AigD0AKIBWwLdAl0DHATjBG0F7QWbBjkHjQfcB3IICwlcCaUJMAq5CuoKBAtXC6sLtgu6CwcMXgxjDE8MgQzPDNYMvAznDEcNfQ2JDb0NJA59DrcOBw+AD/IPPhB9EMIQ/hAiEUQRdRGmEbwRtRGhEYYRWhEeEdwQnRBUEPgPjg8kD7wOVA7sDZcNWg0eDdIMhgxYDEMMLAwXDCEMSgxtDHgMgQycDLoMzwznDAkNIQ0gDRINAQ3nDMUMpwyYDI8MfQxeDD8MLAwjDBsMDAz7C+4L3Au5C4QLRQv9CqoKTwrnCW4J5whdCMwHKAd2BsgFHgVsBLcDDQNcAogBqwD3/1z/pv7i/VD96PxU/Iz75/qE+hD6ZfnR+HX4//dB94r2CPZy9Zv00vNM87by0/Hp8Dzwju+p7s7tPe247ADsQuux6hzqVemU6BToqucf54rmDuaK5eDkLeSH487i9uEh4VPgZ99k3pLdEt3F3Krc+Nyx3aXeyN884fbiweSk5uDoaOvf7STwZ/Kv9Lb2Yvj1+ZT7Cv0m/v/+t/82AGUAXgBEAA4Aov8G/1P+hP2Q/I37nPrF+QT5cfgb+Nz3hPcx9y/3fffL9w34n/iY+X/6+PpU+/j7rvwR/Uj9vP1Q/pX+k/61/gD/F//7/hD/Zf+S/3H/Vf9q/3P/WP9g/6//AAAoAFkArQDtAAkBUAHmAYUC9wJtAw0EnQTuBDUFpAUXBmsGywZOB7MH4gcqCLMILQlkCaQJKwqlCsAKxQoRC3gLowu5CwsMcQyRDIIMngzgDP4M+wwjDXwNwQ3kDRAOVA6KDqcO0w4cD2MPlg/JDwMQNRBXEHkQoBC4ELIQlBBmECoQ4g+XD08PDQ/dDroOiw4/DukNpA1zDUYNHw0MDQUN9gzbDMIMrQyaDIwMjAyUDJIMgwx0DHAMbgxlDF0MXAxRDC4M+QvIC5kLXAsiCwwLEwsOC/oK+goTCxoLBQv/ChkLKQsUC/cK4Qq0Cl0K9wmTCRUJdQjSBzIHbwaKBa8E7QMfAzkCZQGpAN//AP9C/qr9CP1d/OP7m/s++8L6c/pa+hv6mfkw+Q350fg++J/3NPe49ur1EfV19N3zAPMQ8lLxmPCe75ru4O1Q7Z7s2utD68TqIept6d/oa+jp52nnDue45jHmiuXx5FnkouPZ4h3iXuGB4KLf7N5k3hXeLN7I3sbfA+GJ4l/kU+ZO6H/qCe207zHygvTF9tj4g/rW+xf9Sf4t/7D//P8nABEAs/83/77+M/6I/dH8Dfwg+w/6Efk9+Hv34faz9ub2EfcR90n37fec+Ar5mfmm+s37ePzS/F39Av5E/jf+Zf7V/gr/6P7b/gP/Bv/S/tP+Mf+N/6v/zv8aAE0AQgBQALkAQAGfAfkBdwLvAjQDcwPgA10EvQQbBY4F5gX7Bf0FIgZNBloGbgawBvYGEgcmB2AHqAfdBycIpggkCW0JpgkFCmoKpQrVCjALngvnCxsMYAyiDLwMyAz3DDUNUA1SDWYNhg2JDXINaw2EDaoN0g0DDjcOYw6MDrYO3w4HDzwPdw+dD6gPqg+tD6EPhg91D3cPcw9UDyUP8g63DngOSg4tDgoO3A21DY4NTQ33DLgMowydDJAMhwyLDIsMegxrDGwMdwyEDJIMmgyMDGwMSwwxDBoMAgzwC+gL3wvNC60LhAtbCzkLGgvwCrYKbgoTCpsJBQlkCMgHLgeLBt8FLwWABMkDAQMyAnoB4ABAAIT/xf4n/pn98/xL/NP7gvsf+676afpN+hT6tfl1+Wj5Rfno+Iv4Svjp90j3n/YT9nP1qPTr803zj/KY8bbwGvB976fu1e1G7cXsDuxD66XqK+qq6SbptehD6MLnRefM5jrmkeX85H3k3+MT40bikeHc4DXg5d8F4GTg8eDj4Urj5+SW5ojo5Opy7envRfKW9MD2ovhL+tb7L/04/gD/nP/3//D/pf9Y/xD/mP7p/Tj9nPzq+wn7Ivpl+cv4TPgE+Pj3+Pf19y74uPhF+af5LvoU+//7h/zg/Gv9+v0s/jX+h/4D/zH/Hv8//47/nv9u/33/6/9MAHAApgARAVoBWwFpAcEBJgJcAooC2wIkAzYDOwNqA7UD+gNHBKYE7gQPBTMFagWLBZMFygVEBqsGzgb1BlsHxQf2ByUIjAj0CBsJLAllCZoJkwmFCb8JFwo8CkMKdwrKCvcKBQstC3MLswv2C1wMxQz9DBUNSQ2aDdUN8w0mDoIO4Q4VDyQPNg9kD6QP1Q/kD+AP3g/VD6kPXg8eD/sO2g6jDl0OGg7YDZcNYQ05DQ8N3wy6DJ4MdQw5DAMM5QvTC8MLvwvMC9wL5gvxCwMMGgw8DGYMhAyIDH4McwxaDC0MAAznC9ILrQt9C1ALGAvJCnMKJwrfCZEJPAnbCF8Iygc3B7sGRgbGBUIFyARLBLcDEgN4AvUBeAHxAGIA3P9c/9f+SP7E/V39+/yA/P/7qvt6+zD7v/pr+lX6Pvry+aH5gPlm+Rb5oPgx+MT3PPeq9iH2hPXG9A30a/Oz8tHxAfFj8L/v5e787T7tluza6xHrV+qm6fPoReiX59bmDeZb5bTk8eMk43ri3eEY4Uvgyd+R33Lfit8y4Gbh1+Jz5HXm2ehc6+ftjPAl83v1pvfS+cv7Qf1W/lr/LQB7AFYAJgD9/5P/1f4G/lT9rPzx+yn7Yfqn+QX5gfgY+M33q/e39/f3bPgE+aX5TvoG+6z7Hvx6/Ov8U/12/Xb9pP3o/eH9nf2H/a79s/2A/Xr9x/0R/in+V/7N/kv/kf/O/zwAvwAaAVoBrAEMAl4CowLtAjMDZgOUA78DzgPAA8ID4wPxA94D5QMgBFAETQRUBJYE3gT9BCYFhQXhBQcGMAaGBswG1wbwBlYHwgfuBw0IYQi7CN4I+QhRCcQJDAo5Cn0Kygr9CioLcgvBC/ULHgxfDKIMxAzVDAUNVQ2UDbIN0g0IDjgOQw49Dj8ONw4ODtoNug2cDV8NEA3TDKoMdwwzDPgL1gvBC6MLeAtNCzQLLAsoCx0LGAsnC04LewubC6wLxgv7CzUMUwxeDH8Mrwy3DJAMbAxnDF4MPAwcDAYM3AuYC1kLIAvVCoEKOgrsCXIJ5Qh3CBsIowcbB6wGTgbZBU8F2AR1BA0EngM5A+ICiQIqAs0BcQEcAdQAigAmALT/YP8u/+j+ef4X/uP9qv09/b38YPwS/Kb7Jvu0+kP6tvke+ZL4Avhk99H2Ufa19ez0K/SW8/XyF/Iz8Ynw9O8x71HukO3k7CDsSOt16qHpw+j851bnqubm5SrleuSn47LizeEF4TTgcd8N3w/fOt+c35HgHeLr4+zlU+gD647t6+9n8vP0M/cq+Rz75Pwg/t/+fv/2//3/qv9a/w//kP7d/R39SfxN+1b6jvnX+Av4VPf69un22/bO9hP3yPea+Cv5kvkb+sL6Kvsu+yP7VfuX+5j7bftb+1f7JPvd+tb6BPsS+wn7U/v7+5D84PxC/fb9uP5C/7f/UgAAAZUBGwKoAiYDeQO5A/0DLAQpBAwE7wO+A3ADMgMdAwsD6wLyAjADXQNdA4ED9wNtBKAE2QRfBfAFNQZPBogGygbrBgMHNgdsB44HuQf4ByMILwhYCLYIEAlCCXUJvwnwCf0JHwp5CtoKFwtQC6kLCAxGDHUMtgwBDUYNiA3PDQsOIw4mDjYOUQ5SDikO9A3LDZQNKQ2UDA8MvQuFCzsL5AqlCogKaAooCukJ1wnnCfYJAwoqCmcKnQrQChsLfQvhCzoMggy0DNgM/QwbDR8NHw02DUgNIw3XDKAMgAxCDOILjgtTCwYLlAoXCqQJOQnZCIMIGQiSBw4HqgZNBt4FbwUhBecEpARWBAcEuwN4A0kDGwPSAn0CRAIcAtcBgAFPATQB4QBjAB0AFQDW/zr/tv6D/jj+hf3C/Eb82Psl+1b6rfkJ+UD4gPfs9k32gvXO9Fj0y/Pv8g/yevHs8P/v4O787VTtleyt69rqM+qV6eToLOh5587mLeaN5djkEeRK44Lis+EV4fzgY+H+4dHiNuQ35lvobOrK7LHvufJm9br38vkD/Mj9TP+jAL4BiwIYA2MDTAPXAj0CowHxAAMA4f6o/Wv8Lfv1+dT44Pcu9832t/a99rn2z/Y69+r3gvjZ+Cv5kvnK+ab5bflr+Xv5YflO+X75vPmz+Zv57PmQ+gj7Qvu0+4z8Y/3n/Vr+Gv8QAOcAiQEtAucCkAMFBE0EhAS1BNoE1wSYBDEEzgNyA/wCgAI+AjoCKQL5AfcBQgKJAp0CxgI4A7MD/wNJBLcEFQVBBXgF1wUaBiIGPAaKBrUGlAaGBskGEAcZBykHhQfmB/oH/AdRCNoIOgl1CdsJbQrlCiwLcwvVCzIMcQygDNEM+wwaDS0NKQ0CDdQMuwypDHEMDQyjC0wL+wqtCmwKOgoTCvUJ1AmbCVUJKwkpCTEJMAk+CWcJkAmvCd0JKAp6CsYKFwtoC6ALwQvgCwMMGwwzDFkMegx7DGsMaQxtDFwMRAxCDEwMOwz+C7ULfQtQCxELsApECuwJnQkxCaYIKQjMB2oH7QZ0BhgGwwVeBfwEsgRyBDAE9wPJA5kDawNMAyoD7AKoAocCbQIhArUBbQE+AdEAKgC3/4r/Mf98/s79bP0H/U78gPvt+mz6tvnk+Cj4aPeI9rX1BfU09BzzCfI68W/wYO8+7lTthOyF62nqdemw6PrnWOfe5n7mIObO5YnlNeXO5HjkOuTq44DjL+Me40njwePF5Gvmg+jZ6mjtIvDW8lr1uvcH+iz8BP5+/50AcQERAo8C6wIZAxMD1wJfAp8BigA0/8n9cfwn+9f5ivhb91X2dPXM9Hn0g/Th9IL1OvbJ9iP3d/fV9wf49ffa9+L31/eQ91H3aPe29/r3Uvj8+MD5Mvpc+q76SPvg+1/8F/0l/jb/AgC2AIgBVgL0An8DEgR2BHIEIgS2AycDdwLkAYwBLAGgAC4AAQDZ/5T/j/8KAK8AHAF+ARACmALkAj8D4wOABM4EFAWRBegFxgWOBbQF8wXMBWIFHQXqBHgE8gPCA+QDCwQ/BL0EbwUBBnYGGgf1B7UINQmrCTkKswr1CiQLbAvBC/4LHQwkDAkMwwtnCwgLogovCsYJfwlPCRkJ4gjJCN0ICAkvCU8JcwmbCb0JzQnUCd8J8AkFCiAKPgpUCmoKmwrtCjcLXQt2C6YL2gvmC84LuwvCC9IL3AvmC/sLHQxQDI0MwQzfDOsM7QzaDKQMRgzQC2gLIQvaCmsK3QlnCRYJwghaCP8HxgeOBzgH1gaABjIG6QWzBZEFZgUyBQYF3QShBGMEQgQlBNsDdQM2AwwDowIFAp0BgQE/AaYAHgDu/7v/L/+J/h/+y/0+/Y787ftD+3H6pPn7+Dj4Mfcf9jj1RfQK87zxpfCt75zuf+167HnrZ+po6aToC+iE5xLntuZX5u7ldOXE5Mzj1+Im4n3hkODF39jf3eBI4vLjTeZ46ePsAvDd8qT1U/jV+ib9Kv+9AAICMQMwBLoE2gTmBPIEqATMA48CNgHJ/zf+mPwM+4/5D/iw9rb1IvW89IH0vfR89Uj2s/bc9gv3JPfx9pv2XfYY9qz1a/WY9d314PUB9rb2mPfu9+f3VPhS+Tf61vrH+0L9sf6m/4AApAHTAq4DWAQHBYAFZAW/BNkD2ALOAdoA//8c/0j+x/2M/Tf9z/zk/J/9Xv6d/qz+Af9x/6v/4v9rACIBuQFBAtACHQMIAwIDYQPDA7UDdANuA2gD9wJiAkMCmwL+AnADQQRHBQkGlAZrB5MIfQn0CWEK9wpUCywL2QrMCvsKJAs9C08LOQviCnUKFAqgCQEJbQgXCN0HhwczBygHcwfmB2gI/giUCQAKMwo+CjQKFwroCaUJUgn9CLgIiQhwCH4IyghICcoJNAqSCu0KMAtSC3QLsgv7CzMMagy5DBANUg2NDeANLQ47Dg0O1g2QDQcNSwyyC1sLDAumClcKOQoZCtoJpwmbCYsJWgkkCfgItAhACMUHaAcZB8gGgQZJBg8G1gWvBX8FIQW1BHMENASmA/ICkwKGAkgCxQGDAa0BtQFPAfYABQEHAYoA4f91//3+DP7o/Ab8O/sh+uX48fcf9wf2yPTJ8/ry9fG88Kvvx+7A7YHsT+tB6i7pD+gK5yfmTuV+5M7jQePO4n7iR+IF4rDhaOEv4fLg1uBG4WziCOT85Yzo1ete76Lyq/XB+Lv7Gv6z/9oA2QGXAvQCDQMeAzIDLwP4AnwCuAHEAMf/x/6u/XL8L/v/+d340fcC94H2OPYf9k/2rPbl9ur2CvdS91X32/ZO9gL2nfXT9DD0Y/Qr9dP1a/aJ9wX5Gfqu+n/71PwS/tT+j/+fAJcBDAJXAv8C2QNiBIYEiQRnBOQD/QLuAeQA9v8y/4D+sf3q/I/8pfzE/Nf8Uf1P/jX/lP/F/zMAqwDYAPAAOwF/AYgBnAH0ATsCOgJiAgMDmwOfA3EDrgMkBEgEQQSkBGYFAQZnBgYH6gevCEMJ+AnLCkkLRwscCwsL4ApqCtkJcAktCeYIlAhQCC4IPAh2CLoI3gjgCOQI8QjzCOUI7AgeCWwJswnjCQIKIApMCn0KmgqfCp0KlQptCiYK6gnXCd8J9QkpCnoKxQr/CkcLsgsnDIYM1QwhDVUNWg09DSMNGg0QDfkM4AzPDLcMhwxUDD8MRQw6DAoMzQuQCzsL0Ap/CmUKWwo/CiMKFgr0CaAJQgkJCeUIpwhKCOIHcgfxBm0GAAa1BYoFcQVQBR8F+wTsBMIEYgQSBBEEDwSVA9gCcgJgAgQCSAHTAOQA1gA8AIv/Mf/R/vj97PwZ/E77Lvrz+Pn3G/cH9uj0EPRY813yMvEp8EfvR+4Q7cjrgeou6c7nc+ZB5V/kz+Ni4/3ixuLB4o7i9OFl4VPhbuEq4dDgLeFW4q3jFOU051vq6u0k8ffzpPYg+SL7iPx1/Sb+vP4b/xb/yP6R/qP+1f7z/v7+Af/f/nj+zP30/A/8QPua+gr6hvkj+fL45Pjl+AD5P/mI+aL5V/mh+ML3Ffec9g32b/VN9er1vfY797n32fhy+sb7p/yT/ar+cf+0/+v/awDyADoBeAHjAT0CNgLxAbgBiQEsAZMA0P/2/iX+fP3j/E38EfyN/G398/0U/on+iP9OAF0APACGAO8A6ACUAGwAeACQANoAYQHHAeABFwKuAisDMAM4A8oDhwTWBO4EcAVKBvUGegdPCGQJMAqPCt4KNgtDC/EKowqGClUK4glvCToJKAkaCTEJiAnwCUIKlwr7CjULJwsOCy4LXQtWCzALMAtYC20LYwtqC5ILsguqC4QLTwsOC8YKhApVCkgKZAqYCscK7golC20Lowu4C8sL8gsFDN4LlwtsC2gLYwtOC0YLWwtxC2oLQgsEC7oKfwpbCisKzglrCUAJNgkJCcUIuQjuCAoJ4AisCJoIdQgPCJQHOgf0Bp0GQgb5BbkFgAVbBUMFFwXfBL0EowRfBAIEyAOmA1QD4gKsArYCkwImAtgB3AHSAXgBHAECAeUAfwAFALH/Rf+K/r/9Hv1s/Gj7VfqB+bX4nfds9oP1xfTI85TylfHj8CnwKO8B7uzs9esG6wTq8+gK6IPnO+fS5j3m1eWy5XHl4ORW5CXkD+TM46Dj9uPK5NnlKuf56C7rae1s7zbx0PIw9Er1D/Z/9sX2GPds94z3ivfV95/4gvn6+ST6gvoh+3D7FvuJ+mj6oPqm+l76NPp1+uv6Qftm+4P7v/sJ/Az8hvu/+kb6IvrI+Rn5y/hd+Tb6mPrK+pD70vy1/fb9Lv60/hr/A/+7/qn+vf6//sD+5f4R/yP/Mf9I/z3/+P6o/nH+J/6p/TL9Af0A/QX9K/2T/RL+bv7D/jz/qf/C/6b/o/+4/6n/d/9Z/2H/ff+4/xoAdQCqAPIAfQEDAisCKwJ3AgQDZwOUA+oDjwRBBeEFmgZ8B1UIBgmkCTQKkgq3Cs8K+AojC0ILaQumC/QLUwzBDDANkA3wDV8OwQ7tDusO6A71DvgO4Q7NDtYO9w4cDzYPQQ85DyMPAQ/MDnoOFQ6zDWYNJQ3gDJsMbQxjDGwMbQxgDFIMUgxaDFoMRwwsDBwMGwwUDPQLzwvGC9QL1Qu+C6sLnwt2CyQL0AqTClAK8wmZCWMJQQkYCfEI4gjgCNgIyAizCIkIQwj5B7cHcQcWB7YGZAYbBs8FggU8Bf4ExASNBE8EAASuA2oDKwPdAo4CXQJIAigC6gGnAXMBOwHvAJ0AUAD//6L/SP/2/pr+Mv7T/X/9FP1//Nz7QPuZ+tT5CPlO+JP3wPbt9T31p/QN9HvzCPOl8izyn/Ec8aTwIfCV7xTvmu4Q7nXt2+xD7J3r++p86iHqz+mB6VPpUell6Yjpz+lG6tvqdusO7J3sF+1y7bDt2O317QzuJ+5H7nHuse4L73nv8O918BDxufFX8tzyUPO98x70bPSu9Pj0UfW99Tj2vPZG99T3Y/jo+FH5ofnz+VH6nvrH+uz6N/uY++H7Hfx+/A39lf37/V3+yf4a/zP/NP9B/0//Qv8q/yb/Mf82/zj/TP9x/5v/yv/4/w4AAwDr/93/0//A/7D/t//S/+//DwA+AHsAvwAHAU0BgwGiAbgBzgHZAdkB6AEfAmsCqQLeAigDigPtAz8EiwTgBDsFjgXPBQQGQgakBiQHpQcaCJcIJQmvCR4Khgr/CnkL1wsZDFYMkwzFDPQMNA2IDeENNg6LDtcOEg9GD4MPvg/nDwQQIxBBEFAQWBBqEIQQlxCjELYQyhDNEL4QqRCWEH0QWRA1EBYQ9w/aD8cPxQ/ND9UP4A/wD/oP9A/dD8APoQ94Dz8P/w64DmoOGA7QDY8NRQ3qDIsMLgzEC0ALrwotCsAJWQnsCIIIJwjaB44HQwf8Br4GgQY5BtsFcAUFBaAEPATWA3ADEwPCAnoCMwLsAbABiAFnATEB4gCWAGAAKgDc/4L/PP8J/8n+cv4b/tP9iP0s/cn8b/wX/LX7Sfvd+nH6A/qU+Sj5uvhG+M73UvfM9jv2p/UV9YH06fNT88DyLvKa8Q3xjfAW8J7vI++o7inuoe0N7XHs0esz65nqCuqO6TDp++jx6AbpNel86dXpOuqi6gPrVuuZ68rr6uvy6+jr2uvb6/DrF+xT7KnsGO2V7RHui+4D737v9u9l8MbwIPF58djxO/Ko8iHzp/M39Mr0WPXY9Uj2q/YI92H3vfcg+IT44/hC+bP5Mvqt+h77lfsY/I382vwK/TX9X/18/ZH9sv3i/RH+OP5j/pX+w/7p/hH/Q/9v/4f/jv+T/5v/pv+2/9P/AAA1AGgAlAC6AOMAFQFIAXIBlgG3AdoB/QEgAkICaAKdAuQCNQN6A68D4wMjBGQEmATABOwEIgVcBZQFzwUUBmgGzwZBB7AHGAiACOwIVwm6CR4KjAr/CmwL1wtLDMgMRg3CDUIOxQ48D50P6A8lEFgQhhCwENEQ7hANETARVBF8EbER9xE8EnESmhK/Et4S6xLqEugS7RLwEuUS0RK+ErASnxKGEmwSWBJHEisS/BG+EX8RRBEIEcQQfxBBEAkQyg98DykP1w6CDhoOow0oDa4MLAydCw0LiwoUCp4JKwnECGsIFAi3B1gHAAeyBmEG/wWMBRYFqgRCBNcDbwMTA8QCbwIPAq8BWgEOAcIAbwATALL/VP/+/qj+TP7z/a79eP04/eT8hvwt/NP7cPsF+5X6HPqc+R35ovgm+KT3KvfB9l/29vWE9Q71l/Qc9JrzEfN+8ufxWPHQ8EnwwO9E79fucO4E7pXtJe2u7Crsn+sT64bq+ul46Qzptuhv6DjoHegg6DboUeht6IvorujP6OLo3+jU6Nbo6ugB6RLpJ+lU6Zvp7ulD6pzq/Opj68vrNOyg7A7tfe3w7XDu+O6A7wbwjvAe8a/xNPKq8hvzl/Mg9Kf0H/WW9SX2zPZw9/z3iPgy+er5gvrq+kb7s/sk/Hz8u/z6/Ez9rP0M/mD+qv77/l3/w/8VAEwAfAC0AO8AIAFLAX0BugEAAkkCkQLUAhUDVwORA70D4gMMBDkEWwRzBJIExAT9BDgFewXLBRgGUgaDBrkG8AYXBy8HSwd1B58HwAfhBxMIVgilCPYIRgmWCeUJMQpzCqkK3wokC3ULxgsUDGgMyAwvDZkNBQ54DucOSg+fD+8PPhCBELUQ4xAaEVsRlxHFEe4RHBJREoESpBK/EtsS9BIFEwoTCBMKExYTKRM5Ez0TORM4Ez0TPBMnEwUT5BLHEqESaBIkEuYRshGAEUcRCRHLEI4QTxAIELUPWg8AD6oOTA7bDWAN7gyIDB4MqAsxC8MKVQrcCVwJ4AhpCPMHfgcPB6QGNwbIBVwF9wSVBDEEygNmAwsDsgJKAs4BTgHdAHkADQCW/yD/uP5W/vH9jv0v/dP8dPwV/LP7Svvc+nH6CPqZ+Sn5w/hh+PL3dPf+9pj2Mva/9Un12vRu9P7zi/Mb86zyPPLN8V7x6vB38BDwr+9C78nuXO4A7pftEu2K7Bnsruso647qBOqX6Tbp2OiK6FzoRug86DnoQehS6GHoaehr6G3ocehr6FLoMOgl6DvoXOhx6Izoz+g76azpBOpZ6srqVOvR6y7shOz17Hvt+O1k7t3ufO8y8NXwYfH18aTyVvPl81v03/R49Qj2gPb69o33Kfi++Fz5EvrI+mD74vtt/P38c/3M/SP+g/7Y/hv/XP+l/+z/MgCKAO8ARQGFAcYBFgJhApkCzwIXA2kDrwPtAzEEeAS2BO0EIwVXBYcFtQXgBQIGHgZIBoMGugbkBhcHYAetB+MHDwhNCJgIzwjqCAkJQwmHCbgJ2wkRCmcKxQoLCzoLcAu9CxAMTwx4DKkM9AxHDYoNvw3+DVIOrw4KD2UPxQ8qEIgQ2RAbEVgRmBHaERMSPhJoEp4S2BIFEykTVBOGE64TxRPYE/ITCRQQFA8UExQbFBkUDhQFFAIU+hPpE9UTvhOdE3ATPBMIE88SixJEEgMSxxGFETcR4xCTEEYQ9A+VDycPuQ5WDvcNig0PDZkMMAzFC0gLxgpSCuUJagngCFgI2QdYB9EGTAbSBV8F8ASDBBUEpAMyA8ICVALmAXgBBwGOAAkAhf8M/5v+Kf6v/TX9xvxn/BP8tvtH+9r6gPom+qv5GfmW+C/4vfco94v2BPaK9QP1cfTo82vz9PKC8hfyrPFA8dnwefAT8KXvO+/P7k7uwu1E7dLsROyZ6wXrpOpG6sPpPenr6LzodOgF6KPnaec45+XmcuYK5tHlwOWv5Y3lfeWj5fLlM+Ze5pvm++ZR53fnhueu5+rnEegj6FLouuhB6b/pOera6rDrjuxA7crtYu4g79jvUvCh8BDxvfFu8unyTvPv89D0pfVA9tT2m/d1+Bz5kPkM+qD6LPuk+yH8pfwb/Y79GP6n/g3/W//R/2kA3AARAUsBsgEPAjUCUAKeAgoDWwOSA9sDOgSLBMAE9AQzBWsFjQWgBbUF0AXuBRQGRgaGBs4GGwdsB8IHGAhnCKoI3wgFCRkJHwkjCSkJNQlLCXkJvgkOCl8KugomC5UL9wtKDJwM7ww0DWUNjQ25De4NKw5uDroOEw97D+0PVxCrEPoQWBG3EfsRIxJTEpQS0hIDEz8TlxPzE0IUlhT8FFsVkxWxFdMV+BUCFukVwhWjFY8VeBVRFSAVABUAFRAVDxX/FPMU8BTiFLsUhBRJFA0UyhN6ExsTuBJdEgMSlxEYEZ4QLRCyDysPrA4wDqENBw2CDBUMnwsZC6QKSwrpCV0JuwgiCJkHFQeJBuwFQgWkBCgEugM6A68COwLhAXgB4AAqAID/8v5r/sb9Cf1q/BH81ftx+/P6o/qJ+lr67Plw+RD5n/jv9yP3dPbZ9Sr1fvQJ9MHzYPPL8j7y8fHE8WXxwPAX8KPvSe/C7gPuU+3w7MLsdOza6yfrteqC6h/qQulM6NDnt+dd547m6OXr5Szm/+WJ5Xzl4uUG5pblJ+U35W3lTeUU5Ujl1eVD5ofmBefW57TocOka6rjqTOv166nsGO037XztK+7P7uTuwu4h7wTwxPAT8V/xIvI58xr0jPTn9KD1ofZl98n3Q/gb+ff5cvrD+kv78Ptd/Jn82PwQ/Sj9Qv16/ab9vv0H/p7+Lf97/9j/hwA6AYwBqgH9AXUCogJyAlQCigLLAscCrQLeAl4DywPyAw8EYgTNBAEF9gTuBBYFVQV+BZYFzQU3Bq4GBQdHB6IHGwh/CKgIswjTCA8JPglGCUoJgwn5CXAKtArmCk0L7QttDJoMtgwSDYkNuw2tDccNMg6iDtgOAQ9cD9MPHxArECYQQBB8ELEQwhDIEAURhxECEjUSWxLREncTyBOeE3ATmBO/E2gTtRI/EjkSPBLzEZoRohEIEmESYxI+EkkSkBLFEqISSRIjEk4SaBIVEpgRfBGzEZkR7BBGECoQLRCbD5sO9Q3YDZwN2gwPDNYL/AvfC1ILwwqDCl8K9wk+CYQIDAi4By0HTwZ2BfkEsgQxBGQDtAJhAh8CigG6AB8A3f+W/+r+Av5n/UP9Ff1i/H/7IPs2++n68PkM+df4yvgb+P72OPbc9Vj1cfR+88byP/LQ8WHxyPAU8KTvke9T74Tum+067SXtnOyn6wzrF+sl67jqP+pS6rrqveo56szpz+nB6fvosOeu5kTm3OX05Pfju+Ng5CTleOW65ajmRui/6YHqA+sl7OntWu/V7/Dvl/Cx8UHy1fEi8QTxXfFT8Ybwl+9m7/jvavAl8MXvS/CX8X3yevKC8oPz5PRn9Rj1NfVA9kv3gPdg9+j3CPnJ+b35iPng+ZT66Pqh+lz6u/qC++/71/sA/AL9Vv4E/x//pv/pAPkBCgKwAf4B4wJRA90CXQKmAmIDogM5A/ECVQPzAw4EugOzAzwEygTtBPMEUQXqBVkGlQbVBigHcge4BwAIMAhJCIII6AguCTcJYgnzCY8KzQrrCmMLDwxhDFIMbQzvDHENlg2TDc8NSA6nDrQOmg6wDhwPnQ/YD9AP7w9sEOwQ/RDBEMEQJxF6EVkRDREXEXARlxFVERARLBF0EWsREhHqEC8RfhFqETgRcxEVEogSixKTEgkTlxOlE0ETBBMtE0QT2BIqEsMRshGJEQIRXRDyD7wPaA+8DuMNOQ3fDJIMDQxzCyILHgsDC6IKUApICjUKtAn6CHUICwhRB1wGsAVjBQMFVASsA1IDHwPPAl8C5wF8ATQBBAGiAPT/Zf9T/1z/6P4l/r79q/05/UH8Yfvg+kX6Uvl4+PH3S/dS9oX1KfW99OnzJfPi8r3yPPKg8Uvx/vBe8Lbva+8q73rusu107X3tB+0U7HPrdOt46wPre+p26uDqMesb68jqgepS6gHqWOl56LznNOek5u/lTOXe5HrkJeRE5Pzk3eWf5rfnl+nA63Tt5O7L8Bnz/fQw9jX3P/jR+Lb4avgv+KT3s/YB9tr1k/We9I7zJfMN83Xyf/EK8U7xpvG98QXy1PLp8/D0AfY692j4UfkD+q36QvuZ+6v7nvuq++f7JPwg/PT7DvyR/P788vzO/C799/2G/sX+Uv95AMIBqQJUAyoEGwXFBQEGBwYOBhYG+AWTBQoFtAS6BMgEiAQ8BGgE9gRDBRsFBgViBc0F1gW7BfgFiQYbB58HPgjuCIUJFQq2CkALgwuuCwwMgwzCDNIMDA2BDesNLg55DtgOCg/yDscOvQ60Dn0OPg5EDpEO2A7oDu4OLQ+ZD9wPxQ+OD30PiQ9vDzAPFA9FD58P9g9ZENgQVBGvEf8RVxKYEqMSmBKsEt0SBhMjE0wThBO4E98T9BPfE5oTUxMmE+QSWBKkERwRwRBJEJYP5w5kDuQNNw1qDKEL5go9Cq4JLwm1CFkIRQhaCE0IGQgCCAkI2AdZB/EG3QbABkEGqQVjBTwFtQTSAxMDqwJJAqkB4wAqAJX/JP+t/vb9E/1//GP8LPxd+2j6+PnA+er4kvet9m328fXX9Ozzt/OH86nysPF18Z7xRPGA8DHwfvC48JTwkPDq8DzxN/ES8evwjvD374HvOu+m7oztcezK60brUOoF6f/nV+dw5tXk5eJZ4WDgk9/O3pnea9/T4Pnh4uJf5KHmvegd6pzrRO6Q8S/0E/Zy+Jr7Rv52/8b/MgCRABcAt/4X/Yr77vk++J/2B/V380DylfER8UXwa+8N7ynvXu+t73fw0fFr8yT1Dff6+JL6zvv7/CT+8/46/zz/S/9w/4r/df8o/9X+0f4g/0X/7/6L/rT+P/93/z//Rv8BABQB9QGtAosDkgR5BQoGOgYhBuwFwwWTBT8F6QTOBNwEzgSxBM0EFQUlBfsECQVvBbcFoQWkBTYGFAfAB0YIBgn1CbwKRgu7CxYMNwxCDHcMuAywDHAMYwyuDPkM/AzhDPEMKw1JDRoNtQxtDIYM6AxADXINwQ1VDuAOAQ/VDsYO8Q4UDxYPIQ9GD1YPPA8lDzMPUQ9tD6QPCBB3EMAQ2RDaEOAQBBFKEZgR5RFMEtYSQhNGEwMT1hLHEoQS+xGGEVEREBGDEOUPig9QD94OOg6yDU8NzQwSDFwL3Ap9ChQKpwlUCSIJBwnwCM4Iogh0CD0I6Ad1BwEHmAYkBqQFQAUHBcMERgS8A1oD/wJkApgB5wBpAPP/Y//J/jX+t/1l/TX94vxM/MD7d/sf+0r6O/mS+Fj4APhU97L2OvaP9Zf0vPMk82nyc/Hc8OXw0/AG8Avvy+4P79bu+O1b7ZLtFO4l7sPtY+0t7efsYOyW67Hq6elp6Rvpp+jD54XmVuWK5Onj3+JU4RHg1t9B4FzgQuBF4fvjNeeV6WDrsO2E8ODyjfRa9qX40/p0/NT9Gv/E/4r/8v5y/qj9+fuE+fn20/Qe867xVfAq76Du9e6E72Pv0u4V76rwgfKZ83X0JPaA+Hn6rPu9/C3+tP/bAJAB8wEPAuwBmwEdAX8A4f9T/87+cv53/rT+qf5L/kT+6/6Y/5n/YP/e/xIBGgKHAuACqgO5BJYFBgYIBtcF5QVbBrgGbQbfBesFjgbMBjEGhAWdBUMGuwbdBgMHYQfjB3gIAQlUCZYJPQpeC1UMlQx8DMAMXA2kDVoN9AzcDOoM0wyXDGQMSQxEDFMMWQwqDMoLhQuaC/wLbQzHDBYNgg0TDpoO2A7ZDgcPpg9jEK4QdRBHEIkQ9RAIEcYQtBAaEaIRzRGaEXgRpBHoEfcR3xHrETUSjBLEEuoSERMeE/YSqhJiEhgSqREUEY8QORDnD1gPiw6/DSMNnwzyCxYLVgr9CeUJpgkcCZoIcwh4CEcI3gefB7YH3AfJB4sHTwcTB8IGZwYOBp8FFQWNBA0EXQNrAoEB0gAuAGj/sf5C/s/9/fwQ/I/7W/vj+iX6tfmx+YD5zPgP+L33mPcz96L2Jval9ff0RPSp8+7yAfJI8fvwmPCq75zuGu7r7UvtO+yR65vroesO61DqB+r36WfpSOhP5+Xmjeav5Yjk1OOe4/niTuFW3zLezt0p3TfcQ9wU3qHglOI45LzmG+oh7WDvyPEB9XD4RvuU/bz/mQHTAmQDYgO1Am4B7v9C/gf8NPmA9mf0d/I88DbuNu0g7S7tJO1+7Xrutu/U8PDxVvMl9VX3t/n4+9z9df/kABYC4QJRA4oDiQNKA94CNAIcAcj/2v6g/on+/P1G/Rb9Yf18/TD9/vxS/Qz+1f5u/73/8f+SANYBHAOyA+cDjQSSBQIGjAUOBUYF5QVKBnMGrAbxBiYHcwfeBxMI+gcMCJwIOAlZCS8JTAnCCTYKfAqrCs4K+wpwCx8MeQwtDMQL6QteDF0M2gulCzgMGQ2YDZwNhQ2aDdgNAw7aDWgNJw2BDTQOmA58DmYOzQ55D9sPyg+mD90PdRAOEUQRKBE7EdsRvxJVE4ETuRNIFOYUGBXOFGUUMhQ1FC4U4hNUE8oSfhJaEg0ScxG5EBkQnQ8ZD2YOhg2/DGIMXAw4DKcL7wqSCo4KZgrWCS8J1wjQCM0IlQgsCMcHrAfdB/EHiQfkBpsGuQaZBtgF6QRvBFkEHgSDA8sCPgLbAXsB9gA9AIP/F//0/qL+0f3X/DX86PuG++b6OvqW+d/4FvhK91D2APW68w/z1PIt8sTwWe+37pHu+e3K7NnrwesS7PzrXevG6qvq4+r76rHqFOpa6b7oSeis543mEeXh40TjjOLT4FPeOdwV2x7ai9j81tPWX9iU2qXc8d4T4rDl/+jr6wnvjvIf9p35VP0kAS0EzgWABiEHpAcgByoFgAITAN79EPtO92jzovBd76nuZO2v68zqauua7B7tPe1w7jnxUfRg9r/3uPmb/G3/UgGEApMDgATZBHQEqQPQAvUBBgEaAFL/h/5y/Tj8e/uE+6z7MPtf+kv6Lfv4++n7ufuU/F/+4P9yAMEApQH7AvIDDgSuA5IDBQSVBLYEjQTHBJMFVgaWBqQGAQeRB/sHVgjeCFIJYglnCfAJtwoHC+8KNwv+C2oM/gtTCxcLHwvuCpEKagqBCqEKywoPC0ULUAtmC70LHAw1DC0MYwzoDIINFA6oDjkPtA8kEJcQ5hDxEO4QMRG4ESkSUhJlErASNhO0E/AT+RMUFGUUvBTPFJ0UbBRkFGEUKxTBE0wT6xKnEmYS8xE6EXUQ8A+XDxEPUA6xDXANUA0FDZ0MUgwoDP4LyQuCCxYLmwpQCjsKEgqtCU4JLAkcCd8IkQhfCCwI1Ad8B0YHAAd+BgEGyAWRBQEFPAScAxUDaQK4AT8BzAALADz/x/5v/qX9l/wL/Ar8xvvp+h/64vm6+Rj5PPik9zn3ofbg9R/1QvQ781fyu/EF8eLvpe697e/syet76pPpHOmj6P7naufx5knmaeWv5FbkJeTO413jE+P84rvi4OGJ4HPfFN/U3trdf9wT3PDc6t1C3gvfgeHr5JbnXOmX68Tu5PFg9Pv2SvqY/QsA3AF1A3kEegTvA24DnALPAE/+6fu4+Tr3kPSA8kLxMPDk7r3tI+3c7JzsrOyK7Sbv7PCA8hj0DfZE+EX64ft8/Wr/QwFCAl8CZwLFAuMCMwI7AeAA9wCKAGn/dv5G/kL+pv2j/Ab8/vv/+6j7TPuC+2j8gv1T/un+wv8EATYC4wJQAxIEHgXYBRMGVAbzBpIH1wcFCHgI9QgdCRYJPQl1CWAJGAkKCT4JVglICWwJ2Qk6CmYKlgrbCuYKkgo0ChsKHwr8CdoJDwqMCusK/QoACzcLmAvpCw8MLQxyDNwMPQ17Db4NPw78DsIPbhANEbERTxLYElMTwRMeFHIU1BRFFasV9xU5Fn0WpxaYFlIW7xWGFRgVmRT+E1MTuxJLEuMRVhGxECsQyg9UD7cOKQ7YDaMNVg0FDdUMuAyMDGoMdQyIDFwM/gu1C44LRAu9Cj8KAQreCZYJIwm3CGsINAj5B6IHLQeyBkQGzAUwBYQE+gOeA1ED/gKfAiICiQH8AJYAIgBp/6D+Kf7t/W39h/ys+y37yPoY+iL5LfhR93T2hfWA9FnzGPLj8L7vgO4T7ajrfOqY6dnoEOgW5/Dl1uT34y3jNeJA4cvg5uAA4Zjg1N8u3+ne4d7B3kzen90e3dbcLtzR2q/ZMdpc3MjesODe4vblAeno6lrs0+4/8kr1qPdq+r39MgAHAXcBwAL4A2EDGQHk/nr9sPuY+Cn17fLm8bHwju5R7CHr9+rx6rrqA+tN7P7tOO8k8J/x0/MT9g/4Rvrb/AX/GgCSACwBygHLATQBpgBjABQAhP/l/mr+Df7H/ZH9NP2K/OL7svv7+1r8tvxW/Vj+ev+BAHYBaAJWA04EUAUZBmwGhQbaBnAH1gfsBxsIlggGCSoJQQmJCcgJxwnECfIJCwrSCbMJLQr4CnALoQsaDM0MDA2iDDAMKgwpDLkLKQv7Cv4KowrrCXsJmwnVCbUJfAmwCU0KzgrsCgILjAuCDHcNOA4FDy0QlxHdEsoTfxQrFckVMRZZFmcWhRbDFg8XSRddF0kXIRf1FsYWfxYMFnAV2BRjFPoTbBO4EiES0RGQERARXBDKD38PQw/bDlEO0g1sDRYN3QzLDMgMxQzgDCINTQ0fDcAMkQyfDJAMNgzMC5YLegs6C80KXQr7CYsJ8AgpCEoHaAaWBdgEMQSjAx8DiALmAW0BJgHEABQAbP81/zX/xv7Q/fv8ufyU/Of71foA+pX5G/kq+Ob2r/Wn9JrzSfKz8CDv1u3N7Lvrhupi6Xrom+d+5jHl/uMA4xTiK+Fh4MXfIt9B3j/dftwl3NzbPdt42hbaDdqD2QTYdNYh1g7XG9js2Jja/N0r4orl8uej6i3up/Ew9E32B/lM/Cj/KgG6AgcEfASjA+gB///x/Vv7Wvic9XrzhPE67+TsQuuW6mzqUup56kvru+xJ7qPv6/Bu8k/0evat+J/6QPzP/XL/vwAyAeYAfwA+ALD/hf46/Xj8M/zp+3n7Mvst+yP78vrh+ij7rPtJ/BX9KP5l/5EAnQGjAr4D8QQXBvwGlgccCKwIBgngCHIIPghaCGgIQwhLCLUILAlYCWAJggmfCZEJnAkSCsMKSgvEC5cMng00Dh0O5Q3+DRgOsw35DIQMbAwlDFYLYArPCZwJYAkQCRMJjgkfCmgKlgoHC7QLVQzrDMYNAA9EEEwRQBJcE4UUYxXgFToWnhbvFgkXABcTF1cXohe9F6gXjheGF3EXMxfhFq4WkxZWFtcVRhXWFHEU6BNOE+kSuRJxEuYRSRHNEFcQwQ8pD88Orw6QDmsObA6aDrsOsQ6jDq4OtA6PDkoOBw7CDWoNAQ2NDAQMXgusCvsJNQk+CDAHSwajBQ0FWgSbAxID1gKqAj4CrgFrAZ8B2QGWAQABpACTAEYAbv9u/sf9Uv2J/FL7B/rj+LP3PfaX9ATznPFC8ODuiO1Z7FPrTuos6f7n7Ob95RLlIuRS47XiHeI54f7fut6+3fbcBNzR2sbZNtm/2KzXBda61FnUONSF08HSQNNU1eLXNdod3XjheuaH6mTtXPAn9Ob3v/pM/XUAuAObBbsFIAWUBJcDfQGx/h782vkl963zI/Bq7ZrrOuoV6YHox+io6aXqouvx7Mvu//A381L1W/dX+Tv7CP2k/uT/sgAbAR4BogC1/6L+nP2U/IH7nPoS+qb5FPma+LD4Tfnr+Ur60frn+1v9qP6o/7kAKQLCAxAF7gW5BskH9Ai+CfMJ6AnuCeIJgAn1CKsItQjACK8IvAj4CCUJNgmACTIK7wpiC8sLiwx4DRgOYw7GDmIPzw/ED30PRw/+DlwOdg2oDAoMYQuWCuwJoAmWCXwJSwlNCaoJKgqJCuEKfgtjDD8N4Q2KDocPwBDfEccSqROfFHAV5xUfFmcW5BZuF9wXNhigGBsZfBmgGZYZgRlkGRwZjhjSFxkXbRa6FfcUOhSVE/kSSxKQEd8QQxC/D2APNQ8zD0QPbg/CDzcQpxAFEWIRvhH+EQ8S+BG7EU0RuhAfEH4Ptw6/DbcMuwuzCnMJCAiuBpIFrgTWA/oCTQIDAv8B7gG6AbQBEQKHAqwCkgKSAqkCfAL6AYIBOgHLAPL/6f7t/cv8Ofti+ar3GvZt9Jry5PBx7yPu4+y566bqmOmP6J3ntOa15bjk9+Nz49/iFeJI4angFeBE3yveAN3d257aKdmk11rWadW41DrUDtRG1KDUytTw1LDVVdeD2e7bEd+S4wnpJe448t31svkt/Vj/UgA6AaIC6wM9BJADbgIaAU3/vfyO+Ub2WPPO8F/uAOwY6gzp2uhA6SjqpOuf7eHvRPKx9PT24/iS+i38qf3H/mn/xv8lAJIAyABxAIf/Xf5E/Rv8j/q9+FT31vb59h/3O/fS9x35pvrm++n8Ef5z/8UA1wG+AqcDmwSOBW8GLge5Bw8IRAhmCHIIUAjuB20HIAc0B2sHeQeTB0EIhgnACoULNwxIDXcOLw9mD5QP4A8IEOsPyA/AD5sPLA+fDioOsQ3sDN4L4Ao7CtUJXgnSCJcIAAnMCXEKxQogC8oLiwwFDT0Nkg06Dg4PxQ9LEMgQYxEfEtsSgBMQFJkUIBWjFSMWmxYJF3MX5xdUGI8YfxhFGBQY8he8F1sX1BY0FoAVvxT7EzQTehL8Ec4RwhGaEVkROxFZEYcRlxGQEacR7hE1EkUSKRIdEi0SIRLLEUsR0RBREKEPvw7ZDf8MEQz7Ct0J5ggbCFcHiQbVBWEFEwWmBAoEhwNUAzoD7QKHAl0CbwJfAhECywGsAWwB0wAXAHL/tv6t/Xj8WftC+v34ifcQ9p30LvPK8XPwDe+W7TzsEOvQ6Ufos+Z05X/kbOMm4hHhduAd4JDfqt6r3dHc+tvP2kDZsdd61obVmdTA00nTQ9Nv07PTKNS31BbVXdU41kDYYts638njQek675z0efjf+oj8+f0t/wAAnABSAS4CwwJ3AgQBw/5U/Pv5bPd59Kbxse+27jju8e0p7iLvlfAA8jXzZPTF9VX34vhS+qj70vyK/a79jv2O/Yz9I/15/DL8X/wt/A77m/m7+GD41/cU99f2lPfe+B76Pvtv/K/9zP6k/zUAkQDkAF4B+wGNAgMDdwP0A2cEzAQtBW4FbQVZBXgFrgWmBYcF3QXIBsIHeghNCYYKyAusDGQNSw4oD4cPgQ+FD48PRQ+0Dl0OeQ6pDoUOHg66DVkNwwzfC+sKRgoWCigKOQpNCpUKDAtnC4ELjAu+CwwMVAyoDC8N4Q2ODi0P2w+mEHQRLxLqEsUTyxTYFbsWYhfmF1gYmBiCGDYY/RfvF98XrRduFzgX+xabFhUWeRXZFEwU4BOHEzYT+RLrEgMTJRM8E0kTVhNqE3oTYhMXE74SfBI5EssRRBHUEHUQ+A9eD84ORA6QDakMwwv+CjYKTglvCOEHrAeRB1cHDwfoBtUGhQbVBRIFkwQ4BK0DBAOcAnYCHQJkAagAJQCP/6H+mf3O/B78O/sk+gb56/fE9p71gPRd80XyXfGF8FTvr+3+64rqHel359blr+QP5Izj0OLp4RfhYuB53xbee9wi2/vZh9jZ1r3VeNUx1VLUkNOc067ToNLq0CDQudDf0V3TMdbx2rXgHeaf6mvupvFA9Cb2fvfJ+LL6S/23/w8BaQFtARoBq//Y/Jr5Ivd19bTzqfFS8IfwsvGF8rvyRfOt9Cn2w/bE9mf3KPke+zb8jfwW/Qz+gf7E/ZX8K/xy/ED8Mvss+sH5Rfke+Pr22fZ79/D3Pfg4+fr6hfxC/cz91/4QAKsAjQBWAHkA0gAIAQIB/gBdASsC1gLDAiQCygHyAf4BnwGMAX0CDQRpBYEGugf6CN8JlAqIC4oMEg1JDcsNfg6XDuQNNA0rDXMNYw3lDGgMNAwjDNgLLgt1CigKWAqMCmwKQQqFCjIL5AtnDNgMPA15DY0Niw14DWINgQ3+DbYOZA/8D50QWxE+EkYTVhQ7FQMW7xbzF5wYtRizGAsZgBmOGToZ/Bj3GNIYUhigF9wW9xX/FCwUkBP6EnQSVBKzEiATMBMLExETPBM4E/gSvxK2EsQSzRLDEoUS+RFGEZkQ2w/aDrwN0AwZDF4LlArcCTcJkQgMCM8HrwduBywHLQdJBxoHogY5BvIFlAUYBaMEGwRVA4AC2QETAcP/O/40/Zn8qvtN+kb56/iR+Kr3k/bQ9TP1UfQ980fyaPF58Ivvq+6p7W7sMOsQ6tLoVefV5YvkUuP+4a3ghN9f3hLdo9sm2qDYGtex1XzUmdMz0yrTBNOL0izSKNLy0STRo9DE0XPUeteI2ojer+OJ6Mfr2O3a7+HxS/M89JL1offg+c77V/1L/jv+Ev1E+zD53PaB9M3yPfKI8h3z3vPt9Br28fZZ96f3Hfi5+HP5Vvpd+1n8F/18/ZL9fP1H/dP8EfxL+976lvrh+bv42feb93z3Aver9kX3s/gn+kz7g/z8/UP/4f/0/+L/4P/l/+n/+/8uAIUA0QDMAGoA8f+N/xr/gf4h/mD+Ev+9/24AlgErA5UEmwWsBgwITgkDCmcK6Ap3C8QL2Av6Cy8MSAw3DAIMngsQC5MKRQoECrwJpgneCRwKHwohCngKAgtpC7gLOwzlDFENWw1JDVANVA09DS4NTA2ODekNZw4GD7cPgxB/EZASgBNMFCcVFxblFoMXKRjsGI0ZyRm2GYQZKxmLGL4XAhdsFuQVWxXZFF0U5hOBEzYT+BLGErkSzhLYErsSmxKYEpMSZxIxEhIS5hFxEcAQDBBaD4gOpQ3jDEIMnAvtClUK2AlgCQEJ1wjMCK0Ihwh7CGsIIgjCB5IHfQcxB6wGNwbPBR8FIgQ4A4ECuAHIAP3/av+8/s399vxw/O/7P/ur+nn6Xfr5+Wr59Phu+I33dfZ99Z30kPNl8mTxgPBj7wLureyJ62HqHOn75zXnoObu5RLlM+RZ41riIeHf39feDt5V3aLcLdwF3M/bMtts2vzZ3tmt2YDZDtq12+7dIuBv4h/lyufC6QLrDewR7dztlu607y3xdfJX8yj07PQQ9WD0gfMD86TyCvKR8b/xXvLn8nDzY/SY9Yn2Ofcc+DH5+flf+tn6mfs//If8pfzN/OD8zfzA/Lv8k/xY/Fn8fvxL/LP7Q/tW+5P7qfvg+5f8mf1t/vv+cP/D/8z/of91/z3/4v6L/mn+Yf4//g7++/3y/cL9fP1N/Sr95/ym/LL8DP1z/dr9ef5e/0cABQGiATQCvAI3A64DEARQBJMEBAWABcMF3QUmBq8GJAdZB4IHyAf/B/8H8QcOCFEImwj8CI0JMgq8CicLhQvhCzgMjQzbDCANcw3yDYwOGA+hD2MQYxFVEg4TuBN0FBAVZBWcFfUVWhaWFrsW+xZJF24XZxdmF3MXaxdAFwwX2xamFnIWURY2FhYWCRYlFjgWCRa3FYcVYxX+FF4U3ROUEzUToBIXEswRjREuEdQQohBoEP4Pjg9DD/UOgw4dDvgN5Q2lDVcNNw0hDcYMPAzVC4oLDAtTCrEJQAnCCBgIdwcAB44GAQZrBd0EPwSRA/ECYQLEASEBogBHANj/Sf/L/m7++P1K/Zn8B/xk+4T6lfnO+Bj4QPdX9pH18/RT9Jzz2/IW8kvxevCf76Xumu2t7O7rL+tL6mLpnujp5xbnNeZ25dnkNuSK4/vijeIU4n/h9+Cu4J3gkOB14HngxuA54XjhZ+FT4YLhzOHc4b3hzeE24rXiC+NH44zj3uMz5Ivk2OQE5TLlqOVk5gznfecI6O3o8Om56lfrB+zK7HrtIu7Y7nrv7+928EfxGvKV8uTyf/Ne9BH1gPUH9sb2e/cP+L/4i/kp+qX6aft3/Eb9pf0U/uf+qf/j/+T/MACvAPkAHwF3AfQBRgJ+AuwCgAPbAwAEVAT6BJoF8QUuBp4GQQfiB1oItQgZCaIJMwqQCq0KyQoaC3sLrQu/C+cLJwxWDHMMogzlDBUNNw12DdMNGg4xDkIOcw60DuQO/w4dD0oPgw+6D98P7Q/6DyEQVhB4EIgQqhDvEEcRphEOEoMS/RJ9EwUUfhTOFAMVSBWiFeAV8RUBFjgWfRaeFpUWiBaNFpQWghZSFh0W/hX9FQEW9RXnFfIVEhYeFgsW9xXvFdYVmBVNFQ4VyhRlFO8TlhNXEwcTkxIdEsERbxEGEYEQABCdD00P7Q50DvoNmg1EDdIMQgy1CzYLpArwCTcJkQjlByMHaQbPBTgFfwTAAycDnALqASABegD7/2T/qf4D/oz9D/1q/M37Xvvy+lT6m/n5+F/4mfep9sf1A/U/9GXzhfKv8d3wB/As70nuXe1+7Ljr/+o86nTpu+gT6G/nw+YP5lXlouT941njpOLo4UjhzeBb4OLfdN8k3+3eyt683rHej95o3nHeoN6m3nLeXt6y3infWt9e36DfKOCQ4LHg1+Aw4Y3hx+ER4pDiDeNZ47HjW+Qj5a3lD+ar5obnRejC6Dzp5umn6mDrIOzr7K7tdO5a70Hw8PB/8T/yL/Py83b0EvXs9bP2O/fS96r4ePkA+ob6Q/vq+zf8dfwD/az9Ef5b/ur+nP8QAFkA2AB9AeoBKQKhAksDtwPQAw4EpwQ6BX8FtQUuBskGOQeBB8wHKgiPCPcIWgmpCfQJXwrWCigLYAvFC1sMzQz0DCENjQ31DQ0OBA47DqsO/Q4WDzMPeA/GD/gPHhBSEJ0Q8xBLEZ0R7RFFEqMS/hJZE8YTPxSjFPEUShW1FQcWNhZzFt4WSReEF68XARhrGLIY2BgNGVkZlhm5GdkZ9Rn4Ge0Z+RkRGgQa0xm3Gb8ZtRlzGSUZ+RjZGJoYQBjwF7AXaxcYF8QWdRYdFroVURXmFHYUAhSHEwQTfBLvEVkRuBAWEHkP1Q4lDnENvwwADDMLcwrBCf0IIghlB9gGOgZWBXIE4wNzA7ACqgHiAGsAzv/S/tj9KP2D/KL7tPr5+Un5Y/hq95725PX69O7zB/NP8o7xq/DD7+juEe4w7UHsPOsq6ijpPehH5zbmJ+U75Gnjl+LH4QjhWOCy3xnfg97h3T7dudxS3OrbetsY28zaiNpW2kXaNtoA2s3Z8NlP2nTaTtpg2vfaqdv52xbcgtw/3eLdPN6H3vLecN/534zgDuFs4dnhluJ14wvkZeQA5QHm8uZ/5/7n2ejo6b/qZes47ELtN+4A79fvyvCj8VDyB/Pf86z0UvX29bD2aPcY+Nj4oPlB+s/6l/uT/FL9sv0r/hb/EACQAMQASQEyAu0CLQNYA90DkAT/BCEFVgXNBVAGogbeBkEH0AdQCKsIBwmKCRMKcAquCggLiwv9CzoMZQy0DB4NaQ2FDZQNug3wDRgOJg4mDi0OTg6GDrcOzw7pDi4PlA/qDx4QWBC3ECIRcxG0EQESWRKnEu8SQBOTE9UTEBRdFLUU+RQqFW4V0xVCFqcWDheEFwAYfBj6GG8ZyxkZGnYa3RomG0QbYRuWG8IbwButG7EbvBumG3QbUxtCGxob0RqUGn8achpEGgIa1BnAGaQZZBkQGcoYkBhBGMcXOhe+Fk8WyhUlFXwU5xNWE64S8REvEXQQww8bD2kOog3bDC8MjwvZChEKXgnACAgILwdkBq4F0wTDA8cCDQJTAVIAPP9k/rT92PzP++L6Jvpf+Xr4n/ff9g/2I/VJ9Jjz3vL88RvxY/Cv78Huo+2V7KrrtuqZ6WjoWOd35qTlvOTN4wLjbOLq4Vzhx+A+4L/fRt/f3ojeI96l3TzdDd3w3KTcMNzg28zbwNuY23TbctuG26bb5ttD3Jfc3NxD3eHdeN7U3h7flN8k4JPg5OBC4bfhKuKj4jHjvuM15LvkduU85s/mUucY6BXp8OmY6lnrU+xI7RTu4u7M767wdvFK8jTzBPSq9Fr1Kvbx9pf3Q/gG+bP5QPrj+qz7WfzO/FT9HP7m/nH/6P+RAE4B3gFRAuECgwP8A1EEugQ+Ba4F/QVSBr8GMQeZB/4HWgiqCAIJcwnlCTwKigr3CnML0gsRDFoMtgwBDTENaA2uDeMN+g0UDkMObg6DDqEO3w4jD08Pdw+2D/4PNxByEMQQGhFZEZcR9xFlEqcSwRL3EmQT0BMFFCIUbBTsFGQVrhXkFUMW1RZrF9MXHRh/GAkZiBnUGQkaXRrMGiQbWBuNG9EbAhwOHBYcMhxOHE0cPRw+HFMcWxxHHCkcHRwlHCUc/xu3G3YbVhs2G+IaZxoKGuUZthk/GaEYKRjfF3wX1BYVFnwVAxVuFKUT0xImEo8R4BAXEFgPsA79DS4NYQyrC+gK+gkGCT8IigelBpkFrATtAyADKAIvAU4AZ/9v/o/9yfzf+8f62fk++Zb4h/de9pr1GvVN9BXz9/E78Yvwg+9L7kLtbuyQ643qg+mI6Jznv+bw5RXlKORO46jiHuJ34a7g+N903wPfed7Z3Und29x/3Cbc1NuQ21fbJdsG2wDbBNv52uja+No725Hbzdv520LcuNw63Z7d6d083q7eN9+63xzgaODQ4HLhIOKe4gLjouOM5GTl7uV25lTnYOgw6cbphuqJ64DsO+3q7cDup+9/8FHxJPLq8q7zjvR09Sv2yPac96P4dvn6+Z76n/uR/BP9d/0//j//6/88ALoAkwFgAtECKwPIA5AEKwWLBfUFjwYzB6gH9QdVCOkIiQn5CTwKlwonC7gLDAw6DIsMCQ15DbYN4w0nDnwOxQ73DiMPWA+VD9APAxAsEFoQmBDcEBURShGQEeURMBJnEqcS/xJUE4oTtBP4E1AUjBSkFMsUJhWXFeIVBxZEFrsWPheKF64X9xeEGBAZWhmDGdkZVxq2Gtoa/xpOG5obsxu3G90bEhwdHAAcAhw5HG0cahxMHFIcgRyjHIgcSRwpHD4cUBwVHJsbRRtCG0Ub6BpGGtYZwhmjGRUZSRi5F34XNReSFsYVKxXHFFEUmhPREjMSrREDETAQag/FDgkOGg0yDIcL6QoHCvMICwhiB6YGowWLBKQD4gIRAhwBEwAN/yb+ZP2b/Jj7dPqF+dv4F/j79sj14fQ29GTzRvIh8S7wW+9y7mTtT+xS62zqh+mU6KLnvubl5RDlT+So4/XiGuJD4ajgLuCC36Xe8t2S3TvdqdwF3Jnbats92/3awtqc2ojahNqN2pDajNqd2tfaHdtQ23vbu9sI3E/cm9z83Fvdod303YXeL9+h3+nfb+BP4SjiruIn4/Dj6uSw5T/m6ubH55/oXeko6gjr2OuX7G/tWO4l79vvsvCi8W/yIvP+8/z0x/Vf9ir3O/gh+an5Q/pA+0X83/xH/fv98f65/zcAwACAAUoC9AKIAxwEsgRSBf4FnwYeB5MHIgjBCEwJwAk9CssKVgvWC1sM4wxWDbQNHA6aDhEPZQ+nD/gPWRC1EAIRRBGKEdwROxKYEt0SERNSE6oT/BMzFGQUqxT/FEUVfBW8FQkWURaNFtAWHxdrF6oX7BdAGJ8Y9Rg8GYEZ2BlFGq4a/Bo6G48b/RtUHHUcixzQHDQddR2CHZIdyB0CHhceFR4jHkAeUB5NHkgeRx47HiIeDh4GHvkd2h2yHYcdWB0fHdgcgRwiHMcbdhsbG6IaGxqlGUEZyxgwGIsX/xaDFu0VKhVcFK8TGBNlEogRtRANEGoPmA6tDd8MJwxKC0sKaAmrCNIHwwbABfMEJgQkAxICLQFjAHr/c/56/ZP8o/um+rH5xvjV9+H29/UK9Q/0EvMg8ivxKfAs70LuV+1b7GTrg+qr6cno6ucc51PmiuXI5AvkQeN24s3hP+GZ4NnfQd/o3ore9N1f3RLd7Nye3C3c4dvP28Pbmdts22LbeNuZ27fbz9vu2yrcfdy93NrcBN1k3djdIt5V3rzeXN/r303gwuB24TPiweJI4wbk3+SS5Svm7uba563oW+kf6g7r9eu67IHtYO497w7w5/DH8ZbyaPNh9GD1I/bL9rX31vi8+U/6/PoC/AP9q/02/gH/9P/AAGUBFQLWAosDNATgBIcFHwa2BlkH+geLCBoJsQlACsYKVQvuC3QM4wxhDfoNhQ7mDjsPrQ8qEI0Q1hAjEYIR5xE/EoQSuxL2EkgTpxPwExsUTBSiFAYVSBVmFYwV0xUjFlsWfRakFtgWDhc/F2oXkRe4F+4XNhh8GKwY0xgHGU4ZlRnLGfMZGhpUGqEa6BoMGxkbPxuHG74bwxu5G9gbExwyHCMcDRwHHAUc/BvuG9obthuQG4EbghtzG0IbDhv3GvEa1hqWGkYaCBrhGbQZZBn1GI4YRhgCGJsXExeUFjIW1xVfFcoUNBSxEzoTthITEmARvBAwEJoP3w4WDmYNzAwcDEgLcQqwCfEIHghKB4cGxQXrBAwESQOTAsQB2wABAEP/ev6K/Yn8oPvR+vf5AvkI+Cf3V/Z69Yn0m/PD8vPxE/Ek8D7vae6e7djsE+xI63fqt+kU6Wzopefd5kXmz+U65X/k3uN14xDjgOLv4ZPhVuH84IzgO+AR4OTfo99v317fWt9N30PfRN9K31PfcN+d37/f09/730DgfeCe4MvgIOGA4c3hIOKe4ijjleP745HkR+Xg5V7m+ua+53noE+mx6WrqJevX65TsX+0Z7sfuku938EHx5vGb8n7zZPQo9eD1qvZ19zr4Dfnt+bL6WPsW/AX95v2G/hX/1v+5AH4BGQK1AmcDHwTQBHwFFgaZBiYH1geJCBQJhQkSCr4KXgvZC0kMxQxLDdQNWg7QDjEPjw/+D3AQxRAEEVQRvxEnEnASqxLsEjgThhPRExQUSxSBFMcUFRVPFW4VjxXEFQMWMRZKFmMWixbAFu4WCRcZFzcXbBelF8gX3Bf5FyMYSBhfGHQYjhisGMoY6Bj/GAcZBxkTGSoZNxkxGSkZLhk6GTwZLBkRGfQY4RjZGMgYnBhkGEEYNhgdGOEXnRdvF1QXLBfmFpIWQxb+FboVaBX/FI8UKhTOE2QT4xJgEuwRehH8EHIQ5A9OD64OEg5/DeEMKgxvC80KNwqJCcMIAghXB6wG8AUwBXgEwAMCA0IChAHBAPX/Lf93/sj9DP1E/Hz7vvoE+kX5gPi69/n2Q/aQ9dj0GfRc86ryAPJV8aPw7u9B76DuBO5k7cHsKeyl6yXrneoS6pTpIems6DboyOdh5/fmjOYt5trlf+Uf5dDknuRx5DPk8ePK477jr+OQ42zjWeNa42PjZeNf41/jduOc47bjvuPP4wPkSuSE5LHk7uRG5aTl/eVa5sTmMueh5xzopugw6bLpPuri6orrI+y27FvtD+7A7mXvC/C78HXxN/L98rzzb/Qp9ff1zPaM9z74/vjQ+Zz6VPsG/MP8hf1D/gD/uv9oABABxAGDAjMDyANXBPsEpwVCBs4GXQf2B44IIAmsCTEKrwozC8ALSgy/DCYNlw0QDoAO3Q4yD4kP4A8zEIEQxRAAEToRghHPEQkSLRJTEo0SzRL7EhYTNBNdE4gTrRPME+cTABQaFDQUShRYFGMUdRSJFJMUkxSTFJ4UrRS1FLUUtxS+FMgUyxTEFLkUshSyFK8UnxSHFHEUYxRUFDoUFhTwE9ATsxOSE2gTNhMBE9MSqRJ8EkQSBhLOEaERcxE3Ee0QoxBgEBoQxg9lDwUPrg5aDgAOnQ0zDckMYwwADJULHQuhCi4KxAlRCc4ISQjSB2MH6AZdBtMFWAXhBGIE2ANNA8cCRgLGAUIBuwA1ALj/PP+5/i/+p/0q/bD8Mfyv+y/7s/o0+rX5OvnD+Er4z/da9+v2efYA9oj1GvWw9ED0yvNX8+vyg/IX8qbxNfHL8GzwEPCy71Pv++6s7l7uCe607WrtLe3y7LPsduxD7Bbs5euv637rV+s36xnr/Orl6tTqxeq46q/qqOqi6p/qpuq26snq2urq6gPrKOtS63zrpuvY6xLsUOyM7MrsDO1X7aft+O1F7pfu9e5c78XvLPCX8AnxgPH38W7y6/Jq8+bzYvTj9Gr17/Vy9vr2iPcU+Jr4IPmp+TT6uvo8+8D7SvzX/GH96f1x/vv+hv8KAIwADgGVAR0CnwIbA5oDHQSbBA8FfwXzBWgG2AZDB60HFgh7CNwIPQmdCfcJSAqVCuQKNQuCC8sLEwxaDKIM6AwnDWANlw3NDQIOLg5PDmoOgw6fDr8O2w7yDgMPFQ8qDz8PTg9XD14Pag95D4YPjQ+OD4wPiw+LD4MPcw9hD1IPQw8yDyAPEA/+DuQOxw6tDpkOgg5hDjsOFg70Dc4Now14DVMNMA0JDdkMpgx8DFkMNAwHDNILngtrCzUL+Qq7CnoKNgrvCakJYgkaCc0IfwgxCOUHmwdQB/8GqAZSBgEGsAVWBfgEoARNBPQDkwM1A9wCfgIUAqgBRgHoAIUAIwDL/3j/H//B/mb+Ef67/WP9Ef3E/HP8Gfy8+2H7CPuy+mD6EfrB+XX5L/no+Jz4WPgh+OT3j/cy9+32wPaO9kj2AvbR9an1efVD9RT17PTD9Jv0ePRU9C/0FPQF9Pfz3/PH87fzrfOb84PzcfNr82/zePOA84Hzf/OG85TzoPOq87jz0fPt8wj0JfRE9GH0gPSn9M/06vT89Bj1QfVj9Xv1nvXY9RX2RfZ39r/2DvdQ94732fcq+Gz4p/jv+EP5kPnR+Rr6cPrG+g77TfuQ+9j7Ifxm/KX85fwm/Wf9oP3Z/R7+c/7N/iH/bP+x//b/OAByAJQApQDLABcBbwG0AfoBZQLhAjcDXgOLA9YDGQQ6BF4EpgT1BCsFXQWtBQsGUQaJBtgGPQeQB8AH5AcNCC0IPghFCEwIVghhCGgIZQhkCHkIoQi9CMQI0Qj8CCsJQAk/CTsJMwkiCSEJPgljCXMJegmNCaEJmQmACXgJiwmjCa8JsQmpCZYJfQlhCTYJ+QjGCLoI0gj2CBoJRglvCXgJVQkXCeAIugiICCoItwdxB3cHiAdhByAHEAchB/UGdQb1BZsFJgV4BPAD2APkA7EDcAOaA0wEigX1B0UM0BFvFkMYORdrFKEQHQyHB/0DOQIoAl8DZwVsB3sIOAjvBr0EWAEK/Tr5R/c791r4cPqo/T8BjQONA7EB4v6L+w74S/US9Gj03fUn+O36aP3X/iT/h/7i/DP6Rvc29V/0VPTY9AX2evdD+M73cPa09Mry8/Ds70Two/Eq83L0mfWB9q/2D/ZE9dr0ofRL9Ez0VvU49+/45/lm+pv6KPrq+G73K/Yb9X/0B/WZ9vb3ZPjW+Ef61Pvi+5r6r/n1+Z767fpK+2z8Y/6vAIcCCQP9AV4ATf+h/pz9nvzy/Nb++wA8AqMCnQJTAg8CKgI+ApgBuwAVAcQCFgQHBMsDzARDBkUGhwS+AnICjwMCBf4FkQZbB5gIUwk1CHcFMgMiA7IEDAZ7BuAGFAi2CaIKFApaCLUGRwbvBpkHywdLCNYJwQunDBIM1ArrCZYJfAlQCU4JAwqbC2ENVg49DrINKg14DHALbwoACmcKqAuEDUYPHxDyD2EP1w4CDqIMTgvyCr0LBA39DWgOdg5NDrQNWgyDChgJzQhoCTsK/ArHC3AMgQzGC4cKHwnZBxYHIwe8BykI/gdqB7oG5AW/BHoDngKSAiIDkgNOA4QC4wHIAeQBuAElAUwAM//T/WX8ZvtI+wz8GP2R/Rv9KfxO+3f6SvkK+Gv3efds9872BvaO9UH16/TD9Nn0qPTb897yE/IO8VDvWO0f7MzrueuR65jr2+v367XrWesb6+fqnOot6oHpm+jl587nLOiE6MvoSunG6Zvpv+j057LnpOeH58fnvejm6YzqzepB6/nreuyT7I7sneyk7KLs4+yY7Zjume9x8BLxdfGl8b/x8PFg8hrz9vPC9Hz1RfYg9+j3jfgk+cH5Z/oZ+8v7Vvyk/Ob8UP24/dX9vP3H/Rr+nf5e/20AgQElAmYCtAIbAzQDAQMWA64DPQRSBEwEugR4BQMGOgZZBmwGUQYcBvYF4QXgBUMGPQd3CFsJ0Qk7CtcKgwsZDJ8MIg2aDQUOYQ6JDloO8w2QDUUNBQ3kDBQNsA2iDrwPuxBXEYkRlBGtEbgRpxHOEYASixN5FC0V1xVwFrgWphZuFhsWjxX2FKUUmBR0FCwUKxScFAwVBRWkFEsUHBT9E+kT8RMQFEMUlRTSFIoUkxNZElgRiRCjD6sO5g1QDZEMewtECiwJNghJB2EGiQXIBCcEsQNiAyMDzQI4AlcBRgAk/9r9QPyB+gj59ffm9o71KPQU8zTyKfHt78nux+2w7ITre+qQ6Yjoc+ek5hbmUOUc5ODi9OEW4ePfiN5p3WPc9toJ2Q7XTNWg0wTSy9Ay0AXQ/c8f0IDQ5ND10LfQdtBc0FbQadDM0LXRINPI1E3WdNdg2GPZedov21XbcNsm3GTdkd6E37TgZ+JJ5P/ln+dX6QXrkexB7kfwP/Kl86n04vVX92747Phv+ZP6Hvxy/XH+fP+0AMoBfgLzAlkDrAPvA2AEHwXzBaMGZgeCCLIJVwpOCiEKPQplCiwKqQk/CQ0J2giLCDsI9gfBB8MHHwiLCJgIRggKCBcIGAi+B0cHGgdGB54HFAipCDQJmAkACp8KQAuDC30LrwtVDB0Nqw0lDu4ODBAZEdARVxL3Eq0TRRTCFGIVNxYIF7wXihiJGVganRqkGv8arhstHGsc7xznHcMeBR8EH0oftR/EH3kfSh9iH3sfax9LHyAfvx4oHpIdEB2FHO8bbRv9Gnsa3RkrGUgYHhflFeMU9xPIEmIRKRAsDxsO4Ay+C8MKpQlQCA0H8wW6BEsD+wHyAN7/g/4q/Qf8z/pA+aL3Rfby9GPz2vG58NHvtu6B7YLslutZ6vTo6Oco5yPmuuRs42fiQuHF313eXN123Gjbg9oH2n7ZV9jV1qjV1NTD01XSHNFm0LLPf84Pzd7L1cqgyYfIRMj9yBbKKMuDzHDOfNDy0c/SrNPp1F/W4deJ2W7bXt0g37LgMuKW47Pkg+VR5oPnMOn66ovsIe5H8PXybfUo95T4WfpP/N39FP+yAO0CCwV7BpoH0AipCY0J8gjfCG4JzQm/CQsKEgsADAsMrgvQC08MbgwvDEkM3gxNDUwNTA2BDXYN3wwdDIcL2grDCYIIjQfvBmQG0QVSBfAEnQRDBMkDLQOyAqkCCwONAx0E4QS5BU0GnQYIB6EHEghQCNAItwmXCjIL6wsEDREOvw5sD3QQfBEoEuUSRhQHFo4X9xi3GpMc4x2fHkUf6B88IHAgByHoIX8i1SJ7I2MkzSSSJHsk8yRnJWslgCUUJpgmaiblJaolcCWKJC8jMSKeIbggPB/IHccc2RuaGjoZABjSFooVRBQWE+oRzBD2D1YPjQ6DDXIMUAvMCf8HawYpBcgDOwIFATMAD/88/WH7A/q0+P72ZPWL9CP0ffOn8g3yePF78F3vou7/7dbsb+uL6vfpyuj65nvlmOSA48ThGuAg32TeRt352wLbUdp82X3YlNfF1t7V2tTg0/DS4dGW0CTPuM1TzMLKAsmMx/nGf8fzyEPLa84S0q7V6Nh52+7cNd0Z3Yrdl9693//g2OI75XXnFek+6i3r/evO7Kntdu5m7wHxWfPG9e73W/pt/XQAogJEBCwGVQgLCiULLgxIDccNLQ0CDCULoQreCe0I2AgtCvML6gwxDbYNbQ5jDnUNnwxrDGcMUAySDEENrw13DQkNrgzpC00KPghhBt0EgwNVAnsBCAH/AFIByAEvAp8CTQMlBOYEhQUvBtoGRAdpB4cHuwfzB0sIBwkVChUL/AsgDXIOWw+nD/EPtxCxEZoS3hPgFTsYcxqrHBAfJSGCIo8jwiS/JfwlsSVlJRslpiRMJFkkiiSeJOYkoyVYJm4mMSZZJucmJyfFJjIm2yWGJckkvCPiImci6CEWIQwg3x5BHQAbhBhWFnUUnxL8EO8Pbw8FD2wOwQ0yDc8McwzUC84KrwnNCN8HUQZNBJkCZQEIAEH+p/yU+3z6//im9+D2Kvb/9NrzXPMn83/ymvE+8WrxePFI8UDxQfGo8F7v7u127I7qUuiT5pzlt+Rn4zDiluEg4RHglN5l3bXcDNwl2z7amtkD2R3Y5Nal1Y3Uf9Nn0oXRCtG50E7QAdAw0LvQStEQ0pLTyNUt2JDaIN243+LheuO45KPlLeaX5ivnzOdm6G7pReto7R/vevDr8V7zbvRD9VT2sfcs+f76cP0YADQCpwMUBdYGawhECbQJkwr4CwQNKA0CDTINMg1LDB4L1AozCxILgAq0CtMLjwxiDEcMwwzzDDgMSwvVCmkKpAkQCRgJOgn6CJoIQwiFB0QGJAWABOsDOAMBA48DLQQ/BCQEYgS+BNwEBwWsBZAGQwfYB5gIYgn2CXUKDgukCy8M+AwVDhcPxg+VENgRHRPyE6QUoRWkFkcX1BfCGOMZ1xrWGz0drx6UH/8fYiClIHYgGyAeIGAgYSA/IH8g9iDtIFIg2x/TH7cfOh/HHqMeWB6KHZYc8BtaG3Uaghn3GKMY9RfnFuUVBRX2E68SfhF3EGYPRg5FDVEMRwtpCv8JtAkDCR8IiQcAB88FIQTdAh8CGgGq/63+bf73/bL8ZfvS+mb6Uvn+90T38/Y69hn1MvSX883y3PE+8e/wZvCQ7+budO667YrsXuuI6rvpquiY5+Xmdebe5f7kFORP44DiW+Hz37Xe1t313LPbTdo62VDYDNeY1cLU0dQ91bvVxdal2MLaddzl3XTf7+Dr4Y7iSOMb5NjktuUT57To9emg6hXrkuvi6+Tr8etz7GztoO4K8MPxrfN09fj2bvgI+rz7U/22/g8AoQFmA/cE+AWXBkIH4gf0B4YHbgcSCLoIxAi1CEkJBArnCRwJrAjQCNEIhwisCHcJNwqECsAKIAslC4sKzQlWCfEIXQjCB0gH3AaQBo0Ghgb7BSYFzgQBBewEQgTCA/oDdQSgBLEEAgViBZgF6gWIBhQHWwfOB7sIqAkbCmUK+AqWC+ILHwyyDHINHQ79DksQhhEtEpcSUxMbFGsUihQkFSEW5xZnFwMYrRgFGTUZuhlsGqsafhqKGuEa2Bo6GrYZzxkSGu0ZixldGUwZ/xiBGB8Y1RduF/oWqhZZFrYVzRQHFJYTQxPQEj4SqREVEWoQjQ93DlkNggz/C4EL1AoqCq4JJQlGCD8HYgaYBZ0EmwPvAnoCvgHBAAUApP8Y/x7+Kv2h/ET8r/v++nD68vlW+bT4Ifho93D2ivXu9Ez0RfMY8kfxx/Ae8C3vSu6d7ejs9evg6uPpDelS6K3nG+eK5uvlN+WA5N3jQeN84oPhjODB3/ne/90E3W7cXtyo3C/d893c3snfvOCs4Wfi0eIu49rjweSY5VbmMuc26DbpD+q+6kLrsOs37OHsh+0j7unu5O/P8ILxNvIj8yr0HfUi9mb3vPjn+Q37cfzn/fb+jv8tACoBKgKoAs4CUANxBJ0FNQZYBosG4gYKB+QGswakBq4G2AYxB4EHegc2BxUHJwcaB88GiAZuBmgGaQaABocGQAbYBcQFAgYHBqIFUgVzBakFdwUFBdoECwUuBfgElQRYBGgEtAQMBVMFnwUeBsAGNwdmB4YH0gc+CKoIKAnKCXAKAwupC3MMIQ2EDdQNXQ4DD20PmA/ODykQlBAREbAROxJ/ErYSOBPRE/4T0BPnE2kUuxSNFGcUrxTiFHkU3xPGE/cTvxM6ExwTZRNbE8wSVRI9EgcSehEUERoRFBGmEDMQGBAGEKcPOA/7DqkOAA5ZDQUNuQwbDG8LHQvxCn0K0glKCekIhwgxCPMHkgf+BpQGdwYwBmsFnQRCBAcEbAO1AmkCUQLRAQgBkQBiAOL//P5C/uP9av2h/On7e/sP+3T63flY+aX4s/fJ9v31HfU39KDzS/O48sLx3fBZ8OPvGu8k7k/tley/68vq4ekX6XTo8+d75+/mWObL5TvlouQy5A/kBOTY48TjH+Sw5AHlM+Xc5QLnAeiM6CDpFuoC62jrfOuv6+3r5eu769PrLuyM7Prsr+2I7jjvzu+J8FLx3/FM8gLzDvQh9Tb2ifcC+UH6Sft3/ML9uv5L/+X/swBmAd0BXALtAkoDdwPKAzAENwTxA/UDVAR/BF4EjgQ3BaMFcQU4BWYFjgVeBVkF3gVgBl0GRQadBvIGpQYDBrkFqgVVBd8ExwTtBNkEpgS5BOkEwgR3BJUE8gTrBIwElQQ1BcsF9gUaBokG/gYxB1cHqwcDCDcIcgjhCGgJ4QlACnYKhAquCisLuAv/C0gMDw0SDpwOsg7/DpwP4w+rD6oPMxCtELMQyBBDEZYRUxEMEVoRzBG5EW4RlhH+EQMSuRGqEcwRrxFsEWcRbhENEYkQhRDYEMoQWhAwEGMQVxDgD3oPTg8AD4wOWQ5aDgwOfg1EDVoNFg1mDPUL5QuZC/oKsQrLCnEKcAmzCJYIPwg3B10GSwY6BnAFlwRnBDsESQMrAtABxwEdAR8Av//Q/1//Yv6i/UX9s/zX+yv7qPrV+cL49Pdn95P2c/WM9P7zWvNw8oPxs/Dh7xDvVe6M7Z7s3+uR61jrverr6Uvpw+gB6DTnreYv5mHlpeSX5ALlMuU55cnl8+bw51PogOjC6N/ozOju6Fbpj+mL6fDp8erI6+HrxOsU7Ibsiuxl7KzsNu2F7c/tk+6U7znwq/CJ8cbyyfOE9Hj1s/bC95H4e/l8+kT79vvx/PX9ev61/l3/dABKAa4BIgLLAjEDJQMRAyoDPwNOA5kDBgQ5BEgEmAQMBSEF4wTWBAYFBAXaBAsFjQXABYMFdAXZBSUG/gXJBdcF1AV/BTcFWwWpBboFpQW2BeYFBgYdBkAGXAZtBqUGCwdXB2AHZQejB/kHOgiHCAAJgAniCT8KmgrACsEKBAufCw0M/QvmC0wM7QxGDXMN2g1UDnMOTA5MDnUOeg55DtcOeg/gD+kP7w8LEPwPxQ++D+8PARDzDysQqhDkEKkQhxDWECAR3xBcECoQMhD3D3oPPQ9jD3YPGg9/DgkO3Q3cDdQNqQ1uDU0NQA0KDaMMYgxtDFcMwwsRC9AKygpfCqoJYAmICU0JWwh0BzMHHAeLBsoFfwWJBUoFrwQgBLMDMgOtAmACHQKMAdYAcQBHAM//8P4g/oL9s/yW+6b6Nfro+V35yfiG+F742vf/9j/2wPUq9UH0SvOd8iTyh/Gq8MjvDu9j7prttOzI69jq6ekm6cPoruiw6Lro9ehg6bXpyenQ6Q/qauqN6mnqPeou6iPqE+oZ6j/qY+qC6tLqXOvS6/Pr9Osw7KbsDe1P7ZDt6u1d7vDunO868MHwa/FL8hvzr/Ne9G/1hfYh93f3GPgA+a/5HvrB+rP7jvw3/QX+Af/B/x4AcQDhACYBKQE+AYcByQHvAT0CuAILAysDcAPkAxwEBAQdBKQEHgUsBSoFgwX7BS4GMwZXBoYGigaIBrEG3gbbBuQGOweaB5UHUgdRB58H1QfIB78H6wcvCGwIsQj5CCAJHwkhCUAJcgmpCeMJGQpLCo8K6AorC08LiwvtCyEM/AvnC0IMqgyJDB0MJwyzDBMNDQ0oDaUNDw4bDiUOYQ5iDvYNsg0PDp0OvA6gDtgOXQ+wD7MPqg+sD54PjQ+MD3YPOA8kD3MPyA+jDyEPuQ6EDj0O3w2xDccN6g3sDcMNZQ3eDG4MQwwqDNwLYQvtCpEKWQppCrQKzgp2CvQJmAkvCYEI5Ae9B7sHSgeKBh0GEgbIBfAEAwSFA3EDfQNhA9QCzQHTAHYAcAABABf/a/5L/hX+Sf1Z/O775fua+8361vkM+XH43Pc69532F/aK9cv0CfSr85DzBvPq8SrxbfHK8ejwDO/P7dPtBe5q7WfszeuS6zHrm+oo6gnqP+rD6lXrj+tX6/fqqOph6jPqW+rH6hvrQuuA69zr/+vf6+jrTeyl7JvsfOy67Dvtle3B7RfuyO6l72Pw1fDx8PHwQPEQ8g7zz/Ng9Cf1NfYq99j3g/hc+Sv6wfpR+w38u/wl/ZP9UP4R/2H/b//W/6UAUgGWAcQBHQJxApQCpgLGAugCGQODAwgEWgRxBJsE8QQ3BVsFmwUUBoQGtAa9BssG4AYGB10H0QcUCA8IEghjCNUI/QjLCJsIugj9CAwJ5AjcCCUJfwmfCZYJqQnoCS8KYQp4CmIKMAosCokKAQsqCw8LIQuEC+IL7wvLC7QLswu7C98LIwxNDCsM7wv0CzMMSQwWDAMMdQwlDXsNZA1jDb0NBQ7LDVQNOg2KDb8NkQ1WDWANgA1oDTsNWg21Dc8NbQ3xDMsM4gzIDGcMGQwZDC8MDQzFC5sLlAtwCxcLwgqgCn0KEQp8CTMJWQl7CSgJjwgxCCkIIgjvB7EHcwcMB4UGIAbnBYwF6gQ4BKgDMgPZArwCvQJ/AugBRgHPAGYA/v+x/2P/wf7i/U/9Of0w/eX8mPxz/A/8Kfs5+sv5n/kb+UX4rvd99z/3rfYH9on1BPVG9JnzZfOQ84rz//I58q/xafEO8Xzw/u/T78nvje8y7xHvKu8R75TuE+747SbuN+4m7kbuqu4C7yfvXO/L7yzwLfDq77jvo++G73bvp+8O8GDwfPCT8NzwUPHE8RnyXvK98k/z8fNw9NP0Q/XC9Sn2hfYe9wH42vhs+d/5cPoZ+737Wfzo/FH9o/0U/qL+CP81/3X/9f95AM0AFAGJASECrQISA0EDQwNbA8kDYAS0BLkE0gQuBYwFvgXrBS0GZwaoBiUHvgf3B7oHkAfWBzkIUQhECF8IkAimCL8IBAk9CS8JGAlOCZwJfgkFCd4IWAnsCfoJmwltCcMJVQqrCp4KaQpfCpAKwwq/Cp0KrwoKC2oLjwuEC3ILYwtZC2ALdgt5C2ALTwtaC1YLJwsBCxkLTwtkC1wLawuQC6oLzgsmDHcMTAymCyQLNAt7C1oL0Qp5CqsKFgs+CxoL+woJCxkL3go9CnIJ7QjvCDsJVwkuCRcJMwklCagIEAjMB6wHPQegBmAGjAaZBlUGMgZ0BqIGRQajBUQFHQW8BAgESwOvAiwC4wH6ASQC0wH7AEAAIwBWACAASv9X/vH9Hv4+/r39xfwQ/PX7+vuQ++n6qPrQ+rn6C/o0+bD4Xfjm92L3HfcD98T2V/bw9Zr1PfXg9Jb0TPT188DzuvOD88Ty4vGX8eDx//GO8QzxAPEo8fHwV/DH73rvXO9r77bvCPAi8DfwufCS8STyJPIA8iTyaPJx8kfyIfID8u/xKPK+8j/zS/M/863zZ/S89JH0gfTf9FX1k/XL9T/20vZd9+n3cvjZ+Df51Pmg+i/7bvvA+1T84PxB/b79bv71/i3/gv8yAM0A6ADRAPkAQAFPAU8BogEsAogCrALfAikDXwOOA90DMARcBIME2wRIBYQFlwWwBcoF0gX6BWQGwgbEBqUG0AY0B28HegeaB78HmwdNB08HswcPCDAIUQiNCKUIhghzCJIIsQitCLQI6wgzCW8JpgnKCbUJfgl2CbsJGApSClMKEAqvCZkJ9wlUCjAKzwnKCQ8KEQrhCR0KtwrZCkcK0wkLClwKIwrCCeYJbwrFCsAKkAo7CsoJjgmnCawJWQkQCSwJXQk5CQAJEAkdCbwIMggECA0I0QdrB1UHfQdwBzAHHwchB7UG4AVGBToFawV2BUsF+ASOBFEEZgRqBOkDGAORAmECEQKIATYBWAGWAZIBSwHfAF4A7f+m/1n/3v56/nz+l/5N/sv9of23/Vf9X/yQ+3D7oPuO+zr73vp9+hr65/nr+dP5Xfmu+BP4t/er9973/vfG92n3PfcR93r2s/Vp9aT1pPUe9bP00/T59JL06/Op88nz1POi82fzN/MH8+ny5/Ll8uPyE/Nq84jzXPNi89TzNfQa9OTzHvSQ9Kz0hPSK9Lz0yPTR9Ef1AfZM9v/1yPUr9tb2KPf29p72ofZD90X4AfkY+f74X/kj+o/6ZvpD+qb6UPvO+yb8kPwC/WP93f2E/v7+AP/k/jj/5v9TAEkAOQB9ANwA/QD0AA8BVwGVAbMB2AEbAmUCpgL8AnYD4wMBBN4D2AMoBKEE6ATpBOUEIgWXBfUF+gXKBdcFUwbfBvgGtAaoBhEHcQdSB/wG/gZdB6sHxAfpBygIRAhGCHkIzQjFCFAIIgiyCHMJjwkaCeEIQgnACdMJjQlJCTkJUwlzCV0JBAnTCEcJGQpiCtYJUQmbCS4KBAo1CdMITQnnCQgKBQoyChsKZAmwCL4IGwnUCBMI+AfKCGkJ8AjyB4wH1gf8B4wHCwc3BwQIhAj1B70GFQZ9BgoHqga1BUsFlAWeBQ4FrgQBBWsFRAW8BCwEagN/Ag8CTAJgAtMBgwE/AjIDBgPzAUEBSgFOAfYAmwBFAL7/bP/E/wsAO//3/e/9EP9p/y3++Pwc/aH9Lf1M/Dj8o/xs/LD7cfu5+7b7VPs2+z/7t/rN+YL58vkY+oX5/PgC+Qb5g/j09+P37veL9wn3+fYp9wD3kPZu9r32B/cL9/z28vaz9jT22fXv9T32WvY+9ir2NfZH9mr2vPYP9wb3qvaD9s72DvfI9l32gvYg93n3Tvct93H3xvfi9wf4WviA+E/4UPji+ID5kvlr+bf5W/q3+rz67Ppj+8H77/st/Gr8XfxB/J/8WP2s/XH9Zf34/ab+3/7f/hz/dv+P/4n/zP9LAJ8ArADPAFEB/QFeAlICQgKpAlYDlwM2A/oClwOIBL8ERwQ+BB4FBgYbBrgFtQUdBmEGVwZVBoQGvAboBh4HUgdnB3cHuAcnCH0IgwhGCBQIOwi7CCoJKwn7CB8JlAm/CWQJEAlKCckJ6QmfCWcJgwnJCREKWwqKCnQKLAr+CRAKOAo/CiIKBgobCmYKqAqVCkEKFgo3CkEK+AnJCTEKygqqCrsJ/Qg7Ce0J8wkhCWQIagjACKcIMggUCG4IkggkCLQH0QcTCMEHFgf2BoAH2Ad5B+MGqAaIBhYGgQUtBQUFyQScBJUESwSEA+kCFgN3AxEDMgIIApoCoQKxAQIBaQHZARkB5P+8/3QAdwBW/2X+hP7V/mD+of19/ar9SP2C/En8svzA/Pz7MPsn+4X7b/vJ+jH6B/oV+g765PmX+Sn5x/i0+OP45/hx+Kz3BffE9uP2HfcN94L22/XG9Wj29PaP9nb10fQv9dH1vfUo9RL1uvU39tf1NvVR9RL2ivZd9iX2VfaU9oT2d/bO9jj3Ifeg9lb2lvYl96739/fS92L3QPfR95X4vvhX+DL4ovgV+Sz5W/kN+s365/p5+lH63Pqp+w785vuv+/j7wfxx/ZP9Zv16/eH9Pv6B/v3+rf8AAMT/kf/5/70ASwGIAbABygHKAfkBkgI9A2sDKQMQA20D8wNLBHoEowTIBOsENAWsBRUGKQb9BfoFawYRB08H3gZLBnEGXgcoCCEIwAfqB5YI6gicCG4I/Ai7Cb0JFAmxCAoJhgmSCX8J3AldCjUKdQkvCeMJnwpOCm4JbgmKClQLxQq5CacJgAruCl8KwAn5CZwKtgozCs8J4gkHCu0J2wkNCjMK7Al6CWkJuwngCaIJWwkzCckIBAi0B48I3gkZCucIqQejB2AIlQjuBy0H1QamBnUGhwbRBqwGwgXKBKoERAWdBR4FJQRuA0YDYANFA9oCigKtAt8CZQJfAeQAeQEhAqoBZwCe/6f/sf9L/+7+7P7a/nf+G/7w/YX9vPwy/D38RPzA+yr7Hfs1+7v68fmu+fn5Afpe+ZP4Mfgt+Dn4MfgK+MP3h/d79233EveI9jv2QfZF9g/2x/Wc9Xb1NfXj9Jb0VPQs9DD0SvRK9CP09fPe8+PzA/Qr9B/0y/N584Tz3/Mu9Fb0ivTL9Nz0sPSW9L/0AfU59YH12vX59cH1j/W49QX2Evbt9fz1Zfbu9mP3vvcE+D34j/gI+Wv5f/lw+ab5QPoC+6D7+PsF/Pb7HvyY/BH9S/2K/Sr+6f4y/wj/Dv+X/0QArgDwAE8BtwH3ASICcALsAmQDpAOqA6UD0QM1BJsE5ARABcoFPAZNBjgGagbaBiUHSgeoBzsIeggxCOYHGQiMCMIIvwjcCBYJJwkVCSoJbQmTCY4Jqgn2CQgKqglhCcUJjwreCnkKIgpsCtgKqgoWCv0JmQo7C1sLQQtTC2sLMwvUCrEK0ArkCtEKwgrJCsYKnwpfChkK3gm4CaMJlgmbCbMJuQmDCT0JOwlxCXsJMwnqCM4IqghmCEEITwgxCMIHcAeBB4MHCAdxBlQGgQZXBtkFoAXNBeoFsQVVBfQEeQQHBNwDxwNuA/wC6AIIA7EC4wFgAXABbgHkAEUACQDc/0z/qf58/qX+mf4+/t/9gv30/Eb8xPtq++v6Rvrd+ev5Lvo5+tz5N/mS+Cj4+/fe96n3Uffe9mP2Dfbz9eX1mvUf9br0Y/TZ80TzNvO/8xb0pfPe8oHydPIc8onxbfHh8RryofEa8UfxxPGe8c/wXfDR8GTxNfGe8KTwYvHp8bzxhfHo8XnyhvJK8ojySvPk8w30IfRV9Gv0WPR89Pv0hvXq9Vb22/ZB94D34fdn+LL4uPju+Hz58vkS+k76/vq5+wX8HvyA/A/9Xf1w/az9Lv7A/jv/mv/V/wEAZQAKAZIBwAHhAUsCyQL+AhIDaAP2A2cEsQT9BDEFGwX4BC8FqQXxBesF4wX8BQ0GFAY+BncGgQZ3BrUGKAdSBxQH8gY6B4kHfgdiB68HRgiRCFoIAgjtBxUIQwhhCIEIrAjRCOQI7wgBCRUJFgkFCQcJLglVCVoJTglUCWcJcQl9CZoJmwlICckIjwjGCCUJXAlhCT8J4whjCBwIRgiUCJEIPAj6B/kH8wewB2sHege5B64HPQfYBu4GVAeMB3gHZgd2B1kH2QZFBgMGAQbdBYIFOQUfBfIEgAT2A6IDhwNiAwgDnQJcAk0CNALaAVAB3QCjAH0AQwD2/6X/S//c/mD+4P1c/en8qvyO/Ef8v/tC+wL7v/o3+qP5WPkf+Yb4sfc39yz3/vZa9qT1QPX39HL00/Nv8zTzzPIz8rDxXPEG8ZTwIfDH74XvWO8u7+Puau7z7a3tgu067d3souyX7JLseOxj7G7smOzX7Cnteu2v7dDtAe5L7pHuxe4D72Pv1+9I8LHwCvE88VHxevHT8TLyY/J88r/yMPOU89fzLPSx9DD1bvWP9eb1c/bu9jb3gvcB+KD4OfnE+T/6mvrm+lj79/uB/M38Ff2T/Rj+Xf58/sj+Pf+P/7D/4/9BAJsA3AAsAY0BvQG3Ac4BMAKOAp8CnwLfAj4DZANjA5UDAQRUBG4EigTKBAMFHgVFBZUF4gUABgIGEQYrBj0GTgZuBpMGpAajBqIGrAbFBu4GGwczBy4HHAcTBxcHKAc+B0oHTAdgB5UHywfgB+kHHwhzCJkIgQh7CMUIKAlOCTkJMwlZCYMJlAmfCbcJywm/CYwJUQkzCUEJWglJCQgJ0QjQCOgI4AisCGYIGgjBB3IHTgc+BwUHmQY8Bh8GEgbNBWIFGQX4BKsEDQR+A10DbQMjA3MC6wHLAaIBCQFKANr/g//N/uj9c/1t/R/9Qfxu+xf70Poi+mL5Dfnh+Fb4lfcl9/v2lPbs9Xn1Q/XR9An0ZfMQ85ry1PE08QHxxfAS8D3vyO5/7uftEu167CPspOvk6j3q2Ol16ffom+h06Dbotec+5y7nZed451fnWue350DoqOjz6GDpCurI6mzr9+t97ALte+347YjuG++V7/jvY/DS8DDxffHM8Q/yL/JN8qDyEvNO80nzX/PD8zD0bvS09EL16PVR9pz2KPf397H4NPm3+VL61for+4H7+vtz/M/8If19/cv9+f0e/lP+h/6f/qf+uf7W/vH+A/8Q/yD/S/+f/wIAQABUAGwArgADAUwBlAH1AWoC2AIrA1sDcgOXA+oDUASGBH8EeQSdBMoE2gTgBPME+wTpBOYEEwVKBV0FagWiBekFAQb5BQwGOQZiBqQGKwe9B/sH/wdFCNMIOAlQCYcJCgprCmYKZQq6CggL4gqZCrIKAwsEC8gKzAoKCwcLtwqOCqMKiAopCgUKTAp5CjAK2wnwCS4KJArzCfsJHQrzCY8JYwl3CWEJBAnCCMwIxAhPCKgHRQcsB/IGZwbQBW4FEQVcBGYDnQIsAq8BzAC1/+D+VP60/dv8Bvxd+6z6yPnd+Bf4Wvd+9pb1w/Ts8/Ly7vEN8ULwb++j7u/tJO0Q7Nzq3+ka6UToTOdv5sPl/+T44+PiAeI24UPgL98u3krdWdxK2zraOtlC2FnXo9Yx1vTV7tVA1vXW2Ney2I/ZoNrt21nd6t7Q4AXjOuU75yzpN+sw7druT/Dd8XTzq/Ri9fX1o/Yp90H3K/dc97z30veK91P3cPeZ94X3Y/d596b3rPet9/r3jvgj+bD5Z/o+++H7Mfxq/L78EP09/Vb9av1i/Tn9GP3//Lb8OPzW+6/7afvK+jL6CPoN+sb5Yflo+cz59fnT+Qn61vqj+/v7O/zb/I391f30/Y/+mf9rAM0AOQH5AagC4ALdAh0DpwMYBFEEoAQ5BeIFSQZ1BqkG8QYSBwkHMQfIB4wIFQlwCeIJTgpbCiYKMwqnChgLSwuPCxEMcwxoDD0MTgxlDDMM/AstDJwMzQy9DMAMzAyPDBkM0wvTC9ELygv+C1YMYgwXDN0L2Qu7C3ULagu9C/4L5gvLC/sLKgwFDMcL1QsRDBAMzQuSC3cLUgsRC8IKYwrnCVUJrQjXB84GwgXIBK4DWwILAfb/4f58/dr7Pfqm+O/2LvWg80Ty6fCE7xfuhey+6gbpnOdO5tXkZONc4onhYODs3sjdEt0i3KDaF9kY2FLXKtbN1OnTh9Po0o7Rzc8xzrjMD8tMyfTHXcc4x/PGbsYfxmnGKcciyK7JecyF0PfULdlu3SXi7eYD63LuEfJc9vH6VP+PA8sHoAtVDpQPjg+oDkQNvQtPChgJKAhnB24GswQlAlj/5PzZ+gD5ePek9n72a/b39Vb1AfUB9e/0nvRy9NP0jfUN9iv2RPZw9hj2vfTL8ivxI/BF727uDO5F7nXuAe4m7YDsL+wC7Bzs5OxX7gfws/F181f1Mvf3+Lj6cPwO/q//fwFcA/EELAY0BwcIawhiCEcIagjJCEMJ0gl1CgkLWAtDC+oKnQqbCuEKUwsMDDsNqw7kD8kQsRGzEmATghOEE9ATHBT6E54TexNmE9wS6BEUEXIQig8/DhcNUwyGC3IKkwlWCVwJJwkDCXwJXAr2Cj8LyQuvDGYNtg0ZDuAOrw85ELwQbhH6Ef0RpxFWERMRvRB0EGoQdhBIEN0PZA/fDkQOwQ2iDeQNPA5sDnAOTg71DVgNiAyvC+0KOQphCT4I2QZFBWADAgFS/qH7//g39k/znPA/7uvreuk752Xlm+No4QvfHN2o21DaH9mt2B7ZtNmv2SfZj9jU14/W9NTH00TTz9Lo0dnQ6s+PzjDMSsnKxpzEB8Jovx2+ab7yvgS/vL/6wZrETcYsyGbMAdMT2vPg5egC8vb5Ev/NAm4HrgzEENATzBcDHQIh7yHtIOsfkx5JG1QW3RHfDgUMEwjqA/UA5/4//KP4SfUP83Txyu+E7oDuje9w8GLwv+8j73vubO1M7PDrjexe7ZPtL+2d7OLrtuou6dXnCufC5uDmcOd76Ovpuuvd7RHwA/LF88P1Mvjq+uH9RAHqBCUIhgpMDNUNDA/aD6QQ0BEEE4ITGBM0EhgRlA+jDb4LdArSCXkJHwneCAAJgAn0CQgK+Ak5Ct0KnQuEDPAN1g+YEcwSnxM4FEoUuBMhEyUTdRNJE3wSixGZEDAPNQ1WCzgKxQmaCacJBQqCCuQKTAv1C8AMfA1mDt4PvRGEEyAV7RbtGIcaXhu0G9sbsBsVG2saIhoZGtoZPRluGHEXGBaDFDwTtRLXEj8TrhMWFFQUJxSAE7kSSBJNEpQS7xJGE1gTxxKEEeAPAw6rC8YI4wWAA0cBkP5w+4z48/X78mXv6Osy6Qrn7+Tz4l7h8d823kbcpdqG2bfYONg52JLYvNh72BLYrdcR1x/WItVS1GPTAdJs0B/PBc6ZzNDKPckNyKLGtcQhw9HCOsP1wt/BacGDwmDEP8ZEyS7PoNc/4I/nP+4o9aH7wwBMBcEKOxFQFzIcWiD8IyImGCbCJHMjGiKbH74bkRfWExEQmAu9BkACPP5G+nD2Y/OR8bnwbvCE8MvwsPCx7wzul+zb66brresl7Efthe7p7kDuXO327M7sWOy6647r5Os17Frs2+wx7jPwh/Ij9RD4CPvF/WUAOwNIBjEJpwuxDY0PZREmE58U0hUFF0MYBxm6GHoX+hWiFDoTjRHPDy8OgAyiCusI1geVBxwIQwmRClgLXgsiCysLcwvbC8YMow4EEdoSkBODE1ETMBMME94StBKOEl8SDBJ0EaIQ5Q+LD40PuA8NELMQmBGMEq0TPxX/Fj8Y1BhWGSka7BpBG6ob1BxoHmMfbh8ZH8ceMx4zHUYc4hvBG1sboxrqGUAZjRj/F/QXaxj4GEkZaRlxGUwZ9BijGJYYqxiDGOoXBhcIFuwUohNOEiAR+w94DmIM9gmGBw4FcgLg/5r9evsc+Xf26fOg8WDvE+3/6jvpVuf95H7iTOBd3n3c5trv2VDZathI15bWgtZ11hzW+NVp1s7WRdb31M3TF9NA0uTQc89jzmvNFsyqytbJo8ldyZbImcfExgHGZMXvxdjILM7E1KLbueIn6kvxcff9/BQDHwpNEaMX6RxBIXUkQybnJt0mQCbeJMUiOyA5HWwZ4hQaEFULUwbpAJv7Mvf7877xVfDL7+/vDfB670HuCe1U7BbsFexe7Antwu307YvtE+0J7Vjtve1L7i3vLfDe8Efx5fH+8mD02vWX99X5k/yc/9ECLQaXCeEMzg8pEu8TXhW/FiEYcBmeGpUbERzcGycbSRpKGQYYpxaGFZAUQhN1EZIP8g1qDOYKywlwCYkJpQnOCT8KvArPCooKbQqkCt4K/wphC0UMZg1ZDgcPmA8gEI4Q3RAnEZ8RbxKBE3gUBxVDFXgVuxX4FVAWHhduGOYZNxtbHEkdyh3lHf8dUx6gHq8e2h57Hy4gSiDbH4wfhR8wHzgeKh2iHHUcEhxuG/Mavhp5Gv4ZmBmKGbUZ5BkoGpsaBRsKG6IaFxqDGawYbRcRFvoUFRQDE6MRLRCrDtEMegrtB2kFxgLn/yz9BPso+fH2VPTr8fbvBO7Z6+rpq+jK57TmXuUJ5Jbi0OAR3/Xdbd3c3CLcy9v42/TbNNsk2mvZ1djD10zWJtWD1M3TqtKK0bjQqM+/zXXL0skEyUXIOcd+xorGwsZ3xlPG18eVy9HQ+NZo3k7nhPB6+P7+IgWPC8wRRBdDHFEhICbEKb8rUyzYK1gqzCdtJH4gFxxFF0YSUw1uCIQDuf5f+q72m/Mf8XHv1e4m78XvGfD273rvsu6h7Y7s5evS6ybssOxU7dnt6u2V7WPtvO1r7gvvte/T8GryH/Tb9QH42fos/pwBDwWCCNUL6g7PEZQUDhfsGA4aoxr+GlMblxugG3EbQRsNG2Ea2Bi9FtQUdRNOEggRxQ+0DrMNlwyUC/QKswqqCukKdAvtC/ALpQuNC8sL/gvjC7QLzQs2DMEMYA0oDi4PYhCLEWMS4BJRExAUHRU7FlcXhxiuGX8a/BqMG3UchR17HnAfiSCOISUiTCJQIlUiSCIuIiMiHSIBIuUh9CEKIsYhFSFEIHkffh43HfcbGhuTGhgamRk2GekYkhhBGDgYgxjaGAEZFBlAGV4ZEBlLGHcX7haCFssVvxSqE5MSGhESD88MmQo8CIkF6ALVAAv/6PyI+qb4W/fm9fDzLvI48YnwX+/t7drs+uuU6rHoEufq5Zzk++K/4VDh+eDx33LeHt3P2/DZqtfO1bPU1NO90qLRt9Cdz+jN0cvoyUvIsMYUxdXDB8MywhPBO8CQwETC7MR/yLLN9tSK3SrmZe6j9ur+aAZ+DKMR0RZNHIYh8SVoKdEr2SxALC4qDydJIzIfARu6FjoSfA24CDwELACP/Hn5Hvex9Sz1NvVc9Wr1ZfU89Zb0N/NW8XzvFO5A7fTsBu027VTtWu1B7e/sdexQ7APtie598KnyJfXu9836wP0EAacETAioC9QO6RGfFIwWpxdSGOIYThlMGbsY4hdLFy0XGheBFmcVUxR4E34SKxHoDz0PMg9rD6oP2w/1DxAQaBAIEZ8R/BFTEswSGBPUEiESchHmEFAQuQ9jD1YPbA+4D2UQRBHwEVwS2RJ8Ew4UlxR6FdYWURijGewaRxxuHSMelh4RH4wf6R8yIGMgQiDEH0UfAR+zHh0eqh3rHbQeUB+GH8UfSSC3ILYgcyBBIB8g8B/LH8gfuB9VH6ce5h0cHSEc+xr2GU4Z3xhRGHYXZRZHFSYUChMXElgRkxCQD3QOhg2cDDQLSAl2BxMGkgRaAsf/of30+yL6BPgn9sj0avOv8fLvm+537TzsG+tU6qLpo+h754zmwuXJ5L7j+OI64tjgv96w3DLb4tkm2BTWL9SH0q/Qbc4PzP7JUcjlxqDFbcQTw2rBqL9Zvs29xr3+veq+gcEWxuXLEtLE2Kngjekk8mz5t//9BZUMBhPEGJ4dkSGKJGkmDidlJqIkXyIsIOwdBxsyF9MSjA6RCrMG7gKY/w/9bvuA+vH5hPkr+fX43fij+Nv3U/Zd9KHyePGl8LPvmO6p7RbtsOxF7ALsTexl7ULvp/Eu9H/2pPgM+wT+UQGKBKUH6ApVDnsR4xN6FYkWYBcIGD0YuRenFp8VBBWaFPgTLxOhEk0S3BFFEfAQDRFOEXgRtxEeEk8S+RFkEQkR6hC6EHEQRhA8EB0Q1Q+EDzQP0w5wDi8OHw4+Dq8Onw/0EGgS3xNfFc4WBxgYGTEaTxtBHPkciR3WHaodGB12HO0bYxvvGugaYBvqGzUcehz2HG8dhx1jHW0dtR37HTIegx7SHsseYx7yHakdVB3LHEYcARzcG4Qb4RoeGmgZzRhVGAkY7xcIGEoYmRjNGNAYqBhjGPwXZxeoFtMV+hQWFBgTCxIRERkQ0Q4PDTMLvgmGCNkGnASfAl0BGwDz/Ub7O/n39332avSS8ofxkvDl7uzsgOtp6s3ov+Yy5WvkkuMX4o/gp98F383d4tvd2RbYUtZj1G7SjdCYzm7MM8r5x5bFCMPEwFC/ob4pvqW9Yb2vvWi+Xr/twLDDwcfIzKXSitk74djo1O+c9qv9cwT1CSoOFhJCFvIZPhxOHeMdHB5qHaMbcRmGF+AVHRQZEvgPvQ1AC48IDwYOBFoCjwC4/lP9kfzi+5365vht91r2AfXf8mrwh+577d/sXOwD7PTrJOyY7H7t8e7a8Cbz2fXQ+K77If43AEkCmgQmB6IJxwuDDe8OGRD0EIgR8xE1EisS7xHQEcwRcRGzEFMQ4xC8EcIR7RBTEH4QyhCYEEgQdRDkEOQQQxBaD2sOgg3JDGYMLwzRC0sL6wrqCkYL4AuYDFwNSQ5yD5EQQRGwEasSjBScFuwXeRjkGGcZpxlxGREZ0hi5GLsYwhiDGMQX8RbWFqAXmRgYGUgZsRltGh4biRvLGyAcoRwpHVUd4RwVHJcbrRvpG9AbcBsQG6waIRqYGVsZYBlpGWkZdxlrGQYZaRgKGBcYTxhjGEUYCxi1FzcXkBbRFRQVWBRjE/wRUhDfDr4NigwZC84J3Ai4B+4F/gOaAnUB0P/f/ZP85fup+mP4C/aF9E/zi/Fx79HtuOyD6wDqhegl56PlCeSm4m/hEeCo3qDd8dwb3PLa1dnl2KvX6dUl1PPSGdLr0D7PiM0LzHPKbMg0xmPEPsOWwj3CRsLMwrrDF8VCx6PKHs8/1NjZKuA351Dun/QG+hX/GQShCAQMOw7iD3ARvxJdEyYTVRI2EekPgw4bDcELdwpdCbgIiAhQCIEHNgYhBZ8EMAQtA74BlQDd/+v+Hf2Y+v33qPWG82jxTu+E7YHsg+wz7e3tfe5d7wDxLfNP9Tb3OPmg+0r+xwC3AggEDwU9BpkHowj8CAEJVwkOCqsK6woMC1cL1QuDDGkNXw4wDw0QUxHTEswT2RNuEy0TIBPvEmwSsRHxEGAQ+w9dDy8O1QwtDGsMwwySDE4MzgwTDlcPHBCnEHQRghJhE8QT4RM5FPMUkxWRFQQVbBQEFJ4TQhNLE9cTjhQ7FRcWPBc4GKkY5xiOGYwaPhtoG4Eb5xtVHFkc+RuOGzsb4Bp5GioaCRoNGjIacBqkGrMatBrSGgkbQBuGG+4bThxqHE0cIxzLG/kaxRmzGAAYWBddFjgVSRSbE+cSFhJlERQRDRH5EKIQLhDTD3QPsA6BDVoMdgtiCqwIsAYNBZoDpAEs///8c/vg+bn3Z/WO8x3ypvAl79Xto+xg6y3qJOn553Pm8OTX48ziG+Hc3t3ccdsk2qLYQddS1oTVZdQa0xzShNHw0CnQac/ozlTOKs1uy83J08hCyJTH4MbexvvH8cl7zObPkdQq2t/fPuVn6nLvLvSU+AD9pQEGBlEJPQs1DLYM2QyNDP0LgwtCCwILeQqaCZwIxgdHBysHWQedB74HrQeQB3UHHwdJBgYFjgPRAYL/o/y5+Tr3HvUw83Px+u+s7oft8OxE7VfuvO9i8Xvz2/X094f58Pqf/I/+ZADdAekCnQMhBIIEpwSFBGYEogQsBasFCAaLBmQHdwixCR4LjgyrDYIOgQ+2EJgRzhG1EbcRqxE2EWkQjQ+sDrwN+gyJDCAMewvzCgYLhAvPC94LSQxTDXsOQA/TD6QQoxFMEm8SbhK0EiMTURMmE/sSCxMdE+wSrhLaEoUTVBQXFQ8Wbhf3GE0aaRt6HHEdAx4cHv8d5x3BHWMd3xxkHPsbhxsDG4gaNBoUGjganxojG5wbExyoHE0d2B1HHsEeQh+PH3sfGh+BHqEdeRw1G/UZoxgsF7sVghR2E3AShREDEf4QKBEYEbkQShAAELMPDw8HDucMzQtnCnYITAZnBKsCmwBF/j38q/r++OX26PSG82vyDPGT74Duv+3S7Kjrmequ6ZToNOfF5TrkUuIx4FTe0tw521zZq9d21m3VNNQO03jSYtJG0ufRgNE40dTQEtAQzxfONs0zzOjKeslAyJDHtcfsyE/LuM7S0k7X+NuZ4PLk9Ojt7Cvxi/V7+ZD82/6XAMQBVQKKAroC6gL3AggDcAMMBGIEagS9BKYFlgbwBv0GcgdNCMkIdgjBBykHYQa9BDQCgv86/Sz75viR9sT0nfOd8orx4/At8SvyRvNl9N71pfc6+VT6LfsH/NX8f/0H/mT+fv5t/nn+q/7P/tv+D/+L/ykAzQCMAXICiQP5BMMGcQiDCTMKHQszDNAM2wz6DGgNiw0ODX4MPwzWC/wKZAqjChgL/ArMCn4LywyJDYwN0A3EDqQP1w/TDzUQxRD3EMwQpBCeEIoQVxAtEDcQhRAAEXoR5xF+EmoTaRQcFaYVhxbUFwsZ3RmaGoQbQhxiHAsctRt0GxEbmBpPGkYaUxpvGrUaDRtVG7QbWxwYHY8d0R0+HsweBB/CHnMeXB4wHpEdnRyoG8ca4hn9GCMYRRdQFlQVYxR7E6QSCBK3EYgRSxH1EIEQ3A8MDzEOTg09DPkKrwluCAwHdwXeA1ECmwCz/u/8h/tA+tv4jfeZ9sv1x/SV82ryNPHP72juMO3o60DqVOhr5nDkPOIa4HDeEN2H2+rZuNj+10DXUNao1Z/VzdWW1QPVoNSm1KPUFtQS0w3SMNEj0JrOvcz0ypXJ28jzyNnJVst3zZbQttQi2Rfdm+A85Brow+vZ7mTxgPMy9Yb2i/ce+Bj4yvfr9+H4TPqA+1n8Vf3n/sgAPAL+AqsD+ASpBq4HYAdWBpIFLAVCBEwC4//9/an8L/tE+Xn3U/am9R/16PRH9e/1a/bk9t73PflE+pr6s/oG+2X7XfvX+h/6j/lb+Wj5V/n++M/4XvmG+o37NPz4/D3+wf8hAVMCUwP8A3oELQX7BVAGIQYbBosG1gaMBjYGYga9BuAGLwcbCCsJwwlKCngL8wzEDeoNYg6FD3sQixAfEP8PPhBVEAMQlA9wD6kP7w//D/oPQxDpEIoR6BFREisTRxQhFaMVPhYaF9IXExggGFgYnhiYGFgYTRieGPEY+hjeGOgYHhlTGW8ZiBnDGS0apBrsGgMbNxuvGxMc/RuhG48b1RvzG7IbgBuoG8cbchvaGm4aIBqaGeEYQxjKFzAXYxagFfkUMBQaE/ERABE/EGYPUw4qDRAM5Qp3CesHrAbKBb4EIQNXAQkADf+V/X/7oPl5+HL34PUe9OvyMPI58cPvKO6x7FfrBOqi6B7npOWQ5MvjtOIL4WbfRN5B3c/bPNo22bDYBdgA1wHWQtWO1MbTDNN00trRJdFz0OTPV8+Bzk/NE8w/y8TKK8qCyabJPcvQzYDQPtOK1j3ald1Z4ADjrOXv57XpguuF7SLv4O8q8Mvw9vFI83T0sPVu98L5G/zJ/dP+7v9pAaYC+gK/AtgCYQOOA+QC3gEQAT8A9f5v/Vf8tvsG+0T6DPpp+oP68/mP+SH6Hft9+1f7hvsq/Jb8dPwP/KH7Hfu0+qr6tvpV+sj53Pmw+n/71PsY/Mr8xv2+/rb/rQByAQsCyQKbA/kDyQOqA/wDUQQ7BAIEBwQ0BGoE5QSuBWAG7QbcB1IJngpUCwUMPg2RDlUPsw8+EP0QihHMEQESPxJzEpISlRJvEjwSQBKNEuQSGxNSE7wTZhRKFUoWKxfGFz4YvhgXGfwYjBg2GB4YAxjAF4MXeBeJF6EX1Rc2GKoYEhl5Ge8ZVBpiGgcanxmXGeMZAxq/GXcZkRnRGcIZaBkkGSAZOBlRGWkZaxlWGVEZWBkRGUsYZxfwFtkWmBbsFScVoRQ7FJATbxICEZsPbA5qDWUMNwvzCcIIsgeuBp8FeQRGAzQCYgGMADX/X/2p+2X6GvlN91f1y/OI8gfxNu9a7X7roukc6BHnAOaE5BLjQOKx4aHgKt8P3oTd+9wP3O/a09mx2ILXVdYV1bDTatKp0V3R+NAX0PzOQc4bzgzOgM2jzE3M98w9zpzPQ9Go06fWttmT3CTfDeEx4kTjFeVq50DpNerh6tzr/+zL7TXu5O6s8JXzhvZq+Hv5vPpW/F/9eP2J/Wr+tf+DAKUAcgD+/yf/K/58/Rr9jfy3+y77efsp/FP85vvP+5D8bv2O/Tn9TP3d/Tf+Av6N/Q79XfyC++/60Pq++nv6evon+wX8J/yE+xL7gPto/Pv8BP36/FT9C/6S/nX+Cf4V/rj+NP86/3L/SgArAZkBGQIXA+kDBwQ2BE8FuAZtB70HpwgICtcK8gpPC3IM0Q3VDqAPkRCQES8SSxI7EmgS2xJPE58T7RNPFKsUBBWOFTwWtBbvFmIXOxjzGBkZCxlaGdgZ8BmmGX4ZmBmXGV0ZOxlWGWgZPhkOGRgZSBlIGe8YeBhDGE4YKxiwF1MXdRe5F4sXDhfTFu8W+xbdFskWwBaYFmEWMhbCFekUDxS2E7gThRP2ElESzhFpERgRvhAuEGsPrw4HDjkNKAz0CrQJbwhdB6oG9QXDBGwDrwJYAmEBnf8M/ir9KPx1+rH4Y/cF9jr0rvLD8aTwuu7Z7M3r5eoo6QjniOWL5Enjw+GE4JDfkt6j3fDcENyn2jTZVNi4163WRdUZ1DXTFtKI0N/Of82hzE7MOcz+y67LscsDzE/M88y+zn/RE9Qp1orYJNuS3HTcktxw3inhEOMq5JLlW+e06Izpvuqk7KfuX/A98sD0cPdN+S76Gfvt/BX/PQAaANb/egCTAcoB2QAXAKAAlwFUARYA1f8oAVICJALUAYsCIwNOAhMBDwGuAXUBywAQAdoBkgE5AF7/iv+2/yX/Vv71/Q3+T/5P/r399/wA/Q7+2/5E/gj9wPx6/eL9fP0x/X/9wf2s/dv9X/5n/gr+lP46AEgB5gCwAA0CygMtBNcDbATQBb8GLAfpB9sIWgm3CaIKpQv5CysMVg0zD4YQGRHMEeISqBPKE9MTPRT4FNsVvxZZF5AX4xfHGNUZZBqSGvcanBsFHBUcGhwbHN4bmxu8GxIc/xuIG2cb3RswHMYbEBvAGqIaBxoDGWEYaRiNGGcYNBgdGNYXWhcmF0oXHRdUFqUVmxWaFdcUphMGEyATKBOCEnERiBD0D28Pug7rDUoN+wzLDF0MggtTChkJIQiEB/IG5QVJBMYC5wEzAdP/BP7u/NL8hvxJ+935Bvkt+I32pfRA8w3yb/C/7n7tNexo6qrolueV5v7kbeOn4hni2OBC3y/eS92q25jZOti31/nWatWs03jSm9GK0EPPQc7QzbrNfs3NzLzLkMphyUHIjMemx3rIucl0y93Nh9C30m3UQdZO2C/a5Nus3UHfOOAK4YbieeT05dfm/+cH6qnsRu928UTzLvV29375lvo7+238EP5D/xAAOQGCAuoCfQJEAoICgAIZAgsCrAJyA98DBAQpBHUE0gToBIkEKQQ7BFAEvAPaAowCnwIOAtoAGQAaAOb/Av9D/l7+t/5o/pn99/yX/Av8N/tw+gD6+/k3+jj6jfmN+B74efjQ+KT4jvgk+ff5bPq5+j/7tfvj+1H8Vv1O/p7+0/6w/+wA2AGWAqsD9AQFBg0HaAjRCdoKwQvrDBcO3w6KD5IQ1BHrEvoTShWTFlYXsBcVGJIY9RhoGTIaIhvSG1Ac5xx9HcUdzR3sHTcebx5uHlIeNR4GHrUdUx0DHc4cphyTHJ0cjRwOHEEbqhpaGr4ZqxjWF6oXgxe5FqgV8xRtFKUT1xJwEkIS3RFNEboQ6A+uDoIN3wyHDM4LkgpVCXoIzgfsBtIF6ARwBCgEowO9ArgB0wD6/+b+mv1//MP7+fqo+Q34tfam9Yr0bfOQ8tvxHPFw8Nnv6O6B7TXsPev+6TTol+aW5XnktuL+4A7gad9J3vzcQNzo2yPbytl72HzXP9ZH1PvRF9CmzgzNNMv7yffJdsptygnKXspvy9PL5MoiyjPLX82vzgrPJdB60oTUWdXm1QLXQNhi2Rnbqd1C4ETi4uNx5SbnOulh6+HsFu5r8NfzPfaZ9rz2RPgP+oj6d/qL+6z9lP/fAP8BAQOSA7sD5QNvBE4FBgZOBrEGqgdpCM8HhwY9Bt4Gwga7BXcFfgYuB4gGogWBBYwFAgVIBNYDYAOwAikC3AFBASYAA/8Y/kD9kvxQ/Cz8rPs6+5v7ZPxO/Eb7qvoI+zL7YPqq+S76Jvs7+7D6pfoO+xD71/pn+9v8Rf48/0cApAHBAkgDsgOMBMsFEwdACGAJggqdC5AMQw3xDREPsBA4EkETMhSQFQwX/xeIGEEZOBr8GoIbIxzcHF0duB0zHqoezx7KHv8eWh+BH3Ifch+FH3YfRR8nHxIfsh7fHeocSBzpG1gbfhrTGYkZIxlRGHgX5RY4FjcVYxQNFKQTpBJ8EbYQ9A+kDhUNCQyTCwUL4wlmCCIHUQajBasEbgNiArgBGgEvAB3/Kv5F/Tb8EfsV+in5/feu9q315/TG80XyKPG68EbwWe+D7iLuku1t7F7r1OoV6p3oL+do5p3lHeR14lXhX+AE36nd/NzR3IDcytvh2u7Z3Nhl11HV+tIp0Q/Q4c4qzcfLqstCzF7MIMx+zETNes1hzQ/OK89Jz7LORM850avS2dJO0xfVPtfh2HXaV9wz3hTgJOKZ4+7jh+Ta5sLpUOsr7FfuefF58yT0LvX09in4rPj7+W/8cf4P/3n/8gDHAn8DXwMkBFEGRwjECLgIdQlrCk8KlgmgCUwKcQoxCpAKNwvdCq8JIAl2CYQJ1gg1CBIICgjYB30HugaLBa8EeATkAzICeQAbAIEAFgDc/iP+Lf7//Vj99/zq/H386fsx/B39Gv22+4f6xfqG+1/7pPqt+sn7B/2//Sf+kP4C/63/3QBRAlID0wO1BHoGRwjxCMsISwkLC/gM4g0xDkgPchFpEyoUbhR1FRsXUhgMGSEadhsLHBUc8RyXHjsfXB7vHVYfFyE9IV0gYSB5IRwigSGTIFQghCBRIJ0fEx8AH9seMB5pHQQdmhyXG18auxmFGe8Y5hcFF2sWrRW5FNsTBBPtEb0Q1A8LD+kNagwDC+UJzgiEBzcGOAWNBNMDsgJiAWYAwf/U/lT93vsF+2L6O/nJ98z2Ifb39GnzbPIN8lDxHfCJ763vHO9m7RzsKOww7P/qpOl16avp2+hx57jmgOan5TvkUeMW46PineGv4Ezg+98h3+Ld4dxe3N3bsdr42JTX7tY/1tHUZ9M40+XTC9S101vUItZJ1/zWntZF1/jXuddi1/bXzNgI2WfZ7Nr/3GjeRN+d4KXileTi5dTm/ueE6efqpOsb7DTt9e5V8PzwAPIl9Hz2yfdr+KH5f/vd/DP9ef3N/sQA8QEFAmsCEATBBQYGqAVuBv4HbAimB6oHCAnnCUoJwQieCcMKnQqcCTYJqgkLCroJ8ghWCFMIhAjdBzkGEgWKBWYGtgXrAx8DnAOGAyoCCwELAQgBQQDY/5EAIQFZAFT/kf9VAOj/jP4T/u7+s/+X/3r/EwDOABkBgQGMApYD7QMzBGAFBgfdB+IHbggjCvsL1AwHDcQNVQ/OEHYR5hEkExEVhBYSF6QX2xgHGoYaEBtvHOQdRB7yHTweLR+oH24ffB9lIH4hASICIvch9SHPIYIhNSH9INMgqyCBIDcgpB/VHiEeuh1lHeQcVRzXGykbJxoxGY0YxBdfFtsU+BN0E2gSxRBVD2YOXQ3TCzYKFAlTCHcHTQYTBRYERwNAAtEAbv+E/rD9SvyV+nL5zvin99n1iPQm9KjzcPJj8SLxzPCu77Huk+5T7vLsdesv61PrTuqW6N7nHeil5yLmF+U45VblfuRy4xvj8uIL4r7gF+Ag4NHfmd4m3U3c2tv32ovZfthU2ErYg9eC1m7WStcR2JDYl9kt2xzc0dtB2zfbEttJ2tPZzdqV3LLd+t2D3rnf+OAB4oHjyeUD6F7pOupa64Ps4uyU7MXsAe5772nwMvGi8pb0TvaL96r46/k9+3H8Zv04/kL/jgCIAeABTQJVAxUErgNJA5YE1QauB/8GFQfDCAUKbgliCJ8IsQk6CjAKTgqFCkkKlAnHCBUIlAdWBzcHFQctB3MHJQfvBfYEUgX6BSUFUAO3Aq8D+wN1Au8AMgEwAhICOgFDARcCVwLqAQcC0AIJA1kC+wGjAlcDNQP1ArMDNQVzBiEHyQe7CMQJvwrAC8wMyw2+DrMPnxBpEQ4SrBJ/E6oU6BXNFnEXeRgVGoobORyVHFwdaR4WH1kfth9DIKIgxyAGIWohpyG6IfUhXyKZIoIiZyJ+IosiRCLOIX8hWyEMIWwgrh8BH0YeZR2OHOQbLhs0GisZUxhzFzYW1RTEE+cS0RGLEHYPiw5aDcgLMQq7CDsHtAVkBFsDXgJEAR4ACP8K/gb9vPsr+tj4L/iy95D28fTE8xjz+/E68ObunO6K7vjtbO1j7Rrt3+tz6tTpjemn6InnXuf65wjoFOcW5rflbeWj5MTjbONn4yrjw+Kh4qbiOuJT4azgsOC14P7f7t6G3rneUt7T3FnbDNt224rbiNuc3M3eqOBF4Vvhz+FG4vLhDeGO4M7gTOG74Wnii+O45Hfl7OWi5uTnd+kC62Lsm+2Y7h7vHe/z7ifv1e+I8Afx1vGA83f1jPaj9vH2LviO+T/62/pV/Ez+wf/BAOcB1QLHAjwCZQIUAzEDBQP9AwYGQwf/BsYGugfkCC0JTQlMCogLyws1C7wKcAqhCVUIcQeHB0II4gjuCIwIVAh8CFkIZgdqBpwGqQf4BwoHMQZcBrsGTwaSBV0FYAX6BKMEHAXdBdYFTwV/BXsGBAeaBk8GFQdvCF0JrQnJCdsJ2AnuCVQK+Aq+C9IMTA7LD7MQ6BD9EJYRtBLCE3AULBVwFtQXgRiDGNIY0Bm/GiMboBvGHOUdKx4aHqAebx+LHxsfOh8OIJkggCCEIO0g9CAuIGEfNx84H9EeVx5PHmkeGB6DHQwdfxx+G1Iaghn5GEEYSxdaFm8VcBR0E3MSGBFrDxAOVA2gDIULiQoSClwJnAd3BQsEGAOlAfr/O/9E/57+1fwQ+xD6Ivmg9xz2V/Ur9Qn1svT988jyevGr8CPwNu8j7s/tE+6/7ajsBOw/7CTsAOv16QXqa+oh6r/pOOrf6mHqAuku6DPoHuiV52Pn/+fJ6APppugL6HTn/OaL5t/l/uRj5EzkRuTt45rjuuMH5CTkb+RS5UrmpubT5rPn8OhA6VfoV+cW5y7nD+cF55bnl+ht6cvp1uno6VfqNesz7Avt3+3X7qPv8u8R8GbwtPCu8NLwpvGU8sny4/Ih9Bf2+vaF9pH2KPjg+T/6Ffru+o38lP3F/e39Qf5a/m/+Gf8CAEoAGABwAGwB9QGCAfgAYwGXAqkDKARbBKUEEQVUBSMFlwQqBCkEVQRGBPgDpQNuA3ED4AOUBOMEfAQcBK0E5AWEBhgGkQXkBcAGEgd7BrkFrwVlBh8HTQcnBzsHmAfOB7MHsAc3CDkJbQqhC5UM9gzsDCUN5A2ADmIOHw63DggQ5RDFEG0QzBDXEfUS3hOzFIgVWhYxFxIY4BiFGf4ZPxo0Gv4Z4hnzGQQaCRoXGg8ashk3GVQZUxqKGx4c+xuoG10b5ho/GrsZahnsGAcYDxdjFuYVRxWBFMMTDRNNErYRkBGyEZgRAREZEAEPmg32C5UK4AmWCQgJ1Ac9Bt4EEQSSA8YCjgGPAFcAdgAIAAj/Pv7M/dn8GPuY+Uj5ePns+Kz3ovbr9fD08fP78xb13/Vg9Tv0avPx8nzyZfIh8zn0kPRx8wvxTu6p7DLtgO/Z8fPyAvO+8k3y0vHx8cHyEfPw8VPww+/z71Xv0u0N7bnthe5u7nLuz+/M8bLyL/JV8czwV/Dz7w3wd/BE8AfvgO2m7K3sS+1P7n3vW/Ce8JbwyPBK8c/xK/Jt8ofyNfJS8SHwNe8J76Pvc/C58C7wS+/k7nfvAfEt83L1+vYB97v1gfSQ9KL1R/ao9Wz0m/Nd81/zyvPq9Cf2d/YB9jP21Pfm+SP7q/tb/BT94fye+2H6DPpl+t76afsg/LT80fy9/AP9xf3D/tb/AwESApgCdwIdAhkCnQJdA+UD9QOyA3YDcwOJA5cDvgNCBBYF6AWVBkMH9QdKCP8Hewd1BxcI4ghnCbgJ/gkJCsAJmQkdChMLsgujC2oLrQtyDDsNgQ3vDIYL2wkKCeQJEwxRDpEPwA9gD7YOxQ3xDD8NWg+NEhYVlxXpE84QaA0iC0UL0g3tECgSphDFDfALzww+EE0UZBYxFdcR+g55DhQQ+xFbEpsQlQ3XCl8JBwk5CdcJ+Ao7DA0NcA2qDVsNxwtCCV4HMwdCCGMJ/Qm2CdwHPgQ9AAX+af45ALcBGgKkAeAAMADm/0QATQGPAkIDygJIAXX/4f2L/Eb7RPrP+an5KPn094P2y/WP9sL4Sfty/DL7Nvio9Yr1Bvg0+7H8lvv3+I72PPXo9DD1lvVw9Y/00vM+9JP1mvby9ln3FPho+Aj4vvfN9y33YPXh80r0AvYs9/D2nvWM86Lx9vF29Wf5qPm+9ZHxwPA889D2u/nz+tr5JvfX9CX0hvQ/9X32+fcr+BX2zvJP8JjvyPCi8+X2hPjg96/2lPYR9zr31PfN+ZT7p/pY97b0nvTV9YH2fvZ99n/2VfaL9qf3IfkA+gn6tflz+YL5Gfoy+1j8Hf17/XT9ufwy+6L5EPmp+Zz6JftI+2r7vPtR/Gv9Ef+eADsB7wCeALgAlgCl/4j+Zf5k/5gARQExASYARP76/D7+9gFPBasFlwPGAcsB9AIGBJMEuATGBGIFugZyB80FcQJnAGkBpgNvBM8DqgNhBJQE9AMBBKAFwwcCCQoJAQgiBoUEyAQRB3MJ8Ak7CG8FTAOPAz8GkwjJB0kFNAUMCCcJcwW6AOoAMgZCC28MDgvZCToJDQj9BegD3gIyAwQEDgRrA8wDAAZ7CHQJLQmjCHMHMgWzAxEF8QemCE4GIATsBJ8HTwm7CIkGtQNbAdEAegLzBFQG2AW8A5EAsf1t/RQBuQZNCoQJ1gVoAs8AfQCkAGIBvwJ2A+IBSP57+3/8bQHUBnMI2gSp/kv6bvo+/rACGAWLBLsBb/63/JT9+P+RAdsAPv6C+6j6mvz5/6cB/f87/QT9Y/+0ACn/e/2B/pEAIQBW/aH7bvx3/bz8YfuL+2H9T/8RAKL/5P7T/nH/vP84/7n+rf7//UH8Z/v5/Nn+Jv5i/J39bgFnAiH+n/nG+nAAYwROA4n/tvzW++v7L/zL/C/+HgBMAVwAqf1A+8X6DPxB/uwAMwNlA+0A5P0b/bj+/P/L/mn8CvzO/g0CRwJP/1D8sfuT/D79HP5IAJ4C1QIJAYf/Wf+H/7j/vgD1AQcBtf10+1r91wFMBD4CwP0Q+3X8KwB/AisCngHSAq0DMQEm/a387AD3BG4E2wB0/ob+if+cADQCWAQnBncGRwT//9D8Z/7yA+QHcgb0ARn/Xf+WAbQE2QbDBKX+Efut/wQI5AkjA9L8sf5wBdMIwQZPA0cBIQDx//ABBAUEBlsE0gLxAqUC/v/K/LT8EQF8B4oL8gnQA7f+M/8ZAz8ERgGf//4CMAc/Bn8BVv+2AWYEbgTIAz4EzgMCAf7+gAHvBtMJZgcWAlb+4v4HA7UGmwVcACL9QwDfBVoG2QDk/JEAiQgpDMQHQAAN/T8AIgX+BYgCqf8JAcgExwYfBs8EhQNSAWH/2gCrBaoIpgVg/7P8VADfBXsHdAQpAXMBnwT5BuYF0wFd/cj7GP+VBdEJkgcJAeX8tv6SA5cG9gWaAiX+gPss/okF7ApvCOMA/fxwAI8FDwWT/778WgHCCNMJAgIm+WT4Q/9CBacFogTXBvsIsQRi+4P2X/wMCEEOyAif/CX1CvmxA2kKGwijAT7+Mf8OAb4B0AHtAWQCwgPwBPIC8v3s+40B9wlrCw4EWvzh+9UAqASHBGQC2gAMAcICUQTDA1kBaf/3/sv+tf7aALYFVAl7B30BJv0R/gMCSQQxA1kBuQFcA0wCUP0t+dn7sQToC7gKwwIc/OP8jQPYCOoGM/9R+Yz7LwQIC6wJ3QGa++v8sQMCCF0FSgBpAMIFWAiRAxX9wvwAAjIG5wZABz0ImQZoAQT9Gv0dALwCFQSFBMoDnwIUAzEFIAapBHYDjgS3BTIEjgGGAW0ErwYzBaEAA/3L/lEGcw2uDEcEX/1A/0IG2AgHBIv+a/9CBbYInQWg/6r97wF+BxIIigP7/xACIgdkCGwD0f0B/xMHfg2DCu4Aj/trAIIJZAyMBtL+JvwZ/0oE1AieCvoHBALq/WYAuQdNDMwIcwCy+6D+uQQlBzEF1QOtBWQHQAXLAIz+RwAxBP8HEQrWCCcE+/5o/dEABQcYDAgMJwWw+1X4Bf+7CFELUAYZAr8COAPc/wX+rwOnDO0Oygd2/pn6Z/3CA/0JOAyrB3L+3Pc/+msEAQ6yDtEFcfsN+RUAoQhVCj0FJgD2/0kDIwbBBiQGvAWoBakEqAHq/Rv9nAHFCGsMHQkPAvX9PQACBqIJoggjBSQCkACmAG4DGAgRCu0Fev8t/hADTwdRBscDUgSvBc4DXgHMA+AIswhqAsj+SAPiCRkK5AStAS0DeAU1BUcDsgGLAcoD9AdICmoH2AGh/4wCgAanB+EFPwJQ/iP+qwS9DLMM6gNc/YMAGQfQBzkEtANJBm8GKQTsA8cEfgIoANgECQ08DMQAoPnJAcQPZxIiBxH7B/qyA3QOAxBuBhf84P01CrcQwweB+sr58AXPEP8QWwm8ADT8gf+VCUYR8g2FAw3+5gEPCPcJpQgLB0UFvgOYBHsH+gjfB6YGqwaVBucFmwX6BP8CrQISCP8PGxHjB5/8afogAzYORhFmCWb+LvzIBTAQZw7oAWb5x/73C1sT+g7DBLb+IgF+ByQKgQdxBekHSQqiBiQAdP8PBnEM1wwcCTUFegIOApoFAQuXDG8IYwOUAs4F1wkTDHkKrQQJ/6//eQYdDH4LRgciBNsCNQPiBtMMfg7OB/X+Ff5hBqcOkA5EB6YA/gB9B+UMbgoTAif+YQXvEAgT1wdL+377UgjAE5ERTgTO+Wb8oQhqEdYNTAKn+1kBaA0DE5UMQgEl/IMAjQhADSwM1wYDAbf/OQWkDNkNvgcZAuUC1gYeCF8HSwhxCbUG+QH6ASoIyg3UDDkHXQNnBJIH1AfzAz0BoQUMDoYP8AVQ/Dz//QpdEMIJjQH8AV8IDwx4CjAHXQWkBTgH3QcfBtME1QdLDL0KHwM7/50EnQvvCs0FCgYjDOMOzQn6AmEBkwRtCBsLaQxEC08H7wKBAWoEKgrKDvkNmwfvAWoD/gm6DNYHjAI3BSINrg/NCLoAOgEiCVcOtQowAxYB4gbwDY8OVAjbAV8BwgaKDOYN8gpTB6gFiQXXBTcHgAqBDfwLNgUA/3sAaQnCEEkOqgQK/40DmQu1DMUGzwMTCc8OEAteAFH7eAKDDmcTTw3IAlP9iAH+C/ITuxLpCT4Bvv5pAtkIgw5RENgMdQaNAS0ACQKwB2EQABV5DTf+xPeOAssROBNdB3f/0QSUDdYMWwQVAFYFNA17DoAIugIqA1IHbwiqBXUF3ArvDkIKGAHI/nQGkQ9oEZML1QJG/Gr8TgSwDfgPhgqaBI0CEAL5AUYFbQvjDboJkwSAAwIEGQPrA9AIcQyiCc4EVwVwCVUJXQT9AfAFyAr0CUMEZQBoAycLow9aC58CKP+BA1EI3AeZBWIG7gc+BpUDNgTaBjwImAljDP4LfQRd/AL+pAhQEGcN+gTAAPoDXwlYCeQC0P5xBYsQUxCnAor5rgGcDtsNkAOeAfcIiQm8/4b7NQU1DxAMdgIqAFAFhwj2BnkF6QZ5CVUKUAc/AYj+SAQUDGYKWwFDAKALdhNjClX6q/ZhAm8PxBElCar9XfrYBCkTzxL1AX32hQDFETMSnwOi/OIEXwxpBzb/agDhCHkO8QyqBo0AEAE1CuwRrQuK/JX4hQbjEycPQwE6/84K9RGsCqz/fP5pBdUJiQiIB2wKYgzOBwIAu/5pB9EQMw+CA2r7sQD1DGkRuwgH/Xr7AQXXDWAMEQWtAycKjQ3vBmf/JQOeDYQOWgKD+ZQBnBGZFXUIa/m1+OwFsRKsEmwHnv0s/6gIJA7YCQsCoP+kAwcJHgxZDGsJuwOK/s/9CAI1CO8M1Q3zCYYDxv8WAiIImQyeDP4I+AM1ACoA4QNJCGkK+gnaB6wEjAKEBGAJxQp1BX//CQEbCe8OTw0HB/cAxP10/6kGXQ6BDiYGGv79/RED/AWEBSMGEgkcCpQGqQEvAB0DgAeaCVUH6wEI/vP/XgbrClcJWATLAdYDwgcwCsgJ0QYDA3oB4gNrB6IH5wQqBLQGvQaBAAj7pQDgDo4VjwrP+Jb0jQLeERoRCQOh+VD/qQt0DxkHT/0I/eAESwpnB+4BpwK9CKwKYARI/rYBrQrkDJwFX/8WAlIISgnvBWkEZwRZASf9yP54BgwMVQrxBHQBiAG/BFEJPQpNBK/9t/+zB+II0gBS/bQGkhCwC9T9Y/lkAtsK+ggTA90C8wdGC54IdQG2+3f+Iwr5E1oQMQJp+PT6pwIABm0FKwb9B70GggJgAMQDEQqxDI0Hu/4I/HgDiQw/DLwD3f23/ywE1QZzCRAMvQn8Aef8HgCQBuoIqgfQBvEFjAOpAr0FkwiIBs8CLQMnBgMGhgL2/zn/1v4HARQISA4+C1cBe/zsAeEJbgvXBu8AL/zZ+sIAoAxtFGoPlgGt9wH5owFsCUAM4wpTB4wCav2C+lv95wXSDagNkwXl/Zr9MQNpCLAJMwfaAWj7LPhG/K8GJRETFbIPRAP29rTz8PzdC6wUDhF6BJD3MvI7+HIGGBIEEeQEUvpL+tsAXAWLBj4IEAloA/L4h/TM/JoKIRHqC/EAU/iM9jn84QVuDLcKZQMY/ov+6wGUBEUGlwdrByEFXAKeAJj/X/8mAdMDmQMpAEP/gQT3CSwHBP5T+Q/+7QSCBXIBFQBgA20G8gS2/+T6EPsCAmkLxw5VCBz+6fiZ+iv/KwQeCfEKhgaC/4j9zwH9BQgGXgTzAkkA7v1UAXMJqgsGAgf2OvWk/3YJBwvdBh8CGf/k/rEB2wSTBcMEEAS1AeX8Bvv7AFsJAgqxAjj9vP73Ac8BngCeAQYD+wK2A1cGLgdmA939//ok/CMBAwlpDiUKhv0Q9CP2PP8iBr0IywmYCPwCVfyv+mX+rwIABRUGYQWsAYD9Gv0AAM0BIgGlAE4BFgH5/yMBVQUJCKQEc/wZ9gX4fAKLDc0OswQX+jz61QKQBwkDAP23/V0CKQPk/0v/tgMzB1cE8v3x+pj9NwJtBb4HGgoGCoQE3PtD93H7OQXoDK4Nmgi4AZP8RPt//tMEdgolC44Fdv3Y+SL/Igp8EeQNjgHW9pP2sP+qCJIJTwNr/NP48/ez+fb/7QgODXIHgf3r+L37m//W/2L+c/4eAKMCqAWOBuAByPnH9Ub5IP+iAa4BAAL7AOT81vmn/J4C7AS2AjEBogLKAzECD/+b+zz4nPen/G0EEAgsBicEaQSdAjz9EPv+AEMIMAcHABb+4AQuC4IIDgDD+hT8ogAvBLQEHgKJ/jj9xv48AAUA0QCWBJ8HSwXi/0X+AwL3BB4CTfy4+Sr8QgB2AloC3wGeAlUDqgBD+gb2NvoJBFcJkgXB/+z/5AMZBNP/W/2K/zUCqAFS/4T9z/uR+QP44Pe5+Ib7egH5BlkFhvxw9fb2Qf3YAHoBYQOYBR4DVPxz92T3Mvlk+zAAPQbuBnQAAvtw/nwHIA2ODHQJwgWqAFL84PxkAfcDzQHq/VP7Yvoi/JoBTgbiAo34ifKK91gAEQN0AccD2An0CvQD/vvn+XD8TP8mAasBMv9x+mH4gfzlA9UItQhjBDv+jvo//mII6g9gDPP/wfSD8QH1dftwAsgGkASj/D/2M/ej/CX/ZPzy+FL5J/2FAXME7ARyAkb+Ffsl+nD6T/tT/Vr/K/6C+Vn2u/je/XQAnABmAuQFcAY3Ah394/ow+478wf6TAAwAjv7y/6YD5wO9/jT6uftrALQCwgK1A3EE9AEd/mr9qv8HARkBZgL1A/AB6PwQ+nr7yP2L/j7/tgA+AeYALQJXBMQC2/wP+fv7GwFLAen8O/oF/Pv+x//C/mn9I/xK+4z7cfzA/OD8eP4XAccBNv81/A387f1s/tf8CPyY/fX+9/yK+KL1e/bj+Z39YgDUAU4CqQKaAhEAZ/pg9QP2a/yBA9wGzgU1AWr6GfV79QH7iAAtA4sE/gR5AW36/PYs/N4EDQgYBK3+9ftw+9z7/fwJ/jX+5v3R/KP5jfa1+RcEOAz8CJX+z/je+qX9F/2U/SACCAbhA+38hvbt9Mf5XAKXBmAAdvWY8s76LgO5AhH+B/7pAdsCrf9N/f79Mv/5/sv9yfsw+Yb42ft1AIoBkP5n+8P6y/vL/Bb9mvw//Pn91wEuBKoBbvzT+X778f0I/sv8qvxQ/QT85PeD9PL2Sv+jBicGj/8W+8f8PgB4ALv+iP4j/7b9Bfsm+or7S/2+/tX/6/5f+634avqG/hsAnv6F/Qb+S/5O/tv/2AEWAUX+cf3R/ur9tflo91P6dv4E/379y/0U/+D97/qh+iz+0gEmAu3/Qv7f/pIAVACE/Nf3Zfc3/O0AJAB7+y35tPs4/2P/o/yb+o/7cf5VAFP/ovyy++z9AACx/SP4wfVq+uMBVAR4/+v4MfeF+ub92/0R/Pn75/0f/w3+c/zL/L/+jf+1/T77efu8/kEBUP8c+vf29PgD/f39XvuR+bL7rP9EAR3/V/ve+D/5Ovzx/xkC+gGlAOv+Uvwi+d33ovqu/5cCJgFk/Z76Kvqd+1T+NgExAun/9PvX+S776v0O/yP+CP0R/ab9tv0x/bn8ufwT/QL9Wfv99zn18PXD+Z/8b/vt9yX2hvdD+q78ff4N/zn9ovn59vj2pvhO+oL7Qvzl+1r6H/l8+cL6jPu+++P7sPvS+oT6NPzm/vP/nf4A/fX80/0n/v79B/66/Qj8bPm/9xb43Pn1+639lf6u/tX+xf+XAJ3/Iv25+8r8bf4U/jv8lvsj/QL/H/9k/SX74vmk+i/9c/8//838efrM+Sv6wfrC+xv9kv1a/Ez6j/hp9yf3ivj7+uT7yPnn9r72d/m++wT7J/jW9aj1Hfdu+FH4a/e398/5kfvD+m743fdX+nz9RP5T/Lr5c/jK+NH5ovow++X7iPwT/BD6wfdB92n57vyE/7f///0l/Hr7ufsN/JD8sf2H/ob9DPt0+fH5KPui+737Hvwn/In7lPsa/Yz+IP52/Cz7RPor+er4sPo7/T3+r/0e/ZX8Cfs/+SH5bvoP+5L6Tvow+tX4Fve49776lvxi+6T56/kB+7z6vPnF+Vz63flk+GP3dPd5+G76Uvzy+/D4dfZx9476QPyn+8D6pfqf+n76Ivt7/Fj9TP3h/PD7/fkI+Mz3/PiP+Rb5Yfkw+7j8evyJ+6r7zfzM/Tr+KP5S/e37MPu9+2P82PvX+g77dvxg/f78X/yx/Lf9YP4T/jH9u/yF/Tr/OQAp/6/86Prs+oX77Pot+Qb4jPjB+ez57vhp+JT5uftO/c/91f3C/VX9c/xs+2L6Xvna+Fn5Ofov+jn50/ic+SL6G/mr9/73Mvo//Kr8+/th+yz79vpp+pj5+vgP+Y/5Tvm19/311PUS9xX4Rfi3+BH6avv6+238fv1y/jT+F/1G/AT8vPtc+137l/s++xz6/fi8+Hv5yPr3+2j8GfzH+w78ovwA/Wz9T/7//lj+kPw3+x/7X/vb+tb5N/ki+R35Fflv+UX6Nvvo+zL8BPyP+1b7o/sP/P77gPsn+xz74vow+oP5hPkt+tn6BPvC+pb69vre+8X8GP3a/Jj8o/yB/LH7qvqM+pD7dvwI/Lj6E/qz+pD7ifvg+r36nPvI/ED9tPy1+xr7PPut+7r7V/s3+8z7h/yD/LT7+PoK+7/7cfy7/LP8r/zp/ET9Yv0Q/ZD8O/wM/MX7cvtf+4f7f/sO+4D6R/qQ+lD7Rvzo/LL83ftT+4/78fub+7T6Lfp0+v/6L/sI+936u/qE+jn6/vn4+Uv68Pp/+3n77Ppy+l76V/oW+vr5Wvq7+mf6lfko+Wb5vvnV+Qn6mvon+1T7ZPui+8f7i/tG+3L72fvu+6D7T/sf+/X61/rQ+oz6z/kc+Sj5wPn/+bL5pvlT+h77T/sb+x77Xvtw+0z7Qvtg+2r7TPsk++j6hvpN+sD61fvQ/BP9y/yi/PH8cP2U/TD9o/xq/Jj8vvx1/Nv7cfty+4T7Kvta+qD5lflJ+jn7yvvG+277Nvtl++P7SvxK/P77zfvf++v7ovsX+6L6f/q1+iv7kvuK+yH79/p++z/8Wfy0+yX7SPvH+/f7xvud+6v7qftP+8T6e/rI+ob7OfyD/Gz8OPwa/DL8nfw9/aX9jf1K/U79cP01/bv8rvwo/XL9Jv3h/EH90v2y/eX8RPw4/Er8A/yk+7n7W/wS/Ub9x/wU/P37sfxu/Vn9mfwW/D/8nvyy/Ij8XvxF/FD8qPwa/Rz9mfw6/G/8pfwf/C37z/pR+/f7G/zi+7771PsT/Fj8Yvz9+2z7O/t1+477UPs2+5X7+vvg+4X7efuz+7v7ePtB+yz7/vqt+n36ffp4+m36pfok+437lftT+wD7uPqU+pX6hfo8+gf6Ufru+jP7+Prb+lH75/vi+0L7s/qx+hr7gfuY+2z7V/uc+wP8CPyT+0X7q/ty/Lz8L/xb+wn7W/vK+9j7lPtx+6r7+vv/+7z7lvvT+1H8qvyR/Br8xvsZ/Of8R/2U/GH72Po++7X7kvtB+3v7IPx6/EP89fsB/Ef8Yfwi/Lf7aPtP+1f7bfuh+/T7IPzo+4H7aPu3+/376/u8+8P72Puo+1f7Z/v/+6v87fzQ/MT8//w3/Qj9hPwo/DT8Wfw1/PP7E/yr/D/9af1J/Tr9Y/2t/fH9Df4B/gz+Zv7Z/vD+nP5f/pX+9/4K/7b+Sf4Q/i/+oP4Z/yz/z/6a/hb/9P9nADcAAgBMALsAngADALD/CQB/AEsAif8S/2j/GwB5AGQASABtAKgAqgBrADcAXQDVADYBMAHwAOYAGAElAegAswC2ALkAlACOAM0A9QC3AGkAfgDMAN8AxwDlACoBJgHNAHsAVwA3ACMAPwBUAAgAk/+F/9P/x/8p/6X+yf43/0b//f7c/hf/bP+J/1D/3v6H/pD+xf6d/vz9c/13/cT9yP1j/e/8pPx4/F38V/xU/DL89fvF+7f7wfvI+7L7efs4+wz74fqV+jf6+vnU+YX5Cfm7+NT4GPk1+S35Hfnv+JP4Q/g6+EX4CPiJ9yH37/a+9nX2SPZX9nL2Vvb49Xf1A/XM9N/06/SV9PvzrfPj8yj0CvTN8+/zSvQ79KvzOvNZ87Xz3PPg8//zFvTj85bzmfPh8wH05PPl8yL0P/QK9O3zaPRI9d313vXL9TH28PZl91j3Rve493b43/jS+NT4Q/ne+Uf6lPoK+5v7CPxU/Ln8Qv3F/Tz+w/5g//b/bgDDAP8AUgHxAbgCMAMuAyADbwPuA0kElQQPBYoFqwWDBXcFsQUTBowGEQdzB5oHtQfwByAILQhdCM4IDwnRCIEIlgi2CF8I5gf6B3YIsQivCPcIcgmACS4JJQltCWkJHAk5CcUJ1gkwCcMIIQmSCWgJMAmdCUMKWwoBCs8JxAmOCWMJqgkYChAKpQlkCVsJKwnoCAEJVgk/CYgIwwdoB0QHAAeoBl0G+AVTBawEaAR+BGwEzwPZAgQCZAGjAKv/9P7X/sX+6/1c/AL7W/r0+Vj5uvhb+Ob3BPf29Rv1RvQq8w7yXfHV8NzvhO6B7RHtoeyw63DqT+lS6Dbn7uWv5Kvj4eIa4vvgV9983QLcLtu12iHaU9l92M3XN9ed1hjWDtbr1qTYntow3Fjdo95V4NrhXuLX4TLhVuEs4u/iR+O3497kmOZC6JTp6+q57ArvjvHb85713PYM+JP5MftZ/C79mv4KAawDYwUxBvUGDAjvCDgJSAm4Cb8KRwweDsoPxxBJESYSoxPVFN0UQBQ5FOMUFBUEFEcS2hDsDyMPXQ67DTsN1AynDJ0MGwy8CgkJ9AekB1MHfAZ6BecEwQSEBL0DYgK7ADr/Gf4a/dz7gPqV+UP57fgM+P/2hPbH9lD31Pdl+Pr4V/mA+b75APre+Xn5svnr+jv8o/yi/I39Y/+iAJgAmgAWAmsE+QWrBvEHTAp/DJoNYg7eD7AR6hKuE84URhZVF9IXVRgTGaIZ8Rl4GmUbWRw5HUoech8nIHAg+SDeIVUiDCLVIVMi2CJ1InMhwSB4IOkf2h6/Hd0cABwRGzYadRm8GB4YnhftFtkVvhTtExoT8RHQEBAQIw9dDT0LwQm7CC4HLwXiA4QD5gJjAdb/9v4s/uX8u/tL++z6x/lY+I73LfdS9g/1KfSp8+3y5/ES8VzwWO9h7jHuYu7B7UbsV+uZ69rr8uqF6enoF+nh6MDnXOZw5f7kxuS65MfkoeQY5HDjFeP94pjiiuFd4AjgteBw4ajhWuL05B7pu+xZ7r3ueu/Y8PLxUvJ68ujyVvMz82nygfFO8WzyxfR89435oPov+9z72Pzg/cX+1P+MAegDKgasB7MICQrGCx4Nbg37DHwMVwydDDENuQ3GDXcNkA2HDvMPTBG/EpwUXhYDF0cW7BTJEyoT/RIFE+sSehLdEUYRiBBiDxAOAg0rDCQL4Qm9CN0HDgdABp8FMQXdBNUESgXTBbgF7gQPBD8D7QHt/wv+Ev27/EH8b/uX+uH5Pfm8+HT4Lfi+94n3DPgM+b/56vk/+nH7MP2U/kn/7f8nAaMCXwMNA5AC4ALQA4YE3gSbBTEHMQkWC/AMzw5ZEHUR1hIOFYQXOhk6GmsbBB0bHgoehh3GHf8eKSA0IDQfPB42Hu0efB+XH/UfMyHQIsMj2yPQIyIkkSSrJFIkgCM/Iucg8x9SH3AeBh2AGz4aERm1F1gWPRVhFLUTOxOjEnUR+w9JD7oPJhBoD/EN1wzxCz8K5AclBmEFhATXAvcAgP8R/nH8cPuR+9L7Bvua+cj4l/gK+Ab3gvbY9ij3yfYr9tP1a/V/9E7zT/Jj8TDw6+4D7mftouya643qc+kM6JDmsOWg5Z/l1+R443jiW+LT4objw+T05rTp3+uP7MTrIupk6BPnZ+Yx5h/mKuaT5l/nO+gH6U7qsuz57//ytfQc9Sf1q/V/9s32X/ZC9pb39vnM+2L8sPyu/b3+o/6N/ev8j/0E/7sAtwLPBHcGrwdGCZcL3A1YD2QQiRFFErcRFRCSDuMN2Q0qDswOdg+uD4wPug9jEMgQUhB5DzAPqQ8nEP0PXA8ND2gP0Q9vD1YOdg0+DdsMXQsOCQQHrAWVBIwDDgNRA8cD5APEA60DewMFA6ICvwIxA2cDHgN4AqABrwDR/y7/vP5j/i7+If78/Xr9xvxx/Nf8y/3m/gUAXQERA9cENQYPB7EHSwipCLkI8wjQCfwKwwsdDJQMOA2KDZoNVA4iEBYSIROGEzIUOxUDFpAWqBd+GUkbYxwFHZUd4R2eHRAdrhxzHAMcXxv4GhgbkxsVHH8c3BwkHS0d4Rx9HGocrxzUHHQc0BtOG9Ma/Rn2GFUYJRi5F6IWMxW3E/8RHhDUDpIOpA4sDlsN1wx/DMkLBQvrChYLTApyCMMGzgWuBOMCdwEzAQMBjP92/Xn8qfxv/BT7ofny+H/4mfec9iP2/vXA9Yb1ffVI9Zf03fOd83PzkPLe8PTuIO1M653pZ+iM56Xm1eXB5XHmAefP5mjmsuaE58znIOd35u3mOOj16IvoDejY6MDqPOxL7HXrzeqe6oDqSupR6uDq0uvV7MPts+7b717xNPM09Rb3Y/i4+GH4WPgy+VH61/oW+yD8+/1+/yEAvQDvAQYDTQNRA98DrwQ8BRgG+wcYCggLCwu3C3YN/Q52D6gPSxCxEP0Ppg7LDbAN0w3vDR4OVw5mDk8OJw7YDVENxQxtDD8MGgzvC6sLSQv8CvMK6Ap4CtAJWQnHCHAHqgW5BPYEEgX9A4AC8AEkAvEBKAHEAC4BlwFSAb4AbgBLAAYAyv/q/y0AHwDW/+j/fwADAeQAcwBtAN4AGgHmAP4ABgJ0A0wEhgToBLkFkQZqB8gIhwqwC+wLMgxCDXcO6A7SDhYPyg9lENcQehE9EssSNxO6ExUUHBR9FNoVeRcCGIoXhBd7GF4ZShneGAMZfhmXGUYZ/BjEGGkY/xetF04X0RaCFn4WWBa9FRQV2hTVFH0UxxP/EjwSexHnEHQQpA9RDh0NfwzwC9QKqwlGCVMJyQiFB00GYgVeBGsDKgNKA6ACDAHT/4n/Mv8a/i79Tf2I/Yv8zvrc+fv5Gfqp+QP5Kvi+9kL11PRk9Y31qPSz85bzyPN78wjzM/PG8+LzMvP98YLwFu9f7oHufu5u7fbrgOsw7L3sd+wc7Grs4+zG7FnsZuz/7JztDO5z7qvugu587lvvu/Aw8Srw+u4X7y/wwPBQ8PXvn/De8bzyJvPR8y718fZi+OP4e/gN+J74Hfpf+7D7vvtk/FD9s/2+/U/+af8/AKwAUAEsAoECYALwAokE4wUfBksGpQeFCW8KbwrGCp8L4AsrC3gKcAqkCrQK7gpJCw4LMAq9CUUK0gppCpkJgQkCChAKZAm7CJwIywjnCNYIjwgjCNkHwQdyB7QGEwYOBigGkwV/BL4DZwMLA+wCnwOBBCgErALoAaYCRQNhAj8B1QF+A+MDmgK1AWICRgP1AjkCkQK+A1MEBwTZAzsEkgSbBP0EAAbYBuEGtQZMB34IUgmACbEJQAqnCoMKWQrBCm8LxgvrC2sMEw0nDcAM3QzODZkOiQ5fDg0PCxAZEEMP5Q6nD6IQxBA3EM4Pxg+1D2MPEw8XD0MPGQ9qDqsNew3BDcINOQ3DDMsMvAzzCwIL5wppC0sLKgrsCEAIzAcpB6oGlAZxBssF3QQXBHQDyAIrArIBRgH2AOYAyAAbACP/qP6o/lX+pv2K/Q/+1f04/Kj6hPr8+pr6yvn1+dD6ovod+eP3DfjJ+Pb4tfij+J/4JvhV99n2KPf99234q/f49Z/0evT29CD1C/Us9QT1vvPp8Qbxg/F28nHz4fR/9gn3KvZE9Yz1jvZQ97r3+/ej92b2C/WT9PT0cPWy9cr1rPVi9Uf1lPUB9mP2D/c2+Gr5O/q++gX74vqU+u76Lvxu/en95v3V/Wz9nPxi/If9Rv9BAFMAPAA7ABoALQAAATsCFQONA0EEMAXnBYQGcgdHCCgIQAekBroG4gayBnQGPAa1BQUF0wQlBVQFOQVlBd4F3QUeBWsEYQSeBKwEugTuBOwElQReBGkEJgRdA6wCZALmAdoAAgD7/xcAhv/J/t/+iP+y/0v/SP/v/2cALADL/9X/9P+o/zD/JP+C/83/4P8WAJUA4QB2AIT/0v4I/xYAWQEVAuwBMgHLAGoBvgLYA1wEvgQvBSwFkgRPBBkFLAZaBtMFnQXdBfcFFwbuBvgHzwePBg4GGQdCCEUI8QdfCNkIOghJB7cHXQlOCpcJRQioB9oHPwheCPYHKQetBhcH2gfJB7MGpQVkBZYFxwU6BiAHwwc+B74FUgTDAwsE0QS6BTQGnQX2Aw8CzQBuALoAfwFoArICwQEKAMT+lP4r/xgAKwGxAZUA7P2N+0H73/zf/gAAr//e/aX7BvuL/BD+bv19+4X6rPp4+i/6d/uJ/S79xvkg9374Mfww/hX9cPrf9zb2TPZF+KH6qfs3++35/vcl9jj2mPiC+l/5tfb99Xr3QvhC97j2GfiS+RX5effa9n73GfgS+PT3C/jZ9+L2hPXy9EX2Fvk7+9X6ffiH9i32wfZ+95z4Fvrc+iT6qfjU9zL4Uflw+uT6dPq6+ZX5Cvpv+pv6A/ub+7n7Yfty+yT8mPxx/H/8J/14/dP8PvzN/ND97/1j/YH9gP4w/97+Pf40/r7+Qv9m/0T/O/+T/xIALQDW/6//KADBAMkAXwAKANT/b/8G/xb/pv9JAK4AtgBLAJv/Lv9A/3P/lv8DALcAxgDP/wL/jv+8AAYBjwDMAOgBbQKpAbQAhAChAGcAOwCbACkBegHDARYC7QErAasA/gCXAe4BWAL+AgsDFAIzAY4BrgJuA7QD5QOcA34CmAEnAm4DmAOTAgsCpAIfA70CfAIsA9IDKgOiAdEAhAEZA1IEWARVA0wC9gH+AfcBjQJFBIwFGwSRAG3+iv/dAdoC0QIXA/ECDgHN/tv+CgF7AvsBcgExAqUCJgHu/lr+if+hAL8AxgBHAUEBov81/SH8Zf14/wkA7P4c/rD+8v4D/VL6Z/or/lkCQAODAGT85/gJ97H3avvdAJoERQPD/EL1XPIT9tz8hwFIAoQAFf3395bzUvSx+gsBwgGm/ab5Hvjf92T4svrn/b7+wPt692L1cvZ5+aj83/2v+4r3RvXz9mj6OfzB+8X6Rfqe+XL4uPd0+F/6Gfxe/Ab7MvlI+KD4ZfnO+er5F/pS+lH6Bvqz+cL5YvoD+6D6SvnB+Fr6ufwv/VH7d/lp+Wn6Mfv6+0L9Cf4E/dL6j/li+oX8Yf7U/sH9IfxQ+8/77vzn/ZL+xf4Y/vf8yfwl/o3/MP9T/QT8n/xs/qr/Xf8g/mb9yP1e/kb+O/5Y/6QAAACq/Zv8VP6DAHIAyv7t/Tj+Rv7p/VD+kP9XAPX/+/4O/oD9wv2o/vT+Lf4T/hcATQKVAW7+hvxs/d7+Fv9l//MA/AGFAM/9ifwi/S7+Sf/tACUCHgE9/mD8Wf29//EARwAf/8T+K/+T/6T/jf9h/9P+8v2p/bH+PACeAGj/Df7r/Yr+if6u/TL9Ov6TAMkCHwPaAAb99/mS+ff7sv+/AnwDdgEB/mH76voo/Pv9xf8PAQ0BX//0/E/7IftC/GH+wgDSAV8AR/3c+oH6wvvY/WMAIQLVAEv8Lvi3+Hr9rAHcAUz/1/wG+zb5rfhJ+4T/GwFv/sD63Pmw+6n9fv5x/lL98fr1+M35XP2SAM8ARP6++rX3Svba99T8AAMeBjcDrvud9J3yEvbq+xwBIgSjA4/+wPZr8ZjyG/k2ACwEywNT/5P4WvMg89X3TP4oAzUEaQBT+aPzc/P/9yj9gwA8AuYBQP6D+Jr09PR6+Nb8JACZAMP9evoO+kz7cPop+GL5uP70ASf/n/rM+Sn7k/pc+X37eP8bADX9tPtF/SP+ZvxO+yP9Gv9J/ov8Bv3r/iv/Uv2d+3z7nvxz/lwAEwG8/0b9bvu2+pf6GPvh/N//qQJsA0QBSP0t+hT6ePwR/58AgQGTAbL/LPzU+eL6DP5eAPwADAHdAGH/p/zM+nT7vv2x/40ArADX/4T9u/oR+uX8XQEyBOkDTAF6/T/5dfbB92n9qQP+BacDk/9l/G/6i/mW+vL9yAFqAxMCZP8t/bn7bvqc+bn6ev4HAwUFxgL//eD5Rvhl+Qb9FQJwBZ4DBf2v9nP1NvlT/iwCWQQ5BKgA5voD97f3iPt2/4ACegSBA1L+FPjq9Wf4TPuE/N7+zgPoBogD4/se9qv0/fWi+QUA6QUdBr4Ac/tr+W/4bPfQ+cgAfAb9BIz+B/rB+eL6rPvs/Ar+Kf1c+xz8tv8xAtEALP3s+dX3P/dP+cD9vwG4ArAAC/0a+e723fg9/o0COALM/oD8kfyG/Lj66Pi2+fP8yP/s/7/9Tvss+r/62vy//5kBcQB0/FT4tPYX+Nj7PwEmBpAGgACV90ryoPNv+UAAywWtB6MD/Ppp8yPyOPfH/gwFywedBen+Qfd886b1o/u2ATQF6gTPALf6Zfbx9o/7FwCdASgBswAx/5r6TfUQ9VP7VgKDBAMDsQEBAFn7MvZt9oL8VwLjAzcDSwL+/tD4PPUC+XgA8wPQAez+Uv7m/cT7CPo7+1X+hADyAKUAAABy/mD8lvsu/cj/zgB3/3v9jvxM/Nr7NvzL/kQCWwP+AIX9ePtm+wv99f9TAvMBZf+U/Zz91P2t/bD+dQAJAGT94PwYADECc///+2/9gwHnAXX+Y/zR/An8O/qe/OoDEQm9BgsAafqs9qD0m/c0AdoKhwv0Ao/5qvX79Uv3JfoQAKQGCgmJBRn/wPlT97X3QPrT/dsArwIEBMgEsgKb/Ff2qPWi+hb/Nf9y/rYAHwOoABv7F/k//KH/5P/s/m3+/vyk+s/6yf6tAukC4gBG/6H9DPuK+Qf7vP0z/xwApwHqAef+z/pA+RL68PoW/CT/mwIlA8UArv4m/lj9M/s8+VL5GPz+AKkFcAYzAm78C/kv+Mr4Fvz6AUkFvQGQ+zz6Qf3o/Vf7uPtNAFEC4/6Q/LD/+wEh/V721PZ5/eUBugGpAdoC+wA++972Ffdx+br7Df8WA3cEQwKx/xT+Afvj9iL3jv2FA/4Cif/t/5QCLABE+C3zLPa8/HoABQJTBfIIywZE/evyjO9Q9HD8eAP6ByMJewXQ/cn24PSb9zL76/38AGkEjwXuAof+5vp1+Er3Dvlx/pkEuAcGB+8DFf8a+Sr1xfbS/CkCtAMzA/YCCALH/vn6SfpA/WUAxwA9/z/+YP6J/tL+mwB7A24EnAE3/Zj6Bfro+fr6af/DBcEIswXk/7r7o/k5+Hz4VPyVAp4H7wgOBpr/Gfjx83j1c/q3/9QELQnkCBACafpF+Sf9Ov7x+vz5QP6NAYH/r/1rAjsJeQhO/0X2TvOh9Kf3if1kBk8NzAzPBAb6YvEb7tLxtPuUB4QPQw/XBrn6OPGh7kXzmvwHB0UOZA7oBkL8afRT8oP1GPw0AwcHpQVyAVP+Mf2m/Jn8wP2Z/iv9evvP/d8DBAhPBnIA5/nb9C30mvr6BIwK/gbL/8X7Zfqa+Mn4Yf4TBUAFov8S/B39jf09+xz7jP8xA9MB6f5U/oL9/fmM+A7+zwVGB4MCkP5v/a/6//X49av9tQaUCbMGIAOHAPL8Nfhc9e72J/zsAWMFxwU2BMYBpv6V+3v6x/tj/WX+NgFnBm4IMwJp+Gv1lfutAkIEMAOnAwkDjP3k9kL2JfxrAicFgQV2BLQABPsT+Ar7EwG5BCEE0wE8ANn+cPxR+kf7fP9wAxMEYwJUAW8BqgDr/bb6j/n2+ysBsAWvBc4BVP8DAe0C5ACt/Sz+nAC+/9j87v1xAjAD+P5f/bAB5gTyAbT+bQFDBUQC6foN+Fn7F/8AAdoDagezB3sEAwJmATr/0Ppd+Fz6cP5HAkEGVgnbBxIB1/nj9r33uPnm/MECowm8DO8IXgCi+Kv18Pbf+cX9IQPZBwAIiQMk/7b9Dv1u+5D7S/+8AqQBEf6P/DL9yf2q/7QEKwmMB+4ADPvC92311vV3/EgGrQvkCsYIwAb1ANX3ffJb9KL4mPskAKUHRgyfCRcESQEU/1z5mfN19FD7xgGIBSEJZQxvC2kFRv4L+bD1+PQD+bcAMQdxCRUJ5AeEBO/9G/do9K/2OfuS/2IDxwbLCEIIcgXVAWX+Lvvi+G/5hv2WAkgFjQXNBSoG1QMY/t34J/g8+4L+eQBNApoEPAb4Ba8DJADF/DL7E/yi/uQBZgVECOEIhwZHArL94vk5+PX5Rv6PAocFEQgoCn8J8gQJ/xf70vl++jb9wQEpBucIsQrJC+kJ+gOq/W37k/xL/U/92f9IBa0Jggp0CSgISwUJAA/7Uvl3+s/8sgDoBjkNzQ+MDckIvAPL/nb6tvgM+2cAHAZbCrgMyAytCbQDUf1i+bz4SPpF/fcB0QeDDP0NNww2CJgCcvxQ+Hn4evz/AXYHPgzsDrENuAg/Ag78q/Yz88bzDfnhAGII6Q1RECwOjAdY/xf58PUn9cf2z/uhAx4LFg/CDj0LmAWR/sn30/NZ9KX4k/5mBCAJigt0ClIGfwEc/l/8p/sb/Bz+5wAuA6UErgXUBTkEeQFm/7L+X/7X/e39Cf/1/5b/rv6c/lr/7/8tAKEAHAG2AD7/gv06/G/7Jfu5+z39A/86AK4AuACrAGoAiP/B/Yf75/mv+a/6Bvwq/VX+1P8gAS4Bnf9W/Z37vvo7+gH6vfqs/AD/zgD7AZUCNALDAEz/2/4R/9L+Jf4s/kb/gQABAeEAhwAKAIH/F/+q/hX+5P26/hIAvwCkAMMAcAHiAeABRgJbAxkE5wOeA+0DEwRfA5QCkgKpAs4BkgBLAOwAVgFMAXsB1wGKAZEA4v/g/wUANQApASkDaQUgBzYIkwiuB3sF9QIsAU8AKADdAIECVwRPBRcFOgQ/AysC2wCM/9H+If9uAD4CCwSfBfUGBAihCJ8I8gfMBpcFpATmAy4DoAKVAgYDggPJAwAELAT+A1oDiwK/AdQAAAAEAEQBGQOtBOgFBAe3B4sHogZzBSsEAAObAmADmQRMBYMF2QUDBhgFNwOgAfcAqwBfALoAJQLPA7sE9QTzBIEEOgOlAdEAAQGUATICKwOWBMUF+gU8BRUE3gKjAY8AEQBsAGgBiAJ0AwcEFQRfA+0BJgCG/k/9rPzN/LD98v4QALkAxgAtAC7/T/7Y/Y39Rf1l/T7+Uf/H/4b/KP/d/jf+D/3u+0n79/qz+qD63foe+xj77vrC+lD6aPmD+E/4zvh5+RX62vrP+4b8o/xD/LT7Gvua+nr66fql+zr8evx+/ED8iPtU+hH5Pvj09wL4U/gA+QX6IfsJ/IP8efwf/O37I/yD/Lj88/yk/bT+kv8FAFUAiAA1AFb/iv4w/un9dP1T/en9tP4a/2//RAAxAVQBvwBgAJAAxADBAAsB8gECA7MDBAQaBOcDfQMmA/cCugJ0AnECwAIfA38DBQR3BGME4AOCA10D9gJZAlECNQNABK4EqwStBJAEDgR1Az0DWQOKA+0DmwQwBVYFWQWMBYsF4ATuA3cDcwNQAwsDMQPIAysECgTMA8QDuQODA2gDogPwAxUEMwRzBKIEggQuBOkDwgOvA80DMgSjBM8EtASHBFQE6AM8A5oCTwJWAoACxQJIA/gDeQSEBDMEzgN2AysDBwMoA3cDxwMXBHMEqQR4BP0DmwN0A1IDLgNDA5kD1gPAA34DLAOnAu8BWwEMAa4AEACX/6b/AAAvADAAVwCrAOcA9wD+AAYBCQEZASYB4gA5AJn/W/8u/6P+8f2b/X/9FP1R/Kr7LfuF+sn5i/nl+Uj6d/rm+tD7p/zn/Mz8yvzT/KH8T/wc/Pv70/vZ+yP8QfzO+xj7svqN+iX6aPnT+Kr4r/iv+Mv4IPmG+d75Pfqs+gb7Rvuh+yz8pvzY/OH88vwA/eH8j/wo/MX7ePtV+1T7Tvsx+x37LftG+0z7YPuu+yL8ifzn/HH9I/7A/iv/hf/f/wwA8v+8/6b/qv+b/3L/S/8u/wv/3P6t/nn+O/4O/hr+T/5//q7+GP/Z/8MAoAFmAhMDigOzA6UDhANRAwsD1ALZAg4DOgM+AyUD+gKxAkUCzQFsAS0BEAEhAW0B7QGHAh4DpwMdBHMElQSKBHwEjASzBNwEDwVfBbAFzwW1BYUFQgXLBDEEvgOOA2gDIwP5AhwDSQMpA94C1QIWA04DZQOoAzEEsATlBPYEFgUqBQgFxwSZBHMENwT7A+sDAgQZBCYELAQYBOMDugPMA/8DHAQmBE0EkwTDBMAEmwRhBBAEtwN3A08DKwMbA0QDlAO8A5UDUAMiA/oCtgJvAlsCggK9AvcCMwNzA60D3wMBBPcDrgNHA/UCygKvApECcAJDAv4BpgFOAfEAfAD2/4//Yf9T/0D/Pv90/8j/7//T/7H/vP/L/6L/YP9Y/5H/wf/H/87/6P/Z/37/HP/5/vT+wP5k/iP+Cv7l/aD9Wv0e/dz8ofyN/Jr8ofyt/OP8MP1Q/UH9R/1v/X79Yv1h/Zv90v3d/fD9Nf5v/l/+PP5S/n3+Zf4Q/tX90/3W/bT9eP0y/ef8s/yu/MT82PwA/V/94P1M/p3+7/48/2P/cP+G/6P/sP/G/wkAYACGAHsAdQB1AEEA2f+B/1v/Pv8a/x3/Wv+a/77/7f9BAIwAnQCeAMwAGAFJAVwBgAHGAQ8CPgJLAkQCOQI2AjICGQL2AesBAQIbAiQCKAIyAjsCRwJlAoYCiAJ1AoQCwgL5Ag0DKQNlA44DgANxA58D6QMJBAkEJARSBFcEKgQCBPADzQOHA04DQANHA0cDVQODA8AD9QMdBDcEMgQSBPMD4wPUA8cD2wMZBFoEdQR2BH4EhQRlBBgEyAOgA6MDrwOiA4ADawNzA4EDdwNcA1QDZQNvA1oDNwMeAxEDCQMGAwID8wLhAuYCAwMXAwoD8QLsAvEC4AK+Ap8ChgJhAjkCLwJBAkcCIwLsAcYBswGcAXwBYQFSAUEBIQEDAQYBLgFVAVUBMwEOAe8AvgByADIAIgA1AD4ALwAYAAAA4v/A/6r/l/9u/zH/CP8H/xD/Bv/t/uD+3v7S/q7+df41/v/94v3Z/dz98P0a/kn+WP5A/iD+D/4C/ur90P3A/bX9qv2w/cf9zv2u/Yn9hv2X/ZX9gf2I/bL92v3k/dz90f2+/Zz9eP1X/TH9EP0N/S39T/1g/XX9pP3V/ef93v3f/fj9Hv5G/mz+jf6g/qz+vP7N/s3+uf6r/rT+yf7U/s/+yf7K/sT+q/6J/nP+eP6R/rv+9P4y/2b/k//K/wQAIQAUAAUAIwBkAJgArwDHAPUAJAE5ATYBKwEaAQkBAwEJAQ4BDQEVAS8BRgFHATYBKQEqAToBWQGEAbYB8QE7AoICpwKiApYCnwKsAqQCkAKRAqcCuAK7ArsCugKxAqEClgKUApICmAK2AuYCDAMcAygDQgNaA1sDQgMcA/gC4gLiAu4C9wL6AgUDGAMdAwYD5ALTAs4CvwKhAogCgwKOApwCqQK0AroCvQLEAswCxgKqAoMCZwJcAlICQwIzAikCHgIKAu4BzQGoAXwBVwFGAUUBQgE3ASwBKgElARAB9gDoAOIA0QCwAJYAmgCwALcAnAByAFIAOQAXAOr/wf+j/4b/Zv9R/0z/Rv8w/xf/C/8B/+b+xv67/rv+pf57/mf+ff6P/nb+Rf4o/h3+B/7g/cT9wf3H/cf9x/3I/b79pf2L/XX9Y/1T/U39T/1M/UL9PP07/Tz9Pf1L/WT9dv15/Xr9iP2Z/aD9nP2Y/Zf9kv2I/Xv9dP1y/XD9aP1e/Vf9Vf1S/VH9X/1//Z/9sf3D/eX9Df4l/i/+P/5a/mv+b/5+/p7+uf6//r7+vv6s/n7+S/4v/ib+Hf4k/lD+kf64/r7+wP7U/uj+7/74/hb/PP9S/13/dv+o/9v/9//9////CgAUABAABQAHACAAPABKAE4AWwBxAIAAegBpAGAAZQBuAHIAbwBuAHcAiQCaAKgAuADIAM0AxQDBANIA6gD2APkABAEaASsBLgEqASIBEAHzAN0A2wDmAPEA+gAFAQ4BEAERARYBEQH4ANYAwwDJAN0A9AAIAREBCAHvANQAvAChAIAAZABbAGEAawB2AIUAigB4AFIAMgAnACgAKAAqADsAUwBdAFQARwA9ACoA///J/6L/lf+T/43/gf9z/2X/UP8r//b+u/6L/nT+d/6L/qb+vv7J/sf+wP62/qL+g/5n/lj+U/5R/k/+Sv41/gv+2v2u/YL9Uf0t/Sf9Mv0v/Rz9FP0a/RD96/zG/Lr8vfy5/LL8u/zM/NH8y/zE/Ln8l/xn/Er8Tvxb/F38Wfxc/F38TPwu/BL8/vvv++j78PsD/Br8NfxY/HH8b/xY/EL8OPwy/C78NfxG/Ff8Y/x0/Ib8gPxZ/Cj8DPwG/Aj8E/ww/FT8avxz/IT8ofy6/MX8y/zY/Oj8/vwk/Vr9if2h/av9t/28/a79lv2M/Zj9rf3C/dn97v37/f79//0E/gr+EP4a/if+N/5M/mn+hP6W/qH+sv7L/ub+A/8n/0n/Wf9V/1P/W/9j/1z/Tf9H/07/Wv9j/2v/cv91/3P/cP9u/2z/bP9y/3j/ef98/4z/qv/C/8P/sP+V/4P/gP+O/6H/rf+w/7T/v//H/8X/wf/I/9b/2//Q/8T/xP/K/8v/wv+z/6D/jv+C/3v/bP9T/z//Pv9J/1L/Vf9a/2T/a/9w/3f/fv97/3D/Z/9k/13/Tf88/zP/K/8c/wb/8/7l/tv+1f7H/qb+ev5Y/kz+Qf4p/hP+F/4w/j/+NP4Z/vr91v21/aP9o/2k/Z79nv2m/aL9g/1c/T79JP37/NH8wPzJ/M38u/yl/KD8pfyc/ID8X/xE/DL8KPwk/Cb8KPwl/Br8C/z7++374/vY+8z7wvvC+8n7zvvK+737sPun+6T7n/uU+4j7gPt7+3L7Zfth+2v7c/tm+0n7M/ss+yj7Ifsk+zf7S/tP+0v7UPti+3T7iPui+7770vve++r79/v4++r74fvr+/n7+fvt++r78Pvs+9b7wfu++8b7zfvQ+977+vsc/Df8S/xh/Hz8kvye/Kb8svzD/Nz8/vwo/Uv9Wv1e/WT9bP1h/T/9IP0a/SX9KP0i/Sb9N/1F/UD9M/0t/TP9Qf1Q/V/9av1z/Yf9qf3P/er9+P3+/f/9+/37/QL+Cf4N/hH+G/4r/jP+MP4k/hH+/f3u/ef95P3h/eX98/0H/hP+GP4c/iL+I/4Y/gv+Cf4U/ib+N/5E/lD+Wv5g/lz+Tv49/i7+J/4n/jH+Qv5O/kj+L/4U/v796v3S/bv9rf2k/Zv9k/2Q/Yz9g/15/Xr9fv14/Wj9Yv1v/YD9g/1+/YP9kP2S/X79Yv1O/T79KP0L/ff87fzj/Mv8rfyS/Hv8Xfw4/Bf8CPwH/Av8Cvz/++f7yfux+677uPu8+7b7svu4+7v7qfuK+3L7Z/td+0z7QvtI+077Qfss+yH7G/sC+9b6s/qt+q76nPqD+n36hvqA+l/6Pvox+iv6GfoF+gj6Ivo4+j36PvpF+kb6OPoq+ir6Nfo++kT6UPpg+mX6X/pX+lT6S/o5+iv6Kvos+iX6Hfoj+jb6QPo3+ir6K/o3+kH6Svpe+n76ofq7+s/64Prp+uf65/r7+iP7Tvtr+3z7jPub+5/7lfuL+4v7k/ua+6H7rPu8+8774/v5+wv8EPwM/A38Hfw3/E/8YPxz/JD8tPzQ/N382/zY/N787fz+/A39Gv0n/TP9Pf1K/Vn9YP1a/VH9Uv1b/Vz9V/1f/Xn9j/2L/Xr9eP2P/ar9u/3L/eX9AP4N/hD+Fv4i/ij+Jf4l/jH+Qf5C/jX+Kf4s/jj+PP4w/hz+Dv4H/gT+Bv4O/hT+Ef4K/g3+Gv4f/hT+B/4I/hT+Hv4k/iz+NP4v/h/+FP4W/hT+BP7t/dn9yf23/aj9pf2k/ZL9bv1I/TH9Jf0Y/Qj9+fzr/Nn8wvys/Jj8h/x6/Hf8e/x5/Gf8SPwp/A388vvY+8n7xfvA+7H7nvuO+4L7cftX+zj7GvsB++n60fq6+qn6nvqQ+nT6Svoi+gn6+vnr+d351vnW+df52vng+eD50Pm5+a/5tPm3+a35pfmp+a75o/mM+Xz5c/ln+VP5QPk1+Sr5HPkR+Qr5//jx+PH4Bvkh+Sz5Ivka+SP5Mvk4+Tf5QPlW+Wz5e/mJ+Zb5mfmT+Y75lfme+Zv5lPmY+ab5qPmd+Z75uvng+fD56fni+ev5+Pn++QT6Gfo8+l76d/qR+rL61vr0+g77LPtQ+3H7ivum+8v7+Psg/EH8Xvxx/Hb8cfxw/H78lvyw/Mn83Pzu/AT9HP0s/TX9T/2K/df9EP4t/kj+c/6f/r3+0/7t/gf/Hv8+/2b/e/9x/2f/ff+g/6L/hf92/4j/nP+e/6P/vv/Y/9v/1//p/wQACAD7//z/FgAwADEAJwAkACUAHQAMAAAA/f///wEAAQAAAP3/7P/C/4f/WP9I/z7/Hv/1/uj+9f7t/rv+if56/nj+Xf4v/hL+Bf7t/cz9vf3B/bf9kv1v/WT9XP07/Qf92vy9/Kr8mvyM/Hj8Wfw7/Cf8Dvzi+7P7lvuJ+3f7Wvs9+yf7EPvz+tT6rvp8+kr6J/oQ+vX5z/mq+Yn5ZvlA+R/5Afna+Kz4i/h/+Hf4X/g/+CT4D/j89+j3y/eg9273UfdN90r3LfcE9+T2yvae9mX2N/Yd9gj29fX09QP2Avbl9cf1vPW29Zr1evV29Y31pfWz9cn16/UC9gP2BfYW9ib2JfYn9kv2hPar9rX2wfbd9vH27/bv9g33Qfdw95735vdA+If4rfjX+B/5cfmv+eT5J/p3+sD6Bvta+7j7A/w5/HH8uvz//DL9X/2d/en9Nf57/sD+A/9I/5P/3/8fAFQAjQDVACEBaAGnAeEBFwJTApsC5AIbA0MDcAOjA8cD1wPmA/8DFAQmBEUEcASEBHYEZwRsBG0EVAQ/BEgEWQROBDwERgRdBFsERwRLBFsETQQnBBIEEQT5A8sDvAPXA+ADtAOAA2wDVgMVA8MCkwKGAnUCVwI+AioCCwLhAbYBhgFKARIB9ADsAOgA4QDUALkAkABoAD4AAgC2/3j/Wf85//v+s/6A/lX+Ff7F/Xv9MP3P/Gf8F/zb+5T7Q/sA+8X6bfrx+XT5Efmy+Ej45PeZ91T3+vaI9gv2hPXx9Fr00fNT89DyQ/K98Urx3/Bf8MfvK++c7g7uau3C7Dvs5eul62LrIuvs6rXqcOoh6tHpf+k76SbpSel86Z7puunl6QvqFeoV6i7qWuqD6rXqC+tx68LrAOxV7L3sD+1M7aXtLu687j7v2e+i8G7xG/LC8oPzRvTv9KT1k/aj9534g/l1+mj7L/zW/I79X/4h/83/jABoASsCvAI+A84DSwShBPoEgwUfBpoG+gZnB98HNQhcCHUIlwi4CNAI7ggdCVUJhwmpCbIJmgloCScJ3AiQCFoIQggvCA0I5QfDB44HKQesBkQG9QWjBVQFJQUMBd0EkwRfBFAEOAT9A80DygPKA58DagNgA3EDagNTA2IDiwOPA2sDawOuA/QDBwQRBEwEkwSgBIYEmgT0BFIFiQXFBS0GkQazBqQGpQa8BsMGwwbrBjkHagdpB24Hmge0B5MHbweDB54Hegc2Bx4HHQfgBnUGNwYmBuEFWQXzBM0EgATWAzoD9wKwAgICOAHFAHMAxv/n/mH+Jf6q/eX8Uvz++1z7Pfoo+XT4wfe99sT1MvW99PLz8fIP8i/xEvDq7g/uYO2L7LLrKuvO6i7qVOmr6ELovecS55rmY+YS5onlGuXh5Ijk8ON+43fjjONq40LjauO/4+jj4OPf4/Dj/uMc5Gnk3+R15UfmU+dT6BLptulm6vvqUuuq61DsJu3p7bHuuO/T8KXxMvLM8oPzI/St9GP1TfYx9wT4+fgM+gP72fvP/Oz96v65/6AAswGeAjEDtgNwBC4FsgUfBrUGYQftB2MI3Qg4CUgJNQlICXYJhgl9CZ0J+QlhCqcK0QruCvwK/gr2CtgKoAptClsKXgpYCkQKLgoTCtsJhgkbCaMIKwjDB18H4wZgBggG3QWiBT8F8ATgBNwErARoBDwEDgS+A3oDcANwA0IDIQNkA9oDAgTMA58DqgO0A5sDjAOhA7wD4QM0BJgEwwTMBB0FvwU6BloGgQb1BmMHdAdoB58HAgg8CF4IrwgiCWcJewmlCQMKXQqHCpsKxQoFCzwLTQtHC2cLzAs5DFAMGQzxC/ILxwtBC68KXQoqCuIJmwloCRQJiggWCOEHlwf7Bm0GRwYwBrEFBwWzBIsECARKA9gClALfAcUA+v+R/9b+jv1m/Lr78/qb+Tb4Wve59s31yfQi9KXz3PLh8RfxYPBb7zjud+0D7Vnsceu46j3qkemK6G/nZuY55d/joOKQ4XTgS99s3vzdpd0p3cLcrdzH3M3cv9zB3NzcDt1m3efddN4I38Hfn+Bz4R7it+JS49zjRuSj5AXla+Xq5ajmo+et6LXp4eo77Iztqe6o77Tw4PEu86T0M/bE92P5Kfv4/IT+xP/1ADsCbgN2BHIFbAZBB/kH1QjcCbcKSwv8CwcNCA6ODtYOYw8jEJ8QzRAYEagRKxJ4EsgSPROdE8ET1BPwE94TeBP2EpQSOxK/ETwR7xDNEJYQLxCtDxkPYA6LDbsMAwxUC6sKIwrICX4JHwmjCCoIygd1BwEHaAbWBXMFLwXcBHcEKQQJBPkD2QOmA2kDIwPgAq4ChwJRAhsCEgI8AmACXwJnAqgCCgNbA6MDBQRwBMAEAgVbBbwFAQZLBt0GpwdNCLQIHQmpCRsKRApQCnwKwwoLC1kLuQsSDFMMlQziDB0NNA1JDXUNnQ2uDcEN4Q3tDeEN8Q0gDiMO6Q3LDfAN7g17DfUMvAx1DLELygpXCh0KewmfCEMISAjFB5YGlwUcBWAE/gLEAVYBEQEtABb/fv4E/t78U/tG+q35v/ht93D25fUP9a3zZPKH8ZbwRO8W7nHt4+zk67Xqyen36M3nXuYO5e3jyuKu4crgEuBd37DeId6P3dDcANxe2/fax9rq2njbR9wa3dzdk94j33Lfmt/V30jg/uDy4f7i7uO55HvlLeam5gPnpueo6Kvpd+pX64/s3O3p7ufvQfH08qf0Qfbm95H5Ivum/Dj+uP8EAUcCqwP+BA4GGAdtCNUJ6wrVC/QMEg6fDrUOAw/AD2gQ0BB9EawSyhNTFJAU8xRMFTkV9RT6FEEVZRVXFVQVYhVNFRoV6hSnFCcUhRP4EnMSyBEOEX4QERCWDxAPlg4DDisNQgyVCw0LWgqICeUIbAjTBxAHagbtBWgF5QSjBI0EOgSbAxYD0AJ1AtsBYwFkAZ8BswGnAb4B9gEQAvgBzgG0AbwB6wEqAmcCwwJrAzcEzAQfBYQFDgZuBpEG4AaXB14I5ghsCTkKAgtkC4oL6QuIDBANbg3aDVwOyQ4TD1IPiw+/DxMQixDoEAQRGBFLEVoRERHGEM8Q8RDMEJAQmRCuEGEQ2A+JD1gP0A4JDogNPw2mDL8LFQu0Cg0KDQk6CKsHygaEBYEE7gMMA4YBHABR/3v+/vxt+476//nz+J73qPbY9XL0nvIw8UHwJO+/7b3sTuzD66vqX+k/6BrnwOVx5Gbjd+KB4aDg0t/X3qfdidyh287aE9qg2WLZENmt2H7Ybtgp2NPX/9fM2LjZgNqA2+rcQt4b367fW+AN4YrhAuLE4tHjBuVm5uPnPulV6kvrLOzU7GbtXe7c73bx+vLP9Bn3MPmU+sL7av1j/xkBowJ+BJIGSwiOCbsK5wvTDKINwQ4rEGwRbBJ2E24U3RTVFPkUeBXTFeQVRBZBFz8YrRjhGF8Z3Bm8GSAZsRiXGGIY7BeZF6IXthdwF9IWGhZcFYIUfhNoEnMRuhAWEEYPSg5lDbEM9wshC3MKGgrMCS0JWwikB/EG+wXoBDIE9QPSA5IDaANqA0oDywIgApMBIwGzAGMAXwCdAOkANwGQAeoBKQJRAn4CwAIWA4IDAASHBBMFrQVUBvgGlgc/CPkIuQl0CiULuwssDIUM5QxPDb8NRQ7zDrcPbhAcEcARKxJBEkQSgxLYEu4S4hIeE5oT3hPPE9ITABTzE5ETTBNKExYTfBL+EegRuhEREWsQNhD2DyYPRw74DbINrAxQC5IKIgrzCDQHHwbQBQIFUwPrAVQBbABx/m78ePvR+lj5lPe39mL2QvVX89rxHfEf8HbuBu1m7PLr9+q86cTo5+fI5oPlYORM4x7i8uDq3+ve5d3v3AXcBdsO2m3ZB9lx2L7Xktch2MrYD9lF2ejZv9pO26TbM9wN3ffd5t713/fgoOED4nziNeMQ5ATlJeZr57Ho5+kO6wzs1Oyu7fnuuvCe8m70Q/ZG+GT6Vfzq/VH/5QC4AmEElwW5BkgIBQpDCxUMUw0vD7oQXhHgERUTbhTpFN4UgxXpFuMX/xcyGCQZGRo8GgEaSRruGhEbfxrUGXQZIRmdGA4YsReIF2kXIReGFq8V3xQyFHQTjhLGEU0R5RA7EGgPsg4SDmANuAw4DKMLuQq1CfAIQQhBBx4GawU7BQcFmQRHBDUEBgSLAycDGAP6An0CGwJqAh4DcwNcA5EDVwQNBSYF8wQfBa8FJwZfBqsGOgfOBzwIwwiNCVUK1gpNCxwMEw2rDdwNNw7+DtAPXBDhEKMRbRL+En4TFhSFFKAU0BRkFeQVwxVeFW4VzhXCFU0VJxVmFU0VphQSFM0TQRNOEr8R4BHPEfgQHhDwD7UPjA4cDYoMfQzDC2oKhQkYCQoIMgazBP8DHwONASUAfP+o/tf8vvpd+U/4p/a09Hrz6vIG8pPwVu+Z7rvtZ+wm62PqwOnJ6K/n2eYv5lblP+Ql4zPiYOGA4G7fRd5c3dTcWNyj2wLb7Nou2yvb09rB2kLb9NuG3C/dLd5C3xTgo+AU4WjhvOFY4j3jD+Sv5HPlcOY154zn/Of66Bvq2eqX6/3sve7478HwE/Ix9C/2cvem+If6o/wU/u/+CQCYAf4C3AOYBK0FAActCBsJ/AnzCu4LvwxYDdsNgg5RDx4Q2RCsEZsSZhPtE3EUHxW0Fe4VDBZjFrYWhxbqFXoVZhVIFesUnhSJFFcUyRMgE5kSBhI7EYEQHhDTD0MPjg4QDsgNbw3+DKMMWAzoC0wLpwr9CTsJgggHCLsHXwfpBoUGOwbgBWQF7gSgBHoEZwRHBBME7AMEBEwEfQSQBNEETgWhBZEFgQXGBQ8G/gXoBVUGBwdRB0EHhgdBCM4I3gj7CJEJQAqUCsIKNAvSC0oMrgw7DdgNQg6LDvYOeg/JD9QP4g8YEEAQKhD8DwMQQBBjED8QDhASEBIQpQ/hDlUOLQ7uDVINwgyRDFEMkgu4Ck8KCApECUsI0wekB+MGmQWxBFcEuQOWAsABmAFPAV0AW//G/g7+t/xj+7D6Ffrn+KD39/aG9of1PfRp89zy4vGn8NvvYu+Z7qbtPO027cvsBey26/Lr6OtJ673ql+pZ6q7p8uhk6NXnTucn5zbn6+ZW5i/mkebP5rPm4+aZ5y3oRehz6B3pyOkg6rPq5+se7bLt8e1m7vbuVe+8717w6PAo8ZLxa/Ij81HzmvOz9Cj2Gvel94344fn++rn7hvye/cH+yf/HALkBiwJhA0QE5AQlBX0FNgbqBkAHrgeaCGsJdglCCcUJyApZC34LJAxiDT8ORQ4fDlcOog7BDgAPcw+rD4gPfQ+aD1UPlg4WDiwOPQ7NDU8NPQ0vDaoMCQzdC/ELwgttC10LdwtKC+IKnwqFCj8KyQltCTwJAwm1CHcISQgNCM0HlwdMB9YGbwZZBmUGOgbiBbsF3QX+BekFxgXRBQ4GTAZoBmAGTQY+BjUGOQZXBoMGjQZvBmUGlwbJBrkGowbiBlEHdQdABxsHMwdRB2sHugczCH4IogjwCEsJNAnHCM0Idwn2Cb8JaQmYCeEJjwnfCJcIxQjWCJ8IdAhiCC0I4AfAB7UHdAcbBwYHHAfzBo4GVAZRBiEGqgU/BQQFtwQ3BMADeQM6A9oCZwLqAVYBugA9AOL/gP8a/8v+fP78/WP99fy4/Gv8+fuL+yz7sPoO+n35HPnF+Fj44/d99yH3w/Zl9gz2xfWm9aj1kvVE9en0svSC9Cb0xvO18+vzBfTR84bzXvNF8wXzpfJh8mnyrfLq8vHy3PLl8g3zKvM/83/z8vNT9Hz0kfSz9NL07fQ29a31BvYk9kf2jvaz9qL2vPY096f3wffY91D43fgX+Uf56/nD+i/7PPuA+xH8cfyJ/Mj8Uf3C/e79Jf6P/uv+G/9a/7r/8f/q/+v/GwBQAHoA0ABVAbcB2gH7ATUCVAJUAocCCQOHA8QD4wP/A/UDvgOiA8UD+gMiBFYEjwSJBEEEDwQcBDIEOgRpBLsEzQSIBF4EigSrBHgEVQSiBAoF/QSbBHQEpwTZBOEE7AQPBSsFMAUvBSYFEAUUBUgFfAV8BWQFcgWVBZIFdwV8BZ4FqwWlBbQFzQW+BZUFmQXPBfUF6AXTBd8F/gUZBjIGTAZcBmMGcAZzBlIGIQYVBjgGWQZXBkUGPQY7BiwGDgbpBcwFzAXnBfMFyAWABVYFVAVSBTwFJwUcBQoF7QTUBLcEgwRLBDMELgQDBK8DbQNVAzsD+QKyAosCcgJBAv4BvQF2ASUB6wDcANMApABiADoAJAD1/6T/W/8u/w3/5v60/nP+Iv7Z/ar9e/0r/c/8mPyG/Gn8L/z5+9z7wvuW+2n7R/sn+wv7CPsd+xz76/qt+pH6ivpr+jf6GPoa+h36Bvrg+cL5sPmj+Zr5kfmK+Yv5mPmo+a35ovmV+Zr5t/ng+fv5/fn5+Q36N/pO+kD6NPpX+pX6t/qv+qX6u/rn+gz7Jfs/+1/7gfuj+8P72fvn+/77KPxd/Ij8pvy8/Nn8Av0x/Vj9cv2P/b/9+P0h/jr+X/6b/tP+7P7w/gf/P/+A/6b/s//C/+f/GQA+AFIAbQCeANoABwEeAScBMAFFAWoBlAG1AdAB+QE0AmQCcAJuAoQCtQLjAgADHAM/A1oDYwNpA30DmAOwA8kD7AMMBBwEIwQzBFEEbQR6BH8EiwSiBLwEzQTZBOwECwUlBTAFNgVJBWUFdQV1BXsFkgWoBa8FrgW0BcAFyAXQBdsF3QXNBbwFvgXPBdwF2wXYBdwF3wXbBdIFxwW8BbYFugW/BbUFmwV+BW8FaQVcBUMFKgUXBQgF7wTKBKUEiwR7BGkESwQlBAEE4wPGA6QDgANaAzEDCAPjAsMCpQKCAlgCKgL7Ac8BpwF/AVYBLAEGAeQAvwCSAGIAOAAaAAAA3/+2/4f/Vv8p/wb/7P7S/rD+kP55/mL+P/4W/vz99v3u/df9vP2q/Zz9iP1w/Vz9TP05/Sj9HP0Q/f386/zk/OH81vzH/ML8v/yw/Jf8j/yd/Kz8rPyo/Kv8tPy5/L78xvzL/Mr8zfzc/O/8+/wA/Qr9Gv0p/TL9N/0//VD9Z/17/YP9iP2V/av9v/3M/d79+v0U/iX+N/5Q/mb+cP59/pr+vf7R/tj+6P4H/yL/Lf83/1D/cP+G/43/lv+v/9X/9P///wEAEgA1AFcAaQB4AJYAuQDMAM8A2gD0AAwBFQEfAToBXQF1AYIBkQGkAbABtwHKAewBCQIUAhkCLwJSAm4CdwJ8AowCpQK7AskC0wLdAusC/QIMAxEDDQMOAyADPANQA1wDaAN3A4IDhgOLA5YDoQOoA7ADuwPDA8cDzgPaA+ID4gPgA+YD7QPrA+MD4QPkA+UD5APmA+cD3wPVA9ID1QPRA8gDxgPNA88DwwOyA6QDlwOGA3kDdANvA2ADSgM2AyIDDgP8AvIC5wLTArgCngKLAnkCaAJTAjoCIAINAgAC7gHSAbQBnAGEAWMBQAElAQ8B9ADWALgAmQB4AF8AVABMADMADADu/+L/2f/H/7P/pf+Z/4T/a/9W/0X/MP8a/wj/+v7o/tP+wP6y/qr+pf6f/pL+f/5y/m/+bf5h/lL+Uv5f/mT+Vv5D/j3+Qv5D/j7+Pv5F/kv+SP5D/kH+Qf5A/kH+SP5R/ln+Xv5l/m7+c/52/n3+jP6f/qr+rP6s/rL+vv7J/tL+2v7q/gD/Ef8W/xT/GP8n/zn/R/9W/2z/hv+b/63/wP/V/+f/9/8KACIAOQBJAFMAYQB2AIwAmgCeAKIAsQDHAN0A7wADARwBMgE9AUMBTQFkAYEBmgGsAbcBwQHRAeYB+wEMAhkCIgInAi0COgJJAlQCXwJuAoACiwKQApcCogKoAqoCswLGAtYC2ALZAuQC7wLrAt4C3ALkAuYC3gLaAuAC6ALuAvQC9QLtAuMC6AL8AgkDBQP6AvcC9wLvAuQC4ALhAt4C1wLQAsoCwwK+ArgCqgKWAowCkQKTAoUCdgJ0AngCbwJdAlICTAI/AiwCIgIjAiMCGgISAhACCQL5AecB3gHcAdgB0AHBAa4BnAGVAZEBhAFwAWcBbgFvAV8BSwFGAUoBQwE0ASoBKgEkARYBCgEEAf4A9gD0APcA8QDaAMIAvQDDAL8AqgCRAIAAdABlAFYATwBQAFEATgBFADYAKAAlACsALgAmABsAGwAhAB4AEAAGAAMAAAD3/+v/6P/o/+T/4f/j/+f/4f/S/8T/wf/M/+D/8P/y//H//P8PABMAAQD2/wkAKgA1ACQAFwAfAC0ANAA+AFUAbABzAHAAdgCFAI4AkgCeALYA1ADuAP0A/gD0AOsA8AADARsBMgFFAVEBUQFNAVYBcAGOAaUBtgHBAckBzwHTAdsB6wEDAh0CMgJAAk0CYwJ8Ao0CkQKRApoCrQK/AsgCxgLAAsMC0gLjAukC4gLcAuIC9AIKAyADMQM7Az0DPgNIA1QDWQNZA14DbQN4A3QDZwNjA2sDeAN7A24DWANGA0IDTQNcA2cDaANdA0wDQQNFA1UDXQNUA0YDQgNFAzoDJQMeAzIDSgNHAykDCQP5AvIC5wLcAtsC5ALqAuECzwK+ArACnwKMAokCngK8AsQCrwKNAnECXwJUAlUCYgJqAl8CRAIlAhQCGgI0Ak4CTgI0Ah0CHgIlAhoCBwIFAhsCMwI4AigCCwLqAdgB4gH2AfIBzwGxAbMBywHaAdoB2gHfAeMB4QHbAdEBxAG9AcABwwG4AaQBnAGnAbMBqwGVAYUBiQGbAawBsAGjAY0BfwGDAY0BiAFyAVwBWAFlAXQBeAFxAWQBVQFAASYBFwElAUUBUwE8AR4BIQFBAVEBPAEhASQBOgE/ASsBHgEsAUgBXwFvAXgBcgFbAUQBPwFGAVABVwFYAU0BOwE9AWYBmgGrAYwBXQE+ATUBRAFqAZcBrwGsAa8ByQHeAdEBvAHQARUCWQJzAmgCTQIrAggC9wECAhcCLAJGAmQCbwJXAjkCPwJhAm8CVgI1AiQCDALOAYMBcQG/AU0C0wITA/ECeQLpAaAB7AHBArUDSQRIBOEDaQMlAzIDhAPqAyIEAQSjAzgD0gJrAh8CIAJtAr4C0AKtAosChQKMApgCqQK9AtIC9AIlA0cDPwMhAyADRQNjA1kDPQMyAzIDHQPxAtIC2gLzAvYC1wKvAp4CqgK9AsYCxwLKAs0CyALAAsIC1wL6AiQDSQNYA0MDGgP9AvIC5wLRAr0CtgKzArACugLYAvIC7ALMArICrAKvArkC0QLrAu4C5gIGA1sDmgN1Aw8D2QIPA2sDigNWAwQDwwKnArMC2AL2AgIDEAMfA/4CkwIiAg4CVQKbAqsCpAKkApECZwJZAoACpgKeAo0CmwKbAlkCDQIZAmsCiwJRAhoCMQJlAmYCOQIfAioCOgI5AjUCOAJBAk4CWAJQAjoCMwJKAmkCdwJzAmkCWwJHAjwCOgImAu0BsAGfAcIB7wH8AeUBvAGiAbMB5wEOAgkC8AHyAQ0CIQIoAj4CZgJ5AmYCUgJkAo4CogKTAnYCZgJxApICsgK4AqkCrwLeAg0DDAPoAtkC7AL0AtUCsQKrArICnQJsAkUCOAI2AjECIgL/AcoBqwHNARACGALMAZkB9wG5AikD8AKuAlsDGgXpBqIHHgc2BsEFyAXPBZIFNQXsBKwEXQQUBPED3wOdAxUDngKrAjQDmQNKA30C/wFFAuMCMgMkAzQDigPGA54DUgM8A0cDIwPXArUCzQLEAmIC8gHkAUICpgK4AoICWAJ0Aq4CpgJBAvEBRwImA70DfwPZApYC0wIEA+QCyQL0AikDMQM7A2IDXQMdAy8D7QOyBKIE9QOqAw0EdAR9BJAE6AQIBZUE+wPAA9ED5QMFBCkE+wOBA1cDtgPjA1IDtQL3ArMD1wNjA1kD/wNtBAMETQMLA0QDqAMNBD0E+wORA6sDNQQ5BEwDVgJTAvQCQgMDA7kCoAKRApwC6QIpA+QCWwJJAsMCFAPdApoCygIxA1EDHQPbAq8CpALTAiMDKAOsAi8CSwLUAgwDrwJQAmoCtgKiAjcCAwJNAswCFQMMA9YCqgKxAu8CNQNUA2cDjgORAxEDRwL9AZICXQN+A/UCeQJyAqUCyALTAtICvwK9AvUCMQMJA5ACZQLQAlQDXQMEA7kCmQKHApYC7QJZA3YDPQMGAwADCgP4AtACoAKAApgC5AL7AoQC4gHhAaMCUAMwA5YCWwK1AhcDCAOvAnkCnAL8AkgDNwPWApoC2AJJA2cDJgMDAzcDXwMkA8cCtwLjAvMC4QLqAgMD4AKMAnUCxQIMA+ECfgJsAsICGwMuAxoDFQMWA/MCtAKNAp4CxgLMAqgCkAK7AhUDSQMkA9ACowKwAsACrgKeAr8C+QIKA9sCkwJdAkECRQJ3Ar4C2AKsAnwCkgLUAugCuQKcAtgCRgN+A08D6gKqArsC7wL3AssCrwLPAvEC1AKiAqsC3ALUAowCcwLDAiADIQPdAq4CrgLIAvMCIgMmA/0C9QI1A2EDHwO4ArcCEwNDAwoDwAKrAqsCjQJfAj4CMQJHAokCwQKiAlACSQKyAhwDLgMSAwgD9AKrAmsCiQLrAiYDFwP8AgIDEQMKA/MC2wLCAqsCogKbAn4CSwIyAmYC2AItAwoDhQIpAl4C5QIqAw8DBwNbA68DjwMZA8ICrgKoAo4CcwJUAh0C6gH2AS8CRAIjAhcCSQJxAkkC/AHoAR4CYAKCAowCkwKoAuICOANmAzMD0AKnAssC2QKOAiYCAgIZAhcC4AG6AeABKQI3AvIBoQGgAQACdwKpAogCWAJgApYCtgKfAngCcwKGAnsCPQL6AeYBBAIqAjECDwLUAa0BzQEuAngCWAL5AegBWwLPAqYC+QF8AY0BygG+AY8BsQEtAo8CiwJRAjQCOAIwAgwC7gHvAf0B9QHOAaoBtQH0ATcCPwIIAtEBzgHoAd0BnAFXAToBNAEkARsBPAFwAXUBVwF+ARACkgJyAsQBHwHeANYA4QAbAYcB3QHiAbYBigFWARIB7gAWAWIBlAGhAZ4BhAFhAW0BuQH2AegBwQHBAbcBYwESAUEBxgHyAZgBSQFzAcsB4gG1AXsBOQHsAMAA0QD2AA0BOgGWAeEB2AGtAbkB9AELAt8BswG+AfQBJAItAg0C1gGiAX0BZQFiAYABpQGVAUkBDQEeAWEBlgG0Ac4B0QGcAU4BMAFbAaEB2gEGAi0CPQInAvUBvwGiAakBwAG8AYQBNQEDAf0AGAFKAY4ByQHcAcQBoAGSAZ8BtAG6Aa4BoQGeAacBwAHvARkC+AF6Af4A9gBGAWgBLgH/ACsBcgF2AUUBLgE2ATYBSAGgARUCOQLlAWcBEAHtAO4ACAEoAUMBbwG0AdcBlQEaAeEAEAFJATYB9ADHALgAtQDNABIBYwGJAYUBdwFoAUkBJAEWAR4BGAH7AOcA+wApAUkBRgEvAR0BFwERAQ4BIgFVAYABdwFJASwBMQEqAQAB2ADSAM8ArACNAJ8AxQCzAHAAVQCBALEAsQCxANkA8ACyAFQARQB/AJIAVgArAF8AtgDUAMEAwQDbAOQA1wDOAL8AiAA/AC0AYACXAJsAgABzAH0AhAByAEAADgAcAH0A5ADtAKoAlADOAPQAuABiAF8AnQC2AJgAiwCoALQAjgB3AK8ADwE0Ae8AewAzAEAAcACAAGwAcQCtAOsA7gDNAMkA4ADWAKYAlAC9AOgA3wDKAOcAIAEwAQIByACjAIsAewCKAK8AtAB/AD0AKgBFAGcAggCjAMMAzgDEALsAsACZAJQA0gAyAUYB5QBvAE8AcwCAAGsAcgCYAJoAYgA0AD0AWwBwAJUAzwDaAJMAQAA+AH8AsQCzAKoAuwDjABIBKwEMAcAAlQC3AOIAuwBdADwAhQDgAO4AuACBAGMARwAZAPH/9P8jAEIAHADd/+7/agDiAO4AuACpAMMAuACKAIsAxgDfAK0AfACRAMkA5wDuAO4A0wCVAF4APQAHALP/if+3//v/CgACAB4ASwBTAEsAZQCBAFoABQDj/wsAOgBCAEAAUQBiAFsASAA3AC4AMQBBAE0AQwAxACEA+/+8/6T/3/8pACsA/P/5/ygALQDp/6X/lv+Y/5T/sf/0/xUA9P/H/8j/zv+m/3L/av+K/6f/v//a/93/uP+W/6T/xf/J/7//zv/r//D/3P+7/37/IP/o/hD/Z/+N/37/g/+h/5H/TP8u/2P/lv9u/xX//v4+/4P/kv+P/6j/zP/I/5z/hP+l/9D/uf9a/wP/AP85/17/R/8i/yb/Tv9j/0r/I/8c/zP/SP9L/0//aP+U/87/DwA+ADoAEwABABQAEADV/5f/jf+M/1T/Fv8w/4j/of9X/wv/AP8O/xX/Ov99/5b/c/9v/7r/7v+5/2z/fv/C/7//ef9Y/2r/Wv8Y//f+Ff83/zz/TP92/47/ff9d/zP/9f7M/u/+N/9B/xX/I/9//6b/V/8L/zj/jv91//b+ov66/vP+Cv8S/yT/LP8T//P+8f4O/zX/Sf8w/+r+sv7E/gr/OP80/z3/d/+n/4D/Fv/P/tn+Af8G//L+9/4j/0j/P/8R//T+Dv9K/2b/Pv/5/tX+1f7F/pr+lP7e/kT/eP9+/47/r/+s/27/Gf/Q/qH+ov7k/jP/P/8M//L+Ef8h/+7+rf6e/p7+bf4l/g/+Ov6A/tL+Iv9A/wv/u/6W/pX+i/6H/rH+6/71/tv+3v4C/wz/8v7l/vP+9P7d/tL+zf6f/lP+Ov5s/pL+cP4+/kj+eP6J/nb+cf6I/pv+nP6f/qz+tf6w/qb+pf62/tT+8P4B/wX/+v7U/pf+af5i/m/+dP55/pv+zP7h/sz+o/50/kD+Iv4u/kj+Rf45/lb+j/6l/pL+kf6t/rP+m/6f/sX+uf5l/i3+Xv6i/n/+Ef7d/Rb+dP6x/sP+sP5+/lb+ZP6L/ov+Y/5a/o7+w/67/oH+R/4n/iH+Lv40/hj+6P3V/fP9Hv4y/jb+Qf5K/j7+LP45/mj+mP6v/rX+t/61/qb+i/5q/k3+Pf5J/nP+nv6h/nX+Qf4q/iz+Mf48/lj+cf5l/kP+QP5k/nr+XP4s/hz+Kf43/k7+hf6//sT+iv5J/jL+Qv5Q/j3+Gv4W/kX+dv5h/hX+9P00/ob+jf5b/kf+YP5q/lj+Vf5w/oH+gv6W/rb+pv5d/iT+Iv4g/u/9vP29/eH9Af4o/mD+dv5L/hb+H/5T/m3+bP52/oD+Zv5D/k7+dv56/mP+df6s/rj+ev40/hn+Cv7o/c792f3u/fP99v37/ej9wf29/fL9Jf4m/hX+F/4Y/gH++P0k/l7+bP5d/lz+Uv4R/rv9pv3d/Q/+AP7L/af9p/3A/c/9pv1F/fX88/wZ/Rr9Bv0r/Yr9wP2i/X/9k/2v/ZT9bP14/Zf9f/09/Sb9SP1c/UL9LP07/UD9EP3f/Pb8P/1Z/SL96/wE/U39Zv0//SX9Tv2C/Wr9Ev3X/Ov8IP03/Sv9HP0V/Qr9Av0R/TP9Rf0v/QH94/zp/P78//zx/Pv8KP1C/Rv94vzm/CP9PP0J/df89fw+/Vn9Nv0W/R/9OP1B/T79N/0v/TX9YP2b/bD9iP1J/Sf9Lv1J/Wz9lf24/cP9rf2I/XL9fP2O/Xz9Sf0v/VL9g/2B/VX9RP1r/Zn9o/2e/a39y/3f/eT93v3K/az9o/3A/en9/f33/ev95f3g/dr9yf2s/ZH9hf2A/XP9b/2T/cP9xf2e/Zz94/0o/iP++/32/Qb+7v3F/dz9L/5c/jX+//30/fD9wv2I/Xz9kf2S/Xz9ev2c/b/9xP3C/d39E/40/hj+1f2x/c79+/31/dH91/0N/iT+8v28/cj9+v0D/t79wP24/aT9gf14/Zf9uP21/ZX9bv1N/TP9Jf0e/R79Mf1Z/Xj9cf1X/VP9bP2D/YP9c/1e/UL9JP0S/Qn9/Pzx/Pn8BP3s/LP8hPx5/ID8fvx0/Gj8Xfxe/Hr8ovyt/Iz8YPxM/FL8Xvxk/GP8Xfxd/GL8UPwQ/Mn7uPvd+/P73fvL++r7FfwM/Nr7uvu4+6n7fftb+137avtm+2P7e/uj+8H71vv0+xb8Gfzw+7z7o/up+7H7tfvI++f79fvm+9f73/vm+9P7vPvH++D71/u0+7T77Psr/FH8fPy8/N/8t/xt/Ez8YvyB/Iv8iPyE/Ib8mvy8/Mj8sfyj/MP85/zN/I78hfzH/AP9A/3+/Db9lP3W/ev97/3s/dr90P3p/Q7+Ef74/fr9Lv5x/pf+o/6l/pr+f/5n/mf+dv6E/o/+qf7Q/vP+Bf8J/wf/BP8F/wz/EP8M/wr/I/9a/4j/h/9h/0b/U/9u/2//Vf8+/zT/LP8n/zr/Xv9p/0b/IP8p/0v/S/8a//D+8f75/tn+oP6J/qv+5/4O/xH/9v7X/tD+4v7g/qf+Vv4w/kH+U/49/hT+/v3z/dz9s/19/TX95/y8/Mj83fzG/JX8ivyr/Lz8kPxH/BH89Pvd+8T7q/uL+2L7P/so+wr71fqX+l76Jfrx+db50Pmu+U752vii+LL4xvip+HD4U/he+Hb4d/hQ+A/43ffY9+b3zvd89y/3JPdG90v3Dfe39oP2efZz9lP2Gfbi9cn12fX79Q32APbm9dP1zfXO9dP14fX29RD2NPZd9m32TfYk9jf2kPbf9uH2wvbg9kD3jPeR94r3uPf89xb4F/hM+Ln4EPkj+Sb5Vvmo+ej5EPpF+pb68fpE+5H72PsY/GD8wfwo/XH9pP3z/XH+6v4n/0L/f//w/10AmwDCAP0ASAGKAcsBLQKlAv4CIgM/A3sDxAP5AzAEjwT4BCwFKgU1BW4FpAWuBbAF3AUmBmEGjwbPBhQHLgcZBwgHIQdPB3EHhweZB6cHtwfTB+0H6AfIB8IH7gccCBII3Qe5B7oHugegB4MHgQeRB5EHcAcvB9kGgQY+BhYG+gXVBacFeQVMBRoF5gS3BIQEOQTaA4sDZANKAwsDmQIjAtQBpAFvAS0B9ADEAHIA8v9r/wz/wP5Y/tn9c/0y/dz8Tfyu+z379vqb+gr6Y/nS+Fn42fdN98n2Vvby9ZH1L/XA9DX0lfP48m3y5/FV8cbwVvAD8LDvRe/J7kjuxO057bbsUewP7Nnrl+s/6+Lqmupx6k7qDeqv6WPpU+lv6YPpculN6TDpJekh6RjpB+kA6SLpc+nH6eXp3un96Wfq5uou607rl+ss7NvsaO3a7Vvu8+6K7xvwtfBV8d7xUfLg8q/zmvRW9d71fvZl9134Hvm9+ZD6qPun/Er91v22/tz/0wBxAQgC4wLYA44ECgWXBVAGAweIB/YHbwjzCIAJKgroCnQLowuwCwEMnQwiDUoNTQ2SDSoOwA4JDxYPLg9xD8UP+w8IEAYQHBBVEJwQzhDbENsQ7BAQESsRJhEOEQARCBEOEfQQthB0EFAQVxBxEIAQfRB3EHoQchBJEA8Q6Q/UD6QPSw8HDxIPPQ8pD8sOhw6bDrwOhg4WDt8N+Q0ADrENSg0kDTMNLw0UDRANGA3kDGQM6QuvC5ILUgv5CrwKkgpBCrsJNgnZCIsIJwiwBzQHrAYaBp8FTgX4BGMEqwMsAwgD5QJaAnMBnAAaAMH/Nf9k/on95fx7/Bv8nPv3+jr6dfmt+OT3GfdJ9nT1n/TO8/zyGvIe8RjwKO9W7oTtiuxs61bqZumF6IznfOZ/5bXkFuSB49/iHeI34UbgeN/c3krepN0T3drc7Nzx3MLcp9zq3Gndtd2o3Yzdt90j3pne+95e39rfcOAK4YXhyOHy4VPiGuMQ5MjkJ+V/5SHm8+ax52jocOnY6jvsSu1E7prvRPHW8jr05fUb+Gj6Pvzj/R0A+wJ7BcIGNAfnBz4JtQrlCx4NvA5nEGkRoBGXEckRHhJBEjMSRxKsEi0TcxNuE14TdxOjE7MTsRPUEygUcBSNFLIUChVZFUUV3BSUFLAU8xQNFfoU2hSaFBEUQhNkEqURExG2EI4QdhA0EKwP8g4sDoEN/AyADOULPQvYCtEKwgo5CmEJ2gjYCNwIeQj4B+QHOAh2CGkIVghgCE8IDgjwBzYIogjXCO4IPAmoCbwJWAnyCPoITgmNCasJ4Ak1CmwKXQomCvMJ0AnDCeAJKwp/CroK5woiC2MLiQuWC7sLGAyODOYMHw1tDeUNTQ5jDjkOJA5FDmIOQg4NDgUODA66DfIMHgygC1YL1woPCkMJqAgbCGoHlQa6BdsE8gMSA1oCwQEeAWMAsf8t/8T+N/5o/Yn86PuG+wn7M/o8+ZH4OfjD99z2v/Xc9E70yvMQ8yryMvEu8CrvQe5v7YPsc+uB6ubpZemJ6EXnEuZc5evkNOQc4xjiiOEx4Zrgwt8d3+fexN5K3pzdRN2D3QzehN7W3hPfNN8832Df1N9y4O3gQ+Gv4TLieuJk4lfiz+Km4z/kTuQz5Grk8eRw5dnleOaA57XoyenP6hrsxO2C7//wNfJh87P0J/ap9z/5Avv6/Az/9gB7Ao4DbQRtBbUGFgg8CQQKoQpmC2UMUQ3dDSwOtw6uD6EQ/xDVEMYQTBEtEtcSExMoE3gTHRTjFIEV0hX0FScWgBbBFqIWNhbuFRsWmRbxFtAWTxbJFXkVMhWZFKsT0xJwElUS9xEdESIQeQ8lD9MOPw5tDYwM3wuQC3wLPgupCiAKIgqJCqAKHwqqCQQKAQuyC5kLPwtkC/wLWwwhDLALnwsFDHkMmwxrDB4M4gu+C5gLTAvYCmwKSgp6CrQKrwqDCpAKAQuRC94L4QvtC0UM2AxqDd0NQg6uDigPng/tD/wP7Q8XEJkQFxEUEY0QABDOD8sPlA8YD5YOKw65DSENaQyYC7QK2QkgCXMIngesBusFfAUVBWcEhgPAAiwCmwHxAEAAn/8J/4D+Af5q/Z78wfsS+4P6t/mY+I/38/Zr9lj1sfMg8iPxcPBn7+btauxa64zqhOkW6JXmaOWH5JLjTeLm4Lzf/N6T3k/e7N0s3R3cNNvZ2tzaqtom2unZdNpj29nbnNte28bbjNzi3IfcHtxU3AXdht2Q3ZbdCN6w3hffXN8Y4Hfh1uKg4xDkz+T65SLnH+hY6RbrAu2l7hzw2PHT84710/YW+Nb52fts/V3+XP8dAWEDJQXrBWIGhwdhCfUKkwuwC0IMhg3FDk8PUQ+ZD6MQFxI+E8QT6hMdFIgUEBWIFdkVDBZbFgQX1hc5GO8XkxfbF30YfhigF8cWqBa8FicWFhVuFGIUOBR5E40S6xFlEZcQlw+zDvcNVA3pDL4MfgzhCz4LIwtvC3IL6wpsCoYK/QoyCxALHguxC20MvwyPDE0MVgyTDLkMvQzIDNwMwAxoDCUMSwy5DAAN+gzyDCoNdg2BDVENTQ3EDYsOMg+JD8QPLBDMEHIR7hFGEp4SDBOAE9gTCxQ8FJIU+BQqFQQVsRRrFDMU8xO0E44TYBPzElMSsxELETAQQw+jDk8Owg20DIwLvwoiClAJXwiqBxwHVgZeBZMEAQRRA3cCuQEMAQUAov5z/bn89fu/+oD5rfjo95L22fRu82TyHfFc77btoOy461Hqauip5o7l8uQ45PzieeFQ4LvfMt8V3pPcftsu2wPbSNoV2RfYoddl1/bWQNZ41cjUPdTn09jTBtRJ1JTUAtWO1eHVy9XM1aPWLdhv2QXa2dqe3HfeOd+X32XhqeQS50Dn7eZ66GrrKO3c7JXsMu7V8GTyiPLh8pf09/aj+Fj5//k9+6r8r/2y/qoAkwMQBi8H1QeOCUwMaw4PD1APlhCtEk0U9xRgFTQWQBfvFx4YKBhpGNoYEhnDGDUYABgpGAYYShe4FhcX6RfxF+kW2xWrFQYWChZkFW4UrBNzE8cTKBTkE/sSOxIuEj4SeBHuD6gOWg6YDoAOtg2ODJILEQv9CgQLyQoyCowJRgmJCf4JHwrXCa0JIgr8CpELuAv6C7IMgw3vDRgOZw7aDicPag8KEP4QtxHdEcYR+hGQEicTZxNZE10TthM8FIoUjhSmFBIVnRX7FTIWXBZkFl4WsxZ4F/MXhhe5FqIWUhezFxcXJBbTFR0WHhY/FeUT7BKrEosSyBGFEKoPdQ/zDnUNwAvqCpMKkwn0B8sGMgYTBT0D8AG5AVkB0f8E/jL93PzA+/v5tPgt+Iz3UvbO9DnzlPEe8Prulu1u6zDp4ecn563lQeMx4TjgdN/03SDc19oR2inZ+tfl1hDWStV51K/T5dL80f7QNdDzzxTQ2c+yzkXN28xozTrNlMt/ykXMys+d0crQQdCr0trWstkn2vDZENvy3ULhCOPA4qjimOXR6vrttewx6u3qku758HDwkO/B8B7z1fTi9Qn3N/h7+ev7tv+YAn0C8QDpAbgGFQwLDvUMGA0vEaQWmBhjFtAUxBefHIMddBnpFXwXBBzoHWkbDxiBF0YZGBoWGOsU3BPqFVMYqRcmFH4RJhJ4FGIVSRTiElcSQBLgEfkQoQ9WDt4NOQ4+DiUNpgvPCpAKVgoWCowJ1wc1BckDxQQkBmoFjgNnA/UEcwUWBFsDzASbBtQGYAb8BiwIfQhvCNoJDw1YEDESwRIuE1kUIxaSF9kXghftF3QZ8BpyG4IbCxz9HLAd4B2eHQQdfRy2HKkddR6QHnIerh4xH7wfWiDhIOMghyBtIFsgSR8/HdcbEBzDHEocpxoNGRsYfBeNFrwUIRIAEIMPkg/KDToK9Ad9CB8J7AZAA1kBRAFjABn+O/xQ+9P5mvd49qr26vVj84Dx8/Gs8grx9u1C7GLsaexh6yPqNuke6LPmX+X64/zhz99w3p/dAdxb2RXXCtZJ1dbTRtKQ0VbRsdDiz87PNdDsz/TOqc5lz5DPMM74zObNps/BzrLKQ8dvxzjJ5cjixjbHM8s8zwXQV88w0fXVVdo/3D/dgt/i4u3lN+hh6rXs6e678P7xWfLr8bXxoPIk9Nj0U/TK84r0mfYS+Wr7wP0+ALkC8wTlBqkIaQqGDHQPBxMAFhEXpRbmFkAZOBzqHMcafBhnGGAZlRjOFeoT6RQrF7YX/BUNFKITThS3FFMUkhP1Eq0StxLjEsgSHRInEXgQCRD+DrsM+gkuCK0HLAd/BTsD3AGtAZwBCgGdAPUAiQFvAaoA8P+h/6z/GAAAAR4CAQOTAwkEfQTuBHYFCwZmBpcGSgfiCLAK7gsKDREP4xEYFAwV0BWZFx0aIxwwHdsdxB7mH/Ug7yERI2UkiCX6JcAlcyV2JW8l7CRpJNskLiYYJ9YmSybBJhQo4yhcKA4n9CVRJbMkpiM0Iswg0R8ZH/8dEhygGWMXrxU4FGoS9w88DRoLCQpWCeQH1AWNBIQEMQQ0AoD/9f2J/Yv8evqa+Jv3kfbs9JjzJfOP8vnwQe9z7uPtZux/6qHp4Onz6UrpkOhD6Bjot+cI593lVuRG4wzje+J74Efe7N3J3gPeBNvc2LLZR9tK2mvXJdZF1+vXO9YE1IfTAtR90zzS8dFD0vDQwc2wy6nMJM50zJHIoscZzOXRn9P00c7SAtnl3zvhr9083BnhNui26gzoauYT6ovvqPBK7XDrpu4d82fzVPB97wnzFfcy+JH4C/ytAQYFDQW6BcgJbA6OD/wNPA7JEdoUCBSHEVkSJxfZGjkZtRQhE94VSxisFo4T7hPxF8QadhmwFm4WohgnGnwZFRhzFxQXzRXMEyESIhEhEKsOLw0xDE8LwgmmBxQGhwUEBZID9gG+AccCQwOFAjMCoQNFBY0EtgHX/6sAOQKuAXH/hP5GAIcCgwKcANL/1QEQBeIG4Qb0BrwIxwt6DgoQNxFGE4AWwRmVG+Mb/hvlHP4dRx4bHqQe2h+gIN0gzyG7I/skjyQQJFUlVieYJyEmrSWaJ9sp/ymVKPInoijVKCQneCSrIi8itCHwHzcdERtZGisaFBn5FiMVTxSuEyESzA+8DYIMxwv7Cr0J8QfzBXYEnQOXAroAl/4Y/RD8kfqF+Mn2zvUw9av0XvQZ9Gnzi/I38kbyvfGO8PfvjfAo8aTwie/37tvuTO4c7dHrreq76VPpZ+nv6EznueW45Ybm6eW040ziEeNH5L7j4OGS4EXg6t8D3/bdvNzy2hbZCNhI12PVdtKA0GrQc9DCzjLM0sq4yjDKwcjmx5TI4sn2ypfMsM9w00bWBNir2XDbc9yC3MHcNt594JjiT+Qt5mHoVup+6y3sS+0971jxrvJg86n0afcj+67+ngFmBEEHwgl0C2EM1wwmDcANAA9vEOcQIxCvDzYRHhT1FZwVsxQYFScW1BXuE5USQxPfFIIV8RRhFHYUnRQwFDsTCxKZELMOcgxFCqUIrwcaB5sGNAboBV4FQAQDA4QCvQKVAnMBPwAIAEYApf83/pT9gP62/6//p/73/Qf+/v1e/dP8LP1F/nv/uAByAswEQgdWCSsLLQ1SDwsRBRKxEuIT6hU9GPsZ7RrBGyUdxB6aH3MfcR+MICoiBCMiI88jgyU3Jx0o1igwKo0rxisAK1sqGSpZKbEn9SXnJCMk5SI4IbMfhh5eHQAciBoaGcAXehYvFb4TVBJmEQERfRBDD50NNAz6CkgJBgflBGgDSQIRAaz/O/7N/H/7i/ru+VP5jvjZ92j3Evef9g/2gfUN9dL00fS09DD0kvNh83vzOvOC8vHxz/GJ8b3w5+9/7yfvc+7Q7b3tv+0f7UbsIexr7ObrXOoH6ZvoKOi25tHkoeMj42Di7eA836Td/Nsz2nzY0Nbm1ODSStFC0DrP5s3GzFDMGsyBy7LKOsreyfbI2cfLxynJ1MoRzN7NPdEn1a3Xvdgj2rPcF98T4JngauKM5WToI+q/61buffHU89n0evXV9uL4rvrM+wL9Sf92AmcFdgc1CVgLkQ0PD9UPpRCuEUUSKRIyEgwTCxQ3FAEUrhQiFqEWORVAE5ES8xKXEtgQNA8nDwYQ9A94DhMN/gx0Dc0MzgrLCK4H6ga5BVwEfgMPA4YC1gFRAdMA8P/Y/kn+VP4S/uj8f/vv+ln76PsJ/A78lfyv/cH+Mf8Q/xr/8f9dAZMCQAP+A4cFuwfdCZkLTw1eD4IRLxNFFCcVQhanFysZthpJHM8dIh9NII0h4yLqI28k6CTJJbYm/SbbJlsnvCjkKfEpfSmBKasp5CgpJ5glsySqI9kh2h+GHpYdPhyMGjsZchiBF/sVVhQeEzgSMBHwD8IO3g02DZcMzgvRCssJ3wjWB1oGhgThArEBtQCq/8D+Q/4F/pv99Pxk/Br85fuF+/76lPpv+m76Uvoh+ij6f/q/+nn62/ll+RD5WPg993n2avZs9tP1BvXT9BL12vT28yvz8vLC8v3x2/Dn7yXvO+4b7e7rreo46bnnWebi5BDjIeF53/TdGdz92T3Y/9ai1dLTItIP0RnQlc7wzCrMLszjy/PKW8qvyvXKMso9ycLJ2ssBznvPVdGJ1EfY+9pu3M7d5d8s4sbjwuQA5h/o3uqI7cjv4fEa9C72nPd0+G75/vrN/Gv+JwCYAnEFvQdACc4K5QzHDp0P2Q9/EI0RFRLlEeMRkhJFE0AT5hL3EksTHBNKEoIRIxHJEAgQGA92DjsOIg78Dc8Nkw0gDWAMbwtnCkcJGggOB0AGgAWUBIwDsQIOAl0BjgD6/9f/zv9m/8b+hP7H/hT/E/8f/7r/vACLAfMBXAIhAwAEggSiBN0EkQWPBm0HLQhSCSsLSA3sDgAQJRHBEl8UYhX9Ff4WtximGjUceh3iHnYgtiE8IkEiTSKEIo4iVCJbIg8j8SMqJM8jySNJJE0kKCO6ITUhPCFvIJoeEB2eHFUcDxswGeIXPhdOFpwU0hKYEbcQog9NDhcNNQyPC/sKXwq5CSUJrAgdCEYHSAZ4BeYETwSXAwUDyAKfAjUCoQE/ASYBAwGKANn/Vv8w/yT/2P5s/mf+7v5q/z//pP5H/j/+8f0Z/UT89fvh+2z7kPrG+Tv5ofjE98v28PUt9V/0b/NZ8jTxLvBR71ruEO2o64HqgOkn6FzmnOQ749rhC+AS3pXcnduB2ufYRdcZ1hfVmNOq0SDQas8Oz3vO8M0GzrHOS8+WzxDQFNFU0mnTgNQK1hHYMtoz3CveOOA54t7j7OSM5VDmrudw6fLqIOyw7f/vSfKj82n0xPXl97f5nvpv+yf9Z/8mAVACuAOqBXQHeQj/CJQJTgrlCjgLaQuoCwgMdgy9DMcMygz/DC4N+wyKDF8MjwyjDG0MagzyDIcNeA3gDHMMZgwrDFULRQqbCVEJywjAB58G8gWbBRQFPgSPA1ADMAPMAlYCRAKPAsUC1AIiA9IDdQSyBNMEPgXEBecFrQWpBSwG4gZbB6cHIgjnCKUJDgpECrAKiwuVDHgNQA5CD5UQ6xEMEx8UWRWTFowXSRj3GJUZ+hk0Gnoa2xowG2Ubjxu+G+gb/hv/G+QbtBuZG6MbqRt6GzQbFhsYG+caYRrIGVsZ/RhvGK8X7BY5FoAVsRTcExQTXxLCETYRnhDjDxwPbQ7TDTINjgwVDMwLeAvzCl0K5AlyCdkIJwiWBzMHxgYkBmoFzwRaBN8DQQOVAgMCjQEHAVgAof8V/7f+Uf7M/Uf96PyY/CL8e/vO+kb62PlX+bT4Gviu91X3z/YN9kz1tvQn9G/zqPIP8pzxCvFC8HXvy+4f7kDtTuyP6xLrk+re6Rjpiegy6MDn/+Yo5ozlFuVy5Jzj8OKj4nniLuLa4bPhrOGS4WLhROFH4WjhsuEs4r7iVuMI5NzkqOVA5sTmZecS6JPo9Oh66TPq5ep26yDsB+3v7Yju6+527zrw4PAw8W7xAvLd8pzzGvSc9Fn1Jva/9ib3kfca+LL4RfnV+Wv6Cvuq+zr8uPw3/cL9Qf6f/vv+f/8WAIcA0QA5AdQBZQK8AvwCWwPJAxAEMARXBJUEzwTxBAwFNwVwBa0F4wUSBj4GZwaGBpMGmwawBtMG9wYdB0kHcweNB54HugfdB+wH5wfuBxUIQghcCGwIkAjICAEJMQlZCX8JpwndCSIKagqqCvAKUAvHCzoMmgz4DGkN5Q1SDqcO7w4+D5sP9w9FEIIQvRD/ED8RbBGGEZwRtBHJEdkR6xH+ERESJxJGEmQSbxJoEmMSaBJlEk4SMhIkEiMSIhIbEhQSDBL/EesRzxGmEXARPREUEegQsBB3EEgQFhDOD3kPLQ/lDowOLA7dDZcNOw3JDGUMGQzDC1EL3wqICjoK0AlSCeIIhAggCKAHEAeGBggGiAUABXgE+wOMAyADrwI/AtQBYwHgAFgA4v97/wz/kv4k/tH9hf0n/b/8ZvwX/Lv7T/vm+oz6MvrI+VX56PiE+Bn4o/cw98v2cPYM9pr1IvWy9Ez05fN88xjzvPJe8vDxefEH8aHwQPDg74jvQO/87qnuSO7n7Y7tOO3e7IbsOOz468Trleto60HrKOsb6xTrEusZ6yXrLes06z/rRutA6zbrO+tS62vrguuj69HrAewq7FPsg+y07OLsEe1J7Y7t5O1L7rHuC+9m79bvUPC08ADxWvHX8WDy2PJH88TzTfTO9EX1vvU79rL2Jvem9y74qfgZ+ZP5Hfqk+hn7jfsN/I38AP1y/fL9df7q/lj/0v9QALwAHAGKAQUCdQLSAjIDowMZBIIE4ARABaQFCAZrBs8GOwexBy4IpwgXCYIJ7wlXCrQKEAt1C+MLTgy2DB4NhA3gDTgOmQ4HD3MP0A8mEIQQ6RBHEZQR2hErEooS6RI5E30TxRMTFGAUohTaFA4VRRV8FbAV3RUGFjMWZhaUFrYW0RbvFgsXGhcdFyEXLBc3FzYXKxciFyMXJhcbF/8W2xa3FpIWYhYkFt8VmhVXFRQVzRR8FCcU1hOLEzYT0RJnEgYSpBE1Eb4QUBDpD3oPAg+ODh8Opw0jDaAMKAywCzELrQopCqUJHwmXCAwIfQfsBl0GzQU3BZ4EEgSQAwoDfAL2AXsB+wBmAMr/Pf/C/kn+xP05/bj8SPzf+2n76Ppu+gX6mPkX+ZD4Gfiu9zb3s/Y79tX1bPXx9HD0//OY8yHzkfL98YDxFPGW8PrvXu/j7nvu+O1Y7cfsXuz+64XrAeuY6k3qBuqx6VrpEenb6KvoaugW6Mfnl+d951rnLOcL5wDn8+bc5svmxua/5rbmwObh5gLnFucx52Pnoufg5x3oYOim6PToTumq6f7pVOrB6kHrtusa7IjsGO267VHu3O517ybw2PB38QryqfJW8wH0ovRG9e/1lfY89+33oPhC+dn5f/o0+9r7Zfzw/IP9DP6G/gr/ov82ALwATAH1AZkCGgOIAwMEjAQPBYIF7gVaBswGQwewBwcIVwi4CCIJdwm1CfoJTQqWCssKAwtPC58L5QsqDHkMygwRDVENlQ3eDSIOYg6lDvIOSQ+dD+UPIBBgEK0Q9hAuEV0RlhHaERoSThJ3EpwSxBL0EicTTBNlE4gTwhP8Ex4UNBRdFJkUyxTpFAgVMBVVFW8VixWuFcMVwhXEFdUV3hXHFaQVmBWeFZMVaBU3FRUV9xTHFIsUVRQmFPUTvxOKE1MTEBPOEpoSZhIbEr0RbRE1EfQQjhATEKgPTg/lDmQO4Q1tDfoMegzuC2AL0Ao2CpoJDAmLCAMIaAfJBjUGpwULBWQExQM5A68CFwJ1AdoASAC1/yD/j/4C/nP94PxM/LD7DPtu+t75TPmo+Ab4gPcM94j28vVn9e30bPTg81zz5fJn8t7xY/H68IjwBfCH7x/vue5C7sTtS+3P7Ebsuusv66LqEeqL6RrptOhS6PXnoedW5xXn4ua25onmYOZC5ifmC+b05evl4uXS5czl4OUE5h3mK+ZE5mvmj+an5rvm0+bz5iDnV+eR58vnEOhf6K7o+OhK6bDpIeqN6vbqbuv6643sF+2e7TTu3e6D7xLwmPAr8cjxWvLk8nrzG/S19Ej15fWI9hb3lfcl+Mb4UvnC+Tr6x/pK+7T7KPy6/Ef9uP0p/rf+Sv/C/y8AsAA4AaoBDAJ4AvACWgOzAw0EcATOBCUFfgXfBT0GkgbfBi4HggfSBxYIUAiRCN4IKgloCZwJ3gk1Co4K2wojC3kL2gsvDHIMtAwDDVUNmg3TDREOWA6dDtkOGA9kD7kPBRBEEIQQzhAaEVsRjxHGEQYSQRJrEpESzBIXE1YTgROuE+4TMBRcFHcUmxTOFAMVKhU/FUwVWxVzFY4VnhWoFbYVyRXTFccVrRWTFXUVTxUnFQUV5BS1FHkURRQaFOUTnRNQEw4TzhJ8EhsSuRFbEfUQhBAPEJgPGw+bDiMOrg0tDZ4MFQybCx4LigrtCV4J2ghGCJwH9wZnBt8FRwWgBAEEcQPhAkQCpQERAX4A2f8o/4D+5P1B/ZL87PtX+8H6Hvp8+en4XvjL9zj3rfYh9o31+vRv9OPzVPPK8k3yzvFF8bzwQPDJ70jvv+487sHtRu287CXsjev86nHq3+lL6cboUuje52Xn/ua55nnmIebC5YLlVeUW5cbkieRw5F/kSOQ+5FDkceSR5LPk1OTq5PfkCuUm5T7lSuVY5XnlpuXX5QbmPOZ95svmJeeA59nnNOiX6ALpc+np6Wfq7+qB6xjsruw/7dPtcu4Z78HvY/D78JHxM/Lb8nDz6/Ns9A71uPU+9qz2Nvfe93j49vh7+Rr6svot+6X7Kvym/Az9fP0L/p3+E/9/////iAACAWwB2gFPArwCHgN7A9QDKgSEBOIEPAWQBeMFPAaTBuIGJwdoB6sH9QdGCJMI1QgbCXAJzQkhCmgKswoMC2oLvgsKDFUMpAz4DE0Nng3rDTcOig7dDiIPXA+aD+QPMxB4ELYQ9hA1EWkRlhHJEQcSRBJ2EqcS5xIvE20TnBPNEw0UUxSJFK8U0xT9FCUVPhVOFWkVjxWvFb4VxBXOFdIVxBWnFY8VghVqFTgV/xTUFLcUkBRXFBwU7xPFE5ATUBMRE9MSjhI9EuYRhxEgEbgQVBDwD4IPBw+NDh0OrQ00DbEMLAyoCyMLmgoLCnoJ6whfCNcHUAfIBj4GtgU1BbUEKQSNA/ECZgLkAU8BpgABAG//3f45/o798Pxb/MP7JvuN+vf5YPnH+DD4nPcL93/29fVs9eT0X/Ta81DzyvJP8tTxTvHH8E/w2+9S77TuH+6h7SrtqOwd7JXrHOu16lTq5+lu6QjpxuiJ6Cvouudk5y/n9ear5nnmdOZ35mbmXeZ65qDmpeaX5qTmyubd5svmtea55s3m3ubx5hPnReeB58TnCOhE6HvouugC6UTpgunW6Uzqyeou64rrAeyY7DDttu087tDube8J8JzwG/GI8fzxjPIp867zHfSb9C71u/U09rf2T/fm92349viK+Q36b/rN+kj70PtB/KH8Ef2e/Sv+pP4Q/4X/CgCPAP0AUgGqARoCjgLnAiUDbwPWA0QEnQTmBDMFigXoBUUGmQbaBhEHVgevBwgISwiBCMMIFglrCbgJBApRCqIK+wpeC8ALDgxMDJIM7gxMDZINxg0GDl0OuQ4CDzoPew/PDycQcBCmENoQGhFgEZoRwxHpERsSWxKdEtoSFBNTE5UT0BMBFC8UYhSXFMUU6hQNFS8VSRVbFXEVkRWyFcgV0xXcFeIV2RW9FZ0ViRV+FWUVORUJFeQUxRSdFGoUOBQLFNsTohNhExcTxBJuEhsSxBFgEfQQjhAyENMPZA/sDngOCg6YDSANpAwkDJ4LFguTChMKjQn7CGcI3gdcB88GNwakBSAFmQT/A1kDwAIxApgB8ABLALb/JP+M/vL9W/3D/Cz8nPsS+4L65vlM+cD4O/iv9xz3ivb99Xb18fRn9NLzPPOu8iTyk/H88Gnw2e9E77LuLe6x7THtsew+7NTrX+vf6mjq/emP6R3pvuhz6CPoyeeE52LnQ+cS5+zm8uYH5/jm0ebB5sjmuuaS5nnmheaT5ormheae5sTm3eb35ivnbeeh58znBOhE6HTomujQ6CDpe+nc6UzqxOo667brRuzh7HDt9e2H7iHvq+8g8JzwKPGu8Sfyp/I989nzbPT79I31Gvaj9jP3xPdD+LH4Jfmm+Rz6e/rk+mz7AvyI/Ab9kf0j/qn+J/+m/x8AhQDgAEEBpQH/AVACpQIAA1sDswMQBG4ExgQdBXcFzAURBkwGjQbWBh0HYQeqB/oHTAihCP0IWwm4CRkKhgrtCj8LhAvSCyoMdgytDOcMNg2SDeUNLQ53DsoOIg94D8kPExBaEKEQ5xAmEVsRjRHEEQISRRKKEtASFRNZE5sT3RMdFFgUixS6FOsUJBVZFX0VkRWoFdAV/hUZFiQWNhZUFmoWZhZVFkoWQxY0Fh0WAxbkFb0VmBV9FV8VMBX7FNUUuBSGFDoU7xO0E3YTIRPBEmoSGBK9EVoR+hCbEDAQvg9RD+UOaA7aDU8N1gxkDOULWAvPClEK0glHCbUIKQiiBxMHeQbeBUcFqwQGBGkD3QJRArQBDAFwAOT/U/+y/hH+ff3y/GL8zPsx+5f6BPp8+ff4cfjv93v3DPeO9gL2e/UA9YL0+PNp89zyTPK48SzxqvAp8KfvOO/f7oXuGe6m7T7t3Oxx7PzriesY66jqQurq6ZTpPun+6OTo2ujB6KHoleic6JPobehF6DDoJugY6AzoBOj+5/vnB+gm6EboYOiF6L7o9OgR6SLpPulm6YnpqOnX6RjqXuqp6gfrd+vt62Ls3+xs7f7tiO4D73Tv5u9l8OrwZfHR8Uby2fJ38wT0gvQM9aj1OPaw9iX3pfci+I749vhq+eD5T/rA+kf72vtn/Of8a/36/Yr+EP+H//b/YwDSADgBiwHTASQCggLfAjIDhAPfA0AEowQDBVsFpwXwBUIGmAbhBh0HYge8BxUIVwiTCOEIQwmlCf8JWQq0CgoLWQuiC+ULIQxdDKYM+QxIDY8N1w0qDoEO1w4rD4EP3w9CEKAQ8BAvEWwRsBH5ET8SfBK0Eu8SMxN7E74T9hMqFGkUrRTlFAoVLBVZFYYVoxW1FcsV6hUHFh8WNhZNFlkWXRZlFnEWbxZcFkYWORYpFgcW2hW0FZMVbBU+FQ8V2xSYFFAUFhThE5gTOhPhEpoSTRLjEW4RDRG8EGIQ9A+BDxYPsQ5LDuANbg3yDHMM+guDCwULegrtCWcJ5AhYCL0HHweLBgQGeQXfBD8EqgMlA6MCFwKCAewAXADZ/1z/1/5H/r79Sv3a/FP8vfs5+9H6aPrq+WH54Phh+Nn3TPfB9jX2pfUa9Zv0IPSe8xvzo/I68tjxcfH68Hfw+++Q7yTvoO4P7pbtPO3g7HDsAeyv63frPev36q3qX+oS6sjpfukp6dDoiOhW6Cjo8+fO58fn0+fc5+bn/ecU6CDoMOhQ6G3ocOhn6HrorOjb6PnoIOlh6bLp/elC6ofqyOoM62Prx+sa7FXso+wd7Z7tAu5i7vDuo+9E8MvwXfEM8rXyRfPU83L0B/WD9fr1gPYG93v37vd1+Av5nfkp+rP6OPu3+zz8w/w6/aL9F/6f/h7/ff/T/0MAzQBRAcABJwKXAhIDhwPhAyQEbQTRBD8FkQXLBREGcgbRBhYHVAejBwAIVAieCOcIMAl0CbYJ+wk8CnUKsAryCjULcguxC/kLQAyBDMkMIA12DbwN/g1SDq4O/A46D4MP4Q85EHQQoRDfEDERfRG3Ee4RNRKJEtMSChM8E3sTxRMFFDEUVxSHFL8U6xQCFRYVOxVsFZgVtBXKFeUV/hULFg0WDhYTFhIWABbjFc4VxRW1FY4VXRU+FS8VEBXRFJEUahRIFAgUsBNmEzIT8xKXEjYS4BGMETMR3RCKECsQwQ9jDxEPqQ4hDpwNLw3ADDAMmAsbC6sKKQqUCQsJkQgSCIcH/wZ9BvUFZgXcBFsE2QNNA7gCIAKTARUBlwAJAHf/+/6S/hr+h/3+/Jb8Mvyw+yD7pfo3+rL5GvmP+B34r/c498D2Tfbe9XT1EPWp9Dr00vN68x3zrPI58trxffEE8X7wE/DC72Pv8e6N7kbu/O2e7UHt8Oyb7Dfs2OuE6yLrrupH6gLqyumK6VPpO+k26TPpOulS6WTpY+lk6XzplemO6XTpb+mE6ZDphumC6Zvpwenf6fjpHupO6n3qs+r96k7rkevL6x/sluwK7Wjtzu1k7hfvtO8u8K7wVPEI8qHyGPOQ8xz0qPQe9YX1+PV69vj2cvf69474FPmJ+Q76rPpB+7n7MfzG/GX96v1g/uX+d/8CAIgADwGTAQgCeQLtAloDtgMJBFkEngTZBB0FbAWyBe4FOwafBgEHUwesBxkIhwjiCDgJngkLCm8KzAolC3ALrQvzC0YMjwzEDPoMPg10DZINuA0ADkkOdg6tDhcPhw+2D8IPCBCCEMYQwxDwEJQRRRKMEpYS4xJzE88TzxPUEzEUtBT5FO4U5xQdFWMVZhU1FUAVqxUGFucVnhW5FRoWIhbHFbgVOBaYFlAW2xXlFSwWBhaNFW8VuBXCFVMV7BTdFMMUUBTXE64TohNbE+sShhIhEqgRPxH5EKYQKxDDD5YPYA/UDiQOtQ2FDS4NhAzQC1gLAAt6Cr8JFQmqCFMIzwccB20G3wVaBcIEHgSFA/cCZwLbAU8BsgAOAJD/RP/n/kP+lf08/RT9rfwI/I/7U/vx+kz6xPl++Rz5dvjp96v3Wveu9gD2s/WO9Rn1Y/Td86LzaPP/8obyJvLY8YPxIPGv8Dfwy+947yTvsO4p7sDthO1E7dnsXewD7L3rW+vX6mLqG+rm6aLpX+lC6UvpVulK6UPpYOmT6bbpwunK6dfp3Onb6d7p7OkC6ibqUepx6oTqrOrz6izrQ+tu693rV+yU7LjsIe3O7WTuxu5A7wTw1/Bu8ePxffJB8+3zZvTf9IL1JfaZ9v32kPc2+KT46vhk+Rb6ovrv+lb7Avyq/B39mv1M/vb+bv/s/5UALAGLAfgBnAIwA3kDsQMdBJcE4AQIBUMFjgXSBRYGXAaOBroGDQeCB9kHBAhICMIIMAleCXwJzQlCCqAK3woiC3MLwgsHDEMMcAyYDMoMBQ0rDTUNRA1zDa4N1A3yDScObg6sDuIOJw95D8AP/w9UELoQBhEsEVwRthESEj8SUhKFEtkSGBMlEyETMBNIE1ATSRNCE0kTYBN9E5ATmxOvE9QT+BMJFBkUORRWFFcUSBREFEYULRT7E9QTwROhE2YTJxPxEq8SWBIGEs0RlhFIEfUQtRB5ECUQyQ+CD0oPBA+wDmMOHg7NDXINJg3iDI4MJgy+C1YL1gpGCr4JPgmpCP4HZAfuBncG3gU+BcEEXgTtA14DyQJGAtIBXAHVAEQAuv88/8D+PP62/Tb9uvw9/MX7UfvO+jn6r/lE+eL4bfjv94T3K/fP9mX28PV39QL1nfQ79L/zKvOe8i/ywvE98bbwT/AD8LPvVO/s7njuAe6X7T3t3Oxo7Prrputc6wXrpepR6gzqzumY6WrpOun+6MbopuiY6IPoZOhY6HLokuiO6HbohOjB6PfoB+kc6WjpzOkJ6hzqO+p16qvqyurh6v7qLuuA6/PrYuy07BDtpe1e7gDvge8D8JTwK/HE8WDy9PKC8yj07PSi9SL2hvb99on3EPiN+Aj5f/kA+qH6TfvM+yT8pPxr/S/+s/4i/73/cgATAZ4BKgKxAiQDkAP0AzIESARqBLkEEgVQBYoF3wU9Bo0G2AYnB2YHkgfNBx0IWgh3CKMI+AhPCYYJuAkECk4KdgqXCtIKEAsuC0cLfAuzC8MLwwvoCx8MKgwTDCkMfwzRDPQMEw1oDdoNNA5rDpwO1A4ND0QPdQ+YD7oPARByENoQFBFDEZYR+hEyEjUSMBJDElwSaRJvEngSiBKoEuESKxNrE5cTuRPVE+oT8xPpE8oTrhOtE78TsRNwEy4TGBMRE+QSnBJnEkUSEBLBEXMRKRHUEH8QRhAWEMYPYw8YD+AOhg4JDpwNVA0BDYkMEgy2C1UL0ApCCs8JZgnmCFoI2AdcB9gGVQbdBWQF4wRjBOgDYwPPAj8CvgFBAcEASwDh/3L//v6R/if+rf0p/bD8PPy0+yT7svpX+uH5UPna+I74Mfii9xr3xvZ79vz1ZfX49LX0ZfT485TzR/P58pnyNPLQ8WvxAPGO8Avweu/u7nTu/e157frsj+wn7K/rMOu+6lPq6emS6VrpL+kD6evo8uj46OHoxujJ6M/osOh66FboOOj/58jnzucC6B3oFOgp6Hjoy+jz6A3pQemM6d/pO+qa6urqQevN64DsD+1i7cLtXO747lfvmO/573Pw3vBC8bfxL/KY8hbzzvOV9DX1wvV19kP38/d++A/5q/k++tP6gfsn/KH8Fv3J/Zj+If9m/9D/egAJAT4BYAG9ATQCgwK8AhoDlgP6A0cEpgQcBYUF0QUWBmQGrAbiBgwHMgdWB30HqAfTB/oHIAhICHYIrwjsCBsJMQlMCYYJxwnkCe0JGgpwCrEKwArLCv4KOwtbC2wLkwvAC9QL3Av7CyYMOwxIDHkMygwJDSgNVw2vDQ8OUg6FDsQOCw9CD2sPlw/ED94P6A8DEEEQhhCrELgQ3RAxEYMRoBGXEawR6xEZEg4S9xEJEjQSQBIqEhgSGRISEvkR3xHAEYcROxEAEdUQmBBFEAYQ5w/BD4MPUQ86Dw8Prw5MDhYO4Q1oDcUMUwwaDMILJQuNCjwKBgqaCfsIawgCCJoHFgeDBvYFbwXpBGsE9QN6A/MCcAL8AYcB+wBdAMz/Uf/W/kH+n/0T/Z38IPyX+x37vfpZ+t35ZfkP+br4PPir90P3CffA9k724PWW9VL17fR79CP03POG8yDzw/Ju8hPyt/Fu8TLx6PCO8Djw8O+p71jvBO+z7mfuIO7W7X7tHe3L7I3sR+zn64PrNuvz6p7qSeoW6gDq6OnO6czp3+nm6d3p5OkG6h3qFuoH6gPq/uny6fjpGuo96lfqherX6ijrWOuE69TrNOx57Kvs++xx7ejtSe6o7hnvmu8g8KDwEPFz8ePxY/LX8jLzk/MY9K/0OPW99Vv2AfeU9yL4zPh++Qz6g/oY+8X7UPyw/B39r/08/qj+Df+A/+n/QACwAD4BtQH7AUMCrwIRAz0DXgO1AyYEZgR6BKUE+QRFBXQFpgXuBS4GUAZjBngGhwaJBpEGqwbPBvQGHgdNB34HrwfjBw0IIwg2CFkIfAiACG0IcAiZCMcI4Qj4CCIJVwl+CZIJmgmhCa4JzAn3CSAKQApjCpIKyQr9Ci0LZAukC+ULGAw4DE8MbgyaDMgM7AwNDTMNXw2MDb0N8A0cDj0OZw6fDswO1w7VDuUO/g7+DuoO5Q73DgIP9w7pDt8O0w7FDsQOvw6SDksOHg4SDukNig0rDQIN6wyoDEcM/wvYC6ULVAsBC7gKaQoOCqwJQAnBCEUI5gePBxwHmgYyBuMFfwX6BHsEEASWA/kCWwLjAX4BBQF3APT/h/8l/7z+S/7b/Xf9If3J/F/87vuK+yf7q/og+q/5Zfkh+cv4c/gt+Oz3ovdV9wz3u/Ze9gz2x/V19Q31s/SB9Fr0G/TW867zlPNd8wrzvvJ/8jny8/HM8bjxiPEz8fHw3PDJ8IvwO/AP8AHw2++I7zDv8u7F7pHuW+4y7hXu/e3w7fbt/O3o7cPtsO257bHtc+0d7fHs/OwI7fPs3uz47Dbtae2B7Zbttu3b7f/tJ+5J7lfuW+537rnuAu8873Dvue8U8Gfwo/DO8P7wRPGc8ezxHfJH8pnyG/Og8wP0UvS89En12/VR9qb26/Y495r3/vdQ+Jj4+/iE+RH6gPrf+kr7wPsv/Jv8B/1j/ab97v1X/sn+Gv9W/7P/NwCrAOcADAFJAZkB2wEIAikCRwJuAqsC+gI7A14DgQPAAwQEJQQrBEQEhATMBPYEAQUQBT4FhAW7BcQFtgXCBfYFIgYjBhMGKgZlBpIGngaqBtYGDgcwBz0HTAddB2cHbweJB64HxQfOB+gHIAhWCGcIZQh9CLUI5wj5CP4IFwlECWoJeAl1CXgJkQm8CeEJ5wnSCccJ3An4CfcJ4gngCfkJCQr1CdgJ2AnwCfkJ5AnKCcMJwwmzCZUJfglxCVwJMQn9CNAIpAhsCC4IAgjrB84HlQdOBxgH+AbNBoQGLwbvBccFlwVFBd0EhwRQBBQEuANRAwoD2QKHAgUCkgFaATEBzwBFAOv/0/+x/07/1P6J/lz+FP6q/Uv9Bf26/Fr8AvzE+4z7RPv2+rL6d/o6+v/5y/mc+Wz5OPn8+Ln4evhF+BD4zPeI91j3MPf29rX2ifZq9jb29fXY9eP14PWu9XX1W/VF9Qv1w/Si9KP0lPRk9DL0GfQF9Nvzn/N083fzmPOh83PzOvM281jzU/MY8/byHPNJ8y7z4vKx8qvyrvKx8r7yzfLT8vDyJ/M48/7yzvIK83jzkvNc81Xzo/PX867zfPOc8+Dz/vMG9C30WfRb9Ev0Z/Sp9OD0D/Vi9dP1KvZI9kn2VvaK9uT2OvdS9zT3P/eu9zj4bvhd+H34/viE+bD5pPnL+UH6uvrw+vn6Gftq+7776Pv6+yj8gPzh/DD9bf2g/b/92P0R/nn+4v4Y/yL/Of9r/5H/lf+l//n/cQC2ALAAtQARAYwBugGVAYsB2gE5AkwCKgIhAkkCgAK1AusCDAMKAwwDOANpA2UDSQNhA6kD1wPWA+IDFgRBBE0EYQSLBJgEeARoBIwErASdBI4EtgTvBPkE3wTZBOoE8QT1BBcFRgVTBT4FNQU7BSkFAQX2BBwFQAUzBQoF/AQRBRsFAgXaBMgEzwTUBL0ElQR9BHsEcgRKBBsEEgQoBC0EEAT8Aw8EHATwA58DZwM/A+oCfAJjAtgCjAMUBF4EVwSKA6oBZv8U/oD+PABAAqkDAAQ7A9IBfQCr/0b/GP8O/xr/Kv9a/9f/eQDYANwAyQCSAKb/1/35+xD7RfsO/Bf9W/6X/z4AFQBR/zH+7vz5+7L7zfuD+6z6KPrD+hv8I/2F/c79RP44/gH9H/u/+VH5Rvks+VT5FPoH+5372/sM/Af8ePum+iH62/lb+b34qPgz+a35tPm7+Rv6cPpW+hb6AfrW+VT54vjt+Cn5F/nt+DP5xfn++cf5nPmp+Z35X/lF+Wv5d/k8+Qr5Jflf+YD5nvnZ+RD6F/r6+df5rPmA+Xz5pvnL+c/54fkj+lf6O/r0+eH5FfpM+lL6Pfo8+lv6jvrC+ur6//oK+xL7Cvvx+uP6Afs6+2j7gvud+7v7wvuv+5/7o/un+6n70Psr/IL8jvxj/FX8i/zN/Nr8xfzR/BH9Uv1d/Tn9Gv0n/VL9eP2H/Y39pv3W/QX+Hf4j/i7+VP6G/qD+jv5o/mD+f/6i/q7+t/7f/h//Wv+C/5f/lP94/1n/T/9R/0//YP+i//b/GQAHAPr/EAAnAB8ACgACAPv/4//b//r/JAA8AFgAmADeAOsAugCCAGQARwAVAOT/2v8AAEgAmgDhAAwBFwEPAfsA0wCTAFMANwBKAHEAiQCPAKQA1wAKARcBBQH/ABABDAHMAGUAFgAJADAAZACOALgA7wAlATcBFwHpANQAzACnAGMALAAcACEALwBeALoAHAFTAVcBPwENAbgAUQAHAPH/AQAiAEYAdACvAPUALQE0AQEBsgBlAB4A3v+9/9n/JgCAAMIA4ADcAL8AmwB5AFAAEwDS/7D/uv/X/+j/7f/6/yAAUQBoAFAAGQDt/9r/zP+z/6D/qv/F/9T/y/+1/5//kf+R/5z/n/+Q/33/dP9n/0f/IP8M/xT/Jf8y/zf/Mv8j/xb/EP8F/+X+wf64/sz+2/7P/rT+of6W/or+gP57/n3+hP6O/pP+gv5d/j7+NP43/jr+PP5F/lL+Vv5L/jj+JP4S/gb+A/4M/hr+G/4A/tH9sv26/dz9+/0J/hX+Iv4f/gH+2P28/bn9xP3R/dv95f3y/f39+P3d/bz9r/28/dH94v3x/QH+DP4M/gv+Dv4M/gL+/P0A/gL+9f3q/fj9Gv4w/jH+MP46/kL+N/4j/h/+Mf5H/lb+XP5b/lf+VP5U/ln+Xv5q/oP+ov6x/qX+jv6J/p3+tP67/rj+vv7P/tr+0/7E/sD+z/7m/vb++P75/gn/Jv8+/z//Lf8f/xz/Hf8a/x7/Nv9b/3n/iP+P/5T/kP98/2b/X/9n/3L/ff+S/7b/3P/0//j/7v/f/9D/xP/C/8z/4/8DACEALgAjAAoA9P/r//P/BwAjADsASwBRAFQAVABQAEwATwBcAG0AegCDAI8AnQCkAJsAiwCCAIoAmQCiAKgAtwDPAOAA2gDFALMAsQC7AMUAzgDfAAABKAE9ASsBAQHhANsA4gDhANsA4wAAASEBOwFLAVQBUwFHATIBGAH+APEA+AAQASgBMQExATgBTQFiAV8BRAEpASoBPAE7ARwBBgEgAVcBdAFmAU8BUgFjAWEBRQEnASABKwE2ATQBLgE4AVkBewF+AV0BMgEZAREBDAEEAQIBEAEsAU4BZQFgAUEBHgENAQ8BDwEHAQEBCgEYARoBCwH2AOwA8QD5APUA6ADfAN8A4wDfANYA0gDWANsA1wDOAMQAvgC4AK0AnQCKAH4AfQCEAIoAigCJAIoAiAB6AGUATgA+ADcAPABKAFkAXwBcAFcAUwBIADQAHAALAAQAAwAJABYAIwAqACoAKAAlAB8AFQAOAA4ADwAKAAAA+P/6/wQADAAIAPz/8f/x//f/9v/r/+D/5f/2/wAA+P/q/+b/7f/0//X/9f/7////+f/p/97/4v/w//7/BwAOABMAEgAIAPz/9v/6//7/+//4/wAAEAAcAB0AFwAUABQAFQAVABkAHgAgAB0AGwAeACEAIgAkAC0APQBHAEcAQgBBAEQASwBXAGUAcgB1AHIAbQBrAGgAZQBnAHQAiQCcAKgAqgCoAKcAqwCwALQAugDDAM0A1wDiAOoA6gDiAN8A5wD1AP4AAwEOAR4BKAElAR8BHwEjASYBJAEkASkBNAFDAVIBWQFaAVoBXQFeAVoBVAFSAVsBawF9AYgBiQGJAY8BlwGZAZYBlAGXAZkBmAGZAaABpAGhAZ8BpQGwAbYBtQGzAbQBtQGzAbEBtQG/AcsB0QHPAcoBzAHQAc4BxQG/AcQBzgHUAdIBzQHRAdoB4AHcAdIByQHJAc4B0QHPAc8B0wHaAeAB4QHbAdEByQHJAc8B0gHSAdIB2AHeAd8B3QHbAdcBzwHEAbkBswGwAbEBuAHAAcQBwwHAAcABxAHHAcQBugGvAawBrgGwAasBowGhAaYBqAGjAZwBnQGkAacBoQGZAZgBmwGaAZABhgGBAYEBgAF+AYABiQGSAZQBkwGRAY8BiQGAAXgBdwF8AYABfwF6AXMBbQFoAWUBYwFgAV0BXAFdAV8BZAFpAWoBZAFcAVgBWQFXAVIBTwFTAVgBWAFTAVABUgFYAVsBWAFRAUsBSwFNAU4BUQFXAV4BYAFcAVYBUQFOAUsBSgFLAU4BUAFPAU0BSQFGAUQBRgFKAU0BTgFMAUoBSgFNAVABUAFKAUYBRwFPAVkBXAFXAVABTAFNAVIBVQFWAVgBXwFpAW0BZgFcAVgBXQFlAWgBagFtAXABcQFuAWkBZgFnAWoBbQFuAWwBawFuAXUBewF8AXoBeAF7AYIBiQGOAYwBhwGDAYcBkwGfAaQBoQGdAZ4BoAGdAZgBlwGbAZ4BnQGdAaABogGfAZkBmAGdAaUBrAGvAbIBtQG1AbIBrAGmAaUBpwGoAakBrQG0Ab0BxAHHAcgBxwHDAb0BuAGzAbABsQG4AcMBywHMAccBvwG4AbMBsQGxAbcBwgHMAdEB0gHRAdABzQHKAcoBzAHMAcoBzAHPAc4BygHJAc8B1QHTAc4BzAHMAc0BzAHMAc0B0AHTAdUB0wHNAccBxQHJAc4B0gHTAdMB0gHTAdQB0wHOAckByAHKAcsBygHIAcUBwwHCAcMBxAHFAcQBxQHFAcMBvAG1AbMBtAGzAbMBtgG8Ab0BtQGrAaYBpQGlAaEBnAGZAZkBnQGkAakBqwGtAbIBtgG1AbABrQGxAbQBsQGmAZwBnAGjAagBpAGdAZsBoAGiAZ0BlAGNAY8BlgGcAZ4BnQGbAZkBlAGPAY0BjwGRAY4BiwGLAY8BlQGbAaABogGeAZYBkQGTAZYBmQGYAZYBkwGSAZUBnAGeAZsBlwGUAZABigGGAYcBhwGCAXwBfAGAAYEBfwGCAYkBjQGIAYABfgGBAYUBiAGOAZUBmQGVAYwBggF5AXIBbgFyAXoBgAGAAX8BgQGDAX0BcAFmAWkBcwF6AX8BhAGHAYEBcQFhAVwBXwFlAW8BfQGJAY4BiQGBAXgBcwFwAXABbwFuAXEBewGDAYIBfQF7AXwBdwFtAWUBZgFqAWwBbwF2AXkBdQFvAWsBaAFkAWIBaAFyAXYBbwFiAVUBTwFSAVwBZwFrAWwBcAF5AYEBggF/AXoBdwF2AXcBegF7AXkBdQFzAXMBdAF0AXIBbgFoAWQBZQFoAWsBbAFuAXIBdAFyAW0BZgFhAWEBaAFxAXkBegF5AXoBfAF8AXYBbwFoAWYBawF1AYIBigGKAYUBgAF+AXsBeAF0AXIBcgFzAXQBdQF4AYABhgGHAYMBgAGDAYYBgwF8AXgBegF8AXoBdwF8AYgBjwGIAXsBdgF4AXgBcwF1AYEBjgGNAYIBfAF+AX4BegF6AYABhAGBAX4BhgGVAZ4BnQGdAaIBpgGfAZEBiAGIAY0BkgGTAZABiwGFAYEBgAGAAYABiAGUAZ8BoQGZAY8BhgGAAYEBiQGRAZABiAGIAZABkwGNAYYBiQGPAZIBlQGcAZ4BlwGMAYwBlgGhAaUBpgGkAZwBjwGBAXgBdgF7AYUBjAGRAZcBmwGWAYwBjgGfAaoBnAGAAXIBdwGDAYoBkQGcAacBrQGvAbABsgGzAbEBpQGTAYkBkQGgAakBrAGwAbMBrwGpAaoBsgG1Aa8BrgG3AcIByQHOAdUB1wHUAc4BzAHMAcwBzQHUAd8B6gHtAeMB0wHHAcMBwgG+Ab4ByQHXAdwB4AHwAQUCBgLpAb4BngGTAaABzQEcAnwCzwL7AvYCvQJdAvcBrwGaAbgBAQJeAp8CkQInAo0BCwHYAAMBdwEIAnkCnQJuAg4CogFKAR8BNwGIAeYBHwIhAvQBqwFfAToBWAGnAfUBHAIaAv8B3QHQAekBHQJDAj4CEALOAYcBWQFnAbYBGQJYAmcCXwJPAi8CBQLyAQUCIgImAhEC6wGyAXEBYAG4AV0C5gIMA+AClAIxAr0BdQGZARcCmwLyAhID3gI9AmwB9QAbAaABMgK+AigDIAOAAqUBGgETAW8BBQKjAusCpgILAngBDAHDAMwATwEFAmwCbQJRAiwCzgFMARYBcQEaAqcC6ALPAlYCpwEcAfMAJQGJAf4BYQKYAqoCpwKJAlECLQI6AkMCDwLRAd8BHQImAvIB0gHIAXcB1QBpAJsAPgH6AbQCYQPIA8EDbwMDA4sCEgLQAe4BWQLdAkQDVgP9AmoC9QHFAeUBdgJ4A2QEhwTIA68CoQGpAAQAKQAQAf0BWQJOAkICNwL+Aa4BjgG4ARUCeQKlAoUCZwKgAuQCogL9AccBRQLAAqwCcwKXAr0CTwKDARcBRgHAAUsCywLrAmsCnwEVAd4AqQB6ALMAeQF3AiYDDAPxAUIA9v6f/tz+KP+2/9oAGAK8AjYDtQQ0BxcJDQmEB9IFuwRaBKYEXgXNBWwFdQR0A6MCLwKRAuUDVQXsBbQFNQVlBAkD8wGCAsEEJQeXCI8JrApnCyALVgrHCQQJQgcNBb0DgwNdA+0C8QKRA7UDqAI5AXAAKwDQ/4j/zP9bAJ0AlgCRAF8A3v/H/+oAzQIeBHgEkASdBOQDJwJpAJ7/mP/a/58AMQLSA1cEfQPVAbn/T/1l+x37afzb/Vf+Ef5q/cL7tvj19Xr2cvt6ApMHfggVBqoCzf/m/W39Xf+1AzgI9wlRCC0FHQIY/678GP33AAAFqQUcBBsExgVwBS4CKgB4AlUGUAdOBSkDrQGh/3b9Pf0Z//IA1wH3AusEYgZABo8FXAZACRsMaQsVBi4Anf/5BHgKlQtyCnUKfQn1A2b96f2hBtEObw6+BmL+ofll+YT96QMACKoGsAEb/bn6Wvow/CsAQgTZBVEEzACw/Pv5KftPAKAFEQevBH4BP/+q/cP8PP2y/uP/cADQANAADQBo/9T/JwCH/g38GPw1/5IBOQBp/Tn9hv9oAEz+MPwG/Y//ugAKAEH/Bv+Y/kH+Wv+nAS4DHQOjAm4CzwHvADEBRwLTAXn/Y/51AN8CQwK3/4P+F/+s//v/lgA/APj9d/wb/x8Ebga4BBMCv//E++f2YPbG/F0FcAl2B4sCu/3B+g37rf4nA6QFiAW0A64AQv1U+zD8xf7pAKABIgHl/6n+dv5i/1AAlQCQAC4Ahf7u+9n68fy6AEwDZAOkAQH/Xfz6+sr7i/74AWUEFgSqAJv8kPss/g0BPwHV/2v/8f+B/0v+iv56AFUBXv+t/GD8gv6cAHcBJQJYA6wDigGY/UX6kvn++6cAKAUwBm0Cyvzw+U/7S/6KAHQCYQQ+BKAAO/wW+yD9qP4F/oP99P6KAML/R/3v+/z8Qv8tAfcBVQF+/3P9PvwL/N/8P/+WArsDx//++CX29PoIA8cGEQRC/2b8Oft2+kT72v4pA6kEXQJR/k37mPvf/x4F2QVpAGf6Lvqe/ngBvgBDAPQBaQIz/577//ux/+sCvgNRAgD/Sftx+tL9OQK7A58CwgG6AdsA7P6i/dH9tP6g/0AA6v/M/tb+EAEgAxcC1f7b/J79uP/qAaMDMgM+/xv6Qfi4+jz+SQCDAVQCMAEN/gb8G/0H/9z+Wv3U/Cf9+Pwn/Sz/LAHa/wL8Xvr4/GYA6wAX/4P9vfwE/Pf7h/1t/5//oP6w/ur/AgAn/mD8Svz8/FL97/1X/w4Atv6K/NL71/xW/tT/WQHSASQAgf1J/NL8af1Y/Xv97/3Y/bP9H/9yAYgBQP7f+hD7XP5xAUICGQEC//z83vuV+3v7L/xR/wEE/QWnAiL9n/oC/Bv+J/9QAO4B8AFU/zv8SPuy/Oz+eABhAKX+6fwx/TD/nAB3ANv/Kv88/Z76pvrj/q4DGAT8/277b/nj+fz7RP8CAsYBkP5s+9r6T/zz/Qz/if/e/vT8T/vP+5X+0gE0A0QBd/yp94P2H/q0/0UDGQP9/477pveI9pP5Xf9KBIUFxgLA/er4wvaO+Pb8tQBbASf/Lvxx+t76Fv1s/+v/Jv7M++76EfxL/m8AZQEcAJX87fgj+DT7+v8wAx4DTgCO/NL5dvmT+9v+cwEeAqcAtP2g+jT5mfoA/t0AGgEi/2P9lP3Z/u/++fyD+rT5GvuW/eP/awHSAZ8A5/3i+mP5gvrU/X8BOQPFAQr+a/rO+G/5hftC/pQACAEt/7v8EfxY/WX+tf1N/PL7tfxY/W79uP2V/jv/vf4k/U/7QPqL+vz7qf26/hb/8P4k/qv8Y/tp+7D8If41/0YAAgHh/z78JfjA9ij5nv2cAaADDgPq/3D7MfhY+Mf7JADXAqcC9v8p/CL5hPjI+rf+IwJWA/8BAP+c+/r4BPhA+VX83P/lATUBSv4v+/b5Gvt+/cX/NwFRAXD/2vuq+GP4Rvvg/pgAAQBX/rT8pPum++/8ov5b/5T+6/wQ+1f5cvh8+Z/8RQBZAvMBgP/e+yv4EPYV9yj7GgD/AiMCGP40+Rr2JvYG+Xj9CgISBcEEegAr+oL1NfX2+CH+DQKLA6gCy/+R+3P3y/Ub+A/9FQHBARQApP4Z/tf8Cvps92f3Zfqr/gcCCANSAdb9YPpl+FL4C/oo/T8AGgHM/hn70vgu+XL7Rv5EAAQAVf1E+lj5vvqS/Lf9mf7x/iX9FPnP9aP2M/vo/6wBHwDI/LH5gviO+W77e/y2/E79b/69/m/9w/t6+5L8Xf2p/Bz7Svr4+nf8iP2m/WL9hP33/cH9J/zQ+ZD40Pn+/L///P/R/TH7sfk8+RL5aPlF+67+uwHsAZH+yfn89vr3ivvO/gAAk//B/t/9ivz++lz6XvtG/Wj+1P1U/K37vfx4/gP/3/1x/Dv8G/3I/Yn91vxm/Fv8Zfw7/OX70PuV/B7+LP9d/tr7kfls+Yv7S/7G/zj/T/1p+2f6Kvpi+nX74/3MAPYB8//W+1z4d/cI+af76/0U/wn/I/7e/KX75voO+yT8kP2M/tH+lP70/dL8RPvr+ZP5mPqe/Lv+2v9P/1v9Jvvv+Sz6WPuU/Fr9of17/d787vtD+4n7tfza/Qb+Jf3x+zP7QvsI/AL9Wv2J/BH7P/rl+pP8NP4w/4L/Cv96/RX7Gfng+KX6M/3h/s3+W/2o+5/6evr/+vj7PP1p/tX+Cv5C/GL6b/nZ+SX7V/zi/CH9q/1X/lj+b/1y/E/83/wu/bf85vtq+4n7Cfx0/G38DPzg+0v85fzr/Fn87PsN/EL8/Ptz+zr7a/u1+/X7Svyz/BP9e/3x/RT+a/0T/Lb61fmK+fH5OPsk/dv+kv8o/wr+yfzr+9L7dPxT/d39uv3C/Bj7bvnc+Pn5Q/yS/v7/NQBJ/4z9tPub+rP6uPvp/In9Tf2B/M/7v/tb/En9Hv6H/lT+g/1J/Bf7dfrV+i380P3d/v3+iP76/YP9Nv0z/Wv9ff0k/Yz8//uH+y/7Vfs9/Ir9jf4S/17/gf83/37+w/1J/eT8cvwy/GT83vxZ/c/9TP6W/mn+4f1a/RT9Ev1J/Zf9vv2a/VP9Lv0z/UH9av3h/Y/+9v6o/sH90fxT/E/8hfzL/Dj95/2t/jL/Sf8S/8r+lf5//n/+cf40/tT9df0e/b78f/zB/KH9sf5g/3H//P40/nD9J/2a/Xj+E//9/j7+I/0P/HX7rfuh/Nf9zv48/xD/a/6m/Sn9Hv1a/af9/P1o/sz+1v5V/n/9zvyX/M/8Nv2z/Vf+/v5C/9L+0f24/BD8Nvws/Xr+af+d/1L/4P5J/nv9yvy+/GH9Iv5q/hv+f/36/ND8B/1m/bn9EP6Z/jP/cf8S/0r+if0Z/ff84vyi/FL8VPzU/Gr9jf1L/Tv9qf01/mf+Rv4n/iX+Gv7w/b39qf3a/Vn+6f4c/8T+Jf6r/Xj9cv2J/cD9A/4k/gr+wv14/W793v2+/qL/DwDh/0b/e/6g/cv8Kvzp+xz8qPxM/cD96/3u/fX9Cv4p/ln+nP7Y/uf+wP5z/gj+iv0g/QH9Ov2n/SD+jf7T/sf+VP6m/Q39xvzY/Cr9m/0S/nT+r/7C/q/+e/4z/vb92v3Q/bP9cv0i/dn8pPyb/Oj8j/1Z/gT/dv+d/1n/rP7v/YH9Z/1n/W/9nP3g/Qr+GP5F/pz+1/7W/s/+8f4Q/+z+lf5D/g3+8f0J/mb+5f5S/5v/vP+V/xb/ff4o/jL+cP62/vD+Ff8l/0L/gP/A/+T/AAAtAEEA//93//r+pP5Q/vv91v38/VD+wf5U/9T/5/+E/xT/3v6w/lX+B/4V/mH+iP5n/jH+C/7z/fj9NP6H/rL+sP6w/rP+i/5E/jf+jf78/jT/SP9y/6f/s/+X/37/ZP8Z/6r+Zv5w/pf+qv7A/vf+NP9O/1f/gf/B/9f/qP9V/wL/sP5m/kX+Vf6A/rb+9v4o/xv/zv6P/qT+8f44/27/pP+9/4T/Ev/O/u3+R/+j/+7/GgAIALr/Yf8e/+D+p/6k/vj+dP/R/wQAHwAYAOX/qv+V/6D/sv/a/yAATgAmAMX/cf80/+n+rf7M/kP/p/+t/3b/N//u/o3+QP4+/oz+/P5b/3//UP/s/pX+aP5M/jv+Tf6C/qr+qf6f/qr+vv7R/v3+Pf9a/0X/Lv8z/yf/5/6p/qf+x/7M/r3+xP7d/uv+9/4P/xb/8v7Q/t3+9f7g/sH+5v5A/23/U/8+/1//lP+z/8T/yv+u/2z/Kv/9/tj+xf7x/mn/6/8wACwAAQDI/4n/U/85/0b/df+p/7b/k/9g/0T/Qf9a/6X/GQB3AI0AeQBlADUAx/9Q/yv/Wf+O/7H/9/9uANoACwEPAfgAugBnADUAOQBUAGsAkAC9AMsAqwCEAHgAhgCrAOsALAFEAS4BDwHtALAAZwBJAGAAjQDGABsBcgGNAW0BSwExAe0AiABdAI8A0gDjAN8A9gAPAQwBDAEzAW8BogHYAQ4CCQKyAUQB/wDMAIkAXAB2ALgA5wADATEBYwFwAVoBQQEcAc0AZQAeAAsAGwBEAIgA0wAAAf4A2wCxAKcA2AAvAWkBYAEmAd4AlQBlAIcAEgHRAYAC/gI0AwADbwLUAW0BJgHhAMIA9ABMAW4BRwETAQUBIgFeAasB5wHrAbMBTAHFADkA4f/j/zMAqQAiAXoBjQFWAf8AsABmAB0A8/8BAC0AUQByAK8A/gAyATYBHQEGAfIA0ACNADYA9//f/8v/mf90/5r/AgBuAMkAKAF1AXEBIgHNAH8ABwCH/3P/4/9XAHcAgQCxAL0AWQDX/73/BgBNAHMAnwDEAKgAWgAeABAAIABbANMAVgGXAY4BYAEJAXgA4/+Z/6H/yv8OAIQA/gAtARkBDgEiASoBGgEgAUsBbQFaARQBtABQAA0A/f8IACcAewAKAYsBsgGcAYgBZAH/AIgAZQCZANUABwFkAdkBBALJAXoBSwELAZ8AUQBfAJ4AwgDGAMUAuACTAHoAmQDwAGMB2wE5AlkCKAK1AQ4BVwDj//b/fAAjAcYBbALiAtACQgK7AYEBYAE2AU0BxgE1AjQC+gHqAekBsgFwAYwB7gEmAiMCLAI4AugBSwHsAAkBTwGNAQoC1gJuA2YDCQPGAoYCBgKEAW0BqwHUAeIBIAKBArACqQKzAscCoQJYAlYCnAK5Ao8ChgLBAtECeQIoAkECgAKIAoICrwLNAoACAwLTAekB7gHmASYCqgIRAyID/gK9AmMCEgLxAe4B4gHeAQICIAIAAsgByAHyAQAC+AESAjsCNwIVAhcCJwL5AaQBiwG3AdEByQHrAT0CVgIHAqEBawFLASEBEgExAUQBIAHsAMwApwB1AGAAdQB/AFkAHQDm/6P/Xv9G/2H/cP9c/1X/bf9v/0D/Hv8r/y3/7/6h/oX+hf5p/kH+P/5Z/l/+Sf46/jr+Of41/i/+GP7i/Z39W/0X/dH8pvyq/M38+vwu/VT9QP3v/J78dfxY/Cn8E/xF/Iv8hPwt/Ob73/vi+7z7m/u2++n77vvG+7X7y/vN+637qfvl+yL8Jvwj/F38q/yq/Ff8GPwb/B388fvX+xP8i/z4/EH9fP2w/dL94v3p/fP9Ef5M/pL+xv7u/hr/Qf9R/2X/sv8nAIEArgDhACcBRAEeAfoAHwF4Ac8BJwKeAh4DawNwA1QDPAMtAyQDOAOGA/0DaQSnBNEEEQVRBWgFegXRBWAGwQbWBuoGGwcbB9cGwAYUB3UHlwfTB2YI0wijCEEISQh9CE0I/Qc7CNcIDAnRCNEIGQkGCYsIYgjDCP4IsQheCHAIjAhbCCQIPAh5CJsItwjOCKwIUggQCO0HnAceB9UG1wbOBqkGqga+BoYGGAbmBdsFewXtBNsEMAUZBXoEIARFBCsEjwM1A2gDVgOSAusB6gHIAewAIgA4AH0A+v8w/yX/j/9q/8b+gf6O/g/++Pwe/LX7Dfv4+Sv5B/n6+Hv40fdq9yj3pfbP9eL0HPSV8yfzl/Ls8WvxHPGg8NbvHO+t7jLuYe2Q7AbscuuW6vjpIeqs6vTqKuvX67Ls/uzP7NrsNe1M7Qjt7uwU7QPttuzE7ErtvO3x7XvulO+c8BXxZPEH8s7yV/PO85P0o/W89s731fio+TP6ofoJ+1P7lfsd/PP8vf1Y/hX/HQAhAfcBAwOGBBMGKQfpB58IGwkKCa0IjAi3COAICAllCcgJyQlwCSMJ8gijCGIIowhJCaUJewlQCW0JUQmWCLYHVgc8B8AG5wVCBfIEdASGA5ECAAK6AXoBTgFuAdIBOgJ3AoYCcgJIAhwC+wHrAfYBLAKHAvACWwPEAxMENARABHME5QR0BQsGywbcByYJXQpQCyAMDA0NDuAOYg/ZD50QjhFAEqASCROgExIUNBR1FD8VYRZxF3QYihleGoAaIhrZGdEZ1Bn4GYEaORuQG10b5Ro5GkYZaxgnGD8YBhiHF1QXPBdsFgAVHhQkFBYUaxPyEhoT1RJYEZ0PsQ7gDSwMaQr2CTUKgQkICFsHcgefBp8EMgMPA7ICLwHj/+7/GwAD/3v9Bf0U/R78Z/p2+VL5hPjE9mb19fRS9NDyZfHq8Krwte947uPty+1W7WvsoOsN6yPqrugs5wTmFOU55LTjxOMq5GLkKeSL45fiQ+G334HeOt4T38ngC+Oe5R7o+enl6hnr9Oqo6mDqaeri6onrHOy87IvtUO7l7qPv9/C18l/04/Vx99D4kvnW+TX64/qm+5D8Cf74/64B2AK2A1gEYgTaA3EDhQO7A+wDrgRYBksI3glSCxENng42DwwP4Q7ADiEOJw2XDJ0MjQwUDLULzAvvC64LUQtPC5ILqAtuCxALmwr0CSoJdggNCAIIRAiWCLcIjAgQCCMHugUmBOQCIgKyAYABsAE6AsACAwMfA0cDdwOYA7ID3AMSBEAESgQZBMUDnQPSAzsEuASVBRUHzAgBCqYKRAvnCwgMpwuqC6wMNQ6rD0URVxNOFVMWfhaKFqoWhBY8FoAWgRejGHAZFxrMGlcbjRuwGw4cohxIHfgdiR6iHisebh24HBEcgRtAG2MbvxsdHFIcHRw/G+YZhhhFF/sVxRQUFPgT/RPYE6gTWBOAEiYR7w8WDwcOfQwzC7YKSgoECVYHSwbFBcwEbAOwAsAChAJ9AYQAEwBN/479x/sW+wL7cvqW+XX56Pmz+XL4HfdG9lT12vOR8iryH/KX8cLwYPBU8Mrvou677ZXtk+387AnsZOsA6xjqauiv5qzlSOX55MzkRuVP5vnmoOat5dbkHuQ/47XigOPE5Yfo6Orp7JruVe9+7qDs+eoq6vrpS+po60LtFO8w8LDwEfF68e3xwvJh9I32hfjq+f/67vtZ/Az8r/st/Jz9Rv+3ADkC+gNrBecFnAVMBWQF2gXGBnQIxQoeDRUPvRANEpESFhI6EbsQmBBQENgPpg/pDzQQHhDBD3EPUw9ZD3YPlw+bD2oPCA91Dq4NxQzdCwYLTArWCa4JewnaCOYHGAeCBqIFOATRAhYC6AGtAUYBMQGwAV0CuALCArsClwIZAkwBjgAVAL7/fv+m/3wAtgHDAowDegS0BboGFwccB3gHSQgqCfgJCguHDBUOXQ9zEHURNhKcEvYSkRNFFMoUQRUBFgQX8RenGE8ZBxrCGn0bOBzPHBkdMR0+HRwdlhzfG20bYBt4G5MbyBsFHPgbfhvDGuMZzRigF64WFBaaFSAVshQ1FG8TfxK7EQsRARCzDsANMA0wDG0Kygj8B2IHLAblBIkEsAQQBJgCcAHkAOD/+v1l/AP88vsd+xH63fkS+mX53/fJ9oP2Dvbr9Pjz2PPJ8+nyo/Hf8Hfwou957uvtMO5o7vTtU+0d7fHsEeyj6oPpAemZ6PjnjefH50DoRujS52vnJed75lblhuTV5B3ms+d96dXrhO6K8Cbxm/Cv79HuDO6P7bztru4U8IXxw/Kw80n0tPQw9ef12fb790v5ufoe/FX9Wf48/xQA9ADsAQMDJgQxBf8FhgbaBgwHHAcjB20HTQi5CVoL9gygDmEQ5xHREiITKRMHE58S9hFbEQsR7RDMEK0QsRDJELkQYxDmD2UP0w4XDksNtQx6DHUMaAw/DA0MyQs9C1IKPQk2CC8HBAbSBN0DHwNNAlUBkABFAEIAMAAbAEcApQDYALwAkACCAGIACAC0/7b/8P8BAPD/NgANAf4BfwKzAi0DFwQCBaUFUgZ4B/8Idwq4C/cMSA54D20QSBEYEqwS6xIcE5ATOBTHFC0VqhVvFmEXSRgNGboZYhoFG4cbxhvDG6sbrRvRG/wbDBztG6QbTxv8GoIasBmyGPcXnRdCF5UW2BVkFRIVfhS1ExQTmRLoEQERSBC3D8QORw3YC9UKwwk0CKcG0gV8BdgE1AP+AmACXQHl/7b+MP6//fX8WPxn/Ir83vuW+pb5BPk1+Pj2+PWd9Wf10vQi9MHzb/O88trxV/Ev8d3wPvDI78Hv0u+Z7zzvCO/g7mjuke2d7LHrrOqI6ZjoK+gz6HHo5ujO6RvrT+zy7A/tCe0R7QXt5ewT7ejtR+/C8BXyNfPs89/zAPPT8f3wsfDU8G7xtvKU9If2EPgp+RT67Pqg+0P8DP0O/h7/FADuAJkB5QHWAccBFQK1AnADWASxBV8HywiLCdAJCQpWCqYKGQv1CzwNmg7MD8MQaBF8EfAQDRApD1QOgg3cDKsM9AxgDZsNpA2iDZ0NdQ0dDbwMfwxoDFUMKgzfC2YLqgq0CbwI8gdKB6cGIQbrBe8FugUMBSoEfAP6Al4CuwGOARIC5wKRAwUEcgS3BHwEwQPyAmICAAK7AcsBWQIfA7gDKwTOBKoFXwbBBi0HBwggCQEKkgomC+kLrQxADbsNRw7eDmgP6Q9kELUQxxDLEAcRbhG0EcMR6hF2ElATJBTGFEkVvxUSFhYWwhU4FaIUHBSvE1QTAxOzEmkSKRLoEYkR+xBaENYPeg8jD7kOUA7+DbANRA3CDEAMqAvaCu4JHAljCIUHcAZlBYwEtAO8AuQBdwFSAQ4BnAA+APj/gP/J/i/+7P23/T79o/w1/Nb7MPtF+n75Cfml+CD4sfeQ95P3aPcO97f2Z/b39Xb1J/Uo9T31MfUU9f30xPQo9C/zJPI28V7wnu8w7z/voO/87y3wSfBW8Cnwte9B7zDvmu9I8BPxDvI18yv0d/T/8x3zQfKi8VPxcPEI8u3yz/N+9Pn0RfVb9VT1cfXr9cX23PcU+VX6cPsu/In8pPye/H38V/xv/Pf8zv2t/nP/LgDfAF8BmgG9AQkCmAJcA0MERgVOBjgH5wdTCH4IaQgoCOgH0QfrBxoIPwhVCGUIdQh8CGkIPQgSCAwIMwh0CLoI+QgqCT4JHgnGCEIIqwccB6sGWAYUBtwFugWzBasFfgUoBcsEhQRXBDkENgRWBIcErATGBOYEBQUEBdYElQRjBEMEKQQWBBoEPQRwBKMEzQToBPEE9AQSBXUFNwZMB3cIYQnQCcMJYgnWCEoIAAg0COYI0AmuCmILygutCwQLSQojCrAKZAu5C8cL+QtgDJoMbgwqDDoMmQzgDNEMnwyQDJ8MiAwWDEQLNgpBCeEIYwl8CmYLlgsxC58K6wnVCHoHfgZfBugGigf4ByYI7gclB/sF4AT0A+4CzgEjAWUBNwLBAqoCNwKhAb8Ah/9w/gP+Mf6J/tn+Pf+d/4j/wf6W/X78k/u/+i36OPrX+oD7qftN+7r6F/pQ+WX4kvcV9/z2MPeS9/X3Gvja91L3vfY79rv1PPXi9M708/Ql9UP1QfUQ9ab0IfTG88Pz/PM09E/0a/Sl9Ob0/vTi9Lb0n/Sd9Kj0zPQZ9YL13vUW9jX2R/ZL9j/2OPZL9nn2tvYB92j37vd7+Pf4U/mN+a/5y/n6+Ub6ovoF+3L76PtX/Kr85/wh/V39kv3C/QH+Xv7H/iH/Zv+j/+D/FAA5AFgAgQC+AAwBZQHAARACSQJmAmgCVgI/Ai0CJwIvAksChgLgAkQDjAOmA6ADkgOGA3MDWgNUA3sDwwMCBB8EKQQ6BEsEQQQWBOwD4gP4AxUELgRGBFsEXARBBBwEDgQqBGoEugQIBU0FiAW5BdYF2AXIBbkFvgXdBRQGZAbABgkHJQcXBwIH/QYFBxEHKQddB6kH8QcmCFAIegiYCI8IXggnCBcIOgh9CL4I5gjzCOsI1Qi3CJoIgQhsCFYIOwgkCCAINAhXCHQIdQhRCAwItQdgBx0H9QbmBuQG4wbdBs4GrQZ1BjAG8gXHBaAFYgUFBZoEPQQBBOsDAAQzBFkEOwS2A+UCCAJcAfwA5AABATcBaAF7AWYBKgHJAEYAov/p/kD+z/2p/b796v0T/iz+I/7a/UX9hPzN+0P76vq++sX69Pop+0P7MPvr+mz6ufnv+Dr4v/eM96n3Cvh7+Lj4mfgv+KX3FveJ9g32uPWY9av16vVE9qD22PbS9pH2J/a09VT1GPUF9Rj1UvWq9Qj2SvZb9kP2FPbh9bX1l/WP9aH10vUh9oD20Pb89hL3KPdG92H3ePef9+T3O/iQ+Nr4GvlO+Xj5nfnH+ff5L/p2+s/6MPuF+8j7A/w8/HH8nvzJ/PX8J/1o/b/9Iv5+/sn+DP9M/4L/p//F/+v/HABSAIYAugD1ADcBeAGwAdkB+wEgAkkCbQKKAq4C5QIpA2YDjQOlA70D2QP6Ax4ERgRwBKAE0AT4BAwFDwUWBSwFRAVNBUwFWgWFBcIF+QUeBjcGTgZmBnwGjAaTBp0GtQbbBgUHKQdKB28HkweqB60HpwelB6sHtgfAB8sH2gfoB/IH8wftB+gH6QfvB/cH/wcKCBQIGAgQCAII8wflB9gHywfAB7MHoweTB4IHaAdIBykHFQcFB+wGxgafBnsGVQYtBgoG7QXPBasFhgVjBTkFAgXDBIgEVQQhBOkDsAN6A0oDGgPqArYCgAJKAhMC2AGYAVkBIAHnAKQAVwAMAMz/lf9f/yL/4f6e/l7+IP7g/Zr9T/0E/b38evw7/P77xPuK+077D/vK+oP6Ovry+ar5YPka+df4m/hi+C74+/fD94P3QvcM9+L2ufaL9l32N/YX9vf10/Wu9Yb1W/Uv9Qr18vTk9Nv01fTP9Mf0u/Su9KP0nvSe9KL0rPS99NL05vT29P70BvUU9Sn1QPVU9Wv1i/W09dv1AfYv9mX2nPbI9u72FvdH93/3t/fx9yj4XPiP+MX4/Pg0+Wz5qvnr+Sn6YfqW+sr6//o5+3z7xvsP/FX8nPzl/Cf9YP2Y/dT9D/5B/nH+pv7l/ij/af+n/+H/FABBAGwAngDVAA4BRAF2AakB4gEeAloCkgLHAvsCLANaA4MDpwPEA98DAQQrBFkEgQSkBMcE8AQbBUEFYAV9BZoFvAXjBQkGKwZJBmoGjQavBskG3AbrBv0GFQctB0EHUQdkB3wHkQebB50HogeqB60HqwesB7cHxwfQB84Hxwe/B7cHrAegB5UHiAd5B2gHWAdIBzkHJwcRB/cG2ga9Bp8GgQZhBj4GHAb6BdsFugWPBVsFJwX6BNEEpgR1BEIEFATqA8UDnwN0A0IDCgPTAp0CZgIrAvIBwQGVAWYBLwH5AMkAnABqAC4A8P+0/3r/QP8C/8T+iv5U/h3+4f2k/Wf9K/3v/LP8evxF/BH82fue+2L7Kfvw+rP6dvo7+gL6yPmO+Vn5Jfns+K34b/g6+Az44fez94L3UPch9/j21Pav9oj2Y/ZD9iP2//Xa9bn1nfWE9Wz1VfU99ST1EPUD9fn07PTe9Nf01/TY9NT0zvTN9NP03/Tv9AP1FPUh9S31PPVP9WT1e/WX9bX10vXx9RP2OvZg9ob2rvba9gX3LPdT93/3sffo9yD4WPiN+MH49/gz+XL5rvnk+Rf6TfqJ+sX6+voo+1v7nPvk+yb8XfyQ/Mz8Ev1X/ZX9yv3//TX+b/6r/uX+HP9V/5L/z/8EADQAZgCcANUADQFFAXwBsQHkARgCTAKAArQC6QIeA04DeQOjA9EDAQQtBFQEfASnBNME/gQpBVUFfwWoBc8F9AUVBjMGTwZwBpMGtQbRBusGBgcjBz8HVQdpB4AHmwe1B8sH3QfqB+8H7AfqB+8H9gf5B/UH8QfxB+8H5gfYB8sHvwevB5sHiQd+B3gHbgdeB0oHNgciBwsH8AbSBrIGkQZsBkcGIwb/BdYFqAV4BUsFIAXxBMEElgRzBFEEJwT3A8gDnwN3A0kDFgPlArQChAJQAhwC6AGzAXwBRAELAdAAkwBSAA4AzP+O/1j/Iv/o/rD+gP5V/in+9P24/Xz9Qf0L/dT8mfxY/Bb82/un+3H7M/vy+rX6efo6+vr5xPmT+Vz5H/np+MD4mfhr+Dv4Efjr9773jPde9zr3Fvfu9sj2qfaN9m72TPYt9hX2Avbx9eL10PW/9bL1q/Wj9Zj1j/WP9ZX1mPWZ9Z31qvW89cz13fXv9QL2E/Yn9kL2X/Z69pT2tPbc9gX3LfdW9373pffK9/L3I/hX+Iv4vvjw+CP5VvmL+cT5Avo++nf6r/rp+in7Z/ui+9n7FPxT/JT80vwR/VP9lP3M/f79M/5u/qr+4f4W/03/hf+7/+7/IQBUAIQAswDnAB8BVgGJAboB7AEdAk4CfwKuAtwCBwMyA1sDhAOvA9wDBgQpBEgEaQSNBK0EzATvBBcFPQVaBXYFlwW5BdYF7AUGBigGSAZfBnMGiQajBrkGyQbXBuYG9gYFBxMHIAcqBy8HNQc+B0UHRgdDB0EHQwdFB0UHQAc4By4HJAcbBxAHAwf2BuoG4QbVBsYGtQajBpEGfgZrBlcGPQYfBgAG5QXLBa0FjAVrBUsFKQUDBd0EuQSWBHAERwQgBP0D2wO1A4wDZQM+AxcD7gLEApwCcwJIAhgC5gG1AYMBUQEcAecAtACCAFEAHgDr/7b/gv9S/yT/9/7J/pj+Zv44/gz+3v2s/Xr9Sv0c/e38uvyG/Fb8KPz5+8j7mftt+z/7Dvvc+rD6iPpg+jX6Dfrs+cz5qfmC+V35Pvkh+QT56vjS+Lz4pPiN+Hj4Z/hW+ET4NPgl+Bn4D/gE+Pn38vft9+n35ffk9+n39PcA+Ar4Fvgn+Dv4Tfhf+HX4j/iq+MT44Pj8+Bf5M/lT+Xj5nvnD+eX5B/op+kv6b/qW+sD67Poa+0r7evur+977E/xI/Hv8rfzg/BH9QP1u/Z39zv3+/Sz+Wf6H/rn+6/4c/0n/dv+l/9P///8pAFcAiQC5AOUADgE7AWkBlQG9AeYBDwI5AmAChQKrAs4C8AIRAzEDUwN0A5YDuAPaA/sDGgQ5BFcEdwSXBLQEzgTnBAEFGwUzBUcFWQVsBYAFkwWlBbcFxwXUBeAF7gX8BQsGGQYpBjoGSgZWBmAGagZ0BnsGfwaCBogGjQaLBoUGfgZ9Bn4GewZzBmgGYQZdBloGUQZEBjgGMQYtBicGGwYKBvoF6wXbBckFtgWjBY4FdgVcBUEFKAURBfkE3wTDBKUEgwRgBD0EHAT8A9sDtgONA2cDRQMkA/8C1gKrAoECVwIsAv8B0wGmAXkBSwEeAfEAwwCVAGgAPQARAOL/sP+A/1D/If/y/sX+mP5p/jf+Bf7V/aT9cf0+/RD95fy5/In8Wvwu/AX82fuq+4D7Wfsz+wn74Pq8+pj6cPpF+hz6+/ne+cD5oPmE+Wv5Uvk2+Rn5APns+Nj4xfi0+Kb4m/iR+Ij4gvh++Hn4c/hw+G/4cPhv+G/4dviE+JH4m/im+LX4x/jW+OX49/gP+Sv5Sflm+YP5oPnB+eb5Dfoz+ln6gPqo+tH6/Pon+1P7ffun+9P7APwu/Fv8i/y7/On8Fv1G/Xn9rP3c/Qr+O/5t/p7+zf78/iz/XP+M/7v/6f8WAEUAdACjANAA+gAlAVIBfgGoAdMB/gEsAlgCgQKoAs4C8wIaAz8DYgOAA50DugPWA/ADCwQlBD0EVQRtBIgEowS8BNME6QT9BBAFIgU2BUwFYQVzBYIFkgWkBbYFyAXYBeMF7AX3BQUGEwYbBiAGJgYxBjsGQAZCBkUGSgZMBkwGSwZNBk8GTQZIBkQGQAY4Bi0GIgYaBhEGBAb2BeYF1wXJBbwFrgWeBY0FfQVtBV0FTAU6BScFEgX8BOMEyASpBIkEagRMBC0ECwTnA8IDnQN6A1cDMwMMA+QCvgKWAm4CRAIbAvMBzQGmAX8BVgEqAf0AzwCiAHQARQAXAO3/wv+V/2b/OP8L/9z+rP5//lf+Lv4D/tX9qf2A/Vj9MP0E/dj8rfyF/F78N/wQ/Or7xPua+2/7R/sl+wT74fq9+pv6fPpe+kL6KvoW+gH66/nT+bz5p/mW+Yf5evls+V35T/lE+Tr5MPkm+SH5IPkj+SX5Jfkl+Sj5L/k3+Tz5RPlS+WP5c/mD+Zj5tfnS+e35CPoo+kn6afqI+qv6zvrs+gn7KPtL+2/7jvur+8378/sb/ED8ZvyO/Lv85vwO/Tj9Z/2b/c/9AP4y/mT+k/6//uf+E/9A/23/mv/I//f/IgBKAHQAoADMAPYAHwFIAXABlwG/AeYBDgI2AmAChwKpAssC8QIZAzwDVQNvA44DsAPLA98D9AMNBCMENAREBFgEbgSEBJcEqAS1BL8EzATfBPIEAAUJBRIFHgUqBTQFOwVCBUgFUQVZBV0FXAVZBVsFYAViBV0FVQVPBUoFQQU3BS4FJwUdBRAFAQX2BOwE3wTOBLsEqQSYBIkEfARyBGgEWgRIBDcEKgQaBAQE6wPWA8UDrgOOA2wDTwM4Ax8DAwPpAtYCwAKgAnsCXQJJAjcCHgL+AeABxgGtAY8BbQFKAScBBQHjAMMAoQB9AFcAMgARAPX/2v+9/5z/fP9d/z7/HP/5/tv+wv6n/oj+af5O/jL+Ef7t/c/9tf2c/X/9Y/1K/TL9Fv33/Nr8wvyv/Jv8gPxf/ED8I/wD/OD7wvut+5j7fvth+0n7Nfse+wv7BPsE+/n65frZ+tv63frW+s36zPrQ+tD6zfrK+sT6vPq4+rn6tPqq+qf6s/rC+sn6zPrZ+u36/foH+xr7OPtX+3H7ifuh+7n70Pvp+wj8LPxQ/HT8mPy8/OD8AP0d/T79av2a/cT95/0O/jr+Zv6O/rn+7v4k/1L/ev+l/9L//v8pAFkAiQCzANoACAE5AWEBggGoAdcBBAIoAkoCcwKeAsMC4wIJAzcDZQOJA6kDzQP1AxsEPAReBIIEogS5BMsE3gTwBP0EBwUWBS0FQgVUBWUFdAV8BXsFfQWGBZAFkgWQBZAFkgWPBYYFdgViBVAFRwVHBUUFNwUlBRcFCgXzBNMEugSvBKsEnQSDBG8EaQRmBFcEPAQjBA4E8QPHA5wDcQMvA8QCQwLQAWkB8wBtAPn/pf9b/xf/Av9H/9L/eQAyAQUC2wKSAzgE9AS0BTQGVwZQBkYGGAaiBQMFeQT/A2MDpALrAUUBmADh/zr/p/77/SL9Q/yD+8r6+vk5+cn4rvi2+Mn4EPm2+bH61/sZ/W7+vv/pAOYBxgKLAxcERwQaBKoDEQNOAlwBUABe/6D+Bv51/fT8qfyg/Lb8wfy4/LL8t/y0/JT8Uvz7+5b7KfvB+mP6CPqs+WX5VfmB+cT5+fk2+qL6K/uN+637vfvo+xT8Dfzd+7T7m/tu+yz7/vrw+tT6lvps+oH6qvqa+lf6MfpC+lT6PPob+iT6Tfpw+pb64fpQ+8H7L/y3/F398/1d/rv+L/+j/+z/DQAmADMAHQDy/9//7//5//L/DQBqANgAHgFPAaQBFAJbAl4CPAIPAskBZwECAaAAIgCD/wH/0v7g/vf+KP++/88AHQJcA4oExgUDBwgIsAgJCSsJEgm3CDAIngcLB2UGsAUPBZAEEwR5A+ICiQJtAlYCJgL9AfoBCwIVAiACQQJvAqMC9gKHAzkE2QRnBRQG4AaBB70HrgePB2UHEAeOBgAGbgW+BO4DJwONAiIC4QHdAR8CigLwAkkDrAMdBIAEtAS0BIsESQT/A7MDXgP9Ap4CWAIoAvsByAGjAZ8BugHiAQQCDwL3AcUBjwFYAQYBkAAZAMj/j/9J//D+r/6l/r/+1/7f/uD+4v7n/vn+F/8r/yH/Cv8J/xr/Dv/O/oL+X/5d/kX++v2g/V39Kf3m/Jf8T/wS/Nb7m/tq+zn79vqs+oP6jfqn+qb6i/p4+oL6nPqt+rH6t/rP+vH6Afvv+sv6s/qn+o/6Yvo5+ir6Mfo7+kb6WPpp+nL6hPq4+gn7RftP+0H7Rvti+237Ufst+yH7IvsQ++364/oC+yv7QPtJ+177gPuo+9v7I/xu/Kj82vwa/Vv9fP1z/WX9a/15/Xf9aP1d/WH9fP27/Rr+ev7E/v3+OP9y/5f/p/+3/9L/6v/r/9T/vf/C/+f/GgBTAJcA6QAxAVMBXwGIAd4BOgJ2ApQCrQK8Aq4ClAKdAtYCHANOA3QDqQPrAxcEGgQIBAUEFQQbBAME7gMCBDMESwQxBAUE6APTA7IDlQOaA7wD2QPfA9kD1APYA/ADGgQ2BBwE2QOoA6UDpgN+A0EDKQNGA2YDXAM1AxwDFwMBA78CaAIuAioCSgJpAnMCdQJ/ApAClwKPAoYChgKBAmICLALxAa8BXQEMAdwAxwCiAFsAJAAqAEsAQwASAPj/DwAsACkAFwAMAPj/zf+f/3r/Pf/T/mn+Mv4X/t/9kP1n/XP9hf18/W39b/1w/WD9Q/0X/cv8bvw4/Dv8PPwJ/ML7p/uv+537YPsh+/366fre+uT68/rp+sH6mPp++mb6R/o0+jr6RfpG+k36avqG+ov6hfqH+on6cPo9+gX60fmZ+Vz5K/kT+Rb5Mvlf+Yr5qfnO+Qj6QPpS+kT6QPpZ+nj6h/qU+qb6rPqm+rP64foD++76wvrG+v36JPsW+/r6A/sk+zT7Lvsz+1T7g/uw+9n7APwu/G38wvwc/V79iP2u/d79EP43/k/+XP5e/lX+Q/4l/vj9zv3I/ej9BP7z/cP9of2h/bH9y/0J/n/+GP+s/yUAjQDeAA8BJgE9AWQBigGdAacBwAHoAQQC+QHKAX4BEwGEAO7/fP9P/2f/pf/v/zUAeAC/AA8BYAGfAcIB4gEZAmECkgKSAnwCfAKYArMCtwKoApICeQJeAkYCKAL2Ab0BngGeAZkBcwFNAWIBswEGAiwCMQI8AlICXgJTAkQCSwJlAnECVQIhAv0B9AHiAaABPwH4AOgA9QD9APQA3AC2AJUAlACnAJQAQADd/6X/jv9f/xT/5/76/iX/NP8k/xj/Jf9A/1P/Sf8c/+r+2v7i/sH+Vv7T/YP9X/0i/bf8W/xJ/Gj8bfw2/OH7mPtl+zX78/qm+nf6ivrO+gb7EPsQ+zv7gvuo+5f7d/tv+2r7Q/sC+8b6nfp5+k/6Ivro+Zj5Q/kU+Rb5H/kM+e346/gA+fn4vPhy+FD4Wvhv+I741fhH+av51fnX+eP5/fkL+g36Gfoo+hT63Pmy+a75p/l1+T/5SPmM+cj50vnJ+dr5Cvo3+kD6H/rv+eP5Fvpm+p76tfrX+h77dPu5++f7BPwW/Cv8XPyv/P78Hf0M/fD84/zd/M/8u/yx/L383fz9/A/9IP1G/YT9wf3t/Rf+Uv6W/sj+4f76/ir/bf+n/8L/yP/Y////JQA3AEQAaACNAIAAPgAIABYASwBsAHMAhQCjAKsAlACFAJQApAChAKcA0QAEAR4BMwFzAdkBIAIjAg4CFwI4Ak0CVgJzAqMCuAKTAlMCJQIPAv4B7gHxAQgCGQIVAhICJgI/AjgCFgIIAisCXAJfAjcCIwJHAnwCfwJKAg4C6gHHAZIBWwE7ATcBQQFTAVsBQwEOAeQA3gDeAL4AjwCHAKoAuwCJACgA1/+5/7f/pP9p/yb/D/8y/1n/Rf/2/qD+aP48/vf9l/00/eb8uPyo/KX8mvyJ/IT8jPyC/FL8Dfzc+8v7ufuA+yf71/qw+qb6ofqa+p76sPrB+sb6w/q8+qj6gfpP+hT60vmT+Wf5S/kl+e/4zvjd+AH5B/nl+LT4hPhW+Db4OvhV+Gj4b/iC+Kz41fjk+Nf4uvic+Iz4jfiN+Hz4a/hz+Ir4jfh5+G74f/iY+Kj4vfjs+C35avmT+aX5rPnB+fH5JvpD+lH6cPql+tL65frq+uf60Pqs+p36ufrw+iv7aPuf+7z7xfvc+xT8U/x7/JX8tvzn/Cn9hf3t/Tz+a/6h/vX+Rf9m/2b/bv+D/5T/qf/S//z/AADk/9f/7/8aAEQAdwDDAB8BawGTAacByAEDAjQCOAIsAlECtQIVAz0DRQNTA1gDOwMXAxgDOANaA4oD3gMqBDYEEwQIBBkEBAS7A4kDpgPsAyUETQR5BJgEmQSRBJMEkQR6BGQEbASFBJAEiAR7BGkESwQnBAYE3gOpA3kDaANqA2EDRAMoAxcDAAPQApECbQKFAsgC+gL7Au0C8QLiAoQC7wF5AUABBwGiADcA7/+r/0v/8v6+/of+Fv6Y/V39W/0+/fn82/wI/T79Of0O/fv8Av35/ND8nfx0/FL8Lvz6+6r7QfvV+nr6J/rL+WT5APmr+G74Rfgc+Nn3gPcq9+X2p/Zu9lr2efal9rP2q/a89u32FPcJ99z2uPa09sf23fbn9tn2rfZt9i72+vXI9ZP1a/Vj9XH1dvVk9Vb1bPWd9cT1zPXM9eT1GPZS9n72mPaq9rv20fbu9g73I/cm9yz3TveK98H32ffc9+T38/f89wH4G/hP+Iv4w/j9+Dz5dfmu+f75ZPq4+un6Hvt2+9X7Dfwv/Gr8u/z0/BH9Pv2H/cv9+/06/pb+5f4Q/z//nf8UAHQAuwAMAWwBvgH5ATECawKZArsC3QL+AhIDIQNAA2gDfQN+A5QD2AMwBHoEvgQRBW0FuAXxBS8GfQbNBgwHPgdvB6EHygfgB+UH2ge8B5QHewd/B4wHfwddB1IHdgerB8oH2Qf1Bx8IPQhNCGcIlQjCCOcIEAkzCS0J/wjbCNUIxgiJCEcIOQhDCBIIkwcMB7QGaQb2BW8FDgXnBNQEsgSKBGwEWwRVBFgEVQQ2BPQDqANpAycDzAJgAgcCzwGXATYBrAAjALr/af8R/5/+IP6w/Vz9DP2i/CX8uPtw+zf77fqd+mj6VfpG+iX68vmy+Wj5I/n0+M74jPgh+LL3avc99//2nvYs9sP1aPUU9b/0aPQZ9Nzzp/Nk8xLz0vK48rDynvKS8qvy5vIi803za/OE85bzq/PG887zrvN/82nzY/NC8wnz6PLr8uDyqvJu8lPySPIz8inyRvJ98rDy7/JX89XzPvSQ9Ob0R/We9en1OvaU9u32UvfQ91T4u/gM+Wb5xPkB+h76Rfp8+p36pvrG+hD7WvuE+7r7LPy//Dj9mP0O/qz+Uv/m/3IABgGfATcCyQJPA8YDNQSgBPIEGwUyBVwFmAXFBdoF8QUhBl4GmAbNBgkHTAeQB9MHHAh0CNwISAmoCf4JWgrCCh8LYQuYC9YLDwwxDEoMcgynDNUM+gwfDTYNLA0MDfQM4Ay4DIcMcwx6DGsMOwweDC8MQwwrDAQM/gsVDB8MEwwLDAkM+gvhC8wLrAtoCxgL6QrTCp4KNwrRCZIJVQnnCFoI5weXBzwHwAZEBuIFhAUSBZwERAQJBMwDggM5A/QCnQInAqUBLgG+AEYAzP9h/wX/q/5R/gH+rf0+/b78VfwN/Lz7Pful+hz6qfkv+ab4JvjB92j3AfeH9hb2zfWl9XT1FvWX9CT0zPN18wzzo/JJ8vTxnPFM8QzxzvCJ8EzwH/Dq76Xvae9P70DvHe/v7tTuwu6d7nLuZO5s7lvuK+4K7hTuL+477jvuRO5a7nzuq+7e7grvQu+f7xXwePDF8CXxrPEw8o/y5PJW89/zXvTO9Dz1q/UU9oD2/faA9//3ifgm+br5LPqT+hn7u/tS/NP8V/3y/Zf+Of/h/5YAWQEjAusCngMvBLMERwXiBWkG2QZLB8IHJQh0CNgIZAntCUwKnAoNC40L4gsIDD4MqgwiDXQNsQ0EDmgOtQ7hDgwPQw9zD5YPyw8eEGcQhRCbENYQJhFQEVERXxGNEaQRdhEpEQARARHxELUQdRBeEGcQaxBZEEMQOBAtEBYQ9A/KD40PLw/ADmAOGg7ZDYwNPg0ADcwMiQw4DOwLqAteCwcLuAp7Cj4K6Ql/CRYJuAhZCPEHgAcQB6YGPwbUBWwFFwXXBI8EJgSpAzwD4gJ1AtsBKAGAAOj/Tf+s/hL+h/0A/Xr87/tZ+736L/q8+U75zPg7+Lz3Wvf69oX2A/aM9Sb1v/RK9NLzZPP78ofyCfKW8TLxxPA38KDvGO+X7gHuZe3x7KrsXezy643rT+sg693qnOqJ6pjqmeqF6oTqpurG6szq0ers6gjrCesA6xTrS+uC66fr0Osa7H/s2uwW7Uvtoe0b7pXu9e5S79bvhvA+8d7xcfIV89bzo/Rj9RH2yfaj9474W/n2+Yj6Q/sd/Of8jf00/vn+0f+YAEkB9wGpAl0DDQS6BF8F9gWLBi4H3weACPoIZQnsCZYKNwuyCyQMvQxxDQMOXw63DjsPzQ8wEGYQoRD4EEcRdRGZEc8RCxI4EmMSoRLiEv4S8RLkEvQSBBPvEsMStRLZEgcTFBMFE/8SFxM2E0ETMxMhEyATMRM3ExMTzBKMEmgSQBLxEYwRRxElEfgQpxBKEPUPng85D9sOkQ5IDvQNrw2NDW0NKQ3TDJMMYwwXDKoLQwv2CqYKOwrICVwJ7wh0CP4HmActB6QGDQaIBRQFiwTcAyEDdwLZASoBZQCn/wT/cv7a/T39rPwl/JL77/pM+rD5DPlb+LD3E/dx9rf19PQ/9I/z1vIX8mPxuvAR8GXvte717SLtR+xw65Tqq+nF6PXnOueM5vblhuU05e/kweSq5JDkX+Q55EPkaORy5GbkduSp5NLk4uQC5Uvlo+Xx5UTmruYa53Lnwucg6Ijo6+hQ6cnpWur36pnrQuz/7OXt9u4R8BfxIvJX8570ufWt9rn37/gU+gr7A/wl/UX+PP8tAEkBbAJgAzEEEAXwBaQGPgf6B9MIkgktCtgKpQttDBsNzQ2aDl4P+Q95EPgQchHYETESghLLEhITYxO7EwQUOBRhFHoUcxRZFEwUUhRUFE8UUhRYFEcUIhQIFPUTyhOOE3ETdxNqEzkTHRMwEzkTAROzEo0SdhIoErERXhE9ERERvxB1EFQQMxDsD5sPaA89D/cOow5uDlkOLw7dDZMNfQ15DUkN8Qy1DKYMiAwtDMYLlQt5CyYLoQo+ChAKzglVCegIrwhnCNIHJgewBk4GrwXnBE4E5gNdA54C8wF0AeEAHABl/+L+V/6Z/df8Qvyo+8n6yvn5+E34gveS9rj1BfVE9FbzXPJu8YDwh++X7rXtyuzI68PqyenE6KXnfeZo5W3kgOOb4sPhAuFb4MXfL9+b3i3eAN4C3gzeGd4/3nrerd7W3grfUN+Q38jfGOCK4PvgYuHi4YviM+Oz4ynkxOR55SDmv+aI54LoiumR6qrr1+z97RnvUfC48TDzn/QS9pz3MPmy+iL8j/39/mUAxAEUA1YEkgXSBgYIFgkICv4KBwwNDfwN5g7ZD8UQlhFcEisT8hOUFBsVpBUyFq4WFBd4F+UXRhiFGKQYtRjKGOAY5xjSGK0YlBiGGF4YCxiqF1gXBxejFkcWFBb1FboVaRUoFe8UkBQSFLITexMsE6sSPBIWEgESrxE4EfMQ4BCuEEQQ6A/JD7gPeQ8kD/IO2Q6eDjkO3Q2jDWcNEg3IDK4MqwyHDEUMGQwTDAMMxguAC14LTwsiC9sKqAqPCmQKFgrKCZsJZwkOCasIYggfCK8HEgd4BvMFXAWfBNgDKAOFAtYBHQFjAKT/2/4Z/mb9rPzV+/T6Lfpw+Yv4dfdj9nv1m/SS82zyUvFG8CPv3+2d7G/rO+ru6KDna+Yz5dPjWOL14LffeN4p3fnbGdt+2vPZZ9n82M7YxNi92L/Y5tgv2XnZs9nx2TzafNqd2r7aBdtk27Hb8dtZ3Pfcl90a3rHeid+G4HjhdOK14zbluuYw6MTphutE7dzudPA58hL0x/VX9/b4ufp5/BL+lf8rAdYCZwTEBQ4HcQjhCSsLSAxtDboOABAPEQYSJhNsFJcVlBaMF40YZBnwGVkayRozG3cbohvQG/gb/hvfG7MbiBtdGyob6xqlGnAaWxpEGv8ZlxlCGQgZrhgoGK8XYRcNF4sWBBalFUEVpxT8E4ATFBNuEqIREBHBEGIQ0g9UDxkP9g63DnQOWg5eDl0OWA5dDmAOSw4hDu4Nsg1wDS8N9wy9DIYMXgw6DAMMvQuHC2oLTwsuCxoLGAsSCwML/woDC/EKxwqpCpkKZwoDCpgJPgnLCB8IXQeqBusF/gT/AxoDPwJFATwAUv9//pv9pPy/++36CfoH+Qb4C/f09bH0ZvMr8uPwbe/V7UbszOpL6a/nB+Z45AjjkOHy30fevNxW2/DZlNh316zWBNZi1fXU3tTk1MXUqdTc1ETVftVx1WzVk9Wr1YfVU9VL1WXVgtW21SHWsdZM1wvYHNlw2tTbPt3U3qbgkeJn5Cvm/uf36f/r8O3D75zxk/OJ9VX3CfnR+qb8WP7t/54BdwM3Bb0GSQgQCuILeg3xDpQQXxIQFJUVIRe/GEMajhuwHK8ddB4BH3sf7B85IFogcSCNIJEgbiBEICMg9R+3H5Efkx+OH2IfOR85HzAf5B5yHiAe5h2BHe0caBwDHIcb2RojGnoZuhjMF9oWEBZVFY4U1xNTE+8ShRIeEtYRqBF+EWURcRGPEaMRsxHJEcURhhEqEd0QkRAkELEPcg9VDx0PyQ6QDnQOPA7hDaYNoA2TDWQNTg1wDYINTg0HDegMwAxPDMELYgsXC4gKvAkDCV0IdQc8BgoFDAQBA7gBbQBj/3T+Wv0g/An7F/oI+cL3cfY59f3zk/IJ8YjvCO5T7FfqR+hN5lDkJ+L73xzejNwF23rZM9hR14/WudUC1abUddQm1NfTzNPi07/TbdM80yTTztIw0qrRadE00fbQ89BR0dXRVNL90vLTCtUn1nXXHtn62tncy97h4Pji8+Tv5vTo1+qU7G7ufPBu8hv01fXc9975fPv3/L3+sQB2AiMEHwZeCHUKWgxjDowQbRLxE34VPBfWGBkaRxuRHLgdeR76Hm8fyh8AID0gkSDGIMog1iAEIQ8hzCCFIIMgjSBaIBQgByAMIMwfYh8nHwsfqh7/HW0dEh2PHK0btBrwGUEZZhhqF4oW1RUxFZoUHBS4E2wTQxNCE0wTRRM4Ez8TVxNkE1QTMRMOE+wSvxJ0EhMSvhGNEXIRUxE5ETwRUhFWEUwRWBF9EZERihGaEdYR/hHVEYARTxE5EeoQThCqDy8PrQ7lDesM/wssC0YKOgkvCDoHQgYsBQ4ECgMVAgUB2f+3/qT9bPzv+lj52fdT9or0lvLE8BnvOe0C68Toveak5DPitt+p3fzbPdp52DXXidbq1QzVVNQY1PTTctPZ0qzSwdKE0uXRV9Hr0DDQDs8IznHNFM3HzNjMes1YziLPC9Ba0dXSL9Sa1YLXztkE3Pjd6d/z4drjcOXR5jfoxemK63XtV+8l8RfzPvVS9xv55voV/YT/zAECBIYGRwnAC80N0Q/0EdETMxV3FuwXVRliGjYbEhzcHFodqx0JHmMeoR71HpAfQyDKIDkhwiE5IkwiEiLjIcghiCEkIdEghCD/H0Ifhh7LHd4c3RsqG9AabRrWGVsZJBnYGCUYSxe2FmMWBBaKFTEVDhXsFJwUKhTCE30TUxMtEwkTCBM5E20TbBNCEzATOxMsE/gS5hIZE1wTeROLE7MTzxO4E4QTWxM1EwMT4xLoEucStxJ3EkcS/hFoEbUQMxDUD1APpQ4ODo4N2wzaC8EKuAmfCFkHBgbOBKwDdwIWAZX/E/6g/Bf7Svle97L1TvTM8vfwLO+27S7sE+qk53nlf+Mq4ZTef9wd28TZINjJ1iXWntWc1I/TNdNb00jT9NLs0izTD9NU0mTRjNCfz5POx81yzWHNdc3izbbOmc9b0EbRn9I81OHVqdfC2QvcPd5C4B/izONP5dXmdOgR6qzrfe2e79Lx3PPc9QH4Lfoz/DD+ZgDSAkYFwgdeCvUMQg82EfoSlBT0FSwXZhigGboauRuxHIAd8R0kHm4e6h5qH+YflyCLIXUiECNhI4EjZSMQI7EiZyIVIqohRiHuIGcggR9vHnwdrxznGzIbuxp5GjAazhlkGe0YSxiQF/IWhBYXFpQVKBX2FNMUhBQLFJ8TVRMME7ESXxJDElgSchJ0EmsSbhJwElMSIhIVEkgSmBLaEhsTeRPRE90TnBNbEz0TEhO6EmkSThI5EtgRMRGQEAcQaQ+oDv0NiQ0jDZ4M/QtWC5YKqQmkCK8Hwwa7BY4EVgMcAsEAKP9h/ab7F/qT+Of2HfVt89nxEPDx7c7r+uk/6DrmCuQi4nHgdd4c3AbakNhZ1wbW/NSw1NLUtNRI1PfTxNNR047S1tE/0ZPQ0s8yz5zOys3tzJLMx8wMzU3NJc7az8zRY9Pq1O3WMtkT237c992533fh9OJb5PHlveec6WvrJe327hjxevPF9ef3QfoJ/df/PgJ8BAMHtAkIDPkN9w8fEgwUjBXjFkIYgBmAGnQbehxsHToeBR/TH3og/CCdIWoiGyOXIxwktCT/JMUkViQAJJIj0CIAIn0hJiGXINMfJh+RHtYd9hw1HKQbHRuaGjga5BlnGbsYCxhXF3YWeBWdFPsTaxPnEogSPBLKETURtxBZEOwPgA9mD60PAhAqEEEQYhBkECcQ1A+fD4UPgg+oD+YP/g/fD7gPlQ9DD8UOfg6ZDsQOvQ68DvAO/w6DDr4NMQ3MDB8MMwuGCjIKuAm/CI8HhAaOBW0EKAMBAiEBaQCU/3H+Ff22+1L6rPjE9vf0evP58SDwJO5K7EXqrefc5Ifip+Cv3r3cjNse23raL9n211bXqNZQ1enTTNMT00/SHdFW0PTPIc/MzerM9MxIzWbNxs3bzivQ/NBU0avRHtKA0uLSitOR1OrVmNeG2XLbON0K3xrhUOOO5e/njupC7djvPPJW9Pj1QPeg+FX6Nvw//tMAEQRoB0cKzAxKD4wROhOfFEsWMRjOGQgbOxxpHSYeXx6QHhEfyx+rINAhHyM5JAYltiUqJv4lUyXaJNIkryQSJHQjSCMoI3widSGlIBEgXh+UHgceqx0sHZEcHxy5G/Ua5xkPGYQY2hfuFi0W0hWBFdsUBRQ/E3QSgxGcEAoQyQ+0D8wPGRBxEJsQlxCGEHkQdRCIEKcQrxCSEFoQ8Q8vDzIOXQ3mDKUMfgyfDAwNZg1jDToNLA0ODaQMKwwCDPgLgguLCn8JhAhBB5IF5AOnAr8B1ADk/yD/h/7V/eL8wvua+nf5Rfjr9mf1yPMA8tnvOO1V6nznqeTI4SPfOd0V3Ezbq9pu2pHag9ra2ePYAdgE15XV89ON0jrRe89szabLVMoZyQnI1sfDyDDKgcvvzMTOfNBd0Y3R0tFr0uPSCtNg01TUo9XO1tHXENnF2src6N4k4arjhOZv6RfsbO6h8MzyyfSS9nb4vvpN/eH/gAJMBQoIUgodDMMNaw/yEF8S+RPXFbkXbxkIG4AcpR2GHnQfiSCMIWwiZyN5JC4lSyUmJQslxSQmJJQjeCOVI3wjRyNII0kj2iIVInkhECF9IMgfXh9HHwofeR7hHVodjxxlG0QaaRmQGJcX0hZtFgkWVhWZFCIUwBM1E8sS6RJjE8QT/RM5FEkUzxPTEr4RxxDdDxUPqQ6WDpsOlQ6JDmUOEg67DaQNwA3QDdoNCA4sDs8N1wyrC5UKcwklCO4GIAaqBTQFigS0A8wC2AHGAIr/TP5a/cP8OPx2+5L6pflh+HT2GfTP8Z/vOu3D6rroHedZ5TbjL+GX3yTerdyw243b0dvZ25jbJNsC2sLX3NQu0ubPwc0GzFbLgsuby0HL+8oYyyvL/8ouyzPMl82gzkbPzc8G0JrP2c6GzvjOBNCU0c/TkNZL2ZDbWd3V3iPgXuGw4jvkGuZY6M/qOe2C7+Dxb/QE94f5OPxD/08C8QQ6B2MJMAtIDO0Mxw0ED08QrRGUEwsWcBhPGuAbWR1vHvAeRR/iH6IgMCGoIUAivCK9ImsiQSJeIowi0CJZIwQkZSRMJM8j7SKkIU4gZR/0HrIenB7sHmYfax/BHtodEx1IHFgbkhouGucZYBmqGP4XSxd1FsMVmhX6FYYWAxdsF6oXgxfYFrkVXBQPEwwSUhG5EEUQGRAWENwPWA/oDsMOow5YDjYOeg64DlgOdA2RDLULdArUCHcHvgZUBsMFDgVyBN4DAQO6AUMA+v4H/jn9S/xL+3r6ufl2+Hr2VfSK8s3wre6L7BLr++lh6CrmFuRb4mLgFt5n3OPb5tvB28vbVdyX3J7btdnI19/Vb9PH0N7O2833zObLOssnyxnL38oyy4/MXM7azyHRhtKZ04/TcNIP0Q3QcM84z7DPI9F+01TWK9nB2yPeceCQ4lTk6uW558Hpiuvk7Dnu2++C8ffyt/Re9776Jv5ZAZIEswcrCrwLwwykDXEORA9gENsReBMOFa8WTRimGbAatRvfHPsd5R7GH6UgNSFUIVIhfCGqIbQh3iF1IjcjpSOvI5cjWCO3Is4hACFuIO4fjB+FH8Ef1x+pH4ofkR9YH6MeyR0jHYQclht6GpIZ8xhsGP4X3xcYGHUY0hgsGWgZUBnTGAgYDRfyFdAUwxPPEvURTRHjEJAQNBD0DwwQWxB+EE4QBhC8Dx8P6w1jDAQL7wnhCMYH5wZ2BisGmgXABPEDPwNRAvcAkv+H/pv9RvyO+gb51fds9nv0j/JL8WXwLu+s7WnsW+vN6Xrn8+S24p3gmd463fDcWN3M3S3ejd5x3kfdQ9so2UDXRtVH07XRnNBzzwPOycw3zCfMhcy+zQbQp9Kl1MDVQdYN1rzUkNKI0HXPWM/ozyjRPdPy1c3Yb9vP3R3gf+Lh5PvmnOjl6QDr1OtA7IbsMe2N7pDwPPOq9qn6uP5xAroFYAgMCsUKCgtPC6QLFQz1DHoOXRA/EhQU5RV/F80YGxqfGxUdLx4LH9EfJiCuH8UeJB7zHfgdXR6IHzUhlCJNI6kjrSPrIn4hPiCpH1cf7h7PHj0foR9gH8Yedx5gHgsemx2DHaEdWB2NHLIb7Rr6GecYORgrGGoYrRgAGVgZZhn+GEQYShf/FYsUTxNmEpARwBBCECQQBxCuD08PFw/KDjMOiQ37DEcMJwvSCa8IsAeDBkEFZwQkBAgEoAP3AlQCsQGsABT/Pf2h+0L6wPgB9271SvRA8/Txr/Dh71DvXO787KjrS+pH6JzlK+N34RDgrd7t3Tne0d7H3l3eRd4v3j7dl9sp2gnZXdfr1JTS5dBvz/3NYs1Gzh/QCdL70z3WSNgi2aXYitdX1vnUcNM10s7RVNKN0zzVS9fC2anczN/I4mbluee56RzruuvT67vrkeuJ6zLs++298CX0MfjO/FUB9wR8BzMJNwp+Cl8KeAoAC8kL4QyCDngQOxLKE6sVBhhZGk4cIx7oHw0hJCGAIKgftx7GHWYdFB6DHxshtiJoJMklPSbNJQslRSRgI3oi5yGlIVwh/yDQIMIggyAlICYgoCAHIfcgqyBYIK8fZB7IHGUbWxqUGTQZYhncGT0adBqVGmAaiRlAGAMX7hXKFJsTtxIrEqAR8BBWEPcPlg8OD6AOdw5EDp0NnAyeC6oKcgn4B7cGBQasBU0F6wTBBLEERAQ9A+EBbwCx/mn88/nu92r28vR584XySfIg8oDxwPBd8PDvuO7V7AvrZ+k353fkIOK94K3fc9623SveN9+436Tfs9/Y3yjfUt0P2/fYzdZh1DrS7dBw0IzQYNEE0w7V9daR2NvZgtpG2mTZTtgn1/DVAtXN1FnVXtbP1+HZkNyA313iEeWN56vpQOsu7HTsTewt7HPsNe2I7rHwzPN99z77zP4MArcElwbsBxgJGAq6CkELMAyEDbgOqQ/cELIS2hTmFt8Y7RrOHBweyR77HsYeTh75HRceix4kH/kfKSFtIl4j8CNKJFwkDySeI0gj6yJUItAhyiERIg8iuCGYIdUh6SGAIfYgoSBDIIkfmh7BHe8cEBxlGy8bORs4G0EbexuYGzEbYhqGGZcYYBcXFigVhhTJE/QSbxI5EtQRFxFwEBsQrg/UDtEN/AwiDPcKtQnFCBYITQd6BvwF1QWNBekEMgSwAyIDEQJ2AL7+NP2f+6z5jvfd9cv06/Ps8jDyKPJy8kfykPHN8PHvRO6b69vorOas5HviyeBf4MzgCOEI4YDhWeKe4vLh/+Ao4N7eq9wJ2qjXndXS06rSm9Kf02HVp9cc2hzcMt133R/dDtxP2oPYXtfs1t7WQ9dp2E3amdwx3yTiTOVP6PvqLe2S7ujube6y7R3t5uxp7QrvxPFB9T/5hf2JAcIEMgcxCbgKbQtyC3wL+AukDDwNBQ5qD2wRxBNKFuMYXBuIHVUfkCDvIIYg3h9aH+EeYh4/HtweDSBoIdUiZiTRJa0m9ibzJqYm4yXaJBAkryNrIw4jxSKxIqsilCKKIpsioCKFIl4iFiJZIR0gzR7HHe0cFhyBG24bpBu4G48bRRu9GsMZjRiAF6IWrRWsFPYTixP8EhESFxFaELYP/A5NDtQNbQ3cDCcMZguBClcJEgj/BjEGgAXZBFkECwTDAzsDTgILAan/Rv7P/DL7k/kd+LL2FvVr8xLyKPGC8CTwPfCS8Hbwle8y7nHs/+nl5gPkFOLW4M7fT9/f3wDhr+HR4Rvii+I44rvgw97k3M/aPdjD1STUe9OX057Umdb22BLb39xr3jTfsd403ZPbJ9rJ2JrXIte711bZzNvv3lXineXC6MPrI+5O72bvKO8D79bunu7O7tfv0/Gu9EX4OPwfAOgDkQedClsMzwzADMAMuQydDOcMCA7iDyQSuBR3F/IZ9RvLHaQfGyHCIc8huiGCIeMg+R83H/EeTR91IEsiMySsJdMm3ideKLwnQybsJBUkSiNLIoUhOiEOIcEgmyDTIBAhCyEcIYoh1yFWITIgDR8AHpgc0RpDGVoY+xftFy0YlxjYGMoYihgBGOgWVxXZE74SvBGHEFsPiw7zDUINhwwNDNoLrgt2C0UL9AomCsMIHgeEBfcDdAJLAdgACQFgAXcBUgENAXoASf+D/Zj7wvnQ96D1hPPc8bDw8O/R72TwIvF28XfxWPF88Bfuq+qx55nlcuPn4Ezfqt/44J3hw+Gq4jTk0uTV4yvikuCO3rnbydip1mnV19Q+1czW5djO2oXcNd5z37DfD98a3vnclNsp2ivZwdgF2WfaHd2R4ADkXOfX6uLtju/Q75fvje+T75Hv7+8G8bfy0/Rw94L6vv0FAXQEzgdwCg0M8wx7DacNmw3LDX8OmQ8TESkTuhUfGAca1hvhHb0f5SB+IeYhCSKzIR4hqCBOIBAgZiCaIRUjDSShJHsliiYBJ5gm8iWVJT8lhyR6I1ciRCFzICsgTyB2II0g8SCgIeshVyFCIEcfaR5bHSccDRsNGhUZVxj0F6AXFxeuFs8WJRf1FiEWMBVSFCQTfhHXD5sOsA3pDGEMLgwGDKQLIAufCvUJ6QieB2UGVQVLBEADZALYAX8BHAGZABcArf8q/0j+HP0A/PL6efll90L1nPNL8vnw7u+n7+jvFPAN8Anwne8d7srrmemx52DlweIW4fXgU+Eu4QXhruGw4vPiZeK64Qfhw9/y3RncS9pG2HzW19Vt1nnXothW2prcj95+34/fKt9R3hbd9NtE293auNpj2zzdwN8y4pvkcOeG6gbtcO4Z747v/u9U8JzwCPHe8VHzYfXS93v6cP24APcDrAauCBYK5gosC0kLsgtzDGANqQ6eEPwSEhWsFkgYNRoYHJEdwh7UH4YgliAzIKcf+h5ZHlceTh/GIAsiDiMoJDclliUaJVwk5iOXIxAjSiJ9IcAgDiB/HywfEB8xH7MffiALId4gECAKH98dWByUGg4ZExh9Fx0X7xbYFqEWUBYdFu8VYRVtFIUT2hICEqwQJQ/aDcsM0gsRC6wKdgpNCloKkApdCl0J+QfKBq0FIgRRAvYAXAAbANX/mP91/0X/+P6g/ib+U/09/Df7MPqz+Jf2UPRm8uTwnu+p7lLuuu6f73Xwu/BL8Dvvi+0f60HoseXi45jin+Ff4RTiBONV41nj6uO35ITkKOPc4TPhIeDV3VnbL9pA2mfaf9p425Pd2d9l4ULixeLZ4lbiZ+FS4F7f9d5i33Lgu+FF41jlu+fd6bPrle1Y73PwFfEH8kvz/fPz81X04fXS90r51vpt/bcAiQN7BQsHfAiYCVoKBQuxC3gMsg1uDwoR+hGiEsITZhUOF5MYKhrIGywdMB6jHkgeZx3lHCQdeB1WHV8dXR7UH6wg1CAeIbwhDSLQIW0hDiFaIFgfkR4uHrsdGR3cHFId7B0HHswdwh3kHa4d0hyAGx0a7RjvF/sWDhZyFWEVfhU4FZsULxQAFHkTaRJwEe8QUBADD4wNvAxSDHALFAosCREJ/QhACDIHhAYnBn4FSwT1AvEBMAFBAP3+0v04/fH8Wvxw+9r6wfpb+iP50fc398/2d/VP84jxgPBP73ft3uuC6xjsmOyF7B3sousE6wnqduhX5kLk4OIg4lzhYODV3zjg/eA44dTgduBl4CXgRt8e3kTdvdwV3EXb7tp3223cK93F3cLeF+AH4Srh9uAZ4aHhCuIN4hDix+JZ5BfmVud36GLq8ezn7tXv2PC98o30KvVb9aj23/iB+kf7g/zQ/iIBhQJwA9gE1Qa6CAEK0QreC60Nww8KEWMR+RF4E+wUXRWLFbkWjRjCGU0aMxuFHEQdOx1cHRUesR6xHo8euB7lHssenR6SHqUe8B6OHw0g0R8aH7sevx5WHlYdnxylHKUc6hvnGlQaDBqPGQUZyRiUGOwX+RYrFmYVVhQ3E34SBRJmEbYQPRC7D98OBw6qDVsNYQwDCyIKrQnLCGYHZgYrBvwFUwWbBD8E5QMxA2gC1gE3AT4AIv8+/o/93vwq/JH7Jvvg+o364Pne+Aj4nPcX9wX21PQi9I/zXvLa8PXvs+8372Hu9e0K7r/tyez165rr9eqv6azoh+h86LXnoeYL5sDlK+V35Bbk0+Nd4w3jOuNg4/fih+LJ4kfj/OIL4pLh7OFQ4kLiP+K14kjjmuPu44vkKuWA5ejl3+Ye6OroI+mD6ZLq6uvN7EHtFO7C77fxD/PK88b0f/Zn+Lv5ivp/+9z8Sv6I/78AHwKRAxEFvAZwCLoJiQpnC64M9A27DlQPZhDeEQQTjRP3E7gUtxWtFpkXhhhWGfEZaxrKGvoaCBslG2sbxhsYHE4cVxxFHEkcYBxEHOcbsxvxG0IcHxyaGygb4hqHGg8atxmFGUIZ2xh2GBoYoxcRF4wWExZ9FcEUBxRlE9ASPhK0ER4RahCpDwMPbA68DfwMZwwLDJsLxwqrCbcIJAiyBwwHRwa6BXQFDQVEBGsD6AKYAgQCGgE+AJz/8f4X/kr9uvw3/Jf7Bfuq+kP6hvml+Pz3cPeW9m71ZPSa86zyZPE18Kjvle9h79nuVO7+7Yftmexh61DqjOnY6APoM+er5m7mO+bg5XHlGuXX5IXkLuT74+HjnOMn49PiyeK84mPiBuIb4qbiR+PJ40DkuOQf5V/lZeU65Tzl4OUP5xzoxeiP6cfq4utn7Nvs3u0O78LvWPCU8SHzCfRz9IH1ZfcM+fD57fq0/J3+yf9wAGEBtgLoA70EeAVyBtAHfAkdC2sMjw3TDgIQohDVEFERTBI2E7MTKBTmFKQVHxamFmoX8RfZF5sX1BdSGIUYhRjOGEsZexlTGToZQBkWGb4YjBh2GBcYeBcPF/AWphYJFpAVjBWoFXYVABV5FOcTPxOXEvkRZhH/EMwQcxCqD9QOhg6MDisOVw3BDJ0MQQxPC1UKzglaCYkIrwdFBxYHsQYiBq8FOwWOBM0DNAOnAvwBYQEBAZoA8f87/7v+Ov54/an8Hfyt+xf7hPo0+ur5O/lC+G/33/ZM9qr1L/Xq9Kn0SfTP8zLzWPJR8VTwlO8m7+juk+4L7pTtae027YjsqetW64nrZeuI6rDpfumM6TrpvuiN6G/o9uds52rnzOf65+znD+hM6AzoVucF56jnzeic6czptOm86fLpEOrw6enpi+rS6wHtkO3g7Zzut++h8D7x+/EJ8xn05PR+9RD2o/ZT91L4mfnb+vX7C/1J/qf/+gAQAsYCNwPAA5QEdwUlBscGsAfgCAwKHgs7DGYNcA46D8QPCBAQEB4QdRADEYkR8hFfEuQSfxMaFIUUqRTFFCgVmBWBFekUkRTUFCUVBBXSFAYVUBUmFZ4UExSNExUTBBNOEy4TVBKjEdsRThLtEfQQVRAiEMUPPw/oDlsOFg2xCycLOgv4CnQKhAr8CswK0gkFCbwISAhiB4EGugWqBK0DnwM9BEIEWwN4AggCYAFbAOH/RACeAEcAsv8k/y7+6fxH/HX8XvyJ++z6E/sD+wX6/vjT+N34S/i39+L3Cvgv9/H1lPXK9U31FfRQ82PzifNJ8/vyyvJn8svxS/Hg8FPw5e/x7xTwpO/k7rfuP++/783vqe9f75/umO0a7XrtEe4g7rPtVu1Y7bXtTe4J79Tve/Ce8AHwAO9g7m7uw+4g78/v3vCx8fTxUPJd85b0MfVr9fX1hvZF9l71B/Xq9Yf3Hfld+iT7ePvR+538n/1m/ij/MADiAIYAvf/j/xkBQgL6AgEEdwVTBjMGHQbSBqkH+gdOCDkJIApECg8KQgqtCscKywooC3kLMAu/CvkKvQtdDM0MXA20DV8N8gxbDUAOag6pDeIMWAxnCycKpQkLCjMKtAnHCRgLUQwmDGALUwtyC2EKrwg9CDQJqwmSCAQHMAa3Bf8ElgQzBVoGBgf2BnsGyQUbBcoEoATtA8oCOgJlAgECeQBc/xoAkAGTAUEAmP8fAD0AEP/R/a397/2X/SH9aP3b/Vj9LPyv+yH8YPzG+wj7y/qF+nT58/ce93P3a/gu+UH5qfjk95L3vvfN92j3Affw9p72f/Vv9L/0D/aF9nH1M/Ty8w/0xPPP8/H0Ffau9TP0avO+8x70F/Q09HX0NvSY80zzF/NQ8rrxtfKe9FH1m/SX9AT24/bY9U702/P28/TzzPTS9uP3XfYD9H7znvSn9br24vj5+uL6Ivk/+Mn4Gvnb+I75Vfsz/EX7EPrg+Tb6l/qJ+wv9GP51/vH+WP+N/jX9rP0yANQBhgAe/mj9dv6d/1MADwGwAQcCsgLlA4UE9wNxA/QDcgSsA4oCiAJBA4MDqQOxBNwFnwVHBIEDrQPXA+0DrgSiBVsF/QNxA7oEpwacBzIHsgWOA9IB0QGGAywFHQWSAy0COwKqA0oF4AUxBQYEMgPzAkUDFwTRBFcEKwJK/339J/5bAWQFQwc0BeAA8v0s/jgAPAKGA28DGgGZ/f/7q/0zAM4A1v8J/0v+v/yD+2z8zf44AN3/xP58/e/7GvsN/IP9G/0R+wD6xPo1+7X5k/f59lj4ufr3/Pv9VP0V/JL7Pvun+Yr3dffB+YL7c/q596D11fQv9Q33Lvq+/ED9MfzT+r35ffmk+i381Pte+TL3hfaO9Wfzs/KN9X755vpM+oH6RPss+tL3jvcM+lD8a/xJ+3/5cvZ285DzrPb/+K/4Wfj0+Vj7hvqO+cT6YPzY+7n60fug/W/81Pgd96f4Wfoi+oT5vPmN+XD4ZfiY+hv99P3N/cT9OP3v++j7Uv6TAG//0/ui+V76+/ut/Pn8rP1C/iL+uv2X/av9/P3n/lYAeQF9AQ8Ah/1Y+277y/2w/+v+9vyq/ND9Ev6b/Rj/kAJOBFACZP/H/uv/4ADSAQUDUwJt/rr6s/tVAEkDKgLn/6H/8AALAnkCVgJJAaL/qP7f/lD/T/9M/23/Av8d/u/9vP72/pb9E/yn/E3/gAEbAc7+e/37/q0BKgJo/+/7Y/qf+o/7rf01AWsDEQFf+3/3ovje/FgATgFLAHz+0vzd+7z7f/wA/vT+pv3V+sb5p/su/YP7L/lO+sD97f4J/ar7evxs/WH9i/2+/T385vmo+Tj7h/v7+gj9bwAd/zH4TPPX9Y77Gf7o/SP+nf1x+vL3GfpS/lf/Uf30+2b7h/nc9z/5nvvU+kT4vfj7+2n9hvwK/e/+IP7F+v/51vwN/mj7qvnJ+0n9Fvr99bL27fpa/QD95vxh/bX7Bfid9iv65/+3AqQAOvxY+VD5Vfq5+i/7kvwk/fj6IfiS+A38UP64/Rn9vf3W/H35NPhF/IgBpgHz/DT5Mfls+n/6G/pv+lb7wfzU/i8A6/7y+7363fz9/xcBtv8+/f361PlG+uL7nv0Y/3MA+gCG/6v8y/o9++j8TP5P/xYAuP+W/R37lPqD/FT/HgH2ANP+a/tZ+JX3H/rO/oUCbwLk/o77lPsV/vL/MAAkALv/Lv1Z+Wf4+Pv2/xoAwP2z/B793fxv/NH9x/9z/5T9Ev1D/Vn7/fi8+pr/UgFn/mP8//3D/gz8fvpx/WgAI/82/cn+HgCh/Jr4lvp7/2j/Rvv0+nb/jgFY/lT7avyR/nL+F/0h/KX7n/yA/50AvvwV+BX5sv3j/iz92f6GAmQA4vnA+RsBcQOJ+4H1//o7A1MCWPyp+1v+Rvwr+OX64AFSAtr71PhK/An+p/qQ+c3+yAKp/o73j/bg+5oA9wDo/iT9Ufws/Hf8Ff0V/uv++P2T+hz34PY9+rD+2AF/AhgA7Pt4+d/68v0Q/8L9Ofza+1/8/fyR/Mj6F/oo/VwBzwCv+3j5bv35AKL+VfuA/XgBDQBt+/X60v34/Mj4JPl7/7YDEQFL/Gf6JPr4+WH81wFNBRcDQP40+xP6kPnk+gP/LgOUA2v/PPl09UP4CQFOCPMGQf+L+b/4/PgX+an86QKWBCn/0/lJ+mL8Mvvf+sgArwfrBbX89PZq+aP9Av54/bn/kgHP/kX60fli/QYAAQDa/yIAXv7L+r/57PwxAAMAoP5S/2wAov5v+wX7kf2i/+b/p//R/p38Rvtz/cYAvwBd/or+OgE4AXb9Cvtv/Bz+2v0Y/pj/NP/J/Mf84f/1AIz+xv0aAIb/bfou+VEAtQbXAgL6o/cj/JP/SQDXAlsGvQTy/fX4Xvkc/Gn+hQCyAXEAWf7l/bX9yfsf+zX/OQRDA/T8mPi0+Wv9GAFOBNcEKQA2+Y32GfqS/7sCigJ+/5r7pvq0/WwAQv8m/Sn+aQBlAPn/3gFZAu/8O/bp9qj+5QQRBcMBYf2V+Df3T/2sBqgJgAM0+8n30PlJ/vsBXwL6/4H+wP6x/FH4TflcAq0IzALf+Lj46P9WAVn8W/zgAroE4v7Z+/z/BQI7/WD6t/7BAU79a/mh/SMDlQH1/fj/tQL9/f722firAYEFFgFG/EL7efpf+cP8EAQKB/kBZvvU+ZX7Ov1nAPcFkAef/5D06PI4/NUE1wQpAuoDowQO/Crx1fPpA/oNSQZG+dL3Iv9kAUL9yfyZAY0C+Pxc+X78XAC2/739Q/5d//n+/f40AD0AHv/8/xcCegAM+4z4x/x6AxUHGwanAGj4NfTy+gwItA3QBSr5C/OA9XP81QM/B5cDz/yt+nb9GP6F+zT9xwS8CDcDjPvs+aj7m/ui/CwCnQZXA0T8pvnR+/n9BgD1A+QF/ABd+bj3w/yAAV0C6gGuAUcAV/5A/gb/qP2B+yb9egKyBVkDjv7m+zX8Bf7HACgE1AXfAgr8K/fM+bgBIQZpAmn88PvT/3wBNQClAKACKQHv/Mf8iQFOA3b+D/qB/CcCkwRhA7QAevyp+J36DgIWBrABDPxD/eAB2QHQ/XH8F/+mAYkC/AIgArX+WvtQ+5v9HgBkA2kGHgS++0r2svtZBr4J5QJt+in47/tgAYEEFQOY/gj89v3QAG0ABv4d/Rj+pP99AWAC7f8d/P38xQIiBYH/MvnE+qoBdQWcA2b/ePv5+WD9PANTBH7/2PxsABsDvf+k/Dj/WwHc/eX7YgF3BXL/X/hz/MkEGgNt+5r87gQ+BYL8WPnW/+wDRgDH/coAfgKYAPgAdAJq/YH2xvtPCl4NHP+b8/746QKZAlj+CQHOBCoAv/ll/GoDDAR1AM4AiwLz/lj6/vxcAzYEfwBj/28A7/5C/RkA0AOhAnz/bP9V//r7vvtAAwoJbANW+gr7AAKzAnD+1P/gBEYCxPly+Kn/xwPlAZsC/wUBAsj3AfZtAKUIpgUWAML/af+t+2H8fQQJCS8Dr/yo/k4CZP9A/EAByAcqBVH9aftY/wIBDADxAeIEYgJw/Hn7jABxBHQDxgAw/4n+T/+ZAZQCAgG3AIkDBwSf/i36IP5VBX0Fhf8C/QsAuwH3/10AKwSwBCT/Yvpz/NAB2QMHAioAp//k/nL9N/3Q//QD4QUVA+P9O/ua/Ab/qgDxAnAFWwQc/yX7ZPwNAKAC4ASOBnQDs/vC99r8AwTSBN8BfQF8AWr9TPru/r8FhAQl/q39fQLyAcD7JPtDAv4F9QF1/90CYQME/Tz6bwH3B7wDW/wK/UwBC/9F+t792wYdCAgAbPoL/doAXwC4/4ACgwSZAR79bvxC/5UBtQEWAUUB8AFpARv/kv3N/94DWQTCACn/IgKvA2f/Sfuz/qkFVwYOAEH7OvxE/2EBpwM2Bc0C5/1h/Dz/EgHM//7/rwNnBRIBoPsd/LoB4wU0BZwB1/1g+5j7EP+5AzoGGwWRAfn9efz7/T8BzQNkBMUDrwKiAID9Ufvo/FACcQduByQCDf0R/Z4AbgJHAdQAogJVA7UA1v0z/osA6wEtAi8CKAFa/5b/RALcAgb/JPzV/1wGUAe+Abz81Pys/wwC1QPtBLkDUACG/Yv9CgBIA9gEugKB/g79CwDHAmAB+f7F/4gBkwCR/zUClAR1AXD9SgAgBlQEXPy/+iMCvQaDAo7+gQG5A4z+Gfqx/8QIqAgcAHD6RfzIABEEpAXLAyv+Vvo1/bUCFARpAqACaQOZANr88v1gAh4E/QLlAsUCSf/d+3j+bQTiBYoCpQAvAfL/nv2//skBjwH+/44CywXYAWf6OPsqBHEIjQME/+H/iv8H/Nj9Bgb0BxT/wPmxAf8JdQQ0+gj82gUmB/v/tP6uBJIERPzs+aYC4AiEA438qP4kBHYDqf8dAIwCbAG4/1MCGwVBAkv+rQC4BUAEmv2K+2sA5wTQBFMDTQK+//n8C/+HBesI+AR7/hz8g/73AbgDfQNYApEBgQGJAacBVAI+AqP/E/3Y/9oGLQlyAuX6ZfxHBPkHsARuAVkCYAMnATv/TQFKBEMDyP+4/9QD6QXRARf8H/w+AqYHVgfNAu79GvtB/P8BxgfaBhsAifxZAKoENwOBAKgCqwXyAlL+xf+BBJMDpv7S/9IGwgdx/wD6UP92BiUFkv/2/uABfAFC/1sBFAY9BpEBm/7C/2ABlAH/AcECfAI0AgUDPQII/vz6Uf5cBXYJ0AghBYj+jPdU+OoDKA8pDQgBiPhT+aj+BQU0C5YLYQI/+AD51AE5Bt0D7gLRBAUDhv5X/0ME+wOC/6cBvwm7CZn+wPdn/kkHhAZpARwBSAJT/yv+HwW6C08GMfoH967//QfzB9QDuQCp/f/6zP1VBnAL/wUz/Fv6iALXCQwHnf4X/B8CHgdrA638Xv3xBM8IOQRU/kz+8QHwAxUEVwS3A1kBBADIAToEgAQJA/gA4P5h/1MEfwjHBN/8MPytAzcHbQGH/HkANQaWBe4CAwQoBED/7vyDAzEKcwYE/t/8uwFVA80BdQNoBpAE8gBFAvwEqQHB/CkAjAhQCaYBZf3XAIMDzgAy/xoDLAfjBToBgv3c/NcAFAiiCtMC5vhm+vcFagw0ByMAkv9PAZIANwGRBSIHLQL7/cwALAVXBN4BPgO6BFsBFv6KAVgH/AbeAVD/0v9t/8f/XATgCKYGOQAf/RT+m//2AnoJPQzxBLj6b/kxAPoEYwVSBtMG4wEd+3z7lQJ6B7wG7AM1AMj7lPzGBcsMQQZG+oX6VQa0C1EEu/3RAKwELwFk/TYB2QabBa4ALgBSAxQEdwKjAgwEPAMiAewAWgGa/0r+EwJvCHIJIgN1/Ov7zACcBtoJPQjLAbL7g/wfA8MGRQN1/4cClQhiCEsB6fup/d8CBAZzBrYFIQND/tH6vf06BpsM4Ams/2z3Ffn5AmwLZgp0AQL60PvrBHwLdgiU//r6XP9GB5QKNQckAcX8Efwl/2wEyAhGCQkFC/5U+Wv8iQblDaAJRf4V+TX+OwQjBBwDcgZKCGECb/uC/c8E1gUPAX4BGgiUCIj+7vbS/I0I2wuiBWb/wP1l/gYB0gb/CuEGhf3C+Vr/ZwaGB4QEHAK3AH//PgCFA6wFFQRjAdEAagGHAX0CxwQfBSQCXgAZA9AFSQMV/xUAmATyBF8A7/2XAKsDJgRWBJUEzAHq/ez/WAfECa4C+fvi/qEFpgWFAI//5QN0BoYE2wFaADX/RgAdBcoIowUV/+v8gf+7AVkD4QZkCHQCVfqt+rcCXwf+BAID1QSaBOT/8vxW/2ECBwNsBNUG6wSM/rX7uv+yA/kCuAKqBqAIOgNs/KD8DwIdBccDXAHm/0QAxwOoB04FKf3w+XkBDwpVCGwA6v08AVwC3QCvAtYFAwNC/QL/yQaXB1T/nfuZAmUI/QNs/p4BsAZsA5T9qgAYCdYJ8gG6/O7+OgKxAqUD4QXDBJT/hfxS/wYEpgU5BB8CdAATANUBBARJA9z/oP69Ai4IrgckAGb5hPuIBIcKGwg1ApH/1v+h/+//JQOkBmMG6wPEAooBef5G/owEgQm9A475CPolBbQKngMS/Kr+5gTSBAIB7gDNA/MElQTkA7AAPfw0/d0DzAabAuYAlwbNCJ3/sPb4+5QIowukA4r8mvt0/bkBfQgSCpMBpvlP/ocIUglFAgsAvwLSAHb81P84B/oFyv6k/+kGigUf/Gn7ZwULCYQBX/4YBXEGl/ys+DcETA7hB4r8pvzpAuQCWwAsBGUIdgNq+5L7QgGcAycEUgf6BqH9ivUO+98HwgxnCPcDjQDc+Tv12PtWCSIQLQzWAyr7P/Qc9msDkw/lDPsAPvsn/Un9Ifz5AVULzguPA5n+U/+I/T36r/+kC7gOCAUE/G77UPyZ+wEB+QsXDoICVvjF+n0AD/+d/SwF/AwWCAD8gfiI/zQFzwMkAcoBMQOMAscAUv/g/oMAsANjBXAENAOmAqwA2v2z/twDXAc3BaMAv/3c/I7+OwSTCbQGIv25+K7+owUOBZUBFgL+AiT/B/zwAIIIBgikAO385/+HAhEBz/+pAX8DzAKOAXsBKQHD/yf/4wDWA2AFjAM0/9/8ZwBwBv4GBAEr/e4AsQVKA3L9y/0fBJYGAAHk+jn87QLwBqUEHAAQ/9gBigNfAUT/iAGoBAMC5vv8+/wDfglhBSX+xPzS/zABDgGtAmQEhAPUArgEVgS//ej3TPzuB5UOmwrkAAH4RfRq+fwFRA9yC9T+avaE93/9PwT/CXUJWf8x9dj4Jwf9DPwBRPX79/oFtg0aCCD+8PlI/KEAXATsBuIGpgL9+2X4yvtZA0IIqAeSBJ0BAv71+nz9zgW7CtEER/ra98D/cQc4Bg//6/oN/oAE6AaPAhv9sf3GAmsEhgG1AX4G8QXQ+/j0lf1pDIUORgKc9/33av3sAIQDSgb9BdkBzf1F/CH9jgF5CCEKBwKu+an8YwUjBdr8qPtgBHEIPgHv+m/+NgPqACr+3gHUBJ//N/oN/zwIkwhXAPL65/zJALoC2ANKBNwC1wDl/xf/sv6oAcgGRQdvAfT8fP41ALn9PP2CA6gIVgSI/KP7iv/H//z9pgElCKgHxP/4+TD7IACzBd4JgQeB/ZD2w/xPCPEIiP64+Ef+1wSnA27/BP8nAa0CIQTCBJcB1Pzp/NcB6QRJBEoEiQQqAIX6Sv3EBucIiv+p+Jf+FwgQCIQAH/vR+WD6YP81CRkO9QWH+AX0gPoyA80IIguJB6v8YPMJ980Ejg2OCbcAdf0CAP8BhgC5/qYAuQUYCCIDqvrc94z9tgSQBggEnwA2/cb7EABRB/sH/v8V+nT9UwJNAEj9pQF6B5IEUv0K/bQBGQF8/aoBnwp7CTr9W/YC/fQFAweZBOIDlAC2+fD4TQL8CaUFXvwR+r/9+v9FAQYFPwYd/532Ivl7BScNbweC+2z29vwaCFEMAAXa+Uf2BfxQAyUHkAhOBh/9K/Ok9fUECxApC4H/HPuA/TP/2gC0BVII/QL5+zr8hADEAFX/4QI/B4sDH/sr+VP+WwFBAOIB9AZXBwgAZPi79wP+bwZJCoQE/vlo+OEDPA1rBor4lfZzAS0KLArgBqwBIvjc8Yb5aQjVDPoEPv/p/xD9sPZK+oYIzA50BOL4BvrQAGACxwE2BIgEhf8V/S8BpgK4/Pr5XAEPCPUD8fxb/UUAbP4c/ncFiwpiA7r5zPsOBOcDVf2H/ZcEwAauAQr+r/4z/0cAdAU6CT8DXfig9eL8MgRrBngGVwRE/Sn2D/i6AakIGwiABOoAYfwZ+cb7PwPCCEEIkwKc+uL1YfoyBVAKogTB/RP+IQCa/Zj87gIdCEMDQPw0/nYDJQGB/IgAQAeGA3/6ifvkAxADL/nL90QDVwsOBtn89/nP+zP/5AQGCUoFRv6d/hUEpgLs+n76wwMeCQYEEP4r/uv+tvy8/JIAeQLcAUYEUQd4Ahf5jviqAXMG7gHU/nECgAT4AKX+LP8i/JH43//TDZ0Oj/6i8tr3RwGGAQ7/BwLUA3T/C/4oBCEGEv6S+XEBGgjaAfD6SAGZCqUGl/tv+dT+nQBdABoFcwhOAdv3TPmLAGQA9fsX/7AGDAdeAi4C3AEp+HTvcvkdDv0SmQPo9o/5f/6B+136jQJGCUgFgP/DAUYFewDJ+Ff4Uv2YAE8DtwjtCkADv/cU9Ej5RP9jAtwEFAY9A5X+u/yi/Pn6UfuKA9UOOhA1BHH26fKJ+YsDfAz9EJcMFAD29NTzufo/AmQHQgqHCIABevsb/CH/Sf7y/VcF3g3qCSz8nfYR/58GtwKQ/EP+6AEWABD/fAS2Blf9cfMO9+0BxgVhBNIGqwen/fDy3PdIBT8HnP+cAI8I3wMR9OPxgwL3DFIEGfu2/s8ALPfI8kkAVA3vBnX65fx6BrkDOfnC+JAAlwLiACUGugsHBOz2GfdhAawDzf7lAkENQgpD+hv0Av6wA9D7P/j+A7gNtwUA+Uf63gONBX0As/83Ad382Pg2AXwPKhBBAE7yuvOQ/eADvAU0BxgH0QIV/db5EPln+tj/gwdsCV0CX/uW/aoD+QEw+kz5mAHQBWz/xPp4ApsLhwUP9VvujvfzAv4FwQQABJwAjvqM+Yn/egPSAIj/mQRuB+4Ac/m6+8oDOgfUBQEFVwJn+ZPxzfZiBnoQjgymAXD6uPoaAKEE9AHG+ef3ZANyEaoRHQRN98HydfFr8aP5Wwt3GYQW6QQI87brD+8k92X/UAcID4oSNgyf/QLxk+6x9Lf9yQanDDEKFwGY+6H9qv1T9rzzgACdD4kMOPu28pj6uwNCBOEDagfTBar6QvFs8xn87AO4C1sR0wpV+PPrwvHZ/VoAC/4wBGEPQBHvB5n9OfbU7wHw3/1pEIQVWwtQAaj+zPqO8rPxjv4GDLMLNgKS/Q0ALgGz/Z365/p9/K/+FgMLCAsJlAUHAtAAav+M+733l/gj/+4GnwkgBYz+8PxuAOsBiv1g+QD9oQV5CaMFFAGFAJz/fPrB9mj7QgSYBssACvyI/Xn/gPxj+aH8vgJoA3/+VPvN/N7+kP/vAWkGCwgPBNb94fhG9Zz06vpgBi0NXwnyAPz7AfkB88rtQvJrAF8OShSOEVsH9/ew62bsBfl5BcQJHwmxBxUDdfrx9Of3aP37/OT4svnS/yQDGgBk/EP9fAA7Ab3+bvt1+Ur6Cf+pBiwN+g01B4/7qPHW75T2PACdB1YMAg/eDLMDx/fV8AfyyfjhAd0KoA+hDDgEx/zx+I72dvU5+QICjwmNCqUGAQI5/bn3TfQ29gX8ngGLBREIKAdxAK/2jfBd8Zj2x/zdAs8HzghYBPn8Mve19Ub4ufwZAJIAOf+0/pz/wP+w/Tb72Ppv/MP9sP06/d/9+/+GApkD2AE1/nD7F/vI+6T7bfsn/VIA+wG1AFT+6PxZ/AT8kfxz/nEAjwHPAukE5gXFAycAM/7n/R/9f/zq/rkDUAbGBHAClwF1/wD6WvWW9v775P8lASwDRAY9BmgBkvtK+Pz2uPZa+b7/YQY7CVoIrAXIAMH4bfDq7FHwcvjTAU8J1QswCOYA0vlb9Jzw0/CW94kCBwv9DP4J0wQO/qP2F/IB89L3g/0uA1MI8wlKBXP8//Qj8uLywvUL+4ECRQmcCzAIDgEV+lz2Qvb+9076xv1/AvUFSgUeAeP8jfpV+bv4Bvqn/ZMB1QPiBLUFLAW0Abz8CPpi+7T+7gBmAY4BOAJWAnAAyfyR+eH4t/oo/XD+hf69/hgA6QEhAn3/bPsM+br5vvsi/Wf+zwA8AxsDNwAZ/YH73Ppq+qr64vte/Qf/jAElBEgEEQHk/Gj65vnL+mb9SwEmBFIE/QKmAYf/7vsc+aL5R/z2/ZP+bwBuA34ERALh/l38h/o/+dH5fvw1/2kANQHVAvYDiwIm/2P8vfud/BT+4P+8AfQCAQPpAfH/gf1e+3P6Ffu7/Hz+4f8gAV0C6gLBAfj+HvzI+iv7gvwm/q7/rwAlAX4BgwEZAAT9Gvpe+Yb68PtS/Z7/gQLxA54Cav8Z/Nf5NflQ+pH8LP/cAR4EPQTmAJT7qPfm9k/4e/oU/bL/RQFzAf8AQADQ/iP9qfyY/YT+3v7h/wMCkgMoA5oBHwB3/mb8PPv1+4X9vf44AGACUwNgAUf+HP3q/Uj+of3M/WH/lQBFAIX/R//V/pb9bvwy/HT8yvzA/Xb/rwB0AHn/6/7o/vX+/f7q/lX+bP0//Rz+wv4x/kz9Y/0H/rv9XfxR+4v7mPyn/WX+tf6Y/n3+yf73/hz+efyZ+1f8rP0d/r793f3m/qH/y/6t/Kf6sPnd+Qj7/vwT/18AtACiAFYAT/+g/Zz8Q/26/k//rv76/f/9Tv4c/in9x/u/+uz6Mfw4/Tr9cP1R/9EBQwIKAHz9kvzA/Mn89PwB/nb/cwAQAW0BqgBJ/rX7wPop+2b7Ufs//KP+HgEoAl8BV/8x/Ub88/wK/oL+Kv8lAT0D2AKl/0j89fo3+8P7ePyC/Tb+G/7R/dz9kf1y/HP7qvuR/Pb85fxP/VT+Nv+f/7b/S/8Z/rX8B/wC/OT7nfvj+9j8qv2v/Tb95PwA/XT99f0u/hz+Nv68/iX/2v42/g7+av6c/nH+aP66/gL/D/8g/zD/0f7+/WL9af3D/Qv+Uv6p/tP+uv6h/pb+Tv7k/Qf+5/6q/4r//f7+/pn//v/W/6n/5f87ADUA6P+x/4f/CP8d/jv9z/y9/Ln84fyH/Vz+iP7Q/Q/9Gv2i/eL95v1Y/kn/DwBTAE8AEABS/0L+mP2r/Rb+h/4Y/6f/qP/0/gb+H/0I/AP7Bvta/OP9mP7M/j3/mf8L/739wPyo/Dr9Iv4f/7b/nv9G/yH/uv5x/dX7MvvM+5r8zfyX/F38Mfww/IX82fyu/HL8Gv2W/sj/PACsAGEBcQFPAOH+Lf4O/gr+cP6E/4kAuABzAFkA6v9r/oj8qPv++5b8BP2r/XT+sP5W/g7+9P2E/fL8NP13/rb/VADmAMoBNgJxAQYA5v4e/lv94PwV/an9/P0J/hr+8f0W/bz7p/pV+rz6rfvj/Pf9xP6S/2MAmwDf/9P+Rf7//WH9rvy2/Gb9wf1U/az8PvzB+/36Yfpd+s/6dvtn/Kf9wf5H/0j/Cf+Z/g3+zf0c/qP+4P7S/s7+zv5z/qL9u/wO/JD7RvuQ+5z85/2t/sv+tf6k/lr+wP1O/X79Lf7l/nL/zP/E/zf/c/7s/ab9ZP1B/Y39Jv6K/qD+1f44/zn/lP7T/YT9dP08/Rb9cv0T/kr+//25/bv9sv1n/SX9Mv1u/aj97/1T/q7+z/68/n7+F/6r/Xr9hf2K/Wr9S/08/Q79s/xn/E/8PfwZ/Bn8Zfy9/M/8pvxs/B38s/tx+5r7FvyU/P/8c/3s/UH+Wv5B/gH+rf10/W79gf2S/bn9Df5b/l7+Mv4v/ln+UP7f/Vv9Pv2H/cf9tv2F/YH9of2f/WD9Hf0T/Tb9UP1O/U39V/1M/Rr94fzI/M380vze/B/9rf1q/hD/Y/9V/xj/8f7t/tf+iP4t/gz+Ef7f/UT9bfya++76iPqB+sz6PPvQ+538ef31/ej9s/3E/RH+UP52/r3+Pf/T/zUAIwCM/7/+Lv7i/Wz9lfzU+7D7BvxH/EH8N/xT/Hf8jPyp/N38Iv2M/TX+9P53/7P/5P8jAD8AEgC1/1H/9v6z/oX+Nf6L/bT8JvwG/PX7rvt5+8H7bvwE/U39ff3K/Rj+Nf4s/jL+Wf5+/oP+cv5o/l3+Lf7K/Vj9B/3R/I/8N/zy+9v72vvG+6T7pPve+zH8bfyO/Lz8Gf2L/dT94v3r/SX+dv6f/qH+sf7b/u3+0v6u/ov+Pf62/TD90fx1/A380fvm+xz8OfxR/IT8qPye/J785fxb/cz9Vf4W/8//IgAvAFsAqgC9AHUAIgD8/9z/kP8s/9b+hP4g/rH9RP3W/G/8NPw5/Ff8WvxG/E38fPyr/MH83fwq/af9Kf6S/tn+/f4H/wr/CP/m/pH+Mf79/fH91v2Y/WT9Vf1G/QT9k/wc/MT7pPvJ+xf8XPyP/NH8IP07/Qb9y/zd/B/9QP1E/Wf9qv3R/cv9wP21/Yz9Yv2A/df9Bf73/Qn+W/5+/h/+jP07/Sv9Fv39/Ar9MP1J/WX9l/20/ZX9b/2F/a39m/1r/Xz9zf0A/u39yf25/aT9bv0m/d38n/yQ/Mb8Ef0r/RP9/fzv/MP8dvw2/B38J/xW/Kz8+PwG/e388PwH/ef8hfwy/CP8MPww/DX8V/x8/IT8c/xZ/C389/vR+8T7vfu4+8n76/sG/Bj8MPw2/AX8xfvI+w78RvxV/IL89Pxo/ZP9i/2C/Xj9VP0f/fH80/zU/AD9Mv0x/Qj99PwA/fP8wfyb/JL8evxU/GH8oPy0/Hf8P/xA/C38xvtY+0n7ePuH+377qvsR/H782/ww/WL9XP1U/Xj9kv1h/Rf9E/1C/T39+fzO/NP8vfxs/CD8CfwG/Pj79fsJ/BX8GPw5/H78rvy3/NL8Hv1i/Wv9Xf1v/Yn9e/1K/Sj9HP0F/eL81/z0/CP9R/1e/XX9l/23/bP9jv17/Zv9xv2//aH9tv33/Qf+zP2T/Y/9gP0z/dr8tfyo/Hz8T/xc/JH8sPys/KX8n/yM/ID8mPzD/OX8B/05/V79X/1g/Yb9rf2e/X39kf3M/dv9qf14/Wn9UP0S/cb8g/xF/BT8BvwJ/PT70/vY+/z7Bfzt++77FPwn/Bf8K/yB/NH84vzp/Cn9fv2f/ZT9m/3A/db91P3Q/cf9nP1O/f38sfxe/A/82fu7+6H7kPuY+6v7rvuj+6b7vfvZ+/f7Ivxd/Jr80Pz8/BP9Ff0L/fj80PyS/Fr8N/wQ/NT7mPt4+2X7Rvsm+yP7M/s++0r7b/ul+8b7zfvW++r79vv0+wH8Lfxf/Hz8hvyI/Hj8TvwX/OD7qvtw+z77JPsb+xL7BPv6+vr6/vr++gD7EPsw+1b7fPuz+wX8XvyX/K38yPwE/Ub9bv2K/b799v39/dD9pf2O/WH9Cf20/JT8jvxz/EX8LPwp/CD8A/zn+9n72fvv+yb8bfyq/Nn8EP1Y/Z790f3z/Q7+K/5T/oT+qv6x/qD+if5x/kj+Cf7L/aP9jP1z/VT9Nv0g/Rb9E/0P/Qb9+vz5/AT9Ev0j/Ub9fv22/dn96/32/fr98f3o/ez98/3t/d39zP23/ZP9Zv1B/SX9Cv3x/OX84vzf/OP8+fwS/RH9/vwG/TT9Wv1T/T39T/2B/Zr9h/16/Zr90P3v/ff9Bf4c/iH+Cv7o/cz9rf2A/Uz9HP3t/LD8XvwE/Lj7gftV+yb7+frj+uj69Pr0+u/69PoN+zT7X/uC+5b7pPu0+7r7rfuW+4/7kvt9+0b7Cvvf+rn6g/pO+iz6Evru+cr5tvmf+Wr5I/n1+On44fjM+L74xvjY+OD43/jf+OH45/jx+P/4Dfkk+U75gvmn+bz51Pny+fn52vmw+Zj5gvlW+SX5G/k9+V75XvlM+Ur5Vvlc+Vb5X/mH+cP5+vkp+lv6kfq8+tr6+foh+z77R/tP+3D7mPup+6f7tvvY++L7uPt4+037MPsF+9L6vfrX+gP7Ivss+y77NvtG+1r7bvuL+8D7Dfxa/Jj81vwf/WX9kf2o/cX98f0a/jf+WP6H/rX+zP7O/tD+2/7h/tf+xv7I/u3+Kv9i/4L/jf+S/5n/n/+b/5X/nv/D//X/FgAbABgAJAA2ADcALgA2AFcAeQCTALQA5QAIAQkBAQEHAQsB7gDCALgA0wDfAL8AlACBAHAAPgD6/8v/uP+e/2n/Mf8P//f+0v6a/mD+Nf4f/h7+Iv4a/hD+Gv44/k3+Rf4x/iL+Dv7g/af9f/1h/S395fyn/H38Rfzr+4j7QPsL+8f6b/od+uT5wfml+YH5Rvn5+LT4ivhn+DL4+vfk9+/3+Pfq99736Pf49/n3+fcD+AT43feY91r3LvcC98n2l/Z19lD2D/a59WP1F/XN9If0TvQo9A/0+/Pr89/z1PPL88LzuPOs86HzovO189bz+/MZ9C/0QvRR9FX0S/Q79DT0PvRO9Fn0XvRg9Gf0cPRu9F70T/RW9HH0hfSI9I30rvTj9BP1N/Vg9Zj10/UI9j/2gPbD9gb3SveJ97H3xPfh9xr4Xvia+Nj4LfmU+fT5QfqB+sD6CPta+6j75fsX/Fj8rvz+/Dj9cf3G/Sj+df6p/t/+Jv93/8n/HABrALIA+QBHAY8BwgHvASsCcAKnAtQCCgNFA3MDmwPRAwwELQQzBEQEbwSZBK0EuQTSBPUEGwVHBW8FhgWRBacFxwXUBcsFyQXeBfIF6wXRBbwFrgWmBaYFqAWiBZkFoAWvBawFnQWdBa8FswWcBYsFkQWaBZMFkAWcBZkFdQVOBT4FLwUABcEEmQSBBFQEDAS6A2gDCwOpAk8C+AGWASoBxwBwABsAxv90/yv/5/6n/mb+H/7Y/Z79av0m/dD8fvw5/PD7mPs8+9v6Y/rY+V/5Afma+Bb4lvcu97z2IPZ59fL0ffT081zz0/JZ8tzxaPEO8bfwRvDW747vWe/+7oTuIu7g7YntDu2Z7ELs4+tj697qbur86XHp5Ohx6Afohef15njmEeae5QzlceTq44jjR+Mf4xXjOOOP4//jaOTZ5HblROYh5/3n6+jy6fXq5OvU7NPtwu6M70rwG/Hr8ZfyJvO48070zfQ19Z71BfZM9m/2i/ax9tb2+vYs93f3zPcf+Hf41Pgs+YP58vl6+gf7kvsu/OL8kf0o/rv+Yv8QAKkAKgGiARMCcQLDAhYDYgOTA64DyAPfA9oDuAOYA4kDdANLAycDJgM8A0kDSANIA04DVANgA34DrgPiAxoEaQTSBEUFtQUqBrIGRAfHBzsIsgg6CcMJNwqWCvMKVAurC+kLGAxHDHUMmQy5DOkMKw1pDZsN0A0WDmMOqg7tDjwPlg/wD0EQihDNEAsRShGHEbQRyBHFEbYRlhFdERURzxCPEEgQ7w+GDxEPiw7xDUQNjwzfCzoLmQrsCTEJcgi2B/sGQwaYBfsEYQTGAzIDogICAlMBsQAoAJj/5P4j/nf90PwO/D/7ivrs+Tr5bPih9+L2EPYg9Tn0dvO88vHxJvFy8MHv/+487o3t3uwc7GDryuo+6ozpwOgX6JvnD+dY5qTlJOXD5Ffk5uOT41rjGOPK4ofiUOL84Xnh5eBl4PDfad/Q3lDeDd793QTeE9473pHeIN/h38Lgu+HU4hTkaOWr5sfn0ujq6Q7rJ+w77WTuo+/e8ATyJvNG9EL1CfbA9oj3Qfi3+Pn4S/m6+Qv6G/oT+iL6Q/pj+pL63vox+3n72vtm/Of8J/1N/ar9O/6w/uv+Jv+Q/wsAbwC+AAABJQEuAT8BWwFNAQEBtACgAJ4AYADk/2n/Ef+z/i7+mf0m/d78ovxY/AT8tPts+yL73fq9+tT6CPs9+4b7BPyi/Cr9nP0z/gL/zf9gAOEAggEsAqwCDgOJAyAEpwQLBWMFuwUDBj0GgAbNBg0HPgd1B60HxwfFB84H/wdLCJsI8AhSCcAJNwq5Cj0Luws+DNUMcw33DVkOsw4PD2EPog/ZD/4PBxACEAcQABDID28PKg/8DqgOEQ5lDccMHQxSC4oK4wlECZwICwilBzoHnAb9BaMFegU8BfEE1QTpBOgEugSOBHsEYQQ8BDgEVgRXBBsE1gO2A5YDQgPMAmoCJQLXAWgB5gBmAPn/nv9H/+P+ev4k/t79jP0o/dD8kfxc/Cv8E/wI/OT7qfuH+4r7fvtF+w/7B/v/+rv6UPr3+av5PPmq+B34mPfw9h/2SvVy9HXzV/JN8Wrwfe9k7kftVOx464Hqbelp6IfnveYB5lrlw+Qm5H3j3uJP4rXh9+A24KzfZt833wbfBt9931/gXOFG4kfjieTv5Ujnjejh6VDrz+xQ7r7v9fDv8dny2PPO9Jj1ZfaF9+v4OfpH+038Zv1W/u3+WP/R/0MAjQDPAEEBygEsAmcCtAIgA3kDqwPXAxsEbwTNBDwFqgXxBQ8GIAYdBt0FYQXnBJ8EdgRHBBQE7AO9A2oD8gJiAroBAwFZANb/a//5/nb+8v13/f/8fPzq+1n77Pqt+nr6MPrl+cb5zPnA+ZT5e/mY+c35+/k++sL6gftX/ED9RP5M/zMAAAHXAb4CqQObBKYFyAbqB/oI8gnPCpoLagxJDSEO5w6xD44QYBEEEn4S6RJME6MT9xNRFJ4U2hQeFX0V1BUJFj0WkhbjFvgW4hbYFtsWwRabFqAWvBafFkEW7xW6FVAVkBTYE3ITJBONEsIRDxFuEKAPqw7NDRQNWwynCyALuwpGCsEJZAk2CQMJsAheCCAI2weDBy4H3QZ2BgEGpAVXBeAEMAR+A+8CawLTAT8ByABkAP7/jP8H/2n+yP1F/dP8TPy++177JfvX+mj6D/rc+Zj5LfnR+KP4bfgG+J33WfcM94b26/Vj9dL0EPRH86nyEfJK8XLwxu8t713uX+177Lzr7uoK6j3pi+jJ5/TmNuaS5dbk/OMz44zi2+EO4U3gvt9Y3xnfHt903wfg1OD24W/jGeXi5t/oGOth7Y7vm/GU83n1VPcp+d36T/yK/bD+u/+FAB4BxQGMAkcD4wN4BAUFUgVQBTcFKgUDBa8EbwRtBHgEWgQ0BDsEYQSLBN4EeQUsBsEGXgcxCAcJkAnsCW8KBwtOCysL6gqsCkAKmQnwCF0IrAe9BrMFoARjA/cBnwCU/8D++v1E/aT8CPxq++H6efos+gz6QfrA+kv7xftM/O/8kf0u/ur+x/+cAGgBWQJmA0EE1wR2BT4G2wYKBw4HPQd6B30HZQeAB8gH+QcNCDcIegiyCO0IZAkfCvQK2QvjDAUOGQ8YEBYRBxLYEqUTkRR0FQ4WcBbhFmAXoReLF2MXTxchF60WEhZzFccUBBQ/E38SoRGZEJUPtQ7fDQMNTAzfC58LYws7CzsLQwsxCy8LcAvTCxYMQwyXDAkNUA1bDXENtg3zDfkN4w3bDc8NoA1YDR0N8AzDDJEMVQwGDKALNgvUCm4KAQqfCV0JMwkECcAIbAgiCPQH2Qe7B6UHtgfwBx8IKwg3CF0IcghSCCwILgglCMYHOAfWBocG5AXzBC4EtQMXAxkCFAFPAIL/Zv46/Ur8Yfsx+u347/cS9/n1ufSy8+Ty9fHc8OjvL+9p7oPtvOwl7HjrnOrV6U3pwOjn5+rmF+Zt5a7kwuPI4uHhBuEa4Azf5N3O3PzbjNt828zbi9y73U7fLuFK443l+uey6sztJfF69KT3pPpz/ej/7gGZAwIFLQYpBxII4ghsCaMJtgnOCcQJZwnNCDYIqAfzBg0GJwVlBMIDNAPDAmMC+wGdAXUBkAHaAWMCVwOnBAEGKwcyCBoJuwkAChwKPwpUCicKswkMCSkI8QZxBdcDQQK3ADz/0/15/DL7DPoQ+Tv4jvcQ9732hvZs9nr2q/b49nX3RfhV+W36gvu2/Aj+QP9ZAJYBEQOKBNEFDAdRCFYJ3wkgCl4KggpcCh4KEAoXCuwJrgm4CQYKSAp1CuEKrgufDIENbQ6GD78QBBJNE4gUmxWKFnIXWBgaGakZHxqhGi8boxvWG8AbeRsdG6Ia8hkTGSgYPxdMFk0VSBQ2EwoS3RDeDwoPNQ5dDcMMiwyIDH4MdAyTDN0MJQ1YDYoNzg0aDmQOrQ7xDiAPMQ8tDyUPGw8LD/QO4Q7cDucO8g7tDtwO1Q7gDuYO0A6xDqYOpg6RDmcORw48DjAOHQ4XDiMOIg4NDgQOGQ4mDg8O7g3iDc4Nhw0hDcEMXAzKCx4LigoGClsJjgjgB1gHrwbNBfIETASeA7ACowGrALL/jP5O/Rf80vpl+fb3p/ZS9cnzLvLA8HHvC+6W7D7rDerj6LrnmuZ55U/kN+NF4l7hZ+B036be+N1X3cHcPNzL247buttM3BPdA95Z3zjhcePH5Tno5urO7dTw1vOv9kz5xftF/rgA2gKIBPMFSgd3CE4J2AlOCs8KTgu9CyQMewygDIQMVQw4DAwMoAshC+gK9grqCpQKNwobCjEKRwpTCmYKhwrAChILUQtJCwwL5ArTCoQKwwm8CKgHfQYkBa8DQQLeAIn/TP4c/dP7aPoN+fb3JfeH9hb20/W69dD1DfZO9m72lvYb9//33/iF+TP6Lvs6/P38jP09/hH/yv9ZAOMAYgG7AQgCbgLRAgoDPAOeAxIEYAStBEYFIQYGBwsIagkDC4AM4g1qDwwReRKsE/UUbBbBF7gYdBkiGrAa+BoEG/4a9hrdGqQaSBrWGVYZwhgXGFwXnRbWFf4UFhQvE1MSgRG/EBcQiQ8QD6gOTw4FDskNng2GDX8Nhg2TDZMNfg1eDT0NDQ3GDH4MRwwXDOULwQu9C8oL1wvqCxYMWAynDAUNdA3sDWwO9g5+D/QPZhDpEG0R0BEeEn8S7BI9E28TpxPnEwoUERQWFAwUzhNuEyIT1BI8EmARlxD1Dy8PIg4XDUgMjAu2CuMJNAmGCMEHFAeXBggGPwV4BOUDSwNhAkkBQAAm/7v9FPxv+sH43fbY9Ofy+vDc7pPsS+oC6JjlHuPC4IneY9xr2svYe9dX1m3V6tTW1BDViNVT1oHXBtm32mbc9t1p367gk+EB4jDiXuJ74mPiP+JZ4qzi+uJQ4wfkSuXy5t7oMOsM7l7x8/Sb+Dr8w/8zA3cGZwn1CzsOWxBWEhUUhxWhFmUX5RcnGBsYvhcyF5wWARZXFZgUvBOyEnsRMhDhDn4NEwzNCsoJCwmKCEMIIQgTCDEIjQj2CDQJWgmlCQkKPAojCuQJiwnoCOAHiQb3BCEDGQEZ/0P9iPvf+WX4NfdE9n/13/Rs9DX0WPTh9KH1ZPY792L40fkr+0X8Y/3K/lYAxAERA2YEyAUjB3UItwm7CnALBAyYDPoM8wyrDHEMTgwaDM0LfQspC8sKgwpmClsKTgpsCuQKnwtdDAoNwA2HDkwP+Q+FEPIQTRGdEdMR1BGZETsRxBAmEFQPWA5FDSQM+wrRCasIjAeHBqcF2gQGBDADfQL6AZUBPwEOAR8BZQHDATcCzQJ6AyUE0QSgBY0GZAcPCLcIegkpCocKpQrBCuUK4gqnClUKEwrjCbwJnQmLCY0JsQn/CWkK3wpnCxIM2wyxDY4Ocw9VECgR7hGtElUT1RM2FIYUwBTQFLYUgBQvFLoTJROCEs8R+RAEEA8PJw42DTEMOgtxCsoJHwlwCN8HegclB9IGlQZ+Bn0GfQZ7BnsGdAZhBkAGDQbDBWsFDAWeBBEEbgPKAiICaAGkAPb/ZP/a/lb+8/2//aL9jf2X/dD9Kf6Q/gP/hv8JAIUA/QBxAdMBJQJ5AsYC8ALyAuUCywKNAicCvQFYAdcAKwB5/9L+Gf4x/TX8Tvtt+nn5fviY98X2+PVB9bH0OvTI82fzLvMS8+vyqvJt8lvyafJd8g/ynPE38dfwPPBX73Pu1e1x7SDt7uz/7FPt0e177lvvZPCH8d7yi/R29lX4APqS+y/9wf4SABYB9wHdAr8DgAQZBZMF7wU0BncGtAa/Bo8GXQZXBlkGKwbeBa8FqwWzBbMFqQWYBZgF1wVRBskGJQeeB1oIIQmlCecJGQpFClIKPAoJCrAJKQmMCO0HMwc4Bg8F9QMOA0gChwHHACgA0v/L/+f/9f8AAEgA6QCmAT0CvgJuA1UENAXfBW8GAAeGB/AHSgigCOYIHAlfCbwJFApHCmUKkgrXCigLdAu7Cw0MiAwxDd4NbQ70Dp0PYRAWEbMRURL4EpYTIxSgFPsUIhUrFTIVJhXhFGcU5hNzE/kSZRLGETERqxA4ENcPfw8hD8MOgg5xDnIOYg5IDkoOXg5SDhkO3w3DDaoNcg0uDfgMxQyDDD8MCwzcC6sLkQuaC6oLpwukC7ULyAvBC6oLlwuHC3ELVAsiC84KbAoiCuYJigkMCaEIXggVCKkHNAfKBlcG2QVxBRUFjATRAzgD4QKDAuABMAHBAHUAAQBf/7f+EP5Z/az8Gfxy+4v6kPm++Pn38fah9U/0IfP98cbwf+8r7tTskutn6iLpoOcN5rHkh+NZ4g/hvd9y3i7d9Nu02lTZ7NfU1kLWENYT1nLWaNf12PnaZ9034FLjsOZc6knuOvID9qT5H/1aACsDYQXeBsIHXgjjCDMJMQkJCfcI/gj9COcIwQibCLEIRQlHCloLVgx6Df8OohDsEbwSVxMFFMEUSBVtFU8VMBUgFewUXRRpEycStBAmD3gNjQtaCSEHLQVzA5cBbf8r/Sr7gfkU+Nb23fVV9Vr11PVv9t/2L/eg90D4z/gW+TX5Zfms+dr50fmR+ST5pPg7+Pv3wvd891/3qPdN+Az5z/mx+r376Pwx/pH/5gAmAogDNAX2Bn8I2glBC7IM9Q31DscPdRAEEY0REBJYEkUS/xG0EVERtRD0DzUPhg7pDW4NCA2VDB4M0Qu0C54LegtlC2ULYQtNCzEL/QqVCgsKkAkiCYoItAfJBvMFKQVSBG4DiQKuAe0ATQC6/xT/b/79/dX9y/22/aj90P04/rv+QP/P/3UAMwH6AcICdgMLBI4EHAWuBSMGdQa9BgsHUQeFB6wHywfpBxoIcAjWCC8JhQn7CY0KHQukCzEMvww6DagNFw57Dr0O6Q4aD0IPPQ8JD8UOeg4UDpANCA2QDBQMhwv3CnsKDwqcCRsJpAhQCBgI5QexB4oHeAd4B4IHjweSB4kHhQeZB7QHuAehB4cHeQdlBzkH7waPBigGzQWABScFqgQlBNUDywPVA8cDuAPeA0IErwQCBUoFqgUrBrYGLQd9B6gHyQftBwcI/AfKB4cHQwcDB78GawYDBpcFQgX9BKQEKASnA0ED6AKBAggCiAEKAZIAIgCw/yj/kf4H/pH9Hv2h/CX8rvsx+6b6Efpv+cH4Dvhb95721/Uf9Yr0AvRy8/TyrfKO8mjyN/Ik8krylPLf8iLza/PP80z0xfQS9TX1W/Wl9QD2QvZm9oz22fZN98n3OPie+Bj5uvl7+jr73ftw/CH9Cv7//rv/PQDJAIIBNAKlAuoCPQOpAwwEVQSKBKkErwSnBJwEhQRaBCgE/QPYA8ADvAO+A7MDpwO/A/kDKAQ1BEIEbwSvBN4E8QTqBMgEjwRNBAAEkgMDA3EC+wGXATABwgBYAPf/ov9n/0D/FP/i/tf+DP9Y/4P/kf+7/w8AZQCeAMgA+wA+AZwBFQKIAtQCEQN2A/8DaQSUBLQEBgV7Bd8FIQZcBqwGEAd6B9gHJQh0CN4IZAnrCV4KxgoxC6MLEwxvDKEMqQykDK0MsQyKDD0M+gvbC8QLkgtICwML2ArBCrIKqAqrCsgKAwtGC3QLiguqC+sLPAx2DJMMrwzVDO8M8AzpDOkM4wzVDNQM3QzQDKcMiwyWDKUMkQxsDGEMbgx4DHAMVww2DBoMDgwHDOgLsAt8C1ULKAvkCpEKMgrCCUoJ2ghfCLIH4wYvBqUFCQU5BF0DpQIAAk0BkwDZ/wv/Lv5w/dr8J/wo+xH6JvlN+EL3//W39I3zg/KP8Y/wX+8Z7gntO+xR6wzqrOiU58Dm5uXZ5KvjeeJg4WHgTt/u3V3c/tr/2R7ZENjt1gXWh9Vl1YPV0dVu1qXXpdk/3BPfCeJd5THpOu0M8W/0d/dK+v38cP9lAcUCvAOEBBcFPAXjBEYEwgOVA7cD8gMvBJkEZgWDBqEHiAhVCUQKdAvCDOoN0Q6RD1QQEBGGEX0R8xAcEDYPSA4iDZULxAkSCJ4GHgVBAyIBKf+S/U78NvtK+rH5lfnw+X/69fo7+3H7uPsR/F38d/xd/D/8RvxR/A78X/uA+rz5Lvm0+Cn4m/dQ9333AfiH+PX4f/lP+lP7avyK/a3+4/9dAS0D+wRrBpAHwggBCgMLpgsVDHoM3QxDDZsNsg15DTANBw3hDI4MIwzZC8UL3wsTDD4MSQxZDJoM6gz+DNsMxwzTDM0MoAxmDB4MpgsGC14KpAmtCH8HSwYnBQkE9AL0AQEBGABP/7P+Kf6U/RT95PwF/UP9df2r/QT+fP7u/kH/dv+c/77/4P/7//z/5P/T/+z/GgA1ADkATQCAAMEABgFTAagBFAK0AoADLgSRBOEEXgXtBUwGgAbABhoHcwfAB/wHEggECP4HDggCCLkHXgcpBxoHCQfkBrMGhwZ6BpQGswatBpIGnwbqBj0HZAdsB4YHuAfVB7MHYQcJB70GbAYFBosFEQWwBG0ELQTRA2IDEQPxAt8CtQKCAmgCaQJrAloCPAIjAiICLwIlAvEBtwGmAbUBrgF9AUgBMQExASgB/wDGAKIAqwDNANQAtACdAMIAEwFRAV8BZAGTAeEBEwIJAt4BxQHJAcsBoAE+AcMAXgAbANf/av/p/pD+cf5j/j7+Bf7T/a/9j/1m/Sb9wPxI/Or7tvuA+xv7mvo9+hf6/Pm8+V/5Evnz+Pn4+vjU+I34V/hH+Dn4/vee91H3Mvcq9x/3GPcp91n3nffo9yf4UPhn+Ir4y/gY+Uj5S/lA+Uv5ZPll+T35Bvnl+Oj4+/gB+fX4//hB+Z351fnm+Qj6Vfqk+tX6AvtL+6H78ftH/K78DP1R/Y/92f0c/jv+PP48/kj+Sv4l/tj9hv1N/R792vyG/Ff8bPyf/L78y/zx/ED9nf3g/f79Ef47/nv+pf6N/kP+B/74/er9q/1P/Rn9JP1I/Vr9Yf18/bH98/08/ob+xv73/jf/oP8aAG8AlADGADkBywE2AnMCvAI4A9EDWwTEBBsFfAUDBqEGHAdYB4wH9weNCAsJXgmyCSUKrAoyC6cL+QsqDGsM2QxCDV8NPA0lDTwNUQ0uDd8Mmgx9DIAMggxjDCcMAAwYDFcMdQxbDEIMWAx6DGUMHgzfC8ALoAtqCycL1QpzCh4K7QnHCYYJOwkNCfQIxgiECEMI+QeYBz8HCQfRBnQGGwYABgwG+gXGBaQFpAWmBZYFeQVOBRIF2QSoBGAE6wNsAw0DvQJUAtcBaQELAakASQD6/6X/Mf+0/ln+Ef6h/f/8XvzV+0b7jvq2+dH45Pf39g72EPXj86LyhPGF8HDvM+717MzroOpj6R7o2eaY5W/kbONz4mvhY+B536Dext0B3Wzc/Nuj23DbYNtV21vbpttI3BDd7N3/3lXgzOFY4wvl0eaB6B3qsesL7fbtqO5972vwL/HO8YjyZvM/9A717PXe9vD3R/nm+ov8A/5s/+sAYgKOA14E+gSIBQkGZAaEBn0GfgaZBrMGsQaVBnAGTQY8BjgGIQbkBasFpwW5BZEFHwWcBCkEswMuA6wCLwK4AWMBQAEiAc4ASwDR/2f/5f44/of9/fyk/Gv8Rvwp/Ar8+fsb/HD8xvwA/UP9v/1Y/tb+Of+j/wYASQB7ALQA0QDBAMgAKQHBAUoC0QKIA2AEKQXqBbcGeAcbCMwIoglnCukKSgu3CxcMTwx3DJ8MrgylDLUM3AzbDK4MlwylDJcMUgwJDNILjgs8CwAL1gqVCkQKDQrgCY8JHwm5CFcI2gdYB/IGkQYNBnMF3QQ2BHEDwQJRAv8BoAFaAVsBfgF7AVcBUgGIAc0B5QHEAZoBoQHKAcgBdwEWAfEAAAEEAdcAkQBmAHwAxAAGASQBQQGJAecBKAIzAhsCDQIiAk4CWwIkAtIBrQG6AbEBaQENAeAA5QDuANgArgCKAH4AeQBYAA0Avv+a/57/kv9V/wf/2P7L/r/+n/5x/j7+Bf7O/Zj9Uv3x/Jz8d/xp/EL8CPzo++X73/vT+9n77fv6+wH8DvwU/AL83/u3+4f7SvsC+7L6Yfoe+u35xPmu+cf5Dfpc+pz63fok+1j7c/uS+8z7FPxW/Ir8r/zP/Pv8N/1c/Uj9HP0V/TL9Nv0R/f78Jf1t/aX9wf3N/d39EP5x/tP+Av8Z/23/AQB2AJIAkwC6AOAAyAB6ACAAzP+X/6n/2P+8/1H/C/8m/0b/HP/f/t3+Bv8m/zT/P/9L/27/tv/8/wYA3v+7/7H/ov9+/2D/Zf+E/53/mf99/1f/O/89/27/t//y/xsAWgCrANgAwgChAKkAwgC7AJcAhgCfANsALAF1AZ4BxgEjAqEC8AL9AhwDegPTA+ADxwPRA/kDBgTyA9sD0QPUA/MDMARuBJIEtATvBDMFVAVOBUMFSAVYBWkFdQVlBTwFIwUzBUEFFQXIBK0E0QTkBLEEXQQnBAUEwwNYA+8CrwKRAnwCYAJBAioCKAIyAjICHwL9AcQBYwHzAKQAcAAbAJ3/Pf8g/wf/sv5F/gf+/v0B/gP+Cf4O/hX+Mf5K/ir+0f2I/XP9Xv0g/dr8r/yH/E78GPzl+5D7JPvj+tX6svpj+jb6XvqQ+oP6U/o0+hn66fnA+ab5afn9+LX4t/ij+C34nfdj92P3M/e89kn2B/bp9dD1l/UX9W/0+PPC82jzq/Lh8W3xJPGh8OPvL++d7hzuse1a7e7scOw47F/sc+wS7HjrCOuq6hjqaenh6IHoMugG6PLnr+c65wjnYef/55joUOlP6mfrYOw/7QHugu7P7iXvfO+V73/vo+8f8KnwE/GM8TXy6vKM8yz04fSn9Xj2WPdI+Dj5A/qG+r762/oQ+2b7y/s6/Lz8Vf31/W7+kP5x/mr+ov7O/rr+uf4d/6//DgBkAAgBxgEqAkICbgKxAsICrwLMAhoDTQNBAwEDgwLCAQABgQAzAO3/1/8kAK4AIwF+AeIBOAJZAmUCmwLtAiMDRQN7A6cDhQMnA+MCygKcAkoCHwJJAqECAwOEAyUErgT9BDcFbgV5BUUFIAVZBcoFIQZQBn8Grwa3BogGRAYJBt0FxQXCBcUFuAWfBYgFcAVLBSAFAgUBBSYFegX8BYIGyAa0BnEGMAbhBVIFiwTUA1cD8AJsAs4BPgHWAJYAeABpAFkAWQCEAMsA8ADZAKMAYwAAAGn/xf41/rL9P/0D/f385/yU/Dn8EvwG/N37pfud+977UPzP/DH9Uf00/RD98/yt/DT83fvs+yL8CfyW+y/7E/sb+wr73vq3+qL6qPrZ+jD7hfu6+9f75PvG+2z7+Pqd+mD6Jfri+aH5Yfkb+dP4ifgo+Lr3i/fS91T4q/jG+OL4D/kG+Z34C/io94z3jfeC9173KPfv9rb2avYC9qX1iPWq9cb1o/VV9Rf1CvUb9S/1J/Xu9I/0QfQ69HL0w/Qw9dr1qvY09yn3rvYt9uf10fXH9bn1vfX39W/27/Y291L3k/ca+KH43Pjg+P34S/ma+bL5hvkr+dP4tPjb+B75Wvms+T76Avu2+zD8dvyd/K38ofxr/AD8iftb+5b75Pvn+7j7xPsu/J78wvyr/JH8i/yS/Jr8i/xd/Dr8VfyX/LD8mPyf/PX8Z/26/f79R/5o/kb+Ev72/cL9TP3n/Aj9n/0w/oj+6/6R/0cAxAD4APoA7gD7ADEBXwFTAS4BRAGUAbMBWwHCAEsAFgAUADkAggDiAF0B/QGjAvwC8QLTAgUDiQMWBIQE4AQyBU0F6gTuA5YCVgF8AP3/rv+a/+3/mQBMAcMB7gHLAWUB7QCmAJQAgABdAFQAcgB+AEEAvP8D/zH+a/3c/I78bPx7/MT8BP3R/BD8Hvtd+uD5r/n1+cD6y/u1/FL9lv1p/cj85/sL+1j63fmY+Wb5GPm3+Hz4Z/gx+Ln3UvdY98T3Vvj++M/5sPpj+7r7p/sk+1T6mvlG+Ur5Xfla+Ub5Fvml+O33Dvc89rf1wfVf9j33CPjF+JH5L/oz+pz55/iE+Gr4Wfg1+BD4+/f49+/3sPcb91722vW89df19fUd9mn2yfYS9zX3NvcR99H2q/bJ9g33OPdL94H31PfQ9xX31fWg9NLzXvMp80HzqvM19LH0GPVt9Z71rvXX9Ub2yvYJ9/f2xvaD9vv1MfV39BP0/vMe9Hr0AfVu9an18vVz9uv2Fvcs94/3LPiR+Jv4pPj5+Hv56fkk+if67/mU+UP5+vic+ET4R/i9+Er5mfnD+Rf6ovol+3n7u/sa/Kv8UP3Q/fn9yf1s/RT90vyY/Fj8GfwJ/Fj89fyC/bz9y/0A/kz+Wv4l/iP+oP5M/6r/ov+C/37/hv9s/xr/rv5r/oL+1P4N/wr//v4T/yz/Iv8M/yD/bf/k/3QA/gBLAVkBaQGdAbIBXwHCADQA0/+B/0D/LP9J/4H/yv8LAA0Avv9l/1T/f/+3/xQAuQBcAYEBGAF/AOn/Of+O/kn+hv7Z/tv+kv4t/qj9+vxH/L/7aftK+3H7vPvc+7T7hft/+3n7P/v0+tn66/r1+t76pvo8+pL5yvga+Iv3B/eT9lP2WPaI9rT2vfas9qP2q/aV9kz2GPZQ9sH2x/Yj9kj1u/R39DP08PPi8wb0KfQz9D70X/Si9BH1lPXg9cn1gPVZ9WX1e/WR9dr1e/ZM9+X36vdh9632H/ax9U31LPWW9Uv2r/aD9hb2rPVG9QT1MfW+9T32jfbw9kj36Pal9Vz06fMb9Fb0mvQ09ef1NvYf9uz1l/UL9bH03/Qk9fL0r/Qd9fb1MPaf9Sr1UfWJ9Vn1FPUW9Tb1V/XH9ZT2Lvc+9yP3MPcU94/2JfaG9pn3p/g0+Tz59fit+JT4fPgN+HP3aPc1+Dn5yPn++VT6yPr1+r36V/oF+vz5ZvoT+4P7ifuV+/n7V/w7/N37z/sn/Iz81fwa/VP9V/0y/QT9tPwu/Mn7/vvL/Kj9Jv4//jD+MP5E/jj+0v1A/fX8Cf0V/eP8xfz0/Bj91Pxt/FT8e/yd/M38Mf17/V/9N/2E/QL+/v11/Qn96vy7/IX86PwH/hD/RP/I/if+jv39/L78D/27/V3+xP7U/mX+qv1I/Yr92f2O/fr85/xL/U39m/z5+yD8vfwI/eP8yfzu/A/9DP0V/S39CP2M/A382PvP+677avsg++f64vpC++X7TPwq/Lj7NPt3+nL5wfgT+TT6Nft4+/r63PlM+O/2nfZx96r4iPnd+Z35m/gJ96T1EPVV9Rz2GvcE+H34Zfjm9yT3SfbM9Sr2KPf69zn4IfjQ9x33bPaz9hj4Xvl7+fP44fgz+QH5Mvi89zT4/vg2+b74Lfge+Ln4ivnD+Q75Fvj49//4Ovp0+mX50ffB9rT2g/e2+Nj5mfrV+p36Avrz+Jz32fag96z5Vfte+2D6ovkz+VX4TPdX98r4hPpx+237hvq9+PD2ivaa94n4cfhk+FX5Ovqz+W74J/gL+cP5qvlt+YX5o/my+Qv6jfqa+jX6JvrA+mP7iPt4+7P7Ovyq/JH8oPsL+rr4ifhd+Vv67vob+xH7/voi+3L7Y/vD+mT6KfuX/FD90/zY+yH71foI+8f7lvzE/Hn8bPyU/Dr8gPt6+1f8vPy3+1H6JvpB+2X88fxX/er9O/7Q/dn86vtL+9/6ivp9+vj6sPvi+0/7ufrY+h77ePok+b74Jvpc/Mj92f3y/Ln75/oV+wv8+vzI/Sb/2QArAR7/LPyb+sv6evv1+3T8zPx4/Mf7fvt4+yD7IPu1/DT/JwCX/kn8GvvQ+pz63/ro+3D8MvsH+cn3+fcR+SP7KP5lAMv/tfyK+bP3+vaf94P6t/5PAboAbv5j/Ov6//mr+kT90f8HABD+rfvZ+bP4sfj/+VX7Xvu5+uX6xfsP/Lb72/tt/Ar8UvqV+ND3qvfi9yD5ivvS/Wf+4vwt+gz4TPgS+/j9Sf4b/NT5zfhG+NH3XPgf+on7afuS+kX6dvq1+jz74ft/+9j5i/i5+B35Mvj89pv3EvqI/Ov9P/4H/fX58PbM9pX5WPwl/eX8l/xA+0/4BvYs90H71P5J//v8Hfrg+Dz6H/3o/uX9V/vu+YP6gPuF+0X7DPyG/QX+wfwV+xj7IP0H/2D+Zfv8+JX5jPwT/xT/qfyL+c/3nfg++7r99v6R/wMAH//k+yz4avd2+jX+C/+v/AL6y/kw/Nn+N/8I/Z36SvrU+wr9pPyW+2D7FPyF/Oj7z/p8+lb7Qfz/+xP7Tfsu/eT+jv52/E76Uvn8+RT8C/7j/R78+/v1/ugBMAHQ/Y37g/sJ/Lj8gP5UAPL/7f3u/PH8ufsl+tH7RwAbAv3+dvug+xz9WPwm+w39awDCANr9fPtN+8v7f/yA/scAgwCM/f/6wPqL+wT8wPxu/lQAcAEjAcz+3/pl+JP6UACDBJUD3/4b+qX34vdG+pX9WQDqAQICz/9h++D3QfnP/qAChgBm+3P5afwSABQA2fxN+jf7if7PAO//Uv0R/PX8kP3n+4T5c/kF/Ib+//5B/s79lf3e/BX8Dfxk/F/8p/wz/rr/1P4U/Dn77/0PAT0Bu/92/4X/6fzR+B34CvwqABYBhABuAMb+3/nG9Rn47P8uBvQF1AAk+3r3nfbS+Hn9dgIYBYUDBf6x9xD1Mfhr/vsCfwPrACf9ofnI99j4pPxuAfUEQwWyAUv8F/mB+rf+5QFoAjUBTv/t/Ov6nfoW/AX+Vf+g/5z+wvwH/LD9xP8k/zL8mPrn+3j9/vwP/Ov8XP7f/U38vfxG/2IANf5V++j6V/zs/EH8Zfw1/tr/ev+3/Z78Mf3d/nwANAHTAAcAl//u/rj8nfnn+Iv8oAFBA4MAF/3X+6b7wfpo+tf8MAHcA5cCiP64+sr5lvxcAYsEzQOCAA/+0v0V/kv9vvya/v4B6wL1/gv53/ab+rIAVgRFBFsCOQBb/jH9Af1K/Qb+YgAsBN0FiQLz/Pb66/0wAfoAx/67/UL+Fv+t/23/UP2E+qn6zv6eArUBxf0R/Dv+DgHYAVUB/wBpAIn+4vtf+qr7v/9HBMgF1gIY/vP77v1SAZACFQFV/4D/+AB8AV8Aef8xAAkB1/+U/WD91v8PAvUBugD0/w//ff2//Nb96/5f/jb+6AAcBOICUf2++c78aAOWBmsDJP3W+AX5tfz3AE4DSAP9AR4Alv1d+937AgDTBNIF6AGo/HP6d/x7AEsD3AKS/1P8afzk/+oCAQJ//sL8N/6y/4z+tfxw/ev/TgCd/VP7lPxEAPwC8AKqAL79FfwN/bT/KwFQAJn/bQHUA4gCUP1b+Sz74gB5BOYCL//5/bz/1QD9/nj8x/yr/9ABsQEbAXcBaAGi/839SP6JABQC+AEHAXP///xl+z790gHEBFwD6/8y/on+mf63/a39nf8+AqMD5gIxAK/84vrz/LEB2ASuAxQAxv21/Qv+tf2l/br+gQBfAvUDEgRAAYn80PkE/MEBugadBy8EA//U+7/8BwD5AYkBJwE9ArUC7AAY/7//LAE9ACL+//4WA7EFkAMH/1D8qPx0/hQADQGkAVUCzgKgAXL+2vvU/IQAJwNCAxcDJAReBLcB/P3x/MX/AARKBvwE2AB8/Mr68PyyAWIGLwhoBRb/avnw+FD+cwUxCV0HqAHS+zr5EvsMALMFtgkCCjkF3/w39pj2+/1PBvoIxwRo/nX7Pf1cAIMBdAHYAv8EDQQ8/3L7SP2qAoEFTgNe/xv+fQC8A/QD8f9S+1v7SQBNBB8DuP9u/zQCugNEAg4AA/8s/5IA0gK+AxMCRQDpAAECgQCV/qYAQgVOBnUC6f71/hoADwBjAPYBcQInATABkwM/BJUArPzp/WEDTAf6BYQA0fpG+dT94gTSB6cEOgDh/sD+tPwD+zn+cQV8CioJ+QI6/N74SvuQAokJtgrkBfj///zS/NT9LgB1BIEIQgh5Akz74fgT/YIDcwaeBD8Bev+d/6QAGAKhAzsE8AIJAEf9KP0EAYcGQggqA0H7MfjM/EYEZwjTB/YEhgHG/f36svu9AGMH8wqDCIEB3vpI+az92AQBCsMJLQQB/SL5nvp0/1gEWwd1BxUE8v4C/GP9xwASA0wEXgW7BCUBpf0s/qABzAP5A4cE9QRIAr795vx7AXkGSAfxBBkC8f4j/Pj8agKDB9cGpgHV/VT+AAH5AuUDkASqBO4CYv+z/Er+7QOgCLsHYQLI/Sf92f8aBPcHTgh1Azb9wfvx/4EEswUjBbwE6gK6/pr7dv1fA+QIoAqeBxkB//oC+n/+lANnBXYFSwZABpECYP0J/BEAUgU8BzEFqQF4/+P/wwGjAs0BQAFuAqwD6AJXAcYBIgRpBdoDCQGU/2kAVQI6Az0CJgFzAlYF7gXEAn3/9f8gA2EFgQVBBIsB//0e/TIBawYDB2YD9ABSAQUBGP9+/6oD1AYoBacBwgBqAW0AOP+IASgGmwchBCEAu//eAV0DmQPfAwYEgQKm/5j+owGHBk0IOAUFAe3/RgGgAaEAJgHOA4UFXwQpAtkAAACM/0MBAAXVBkEEVAB6/4EBSQPcA0cEPASpAoIAlf/I/1EA6gHBBFsG7QSlAgcCmAGq/2P/8AMUCbMHFQHT/RUBvQQTBIIC5AMrBUUCOP4N/3YEJQhNBmIB5P38/RwBIgWKB/cG7wMnAPX9of/JBNcIWAcVAiD/eAAyAswB+AG2BN8GRgXjASIA3//r/6MBkQULCOQFrwHn/78ACwLaA2YGtAbQAtn+9v9mBC0G8gOhAaIB8QK1BHcG/gU9AuP+5P89A4kEcwQjBpQHPwRX/hj9ygEpBm0GXAU3BToE5AHHADEBswBYAPADbQkmCcoBDfxT/hwEYgaCBWAFpwX7A3gBpACXAQQEdAgLDAgJAABQ+u391gTmBsYFQwdHCVsFMv0G+s3/tghuDbELMgXl/f36jP5kBGQH+QffCH8I2wPl/dr8WQFGBqUITwnTB74CDP13/HEBdAbyB4EHwgbgBD8CXwG8AicE2wTTBRwG4gM1AS0CxwWEBkUDVgG9A34GowV/AxMERQb5BXAC+/7Y/q4CSghOC08IOwGU/JD+pwQXCeAISQWqAQsB2APCBgoGrQKVAacEtQdwBoYCBQFSA+EFjgWeA3IDawXgBSkCoP2G/kIFgQrFCNIDNgI1A7wByP5RAAoGQQgeBF0AHgIABbIDHgFrAogFKgU/AgICGQVlB8oGdAReAfP+mAC+BgALuQc1AQgAQQRJBoEDRgHWAtEEuQTfBBsGCwUnAcT/ygMyCH0HqwMEAhUDzQNZAy8DmQMLBOEE/gXqBYEEpAOHA08CJwEmBCoKGwuAA8T7Pv0NBWoJ5wemBV8ESQHt/eH/aAaICfEFtAERAjsE/wOnAsUCIwNzAroCogS8BO4BLQFdBesIDwaqAFsAfgRLBmUEhgO3BOwD6wDvAFcFZwhFBn4CZQEmAukC4AQlCOcIQgVeAV8BZAP1Ax8EMQY9CDMHVQSAAlEBEgC3AZoHxwsTCJYA4P72A54HoQX3AuIDfQWLBGwDzgQ+BucEFAMOBDwGKgZ9BEIEbwWUBXkEGwTTBB4FiwT8A4YDwQKeAkUEhQYMB9kFyQTuA4UBbv4o/70FzAxwDDEEb/xV/KABPAVaBfAFDgg2B3YBgfxd/vcElQmdCUQHCQQ+AIb+zwEACGsLyQmkBaAB9/6I//0DTwi3B+ADZwLUA74DuAFTAhAGdgeTBG4C4wPLBFsC4gAZBEMIZgiUBRQDJQFsAAEEdgrEC+IErf5aAacHpAeEAgABPQTABewDSgODBNgDPQI9BLYH0AUuAHMA3QdMC6MEIf0D/z0GRAg1BJ4BTwPdBLIDkQLAA64FWgayBS0EUALUAfkDugaqBu0DaAI3BJwGCgZJAzQCDAThBTsFqgO5A24EZAPpAWADmAZ0BrICvQF7BlkK+gaVANr/GQX2CLIHgwS4AoMC6gOQBjsHwgNHAO0BCwY9BoADBwQKB50FYwB2AIoHMguJBWP/CQJ6CHcI+wIPAbQEQQf+BMIB+QEkBaQHbwYJAoX/TQN/CR0JtwEb/k4EVAvBCAYBmP+cBJ0GTQP3AX8F5QeHBZICgAIZA98CUQRmB2gH+gKo/5oBrwVOB6AGgAWyA+wBQwONBzoJRQWpACsB1gQCBmoEKQTOBacFrgLBAN4C7AaeCF8GcgJ5AEUCCwb9B1YGOQP2AVsDjgWCBq4FJwSxA88EmgUIBIMB0AGVBZ8IOwcWA7UAwgE0BN8FVAbbBboEqANkA/AD5wQYBugGIAbGAzsCogOmBq8HjQUDA9kCFATkA2oC7AJ+Bh8JwQa7AVYAygNWBh4ESwEwAzwH5waEAhMB8gQBCHIFGgH/AGkETgY2BdQD2gOfBIEF4wVuBMoB5QFVBtwJ+wYYAYAAswVXCFAEIQBCAuQGkQYxAhcBPQXUCIoH9gMyAkYCZQLTAnAECgbvBbIEHQRvBHgEzAM7A4sDvAQcBokGZwW/A1ADHAR6BAkEbQQJBk4GgANZABkBmgUPCa8H3gJW/2sABQWJCHQHcAN7AWIDjAXIBDUDQARyBr4FgAI4AY0DSgapBlgFiwOAAbgAMwMeB8YHjwRWAssDVgWUAyUB4AFSBLIEPQPIAnsDpwPKAxsF8AVpBNcCWQSiBiIFbwG9AYUGsgihBFQAYAKrBwkIgwLU/mEC0wj4CWAEyP44/+kDzwYiBpoFDweoBnoBSvxS/oIGhgu3B1QAGf4iAg0GbgXrAgYDKwXZBPkAf/7VARAIKwpdBvMBVQHTAnQDGgQgBvEGKwQfAVkCrQUjBe4Acf/UAtEFxwRdA1AFmgeuBWkBNwDcAjMFAwVNBPcE8wWDBawDxwFDAfMC9gV1B08FOgGd/1gCAwbmBTICOQBWA6sHEQdNAq0AKAVBCaEG8wAcANwDHgVAAlsBDAWXB6oEowAtAYsEowUwBEEDLANuAuAB+AIbBD8DCwLwAo4EbwTeAw4FFgYiBFoBwQEQBPsDFgKdAiAF1wSWAf8AEQWFCAIHCgO7AEcAvQAqA0MHSAnjBsICTQB3/5n/PAI+B/UJwwbbAF7+uQB7BKEGiQZxBJABUgCvAaUDfgQ2BU8GhwUNAqf/WgEeBNQDsgJgBaAJdwjGAfH9pAHjBjIGYAHd/5YDIAfrBZcBqf5Q/1IC8gQeBVIDawIQBJkFHAPr/Z/8WQLkCNwHVgAS/D4AoQb7BqMCNQF7BE0GqgLU/SH+xANUCeMJ8wSn/hD9fgKKCRAKUwM2/dr9kQKLBaQFkQQWAmT+n/2KAigIdAckAm0AMAQrBukBFv3Z/nEFiAk4CMsEnQL+AUUCHQOsAywDWAI/Am8CMwKmAukE/AaRBTcBfP7r/+wCIQTzA08EXwRdAgwAxQBiAzkDXAADAUAH/wqyBFH6IfkBA8cKXAaa/CX7ywNoC3wJ5wEH/gkBvwXiBWsBSv7eAOAFNgbfAPb8AgBPBnUIMAU4AcX/NwDQAXkETgYDBdoBOwC2AHYB1AJPBksJ1AbM/6H7vv4QBVcIJwdpA8/+5fsC/i8EIQgfBjQCiAGtArYBBgCWAfME+gSmAS8AQgLnAzMDRAMsBZMEZP9U+17+cAVrCE4FlwE3AfMBwQAS/0EAewROCBEI9gJQ/AT6O/+jB9IKywWh/pr8pv+0Ar4DzwQbBqYEBwDa/MT+UwOrBbsE7AKOASQAFP+k/3UBwQIVA1EDEgMMAV3+gv6EAnAGqAWEAP77WfxIAboGdQhLBd3/bvyJ/RMCRAahBhkDa/9j/00CxwPqASoA6wHoBIkEIQFc/xQBgAObBGkFuQUgA5H+sP2/AqMHtQVh/5H8of+EAxAEfAJLAZIA0v/Y/yEBsQKAAzADYAGy/vH99QCrBCoEKQCu/gQC2QRKAqT9pv2gAg4GYgNT/R/6Hf0kBFoJ7gcnAQv80/12A5cFTAIF//v/SAJwAS3/0AAOBvgHxAIb/BP8fAJbB2IFxv+4/Ov9iwAHAkMCbgKSA18FcQWkAW38yft4ASsHQwbUACL+AwClAWMAWf/iAIcC8wHwAFwBlwFpAEcA0wKyBGUCXv6c/VkAnQKeAvwBlQGFABH/yf7X/xcBbQIfBLMEoAJe/8j9Xf7g/yYCzQT/BCEBPP16/gkDTQQRARL/QgErA9UAg/1F/iYCNQSfAun/3v49APICeAS7AkL/Gv5AAAcC7QBu/2gAWAKJAuABSQJNAtH/G/0S/pkB7QL9AHf/JwCCAP/+Xv7xADcENAQsARX/KwCMAh4DPAH7/nn+rf8BAZ4BAQJdAuQBgwCz/0IA1AA3AK3/yABMAtQBy//i/t7/4gDLAHoAewA+ABoAUQE1AysDwwAF/xgAFgIxAuUArQALAi0DugIRAW//Mv/5ACIDtAJ0/zz9+P75AbEBxP5F/sEBiwSqAs3+Nv4yARkDAAFI/Rv8kP7uAbgCFwD2/D39TwEGBXQEzQCR/nP/0ABTAE///P/IAX4CpAGYAB4A//9cAGsBGwI3AbX/ov+oACkAo/1I/ID+BgLxAg8Bi//5/9UA5gAYAfwBEQJLAGn+nv5UADUBuABrAAUBfAEfAa8AzQAdAXcBOwK7AkoBFf4M/Er9EABPAcgAcACqAAAAZf7a/R//SgCw/0D+z/2a/sr/BAEbAlYCbQFUAOr/vf88/wD/rv9vAAgA1P42/on+9P4I/zb/z/+pAJkBOgK4AfP/Yv6O/u3/twCJAJwAcQH/AY4BvAAmAHX/hv4o/sT+b/9P/wL/jf+iACwB+QC9AJ0ABwAj/yb/qgB2AqQC3QDH/in+Bf/X/5P/2v7s/s3/FQDw/oD9pP1j/5EAh/+X/bn9oQBvAxADKwAv/qn+gv91/p38yvxD/xkB9f/d/Mr6g/tf/jkBHgLOABn/Av9SAO4A5//e/n//+ABwAewA2gBOAd8AhP8i/3kAfAE4AN79Ef06/n3/zf/v/2kAjwAVAPD/sgCFAYoBHQG/APf/b/40/Vz9S/6p/o3+/f7M/7z/yv5i/vH+Jf9F/pf9Sv6C/8v/Vf9K/9X/VADEADYBswCR/oX8DP2L/38Aaf4Z/Jn83P6v/5X+BP5G/8kA2QDU//7+wv7v/ln/d/+x/r79SP5VAK4B2gBH/+D+G/9r/mz9+f25/0MA5v6t/Rf+Iv+Y/+3/mQCTAFf/o/4kAIcC+wIEAcr+6P3w/QT+I/6D/g3/sf8uAKz/y/0T/Jb8F/8XARUBFwB//yP/g/44/tH+dv8z/6X+3f5g//b+5v2i/VH+gv6Q/bH8Bf0R/uP+c//5//v/I/8//kb+1f7m/oT+nf5A/3L/xP4B/uH9Lv6E/vD+TP8H/0D+Ff4D/9f/Wv9E/hv+zf7//of+1v53AOkBpQEQAI7+pf0g/Rz91P3R/lX/R//w/mL+0P3z/QL/3f9m/1P+TP5a/7//mv5B/U/9ev48//P+Y/5z/jP/8//n/+D+kv39/GL9Jf7J/nH/KgB+ABsAcv8H/8P+Zf5D/rD+F/+O/lD9ufyF/c/+Mv+C/s79BP7m/nn/Lf91/hz+Tf53/i3+zP3z/az+dP/W/63/7P62/br8zvz+/Ur/qv8S/0j+7f3//Tb+jP4z/wsAawCw/yH+9fwT/Q3+p/5h/t/9wf28/UT9p/zM/OT9+/4M/zf+j/3h/dv+b/8C/xr+w/1U/gL/3/4Q/qX9Mf4H/xz/WP6l/cn9kP4t/yH/lP4G/tj9FP5+/sf+x/6e/pf+1P4X/97+7v3X/Jb8g/3C/ib/f/7A/b39Sf64/tf+8/4y/1b/Fv+C/vn94P1L/s/+5/6b/n3+zP4C/7D+S/57/uv+qv6p/fn8Vv0z/pr+Xv74/cf94v1F/q7+vv6K/pz++v7J/o39R/xk/Nv9KP82/3j+/v0z/rr+Df/i/lX+6/0B/kn+Jf6g/W393/1r/nr+Mf4N/if+R/5c/m7+T/7R/Rv9jPxb/J78Uv0o/or+O/7C/cT9Kv5K/ub9bv1S/YT9yv0X/m7+t/7e/uv+1/6W/lT+bP7p/lD/KP+P/gn+4f31/Rj+Q/54/qL+v/7n/iH/Pf8K/5H+Ef69/az98P2E/iz/iP9x/wr/kv4k/tL9yP0X/n7+mv5X/vr9yP3L/fT9Nf54/p7+qf66/tP+zP6P/jT+zv1b/fr8+Pxs/fn9N/4q/hn+CP7L/XD9Wf27/VX+vP7B/oT+R/47/mP+iv6E/mf+Yv5s/lT+G/79/Q3+CP7D/XL9Yf2P/cf9+f0z/mf+dP5W/iz+Av7c/dv9If6S/tj+wf5s/h3++v0F/iD+HP7m/a79v/0c/nH+f/5n/mr+iv6V/nr+V/4//iv+Iv42/lb+Rf7q/X79VP2B/dr9Kf5K/jL++P3K/cr94f3m/eX9FP58/tj+5/7E/rP+w/7A/o3+Tv4y/jP+Kf4I/uf92P3R/cD9pf2Z/bv9Av49/jf+9f2t/YT9eP2B/ar97P0e/iH+Dv4U/jH+N/4Q/tz9zf3v/Sn+TP47/gr++/0v/nv+nv6W/pT+pv6g/mr+LP4F/uP9sP2G/Yn9tf3n/Q/+JP4T/t/9s/2w/b/9w/3P/f/9Lv4i/uj9zP3y/S/+Vv5n/mv+U/4f/vT96f3j/cP9mP2D/Yv9pf3M/fX9B/73/ez9Cv4u/hH+sv1t/Yn93P38/cX9fv1x/ZP9rP2x/b390/3Z/cv9yf3X/dr91f3z/Tf+Wv4u/uz93P3v/eX9yP3O/eb9uv1C/d/82PwL/UD9dv22/dn9w/2a/ZD9nf2f/aH9u/3b/eL93f3p/fz9/f39/Rb+MP4c/uf90P3o/f/98f3P/av9g/1j/Xf9zP0v/l/+VP4v/gf+3f2z/ZX9jv2f/bP9tv2f/YX9ff2E/YX9fP12/X79k/2w/cf9xP2s/aL9wP3x/RD+IP47/lb+Rv4L/tb9x/3A/Z/9c/1c/Vb9U/1g/Yb9q/2u/Z79rP3d/Qf+DP79/fb9+v3//QL+Af7x/df9yf3U/ef94/3D/aP9mf2s/dP9/v0Y/hT+AP78/RX+M/41/hz+CP4E/gP+8/3b/cj9uv2q/Zj9jP2J/ZH9pv3C/dP90/3V/eT99f38/Qv+Mf5T/k/+M/4o/jP+Lv4P/vz9B/4N/vD90/3e/fr97/24/Yf9f/2X/br94v0B/gr+Bv4Q/iX+Kv4b/hf+J/4v/hn++/3s/eb92v3T/eD98P3o/dX92v39/SL+Mf4u/h3+/v3k/er9D/4u/jH+KP4o/i7+Kf4X/gL+7P3Y/c39zv3K/bX9of2p/c799P0E/gX+Cf4W/iv+QP5P/k3+OP4c/hD+HP4w/jz+Pv5B/k/+Xv5e/k3+LP4B/tb9xv3b/QX+Jv4y/jD+I/4S/hj+Rv57/oL+VP4l/hX+Dv72/dv91v3a/df91v3l/e793v3M/df97v3q/dj95P0S/jL+N/5C/l7+Yv43/gr+A/4O/v791/28/bf9sv2h/ZX9ov3I/fn9Hv4j/hH+CP4Y/ir+Kf4n/jz+Vf5Q/i/+HP4p/jf+Kf4H/vD98/39/fP92/3d/Q3+Q/5K/ib+Fv44/mL+ZP5M/jr+Kv4N/vf9Af4W/g/++P32/fr92v2k/Zn9x/3v/ef91f3p/Rn+Qv5j/ob+mf6U/oz+lP6R/mj+Mv4c/iP+If4N/gX+Ef4Z/hP+F/41/lr+Zf5W/kb+R/5U/lz+X/5s/ov+q/61/qr+m/6N/nL+UP5F/l3+ev50/lD+Nv5G/nX+nv6y/r3+1f70/vj+1v61/r7+3v7b/q3+h/6K/p7+of6X/pD+jP6D/n3+eP5p/lv+bP6b/rb+pP6M/pX+pv6b/ob+iP6Q/n7+Yf5g/mv+Vv4r/h/+Pv5d/mj+dP6O/qP+qP6p/qP+iP5v/nr+kv6F/lv+Uv51/ov+dv5o/oT+nf6E/ln+Wv6C/pr+lP6N/pb+nf6Z/pr+pv61/sL+0f7j/u/+5v7C/pP+ff6P/qz+rv6n/r7+7f78/tz+vf7B/sr+vv61/sz+5/7d/sP+xf7c/tn+tv6k/sD+6/78/vf+8v7x/tv+sP6Q/pn+vP7U/tb+2v7p/u/+4f7V/tr+3v7V/tn+9v4H//D+2v7t/gT/7P7G/tb+CP8Q//X+Af84/0j/If8R/zL/Pv8X/wP/Lv9V/0T/NP9S/2T/OP8T/z7/hv+W/43/sP/Z/7X/ZP9L/2r/aP82/yz/Xv9//2b/Tv9l/4D/dP9g/2f/ef9//4j/nf+t/67/tv/N/93/2f/c//T/CQAKAAMA9v/S/6D/i/+n/8r/z//Q//D/HAAkAAMA6//3/wgA+v/V/8f/3//4//L/4P/s/wgABgDd/8D/0P/p/9v/t/+u/8L/yf+9/8T/6f8IAAkA/v/8//f/3v/C/7v/vv+x/5v/l/+j/6P/mv+s/9n/4/+m/2H/Yv+O/4v/Uf9A/3j/of9+/1b/ef+2/7D/f/96/5v/lP9m/17/ff94/0j/O/9o/4T/cv90/6D/rP93/1T/ev+i/4z/cv+d/9b/x/+V/5j/wP+8/5b/mf/B/8H/j/93/5L/pP+L/33/pP/W/9//0P/Z//n/BwD4/+H/3v/v//v/7P/I/7P/v//P/8L/rv/A/+r/8P/H/63/zf/1/+n/wP/C//P/BgDb/7X/0f/+/+f/n/+I/7f/zf+Q/07/XP+O/4b/Vf9X/5n/xP+2/63/2P8LABgAEgAaACUAJQApADYALAAKAAcANwBcAE8ASgCEAMMAsgB0AHQAuADcAMEAuwAGAV8BcgFaAWMBkQGuAakBqAG6AcYBvQGuAaYBoQGcAZwBoQGtAdIBCwIsAhgC9gH0AfgB0QGfAa8B+gEkAgMC1QHHAbUBgwFfAWoBdgFiAVABVQE7Ae8AuQDFAM8AoAB/ALIA5QC0AF0AWQB/AFEA9P/4/1cAaQD//67/y//e/3//Df8L/1T/a/9C/yX/Nf9N/0//O/8b/wf/Fv84/zj/Ev///hX/IP/+/tP+yP7P/s3+yf7Q/tP+yf60/pv+hf6M/q7+xP68/sb+/P4c//X+z/79/kD/Kv/h/t7+IP83/xj/Iv9e/3X/Yv92/6f/mP9c/27/yf/h/53/if/V//3/wv+f/+T/KwAnACcAagCWAG8AUQCCAKUAdABPAJEA4gDcAMAA8AAuARoB8QAgAYIBqwGtAdwBLAJPAlECeQLEAgIDPwOYA+YD/wMUBFoEmASSBIMEwwQrBV0FbAWsBRMGVwZ0BqgG9gYyB2cHxAc6CI4IvQj4CEAJbQmBCaQJ4AkaCk8KiAq4CskK0QrzCiULRwtbC3oLrQvlCwkMBgzoC9wL/AsVDPoL4wsgDH8MggwqDPcL/wvHCzILzQrdCtwKZArkCcwJrgkICUIIDQgmCNEHKAfnBgUHsgbDBQcF3QSlBPUDZQN9A7EDRAN8AgwCywH8AKL/ff7S/RP99fv3+nT68vns+Lv3BPe79mL2BfYn9sL2GffK9lX2R/Z39ov2v/Z/95L4TPmH+bf5/Pnw+XP5GflT+dD5HvqE+of78vwI/qf+af+jAOsB4ALLAw4FXgYYBxoHwQZiBhAG3AXlBTgG2QbIB8AIPQkdCeoIIgl7CYAJjAlfCuALGw2cDeoNcA7LDpEOIQ79DfoNqQ0RDVoMSgu+CT8IbQckB+gG3waFB5YIKwnrCGcIEwiwBwUHbwZQBnkGggZUBgcGhQW+BOsDWQMQA+wC5ALzAu0CqwJGAvIBzAHsAYECkQPEBKwFOAaXBsgGngYpBssFygX9BQ4G9QXmBfQFAAYABhkGbQb0BpkHVggSCZkJ3QkRClkKmwrDCgQLlQtCDKIMqwyfDIYMHgx1C/4K6grhCpsKVwpdCnsKZAo/CmwK6ApaC6EL3wsODP0LqQtHC+wKewr6CZkJYwkhCb4IZgg8CB4I7QfAB7QHtweoB5cHowe/B8sH0Af6B0gIigilCLcI3Qj5CNoIiAg2CPoHvAdxBzIHFgcRBxUHNAeAB+IHPQidCBIJgAnECegJEgpGCmUKbwqACpgKmQqACnEKcwprClMKSQpVClIKMAoVCh8KPQpYCn0KxAoaC2ILmwvUCwYMIAwhDBEM8Au2C24LKAvmCqQKZwo3ChUKBgoRCi0KTApoCogKqgq9CsMKzwrpCgQLFQsjCzALMQshCw4L/QriCr0KnwqJCmkKPQofCiIKOQpUCnwKugoHC1ULowv2C0QMhgy9DOQM7QzWDLEMjQxyDF8MVQxNDD4MNAw8DEsMTwxPDGQMigylDK8MvgzXDOIM1gzIDMUMvAyhDIAMYQwuDNcLaQv4CocKGgrCCYkJYQk/CSkJIgkcCQ8JCwkdCS4JKwkeCRYJ/wi9CFgI/QfAB5IHXQcqBwsH+gbhBrUGiAZ1BoQGpAbGBvEGKwdrB54HyAf2By8IbgiuCOwIFwktCTwJTAlTCUcJQglhCaAJ5QkpCnoKzAoGCzILcAvHCxwMZAyyDAgNRg1bDVwNYA1pDXANfA2IDYUNdg1xDXQNYA0zDRsNMQ1WDWYNbw2SDbsNvQ2UDWQNPA0SDeEMuQyWDF0MBQynC1AL+wqmCmQKPQoeCvgJzAmkCX0JWAk/CTQJIgn9CNwI2gjlCNYIqQiCCG8IUggPCMIHmgecB6EHlgeTB6oHzgfsBwwIOwhzCKkI3wgXCUMJXgl8CasJ1wnpCe0JAgonCkYKYwqTCswK7wr6Cg8LPAtnC4oLxwstDJIMzAzqDBMNQw1cDVwNYg16DZANlw2TDYANWQ0tDRUNDA35DN0M1wzqDPEM1gywDJsMiwxnDDgMFwwDDOILsAt+C1MLIQvkCqsKdQo0CugJpwl7CVIJIgn1CNQItAiLCG8IbQhzCGgIVQhMCEEIIgj/B/YHAQj7B94HyAe/B6sHkAeRB7QHzgfMB9YHBgg2CEYIXgilCP4IMQlHCXIJrgnOCdQJ7QkfCkQKVgp7CrkK5QrsCvcKGQsvCykLMwttC68LygvXCwAMMwxBDDYMQQxpDIEMewx0DHcMZgw0DP8L2wu+C5wLgQt0C2kLVAs/CysLCAvQCpwKfgplCj4KFAr2CdkJrAl1CUcJHwnrCK4IeghRCB4I2QeXB2YHNwf9BskGrgakBpgGigaHBogGegZgBkwGQgY2BigGKAYzBjMGIAYRBhUGFwYIBv0FEQY1BkYGSAZTBmYGbgZyBowGvgbpBgUHLAdiB4sHnge1B9oH9AfyB+sH+AcJCAsIDwgrCEsIUghRCGwIlgirCLAIywj5CA8JAQn1CAUJGQkdCSEJNAlFCUIJNwkxCR8J9AjKCL8IvAifCHIIWghcCFYIPAgoCCgIKQgdCBEIDQgCCOQHvgebB3IHPgcQB/kG8AbaBrcGlwaCBm0GTgYvBhgGCgYCBv0F+AXzBe4F7QXsBekF6gXzBQEGBgYABvMF4AXBBZsFfgVuBWQFXQVnBYYFpgW2Bb0FzAXlBfsFEAYrBkcGWAZcBmMGbQZtBmgGcAaLBqEGpQaiBqUGpQaUBn0GbwZvBnAGcwaBBpoGtAbLBuEG9Ab+BgEHBwcNBwgH9QbgBskGrgaRBnoGawZhBlsGXAZeBlIGNwYfBhIGCQb8BfEF8AXxBe0F5gXiBd0F1QXNBcYFuAWbBXYFUgUvBQkF5QTOBMIEtwSwBLgEywTUBMsEvQS1BK0EnwSUBJkEpwSoBJgEigSFBIAEdARqBGsEcQRxBGsEagRrBGcEYgRpBIEEmwStBLsEyQTYBN8E2ATJBLoEtQS+BM4E4ATyBAUFFAUVBQsFBQUKBRYFIwUvBTsFRAVJBUkFRwVFBU4FZgWCBZMFnAWrBbsFtAWTBXEFZwVtBW8FbwV/BZgFnQWKBXgFcQVqBVsFUAVTBVIFQQUsBSIFHAUOBf8EAQUQBRYFDwUFBf8E8ATXBMEEsQSfBIcEeQR4BHcEbARiBGEEXwRSBEMEPAQ3BCMECAT6A/sD+QPuA+MD4wPoA+4D9QP7A/oD8gPnA9UDugOdA5MDmQOcA5UDjwOXA6cDsAO2A78DyQPPA9ED0wPSA88D0APXA9wD2wPbA94D4APcA9sD4APjA9oDzQPKA8oDwAO4A8UD4AP0A/kD/gMJBBAECQT9A/gD9QPsA94DzgO7A60DqwOyA7gDuQO8A8UDyAPAA7gDtwO1A6kDmgOVA5UDjwOJA5ADpAOuA6IDjAN7A3MDZwNUA0YDRgNMA08DTgNQA1YDXQNgA2IDYwNjA2UDZwNjA1gDTANKA00DSQNBA0MDUwNjA2cDZANeA1IDQwM5AzcDMwMwAzgDTQNdA18DXgNoA3EDbQNiA18DYANSAz4DNgM4AzIDIgMZAxwDIQMjAzADRQNNAz4DJgMRA/0C5gLYAt8C8QICAw0DEQMJA/YC6QLqAu8C6gLhAt8C2gLCAp4CiAKHAowCigKLApUCowKjApECeQJtAmoCYwJWAk4CUgJdAl8CVwJNAkcCPwI2Ai4CJwIaAgkC/wH9AfQB4QHVAdkB4AHfAd8B7AH5AfIB3AHMAccBwAGyAa8BuwHFAbsBpQGVAY4BiAGEAYkBkQGPAYQBeAFtAV0BUAFSAWEBbgFxAXQBfgGDAXoBawFkAWQBYQFaAVYBVAFJATMBIAEYARcBGgElATgBRQFBATQBKgEiARUBCAEIARcBJgEqASQBHwEgASQBKgEzAToBPQE4AS0BIQEXAREBDgELARABHwEyAUIBTgFcAWkBagFeAU8BSgFNAU0BRgFBAUIBRgFHAUQBQgFJAVYBXgFcAVYBUgFPAUgBQQFCAUoBTAFLAVIBYwFtAWYBVgFMAUMBMAEaAREBFgEYARABCAEJAQsBCgEKARIBHQEgARwBFgENAfwA6gDgAN8A3gDYANQA2QDhAOMA3wDUAMQAswCnAKUApQChAJgAjwCEAHUAbQB4AJAAoACdAJEAigCGAHkAaQBgAGAAXwBbAFsAYABgAFsAXQBpAG0AYABPAEwATwBIADoAMwA0ADEALwA4AEoAUgBNAEcASABEADQAIgAdACEAIQAeABwAFwAOAAoADwAWABYAFAAXABcACgD4/+z/6P/j/9z/3f/l/+r/6P/i/9r/0f/K/8v/zf/J/8H/wf/F/7z/qP+b/6D/qv+t/7D/u/+//7P/o/+c/5r/lP+Q/5v/rv+5/7j/uv/D/8b/wP+9/8T/zf/N/8r/yP/F/8D/vv/D/8v/z//U/9//6v/s/+v/7P/u/+r/5P/q//n/AQAAAAAABQALAAsACQALAA0ACwAIAAkACQADAAEACgAVABUADQAQAB0AIQAWAAgAAQD+//r/+f/8/wAAAAAAAPz/9f/t/+3/8//y/+f/3//e/9n/yv/A/8L/xP+7/7H/s/+8/7v/s/+v/6v/nf+K/3//ff92/2//cv95/3T/aP9q/3b/eP9p/17/Yv9i/07/Of84/0P/Rv89/zX/M/80/zf/Pf88/zD/JP8k/yf/Hv8P/wz/E/8V/wr//v77/v3+Af8G/wv/B//6/vD+8v73/vf+9/7+/gn/Df8H/wL///77/vP+6P7h/uL+6v70/vr+/P79/v/+Av8C/wD/AP8G/w7/EP8J///++P75/v7+B/8R/xr/Jf8u/zD/J/8Y/w7/Ef8Y/x7/I/8q/zD/MP8s/yj/J/8m/y3/Ov9B/zz/NP8y/zD/Jf8Z/xv/Kf80/zf/P/9L/03/Qv83/zL/Lf8p/y//Pv9B/zb/L/83/0P/RP9F/0//Wf9X/0//Sv9F/z3/Ov9D/0z/SP9B/0f/T/9Q/1D/W/9m/2D/Uf9Q/1X/Tv89/zv/S/9T/0z/TP9f/3D/bf9l/2r/df91/3D/dP99/37/ef92/3D/Yf9V/1n/ZP9m/2H/Z/92/3j/Zv9T/0z/Tf9O/1b/bP+A/3//bP9Y/03/Sv9J/0//X/9s/2j/Tf8p/wz/AP8A/wn/Gv8z/0j/Sf81/xn/Cv8I/wn/Bv8D/wP/Af/1/uH+zf69/rD+p/6n/rL+vv6//rH+l/56/mT+Xf5o/nz+j/6Z/pj+if50/mP+Xv5i/mf+av5t/mj+VP45/ij+Kf40/j7+R/5O/k7+RP44/jD+Kv4n/i/+SP5k/m7+aP5f/lz+Vf5J/kL+SP5W/l/+Xv5R/jv+KP4m/jn+Tv5c/mn+dv54/mT+SP46/j3+Rf5M/lj+Zv5w/nT+dv5x/mH+VP5b/nD+d/5p/ln+Vv5Q/jj+G/4V/if+Pf5Q/mH+bP5l/k/+Ov4p/hn+F/4v/lX+aP5f/lD+S/5D/i/+JP40/lL+Xv5L/ij+AP7Z/cH9yf3r/RH+L/5J/l7+YP5K/jb+OP5M/l/+av5v/mf+Tv4q/g/+Bf4M/iH+Qf5c/mH+Uf46/ij+Gf4T/iL+Rv5s/oH+g/52/mT+VP5U/mX+ev6F/of+g/5y/k3+Iv4J/gn+GP4u/kf+WP5Y/kn+Ov4y/ir+Jv4x/kr+XP5Y/kL+Jv4F/uD9x/3G/dT93v3e/dv90v24/ZX9ff12/Xb9e/2N/aT9rP2a/YL9ef1//Yf9k/2i/ar9oP2M/Xj9X/05/Rf9Ef0h/Sv9J/0l/S/9Nv00/Tf9R/1Y/V39Wv1W/Uf9Lf0e/SX9Mf0r/R39IP0t/Sv9G/0b/S39N/0p/Rf9Ev0R/Qr9C/0f/Tj9Rf1P/V/9aP1d/U/9Uf1W/Ub9JP0L/QT9Av0A/Qn9F/0V/QP9/fwV/TT9Pv03/TD9Kv0b/Qf9/vwF/RP9Hv0m/Sn9KP0m/ST9If0b/RT9Cf30/Nn8yPzG/Mv8z/zV/N/85fzg/N786/z6/Pb84vzR/Mn8vvyu/Kb8qfyr/KT8ofyt/L/8zfzW/Nn8zvy0/J/8m/yc/Jn8m/yt/L78uPye/I/8lfyj/Kr8rvy1/LT8o/yH/HH8aPxs/H38lvyt/Lf8s/yp/J/8lfyM/Ij8jPyS/Jb8lPyK/Hj8avxo/HP8h/yc/LL8xPzG/LH8kfx9/Hz8hfyN/JP8nfyn/Kf8mvyH/H38gfyK/JP8nPyh/Jr8gfxa/Df8Jfwk/Df8YPyO/KD8hvxY/Dj8Lfwt/Dn8W/yA/IP8WPwg/Pv76fve++j7EvxE/FT8OPwH/Nf7rPuR+5b7vPvv+xn8Nfw4/BX81/us+7L73fsK/Cv8Qfw//BX8yvuC+177Z/uV+9X7CfwW/Pn7yfuf+4j7jPux+/T7N/xZ/FX8Pfwk/Av88fve++D7+fsX/CP8E/zx+9L7wfvF++D7D/xB/GD8YfxK/Cj8DvwQ/Dz8hfzF/Nb8tvyB/FH8OfxA/Gb8kfyg/IH8Pfzq+6X7kvvG+zP8p/zy/An98fyu/FH8B/z8+zD8cfyX/Jf8d/wy/Mz7a/tB+2L7ufsW/E38Qfzz+4L7Ifv1+gH7Pfue+xH8cPyP/F/8A/yz+477iPuJ+4j7ivuG+2j7Kfvg+qr6kfqQ+qT60PoP+0z7bPtf+yT70fqR+on6wvoe+3r7xfv5+wT80fty+xr79voH+yz7SvtR+z/7Gvv1+uT66/oE+y/7b/uy+9375PvZ+877wPum+4X7bftu+4f7r/vT++D7zvus+4j7ZPtC+zH7Pvtd+3X7fPt5+3b7dvuA+5v7vvvZ++r79vv6++b7vfuX+4T7dvte+0j7QvtM+1X7Wvtj+2j7XvtK+zz7Ovs2+y77MvtI+2H7bPtu+3D7c/ty+3P7e/uD+4D7b/ta+0X7MPsb+xD7EPsT+xT7FPsY+yL7L/s++0z7U/tQ+0n7RftD+0b7Uftl+3n7gPt7+3H7ZftW+0r7SftU+137XPtX+1f7WvtU+0j7Q/tM+2L7evuM+5b7mPuT+4j7eftq+2L7Zvtx+3n7dvtq+1n7TPtE+0L7QftE+077Xftk+137TftB+z37Ovs1+zT7OvtD+0n7SPs++yv7E/sC+/v69fro+tn60/rS+s36xPq/+sP6y/rQ+tP62/rm+u/68frs+uH61/rR+s/60PrR+tP62Prd+uD63/ra+tb62frf+uD61/rO+s/62frh+uP66Pr1+gT7C/sL+wv7EPsT+xX7GPsc+xv7FfsS+xf7Ivsu+zv7TPtd+2j7a/tq+2f7Zvtq+3f7i/ue+637t/u8+7r7tfux+7P7vPvI+9D70fvM+8b7w/vI+9P74vvz+wX8FPwc/B38HPwd/CL8Kfwv/DT8N/w7/D/8RfxK/Er8Qvw2/Cz8Jvwj/B78Gfwa/B78HPwW/BT8Hvwv/Dz8Q/xF/EH8M/wf/A38//vy++b74Pvj++X74PvW+877yvvG+8P7wvvD+8H7u/u1+7H7rfut+7P7vPvC+8T7xvvI+8T7tvuk+5n7l/uX+5T7kfuS+5P7kvuU+5r7ofuh+577nvui+6f7p/uj+537mPuU+5P7lPuZ+6L7rPuy+7L7rPup+6z7tvu/+8T7w/vC+8f70Pvb++T77/v7+wj8EPwV/Bf8FfwS/BL8Gvwk/Cf8Ifwd/B78Ifwg/CL8LPw8/Eb8RPw5/C/8Kfwm/CL8IPwh/Cn8Nfw9/D/8Pfw9/EL8SvxT/Fn8WvxS/EX8PPw8/Dz8NPwu/DP8P/xI/Ef8Qvw8/DT8KPwc/Bf8FPwS/BP8HPwm/C78OPxK/GX8fPyJ/I/8lfya/Jv8l/yU/JT8mfyg/KL8nfyW/JX8mfyb/Jf8kfyO/Iv8iPyK/JH8mvyk/LT8zvzs/AX9GP0p/Tb9O/05/Tf9Nf0v/SX9Hv0d/Rr9Ff0S/RX9GP0W/Rn9Jv05/UD9Ov0x/Sv9Kf0o/Sv9Mv03/Tv9P/1F/Uj9Qf0z/Sb9G/0P/QD99Pzs/Oj85fzh/N784Pzn/PL8/fwH/RD9Fv0U/Qr9/Pzy/Oz85/zl/Or87/zw/Oz86fzl/Nv8xvyu/Jr8ivx7/Hb8ffyF/In8jfyc/Lb8z/zk/Pr8D/0a/Rb9C/0I/Qn9Bv0B/QD9A/0G/Qj9Cf0I/QL9+vz2/Pb89vzy/O/88vz8/A/9J/09/U39XP1y/Yr9lf2S/Yr9hv2F/X/9dv1u/WX9Xf1e/Wv9fP2H/Y79l/2g/Z/9lv2S/Zj9oP2l/av9tP27/b/9xv3S/dj90P2//a/9pP2b/Zb9lv2U/Yn9eP1v/XP9f/2L/Zj9pP2u/bP9tf2y/af9nv2f/ar9sv2u/aj9qf2y/bv9vv26/bD9ov2a/Z79p/2s/a39sP22/bv9wP3L/dz96f3s/ez98f32/fX99P34/fv99f3q/ef97/36/QL+Bv4G/gL+AP4A/v79/P3+/Qv+G/4k/in+Mf42/i/+I/4k/jX+SP5S/ln+X/5a/kH+Jv4f/ir+MP4q/iT+Jf4l/hv+D/4I/gX+B/4N/hn+J/4x/jj+O/43/iz+Hf4T/hD+FP4c/ib+L/4x/ib+D/71/en98f3//QT+//35/fP96P3Y/c79z/3X/eD98P0F/hD+Bf7u/d/92P3Q/cr91f3w/QL+/P3q/d793v3j/e79/f0I/gb+/v38/fv98P3i/er9Dv4z/j3+Mf4q/i7+Nf44/j7+Sf5P/kv+Pv4y/iv+Kv4u/jT+M/4s/in+Lf41/jj+N/44/jn+Ov4+/kv+Xf5n/mb+Yv5k/mj+a/5y/n3+gv55/mf+W/5Z/ln+Vv5V/lr+Z/53/of+kP6N/oT+gv6M/p7+rP61/sD+yv7L/r7+rP6i/qb+tv7K/tn+1v7D/rD+rv62/rn+tv64/sj+1v7S/sH+tv64/r/+wf7B/sL+w/7H/tL+4P7j/tP+uf6m/qP+rP61/rn+uP65/sL+x/67/qf+p/7C/t3+3v7K/r3+vf64/qb+lf6R/pT+mf6l/rT+uf6t/qH+of6k/pz+kP6W/qr+u/7A/sf+0f7U/s7+x/7F/r/+uP6//tT+4P7W/sb+wv7A/rP+qv6+/uT+9/7s/tz+2v7Z/s3+wv7D/sr+0P7Y/uP+5f7X/sr+0P7h/ub+2/7P/s/+2v7n/ur+3f7L/sr+4P73/vj+7v7z/gX/DP8D//3+Bf8J//7+7f7i/tv+1v7f/vb+Af/q/sL+sf7C/tr+4P7a/tv+7P4A/wP/8P7X/s/+3P7z/gX/E/8d/xv/Cf/x/t7+0f7A/rT+u/7W/vj+Df8K/+z+xv65/tP+8/70/uH+6f4Q/yf/C//f/tj+8f4E/wP/CP8e/y3/JP8T/w3/Bf/v/t/+8f4k/1H/Yv9c/0//QP8z/y//Ov9I/0n/Pv81/zL/Mf8r/yH/G/8j/0H/af9+/23/R/8q/yD/HP8U/xb/Lf9O/2b/af9a/0L/L/8u/z//VP9d/1v/UP86/yH/G/8z/1H/V/9F/zX/L/8r/yb/KP8w/yz/Gv8S/x3/KP8l/yD/MP9N/1//WP8//yb/Hv8r/zv/NP8d/x7/SP9z/2z/Qv8s/zr/Sf9C/zn/Q/9U/1n/Xf9n/2P/Qf8h/y3/Xv+B/3v/Yv9R/1D/YP9+/5P/fv9L/zX/XP+O/4f/T/8s/0D/Zv90/3L/eP+H/5L/lv+W/4X/Y/9O/17/dv9x/1z/ZP+D/4H/T/8t/1L/mP+r/4P/X/9n/3v/cP9U/1T/eP+a/53/h/90/3P/fP+B/3v/cf9r/23/cv95/37/e/9s/1P/NP8W/wX/Fv9L/4D/jP9v/1X/Wv91/4v/lP+X/5b/kf+G/3P/V/9H/2P/pP/X/9L/qv+O/4n/hv9//4r/sf/Z/+P/yP+c/3v/fv+p/9v/6//X/8X/xP+9/6P/lv+1/+b/9v/Z/7T/pf+p/7L/uf+1/57/h/+O/7L/0P/G/6L/hv+H/6j/2v/2/+b/w//J//r/FgD3/8X/u//J/7n/kP+E/5n/lv9u/17/jv/K/9D/qf+O/5D/mP+b/6H/qv+x/8f/8/8UAAwA9P/6/wwA9f+7/6H/vP/W/8j/rP+c/4b/av95/8T/CgASAAAADgAoAAkAy//H/wkANAAKAMz/1P8ZAEkAMgDt/67/pv/b/xUABgCt/2j/hf/V//H/wv+R/6D/6f88AHAAawAvAOv/2/8KAEUAUQAsAAEA+P8SADAAHQDS/5D/oP/0/zEALAAPAAwAFAAGAPb/BgApADcANQBJAGoAYQAfAN//1f/z/woADwAXACwAPAAsAPf/uv+s/+f/OABVAC0AAwAUAEgAXwA/AA0A9/8GACMAJgAIAPH/AAAXAAAAxv+y/+v/NQBKACsAAQDl/9//AgA5ADkA6P+j/9D/OwBcACEACwBkAMgAuQBJAP7/HABsAJMAcwA8ACYAOwBUAE8AQwBXAH8AkACDAG4ATwAWAPL/KwCnANcAfQAYAEIA0QAMAasAMgA0AKEA+ADqAJ0AXgBPAGYAhgCRAHQAQwA4AG0AsACuAGQAMgBhALsAzQB9ACMAGQBoAM4A/ADJAGIAMwB0ANgA6QCgAFkASABPAFIAYQB5AHAASwA+AFYAXQBJAFoAnQC+AIwARwA4AEwAWgB/ANIAEgH9AMAAtwDdAOYAsABgAC4AQgCbAN4AmgD5/8j/aQAlARoBeAAzAKQAKwExAdQAhQCLAPMAhwHHAWgB0gC9ADgBnAF4Af0AhwAtAAEAIABmAIgAmwDyAFUBFgFBAO//0QANAj0CSQFcAEgAsQDpANgAywDQALkAgABSAEwAZACCAJwApgCYAHgAYgBoAIkAtQDjAAsBFAHpAJsAYABjAKMABQFcAWkBBgF5AE4ArAAVAQUBoABtAJIAxQDaAOoA8gDQAJkAnADcAAYBBwEuAYwBsgFZAd0AuQDnABEBJgE/AUEBBQHAAMYA+gDwAJ8AdQCuAAIBFgH3AOMA8AAPAS8BOwEWAd8A6ABBAXMBEwFtADUAlwD/APIApgCVAMQAzwCSAFEAVgCsAB4BUQH8AE4A//+GAGoBswEvAagAugAKAfwAqACWAOAAIwEdAeUApQB7AJYACQGCAZIBLgG5AI0AugAYAVcBLwHPAM4AXgHPAX4B6AAQAekBTAKsAecA9wCYAeIBmgE5Af0AvgCCAJQA9wBLAVQBLgEAAd4A5gArAXcBdwE6ARcBGgH7AL0AygBAAaABgAEqARkBMAETAeAA9QAiAd4AQQAJAHkA6gDfALgA8AA8AR0BzADeADoBSwEBAeMAEAEVAc4AtAD8ADkBGwH1ABwBUAFEAS0BUAFxAUAB+QADAUABQgH+AMwA2QAOAVoBoQGWASABsADFADgBggGLAaUB1gHGAWkBIwEoAT8BRAFiAZ4BpgFOAeYAxwDxADIBawGAAV0BNQFjAdYB/gGOAf8A9QBeAaEBggFeAXoBmwF1ASMB/QAJAQgB4QDJANcA1gCuAKwAFAGVAZkBIAHKAP4AawGNAVEB+AC9AM8ASQHZAdQBGQGAAN4A4AFiAtQBzwBNALoAtAFaAvsB3AAjAJUAnwEXArQBLQEUAVEBqwEAAvQBPwF2AJ0AtAFyAvUB+QC6AEUBrAGIAWYBuQEbAukBLwGZAKcAHAFiAVABTQGSAbABPQGsAM4AiwHvAZQBMAFbAZYBRwHhAC4B2AG9AbwAHADRACYCrAIGAhYBqwCqAKgAqgD5AH0BvgGFARgB0gDIAOYAFwFHAWkBpgEfAoMCRQJzAdMA3wA+AYUBygELAsoB/gCtAG4BHgJsASsAYQAhAjkDawIVAd8AaQF5AR8BJQF2AWgBJQFWAdoBAAK2AXABJAGSADMAsgCpAQgCsAF/AbQBlwHrAJsAWQGHAv4CawJiAaMAsACLAYcCuQL4AREBzwAlAYQBfwEIAW4AVAAaATACggLiAVABkgEeAv8BTgEPAa0BaAJSAnEBqAC4AIwBaAKZAgwCOAGoAJcA3QAsAVYBbgGTAaIBXAHgAK8A+QBGASIB1gACAaIBFAIKAuIB7AHwAbABYwFpAbUB4QGtAUwBLQGCAfYB/AF6AQIBFQF2AZgBeAGIAcoBtgE5AQEBfgETAuYBHQG8AE4BKgJUAqcB5wC9AAMBNAE/AXcB6QFEAnUCuALpAnYCbAHcAHYBZwJrAqcBSwG1AQwCvgEdAYYAAADw/+sAbALYAqcBZACYAMIBVgIMAsoB4QHYAaoB2gEwAskBywCxACcCkAPmAoYAEf9DANgC/AOLAkYAs/8wAckCugJ9AdAAUAH9Ae0BgAFoAYYBXgE5Ab4BkAJqAgoBBADHAHgC7gK2AcEAhAHKAoUC/wB8AOABawNBA+ABAwEpAYABmAHLASgCLAK6AVoBVAFPAS4BYQEDAmkCGAKHAWcBoQGvAZsB1gE/AiMCWQHDAEwBmwJFA1wClQCh/1oA2AF8AsYBxQC+ANAB/gI3AzgCzAA8ACgBpgINA+YBhQBRAA8BmAG5ASoC6wL2AukB8AAsAR4CcgLoAW8BoAH+AdIBLgHLAD4BZQJXAxsD0gHaAEsBigIZA5wCFQIYAvsBUgH0AK4BvwLpAj8CwwGXARYBfwDkADMCzwLbAZcAjwCPAVYCYwIMApkBWwHeAewCGgPMAbkAqwFnAyoD9QDJ/xQBrwJzAncBuAGwApQCmwFjAfYB8gFXAZsBzAIoAxUCNAG5AZgCiQIGAv8BBgJzARIB6wELA4UCiACW/y0BpAMzBGYCfQCTAD8CawMCA/EBfAGWAYcBgwFSAo0DqQMuAr8AAgFrAhcDWgJxAZ4BfwK1AtMBDgG3AT8DrQNEAroA3QAAAkACkwGiAa0C+wLzAVwBWAJMA4cCPAGYAS0DpANmAj0BbgE2AnECDgKAARIBLAEGAt0CqgK6AWsBFAKRAjwC7AFSAqYC/QH9AA0BOwIbA7gCyQGoAZkCfgM9AxYCVwHcARsDzAMrA5EBKwA+APkB2wPzAyQCfQC6AC0C7wJoAq8BtwFFApUCPAJyAQIBqgEJA7ED5gK7AaIBawK4AgsCOAEWAbkBtAJKA74CaQHhAP0BQAPGAjIB6AB2AsgDQAPbAWUBCQKoAo0C9AFxAYgBVAIuAysDPQJTAToB8QEAA8oDqgOEAl0BWAE8AtMClwISArABfAHYAfcCtwOxAq4AOQAVAvwD0wNzAuIBOQIfAnIBiAHbAhIEzANkAmABfwHxAasBCwFoAdgChQNMAtsAhgGYAygEiwJaAT0CYQOeAhABPwEYAyoEPQONAaUA2ADLAQIDowMOA+cBbAG3AbgBDgG7AIwB5QKMAxsDHQJHARMBpAGdAk8DSgPAAi0CxgGGAYwBEgLSAvACDAIlAZYBGgPTA9ICdwFaAf0BDALmAc8CIQTJA8gBogCcAewCywINAh8CfgIkAr8BSwLfAjYCRQG+Ad4CdQLHAGgAEgJtA9ECmQGDAQEC4QG4Aa0C+gO9A+QBbwDHAEsChwO8A+MCXQEOAOz/2wCxAbkBrAFeAh4DkwL/AFcAuwHdA7UE5AOYAtIB0gGaAr4DDATBAvYAlgDZARUDEQMyAjcBagBmANgByQPpA6MBb/+6/9QBTAMjAzgCggFjAfkBuAJ8Ak0BAQGkAmEE2gOzAZoAZgF9ArgCeALvAcUA1f/DABwDFQRUAhgANwBxAjIE3gP5Afv/Qv9/AOcCRQQiA7AAm//3ABwDqQM8ArcAAQHHAugDEANYAd0APQIzBCgFWAQEAo7/DP9fAacExwW7A3MAjf47//cB2ARhBdICt/9l/8cBiQPaAokBjQENApQB/ADAAQYD6gLFAaABtAILA7kBSwBlAK0BuwLEAtgBqQBZAH8B/AL+AocBrAC0AUQDXwMjAlABvgGFApQC8gFUASsBdQHsAT4CSAI3AiQCuwHRAC0A6gDIAu0D/QLxAAAA+ACYAloD6wLZAeMA6wBbAhYEIAQqAmMAvABmAikDfQK4AcMBQgKgAoICgQH8/63/mAHcA7sDvQEdAc0C+AOHAlAADwCFAbsCJgM/A50C+ADM/44AOALgAr4CHQNTA84Bov+e/9oBTAN1AkcBZwGmAdsAZwCsAT4D+gJqAbAAMgGgAY8BuwEgAuMBGwH9AP8BMQN9A5cC7wCe//T/2QFIA8ACfwGKAT8CaQGB/6//wQIRBYIDKwBr/9wBFwTXA3UC6QHqATsBKwA2ANoB2wOFBDMD6gCa/1MAJwJHA0cDLgNMA4gCkwBE/zwAVwIjA14C8AGGApoCYgGEAHoBAgP/ArEBAgFkAZIBPwGYAbsC/QKjAVoAmwBTAesASgCAAQ4E4QR4AjD/fP4AASEE4gS+AgEAcP9JARADuQJPAR8BLgJiAi0BjQDEAUMDNgM/AuoB8QEvATUAqABUAhsDHALlAAoBBgJeAr4BEwE/AUICTANNAwECiQBdAIEBiwKHAg0CBgI3AssB1gB2AGgB7QJXA9oBxf91/58BEQT7A2sBXv8AAA4CuwKfAR0BvQKJBHAD0f+//fv/DwQ2BWwCev+a/4kBLwIyAb4AtgGaAiUCCgGXAPYAfAHHAQQCcgLsAssCpwFYAGMAywGUAo8BUQDlAJgCDwPRAZgAdAD4AM4B4QIaA40B6P/QAH4DDwRFAbj+qv+AAn0D7QE0AEAA6wHEA+4DmwHu/nL/PgPDBZgDU//y/UQA4wJbAzgC1gA/AH0B/gN3BNAAsPzm/f8DrgdRBCD+O/yd/0oDtgNAAoYBggG5AGX/kf8MAnMEkwO9/y79K/+vA78FlgNwAND/RwH/Ad8Amf8XADYC5AMyA2sAOv4C/wYCBAT9AnYAVv97AFYCIQOMAmEBiQCWAKEB/gJqAxsC8v/8/ikA9gFOAnIBcgGlAtUC5QAt/zAApwI+A30BKgD2AFkCSwL3APj/SwChAaUCBAJKABYApgIABU8DzP7w/B4AXQTiBOkBHP+t/kcApQLgAy0Cxf4M/vAB3AUbBCz+Zfsk/44EgwU+Aoj/zv88AaYBYAHLAeQCSgMTAhwAV/+uAKICvwLIAHT/7gCVA9IDEgHT/v3/8ALKA3ABfP6s/VX/OQKsBKkEYwGR/ar9FAJ2BVwDmv6q/cEBXgUYBBUASv4OAKwCeQMtAh0AzP4T/5YAJgLrAuECLgIYAXwA9QCdAUYB1wAuAlIEsgOh/6n80P6iAy8F5wE8/mr+gwGBA2oCHwCw/6cBQQO1AVv+vv2pAeIFEgXs/5X8+/5GBKQGxwO2/mv8Sv+8BCsHoQOi/an7gv8hBDMEoACK/jsAwQJ/Aub/h/6oAJQERQaRA8T+kfzu/qECQAPsAAEAmAL/BOQCNP5A/f0Bogb5BLz+cfvd/rAEUwaSAg/+W/1lAHkDnwN6Aej/NQDqAIoAPgDKAdkDEQNb/yz94//fBJQGbQM5/wX+zf/AAQwCaAGMAeAC0QOhAtH/Ff5r/9QCdAU2BQwC2v3Y+4D+VAQQCP0FcwD+/NL9iACJAngDMgPuANT9XP3OAIkEQgSjADL+fP+qAoEEpAMBAbn+uv4NAWkDfgOOAa//J//L/0IBDQO6AzwCFgD5/94BygIlASr/l//hAWYDBAOqAWUAs/8eALUBDgOSAqoAWP+w//MA/wFyAlgC3QF1AXABbAEAAacACQHRAUYCcAJnAmcBbP/M/n4BFgXXBHsAYf1z/+IDYAUJAzgAaP9NANoBCwN5AvX/Ef5V/2ICugO1AqsBhgHQAH//q/+VAaMCugEeAQkCIQLj/yr+6f8fA8wD6AGFAKEA3gAZASUCrgLMAFr+Cf8GAo4Cyf+6/hUCQQVOA7b+dv1HALYCXQIZAaMAiACyAOkBMQNcAvz/Nf/GAN4BCAGFAMsBkQINAaX/6QDbAkYCXQBtALwBCQEV/+L/QQNOBKsBHQAuAloDDgD+/DIAgAYnB7UAGftQ/GQBQARPA+cANv9O/zgB+wJEAi8AMgBFAnUCzv/M/vQB0wTHAqn+WP6lAYQDRgLMAIAADwDe/88BUAQ9Awn/PP0RAPsCFAL4/5AAfgITArj/2f5UABUC4gIHA0YCdwBc/58AxgL3AjQB7/8IAFQAjwCdAcMCAwK5/8f+PgCwAS0BRwAiAaoCLwLU/7b+mQBHA1wDtACS/kr/QAGQAXoA4QAqA84DqgAT/aD9nAEKBI4C6v9K/2oASQEpAYwAIACbABsCDwPLAXT/If9RAQEDTQIkAYMBCgLlAKv/5QBtA7wDQgEI/zH/3gBxAiMDQgLW/1L+eACVBCoFOwAJ+8j7nAHlBYsEGgCZ/ez+9QGFA00C4/8n/+0AngJiAWT+3v1nAU4F7gRWABD8EvwxAOMEPAb/Ahj+c/y///MDCwRzAC/+qP/bAaoBWQCBAG8B5gCV//v/1gFhAvUA8P+WAGsBVgFUAekB0wG2AEcAUwEZAlMBWwByAJ4APADKAJgCpQJ1/yL9AAAYBWgFLQA3/BP+VwKsAwMCqwCxALgAVAA7AG0AoQBaAWQC3QE5/579HgBhBOYErwD8/Br+yAH+AusAL/8IAKoBpwF9ADQAGAGvAUIBuwD9ALgBHgK8AZcAZf+D/2EBBQP/AS7/QP52AJECuwH7/8EAFQPyArv/U/2T/tQB7gOtA5gB+v79/RkAbQMjBIsBF/8X/7j/7v5L/iIALQMgBCwCW/96/Tn9Bv9AAnoEuAMJAfn+av7j/mAAiQJ4AwoCTwC2AO0B3wAv/tL9BAE9BBYELAEs/tL85v1FAZ8EpQQ2ATT+q/4oAWECjQExAEn/5v6E/20BPgPmAlMA3/3u/aMAvQN7BCsCA//b/SX/AgEHAmYCZwKaAR8A9v6L/qX+5P8MAxQGAwV//7z6h/taAA4ESgR/Ai4A3P3p/MH+/gF3A2ACygD2/zz/3/5rACUDcwP2/3X8I/3bAPYCmgF0/2H/8wDLAbMAyP47/ikADgPrA8sBUP9v/3QBQwINATgAJQHaAYoA8f6k/6IBnwFZ/1j+uwDcA9ADTAB//GX7wf1KAgIGjQWXAIL7Vfv3/0sETgQiAZ/+s/5RAIABWAGFAFcAJgGzAewAqv9w/xsAkAATAWwCDQOPAIb8A/xxAKgE9gO3ABMAyQFUAQL+dPw+/9IC5AJEAKb+A/9X/7n+0P71AMoDcQSxAY79sPvm/SwCpASRA8UAFP9O/zEAfgA+ADoAuwANAVUA5f47/lv/dQG5AiYCNQA2/p/9Sf9MAiMEDgMlAPT9pP24/toAwQNnBQMDIv3I+Iv6FgFPBssFBAHv/Jj88/5NAZECVAOWAzQCP/8v/VH+kAGWA9YC8wATAF4ArwBtAPH/wv8PAG8AGgAO/43+gP+kAAQALP7x/WEA8ALcAtQAk/8rAGoBAQKpAZIAQ//U/vL/sAFeAlEBOP9H/f78l//6AyMG7wKj/EL53vtvAfUEpgQoAp3/Pv58/sb/4QB4AWMCbAONAi//dvzA/aEBTQPXAFr9j/y1/nwBxAKkAdz+F/2r/iYCWQPXABL+fv4sASQDrQOTA2ACm/9U/QX+lwDRAS0BzQD5ALD/Mf3m/BAAAgMLAqX+If3j/m4BOgIxAcP/L/++/6oABQHTANoAGAG2ALn/Yf8zABAB9wBNALn/Fv+F/ub+YADCASECxAHmAGT/Sv5g//YB1QLjADr/QACdATIAl/2e/QYAHAHd/wD/0f9yAP3/CgD4AKUAvP5o/ikBfwP0Aan+E/5ZAAEC4QHuAVQCiQCf/Cv7Kf+mBC8FGgA7+1L7/P7yAaoCgQISAkQAT/0N/Kr+IgPkBOgB9/ye+qz88QCtA9ACcf+a/I784v5GAQgCSwEcACH/qf4s/8gAegKwAu4Afv5V/X/+YgEnBM0ElgLK/vf7BvzT/ooC+wSjBFoB7fyN+kj8lwCWAz8DXwGJAHsAXP+s/Sj+UgHEA5ECWP8D/qn/4gF4AngBw//k/dP8tP0IALYBigF0AJP/sf7G/RH+HAAJAsABBwBQ/x0AvQBtAGoATAGaASAALv71/Yf/ygAnADv+6Pxu/Wb/QQHGAQUB7P8h/8z+Df/T/4IAvAAQAcYBigEx/7T8pP3mAdsEWgPl/5f+Yv9v/2L+j/6DACYCNwJ8AVgAlv7Y/U8ALwRiBLL/efu5/LUBNgUfBagCAP+p+877aACmBAEDXf3y+kf+WwKvAr8AkP/e/u39n/7GAdEDfAFq/Xz8jP6q/x//8/+GAjoDkwDp/fv9Lf9n/7//PQG9Aab/3/2V/1gCZwGX/Yv8BQBTA7kCggAYAH0AIf85/fH98wCuAooBfv+I/oX+1f6A/ygAFwDW/64AHgLjAXX/Xf3r/RIAMgGgANz/8v8+AL3/lP4Z/mv/2gEYA7kBRf90/qX/wQDLAB4BVgJoAs7/r/yJ/Jr/0QKPA50BX/4Z/DP9fAHbBGIDof7n+0f9nv82AF4AgQGbAeT+MfyK/awBUQOuAJD9e/1e/5cA6QAsAb0A5/5K/ST+0ABoAoUBg/80/k3+yf/aAX4CRwAj/fH8cwCvA8oC9P6P/Kr9QQB1AYoAwf7q/Tj/AwK3Az4C0f7d/PL9QQChAQ8CJgINATP+6ftv/RwCJwVLA8j+MvzS/FT+O/+sACID+AOtAFf7SvkN/WAD3gZLBZMAGPxU+iH8UAD3A4kEKQIl/0/93/zS/X0A6AP9BG8BTPvn95j6KQENBnsFVADX+j75t/xlAo4F1QOY/xT9oP0Z/+v/IAEnA08Dhv/k+r36SP8VA5gCTgC7/xQAFP/U/en+UwHDAQYAHf/3/2MAov/N/3IByAFn/1j9rv64AZwCtgCE/rf9L/6C/9cAaADy/Yj82/6gAiYDCgCL/RL+cf+S/77/LQHsATQAIP6F/jAADACz/o7/kwJGA2X/8fod+5T/cQNdAzIAs/xI+139MwIABtcEVv+T+n76Ff7kAfIDuAPHAC38uflp/MkBBwQfATT9uvwW/6cA/P+t/kL+oP4z/9b/VwBQALv/Cv/F/kH/aABiARQBe//t/Zj9af6m/6oAwACR/0j+tP6GAEYB5f+E/g7/MwD1/zn/EgDIAcsB3v8u/rn9n/3k/Yn/ogG0AY//4P0T/rv++v4OAPEB7AHv/j78A/2L/z0AQP+M/3cB6gE9/wH85/uF/8MDqQTuAKD7l/lW/GUA3wHyACgA/f/0/kf9Iv0Y//wA+QCu/5D+Hf5E/gr/6f/7/0f/4f5a/xUATgDU/8v+4/1V/igAJwGK/y39f/07AIcB2/8u/q/+Dv/7/CX7hP10Ai8E1wDS/FP8hf6HALEBYwKMAYX+1Puy/F8A3QIUAsL/Df4p/e/8A/7h/1MAwP7J/Wf/XQF+AOj9Y/1a/2gAKP89/mT/WwAG/1L9//3y/yEAkP7i/dv+tf+b/6H/8v8F/6D8PvsT/RIB8wNCA0r/A/s0+hv+kwO1Ba4CSP3F+XX6xv7DA4UFNAJ3/E357vry/sYBFwJ1ANH9jvtu+8H9kADKAVABIQCx/lf9Nf0E/2oBDAIzAIf9L/z1/Pr+nQDEAKX/X/61/Yz9sf1m/rP/1QDLAFX/V/10/ND9hwDwAYUAHP6k/R//w/9k/jT9O/4nAF8AsP4i/R39Qv6I/yEA2P9P/3L/6v9Y/9X9eP0f/4wAw/9y/kz/KgFyAAL9E/tk/XwBYgNEAs3/Ef20+nD6ev3DAVQD1AAW/ar7WP1SAFIC5wER/8r7+vqC/dQAogGb/079uvyQ/eP+dQCKAXwAQP3K+tb7/v5+AF3/M/6t/kb/i/7q/Rv/3gDEAP3+yf3s/Tr+Vf4n/1MA7P+t/VH8Bf41AWQCaQBt/Sj8V/1x/ykAn/6Z/PH86f84AvgAkf0V/Br+IAEnAtwAvv7k/N77PfzJ/Rr/RP8a/4f/qf9o/hj9Ef6qAGgB6f5B/Mj8iv8GAQgAU/5P/b/8nPyq/Z//pwDE/x/+T/17/f/9kv7z/rT+Hv4x/vr+Of93/gH+uf5X/2v+5vyy/Lv9Y/5V/rP+pf/Z/7n+VP3A/BX9HP5g/5r/+f0q/OX80/9gAcv/tP0D/pz/vf+e/pz+vf+Y/5f9LPwK/ef+8v8hANX/dP4t/Dj7OP18AMgBQgDl/an8+fxq/h0AowBG/5X90f2i/z4Aaf44/P37MP3g/br9z/1O/mf+Av7O/d39tv2p/V/+J/+W/hj98vzk/rEAOgBi/k/9Tf08/Sf9Df5m/zX/Df0V+0X7IP3m/sj/8v9y/0T+BP2h/If9W/8PASMB6/4D/EX7YP3M/xYAAf+2/ir/g/6h/Lz7Bf3t/pb/Kv+w/jD+Yv0S/TT+FgDvAPb/9v1E/PH7b/3O/8AA1/6u+4v6k/x9/1YAkP76+876Ifw+/8EBQgHa/Y/6Zfpc/dMATwIDAZ/9Fvoi+RP8ogCMAhgAAfwG+vb6Gv0L/1cAPgAv/oP7tfpi/KP+zP/8/4X/8P3b+8D70/57AgQDCQBb/F/6ivqS/H//6QD9/oX7d/q8/Bz/E/8W/m7+e/9S/yv+nv3P/c/96f35/h0Ag/9p/Rn8rPzo/Zn+6/4V/4r+Rf09/O773fsa/Hr9i/8hAF3+bfzD/Kv+jP+5/uP9Ef46/m79n/xP/Vb/zAD7/xX9TvoQ+qb8qv9hAI3+M/z8+uz6qPtf/bD/6ADB/zf9mvv5+5P9Pv8mAJ//ov2x+6r7bP39/kz/OP86/x7+ffvF+XH7LP8UAaT/Fv3x+3f84/3E/yYBawCK/QT7MfuV/fX/1wDg/0n9nPpy+m/9kACZAEL+y/wT/RP9D/wE/PX9tP/5/sn8z/vV/I/+zP8NAPH+wPwe+3b7EP0a/iX+Gv4n/pX9rfzS/CL+2P4G/k/9Yf7x/0v/cfya+hz8bv81ASMAov2G+6T6YfvY/cgAxAGh/xr8Mfom+9H9SAArAcz/pfzq+Rr6Nf1FAHsAOP5Q/KT8ZP6C/xb/+/1v/af95P25/av9Mv6+/lv+Pf25/ID9qf7K/of91fsq+3T8J/8gAWkAfv0h+3X70v3g/xUAiv5Z/A/78/ud/rQAJwCG/Vn7Xfsq/UT/ZwDa/7D9RPts+tP7WP4fAAAAGf7h+2X7e/2EALQB+//6/Bj7TvsL/R7/QgC5/xn+//wd/Wb92vx6/Pn9rAB8Aa7+k/pB+QP8MQCBAgACoP91/Ln5Zfmb/DoBHQONAD389/mi+rL84/6nANEAZf7k+pP5ovu7/hIAdf9U/nL9xfyt/KX9Cv+S/9/+xf0Z/Qn9f/1Q/gz/SP8B/1z+WP1E/Cj8vP3z/5YAqf6e+/b58fq1/TQAugAM/5b8WPtX/Mv+xQCqAID+C/xd++r8Hf8OAE7/yv2I/A38pPw1/rf/x/81/m/8AfwZ/a/+p/91/zr+zvxW/Ej92f7G/4z/nf6l/Rf9Pv0O/uP+4v7j/bf8X/wa/Tv+wf4X/rn8DPwa/Tn/cgCm/9L9xvwF/bT9Lf6Y/u7+lf5+/bX8+PyU/Yb9Lv2W/XH+Uv77/AX8m/zX/U/+Kf5Y/pr+5P2b/Ir8M/6h//3+HP1Y/Gj92f5P/+7+XP7B/VD9l/12/qb+Wv2z+3L7sfwI/qf++/4z/7D+bf23/H391v4P/879V/z7+/L8cf5M/83+c/2v/FX9qf5Z//H+7f3k/FH8s/z2/QL/x/6X/br84/zC/dP+m/9u//X9EfxC+wH8e/3T/rP/v/+t/i79nfxP/TH+Xf4h/vn9nf3X/GD8+fwu/uX+s/4K/mX9Dv1L/RH+tf6J/qz90/xu/Ir8KP0d/sf+nP7c/VT9Y/28/Qn+OP43/t79Uf0Y/ZL9aP7T/mf+j/0i/Yn9X/4B/x3/qf6+/dj82PwH/l7/jv+j/tP90f06/sf+qv9xAPX/Kv7b/Fv9pf73/mD+MP56/iD+Kv0p/cD+awCHAFT/H/5z/Sf9b/2M/r7/vv9e/uX8j/xb/XD+Bf+l/i39Lfv0+Yr6cPzs/cX9bfxB+yL7DPyX/Qz/YP8J/hL8b/vV/N/+3P+a//r+bP7s/dP9jf6a//P/a//H/nX+Mv7//V3+Q//f/9D/uP8UAHsAggCKAOgAAgE7ACX/yP4r/4z/r//q/x0Avv/q/m7+hf6c/nr+q/5K/3b/nP6N/XL9Mf7G/tb+8v5d/4b/A/9P/hf+T/52/mb+U/4+/uT9XP0p/YT9A/4v/hv+D/76/bP9j/0V/iD/0P+F/5f+3v3a/Xn+UP/N/4T/mf6r/UH9Yv3g/Yb+9f7B/g7+ov31/Zf+3P6w/l/++f2Z/b79qP6j/8P/K//V/iH/f/+O/5b/xf/A/17/CP/3/s3+W/4f/nr+8P7P/jP+wv3C/f79RP58/mr+8v18/Yz9Dv5w/mn+IP67/Uj9Df1g/Qf+Pv6Z/Yn82vvl+3f8NP3I/er9hf3q/KH87fyZ/Tr+iP50/gv+fv0s/WH9+v1y/nL+J/7q/cn9ov2E/Yj9e/0S/Xj8Nfx9/Pz8YP2v/e79+f3a/d79FP4k/vD94f06/oD+K/6F/U/9rf0O/g/+3/23/YH9Ov0e/Un9dP1S/fT8qfyt/Ar9m/0E/vP9d/0C/e38Kv16/b394/3R/YP9Mv0o/WH9kv1w/ff8a/wn/FL8tfzs/Mv8jPyJ/NX8OP12/Yj9i/2J/Xn9Zv16/cL9CP4D/qr9Rv0n/Vr9q/3Z/cD9d/08/UP9fv3C/QD+PP5N/gb+mv2I/fz9jf67/n/+Hf69/X39mv0r/sv+9v6e/iL+xv2Q/Yr9v/32/d79iP1T/V39Zf1T/Wf9sf3l/db9wv3b/ev9s/1k/U/9aP1v/WP9cv2C/Vj9Cv30/Cz9Yf1c/Tv9Kf0Y/Qb9H/12/cn9y/2L/WH9dP2p/db98f3u/bj9Wf0H/fj8Lv19/aX9ff0U/br8v/wa/Wj9V/36/Kj8oPzc/Dr9kv21/ZD9T/1A/XX9uv3V/cL9nf1y/VD9Uf1x/YH9Yf01/Sz9M/0j/QP9/PwL/Qn9/fwa/WL9mP2T/XP9Vv00/QX97fwE/ST9Hf30/Mv8s/yy/Nf8HP1T/Uz9Ef3W/L38zPz7/DL9SP0r/QH9//w0/YD9vP3K/ZT9K/3O/LL8z/z7/CL9P/03/fb8qfyZ/NL8FP0l/Q397PzO/Ln8w/z2/DP9Vv1d/Vv9Wv1W/VT9UP07/Qj9y/ys/L388Pwh/Tf9Lv0N/ef8z/zQ/Ov8Ef0y/UL9Qf07/Ub9df3C/fz99/3A/ZT9lf2e/YX9Vv04/TT9Ov1H/Wb9hv2E/WT9Uv1q/ZT9rf2s/Zn9ff1v/Yj9xf34/f394f3R/dj93/3O/af9g/1w/W39eP2Q/bX91P3Z/cv9wv3C/bf9oP2Y/a/9wv2q/XD9QP0p/SH9Jf04/T/9HP3f/MD8y/ze/OX89PwN/RH9+/z8/DL9dP2L/X39bf1i/VL9TP1f/XX9af1G/Tf9Qf09/SH9Cv0S/SX9Kv0k/R/9GP0M/QT9CP0R/RP9D/0G/fn88Pz7/Bf9MP0y/Sv9LP0v/Sj9IP0q/T79Qv02/Tf9U/1w/Xj9c/14/YP9gf10/W39cP1t/Vz9Qv0i/fz83/zh/AD9GP0S/fz87fzq/Ov89PwF/Q79Bv35/Pr8/fzu/NH8vPyv/Jv8hfyF/Jj8l/x0/E38Svxj/Hz8ivyS/JP8jPyN/KL8wfzW/OP89/wO/Rf9Ev0X/Sv9Ov0y/Rf9/fzp/Nn8zfzJ/MX8uvyo/J78n/yp/LT8vvzG/Mr8zfzP/NT83/zz/Af9EP0L/QD99vzv/O78+vwS/SL9G/0K/Qf9FP0e/Rr9GP0g/ST9GP0J/Q/9JP0t/Rr9/vzu/Or84vzX/M/8zfzK/MP8vfy9/ML8xfzB/L78xfzV/OT86fzr/Ov85/zg/OL88/wD/f385fzS/NH81vzW/NT8z/zD/Lb8uvzU/Or86vzj/Ov8/PwA/fT86/zs/Ov84fzY/NT8zfzA/LX8s/yy/Kv8o/yj/Kv8qvyY/Ib8hvyW/KL8nPyR/JL8m/yX/IP8cfxu/HH8a/xe/FX8UPxM/Ez8TfxH/Dj8Lfwr/Cb8GfwO/BP8H/wd/BL8Efwb/CD8HPwe/Cf8JvwX/Av8D/wZ/B38JPw1/Eb8R/xC/En8Xfxq/Gv8bPxw/HD8aPxk/G38dPxq/Fz8Yfx1/H38cvxq/HL8ffx1/GX8ZPxu/Gz8W/xS/Fv8Zvxh/FP8SfxF/EL8RfxP/FP8Sfw9/D/8S/xX/GH8afxp/F/8Vvxc/Gf8aPxj/GT8Z/xh/Fr8YPxs/Gf8WPxV/GH8ZPxa/Fn8Z/xt/GL8W/xp/Hf8cvxs/Hn8jfyN/IH8gPyK/I78jPyW/KX8pPyW/JH8nPyj/Jz8lfyd/Kb8o/yd/KH8qPym/KL8pfyu/LH8r/yy/Lj8uvy0/LD8s/y0/K/8qfyq/K/8svyw/K78rPyp/Kf8qfyv/Ln8wvzH/Mn8yPzF/MD8vfzB/Mb8wvy1/Kv8q/yv/LD8sPy2/Lr8tvyv/LH8uvy8/LX8svy1/LX8r/yt/LX8u/y0/Kn8pvyo/Kb8oPyc/Jn8kfyK/Ir8jvyM/IX8hfyI/IX8evx0/Hv8g/x+/HP8bfxx/HX8dfx3/H78hvyI/IL8fPx7/Hz8evx3/Hj8fPx7/HT8cvx4/H/8ffx1/HP8dvxy/GT8WPxX/Fj8VPxM/EX8P/w7/Dz8RPxK/Ej8RfxE/Eb8SPxO/Fn8X/xb/Ff8Wvxh/GX8Z/xu/HT8cfxq/Gb8Z/xm/GT8aPxu/HL8c/x3/Hz8f/x//IP8h/yG/IT8iPyR/Jf8kvyL/In8i/yL/Ir8ifyH/IP8gPyD/In8i/yH/IT8iPyU/J/8ofyd/J38o/yq/K38rPyq/Kn8pvyn/K78t/y6/Lb8s/y0/LX8tfy4/Lv8vPy8/L78w/zG/Mf8yPzL/Mz8y/zN/NH80vzO/M780vzX/NX80PzQ/NT81/zb/N/85Pzl/OL84Pzj/Ob85vzk/Ob86fzo/OP84vzo/PD88vzv/O/88/z0/PH88Pz4/P78+fzx/O/88/zy/O388Pz5/P389vzx/Pb8/Pz6/Pf8/PwG/Qn9A/0A/QL9BP0D/QP9Bv0F/QH9//wC/QT9AP38/Pz8/vz+/P/8BP0I/QX9//z//AH9Af3//AD9Av3//Pn89vz6/P/8//z8/Pz8/fz6/Pj8+/wC/QX9Av3+/AD9B/0P/RP9E/0S/RP9F/0e/Sf9Lf0t/Sb9If0i/Sr9MP0y/TD9Lf0q/Sj9K/0x/Tb9Nv0w/Sv9Kf0r/S/9Mv0y/TL9NP03/Tf9Nf03/T39Qv1C/UD9P/08/Tb9MP0u/TH9M/0z/Tb9Ov09/T39P/1C/UL9P/09/UH9Rv1G/UP9Qv1H/Uz9TP1K/Uv9Tv1Q/VD9Uv1W/Vr9Xf1f/WL9ZP1k/WT9Zv1m/WT9Yv1m/Wv9av1j/WL9Zv1o/Wb9ZP1q/XH9cf1t/W79cv1y/Wz9av1x/Xn9ef1z/XD9cP1v/W39a/1t/XD9dP10/XL9cP1z/Xj9ev14/Xf9fP2D/YT9gP2A/YX9hv2B/X39gv2G/YT9gP2D/Yr9i/2F/Yj9lf2c/ZT9if2L/Zb9mf2U/ZP9mv2c/Zb9kf2W/Zv9mv2Y/Zv9nf2Z/Zb9mv2c/Zn9lv2d/aT9of2b/Zz9of2g/Z39o/2s/a79rP2y/bz9uv2v/a79uv3B/bn9rv2s/a39qf2l/az9t/26/bf9tv23/bj9vP3B/cP9wf2//b/9vf24/bf9wP3J/cj9v/27/b79w/3G/cX9wv2+/bz9vf2//cD9xv3P/dT9zv3L/dP93v3c/dH90f3b/d791v3Q/df93v3c/dj93P3f/dr91P3Y/eP96P3k/eX97/33/fX98f30/fv9/f35/fv9Af4D/v399/37/QL+A/7+/f79Bv4N/g/+DP4J/gb+BP4G/gv+Dv4K/gX+Bv4M/g/+Dv4R/hb+F/4S/hD+GP4g/iD+HP4e/iT+Jf4h/iL+KP4s/in+KP4t/i/+LP4r/jT+QP5A/jj+N/4//kb+RP5B/kL+RP5D/kL+RP5G/kX+Q/5D/kb+S/5P/lH+UP5Q/lb+YP5k/mD+Xf5f/mP+ZP5m/mv+bP5o/mb+af5v/nD+bv5w/nL+c/50/nj+ev52/m/+b/50/nn+e/57/nr+ev58/oL+hf6E/oP+iP6N/ov+hv6J/pL+lv6R/o7+kv6X/pT+k/6a/qX+pv6f/pz+of6m/qj+qP6t/rH+sv6y/rf+vv7B/r7+u/6+/sP+xv7H/sn+zP7N/sr+yP7M/tL+0/7T/tX+2v7e/uD+5f7p/uf+4f7g/ub+7P7q/ub+5/7u/vP+9f73/vv+/f79/v7+Av8J/wv/CP8H/wn/DP8N/w//FP8Z/xr/GP8c/yb/K/8l/yD/Jf8x/zT/Lf8q/zP/Pv88/zT/M/8//0n/Sf9E/0X/Tf9Q/0z/SP9M/1X/Wv9Y/1f/XP9i/2L/XP9b/2L/a/9v/27/b/9z/3T/cf9y/3r/gv+C/3v/ef9//4X/hf+F/4v/kP+O/4z/kv+c/57/mP+Y/6H/pv+g/5z/o/+r/6b/nf+g/63/s/+u/63/tv+6/7L/rP+4/8j/xf+4/7j/xv/L/8D/vf/O/9r/0P/D/87/5P/m/9b/0v/j//D/6f/d/+D/6v/q/+P/5P/t//L/8P/v//L/9v/6/wAAAgD///r//P8AAP7/+v/+/wYABwAAAAEADQAZABoAGAAcACMAJwAnACkALgAvAC0ALAAxADcAOgA5ADgAOgBAAEYASABJAE4AUwBUAFUAWwBkAGcAZQBlAGkAbABsAG4AcgB0AHQAdgB7AHwAewB9AIQAhwCEAIMAiACMAIkAhACJAJEAkgCKAIkAkwCbAJgAkwCYAKIApACbAJYAnwCqAKoAogCgAKgArACoAKYArQC0ALEAqwCvAL0AxADDAMEAxgDMANAA0wDXANkA1wDXANsA3wDdANgA1QDWANcA2QDcAOIA6ADrAO0A8QD4AP8AAgEAAQQBDgEVARABBgEEAQoBDQENAREBGAEZARQBFwEjASoBJAEeASIBKAEmASABHwEiAR4BFQEUAR4BJwErAS0BLwEtASkBKwE0ATcBMgErASkBJQEgASQBMgE6ATIBKwE0AUcBTQFHAUoBVQFVAUcBQQFPAVsBTwE7AT0BUAFXAU4BTQFdAWkBZQFhAXABgAF+AXIBdgGFAYkBfQF0AXkBfgF3AW4BcgF9AX8BewF9AYgBjgGKAYYBiwGSAZABigGIAYsBjAGGAYABgQGDAYIBgQGHAZEBlAGQAY8BlAGZAZkBmQGfAaMBngGXAZoBowGnAaIBoAGlAacBoAGbAaEBrAGxAa8BsAG2AbYBsgGxAbkBvgG3AasBqQGwAbQBsQGuAbMBuQG7Ab0BwgHLAc8B0AHSAdcB2QHXAdUB1wHWAdIBzwHRAdQB0wHRAdMB1gHZAdoB3QHjAecB6QHpAeoB7AHuAe8B7wHvAe8B7gHrAesB8AH0Ae8B6AHqAfYB/QH3AfEB9gH/Af8B+gH9AQYCBQL+Af4BCQIPAggCAgIGAgsCBwICAgQCBwICAvoB/QEGAgcCAAL9AQMCCAIEAgACAQL+AfMB7AHyAfoB9AHnAeUB7gH0AfEB8wEAAgwCCQIAAgMCDQINAgEC+gEAAgUC/QH0AfwBDQIRAgoCCgIZAiUCIwIeAiMCKgIlAhgCEwIaAhoCCwL+AQMCDwITAg4CDQIXAh4CGwIZAiICLgIwAicCIwIsAjUCNAIqAiUCJwInAiMCIgIlAigCJQIhAiMCKQIqAiUCIgIkAigCJwIlAiYCKQIpAiYCIwImAisCLQIqAicCJwIqAisCKwIsAjACMwIzAjICNgJAAkgCRwJDAkICSAJMAk0CSwJMAk4CTwJOAk0CTgJSAlUCUgJNAk0CUQJTAlACSwJJAksCSgJEAj0CNAIsAiMCFgIIAvUB1QGuAa8B2QHkAecB+wEVAjUCTQJRAlACXAJbAlkCRwI7AjYCNgIxAjkCPQJGAkgCSwJHAkcCQgJEAkUCRAI8AjQCLAIqAioCKgIlAiQCJwIvAjMCOAI4Aj4CPQI9AjgCOQI4AjgCLQIkAhYCDwL/AfYB8gH6AfUB6QHTAcoBrQF8ATgBXAG8AQACJAJGAlcCZgJpAnICfAKgAqQCpwKbAqECtwLdAugC+AIOAzEDNwMqAyADNAM3AzADKQMsAyUDFgMKAxcDHwMXAxADDgMYAx4DCAMEAxsDIwP1ArkCogLXAg0DDQPbAr8CyALfAsACxALmAs8CYQIhAmECowIAAv4AtAAYAUsBDwHOACUBagExAf8BFgJ7AA==\" type=\"audio/wav\" />\n",
+       "                    Your browser does not support the audio element.\n",
+       "                </audio>\n",
+       "              "
+      ],
+      "text/plain": [
+       "<IPython.lib.display.Audio object>"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# Set up device\n",
+    "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
+    "\n",
+    "# Load model and tokenizer\n",
+    "model = ParlerTTSForConditionalGeneration.from_pretrained(\"parler-tts/parler-tts-mini-v1\").to(device)\n",
+    "tokenizer = AutoTokenizer.from_pretrained(\"parler-tts/parler-tts-mini-v1\")\n",
+    "\n",
+    "# Define text and description\n",
+    "text_prompt = \"\"\"\n",
+    "Exactly! And the distillation part is where you take a LARGE-model,and compress-it down into a smaller, more efficient model that can run on devices with limited resources.\n",
+    "\"\"\"\n",
+    "description = \"\"\"\n",
+    "Laura's voice is expressive and dramatic in delivery, speaking at a fast pace with a very close recording that almost has no background noise.\n",
+    "\"\"\"\n",
+    "# Tokenize inputs\n",
+    "input_ids = tokenizer(description, return_tensors=\"pt\").input_ids.to(device)\n",
+    "prompt_input_ids = tokenizer(text_prompt, return_tensors=\"pt\").input_ids.to(device)\n",
+    "\n",
+    "# Generate audio\n",
+    "generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)\n",
+    "audio_arr = generation.cpu().numpy().squeeze()\n",
+    "\n",
+    "# Play audio in notebook\n",
+    "ipd.Audio(audio_arr, rate=model.config.sampling_rate)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "03c2abc6-4a1d-4318-af6f-0257dd66a691",
+   "metadata": {},
+   "source": [
+    "#### Bark Model\n",
+    "\n",
+    "Amazing, let's try the same with bark now:\n",
+    "- We will set the `voice_preset` to our favorite speaker\n",
+    "- This time we can include expression prompts inside our generation prompt\n",
+    "- Note you can CAPTILISE words to make the model emphasise on these\n",
+    "- You can add hyphens to make the model pause on certain words"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "a20730f0-13dd-48b4-80b6-7c6ef05a0cc4",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "voice_preset = \"v2/en_speaker_6\"\n",
+    "sampling_rate = 24000"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "246d0cbc-c5d8-4f34-b8e4-dd18a624cdad",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "device = \"cuda:7\"\n",
+    "\n",
+    "processor = AutoProcessor.from_pretrained(\"suno/bark\")\n",
+    "\n",
+    "#model =  model.to_bettertransformer()\n",
+    "#model = BarkModel.from_pretrained(\"suno/bark\", torch_dtype=torch.float16, attn_implementation=\"flash_attention_2\").to(device)\n",
+    "model = BarkModel.from_pretrained(\"suno/bark\", torch_dtype=torch.float16).to(device)#.to_bettertransformer()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "id": "5986510c-4a09-4c24-9344-c98fa16947d9",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "                <audio  controls=\"controls\" >\n",
+       "                    <source src=\"data:audio/wav;base64,UklGRiRuCgBXQVZFZm10IBAAAAABAAEAwF0AAIC7AAACABAAZGF0YQBuCgAsAA8AFAD+/xUAAwD2/wAAGgAKAMX/4P/v/6//6f8fABoADgAHAAoADAD///f/+//2/+v/5f/h/+T/7//u/+j/9f/0//7/AQAAAAIA+P/z//f/8P/s/wAAEQATABEABQAKABUADwD9//X/9v/z//n/8//x//n/+//6//j/+P8AAAMACAAJAAsADQAQABgAHQAWABYAEgAXAB0AHgAiAB4AHgAhACwAKgAcABUADgAUABAAEgAPAA4AEQAMAAUAAQAGAA8AEAATABsAIgAiACQAIwAoACgAKAAmACQAJgAoACoAJwAeABsAGwAcACAAIQAkACYAJQAkACEAHQAVABAADAAJAAoACAAIAAYAAwAFAAAA+//5//f/8//v//D/7f/v/+//7P/q/+r/7//y//P/8f/u/+z/6//q/+j/5P/h/+H/4v/g/97/3v/i/+L/4v/g/+D/5//s//P//v8EAAkACQAKAAoACwALAAcAAgABAAEABQAEAAMAAAD6//T/8P/v//T/8//w/+//8//4////BAAKABAAEwAaAB0AHgAfAB8AHQAUAA0ABwADAAIAAwABAAAAAQAAAAEAAQD///r/9v/1/+7/5v/j/+P/4P/g/+D/5v/s/+r/6v/t//L/9P/4/wAABQANABAAEwAUABQAFAAUABIAEgASABIAEQAUABcAFgAUABIAEwAVABgAGQAaAB8AIwAoACkAJgAiACEAHAAaABcADwAJAAgABwAGAAMAAQD//wEABwAMABAAFAAXABsAHgAcABwAHQAaABsAHAAaABgAGQAaAB0AGgAYABYAFgAUAA8ADQAOAA4ACwAKAAkABgAGAAUABwAIAAsABQAEAAUABAABAAIAAAD+//z//f/7//v/+f/5//n/+//+/wEAAwABAAAA//8AAAIABAAEAAIAAwACAAMAAAAAAAEABwAJAAgACQAIAAcABgACAAAA/P/5//b/+f/5//f/9f/1//b/9//4//j/9v/1//n/+//5//f/+f/4//f/9//3//n//P/9//7//v/+//7//v/+//7///8AAAAAAAACAAEAAgAFAAYABwALAA0AEgAXABkAGQAbAB4AIAAgACAAHQAdABsAGgAXABQAFAAVABQAEQAQAA4ADAAMAAwACgAJAAgACgALAAoACQAIAAkACQAJAAcABQAEAAUAAwADAAMAAwABAAAA///+//z/+v/8//z//P/7//v//P/7//3///8AAAMABQAIAAwADgAQABEAEgAVABgAGQAaABoAGwAbABsAGwAaABkAFwAVABUAFAATABEADwANAAsACwAKAAkABwAFAAQAAwACAAEAAAACAAIAAgABAAIAAgABAAIAAgACAAMABAADAAQAAwAEAAMAAwADAAIABAAEAAUABgAGAAUABgAGAAcABwAIAAoADAAOAA8ADgAOAA8AEAAPABEAEQARABIAEwATABMAEwATABIAEgASABEADwAPAA0ACwAHAAYABQADAAIAAgACAAIAAgADAAMAAwACAAMAAwAFAAYABwAIAAgACAAKAAoACwAJAAgACAAJAAkACQAIAAcABQAFAAYABAAEAAIAAQACAAEAAAD+//z//P/8//v/+//9//7//v/+//7/AAABAAIAAgABAAEAAQADAAQABQAGAAYABgAIAAgABwAIAAcABwAHAAgACQAJAAkACQAKAAkACwANAA4ADAAOAA0ADwAPABAADgANAA0ADQAMAA0ACwALAAoACwALAAoACQAJAAkACAAHAAcABwAGAAcABwAGAAYABgAGAAUABAADAAMABAAGAAcACAAHAAgABwAIAAgACQAIAAgACAAKAAoACwAKAAsACwALAAoACgAJAAoACgAKAAkACgAKAAoACgAJAAoACQAIAAkACAAIAAgACAAIAAcABwAHAAUABQAFAAUABAADAAMABAADAAMAAwADAAQABAAEAAQABQAFAAYABwAHAAgACQALAAsADQAOAA8ADwAPABAAEQARABAAEAAQABEAEQAQAA8ADwAQAA8ADgAOAA4ADQAMAAsACwAKAAkACQAIAAcABwAGAAUABAADAAIAAgABAAEAAAABAAAAAAAAAP////////////////////////////8AAAAAAAAAAAEAAQABAAIAAgAEAAYABwAIAAgACQAKAAsADAANAA4ADgAOAA4ADgAPAA8ADgAOAA8ADwAOAA0ADAAMAAwADAAKAAoACAAIAAYABQAGAAYABQAFAAUABAADAAMAAgABAAEAAgABAAAAAAAAAP/////+//7//v/+//7//v/+//7//f/9//////8AAAAAAAACAAMABAAGAAYABwAHAAgACgALAAwADAAOAA4ADgARABEAEgASABIAEwATABMAEwATABIAEgARABEAEQAPAA4ADQAMAAsACwAKAAkACQAIAAgABwAGAAUABAAEAAMAAwAEAAMAAwAEAAQAAwADAAMAAwADAAMAAwADAAQAAwADAAQABAAEAAQABAAEAAUABgAGAAcABwAHAAgABwAHAAgACQAIAAgACQAKAAgACAAHAAcABgAHAAYABgAGAAYABgAGAAcABwAGAAYABQAGAAYABgAGAAYABgAGAAYABgAGAAYABgAGAAcABwAHAAgACAAJAAkACQAJAAoACgAMAAsACwALAAsADAALAAsACwAKAAoACwAKAAoACQAJAAkACAAIAAkACQAIAAkACAAIAAgACAAIAAgACAAIAAgABwAHAAcABwAGAAYABwAHAAcABgAGAAYABgAGAAYABgAHAAcABwAHAAgACAAIAAgACQAJAAkACQAJAAoACgAJAAkACgAKAAoACQAJAAkACQAJAAgACAAIAAgACAAIAAgABwAHAAgACQAIAAcABwAIAAkACQAJAAkACQAJAAkACQAJAAkACgAKAAkACQAKAAkACQAJAAkACQAJAAoACgAKAAsACwALAAoACgAKAAsACgAKAAoACQAJAAkACAAHAAcABgAFAAUABQAEAAQAAwADAAIAAgACAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQABAAAAAQACAAIAAQABAAIAAwAEAAUABgAHAAgACAAJAAoACwAMAA0ADQAPABAAEAAQABAAEAAQABEAEQARABEAEQARABAADwAPAA8ADwAPAA8ADgAOAA0ADAALAAoACgAKAAgABwAGAAUABAADAAMAAgABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAgADAAQABQAGAAYABwAJAAoACgAMAA0ADQAOAA8ADwAQABAAEQARABEAEgASABEAEQARABEAEQARABAAEAAPAA8ADgAOAA0ADAALAAoACQAIAAcABQAFAAQAAwADAAIAAQABAAEAAAAAAAAAAAAAAAEAAQABAAEAAQACAAIAAwAEAAQABgAGAAcABwAIAAkACQAKAAsADAAMAAwADQAOAA4ADgAOAA4ADwAPAA8ADwAPAA8ADgAOAA4ADQANAAwADAALAAoACQAJAAkACAAHAAYABgAFAAYABQAEAAQAAwAEAAMAAwADAAMABAAEAAQABAAFAAUABgAGAAcACAAIAAgACQAKAAsADAAMAA0ADgAOAA4ADwAPAA8ADwAQABAAEAAPAA8ADwAPAA4ADgAOAA0ADQAMAAsACgAKAAoACAAIAAgABwAFAAQABAADAAMAAgACAAEAAAAAAAAAAAD///////8AAAAAAAAAAAAAAAABAAIAAgADAAQABAAEAAUABQAGAAYABwAHAAgACQAKAAsACwAMAA0ADQANAA4ADwAQABAAEAAPAA8AEAAQAA8ADgAOAA4ADQAMAAwACwAKAAkACQAIAAgABwAHAAYABgAGAAUABQAFAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAUABQAGAAYABgAHAAgACAAIAAgACgAKAAoADAAMAAwADQANAA4ADwAPAA4ADgANAA0ADQANAA0ADAAMAAwACwALAAkACQAKAAkACQAJAAkACQAJAAgABwAHAAcABgAGAAUABQAFAAQABAAEAAMAAwACAAIAAgADAAIAAgACAAIAAgACAAIAAgADAAMAAwADAAMAAwAEAAMAAwADAAMABAAEAAUABQAFAAUABAAEAAQABAAFAAQABAAFAAUABQAFAAYABgAGAAYABgAGAAYABwAHAAgACAAIAAgACAAJAAkACAAIAAkACQAJAAkACQAKAAoACwALAA8AEgAUABIAFAATABMAFAATAA8ADwANAA0ADQAJAAYAAwACAAIAAgACAAIABgAGAAYACAAKAAsADwARABQAGgAbAB0AHAAdAB4AHgAaABUAFwAQAAkABAAAAPz/9//s/+H/2v/V/83/zP/D/8X/zP/Q/9f/4//o/+v/+v8EAA0AFwAfACgAMwA6AEEATABPAE0ATQBLAEQAOgAtACQAGQAMAAAA9f/o/9v/0P/J/8X/xf/I/9D/1//e/+T/6f/w//T/9P/3//v//P/5//T/+f/7//7/AgAJAA4AEAAZACYAMAAxADAAMwA1ADcANwA0ADAAJAASAAQA///0/+v/4//d/9j/1P/R/9X/2P/f/+7/9/8CABYAKQBGAF4AbQByAHUAeABzAGkAUAAwABwAFgASAAsA/P/d/8D/sP+k/6L/pv+W/4r/hP+C/4D/hv+K/5H/nv+q/8L/3//v/wAAIQBHAHAAmwC9AMIAvwC5AK8AoACOAHYAXABCACoADQDs/8v/tf+o/5X/gv9v/2b/bv+A/5z/u//b/wAAKABQAG4AggCWAKcAsQC/AMUAwgC4AKIAlAB+AGQAVQA8ABIA2P+n/3H/Pf8M/93+t/6d/qr+xP7a/uv+AP81/3r/uv8CAEAAZACDAK4A1ADxAAkBEQEQAQsB+ADuANcApgBwAFAAOQASAOz/yP+i/4H/X/9I/zz/N/8v/yj/Nf9O/2//mP/G//n/KABSAHkAmgDAANwA6gDwAPMA8ADYAMAAmgBkACQA6f/B/5f/cP9C/yD/Df8I/wz/Ff8t/0r/bv+U/8H/9f8lAFcAgwC0AOIABQETARUBEgEIAfsA5ADOALAAjQBhAD0AHwD8/9X/q/+K/2r/TP8u/xn/DP8I/xD/If85/2D/iv+z/+P/DwA2AFgAeQCRAKAAoQCYAI4AfgBxAF8ATgA/ADIAKQAfABMABQD4/+X/zf+8/6X/jP98/3H/b/90/4T/nv+8/97///8kAE0AegCiAL4AzADOAMkAuwCoAIwAawBGACIACQD0/+H/y/+3/63/tP+9/8X/y//K/8f/xv/D/73/vv/C/8b/yf/W/+3/CwApAD4AVwBxAIgAkwCTAIYAcABQAC4ACwDp/8L/nv+B/27/Zv9q/3z/mf+9/9n/8/8RADMATgBaAFsAXgBjAGIAUwA5ACQAGgAcAB8AJAAhABsACADt/9D/vP+r/5b/hP98/3r/dv94/4f/qf/a/wkAQQB4ALAA1wDrAOoA3gDaANYAwACWAGEAKADp/6v/e/9e/1D/W/9v/3z/iP+O/4b/bP9X/1P/W/9k/3T/nf/f/zsAoAAmAbYBMQJlAmgCUQIqAuUBcwHyAHkAHgDF/1L/1v5r/hj+7P30/UH+sP4G/0P/gv+3/87/1//h/+j/4v/Z/9L/1v/i//X/GwBwAPQAmwE0AqICxgKjAlUC2wFKAZ4A5f8z/5H+C/6j/V79SP1l/af9Av55/vj+af/I/xMAVQCSAMwA9gABAfQA3gDTAOMAEgFTAZABzwEDAiUCLQL7AYkB6QA/AIv/yv4Q/mj92Pxo/Dr8Wfyy/ED98v25/nr/MwDqAJEBHAKEAswC6gLkAsQCigI5AtgBcwEgAeIAqABpACQA5P+w/37/Nf/W/nP+Df6n/UL92/yL/G/8oPwK/av9gf5n/1UASwE2AvkCjgPxAxwEHQTxA5YDFAN3AtcBRgHRAH4ANgDh/4n/Lv/d/p3+ZP4u/vn91v3F/cr93P0A/j/+mv4a/8D/gAA5AdIBOQJ1ApACjQJrAjYC7AGYATUBxABQAOH/ff9B/zr/V/+K/87/AAASABEA9//I/5//f/9y/3P/d/95/4H/j/+p/9z/KwCQAAcBagGmAacBbgENAZoAHwCi/zD/z/50/iX+7P3J/c/9Dv6I/i//5v+FAOQA6QCZAA4Afv8C/7/+rv60/sH+xP64/rr+9v54/1IAeQG8AuMDsQT1BLQE+QPsAs8B7QBNANf/fP8e/7f+Uf4d/iz+ff4V/8j/egDvAPUAbgB0/0X+Of2f/KX8R/1H/jr/5v85AEwARABkAJoA1gAKAfIAaQBo/w/+nfxa+5X6ePoF+x38Xf2F/mD/7/9xAPMAmgFOAu4CVAM1A5ACeAEuAAf/S/4Q/kb+sf4e/2j/a/9E/xn/CP8L/yv/Sf9D/wj/nP4T/pH9Xf2c/Uv+Uf99AI0BRAKrAtQC4QICAysDPgMVA68CIgJqAcMATQATADMAngA+AdgBSQKeAscC1ALeAvUCGgNLA24DVQP8An0C/wGYAWMBagGOAc4B/AH6AbMBQQHGAGkARgBiAI0AiQApAFf/Rf4z/WL86/sa/PT8GP4o/6H/T/8X/nv83/ql+RD5BPkH+V/4Uvdi9tP21Plz/6cH1BAyGRMf/SEJIoYf/xohFfcOZQnMBHMAm/sG9hbw0+ps53/mLui269nvkvPY9V/2XPXF86jyzfKF9H33QPsS/0MCgwTzBY8H3QkGDakQdROiFI4TDxDqCtwE8f4E+nb2f/T081H06fSA9RT2uvbH94P5JvwG/3MBCQOEAysDbQK2AToBCAFNAc4BZALvAjsDFwN9AqYBvQDi/yn/pv5k/mL+k/7Y/gT/4P5U/j/93PuU+qv5Z/nV+bn6gPs//AL9Af6r/1gCugVvCRIN2A8XEbsQ9A7MC+EH/wOnABP+GPx2+mD4+/XC8y/yEfKn8872tPqF/lgBmAKVAvwBdQHIARED8QTwBq4InwlwCWcI0AZABT4E9wMCBMcDwwKKABT9NvnU9cvzz/PJ9d343Psw/l//qP+z/zgARwG3AkkEHwX1BLQDkAEq/yD9DfwI/Ar91/7RAGoCVgNjA9wCNQLRAeEBMgJ3AlsCnAFEALP+cP0S/dP9hP+WAYsDBAXEBd0FfgX9BH0EIgTXA2gDrQJ2Afz/iv6f/X79N/6b/1QB3wK7A8UDGAMUAjMBuwCYAJ0AkgBHAJX/qf7I/SX9Bv2R/Zj+xf/cAJMBpgEZATAAL/9P/sv9hv1G/cb8A/wC+/75Tfkt+bj5vfru++v8e/2f/Yz9c/18/cL9T/4F/73/PwBdABoAlP8L/6z+xv5P/+b/MwD7//H+aP3p+7r6G/oJ+mb6s/oP+1n7zfug/NP9bf/dACAC6wItA/8CdwKxAdYAUgAtAFYAsQDiAMkAfgA8ABwAKgCjAHwBSQK9ApoCtwGYAKT/A//D/sv+8v4a/2H/p//v/1IA4QCKAToC6gIwAxIDmwLDAbEApf/o/p3+xP43/47/nv+Q/33/p/8IAKgATwHpAV0CdwI4AqgBAwFyADYAVADFAGsBJwLOAioDaAOZA+oDVQT3BHQFrgWbBRsFZASKA8wCJAKyAXwBgwGhAakBngGAAW8BdQGZAcEB4wHkAcUBfwHhADoAwf+e/xEADAGTAmMEMga9B8IIIQnaCEEIbwd9BnUFawSTA+gCoQLQAmADFQTpBG4FSAWIBIwDjQK6ARABeQC//6P+Dv38+rv42fb79Y72pPjA+8L+bQDI/w/9CfkY9e7y2fJc9Dv2x/aC9YDz3/KG9ej7BwVvDgAVNBczFTYQ6wkqBO7/6/wd+h/31fNl8Ifttuso657rFu14737y4fUB+WD7m/zW/Lz89/ww/mgA9gIVBV0GxQaqBqoGKAcMCM8I2wiYB9gEPAFy/R/6zfeO9h32FfZQ9vD28/dR+Rn7+/ya/s3/kwAPAV4BfwFiARkBtABZAIAAbgEhAzsFTAfdCKoJnwnSCIUHCQaNBAQDaAGY/7T93vtg+n35bvlB+rn7ev0j/0gAsgCJABwA3P/g/xUAOAA6ACAACwANADsAxwCcAaECgQPyA78D7gKuATwA4/7E/f38hfwg/Kv7Nfv3+lT7cvwg/gkA6AF7A3YE2ATIBH0EPgT2A6QDJAOrAkACCQL9AQQCNAKkAj8D5gM4BPgDXwOdAuUBYgE3AX8B/wGfAhQDYQPNA3UEMgXlBU4GTgbLBb8EWQPTAXwAU/+A/tH9T/3q/Kv8ufwj/QL+G/86APIACgF7AHz/Qf4z/Z38Nvz4++37+vv0+wz8svzF/RP/dwDBAXkCaQK2AYsAf/9Z/zMALgK2BNsG3QfbB8cHpQhaC1QQtRb3HMAh3CM0IqIcchMcB4b41OmK3b3Vj9Nt1gXcQuFv5CrmJeiy7PD0a/8mCegOBw8UCrICdfzJ+Tn7zP/xBJkI5gk1CaoHHAZbBTcFpgQPAzwAw/vy9dbvjerU5mLlnuZT6nLvePTM+BP8bP59AOMCwQWXCLMKPQvgCfMGMQOp/y79SvzC/Ov9/P6I/5T/e/+3/3AAiAFgAnECZwFi/+/8pfoF+Tn4N/jP+Nv5VPtd/Q0ANgNVBt0IVAqSCu4J4AipB0YGiARQAsb/YP2Z+636pPpV+6b8K/6L/5cAIAFBASUB4gBYAKz/Cv+c/mD+M/7s/dj9fP4XAHEC5ATHBroHzQcLB8EFTgTmArQBlQB3/w3+dfz5+hX6F/rg+kP89P2m/8wALgEaAfgAAQEjATIBIgHgAFQAw/9k/0P/Yv+T/9T/MQDoAMwBqwJEA1cD4wI5AqsBdgGaAcABzgGtAZUBlgHqAdQC+wMwBRIGgAaYBl4GqQW/BJMDhwKrAfAAdAAWACQATADJAIUBYQIwA4YDcgP+AmcCFAIUAhoC+gGVAeEA4v/Q/jP+E/5v/jT/BACPALYAgwAhALL/OP/z/u3+Af/0/l3+7fyj+uj31/X/9FT1JvaI9oP18fKs7/Hto++c9c3+7QfvDccObgvQBlQEewYzDWQV3xuyHvUdIxvzF+YVPBVWFDgRSAs+A1T67/Go6gHl4eBM3lLeDOFn5gftLvOv9xb6+vp9++b8if+KAq8EjwREAsb+vPu1+jb87v9/BDwIKworCr8IdAa0A8kAaf1I+Uz06e5Q6kjnGOaS5kbotOqo7YLxVfb0+48BGAa3CA0JwQfPBRkE8gJDAgcCwAENAS4Alf/C/70AJAKeA9sEcgXwBIMDXgGo/sL7aPlG+Hj44fkm/Ln+IgEIA3AExAU9BykJEQs4DBIMPgpAB8oDtACH/k79zfyn/LH80/w0/fn9Kf+hAEgCxgPPBEIFaQVhBTwFzATUA5ICbgHoAAcBrAGOAmMDIgTVBIIFQAYjB+MHGQiFB/4FkgOaAJP9//oh+ff3j/en9yX4Dfkk+j37YPzg/ZT/TwHrAvADSwQ7BO4DXAOiApEBZACN/4f/TgB4AacCYAOjA4oDbwOdA/4DHwSnA2AChgCl/jn9k/zG/L393v4PAFIBjAJ2A9cD4APaAyUEzgRzBZoFFwUQBL8CRwH7/wP/cP56/vb+ov8sAIQAkgBUAPT/uP/b/3kAdAFZAsICqwJZAvkBtgGxAQ4CxAKwA0sEPQR7AykCtgBt/3/+F/4Y/gH+PP1t+7L4iPX68jLy6PMB+AL9SwH3AlMBBv0B+JH0PfQ39y387gCjA14EigTqBlUN8xf1I78tuTLrMfwsfyXAHKQSmgcj/OPxsOmJ48XeMtox1ljTQNMF18XeQuka9EP97QJQBJ4CAAB8/hH/YgHzA3IFQAW9A9YBcQBoALsBxwOgBXAGlgXeAlb+VPi58djr0+dV5mbnPuqZ7Xrwq/Ks9Hf36PsFAvIIEw+SEqoSmw/TCgoGjwKlANr/qv+R/2r/Av9U/pT9UP3x/Vv//QAUAvwBmgBL/pj7Bfkg97f2JfhY+8//cAQ7CJwK4wurDMgNaw8QEfQRShHcDvAKYAb+AYf+P/wr++n6Cvsx+xv77/rp+iv7tfuE/Dv9qf3Z/db9xP29/f791P55AOwCuwV2CKQKGQy9DMkMfQzmC+0KdQkgB+YDJgCW/Nv5hviY+Dj51PlW+j37e/zQ/Rf/GgDqABgBqwDO/7v+ov1z/DL7RPrh+WD6pPtN/TD/fgBAAZ8B1AEoAngCmgJOAqQBrABw/8L9Dfy9+kj6gfqT+/n8Jf4y/xgAEQEPAh0DSAT+BB0FwwRJBAYE/gNBBJYE4wQjBUMFJgXYBEsEiAOwAswB8AA7AKT/GP+a/iP+mf0//Vf99/0P/2gA+wGDAw0FdwaXB0QIfAhTCO0HVweTBrEFXgSVAqgAK/9G/gf+Mv4e/lf9wftE+m75gvkQ+hT6rfhn9fPwPu3s7CDyRv0VDJ4abiQIKIomLCMEITshJyKvIPgbbhRcC+gA1fS152HbqNLpz9jTQtzp5DvqhuvH6v3qre5c9iMAqQjJDHgLSAa4/6z6Qfma+y8AxwRmB0sHzQQLAfX8Svlw9ob0IvOL8Wzvf+zq6JPlueNp5OLnk+099KH6wf8BA4MELAXsBUMHSQlmC7EMcQyMCoMHZgSCAmMCkwMkBTEG/QUlBOkA//wb+ev1ufOr8rfy0vOr9e33VPqM/JX+3gAOBIAIwg2/Ev8VvhYwFQ8Shw6aC6cJjQikBzsG+gMNATj+P/ya+yT8Pv1A/sn+8f7b/pP+Gf6g/X392v2E/hP/WP+H//3/zQAhAp8DugQWBdMEUgT2A9UDxAN/A/0CSQKBAeEAiQCxAEwBLwIDA4UDsAOMAzMDowLgAdMAaf/H/UX8Nfto+sL5Cvlr+CL4Vvg7+QL7pv2PACwD1wRqBQ0FNARZA7oCXwICAnUBtgD8/4P/ev/Z/3YAFAF+AZ0BiwF7AXIBXQEqAf0A2wDDAJoAPwC5/zD/5/4P/7//xgDdAcgCgQMRBHMEgQQsBKADCQOvAoACbAJqAmgCYQI/AjECUgK8AkQDBgSqBDMFggV4BUAF7wTBBKEEsgTgBA0F/gReBGUDSwJUAbkAcwBKAPf/N/8Q/qz8uPq1+bf6r/2UAkcIFw5jE5QYLR0KIXQkHCdjKGsn3CN2HcYUsAq/AEb4BPJY7m7r4ue24Y7ZGNHCzCzPZNnf53r0kvtG+9z24PFT8CjzIflY/64DoAU5BXUD8QHYAcID1gfPDA0R2BIdEdUL/ANQ+6Tz9+276kXpw+iS6Cvo/ueh6OjqBe+M9Eb64P57ASMCUAHT/zn+jvw5+7b6I/tO/P791f+hAZgDCwYgCb0MVxDzEtYTsxKGD8sKgwWzABP9p/rd+Dr3k/UR9D3zp/Oo9Uv54v1zAg4GVwhHCf0IHghJB/kGFAdJB0YH8AZ4Bi4GSAbSBosHLgioCBIJkAnWCWEJ2weHBdoCSABB/hL9yvww/bz92f17/eL8nfwF/eD9oP7t/rz+Rv7T/Wr9/fyE/D/8cPwY/fL9pf4l/5L/8v9GAKEA3wDuALsAbgAkAK//rv7c/K762PgU+Hr4jPnB+tD7p/xp/U3+Y/+/AEECpQNzBIcEFgRgA8oCVALTAR0BYgAGAE0AAAG8AU4C5wKVAxsEPQTJAw4DVALTAWcBAAGjADUAxv94/5X/XQCPAasCdQOsA68DiANdA2EDTQM5A8ICEwJGAX8AHAACAEEAowDiAC8BvAGVArUDrwRTBYAFQAXoBKYEpATrBFYFmAV9BdYEmwMqAhoB9wCSAc0BtgB1/Z74K/TR8e7yR/al+eH61fmj99r2YPovBCATsiNxMYI4OTgPMkQp+R/iFjAN2QHd9C7ogt6D2GLVzNOc0mzSPtVg3FTnWPNK/bwCTwPIAAf+VP0O/3cCrgU2B1EGqwNAASIAGwHmAygHngnsCc8HqwNl/lf5g/RM8P7siuoe6VnobuhF6aXqlOzF7nnx4fTJ+Af95QDKAycF+wQFBD0DmAMYBRQHuQh1CUoJXQgfBxEGSAWGBHkD9gHx/539UPta+QH4cPey9734lPoa/RMAIAOkBVYHRwjJCDIJjgm0CVAJJwhPBj4EjQKtAbkBcwKAA3UE3gSfBM0D7wJyAlICPgIGAqUBJAGOAPX/f/9j/9z/AAGpAmQEwgWBBrMGUgZsBR4EeAKWAJf+efxL+hn4AfZU9Cvz3/Ke8zX1ZPep+b77j/07/70A5wGpAgUD/gKYAg0CdwH1ALwAtwDCAMgAzADiABkBYAFmAfAAJABJ/8P+g/5I/hj+AP4i/lX+f/6y/vj+b/8eAP4A9gHJAj4DSgP8AoMCFwLdAdUB/gFIApMC5QJMA8oDRQR6BH0EZwRrBKsEFwWIBdAF4wXNBXEF9wRgBLgDOgPTApACVgIUAs4BgwE9ARsBLwGJAQ0CZwJjAvQBTwGLAMX/Ev+R/lr+aP6Z/tj+PP/d/7oAtwGeAqEDagTABFEEzgI9AOD8hfnW9pf1A/aQ9675cvvQ/Dn+oACgBMUJ8Q7CEjcUDhNCEE8N9QvADDEPUBHsEMwMdQWo/TH3t/JL78zrGehW5Yjkq+Vy51bo2efC5pjmrugv7fHyUvgi/NH9pv0j/SX+gwHEBkQMHhBNEQwQZA07Ct4GEQOD/jX5YfPM7ero7+QF4hPgRd834FjjruiH77f21vwoAdoDfwXLBk0IOAofDDAN+gyJC4UJGQj/B0wJQgvuDMsNsA3kDJoLwgk6B0QEVwHm/h397vsf+3L69fkH+vz6/vy8/7wCgwXSB3kJVQpjCtoJJAl6CP8HngcrB4QGugUEBakEgwRxBIYExQRcBQYGdwY+BnUFXAQzA0cCvwGLAWcBAgETANf+l/3f/C79bf4NAJMBdgJ9AskBjwAk/9D99vx//Fz8Q/zY+xr7Zfrv+bT58vlU+rP6B/tk+9X7Ofx1/H78jvyj/OP8Vf3D/Rj+gf7x/or/aQCKAbsCuANlBHcEPgTzA5oDFAMqAtQAeP+G/iD+Kf5i/pz+y/4a/4j/TgAjAdgBgAIdA8ADQwSuBA0FPQVsBbQFOgY0B2EILwl5CQMJFgjxBsoF9ARSBAsEuwMvA3ECkAHQACIAvv/D/wIAjAA2AbgB7wHMAXAB7gCGAMgAtwEtA+4EcgZvB+wHHwgTCGwHPQaLBLACrwCp/hv8svgK9YvxhO9L78/w3PKa9Pj0d/NZ8Ertbu0M847+sQw4GeEfBSAQHGoYYxhZHPEhtiUjJj8jpx22FZILT/9K8rbmCN/t20Lc0t2J3sDdSNwL3KHeaeTH7OD1af25AYICpAD0/Zn8ZP0HAFwD9AUoB0gH6AYvBkgFRAQjA9kBUgAp/sf6qPVa7/DoleN64OLfkeHj5Nvomuyj71DyFvUl+LL7mv9bA1IGCgg8CAEHKgWfAzYDPQRkBuYIngrrCukJEwgiBmsEEQMeAmIBoQCo/z7+i/z5+iv6ivox/Mv+rAE1BDoGyQfFCGIJxwkPCiMK4wkyCRMIqgZKBU0E3QP0A2EE5AQ7BTwFvATiAxgDigJOAhwCgwFPAMH+gf37/GD9wv6KAC0CYgMeBEEEFATzA/8DKwTxAycDzQE7APj+TP7W/ZP9Uv03/Vj9sv0X/pz9P/xq+o74Vff89mT3CvjH+Gf55Pkz+n/6IPst/JP9LP9iAI8A9f/E/o/9s/xT/Cv89Pup+2n7kvt7/BL+8P/eAc0DngUqBxIIOwjaBxcHFAazBDUD/gFfAV4BowG9Ac0BxgGzAZQBJAGeAHYA7AAkAnID9wNrA+0BpwB3AJIBiQM9BUwGUgaMBZcE5gOuA/oDegQSBVgFCgUTBGcCsgBC/+b+ov8nAcQCtQO2A8cCsgEcAXEBPQL6AjoDzALZAbQAp//R/oP+6f4YANoBhwN9BEQEAQNyARsAhf/1//gAjwL0BP8HtAs3D+oSFheEGzAgaSM9JLQhhBv8Eg0JJP+K9gHwZOsj5/LhgNuf1dPSh9VS3tzqGPd+/9sBUP9l+rn1I/Sj9XD5Ff19/sv9w/v4+lr9WwK0CFsNkA7+CyIGof5G9lvufueo4rHgVeFS4x/lN+ZC54XpDO6Y9O77hwKyBvUHhgZZA9P/nv0G/t4ASQVzCdkLQQxMCz0KPgpyCxgN5g3rDLEJfwR4/rf4P/TC8VrxfvJ79Lb2zPix+tf8rf9hA6oHxgvfDosQ2hBIEIYP4g5gDu8NcA36DGUMbgsVCicI2AWOA3cBov/u/Tv8l/ow+Tb4yPft96P4Bvou/OH+7gHxBIIHVgksCv8JBwnAB40GtQXzBNcDEgLM/3H9mft5+sD5//j397H2VPUd9DHzyvIY8y70yfWT90v5tfrF+7T8uP3J/pz/CwAWAOv/mv8z/7/+SP4S/jj+j/7n/hf/8v5s/qH9zfxT/IX8Rv1i/oT/SACJAFcAPQCTAGoBowKXAxwEIgS3AyUDfQLzAbQBkQGnAcoB9AERAvsBBgIaAm0C7gJ7AwMEJATvA2oDyQJcAjoCWQKiAuICGQMzAw4D4gK7AqwCuALSAssCkwI4Ao0BoQCe/7n+Sf5//jH/GQAcAUsCiAOVBFEFqwXRBSsGeAaEBhoGVQVYBDQDEQI3AcMAigBxAGYAMQDp/w8ANwGVA7gGswnBCwoMbwumCvcJrwqWDDEPKBLNE0UTExH/DbELrwoGCtEIYQVx/tr0x+op4jDc0tip14nY59vC4YnoYe4U8rbzAvWm9wj8bAG8BY8HBAcIBR0DpQK2A38FIwdWB8EFmQJx/hj6FfZc8rzuMesi6PTl++Ru5drm5+i562Dv//OX+TX/DgRgB8sI2ghiCD4I0Qj5CWsLtwxSDUMNpQyVC2kKXwmGCLQHmwarBNoBn/5u+7r4zvbv9QT27vZd+BH68vvc/dX/6AEJBCMGFgiuCawK8QqNCpkJgAisB1MHUwdjBzYHowbYBfEECQRJA4oCwQH4ADYAif/e/h7+gP0//Xr9F/7t/tT/pwBEAaMBtwGCARwBmQBIABEAy/+Q/1L/+P6R/g3+qf2W/c799P3Z/XP9xPz3+2H7Avve+tP6sfqI+n36sfo0+w38Nf1w/oP/TgDTADMBaAFhARQBewDJ/wP/T/7K/YD9nP3m/Wr+Gv/w/60AIAE6AQ0BygCNAGUAQAAaAOr/uP+J/3f/of/x/20AEgHkAaECMwO2A/kDEAT5A74DfQNiA1EDLwMCA+YC7gIhA3UDxwMSBIAEpgR+BP8DHgMXAi8BiADt/3f/9v5G/o79Hf1p/cb+mQE5BegIEwwsDvQO9A7KDqIO0A5+DhgN3gqyB4gDT/8B/LT66/v0/rUCvQSAAwz/zPhY88DwNvFf9MT4wf3BAjoHeAvGD2IUYhk4HpYhoSLRInch4h55GvUTkgsHAVn1Bunr3QzW5dIm1Y3aH+Br4xzji+EG4b/jkOru8mX5L/tG+BjzcO497qTzN/4ICwAVmRnRGFIV7hGeDy8O9Qv4B/cB5frP8xDtSOe04hngB+Co4k7n6ew78kf2hviI+Vb6uPsU/hoB4gOgBT0G9gWBBb0FBAcHCS4L6AzXDWENxws7Cd0FMQKM/nz7Yfki+KH3LPfK9tr2hvcn+ZX7ff6WAQ8ErgV1BmAG5gVBBccEjQSaBLcEuAS2BLkE4wQ+BbYFIwZABtMFzgRTA5IBrP8D/tP8IvzY++P7KPzA/Mv9Hv92AKEBbwLxAlMDqgPPA4kDxgLIAdUA9f89/9b+w/7p/i3/b/+g/73/uf+O/4D/pv/W/wkAOgBNADcA1v8//6/+VP4p/vf9r/1S/fn8wvyf/MT8A/0y/Xv9x/04/r7+Vf/5/3sA1AAAATMBlQHhAfcB6AG3AZ0BggF5AW8BSAEhAc0AfgBmAIoA3gAmAWoBmQGlAdcBeQKSA/8EcgbsB14JrQpfC1cLDQuvCk8KdQktCKoG1gSrAjkAHP66/BP8zft6+/H6e/oy+g36Ifp5+vn6Yvun+9L7EvzB/BD+9P8wAl4ELwbAByAJZgooCwELzgn8B+AFFQT4AnMCUwIsAn8Btv8q/ar6R/nF+ZP7xf0i/+7+Vf0f+/T5G/sN/rwBMQWlCBAMBA8pEcUSgxSoFhkZ4RrhGmMYLBMHC34AyvSL6aPhUd+W4oPoOO2Y7iztTOut637v2vV1/NIAtQF2/wr8ovkE+Q36Cvw5/mcAcwKDBHIGdwdUB8QF9ALL/7X8EfrS98v16POL8fbuNe0H7YLuYfEE9Z34jfuT/Yf+0f4L/8z/QwEaA8gEtwXSBZ4F7wUfB94Ibwo6Cw4LMQrdCBwH8wRCAiD/2fv2+M32TvVd9NjzsPP388r0O/ZJ+Mj6ef0CAAUCUQMlBA0FYQYTCKQJjQqBCp4JUAgXBzEGmAUPBVQEPQOoAeb/K/7Y/B385/v3+wL88PvO+6H7aPtA+2D7KPy0/b//xgFoA5kEhQU+Br4GIgdZB0gHxQbCBV4EtQLiAAv/Yv0x/K/7wvsx/KD80/y3/G/8J/zx++j7Dfwv/BL8uftK+wn7Jfu1+7L88v1Q/6kA6gH7ApwDtAN7AywDCQP+AsUCUAKwAQcBPwBn/6v+L/78/R7+lf5J/+n/GADH/0b/If9//1MAWAGLAu8DQwVpBlcHJAjSCAcJ1AhLCLEHOQfLBk4GmwW/BMEDqQLSAXoBkQHgAQ0C/AGhAf8AMABZ/4n+7P2u/eP9XP7a/i//Uf+T/xUAyQCBASoCtQIWAx8DpAKvAaEA3P+S/87/jAC2AfAC1gMPBFgD8AFuALH/EACnAZIDjQSYA5cAgPwB+cT3r/mm/pYFsQzlEV8U/RQqFcgVzRb6Fn0UNQ6RBO/5++9m5zfgq9oi2J/aluKc7ZX3P/20/ez6dPgP+VL9KQOXB50IPgYtAt7+F/45AGEE1QgQDGoN1QyyCmwH9gJ2/Zb3b/Lt7nTtd+267RztRuvt6LXnLemo7QX0Xvre/o8ADACo/qb9Df4oAEkDWwaaCNEJBgqICckIIQjPB7oHngdLB6kGbAVRA0kA3/ze+Rr42fe6+Bf6RvvI+5H7KftP+yH8Y/3D/goA9wA+AcsAHgD8/9MAbQI1BLsF2AZ4ByIIvwj1CMYILQhFBz4GIQWuA74Bc/8f/fn6fPk5+Vz6a/x+/gAAzAAYAXwBOgI6A/EDCgR1A3ECgwHtAKEAlgAHAfsBSQONBDYFGwVtBGkDHAKDAI/+TPwJ+iv43/Yz9i/21/YX+Lf5h/tS/d/+JABYAXICSAPFA+sDmwPhAvkBBAGZANYAUgGMARYB/P/S/lf+d/7B/uP+t/5H/qb9y/wG/JH7mPs2/Gj9B//dAL0CXgReBdQFFAZyBioH+wdBCLIHfgYNBY4DKgIUAaMACAHIAXgC9gJnA9cDDwTmA2EDxQJmAkkCPQICAoABxwAJAI3/sv92AKkBCgNcBHsFSwbIBv8G2AYoBicFCgQSA3ECBgJ+AbcA8f+j//b/twCXAYkCHAPuApoBEf/i+2L5E/np+sn9pP9y/xP+t/1vANYGBRA+GXkgHiWDJ7MnbSV/IGoYXg0fAX/2Ju8D64Poc+Zp5OXiA+NQ5aPp1+6S85H26/bG9JTxbO+d7ynyA/aA+ev7mf0//2MBFATVBswISgmQCLIG8wNsAGb8Q/hJ9Njwc+567djtPu8D8aXyPPTS9Zv3jPma+5L9H//y/8n/nf7g/Gf74vqQ+xv96f5OAAwBbAG+ATQCtwIPAxADkAJ+Aev/CP4K/CH6cvgp95j29PY2+CL6Vvx9/kAAoAHIAtIDxQSCBckFXwVXBBQD/gFWATEBdAEcAiEDfwQPBpsH+AgMCqIKegpvCXgHwATKAR7/Nf05/Nz71/sX/Lz81f15/7wBQQSDBvAHVgjGB3sG6ARiAwcC7AAYAKf/mP/x/6sAPQGSAc4B/wEjAgsCrAEYAW0AsP+0/mv9H/wj+876CfuQ+yb8XPxD/Aj89Psz/KH8C/07/V/9mf38/br+v//MAM4BkAIbA2MDTQPnAnECJgL+AdkBswGuAegBNgJSAjMCNQJhAqcC6wLkAp0CWwItAhUC1QE2AXcAz/+W/77/HwCvADoB2wFzAhED8wMKBRQG8AY0ByIH1gaABiwGvAViBfQEiwQfBMcDgwMhA9QCnwKNAtICRwOnA5cD8AL5AeEARgDq/47/bP+Y/y4ANAF/AuUDIAX3BZMGJwfNB68IUAn1CC0HSwTbAHP9fvpy+En3vfYg9zn4Y/p5/oIFdA83GpQjXClPKjon5iAOGEwNoQGk9sDtUOiM5tTmF+eT5eDhFN9D4GbnmfJ4/EcArvzi8+LqGOa85obrFfE29S73zff5+Hj7TP8YBI4I7AutDTwN0wrHBmoBG/t09H/uDury5z3oU+oc7Y3vf/Fk8wz2w/lL/oMCOgXKBRIEzwBW/ab6U/lo+X366fs+/af+UgCBAj4FFghgCoMLNAuRCdUGmANZAGD9yPqU+BT3p/aS98750PwEAPgCdQWMB00JqQp9C7sLSwsdCksIBwb+A5sCBgIgAnoC/gLBA8ME6QULB+EHMQjkBwIHoAUEBFECcwCA/rb8hvsj+2r78/tt/Aj93f3e/uH/lAATAXABoQF5AdcA0f/H/gz+oP2K/dn9gv5J/wQAhADVAPcA6QCaAAwAUf9o/n79m/yL+336r/lw+bL5LPqg+g37gPvK+xH8wPz//bb/UAFQAqECfQKAAqgCBQOaAwQEVQQ4BOgDnwMfA2kCswECAZoAQwAeAPL/ov+a/1L/Rv9b/7j/cQAhAeUBkAIrA9QDkwRDBfAFhAYUB3gHfQc6B74GQAa4BWEFKgULBfEElATpAwwDRQLbAcwB6QEHAvgB5QHSAcgB5QEkApoCOgPFAycEUQRdBFUEUwQ7BAQEwgOHA1sDKwP5ArgCZQK1Ap4D/ARXBiMH2AYzBaYC3/+k/fX7I/sd+yP70/rH+qr7Gf5dAiIIMQ+WFjQcuR1UG6gWlhHPDAoIFQMu/kD68fel9l/1rfOF8XXvd+0d7BfsO+2d77bxMPEf7c7mHuHq3lvhQue57qD1L/ov/Mn8TP5rAv0I9g8uFNwTMQ8GCAYBw/vS+Lj33/Zu9UPzyfAy72bvKvEG8/Pz0vOn80b0jvUL95730fZB9Tn0FvVg+HX9/wKyB4oKRQusCmAKUQskDXIOyA2YCnEFzv8b+1z45ffp+B367vqI+2v80/3U/1kCyASTBoYHzwfMB8AHngcEBwIGuAR6A+MCWQOtBEsGmwckCPUHdwcHB9UG1gasBvAFiAROAoj/pPw9+s/4Vvhm+Hf4Zfhu+Pb4NPoQ/BX+4v8tAdEB6AGVASIB8QAnAaIBFQL3AS8BLQCg/6P/3v8HAPf/tv8t/1P+Q/0w/B77GvpB+cP43fiI+XX6ZftL/PX8tf3i/o4ASwJsA8cDcgPRAhYCfAH2AJEAegDFADABpQEWAkwCewKoAvACKAMOA6MC8QE/AaEAGQDX/9n/EQBAAFoAmAA6ASgCBAOVA+QDKwR+BM8E/AQnBTsFGQWzBCsEvgOSA5wDqwPHAwMEKAQYBL4DOgO7AjsC4AGpAZ0BvwHDAaMBZgE9AUkBbAGHAc4BGgKNAucC+wLqAqsClQKSAsECBgM6A04DCQOKAvMBcAFBAVoBcQFSAckACwBX/0D+r/2t/SH+UP/TAEUDnAbTCswPIhRDF2oYFRgiFx0WsxVnFQEUDRG9DL0HogNoABn+1vp09SruYOe54+/ki+lG7s/wpu917ILpKump7PfyrPlZ/sf/RP57+7/5NfpP/Ez/oQGiAoYCmwFSAKf+cvz++WP3PPWe83jydvGg7+ns6eku6AzprOwv8rz3r/uA/YD9Ev1b/Z3+UgDAATICNQF4/9L98fwi/Sz+uv9fAe4CZwSCBb0F2wTHAjYA6f1M/Jb7dvtz+0D74fq/+mT7Jv3o/xwDLAaJCBIKyAqHCocJHAi5Br0FPwUkBUYFYwViBTgFAwXhBMgEsQRaBHIDzQFi/6H8+/nr98T2TPZt9gP3Fvi0+ar75P0qAF0ChQR0BuMH4wh/CaUJaAm/CMEHywYuBvEF3wW9BWUFtwTjA+kC+QEzAXUAsP+l/lr9/fvd+g36i/li+ab5ZPqc+xj9iP7L/+UA6wHKAmUDqgOnA1gDsALaAf0ARgDi/7r/k/9i/1T/fv/E/w4AHgD6//H/BgARAOv/hf8J/5b+Uf5M/p7+VP81ABYBuwExArACYQMhBN4ESgVpBS0FugQmBHoD/QKhAnoCXAI7Ag8CzwF/ASwB1ACUAH4AeQBlACYA3f+K/1P/Qf9B/2P/ov8TAJcAGgGbAfIBOAJyAp4CxQLpAvECwwJJAoEBhwCZ/+f+b/4w/iH+Af65/Vb93Px+/IH84fxP/ZH9kf06/bj8dfy//Nv92P/eAs0GVwttEHkVKxrXHRgg8iDnH+ocahhVEgIKXQC29tfuQeq/6SjtUfHI80zzlfD07SLtc+528fPz2PTw87LxxO8a727wUvPR9u75tvzD/yADxwaqCaEKZwlqBr4Cu//4/Tb9qvx7+1T5fPbP80ryePLu88n1A/f59p31v/N18njy2/PD9Tf3JvjN+J35HPtW/f7/UQKyA14E6wS7BcQGnge3B74G/QQpA0wCwQICBOUEsgSOA/ABrABPAOcAFAISA2wDDQNDArQByAGRAsUDxwQgBcwENATqAwQEWAR9BCIEbAO8Am4CdwKGAlMCsQHDALj/zv5A/gr+2/1h/XX8Tfts+lb6M/uk/Bn+Iv/b/50AqgHnAgMEsgT3BOEEkwRLBBwE+QPTA5cDOgPMAmMCCgKrATwBmQCo/5P+c/15/Kb70/ry+Rv5g/hS+JH4J/nr+cr6wPu6/Lz9vv6e/1IAzQAbAUYBagGIAbcBCQJtAuECXAPMAx0EMATxA4MDFQPDAncCGwKYAewAOwCb/zD/BP8X/2X/0f9dAPoArAF7AjsD8wObBCIFmwUUBmYGnAaNBlQGBAaeBVYFIAUjBUAFRgU7BfAEigQIBGIDzgIvAr8BZgHXAAgABf8a/pb9nv1V/pP/ygDTASUCxwGEAYABIwKvAj0CDgFD/zX9ifyN/C79Kv5R/kP/qwBvAscDuAOeAngA4f0a/HX8iP+NBCQJWQuhCncIVAfoCPoMfhG+E5ARKAw3BqUBvv/Y/xkAR/9y/Lv4F/ZE9V722/cH+L32M/TX8QnxhfFv8j7yU/Dr7Yjslu1U8UP2ofoy/cD9jv0c/jkACgNKBRAGzARJAgIAv/50/lL+xv2F/Nb6d/nZ+PL4Pvkr+SP4QfY59MTyWfKi8gbzJfPN8mzyovLV8+n1WfiY+mj80/0u/78AZwLHA6QEJgVlBZ4FFAa+BmMHmwc/B10GFAUMBGkD6wJTAjABmf/h/Xz8oPs2+yX7UvvI+5z80f05/40AvwHGArEDbgQwBfMFWwZqBisGjgUJBdsE1ATxBBcFAAW9BI0EVgQKBLsDLANZAnYBvQAXAIb/Cv+b/iD+uv2Y/b/9OP7P/oT/CgBdAKQA1gDvAAoBKgESAQAB+wD1AOIAswBvAC4AAADT/6r/kP9z/zP/3P5c/rv9RP35/NL8yvzR/N388fwX/Uf9qf0m/sb+hP8wAKwABgE8AXEBnwHIAegBHwKNAt8CMQOOA90DEwQPBNIDlgNzA2EDRgMIA7ICUAIOAtoB2AH0ARYCXAK8AjYDnQPjAxwEKQQUBPwD0gPBA6sDbgMkA68CQALTAWUBPAEhASwBSQFOAVYBPAEmAQ4B7gDqAM0AogB2AFEAJwABANv/of+g/8P/PwDRAIMB3wF6Ab0Aef/E/s7+Pv+cALwBNAIIA6cD/wX/CZAO9RPDFyYZwxefFLcRxw6jC08HzQFz/Gz4vfZn9vr1Y/Sm8ZXueOwc7d/vxPKJ9KrzJfDV62fpwumX7B/wivKb8wX0ZfVA+Ev85ADSBIsH9whzCa4JTwkcCPwFtwKH/4f9qvwj/fT9uv2F/Jz6VPkC+b35OPv/+4P7mvnF9u3zr/GM8CjwEPA98O3wYvKk9H33OPpv/Ff+LgBSAqMEvgZECNUInQgHCIAHdAfpB4kI+ggSCeMIjgg2CM0HGgfhBVQEaQJdAHr+u/wb+3f58PfA9of2dfcq+Qr71Pxn/uX/RgGUArwDtQSJBUAG3AZLB4AHdQc9BxEHQAdZB3cHlwduBwQHVAaJBcEE/gMaA/IBogBT/xr+P/2F/IX7uPoX+sD5wvkv+tb6cPvo+x78bPzn/IX9VP4t/9//bgDiAD4BhwG+Ad4B+AEkAjsCPgIzAg8CywFeAcUAFgCG/wL/gf4C/mr9t/wT/Ib7RvtK+137l/vx+2r83/xQ/c39Qv7C/lD//v/BAIQBKgK8AjkDtwM1BL8EUgXdBVsGpwbVBt8G3Aa1BkQGsQUbBZcEPgQLBOYDrgNTA+wCdQIqAv4B2AHZAekB7AG6AWMB9AB4AAkAyf/I/yUA4AC4AXcCAgOVA1YEIAXsBZwG/wY/B+cG+gXTBJoDuAJsAn0CrALeAssCcQLoAQIBHADI/0cAvQHGA9oFcgdCB+UFIATmAqMD3gUPCcAMHA/SD5UPkw5gDqYOAQ/HDsYM4QiOA/H9lPjP88HvguxZ6qPpKepS6xfs3uvN6nzp7ejO6Sfs/O5t8evyJfPN8gbzp/TQ9+L78P80A1wFrwZlB8wH9Qe1Bx8HZAaYBb0EvgNcAoEAiP7Q/LP7bfvU+3L8ivy5+w365/fv9Yz00vO889vz9vMI9DH0r/SQ9eP2pPi1+gL9c//RAfkDnQWsBi4HeAfPB00I4AhcCZgJZQngCDwIpgc0B/EGoQYjBlIFMQS6AhkBh/8Z/tn80/v/+nH6Lfob+lj6xfpJ+/f74fwB/j//bgBlARUCkgLzAj8DggPCA+0D8QPAA1MD1AJXAucBigEvAb0ANgCb/+3+Sv6t/R/9ofxB/OX7k/td+1D7dvvT+1X84fx7/RP+l/7//l//rP/y/zAAWQB6AHQAWQAqAOH/g/8w/9v+rf6I/nX+R/79/c/9jf1k/Tb9EP32/L78lPx4/G/8iPyq/Nz8Iv1+/fz9gv4S/6b/EwCFAP0AfgH5AXQCBQNsA7QD5gP/AyoEgATOBB0FUgWBBbcFzAXfBeUF5wXwBegFyQWYBWIFJAXcBHYE9QNyA+sCigJVAioCDwIaAjMCdQLuAngDCgRdBI4EdwQYBOwD0wPPA54DMAN7AusBqwH3AZcCDAOVA8oDpQP6AjkCWgFjAFj/Sf5B/Zr8lPwX/d/9gf4t/xMAnAHOA5AGYgmyC1INGg4jDtoNmw1YDdsMzAsiCgkI0wXjA0YC3QB8/wT+j/wl+6j5QvjR9kX1rfPs8VDwF+9n7j3uZ+6Y7s7uGu+478zwafJv9JT2g/j4+fz6qfs2/L/8T/23/dj9y/2d/YX9if2P/Yn9cP1P/Vf9cP2g/dH93f2u/VP99vzA/ND8JP2N/eb9I/4z/jP+T/6L/uj+Uf+Z/6n/iv9D/+T+qP6D/mX+UP5O/mL+nf74/lX/vv8yALcAOgHQAV4C4wJcA6cDxAOoA3gDVgNdA34DjQOAA0sD/gK6AoUCWwIrAuYBdgHqADgAc/+4/iz+0/2x/bP9u/3g/Tz+v/4l/3H/lv+6/9//BwAVABYA+//F/4f/SP8w/xL/Dv8b/1H/dP+H/6X/v//i/8v/lf9G//v+sP5z/i3+6f2o/ZX9vP36/Wf+zP5V/9H/IAA/ADgANAA2ACQA/f+5/4X/bv9l/1j/Ov8G/8T+sv7N/vz+CP8Y/y//UP9a/2n/iv/m/1wAyQARAUABngELApECIgPKA2IEyQQnBW0FjAV7BWcFKAXiBIoENwTgA5EDYAMzA/sCyQK+AtkCGQNNA3MDdANsA10DXANaA2MDegOBA4kDkQOtA90DHARUBIMElgSkBKMEnwSSBGQEHwStAxoDdALKASwBqAAfAH///f6T/kv+Qf5l/v/+p/92AHEBSwIaA3UDuwPAA4EDewO3AyAEsgQkBUkFFwXcBPcEKAWRBRQGjQazBpAGbAYOBncF6QRMBIwDtwK9AbwAl/+H/pH9tPz1+3j7K/v8+sb6ZPrh+VP57Pig+HX4Vvgt+A340veE9yz31/ai9rD29PZe97b38/cH+P736Pew92P3Ffff9rr2nvZi9h324/Xv9Tz2vPZj9wv40/im+Xj6Yvsn/PD8uv1s/hz/ov8bAH8AxAAYAUQBVQF7AZIBzwEoAnACmwKxAuACGgNfA4UDZAMtAxED5wLKAr0ClgJtAjECCQLoAdcB9wFCArMCJwODA8cD/wM3BIcEtATEBLkEnASLBFwE/AN8A+MCMAKSAQYBhwAnAPj/3f+r/5H/Wf8V/+z+7P74/vX+4/6//rn+sv68/tT+5f7r/vf+7v7Z/qv+jP5m/kf+VP4p/g/+3v2U/Uz92fxi/P370PvO+9z78fsN/Dn8fvzG/AL9TP2I/cP97v0h/kf+Y/5+/pL+pv6//uv+K/95/7b/BwBOAJcA3gAWAXEBugESAk4CeQKjAqUCrwKdApICdQJnAmsCdwKhAt4CGQNRA4EDsgPoAxMEUgSJBKkErwSRBHEEXARNBGQEfASRBKAEswTCBO4EJAVZBbMF6AULBukFoQVWBfYEgATnA1ADzwJsAgwCsgFTAf0ArQB/AHEAjwCsALMAvwDEAKsAdABSAE8AfACgAKUAjwBpAEYAMQAyAD8AOwA4AFMAbQCDAIgAhwCSAK0A5AArAX8B3gE7An4CrgLXAv8CJANLA2MDXQMkA6YCFwKXASYBvwBUANb/X//t/n/+NP70/cb9l/1h/Rz9vfxm/AP8lvsc+4P63fkV+U/4o/cG94r2Jvbh9cv10vX49R32PvZS9l72f/ar9vz2Wve29wH4Kvgo+CD4Lvhm+Mr4O/mu+SX6ePrD+ir7oPs8/OD8e/0J/m3+uP7s/hP/NP9X/4n/1/8tAIgA5QAlAV4BkgHpAXMCIwPqA6AENwV5BYkFhQVlBUsFNAUeBf0E0gScBGwEUgRVBHcEpgTeBCEFWAV5BXcFQwUJBbQEZQQjBNYDdgP7AnUC8wF2AR8B6ADbAN0AygCjAFAA3/9v/w3/0/6x/on+V/4V/s/9gv1F/Sb9K/1S/Yn9vP3u/Q3+E/4K/ub9p/1f/Rr91PyF/Cz8yPtw+zH7I/tR+7z7Vfz3/Iz9C/56/un+a//v/2QAwQDtAPUA4QCyAGYAHgDg/7f/qv+y/8r/7v8dAFkAogDyAFgB2AF0AgYDeQPJA/MDCQQVBCYEQQRrBIsErQTJBOgEEAVPBaQFCQZ7BusGSweeB8wH1Qe3B3IHGQejBigGmAXuBDsEjQPtAnoCKgLuAcQBpAGLAYEBeQF6AXIBVgE4ARQB6AC7AIcAQwDt/5P/Qf///tn+y/7b/vf+I/9e/6b/7/8VABMA6f+d/0T/9v7O/r7+1f4E/0z/p/8QAIgAIAHHAXYCFQOOA+YDCAQLBP8D6APDA4kDMAO8AicCggHtAIAAXQBrAJEAsAC0AJgAXgAnAPr/v/+Q/1b/8f5l/qL9tfyr+6b6zvki+bX4a/hC+Bz47fen91X3D/fp9vf2GPc69z73FffH9mj2B/a39Yj1ffWc9d71OPaU9vT2Xvet9yb4t/hW+ej5cfrq+k77qfv1+1L8yvxY/ez9f/4G/4//IACpACoBrQEwAr8CTAPKAzIEgwS1BLwEqASGBFoELwQZBAQE+gP2A/gDAAQVBDMEXQSSBM4ECgUgBSMFGgUHBfQExASIBEQEFATiA7kDiANTAxQDwQKUAm0CQQL1AZ4BUwECAZ0AHQC9/3T/Yv9l/2b/av9u/4b/qP/U/xUAUgByAIIAiACAADsA2f9k//D+gv4O/qT9Pf3k/JH8XfwZ/Mf7l/t8+4X7mvux+7j7ufvH++H7E/xg/LH8Ff2M/f/9c/7Z/jv/kv/N/xAATQCOAMQA7wAhAUABQAFCAVQBbwGdAdMBCwIzAkECUAJbAloCVgJZAmoCggKzAgIDVwO8AycEnwQZBaEFKAamBv8GPQdcB0kHHwffBp4GRgbKBUkFyARMBNcDfwM9A/ACrAJwAj8CEwLrAc0BrwGHAUgBCgHgALIAjwBwAEgAJgADAPn/+v/1/+n/yv+b/2r/WP83/wr/5P6m/nX+Q/4d/hP+N/54/sr+Lf+L//P/cwDxAH8B9wFRAq4C+QJCA4oDuwPiA+8D/AMVBDQEagSpBPUEMgVkBWcFNgXmBIYEEwSDA+4CNgKHAcQA5v8E/yb+Yv22/Df87fu5+4P7Lfu6+kv6y/lH+cr4Vvj696T3V/cC96X2YvYj9vX16fX39SH2MvY29jz2R/ZH9i/2GPYX9ir2MPY59kn2Z/ao9v/2ePcZ+Lf4U/nr+ZX6O/vA+0T8v/xC/c/9UP7W/lP/xv9CALgAFQF3AdUBNQKVAtQCCAMaAy0DNgNAA2QDfQOgA9ADGQRtBMEEGgV1BdAFHAZdBpAG0gbxBvQG3gavBn4GMgblBZsFTAX+BKMEUQQIBL0DeAMzA+4CrQJuAiMC/wHHAZcBeAFAARIB3wC+AKwAogCiAKMAkwCCAG8AOwAEAML/jf9P/xn/8/6w/m3+Mv78/bj9av0X/db8pvyJ/Gj8T/wv/Cn8O/xZ/If8u/wB/VL9tP0J/mD+t/4K/1v/nv/Z/wUAPABsAKQA3gAcAVcBkgHKARQCaQKoAuACAgMkAy4DKgMfAxUDGgM2A2UDlwPPAwEENgR8BL4EAwVQBYsFxAXmBfAF6gXGBaUFcgVABQYFwQR5BCIEzgN/AzMD7QKZAlECCwK7AXcBNAHkAJwAZgA0ABMA9v/i/+D/5f/l//L/HwBTAIoAygD/ABYBGwEQAQMB9ADaAKgAbAAYALr/Wv/w/p3+UP4O/tL9ov2E/Xr9hf2k/db9F/5d/qv+Fv+L//r/cQDbAEMBrAEPAm8CzwIPAzwDSQM+Ax4D6wLEAo4CbgI+AvoBtQFUAe4AiwAjALf/UP/u/pX+K/7H/WL99fyU/C386fuo+2z7Nfv7+rr6ZPoI+rf5aPkZ+dD4ifhM+Ar4yveQ9173NPcb9wD3AvcA9wL3CPcV9zT3Rvdk95b32/cf+G74x/gk+Yv5BPqL+iL7w/tc/Oz8jf0W/nT+1v4t/2//qP/B/+b/9P/9/xwAWACeAMYAAgFDAZIB0AETAmMCpgL8Ak4DswMSBFsEsgQFBVQFmAXPBRIGRAZtBo0GnAaNBnQGZwZaBikG6QWiBUkF6wSMBDIE0gNsAxEDpwI8AtcBfAElAeIAvwCjAIMAXQBNAEYAQAAwAB4AFAD3/+D/x/+f/2r/Kv/u/rj+jP5p/if+5v3C/ZL9bf08/Rf99/zf/NH8w/y8/LP8qfyo/Kn8qvy1/Mv85vwN/Tf9bf2c/dL9D/5K/pP+5P44/5j/8v9OAKIA6wA3AXsBwAECAjsCeAKuAuQCHQNSA3gDnwPLA/MDGARGBHkEnASyBMsE1QTYBNwE3gThBNkE1ATHBLIEpQSZBIUEcQReBEYEJgQGBOYDvwOXA2cDMwMIA94CsQJ8AlICKgICAuQBzgG4AZ4BgwFdAS8B/ADBAIEAOgDq/5f/O//d/nz+H/7L/YX9W/0+/Sr9IP0a/R39Jv05/Vf9fP2t/eP9Ev5L/n7+tP7s/jX/if/g/zsAmQDxAEkBmQHyAU8CqQIGA1gDoQPTA/YDCQQQBAYE6APBA40DUwMCA6kCSwLdAWoB9ACEABoAtv9U/+T+ef4B/n39B/2O/CP8svs++8r6Ufrd+WX5Afmn+F34EfjL95X3avc+9y73IPcS9wv3Evcj9zT3R/dj94P3pvfS9wj4Uvik+Pb4Svml+Qf6dPrt+mz76/t0/Pb8dP3p/Vv+xP4n/3v/z/8fAGwAtADxAC0BaAGhAeQBKgJzAsECEQNiA7YDBgRRBJkE2AQPBT8FaQWRBa8FxwXKBbwFrgWWBYUFdwViBT0FBwXKBIcEUQQWBNgDmANWAwkDwwKKAl0CLgIEAuABwQGnAY8BhQFyAVABJwH2AMUAkABYABwA2/+T/0L/9P6n/l3+G/7d/Zn9Xf0m/fb8x/yb/HX8SPwk/Av89fvj+9b71fva++37A/wi/Eb8dPyk/OH8JP1v/cH9Ev5m/rP+AP9K/5j/6/84AIAAvwD3ACYBTQFoAYcBpAHBAeIBBQIqAk4CcALGAhwDZAOxA/kDQQR/BLgE3QT0BAoFIAUmBSgFKAUVBQEF7ATLBK0EkAR0BF8EPAQVBPADxQOfA3EDOAMAA8sCjAJRAhkC7QHLAbgBqQGjAaMBmwGQAYIBgwF3AWABPAEUAeIAngBVAA4A0v+c/27/Pv8L/9n+ov55/lr+Rv4z/iv+NP5B/k7+Wv50/pv+1v4b/2D/ov/h/yIAYgClAOIAJgFcAYcBuQHkAfQB8gHtAewB7wHlAdgBwQGtAaABlwGBAWcBTgEvASABCQHqALgAgwBOABcA1v+H/zP/z/52/g3+of0q/an8Jvyr+zj7yvpg+vv5rPlk+ST51fiR+Ff4Ofgd+Aj4Afj39+j37vcH+Bf4MPhf+KP47fg7+Yz55Pk8+qH6DfuH+/n7XPy8/Av9WP2c/cz9/v0g/kD+Yv5//pH+r/7a/g7/TP+L/9P/HQBwAMgAHQFxAcoBKQKAAs4CDQNJA3ADlAO3A8sD2gPUA8oDwQO6A7ADmAONA4cDjAOIA3sDYgNDAyUDDgP4AuAC1ALPAtEC0wLTAtQC1wLlAvQC+ALkAskCpAJ7AksCEQLQAYUBRAH/ALkAegA6AAEAyP+P/1X/E//Q/or+RP7//b/9g/1L/RT95vzB/Kr8p/y0/Mr88fwe/VD9ff2v/eL9GP5S/o3+zv4J/zb/Wf9w/4L/kf+a/5X/mP+o/77/wv/H/9X/8v8PACgARwBvAJ0AzwARAVMBoAHuAUACkALoAkQDigPHAwYEQwRyBIoEoASxBL8EzQTSBNUE1gTTBMYEpgR/BFUEJgTyA8ADiANCAwgD3QK6Ap0CiQKEAnwCegJ7An0CfAJ2Am0CWQI9AiEC+AG/AYcBTAELAc0AiABGAA4A2P+p/33/Xf9I/zP/Iv8f/x3/G/8h/x//I/8f/yX/Lf8u/y3/Kv8o/yP/IP8d/yj/MP9B/1n/a/+C/5T/q//P/wAALQBLAGoAigChALUAywDaAOUA8AD8AAAB+ADnANkAxgCoAIIAUwAjAPH/wP+D/zv/8f6a/kD+6f2O/Tn95vyU/Ev8B/zR+5b7XPsp+/n61vq2+pX6gPpr+l/6WPpR+lb6ZfqE+rH64/oW+1H7jfvN+wr8Q/x6/Kr80/z0/Ar9G/0n/TD9Mf0x/TX9Ov1B/Ub9Vf1l/Xr9lP21/eL9B/41/mL+j/69/uj+G/9O/4r/xf/+/zoAeQC4APgAOwGDAdABGwJqArEC+QI7A3cDsgPlAxAENgRQBGEEXwRRBEEEJQQHBOcDwQOfA3gDTwMgA/gC0wKsAowCdwJiAlgCUgJGAjoCLgIhAhEC+wHcAbwBlwFtAT0BDQHbAKUAdQBAAAkA1v+e/2j/N/8G/97+vf6g/ov+dv5p/l/+Wf5W/k7+Sf5L/kr+TP5J/kb+Qf47/jz+Qf5N/mD+eP6W/rX+1P70/hb/OP9g/4b/sv/W//3/IABDAG4AlwDEAPUALQFjAZoB0AEIAj8CbwKZAr8C7QIOAycDQANMA0kDSANCAzMDJAMUAw4DCQMIAxADHQMqAzQDQwNWA2UDcAN6A4ADhgOCA3QDZQNJAyoDBgPfAr0ClQJqAj4CDQLeAasBdQFRASoBCgHnAMQAngB1AEoAJAAEAOX/x/+q/4r/Zv9F/yD/A//u/uD+3/7h/uf+8f77/gf/E/8g/yv/Ov9G/1H/Wv9W/03/P/8z/yj/If8b/yj/MP8z/zf/Ov83/zP/M/9D/1v/af98/5v/uP/V//L/CQAjADgASQBjAHMAiACPAI0AigB/AHIAZgBjAGIAZQBeAEsAMwARAOv/zP+t/5j/jv97/2v/V/8//yH//P7h/sj+qf6Q/nT+UP4i/vH9xv2e/XX9Uv0s/QL93Py3/JX8dfxf/Ez8M/we/Ab87fvR+7r7ofuG+2j7U/s4+yL7GPsJ+wP7/voF+xT7K/tJ+3P7pvvc+xz8Xfyp/Ob8Kv1o/av9/f1J/qD+7P5C/5L/5v89AJYA8ABFAZEB1wEVAk4CggKxAtsCAwMgAzMDOwM7AzEDKgMnAxsDEwMJA/MC2QLEArMCoQKWAo4ChAJxAlsCRgIwAhIC8gHSAa4BiwFiATYBCgHfALEAiwB1AGQAXABKADQAFgD1/9X/u/+j/4r/af89/wz/2P6n/nT+Rv4a/uz9uv2M/Wf9SP0t/Rz9E/0R/Rj9K/1F/Wb9iP2z/eH9EP5H/n3+t/7y/ib/Xf+U/8v///8zAGMAkgC/AOoADQEyAWEBjwHBAe8BHAJAAl4CdwKQAqwCzALrAgsDKgNJA2gDigO0A9UD/QMcBDcERgRNBFQEVgRXBFAESwQ9BC0EHgQJBPkD3gPEA6wDiQNiAzED/ALEAooCTwIYAtwBoAFrATcBCwHnAMoAsQCbAIUAdgBoAF4AUwBHADoAKAAWAAAA5f/B/5j/av8+/xP/8P7Y/sD+rP6W/oD+bv5f/lf+VP5R/lH+Uv5W/mL+bP58/pP+rf7I/uH+AP8e/0X/a/+b/83//f8nAE4AdQCbAMYA9wArAVsBiAGsAccB1gHcAd8B3gHgAd4B2gHTAcEBqQFqATQBBQHJAI8AUgAJAMT/ev8q/93+jP45/u79o/1b/R395vy0/IX8W/wt/Ab84vu4+5P7c/tR+y/7Cfvo+sj6rvqX+oP6c/pr+mv6b/py+nX6hfqe+rX60Prs+gH7F/sx+0z7bvuP+7j75/sj/F/8qfz1/Ev9rf0K/nP+1v4z/4b/3f8nAHMAsgDuACkBXgGNAbYB3gEGAi0CXwKNArcC3gL+AhIDIwMtAy4DKQMdAwkD8gLXAr8CqQKUAnwCawJcAlECSQJFAkcCTgJVAlwCXwJkAmQCYQJZAk4COAIiAgoC6gHHAZkBZQEtAfMAswBsACcA6f+o/2n/Lv/9/tT+tP6c/o3+hP57/m/+ZP5a/lH+R/5C/jv+N/44/jv+Rf5S/mf+h/6s/tX+/v4u/17/kP+//+v/EgA7AF8AfwCTAKkAvADLANoA7gAFARwBNwFSAXcBngHKAfYBJAJQAnkCmwK7AtsC+AIXAzADQwNPA1MDWQNdA2UDaQNtA28DdANxA2gDWQNDAysDFAP7AuICxQKgAnoCUAInAgAC2wG3AZMBaAE/ARQB6QC/AJUAbgBMACcACwDx/9n/yP+7/7n/uv+6/77/wv/E/8P/v/+8/7z/tf+u/6L/kv99/2X/Tf9F/0L/RP9H/0z/Vf9b/2P/ev+V/7H/zv/z/xcAOABSAG0AiACeALkA2QD3ABgBOAFVAXMBjgGqAb4B0gHfAeUB5gHeAdABtgGVAW8BOwEAAbwAdgAyAOj/n/9P//X+nv5H/vf9rv1k/R792fyW/Fb8Gfzi+637evtR+yT7Avvh+sD6o/qJ+nX6a/pm+mP6afp4+or6ovrD+uj6D/sx+1n7efuZ+7n71vv0+xD8LfxF/Gn8hfyn/Mz89/wp/WH9nv3d/ST+av63/v3+Rv+P/9X/GQBaAJoA1AALAT4BagGSAbwB4gEHAjACUgJyAocCmQKmArECtAKwAqsCrgKqAqYCowKbApYCmQKhAqoCsAK0Ar0CyALOAtACzALGArYCpgKUAoACZwJMAi8CEQLwAdMBvQGkAZEBfAFsAVgBQgEkAfwA1gCsAHoARAAKAM3/jf9K/wn/z/6f/nj+Uv4w/hT+/P3l/dP9wf21/an9n/2W/Yb9ev1x/Wz9bf1z/Yb9n/2//eP9Df47/nD+pv7f/hb/TP+A/7D/2f8DACkAUgB4AJ4AwQDmAA0BNAFcAYIBqwHQAfUBGQI+Al4CeAKQAqMCtQLGAtQC4ALpAu4C6wLlAt0CzwLAArACnQKQAoACbwJeAksCOgIrAh0CFQISAhYCHwIdAhoCFgIJAvcB4AHCAaIBfQFYATIBBgHaALUAlgB7AGQAVABEADYAJgAXAAgA+//y/+z/5v/n/+f/7f/z/wwAKwBQAH0AqQDZAAYBMgFfAYwBtwHkAQgCLQJOAm8ClAK3At0CAgMoA0wDcAOLA5oDowOhA5oDhgNyA08DJAP2ArkCgAI8AvcBsAFiARMBwgBsABMAqP81/7z+L/6r/Rb9hfz1+2b71/pG+sP5R/nZ+Hf4JfjZ96b3bfdR9y/3IvcU9w/3FPcm9zv3Uvd496/37vcw+ID40vgu+Yb56PlK+q36Dvtt+8f7IPx4/Mn8GP1j/aj97P0m/l3+jP6+/uv+Gf9K/3r/q//X/wcANABeAIwAuwDoABIBPAFkAYcBqgHLAekBCAInAkgCYgJ9ArcC5gIEAy8DUgNyA5ADrAO9A9UD7wMIBBgEJAQwBDEEKgQkBBcEBgTuA9cDvQOVA2gDNwP+AsQCiQJXAh4C7QG8AYgBWgErAQIB2gCwAIwAZQBCACYAAwDg/7r/j/9p/0D/D//k/rb+iv5e/jH+Cv7l/cP9pf2F/Wr9Uf09/TD9Kf0l/Sz9Mf02/UH9T/1d/W/9fv2P/aD9tv3Q/e79E/49/m7+nv7N/gH/OP9y/6b/3/8RAD4AZgCNAKkAyADjAP0AHgFBAWgBkAG8AecBEgI5Al8CfQKVAqsCvALIAtQC3wLnAu4C8QLwAu0C5gLbAtICxwK5AqoCmAKIAnYCZQJQAjoCJAIQAvwB6AHNAbABkAFqAUQBHAH0AMgAowCAAF8ASAA5AC0AJgAlACkAMwBEAFgAcwCVAL0A6AASATwBdAGrAeABFgJHAnQCoALOAvkCJwNXA4UDtAPjAxYEQgRqBI0EqgTCBM0E1wTdBNEEwASkBH4EWAQsBAkE3gPBA6IDdQNLAxEDzAJ+AiICyAFiAfgAlgAoALT/NP+i/hv+e/3n/Ez8qvsM+2z6yPk4+aP4Fvis9zr36/aY9l72KvYE9uD1yPWy9aj1l/WQ9Zb1oPWx9dL1A/Y49nX2s/b09jf3g/fH9xT4XPik+Pb4Tfmx+SH6m/oP+5D7F/ya/Bv9l/0Q/nn+4f46/4//5P8wAHkAwgAHAU0BkAHSARICTAKOAs0CAgM9A3IDpgPVA/kDJARIBGcEhgShBLoExQTLBM4EzQTGBL4EsgSpBJkEhwR6BG8EXAREBCUEBwTgA7YDjwNjAzAD/ALCAocCSgIQAtgBoQFwAUIBHAH5ANgAuQB5AEUAHADt/8X/lf9m/zX/B//T/qv+hP5f/jj+Ev7v/dH9vP2u/aP9nv2W/Zb9mf2Z/Zv9pP2v/bn9wv3R/eL99f0I/iD+Pf5g/oT+q/7S/gP/NP9m/5P/x//1/yMAUACEALoA7gAjAVgBjgHEAfgBJwJTAoACrwLaAv8CHwM2A0YDUQNWA1wDXQNfA1kDVQNOA0IDMwMfAwoD9wLgAsECnwJ6AkwCIQL3AcUBlgFpAToBEgHxANUAwgCxAKIAlwCNAIQAfgB9AHwAfgCDAIkAjwCUAJgAmwCjAK0AvADRAO8ABQEaAS8BPgFLAVoBaQGHAaoBzQH1ARcCOwJgAooCuwL1AjUDfQPEAwwETQSABKwE0gT0BBcFMwVLBV8FZwViBVQFOQUTBd0EqQRkBBgEywNsAwYDjwIKAoYB9QBgAMv/N/+s/hf+fP3n/Dz8nvv5+mL60fk8+bj4Ovi790T31vZn9gn2q/Vl9Rb14fSu9Ij0YPRJ9ED0N/Q69En0b/Sg9Nb0FfVc9aX1+/VY9sT2Mfeh9xP4ifgF+YD5APp1+vX6efv9+4P8Bv2I/QL+dv7f/kT/o/8AAFcArAAFAV0BrgH6AUACggLBAgEDPwN9A70D+QMwBGEEjASpBL4EzwToBPkEBQUaBSgFLQUtBSwFIAUWBQQF8gTeBMkErgSKBGEENAQBBMsDlQNjAzEDAgPRAqMCbgI5AgcC1wGnAXkBUAEpAQMB3AC3AJUAcQBMABwA8v/O/6f/hP9g/0H/IP/8/tz+v/6m/o7+d/5l/lX+R/48/jX+Lv4q/if+KP4n/ib+Kf4r/jH+P/5R/mX+f/6d/rv+3P4B/yz/Vf+C/6v/2f8FAC4AWACGALIA4QASAUQBdwGtAecBGgJOAoYCvwL0AicDYQOcA9EDAgQrBEkEYgR0BH8EhgSGBIAEbQRbBEcEKAQMBPMD0QO0A44DZAM3AwkD2AKpAnsCUgIpAv0B0AGeAW4BPgEWAfAAzgCwAJYAdgBUADMADgDq/8b/p/+K/3H/X/9M/zz/L/8l/yX/L/8+/1f/cf+V/73/5/8JAD4AdgCsAOYAJQFoAacB7gE1AoECzQIaA2UDrgPwAysEYQSQBLcE2ATyBAAFAAX1BNgEtwSIBEwEBgS3A1wD9QJ+Av4BfwHwAF0AxP8k/4P+3f1C/Zz8/ftg+8T6M/qf+RD5hvgN+Jz3Pffi9pb2VvYk9vj14/XI9bn1r/Ws9bH1uvXM9eP1B/Ys9lX2fvar9uP2GvdV95735Pcz+IP41vgt+Y758vlQ+rr6KPuZ+wv8hfz//Hj98v1h/s/+O/+i/wQAZQDAABsBdAHNASUCegLKAh0DcAPCAxQEYwSoBOEEGgVGBW8FlQW3BdMF5gXwBfMF8AXmBdoFygW3BZ8FiAVlBT8FEgXnBLMEgwRUBB8E5wOxA3YDOwP+AsICgAJEAgoC0gGcAV4BJAHmAKQAZgAkAOf/rP9y/0H/D//h/rX+gv5U/iv+//3b/bX9l/14/Vz9Q/0x/SD9Fv0N/Qf9Cf0V/SP9Nv1I/Vr9af1+/Y/9n/21/cb91/3n/fr9DP4i/jb+UP5t/o3+sf7Z/gn/N/9v/6n/4/8XAFEAjADIAAcBSgGOAdIBHAJgAqQC5wItA2oDpAPhAxwEUwR/BKUExQTfBPIEAAUJBQcFAQX0BN4EwwSkBH8EVwQsBPsDxAONA1wDJQPoAq0CdQJAAg0C2wGmAXQBSgEiAfwA2gC7AKQAiAB1AGsAXQBWAEsATQBKAEcASABJAFIAXQBqAHgAjQCiALwA3QD+ACABRgFrAYwBugHoARQCOgJeAn4ClgKqAroCxwLTAt8C3wLiAtwC0AK+AqcCjgJ0AlICLgIGAtoBoAFdAR4B1gCHADoA6P+U/zz/1P5u/v/9h/0X/Z38Lvyy+zX7wfpG+tX5ZPn5+Jf4Nvjc95j3Uvcg9+v2xfai9ov2efZz9nL2gfaW9rT23PYS91X3kvfb9yv4ffjM+CT5fPnX+TP6j/rw+lH7tfsb/IX89fxd/cj9K/6O/u/+Tf+n/wUAXwC5ABIBbAHEARcCZwK8AgoDVgOjA+cDKgRgBIwEswTYBPwEGwU7BVMFZwV4BYMFiwWSBZQFkQWJBX0FbwVWBTMFEAXoBLwEjgRjBCwE8gO6A4EDPwP/ArwCewJAAgcCzwGVAVsBIgHmAKwAbQAvAPb/tv93/z7/BP/T/qP+b/5E/hv+8v3M/aj9iv1m/Ub9K/0K/fD81vzB/LH8o/yZ/JT8lPyU/JT8lPyW/KH8p/y0/MD81fzo/AL9Gf0y/U79bf2T/bj95f0X/kz+gf68/vn+N/94/7v/AABCAJMA4gAoAW8BuwELAlYCowLmAicDZAOeA9oDDwRHBHMElQSwBMwE5QTxBP4EAwUHBQcF/wT0BOQEyASsBIoEZAQ5BAwE4wO1A4MDUwMeA+oCrgJyAjYC9wG7AX0BPAH7ALwAfwBJABAA4P+7/5b/d/9c/0T/Lf8W/wb/+v70/vn+CP8Z/y//Rf9g/37/n//F/+//GwBIAHQAowDNAPIAEwFsAbYB9QEyAm0CpALSAvkCEgMuA0QDVQNcA2MDYgNVAzoDGwPxAsICjAJNAggCvwFjAQYBqgBBANv/a//z/nz+7/1m/dv8UfzG+zj7qfod+on5BfmL+BD4rfdG9/f2p/Zt9jj2Ffb69en13vXm9fr1I/ZV9pb24vY094n33/c6+Jr4Bflu+dr5SPq3+ij7k/sD/Hj87Pxk/dX9Uv7H/kL/t/8pAI8A7gBMAaYBAwJVAp4C6gIwA3sDxwMNBFMElQTQBAQFPAVwBZgFugXWBekF8wX5BfsF9QXtBeAFzQW7BaQFiQVqBUkFHwXyBMAEjARUBBQE1QOVA1EDDQPHAo0CVAIhAvABuQGIAVcBJQHyAMIAjwBdACsA9//D/5H/ZP83/wr/4/6z/oH+Uf4b/uX9q/1r/TX9/fzN/J78cvxL/B78/vvn+9D7wvu1+7D7r/u0+7j7wPvM++L7+/sd/ED8bPyV/Mb8+fwr/V39k/3G/ff9Mf5q/qj+6P40/4b/1/8nAH0AzAAWAWIBrgH1AT0CigLXAh0DYgOnA+cDJgRgBIgErATFBN4E5wTnBOgE6wTkBNgEzwTFBLUEnQR9BFoELgT7A8gDlgNgAyoD7AK3AoMCVAIlAvYBygGeAXIBSAEdAe4AvgCMAF8ALwAHAOT/xP+p/5b/if+F/4H/g/+D/4n/jf+P/5X/nv+t/8b/4P8JADgAbgCpAOcAKAFmAaUB6AEoAmYCoALXAg8DQANqA5sDwgPlA/8DEAQcBBgECwTzA9QDqwN3AzkD8QKhAkYC3QFuAQABiwAUAJD/B/95/tv9Sf2u/Bb8fPvj+kr6tfkf+Yz4BPiG9yD3uvZq9iD2yPWI9Ur1E/X19Nb0wPTA9Mn04fQE9TD1Z/Ws9f71Vfa69ij3nvca+KP4Ifmu+Tb6zvpt+wT8pfxC/dv9cP7+/oz/FwCXAB0BlgEMAooC9AJXA7kDEARkBLgEBgVVBZsF2AUPBkAGaQaVBr4G3gb2BggHFwcdByIHGgcRBwQH8QbSBqwGhgZaBiYG8wW9BYQFQQX8BLoEewQ6BPoDtwNuAyQD3gKUAk4CBgK8AXABJwHaAJMATAADAL3/dv8v/+v+p/5k/if+5P2n/W39Nv0E/c78nfxz/Ez8J/wI/PH74/vT+8X7w/vC+8j70vvf+/T7DPwm/ED8Vvxz/Ir8q/zL/O/8FP06/Wb9j/28/ev9GP5G/nn+sP7m/h7/Vv+X/8//DABQAI0AzAAKAUcBggG4AfMBLQJfApECvALpAhEDNgNaA3cDjgOlA7kDygPUA94D4gPiA+AD2gPNA8ADrwOVA3UDTwMjA/QCwQKQAlYCIwLuAbgBhQFNARcB4QCtAHwATAAhAP//4f/P/8H/t/+u/7X/wv/U/+r/CgAwAFoAigC/AP0AOQF7Ab8BBAJKApUC4wIzA4QDzwMeBGQEqgTnBBcFQAVcBXIFeAV7BWwFUQUzBQUFzwSNBD4E6gOOAycDvwJWAuYBbgHwAGwA5P9Y/83+R/7L/VD90vxd/Nr7bfv++pb6MvrI+XD5Dfm6+G74H/jV94/3T/cb9+P2t/aO9mz2SfY19if2JPYk9i/2RvZV9nP2lPa99vD2Jfdd95/37vdD+KD4Aflk+cv5Ofqq+iL7ofsn/KT8Lf2y/Tv+w/5G/9H/UwDXAFYBzgFNAr0CKAOUA/QDWQSzBAsFXwWnBeIFHAZIBmwGkgaqBsQG1gbVBtgG0gbNBr4GrQaYBnsGWgYvBgIG1gWjBXEFQAUCBb8EegQzBOQDkQNFA+8CowJTAgECsgFdAQkBuABhABEAvP9m/yL/0/6J/kD+9P2s/V/9GP3Z/KH8a/wz/AP82Pu1+5f7gPtu+2L7XPta+137ZPtu+4L7mPu0+9L7+Psh/FL8fvyx/Ob8Hv1W/Y/9zv0L/k/+jv7O/gr/Sv+J/8f/AQA6AHQApgDYAAYBNQFeAYoBtwHZAQMCJwJMAm0CjAKoAsUC5QIBAx4DNgNMA18DbgN6A4gDlgOeA6cDrAOrA60DrgOrA6kDqAOkA6ADmAOHA3UDYwNTA0EDMwMgAwYD7QLOAqsChwJeAjUCDALmAb0BkwFnAToBDAHiALcAlQBzAFEANwAZAP//5P/J/7D/o/+Y/4v/gP94/3X/cv9x/3f/gv+P/6D/t//O/+j///8YADUAUQBvAIwAqgDLAOgAAwEbAS0BQgFQAWUBdAGDAZIBmgGjAaEBmgGSAYgBeQFlAUwBLgEIAd0ArgB7AEwAFQDc/6j/cf8u//H+rP5z/jP+8/28/X39P/3//Mf8jPxP/Br86Pu4+4z7Wvs3+xH79vra+sX6rfqo+pf6kfqL+pf6p/q5+s/65foG+yT7UvuE+7376Psi/Fr8l/zd/CH9Z/2m/en9Kf5p/q7+9P42/3D/tv/0/zQAcACpAOEAEQFAAWwBlgHDAewBGQI+Al4CeAKOAqACrAK1AsACwQLAArsCswKpApUCggJxAlwCQQIoAhEC8wHVAbUBmAFzAVIBNQEUAfkA2AC3AJ0AfgBjAEYAKwATAP3/6f/X/8X/tv+Z/4P/cv9Z/0P/KP8O//n+5P7K/rf+qP6a/pL+jf6I/oj+jP6a/qX+t/7K/t/+9/4J/yT/Of9K/13/a/+B/5H/qf/D/9j/8/8SADEAUwBvAJ0AywD1ACABUgGEAbEB4AELAjoCbwKpAuECFgNQA4gDxAP8AzcEagSgBNIEAAUjBUYFZQV7BZoFswXaBfsFHAZEBmwGkgazBs8G7QYQBysHWQd7B4kHjgeJB30HYwdDByAH6wayBnAGKAbZBXgFFQWbBBYEmAMMA3oC7AFVAbsAFABk/7r+Bf4//Yb8t/v2+jX6cPm1+O73OveQ9vj1ZPXj9Gj0BPSq82TzHPPu8sryuvK68sfy6PIP80Pzd/O58/zzTvSu9BP1gvXx9WT22vZV99b3YPjq+HT5+Pl7+vn6evv9+338/fx8/fD9Xf7G/jD/nv8GAGsA0AAwAZQB9gFXArICBgNXA6QD8AM3BHUEqATSBPQEFAUuBUEFTgVTBUkFOgUmBRQF/gTlBMIEpgSABF8EQAQcBPQDzQOoA4IDUQMeA+YCrgJ3Aj8CCQLUAaIBawEwAfcAvQCEAEkAEgDj/7P/if9g/zT/Cv/i/r/+nf57/l7+Pv4l/g7+9/3k/dT9v/2z/az9rP2s/a39tf2+/c394/36/RH+K/5K/mr+jP6t/sz+6v4L/yn/R/9g/37/mv+1/87/5/8AACEAQABlAIoArADSAPsAKQFSAXsBoQHOAfkBJAJLAm8CjwKrAsgC4ALxAgEDDgMYAx4DIgMdAxoDFwMRAwcD/ALuAt4CzgK7AqUCiwJtAk4CLQIKAuYBxAGfAXcBUAEoAf0A1gCtAIUAYgBBACEAAADi/8P/qP+U/3//b/9Y/0P/Nf8k/x//Gv8W/xn/HP8d/xv/FP8Y/xr/Hv8l/yv/NP81/0D/U/9a/2D/YP9m/3b/iv+U/5f/k/+V/6f/sv+u/53/k/+g/7L/wv+5/57/lf+h/6v/t/+m/4f/gf+T/6z/p/+C/3L/ev+J/5X/iv9u/2H/dv+O/5H/gv9s/2v/gP+b/6H/kP+E/43/qv/D/8b/uP+t/73/2f/p/+j/5P/q//j/CQAYABIACQAXADMASQBiAFMARABUAFsAcQB8AGkAWwBbAGsAcgBiAEAAIAAhACsAOQApAPv/0f/M//T/7P/B/5//fP90/4L/gv9A/wD/7P7i/ur+1P6c/m7+X/5n/mz+Vf4t/gf+C/4w/jz+If76/fz9Hf4//kP+M/4r/jn+Yf5+/oT+av5m/pj+y/7k/uf+5P7y/h//Xv91/2T/e/+4/+T/BwAgADcATgBqALgA7wDmAPoAFgFIAXIBfQGYAYkBtAH7ARYCEQL4ARACLwJJAkACJQIiAjACPgJBAj4CJAL0AekBAQL6AdMBrAGjAY0BbQFZAToBCQHNAL0A1gDgAKAAUQBQADoAJgAyAB4A5/+4/7//yP/I/5P/T/80/yb/Uf9X/zT/6P6w/uD+7/7U/sH+pP6M/p3+2/7e/oX+af52/pT+vv6j/pP+iP6K/tn+G//h/rn+vv7j/lj/YP9g/0T/Df92/+D/4f+g/2H/gP/y/08ANgDi/73/7/9PAHgAYwAsAAkAYADiANIAeABtAIAAsADfAOwA2wCrALQA8gD2ANsAxQCiALIA6QAIAeIAoQDCAOEA5wDlAM0AxQCzAN0AAgHkALwAqwCkALYAxQCrAJkAiACOAKoAsACTAHgAfgCOAJcAlQCPAIYAgQCQAJQAegByAGMAXABzAHkAbABMADwARQBKADkAKgAlABkAHwAkABkAAADl/+T/6f/Y/9j/1P+7/6b/p/+t/5z/gP90/3T/Z/9f/2b/Wv8+/zL/NP83/y3/L/82/yv/K/8r/zD/Mf8x/y//LP86/0L/Rv9D/0X/Tv9c/2j/X/9p/33/f/94/37/jP+F/4X/lf+k/6z/rf+t/63/tP/G/8z/xv+6/8H/0P/U/9v/1f/J/8L/1P/r/+n/3//Y/93/7f/z/+f/1P/X/+P/7P/w/+L/3f/d/97/4f/c/9f/0//c/+v/7P/q/+T/5v/x/wAACQAPAAwADQAZAB0AJwAsADAANwBCAFMAYgBoAGMAZgB6AIkAkgCcAKIAmwCYAKMAqwCrAKcAngCZAKQAoQCJAHEAawBiAFsAUAA4ACgAHAASAAMA8//f/8n/wf/B/7L/mf+B/3T/Zv9c/1f/Sv86/yn/Hv8Z/w3/Av/7/vf+9/75/vn+8f7i/uH+7P71/vf++P7//g7/GP8k/y7/N/9F/1H/av9//4n/lf+i/7v/1f/n//7/CQAfADsAUABiAHQAjgClAL4A0gDcAOUA+AAVASUBKgEuAToBRQFTAVYBWQFhAW0BdwGFAYoBjAGLAY0BjwGJAYUBjgGNAZIBjAF8AXUBaAFlAWYBVwFDATgBNwE2ASgBFQEDAfIA6wDkANAAugCsAJ0AkACEAHMAVgBBADoAIgALAPn/4//K/7D/of+T/3n/Wf9J/zb/Iv8G/+7+2P7H/sL+tv6g/oz+df5n/lr+Sf42/iT+IP4f/h7+Hv4a/hX+Ff78/fn9+P3w/er97f3z/e795/3d/ef99P33/f/9CP4K/hH+Kv5A/k/+Yv54/pz+sv7E/tr+9P4Q/yP/M/9P/2z/h/+d/63/w//a//X/EAAgAC4APQBLAFoAbQBvAHMAewCMAJ4ApACjAKYAtgDJANQA1gDOAMkAzwDfAOoA7QDpAOwA/gAQAR0BHQEgASsBPwFTAWYBcQF8AZEBqAHBAdMB8AEHAiECRAJkAnIChQKeAr8C6AIIAyMDPgNfA4cDqAPDA9kD7gMHBCUEOQRIBEgESwRUBF8EYQRQBD8EIgQDBOIDuwOCA0kDBwPSApsCWwIcAsIBdwEqAdsAhAAjAND/gP8u/+L+m/49/uP9hv0+/ez8kfxF/Pf7qftX+xv73vqc+lX6Kvr9+eD5tPmT+W75YvlZ+Vr5Wflk+Wj5dPmG+av5z/nx+R36TPqE+rD67Pof+2X7qfvw+0L8kPzf/Cj9b/23/f39S/6W/uX+Lf9z/7T///9GAI4AzgANAU4BmAHYARgCTgKDAsEC/wI7A28DowPPA/kDJQRNBGkEhASjBL0EzQTWBN0E2wTdBNsE1gTNBLkEpASNBGsESAQZBOoDugOKA1QDFwPVApMCTQIGAsIBfAE8AfgAuQB2AC0A4/+U/03/Fv/i/q3+df47/gT+0/2l/X79Wf03/Rf9BP3y/OT82PzQ/M380fzc/O38/fwO/SL9O/1W/XT9kv21/dn9Av4v/lb+fP6n/tf+B/8x/2D/i/+4/+j/GABBAGgAiwC2AOQADQEvAUwBbQGQAbQB0wHpAfwBGwI2AkoCWwJmAnICfQKCAoICgQJ/AnoCdgJqAlkCRwI2AiMCDQLwAdABxgGvAZQBeQFdAUgBNQEiARMBAgHxAOQA2ADRAM0AwAC3AK0AngCRAIAAdABoAF4AUQBEADoAMwAxAC8ALAAkABwAEgAGAPv/7P/e/9P/yv+6/63/ov+W/4v/gP93/2z/aP9h/1f/Uf9N/0X/PP8x/y//Lv8s/yr/Jv8g/xz/G/8X/xP/E/8T/xL/Ef8T/xf/HP8e/yD/Jv8t/zL/N/86/z7/SP9N/1X/WP9b/2X/cP93/4P/if+V/6D/pv+t/6//tP+7/8H/x//O/9L/2//h/+f/7f/0//3/BAALABIAGgAiACkALwA0ADoAPgBCAEUATQBUAFcAXwBfAGMAZwBpAGwAbgBqAG8AcQB2AHgAeAB0AHIAbwBwAHIAcQByAHMAcABvAHAAcQBtAGgAYgBdAFYAUgBMAEYAQgA+ADoANgAtACMAHgAbABQADwAMAAYABAAAAPz/9v/x/+//7f/p/+f/5//m/+H/3//e/9r/1//Q/8v/zP/M/87/0f/V/9j/2v/Z/9r/2P/X/9b/1v/X/9X/0//T/9H/0v/R/9H/0f/U/9X/1f/U/9X/1f/X/9f/2v/c/9//4v/n/+v/8v/3//r/+//9/wEAAwAFAAcACwAPABMAGAAdACAAIgAlACQAKAAqACsALAAuAC8AMQAyADcAPAA+AEEARQBIAEkASABMAE0ATwBQAFEAUQBVAFUAVgBXAFgAWABZAFkAVwBYAFUAVABUAFYAVABRAE4ASgBKAEoASABFAEUAQwBCAEAAPgA+ADoANgA2ADIAMAAuACwAKQAmACEAHwAaABgAFQARAA4ADgAMAAoACAAHAAYAAgD8//r/9v/y/+7/7v/s//X/+v/7//7//v/+//7/AAAEAAYADAAQABIAEwAWABgAGgAaABsAHAAdABwAHwAhACAAIAAgACIAIwAkACUAJAAgABoAGAAUABAADAAIAAIA///8//f/8//t/+v/5v/j/+D/3P/X/9H/zP/I/8X/vv+7/7b/s/+v/63/qv+m/6D/nP+Z/5f/lv+U/5P/kv+R/5H/kv+S/5T/lv+Y/5r/nP+d/6L/pf+r/7H/tv+7/8L/yv/R/9f/3f/n/+3/9P/5////BAAHAA0AEgAYAB4AJgAsAC4AMgA3ADsAQABFAEcASQBLAEwATgBOAE4ATgBMAEoASgBIAEYARQBDAEMAQAA+AD0AOgA4ADcANwAyAC0AKgAoACcAJgAkACEAHwAdABoAFwAVABQAFAAVABQAEQALAAUAAwABAAAA/f/7//n/+v/7//f/8//w/+3/6v/o/+X/5P/i/+H/3v/e/9//3//g/+D/3//e/9//4P/h/+L/4//k/+f/6v/u//H/9v/7//7/AAAEAAgACwAOABAAEgAXABsAHgAhACQAJwArADAAMQAzADUAOgA8AD8APwBBAEIARABEAEUARgBFAEYARQBCAD8APQA8ADkAOQA2ADQALwAoACUAIgAdABgAFAAQAA4ACgAHAAMAAAD///z/+v/3//T/8v/v/+z/6//r/+n/6f/n/+X/4//i/+D/3//f/9//3f/d/93/3f/f/+H/4v/h/+H/4f/g/+H/4P/g/+D/4//k/+T/4//l/+b/5v/n/+n/6//s/+7/8f/z//X/+P/7//7/AAAAAAMABAAGAAkACwAMAA0ADQAPAA8AEAASABIAEQARABEAEQASABIAEQAAAOr//f8OACQAIgAbAA8AAADo/8D/p/+r/8v/9f8dAC0AHAACANL/tv+r/7v/1v/l/+P/uf+E/03/QP9o/6//DQBvAJ4AhwBDANn/cf8u/x7/Vf/R/4YALwGCAXUB/QB7ACcAAgAOADIASQAzAAwAwv+N/7P/EwCpACkBTgHmABsAEv8C/i39zPwS/fb9VP+fAEwBFQESALb+dv2t/Kv8OP37/bz+QP9o/1D/Rv9q/7D/IAB6AI4AYQD4/3b/9f6c/qn+cf+4AAMC4QL4Aj0CBQHB/7r+N/4c/n/+NP/i/1YAhwCEAFAAMwAbAPf/BQA3AGgAhACHAKEA7QCZAaICoAMrBCoEyAMGAy8CtgGkAfsBmQI8A5cDWgMIA7MCQgLFAToBlADP/0j/Mf83/0X/af+X/6r/h/9U/+3+VP6x/Sr95vza/Cb9uf1c/sf+1/7W/rD+gv5//o/+rv65/r/+r/7N/h3/o/+AABMBUQEbAZoACgB0//3+rv7F/iz/6P+YANgAxQBEALP/Bf8+/ub94f0Z/oD+4/7S/oH+fP6o/h7/zv9MAIQAZQAPAKf/X/9z/+j/2wAJAuMCMwMfA7ACJgLUAZUBjQFvAYYB2wETAkkCLwIUAvkB6gHmAbEBcwE1AfwAnQBNACoASwC5ADsBmwGJAS8BwQBJAPb/4v/q//r/HgAvABoAFQA0AG4AdgBXACAAtf9D//D+w/6s/rv+9/5D/27/Tv8X/8L+Y/4f/tv9sP2p/eH9Kf5F/kT+Kv4u/mf+qv7j/vb+9/7t/tD+sf6t/vj+hP8oAKEA0ACxAGYAHQDi/8n/zf/1/y4AagCXAJsAjwBrADoA+P+8/5z/o/+3/7j/rf+A/17/a/+i//L/RAB8AIkAYgAXANH/lP+F/53/0f8eAGsAvgD+AA8B9QCrAEkA9//Q/9v/CwBDAGQAaABiAGQAeQCrANYA4wDLAIgAOQD0/9//+v8oAF0AhgCUAJAAhQBxAFMAIQDg/7L/lv+e/7z/3P/0//3/BAAHABwAQQBwAJ0ApwB+ADkA///r/w0ATQChANsA/gD5ANgAnABhAEUAOQAzABcA+v/j/9r/1f/U/8z/wv++/6//iv9R/xr//f71/vb+B/8f/zv/Wv95/5z/vf/V/9z/0//G/8H/1v8KAFsApwDXAO8A6wDrAP0ACgEZASkBGgH/AOoAvgCsAK4AvgDfAPkA8gDNAIUAMwDy/7f/m/+W/7j/7v8cADIAGwDi/6D/Xv85/zr/Tf95/4v/d/9G/w7/B/9B/53/1v/J/5r/Wv8H/77+if5c/k7+VP54/q3+2/7R/pf+F/6L/QT9kfxl/H388fxc/a/90P3F/bD9i/14/Xb9nP33/Wf+zP4V/z//Xf9y/37/j/+X/7z/BgBpAKcAlQBAAM7/XP8W//T+Bv8l/zT/5P46/qv9lv2j/nkAmgI+BMAEMgTcAnMBwQBgAXIDswYvCjkNMQ/qD6cPeA4+DDAJMgZEBIkE5QYfCuEMtg2nC08HDQKN/T77Evtk/Hb9cv08/Gv6GPm9+LH5D/sn/Br8yfqg+Fn2wPRa9FD1mffX+ij+mQCWAQoBTf8a/e76lPl6+b76BP1O/wwB8AEoAtoB/gCb//r9r/wK/An8X/za/Fn91/2M/lX/8/90ANAAxQBDAF7/bv4Q/q3+TwCTApkEBQZyBhwGVQVwBL8DagNeAzoDPgNPA20DjAN4A/sCEgLsALf/s/4L/rv9sv3C/d/9Gv5m/oT+TP6x/en8aPxv/B/9O/5M/w4AYgB3AJIAzQAlAWABWAHfADwA1P/2/7IAmAE0AgsCHwHj/83+J/7m/c79nv1P/RP9If2E/R3+if50/rf9mPyf+0f7y/sD/W3+bf/O/6X/Wf9c/8j/hwBHAcIB2gHFAcMB+AFqAvECXgORA4sDQAPTAmEC8wF2AecATADJ/3X/Zv+c/9r/4/95/7H+oP2Y/O77yfsu/OT8sP09/n3+k/6u/ub+Gf86/0f/Sv9w/9v/aQD/AGgBpwG3Ab0BuQGpAZ8BjQF1AUIB+gC0AIoAkQDaAEUBpQHDAYoBCQFlAAoAIwCXADgByAEXAhgC5QGxAZcBcwEvAdkAigB6AAEBJQKCA2gEWAQiA0IBrv87/yIA6QFiA54DzALuAZ4C/AVXC5EQLBNBEVQLXgRNAAkCSQnIEugZThu7FtkOZQeUAvH/af0h+bnzGfAM8Y32ov0LAsX/qvZm6nTgR9084XPpf/Gu9Xz10PLJ8JTxMPWx+bb8E/2U+zD6o/pR/WgBJwV1Bx4I0geXB30HEweeBdICdv8i/eD8/P41AnkETAQ9AZn8I/hC9YP0P/VB9rD2pfaQ9vr2EPh3+Yf64/rk+g370vs9/fz+lQDbAfwCdARVBlQI/QnVCt8KQApnCbcIXwhdCIkIvQjICDgIBQdNBYoDPgKHAVUBIwFZAML+iPxl+jv5ZPmU+hj88vy6/Mr7zfqI+gj7Fvwr/Q/+uv6K/5EAowGeAiADHQPQArQCAgPLA8UEegWkBTIFbwS6A1oDUwNZAx0DXgI+ASsAcv++/kH+vv39/Cb8UftQ+jn5QPhg99P2pfYG9w74evm6+or7pvtc+yT7R/sA/Cr9qf4gAE8BLALmAncDxAOwA/EC0gHWAIcAJQFLAlsDxANPA3ACiwHfALsA2gDrAOgA7gAoARMCZAOgBFUFcARHAsj/O/1i/Gj9AwDLA+IGkQgkCAcGEQOt/+77qvjZ9q33hvtLAXIHXAvbC9gI9gOb/wL+lAA0BqsMhxEOE6sRhRBuEZQVSBufHlId1xW5CmUAKPs7/TUFTg77ExQT2wuJAYD3ifAT7cXrlesF7L3tUfGp9TH5/vl69xHyF+xW6LroYu1J9Db7CgAaAnICkQJZA6MEuwU6BREDRgBB/jj+ZwAqBMkHswkvCTUGwQEI/fb4/vXf86LyX/If89r0K/cY+Yb5FPgr9ezxfu/L7grwx/In9lD5BPxK/i8A1AHpAhkDgQJqAYIAuQBgAmAF6QjTC2ENVQ0BDBUKKgimBrEFKgXmBKQEoAT8BKAFKwYCBq0ETQJ1/+H8L/uV+tL6fftl/Gb9PP71/jn/zf7M/WL8Fft++ij77Pxh/8UBjAN6BJIELQTEA1sD/wK8AnwCRQIkAloCmwICA2YDYgPOAnkBgf9x/dL73fp++mr6ZfpV+n/6u/rc+sL6O/pn+Zf4M/hX+Db5oPoq/J/9x/6T/0cAAQHAAX0C0wIDAwoDCgNDA6QDXAQgBawF1gV/BZcEIgNxAdv/kv4i/oL+Zf86AIEAGwBD/7D+pf70/lT/PP9K/i39yfzH/QUBwQXlCfkLVwrCBDP+cPft80T16fpdBFsNbxNrFDYQagmcAtj94PyQ/zwEhwnrDDIOew4BDxoRBxQ7FgUWDhPvDVAJewcYCXYNlRLUFTgW0BMZD3IKqgb+AwICYP/5+9L49Pa494n6+Pxd/cP5rvLc6lHkeeFS47roFvBW9ur4KfcO8hHsLugi6DnsLvNb+nT/+ADS/v/68/d79+b56f06AYwCzQHN/679Xvx5/NX9kv/QAHMALf7/+lL4Wvdd+KT64vz4/Xn92Pur+eT3bPdx+Kj6J/0D/7f/Yv+h/lL+2f4YALEBGgMQBIAElARtBHIEygRYBQYGfgZ3Bt0F5ATeAw4DkQJkAoAC0QIOA7QCrQEaAHn+a/1U/Tn+rv8TAcwBqwHmAMr/4f7G/qP/RQEWA1cEqQQ3BJQDMwMxA48D8wMlBCEE2gNsA8kCIQKoATYBswDz/wD/Av4q/Zf8IvzO+6z7pPuX+1f7x/oJ+l/5Cvkf+ZH5IPqq+jb7tfsW/GD8jfyx/On8R/26/Tz+yf40/4T/yv8IAEwAqgAVAYoByAHjAcwBjgFYAUIBdQHQATICegKKAjgCigG8AB8A3v8YANMAsgFiAtUC5gLGAo0COgIxAi0CUQKIAn4CywKnAgID7QNEBNIE+wT4A40CUv/e+zb6evvaAcIK+RL9FoETTwoU/+D2YvYT/lkLlBjnH2MeLRVyCd4BQwJ8CRoTYhnFGGoSBQq9A04CKQWoCaUMcgvTBYD9WfWk8GLwmPPi93X6Vfqc90bzyO4i6y3pc+nM63jvIvOp9Z/2TPY29fvzffNP9Eb25/h3+zD9yP2K/S39If2u/dr+IACwAAQAcf6R/Fz7cPuk/D7+Tf8w/wz+Pfxp+h/5g/i4+JP5wPrb+4j8vPyT/Ff8Ofxf/MP8SP3h/Z7+gv9hAB0ByQFhAh0DzAMhBB4E5wPSAyoE3QSYBSsGdwZ7BkYG+gXQBdEF4AW3BTsFcwScAzcDhQNwBFoFtAVCBQIEYgIHAUwAfgBuAZ4CjgPJAzUDGQLzACMAr/+p/8T/7P8YAFUAcQBMANL/+/4X/lr9Cf0y/ar9E/45/vf9Uv2L/Nr7ZftC+1P7ZPuD+7P79Psy/Ez8Sfwt/An8/fsg/H38/vyS/SP+kv7T/uj+5/4F/1T/z/9VALEA2gDDAJcAhQCtAAgBegHSAfEB0QGhAZUBtgEAAlYCqwLmAgYDMgN/A+0DZAS/BOsE4QTLBOcELgWKBa0FYgWyBLoDFAMWA70DxwR4BTAF2gPPAT4AEwBhAe8DbwaaB+oGmQQOAq0AYAFUBD4IyQuRDUMNYAvgCAEHYwZGB0wJxAvvDXQPCBCJDyMOFgy/CZUHAQZfBbwFxQbjB1QIcgcHBZIBrf1L+iD4Yff+9yr5I/od+pr46fWr8srvEu7G7Zvu1u/S8CTxkvCH73Puse197bftPe7w7p3vTPDt8HDx1/EK8inyVvKr8kDz9POj9CH1bfWj9eX1RPbO9oD3Ovjn+Hb56/lS+rH6FPuX+z/8Ev0K/vn+4P+oAF0BAQKSAhADiAMGBKoEZQUKBn4GwQbeBgQHRQegB/8HOQgtCPMHtAd6B3gHowfmBx4IJAj2B5cHIwemBikG0gWcBaQF7gVdBqQGgQbTBacEUgNRAu4BSAIWA+4DaAQuBEQD8QG0AAUAAACJACkBgQFZAdQAKgCt/3z/gv+e/5j/UP/X/l/+EP4U/kX+bf5V/vv9jP0w/fz82fy5/JX8cvxi/Gn8hPyr/NP85vzx/Oz87/wN/VX9sv0V/lf+b/6H/r7+Hv+P//T/TQB9AJkAsADVAP8ALQFbAYcB0AFaAhcD4gOABMcEoAQiBLUDqwM4BD4FVQYWBycHmAa6Bf4EvAQJBZgFCgYYBp4F6ARNBA8EMgRUBDQEpQPQAjcCIQKqArgDuQQjBdME5wMrA04DjQTSBjwJAQt4C8sKfglkCCgIBAnBCpwM9g1pDtENkAwdC/8JZAkVCdUIWgigB7YGxQW+BJEDHQJoAJb+3PxP+wn6D/lX+Jz3sPaC9Rr0q/JU8UDweO8a7+3uxe587vftO+1d7MXrquvz63zsBO077RPtr+x17JTsPu067kHvFvB98InwevC68EjxNfJh84P0dvUE9lv2uvZG9xf4R/mn+gD8Lv0T/sb+Zf8fAAMBKwKQAyAFhwaeB0IIfQiICKwIIQnjCb8KlQsrDHQMiQyDDHQMawxrDGIMWQxKDCgMBwzmC7ILgAs9C/QK0gqnCmMK6Qk7CZAI4wd9B0sHPQcgB7YG+AXWBH8DWAKEASUBCAHlAHwApP9+/kX9NvyK+zD7CPvm+r76ffos+uH5n/lk+Sv5Afng+N349fgo+WX5l/nF+d75/vkv+m36oPrR+gH7RPuj+yX8t/w2/Zr91v0K/kX+kf7q/k3/qP/y/zwAlwAPAZwBHAJsAmcCIAK1AWkBbwHXAXICEAN0A34DTQMEA9wC8QJGA7YDHgRiBIIEoATbBDkFpwUABiMGEQbRBaEFoAXDBfYFFQYXBhAGAQb/BQAG7AW9BV4F4AR9BEgEXASsBAMFTAVQBRYF6ATFBOsERwWuBRQGPgZgBnUGnwYIB3gH4AcPCN0HYwfqBpIGhgatBuEG2QZYBm4FKwTxAuQBFwGJABAAYP9z/lP9K/wP+wT6K/lJ+Dv3B/a49J7z+vLT8iXzg/Ob8w/z1PEr8JvuwO2f7UDuPu8f8InwSfCm7+buVe4h7kPunu7z7k7vsu8r8OTwwvGr8mHz4vMa9Df0hvQq9Sn2b/fe+Dn6fPuP/HH9M/7e/oz/UQAqASwCbQPLBDsGawc1CJMIlgiCCJoIBgnICaoKdAvjC/kLuwtjCysLDgsNCxMLCAvkCrMKegpOCh8K4gl+CfsIgwgfCNsHsgeJB1YH7QZsBuMFUwXKBEAEuQMwA5YCDwJ9AQYBogArAJv/0P7Z/df82/sb+5/6S/on+hb69Pm4+Vr55/hy+Bb46Pfi9wr4WvjD+EH5yflW+uH6YfvS+yL8WPx7/Kv8EP20/Zj+oP+KADQBeAF5AWABYgGdAQ0CgwLdAgYDBgP6Av0CEAM3A1wDZANAA/gCqwJ7An0CpwLVAvUC/wL0AuQC0AK9AqsCoAKZAp8CvAL5Ak8DoAPYA+kD2gPDA7cDwAPlAx8EZASZBMgE4ATsBPsE/wT7BOQEuQSQBHMEdASiBOAEFQU4BTwFMQUtBUMFiwXfBSwGXgZsBm8GfQbQBl8HBAiUCNIIrwhOCNYHdQc9BycHCAe2BigGaQW/BCcEnwMOA1ACJQGm/xP+vfzO+zv7+Pqp+gT6/Pif9y329fQg9NLzv/O282HzpfKR8XfwoO8v7yzvb+/H7/Tv8e/E73jvMu8O7wjvMu9+7+vvg/Aq8enxovJb8wL0kvQM9WX1q/UB9pP2afeX+P/5kPsD/Rf+t/7r/vn+J/+//74AKQLCA04FfgY2B4UHlQeeB9MHRwjxCK4JcAoKC24LrwvVC+EL2Qu+C4kLSAsFC80KogqYCpIKigppChgKrgkdCYMI7QdlBwoHvgaABjQGzAVNBbkEIwSJA+UCSwKlAQ4BhwAVAL7/b/8U/6H+CP5i/cD8KfzA+4X7avtb+0T7Hvvh+p36ZfpA+jn6O/pB+jf6Kvoj+ij6UPqf+vb6RPt/+5v7sfvW+yX8lPwT/Xz9w/3x/SH+bv7j/nn/AAB2AK4AvADOAAkBaQHoAW8C1gIiA0wDZQN/A58DxAPqAwcEKgRhBKgE+wQzBU8FUAU2BRgFBgXxBNkEygTPBPAEJwVWBVIFAgWGBP8DjgNfA2wDjgOVA24DHAOzAl8CQwJOAlcCOgLzAZsBWAFaAawBFAJlAm4COwL6AcsB9gFzAh0D2gNcBJ0EpASdBMUEFAWVBQIGKwYSBu8F6QUVBmcGjAZdBskF9gQ7BMcDpAOyA6IDXAOpApwBfAB0/5X+7v1V/cn8K/xq+4v6kfmb+Kf3xPbd9er01fOu8s7xhfG88SPyO/LF8a7wXe927lvu/O7r78nwMPEq8fzw//Bk8Rfy8fKe8//zOvSM9B71G/ZJ9134KvmX+dv5M/rR+sb76fz1/b/+Uf/L/3AASwFPAjoD5wNJBI0E2wRUBfkFpwYtB3UHmAe+Bw0IgAjoCCMJJAnxCLoIrAjYCCoJagl7CVUJGgneCKgIhghfCCsI4weFBy4H6ga4Bo8GYQYMBoIF0gQcBI4DKQPlAqkCWQLeAUcBpAAiALn/ZP8R/67+Q/7X/Xn9Qv02/Tf9MP0H/cf8hfxT/DP8Kvw5/E38WPxh/GX8Yfxr/Hf8fvyJ/JP8nfyt/Mj87vwV/UD9af2L/a/90P0B/i3+Uv54/qf+7v45/5L/+/9WALgADAFfAaUB4AEPAj8CcgLCAi0DoQMKBEEEPAQIBL0DewNaA2IDdgN3A2UDTQM9AzYDKQP+ArECSALdAZIBkAHaAVEC1wJTA4sDbgMsA9gCpAKWArQC5wIaA1kDsgMnBJ8E5gTcBHcEugPmAk8CKwKTAkkD6gMrBNcDEAMzAosBQwEzATABDAG4AG4AiwAYAdgBcgKVAjYCiAEJASoB+QE8A3IEPwVsBRcFqAR3BKEECwVgBWIFEwWMBBwE6wPeA6UD7AKoAQwAcf5E/ar8fvxs/Af8IvvR+Uv46fbb9Rz1ifT+83rzD/Pf8tbyyvJ+8uDxEvE38LXvze9o8ELxI/Lc8knzbfN986fz7fNR9Of0rvWx9vn3Zfmx+rb7NvxJ/Cz8Gvxi/A79Df4l/xsAwQAsAV8BdAF9AYQBiAGVAcEBIAKtAmQDHASsBAMFGgUjBTMFYwXFBU4G5QZ6BwcIggjbCBAJOAk4CR0JAAnrCPEIAAkECewInQgbCHEHswYKBmsF1gQ7BKQDHQOkAjACtAEOAUUAav+a/vz9mv1o/Ur9KP3s/Jj8Q/wE/Nv7w/u1+6T7m/uo++H7T/zR/Dr9c/2D/Xr9f/24/S3+xP5u//D/RQB9AKgA2QAZAVEBawFhAUkBRAFrAboBIgJ3ApsChQJNAiACEAIhAk0CjgLIAu0CDwNAA4ADvgP2Aw4EDAT8A/ED/wMyBHMEqwTHBNAEvASbBIQEcARXBD4EJQQLBPcD7wPuA90DvQOSA1UDFwPZAqMCegJOAh0C6QG+AaABkQGCAV0BIAHYAJIAXwBOAFsAcwCAAIMAeQBvAGcAKQDf/5//bv9B/8f+lv7V/gb/bf/I/2r/j/5J/T/8jfy0/Oz8N/1N/WP+GP+Y/5v/8/56/hH+yf2m/QL+M/9fAYUDgATXA7ICMgKuApYDUQTZBJEEnwQ7BbkFxwV2BYgFgAXZBIIDLgJKAQcBLgHmAD8AOf9b/uf9I/3O+zD6rfit99r26PUP9aH0qvSV9N/zrvKX8RLxwPBT8DfwifA28R3yt/Jb86Tz1fOU9Gf1AfaC9q/3R/mP+nH7qvwk/gz/AACdAKwAJAHMASAD/wPtBEkGSwa9BeQE4wT2BdsGFAc6BpQErQM3BNQEsgREBLcDIgO8ArQCFALuAEoBYwHdACsAm//4/9v/LwAFAR0BjP/J/sj+df4n/47/AAFgAXMBuAKPAm8BCABoAEwCZQPIAtYBkwFuAtMD+QNsAzECEAC3/t3/lgEKACT9Yf6HABgB0v+H/cL9nP6Z/4f/Cv5C/aX92/5QATADVQI5AeYA4wKDA10BEgFUAjkFCgjKB/wFhwRMBXcHaQcuBnMFfAXgBWYGvgasBkQFcASZBfEETwOQAnsCQAMpA4cCrwIUA4oCFwJQAQACAgK9AIoB9ACZAbEBrQAhAR0AUQCOAYkBMwHy/v/8Kv8eAroB8v5r/sz+Zf8AADIAnP5q/cb/Mf4s/ZP9pf1GAB4BGAEB/9z7G/tk/Hr81v3h/5v+f/3x+9D9awCB/CT58/i0+nb+j/1r+x36Afp7/Un///00/AP7Sfqn/JH+Zf0q+zP8rAGSAj4BAQAz/nP/CQFcAqIBuP99AKcCegS1BscFxgMyA7QCqwIiAsMCVgTWBeQFvgVLBD8CawGFAeACqALNAHn/e/5d/tL+yv5A/yj94flm/bb80vdQ9qr2fvqP+MX2FPcO9+L38fdv+DP2hvVz9UH2sPcC94/38fdk+cn7SPva+jn7Xvpr/KP8rfsN/PT86v9k/8gBZAD2/nL/8AC1Ax8CWgCq/W4AFgQKBY0Cz/+IAuMBgQUNBE8BeQAWAOEGzwSQAUL/mgAtBd4E9AQKAPT+NwHQAmoGswIPAMj+eACOAu4A9wFXAGf+BAA3AWYBLgBiANb9zfwJAj0B4P6h+6z+sQEZAnYA5f6sALb+YwPwA7UB6fw4++IEIwQRAhgAXQCGA80BaQSHAWwA/fz2/xwESgHzAqD+ZQBuAoMGvQN+/YX/nQKQBN3/uwEkA50BXgNWB2kFaP/+ASUGCwqKBOQBYQKlA/UIDQmDBdIBVQRvBR8HdAa6BRoEXQOLBIkDlwX8AesB/wN0AWb/Qf+qAiAF3QEz/owA4QCh/wf/DP/r/mn9/f9nAB8BYPub/1IFmv6p/WL6Jf3a//T/Df7Q9zn7FAGFA/P8jvqn/Ef6Q/6w/sH9u/gL+m7/AACi/of7u/6R/4UABQHl/a38Zv13/4UCVwI/AZf/8wFeBgsEJgGC/woB3gJJA/sE2AF/ASoE+QWhB7EDNgHkAEsEIAUJBBIBfQHZA48BbQKcAY8D9gFpABwBFAAR/mX9lwB4/U/+ff18/sf+v/zo/sz5F/xp/Pz7C/uy96r72P1c/Aj4vfqc+7n7Ovtd+tr7lPXy+In7U/s0/YD5CPgc+UH+cP6f+aH4Jfkg/CP8w/rQ+3v68fu0/9v/tf37+7/70P6PAJ/+sP0y/9r/TQCTADMCOAEa/z8BkwLIAWH/ov+sAVsD+ACE/0cBZQNXAi0AXgLi/qEBcQTx/7T/bv9YAVYD8wQnA7/8BP9yA5MEh/9+AHD/fv4rBMMCjQMIAGEAnf/GAWoD+/+H/xr/sQL2Ab8Cxf9w/vMDAQQs/2X82ADLAvADwwNr/pH9YgJhBikA7v7VBOgFrgGsAEoAMwLSBqYHxwRd/Y0EyATzBYMIMQONAvH+FghwCmUFagL3AMoFwwe5CesCLAB1BCUHqgcpAsAEuQQyBYsEywRGAywBzwRzA8gEKv+RAqsDVQOCBPgB7wBx/poB0gNqBGj8Mv32AOkBAgRx/3b99/1KA94BDfrw/DkB2gGp/bT+sf3X+QoBGQXF/6j6Bf12+V//nwNv/wf8rvbc/U8Dwv9T/Vz7xPt5ACYAvP5t+jb7YgB/Aen8PfvR/eH/ogFcACr/avmY/QMDx/+O/lz8SvsYAtICMwEm/QP7SQK7ANr+ZQBF/WD9+wDQAPL+nv2+AFgCFP8t/9UAnfy2/jz9aP8MBNj7wvv1/soCOQHy/gT6DPky/8MCLv+J+G79B/5e/bf7/v71/Vz5Uf0z/Ev8BPzX+kb9Zfzj/J36k/tX/ef66fvO+bz8gfxG/Ez8iflq+yv9Kf3CAP/6WPex/UD/uP1J/Hv8j/5f/RD9RQHn/HD+E/8H/iX+ogDf/2j5IwE/BIr/eP2H/j//iAI6AAH+aACg/3cAbQBW/ykAcAEdAbAB0/7j+2ICnAJJAqABDPu9/agAbAeOAtf7YP2q/r0EYwV7AJ77X/8IAA4DNAEeAWUAlv7IAtwAswHO/+ABcgGm/R0CQgXiA9H68/xsBlUGOwMo/kkDdgGNA9YG7ADsANQDuwWQBmMHkgOAA38BxQh3CAUDTgY9A7kCFAZZCBoKkwROAV8DlQYSClYDZ/5nA28HHQmB/87/OwSeBa4HkALo+4n8/ANGCeIGl/lv+tUCUwNvA4EAT/3N/T4BdwQpA/j5d/m9AhwE8QSP+5P7l/w1BCIG1P+F+kr2egWzAYYAtP2u/XECbf3s/U8BygC4/Uz8tPyoBEQBPPlw/ZkBLgLs/r383PwV/vADjwCN/UsCuvxv+y7/GwEcCDL9JfwqANr+WAaa/jn+CP/dAWADTQEYAOn+CQOtAGQFAwAGARkBm/5dCCABpv4WAskFdwIBAMkFQQELALABhgNnA4MA7/7W/mACAgFuAcv9Ff1U/yf+PP5S/lb5yPo+/3D60vxy+sH4j/oT/OX6m/Ys9zv6Lfm++On4M/hj+E73N/jD+vX5Pfe69tr6wvtH+3P5R/mM/Cz6Y/7O+9H54Pv7/P7/G//Z/ZD8c/0xAQP/rPy7AE394gAEBf39TPw8/XYDnwPL/tD9tf4fAXD/NAGxAN8Adv+T/fH/dgNFAbb+gwAE/bb/wQHdALT9if7rAnUCIQJB/tP9RwHt/9gCuACQ/OH+JgGyAToCXwEz/0P/WQK/BDUAPAGN/M0A2QRmAmkE3/5Z/+ADxwQ8BTYFr/vX//MGgAc5Apj9fwIrBLkIOgVs//r/kQKJCFcEa/+IADUCYARNBNACOQC2AywDmgV0BnUD4P5V/GEEvQnpA+/7vf6IAuwHdQKAAeQAwv0TBIoDjgL9/YUABgNp/5gDz/4p/yoBzAEABGn/OgCK/Uj+av47BPAAqv44/wT/KgGV/loCFQD1ATH9VP/eAm8CLQFQ/hYDhQHGAqEBGv2HAsAC3wKLATsAAQJr/xoDIwHoAdAAkf9KA4gC9ALrBB0Bcf8mA5YARv+C+9X8HwPZA9wAlP2A/SD8pP+lARX77vmT/NP/2gKn/379lf+OAXsFlQU+A3sHmwphCAYFHwTYAekBYwSMBEcFlgQ6BPYCSgFy/5j94fv++fv6X/qn+nT5YvVq9YTyafJm9Hz14Pbo8/XxF/Jl8tfx1/Ee8U3yK/OX9RX2//Q094v2sPd/9tD2Mfr++uH8wfwT/Az94v4z/9MAagRvA80B2wFeA4cDlAGRAeUCJQYCBjcExwMkBHQGAgQSAjADZwM9Ax0C5AH3AEn/n/8SAb8BDgOIAVMAb/+8ACwDZ/9a/uD/RP9YALwDbAJzAfwBNwHoAEQB6QIDA3sDGgLuAZECbAHmATUCYQCRAvECRQGqAzEBAQEkAp4AUgG3AA4AYP+wAGMA1f3U/7H+LQCnAbH8Df7G/w3/7f+A/qL91P53/vb/vf9A/qj+rf6nAdABigJ/AYYBCQSMANj/wQDoAXQDSARHA+sBUwGnAkEElQPQAHn/XALqAwoE8wA7ABcBcAF6ASwAygBjAlgDuwELADQAqADmABkBLwA4AY4CnAN5Au8AVgHkALEChAR6BPoB1wFBA8sDiAIBAV4C4gRuCCgH3waABbMEnAR1AZ0C6gP2BOYEDgPoAfgAhP9Y/1L//v8zA34EggI+ApkCb/+f+l/4rfhl+q4AIwVaBFEDXgRcBQgKzw/yE74WEhjTG2YbTxe8Ep4S+hQgFsQWiBNAEg0U/BI4DBUERvuE96/3XvVg9Ery2vFB8rbuaep66BTkiuLk45rkM+Sw4e/fO93A3W/fQONj5O/kFui06KzpK+iB5crk+eYU7GzyB/mkAIMENgROBNwCyP9//ssA9wQKCO8J9wx8DaQNtg2xDE4OIBGDEgkSgw96C+sEHABj/kz98v5UALYBTAFb/xv+i/xZ+tr2GvI771/wDvLV85ny4/FV83D1fvhA+sz7Lf3kAEkF7QbxBVMFZQcRC+ANBw/nDwcRbBMdFtcY9RhKFo8S4Q8xD0YN7gk3B34HzggICqMIwgQhASr+b/3c+xb5Z/ad9e71ovWD85XwHPCu8MXxqPK68obzr/Ra9AT0h/Jh8VDycPOX9Sj4BfsM/S3+Hv2q/A/9vP4SAQ8C7gJvA/gEqgZsBxUIqAkKCzgM3gt1CxMLdwptCfkHAQcfBloGfQYcBoAFLAbABd4ElQLX/4T+FP2T/Zj91P2a/W39//2G/qT+0P1V/gAAgQBRAFsAlAD7AIoAegFFAgoD8QW3CC4KygsBDL4KWwkHCAkIZgcLB1EHHgkdCcQJngv3DBQOrQqECmoNuxBPD+4I+QCx+hH37vIr8KbxT/0zEFEjrC0MKrIeOxYsE2IUwBcmFggWpRnfGwAaRxSBDkwNJxDFEskUbxPlDr0FnPcQ6K7Yp86RzJ/QTdh23vrgV99C3H3YodNFzzvNCM+W0nXV4tUY1njXSdsw4cPo/vG4+u4D3AqkDQwN1gkTB/8FAgfUCe8NzROTGagccB1gG5oYpBVSEv8NOwnNA0T90fZ/8UvvLO/w7t3uUe8+77/uTuyg6bDm6uMu43bknefc6mHuU/Kc9kL6nv0IARUFlgrqD/4T6RUoFzMYPxisGBgaQRziHpEg6yE9JAwlXiItHZgXkxFoDEEITgTLAE3+Dv2l+1z5rfbF823xsu/S7YPrZue/48LhAOGL4Trjw+XG6NLrDu878pT1PPli/OD+1AAOA08E1wO2A3EFLwn0DMMPQBJ3FAMVMBN2EDsOLgvwBukCXQCe//X+vP3C+3D6R/l392H1p/P68g7ylPGS8Ejv3+0v7VXuX/Bx9C75+vx1/tT/6gBbAfkBbAMOBhAIdQrvC/oMEQ6YDzgRaBHyEMwPpg6bDRsNAA2JDLYKgwjoBk8GHwYBBYUEBAQXA0UBWf/8/cr8b/yp/Hf9bP6KACgCOwLPAML/TgCwAC8BOQIcBPkFvAaNBqYG9AZGB1MI2gkhDK8O7xCmE9IUQhMSEJsNOw7CEBIYDyJ3LDUxdC/CKiskbx7dGBQW1RdZHHQfoSJ/JQknviMGGqEPcgR2+dfu4OYq4dLYh8p2uRisc6emrz7A/dIe4Y3l7OEm2oTSJdBS0wPZxN+E57jvavfO/jEHGBAQF+caZB2SH7QhLCO6IaAdcBXxCl0BGPso+7z/iwVZCEAGOP/s9DDpxN+U2QfV8tGBz4jPaND/0bjUotjf3eviUOj37dLz/Phv/Cb+n/5z/xkCKAevDggYXyFoKWkuBTDWLjcqhyO0HKEXWBXYFD8VShQBEa0LoAW4AK38NflE9YPwquup54flm+Pz4LPeD95j3zXic+aV6+fwevTh9eb12vWs94D7xQDcBhUNKxLFFRsY7hlIG7sbhBvtGlsajRntF0UVohHxDEMHEQHI+//3IfZZ9Ybzwe9V6+vnGeWJ43bk4OYn6Zzqo+xM7tTucu/h8E/0vPfG+lf99/+zAqQEDQX5BM4FBwcNCJQIUgrMC/cM7w3TDp4P6w6FDWsLoQmOCDAIzQf/BqMFhwR7A9cCqAJXAqMCxAK9AjkCnAE5AaYAJQDO/9//HgFsA+0FtQe8CDsJFAkqCNAGqwVnBfEFxQbBB/4Ikwo1DG0Ntg1YDVYMvwr+CDAHOAVTA/oB5wBFABcAWf/O/b/7Fvpp+Mr34/im+5L/lgIqAlP/pP54A/YN6hztL/xC4U/dUi9LSz2/LRkfahKgC3wNmhiPJycyMTQQLH0cmggZ9P7hgdUizhrK4MfLxBnAmrqGtsK2cr3RyePZ0enK9Pz2ZfAM5rPegt445QnzFwYFG7Mt1jjrO4836ixbH24R4QcqBPcDaQPA/3P5svFj6qDkVeEH4OLfOt6n2ZbSb8rBwsi8prq6vbzGMtWM5tf21QJ7CaQLAgylDPcOPBMqGHwdDyJOJcwnwylgK6gsJy3+K44oJiPsG0wS9wZE+1TxPuql5aLi+uAf4G/fRt6F3IHanNiR13LXd9gN20vf4+Qo6+fwlPUd+jz/JgUcDLITrxsIIxQoYSrVKVgnaSN7HsMZOxagEwcRXQ4cDLIKqAjuAyn9i/aR8d/truri5xjm+uXC5g3oUOoJ7uXyufcJ/Lz/zAJeBGQEmgPwAsAClQLgApMDfgT3BOIEhQS6A/EBD/+T+yP40PR88RTvYe44773wQPMO9937/P/OASACSAJqA0YFiAdACgkNvQ9+EUASsBKBEwEUoxPKEe4OMAu5BuYBBf0k+fT12PPQ8hLzXPTI9W/3yvjV+e752Plf+iX89f5XAjgGKArpDWAQ0xFeEuESixM3FPcUFRUWFGIRfw1tCdoFwgIEAMj9lfxo/Gj8JvyA+7H6ovlp+Ib3NPeZ91H4i/nQ+ib8if1T/5wBHwRRBhkIewl6DGURMxhgINcoozC/N6w9CUIsQ2E/mzf5Kvkavwkb+4rvbOdZ4tfeFd7R3tbf0t2M1j7KjLsurk2obK1mvQ7Uxui99Tj5Sfgz+YoAnw4NH0YsJzLzL0Uosh6YF5EV0hd3HDAgtSCzHXcXFA5IAlT11ejr3b3VmdBqzizPyNHd1BHXLtj32FDa7Nzn4HTl+Ok27jXyzvan/AMEIQ0QF9UfCyaOKFgnpiPQHisaRBaUE6gR1Q+hDZIKgQakAQ/9LfmD9YXxu+zg5rHgbtuD2KjYz9sq4TXn7Ozv8Sz2NfkB+yf8/vw8/nIATQPHBgUL3g/SFOkYfhtTHJcbHhpLGB0WVBNoD0wKNgRI/tf5BfgH+Zr70/0F/rL7n/cS8w3we+/G8M3yZfT79Dv1b/bE+P77VQAHBeEIHAuGC4kK/gjQB5EHIgijCFkIzQaZBFsC2f+M/Qj7vfi69kr17/Tz9OT0jPQT9K3zevOe8yr0O/Xb9x/7TP5jAe4E1QgoDIcOZQ/cDssNAA0cDPAKjQmlCKYI5Qm3C7oMwAzbC0cK5Ac9BQYDmAFTAQEC6gLtAyYFUQb+BvsGzwbtBnUHVwilCPUHkAbtBJsDuQLiAk4EpwYVCXUKKAq6CAUHwgUBBZAEmwShBWUHHQkXCo8KuQpUCk0JTgdTBG8BBwAUAWEETgieC8AMrAt2CdIHswkBD3YV7xg1Fj8NAwFl9gryiPbBApgSFiGrKdwplSJBFhYI7PkD7vrlweIZ5c3q++/n8PPrKeLf153R/dKM2zXnDPGI9Mvxxu2l7bf0cgJGEmgfZyX2IoYa5A9RB1sDpAPIBkAKZQx3DGMKXAegAlX8wPS+7MPl9t712cHXx9c52WnasNvS3eDhoehk8Vz6xACGA08DnQJbBd4LRxQhHSskfCgNKUEmCSJYHbIYchPdDcsIjASeAMj70vUQ8PjpAuQb3hXZ+tUO1MzTJtWi2K3eW+Z87rX1W/tz/xMCfwMyBBsFEQfSCj8Q5hUkGk0cdxxaG7cZURjuFo8UVBDICa0BTvlB8oPtietI7NfulPGk85X0b/Q68zDxV++O7mbvCvKU9ln8MgLhBsgJHwubC+YLVgzuDEMN4QytC7oJjwfCBaoEjwQiBToFVwReAoj/SfzQ+JH1GPMB8m/yOfSu9uD4TvpS+4T8E/6F/zcAQgBWAPUAWAFFAQ4BZQGyAiIEeAW5BncHQAerBQADQgAi/h39sPzs/BD+CP/E/14AJQEDAiYCvQEmAdsAIgHHAcACDwSOBR8HfAiYCXUK+goZC9kKogoiCiEJ7weqBowFtgRdBLQESQVdBYoEHwMYAuABOgLKAmkDIQSyBKYEBgRYA10DVQSkBdAG3QeiCM8ILgjeBj4FTwMtAeT+cv3V/Tz/wgD1AAAAc//W/7QBSQVYCkIQYhSkFUoWghizHVYkYSp1LlUvcivHIMARrQBA8FzgndGYxszDVMzO3BXuxffH9EPmm9OZxebBTMkK2Bjpx/eoAP4DxQUlCk8S5RssI/0m6yZLI18cJhMxCqIDQwBP/+D/cwEDA+0CVP9n98HsC+K/2Y3Vh9Wo2GXdzeLu597rPu9n81b5HwB9BlELEQ46D0MPBw8xDzMQ8RHfE4gVgRbmFbYSMw2PBhYAB/pl9KnvmuxG6wDrbut/7MDtqu4I74TvD/Gb82X20vj4+lb9JwAcAxwGJwnmCwsOXw/YD70P+g6kDcwLvwmFB+MENQINAPn+//7X/8AA6ADw/7/9yvrW97z1X/VE9+36Ef95AlEEigTXAyQD8AK7A18FngfFCdAKIgq9B4sEQwGK/kn8lvqu+Rn6ovt3/XT+F/7v/HP7QfqC+f74yvg8+QH6uvo8+8f7vvxR/mAAUQIfBOMFmwf7CEQJ9QeBBeEC5AD2/8j/GAB4AM8AsADa/xX+r/uX+U/4BfhM+An55PkD+6T8sP5jAdkE2whfDM0O0g/wD2sPnA7jDXMNpA32DQsOyw15DfoMwQtsCR0GcwIN/0z8Efqd+ND3wfdJ+IP5RPsc/R7/iAEsBLMG4AiKCg8MRg1UDi4P/w9EEdsSRBR0FJ4S7g41Cj8FnAB0/N34J/XV8JXrvOZY4xDj4Obf7aL1pfoO/PH6OPrG/CIE5A/pHXcsKzktQmZFjkKlOSIsBBxCC6z9lPVM9D72vvdf8izl5NOaxK2+d8N50bzhje008KnpCt2r0IfKX80h2TvqQfyRC94XnSCuJn8q0yuwKnEn0SJkHQMXEhCDCNkAyvgM8czr++lO7IzwGfSP83ftLuMu2MTPGMx2zivWQuH17B/3fP7YAv0ELgYLB1cH/AfsCC4KpwsADQUOTg72DTMNfQysC40KlAhWBcUAavss9g7y9O/o72HxnvPI9U/3IPih+G35zfrA/Dr/BgIBBR8IhgrKC/MLZgu8CiMKqgkqCZMIzQeYBoQEiAEj/mn7GfpB+tn6lvrt+Jn28vQB9XL3CvxvAgoJQQ7gEN0QQw+eDXoMCgy9C94KlgnwB9UGugVnBNECugDl/kf9Dfym+s34p/Zj9MvxS+9r7VDtNe9N8v31vviU+mT7zvtf/GL9Cv8lAasDRAaJCEAKOQtyCwQLOgpECUoIcQfSBokGcAYgBgMFHQPBAG3+LfwX+ln4c/cL98v2ofZq9rz2d/j++8UAxwWnCX0LMQu2Ce0HeAbUBR0GRgelCMsJXQoyChsJZQfjBB0CwP9V/vL9FP6j/hn/Vf9C/zj/Y//f/7YAjgEXAncC3QIaAz0DWwOpAzIEIAVLBk4HLQjpCEMJ4wjyB4AGkwQcAnH/I/2w+zX7hvsy/Or8n/1U/uj/SwLoBH0GIgaaAwL/Mfov9//4PAGnD60ibDZORZ1KUUP5L2UUtPY03mnP/8tb0VLZ+Nw52Q3QpMbZwonI4tWO5H3tyeuF4WjV/M6v0tXg9fV6DA0f+SpmMOwwLC6lKSwjyBo1EdgHaQCq/MP8zf7lANIAc/7v+ab0Tu9p6rHlHuEj3WPaadrx3Q3lHe94+vYE2AyBER0TahJUEMsNiwvdCVkJbwpbDcoRhBbDGSsaTxeEEQkKbQLb+7T2wfJd72PsSur46cXrY+/u80z4XfvM/BP9D/3S/dL/CgMBBxALdQ7+ELkSzRMNFDAT+BCIDXIJjgVnAvj/6f3c+7f5kPf+9ZD1bfbt9xb5RfnE+Jv4o/kv/BQAxQQ8CXoM/A3vDRsNRAyGC6YKUgmaB7AF5AOIApUB4gDB/8j99fqv97T0kPK58UHyv/Nx9Qz3qvh++nr8Yv4NAFoBPgKlApYCSQIjAngCZQO2BBEGCAcCB80FdAOrADD+ePzb+z/8Z/2P/kT/V//O/vn9YP02/cz9Af90AKwBTgK/AiQD5gM2BeoGrgjZCQkKBAkgBwIFQAP8AS0BlwARAIH/2v+LABkBkwHPAbkBPQGqAC4Ak//K/vb9PP0W/an90P4gAG8B0AL3A4QEUQRUAyUCBwFaAGYAOwHhAkgF/gcyCrsLGQwNC4IIagTQ/3r7xPj396D5y/3mARQE7AH/+prxGOkf5annae/v+IH+Nf0+98vxhvQYBM8f5z90WaVjW1rAQUYiOQUP8a/n5+YI7FXzpfld/e/80Pcb7lXhRdRvymfGTcgVzo7UZNng3KrhR+rZ96gIuBhiJOMoTSZ7HlYUIwswBQoDCgSDBtgIIgqRCegGOAI6/LL1rO/K6gvnP+TO4dzf9t7K35Xj5epH9YEAnglyDkEOZwpWBdUByAE8BZ4K3g8OE1cTExFkDewJtAesBtkFQASaAT7+9fqa+JP3E/ix+Z37RP1g/tr+0f6y/gv/PQBjAjwFSggFC/0Mwg1kDRMMEgrjB/AFowQPBPADggNOAlgAJv5a/Dj7pvpC+t75U/mO+Jn3uvZs9i73Aflh+wb+vwB/A08GDwloC8kMDw1NDA0LfwmAB+wEKALm/4r+r/2G/Lf6KPhB9UHyr+/o7SXtd+1n7qnvLfES81T1CvhQ+//+ogJwBf4GVwcrB/MGFgf/B5YJVgtxDEQMxwpxCKUFyAIIAIH9FPuh+F72dfRM8wPzgPOs9C328fcn+qz8zP8xA1IGlwi6CRIKJgqcCqQLEg1+DpUP7Q8QD88Mtgk1Bt4CAwDY/Zn8Yvz4/Nr9f/6+/tL+NP8vAP0BdQQXBxQJGwo4CqUJJwlqCZIKXwz/Da8O5g3vCyoJ/AWGAgX/jPtg+PH1jvSM9G716fZ1+NX54/qg+1b8Ef0i/ln/rQD5AS0DRQRkBXAGhgedCFEI5AZwBBgB9/0t++z5//oe/p4DiwlgDtEQug/DC60GzgKbAvAFfQuvELoRdg3GAnfzHeL50TfGhMLHxxjWAOl/+bgD9wQk/4328e/I7tXztvxsBYoKjAv/CTsJCgytEiMbfiGtInwdMBOZBpH6KvHE6tTmsuTS44jkEef66jXv3/L79LT1zPVB9vH3XPpM/T4AQANgBxgNRBTsGyciDCXqIhwcmxJwCMP/mvk79mH1/fVU9/X4V/p6+7f7Hvvk+XH4YPcI98f3ifkw/Ij/RwMLB4oKcA1uD1cQFRBEDlwLPAieBQ8EoAPHA9oD/AMWBNMDPAMZAkYA/v1M+4b4IPZG9E/zcPNg9PX1+vc++on8Wf6L/+//yv/G/0oAHQIPBUcIXAtPDW0N1QuJCFQEfwDm/Wr8cfuP+pz5aPgr9xH2aPVn9Zn19fVt9j732Pgn+5L9wv/xAfYD+AUbCLMJxQrHCoIJeweSBJ4Bw/48/E76gPhM94v2QPbA9k/30/fe9433QPfp9vb2cvfV+LL7rP/wA74HhAouDJMM4QsvCjAIzwYXBiIGkAZDB1AIDwn+CFEI/AaSBSkEGAOKAhoCJQItAjoCYgK3Ao0DZQQ4BcgFywVoBc8EMAS2A0wD9QKnAvoBfAFoAd0B2gLoA4YEUQQRA6MAOf2O+bH2QfXY9F/1uvVh9Zz1i/a8+Un+wAGtADz47ei81vjHeMJvysTff/34GyU0O0GnQhE7Hy9eIn0XvQ8wC20KWA3uEV4VwBTZDpAEN/ho7YflkuDm3MfXbtCiyF/DFcRgzMnbCO/xAWAQ7xjTGz0a+hYjExUQ4A1QDAIMUg1UED4UgBdwGFAWrxCLB4f8mvEr6LzhfN4P3hPgXuNa57Prx+838431pfbi9h/3Avj0+RP95AAqBSwJPgxHDh8Prw4MDW8KZQdEBJ4B5P8h/3v/WwBSAeIBzwFNAWIADv9R/Xb7B/ph+e/5xPt3/nEBFATzBeIGDQekBuAFCAUYBBkDKAJxAUEBvwHTAgYE+QRhBTkFggQfAxsB3P7g/KL7UvvS+/j8bv4SAHMBKAJxAo8C2gKKA6IE4AUIB8AHuwcaBxEGDQU4BHkDnwJ3Af7/VP6c/BL7tfmd+NL3O/fE9nD2hfZH9534IPpo+0v82/xz/Un+Yf+7AHMCegRYBlcHGQfUBRMEbQLNAEb/6/29/Pj7Pvu9+mP65vkE+bb3BPZ39G3zVfMR9Fz1avej+Tb8Ef9hAt0F0ggHCygMSgzgC2YL7gqvCoYKTAq9Ce4I7wezBoYFhAShA7gC3wEVAQQAqf5a/V/8Jvw8/Zf/wAJtBl4K+Q1XEBMREhBwDSUKqQZNA5YAFP90//0BMgbQC80RbxZCGOAVCg/sBI36N/Pq8EX05vqTAb0EpgLi+0nzbOzL6X3rsu+A86z0m/O88Ury8Pbz/24L0RXwHMoegxzeF30SXQ75C9YL+Q1oEQMVFRj0GeIZnBYQD/QCevN25NLYeNI20dLTQdhg3JTff+Go4gLk9OU66DXqwuva7Hnuf/FM9k38dgJlCI4N0BEeFVgXiBiOGCUXaBQ/EGILZAZ0ASn93viX9Hfwyuzp6SjofufN55Logul+6obrGe017+/xIfVI+Nz6B/0B/38B0gS6CPQM1xDvE+YVhxYgFtsUCxNKEYYP6Q07DEcKWghkBrsEZQMSAuIAhv9Z/kX92fte+tb4rfc694r3X/hN+fr5Ovpa+p76Ifsx/K39Qv+sAJ4BFwIzAlwCzQKBA4oEaAUCBh8GjQVdBKoC1wBN/0D+nf1U/S39+fyv/GD8B/yi+z37l/rU+Sj50vgP+c/5JvvP/JD+JgBNAQ4CQAIOArUBSAEWASgBiwEiAs0CnQMdBJkE+gT4BIQEVQOWAcb/Vf51/QP94vz5/Bf9Tf1k/Vf9JP3L/H/8L/zv+8z7A/yz/Kz93P4aAHcB7wIsBA0FpwULBrkGgwc4CMkIKQmTCb0JvwmqCWEJLwm/COMH5QbKBQAFdAT5A5UDBAOgAlQCJwIMAskBsgGwAdYBCAJDAsoCVAPEAwUE/APzAxEEZAQKBYwFBgZyBpUGmwZRBrgFCgUXBBUDJwJaASkBhwFcAl8DNASWBDcEKQNzARL/rfxb+vP46viW+SL7WPzL/F78UfvE+vb6R/tp++T5sPYH9PfyPPYV/l4JVxbmIEwnCCigI9Mb0BE0B2n9TPYo9BH4PgCfCUgQPhGxC+sAYfN/5jvdwNgb2ZHcf+F/5tPq9O0y78/tXOpD5ijjkOKy5MPo4u1n8/P4Av4sAmwFggceCHsHpAVpA0ECigJtBPQGyAiKCQAJqQeYBdcCif/j+yL4BPWT8hLxuvA58TLyCfOn80X0RPWz9jf4Cfn5+HL4KPgJ+Xb7Uf8WBPcIQw1XEN8RXhLiEbIQ+g7YDAULygmHCQYKvAo3C/EKnAkqBw0EvwCg/eP6hfit9oj1YfUj9mP3nviA+T/6mPrB+t363/oJ+2z7FPz//Oz9Kf9FAE4BXgKrAugCAQPjAvgCAQMxA40DzwPoA58D/AJaAtoB2gEMAkgCVwLuAWcB4QCXAI8A1wAoARoBugApAID/FP8L/0j/hf+1//b/IQAmAAEAnf/2/iv+cP3Z/JP87/zC/Zn+Kf9W/wz/q/62/k3/dgBQAooEjwb2B24I+AcIB14GVQbcBqoHaggeCYsJugnWCZwJCQkBCF0GRAQRAlEAQv/k/iT/lf8rAM4AWQGsAWwBpACT/43+BP5K/nL/fAEMBKYGpgi0CbMJ4AixB5wG/wXbBTIG0AZvBxYInQjjCPcIqAgECDAHGAYKBQ0EMAN8ArwBHwGwAJgAFwH9AfsCtwPBAwUDqAETALb+wP1f/Vz9p/0j/s3+sP9vALYARgAN/0n9Rfu/+bj4MPjn9573KPeY9g/2fPUf9e300vSj9Ez02/Nb867y+PF58aPx0/JZ9Qf59/xZAFoC4AJTAm4BCwHHAcoD0wY7CjAN/Q5lD34OYgwwCSkF4QA3/dj6Tvpt+1r98v4//2L9i/lp9C/vIusD6QbpqOpc7WjwSfON9fH2g/d49zr3OPeY92v4tfl0+3z9jP9JAaYCrQN5BEUFOwZPBzwI0giiCK8HGgZeBCIDtgI6AywEHAWfBW4FgQT2AggBCv8e/aH70PrK+pb76vxL/kH/fP/5/hz+Vf0d/YD9bf6f/94A8wGoAgADCwPUAmIC3QFUAQ8BLgG8AYkCTAO2A4IDfALUAP7+Y/1a/P37Lfyl/CD9hv3L/eb97P3t/fL99P3n/aL9U/0g/RT9MP2U/W7+2P+wAYkDvAS5BIQDdgEh/0T9RvxW/C79X/6G/yUAPAAQAML/if9W/xT/z/6i/tL+YP8/AGgBmwLEA7IEXwXSBTEGpAY0B7UHHwhWCG0IXQhCCAwIlwcHB3sG9gVdBcIEJQRPA0wCNQEwAGH/4f7g/gL/Mf9T/0P/Fv/S/qP+gP5c/qz+Zv+MACcC+gO1BbkG5QYJBm4EtgJ/ARMBiAHFAl4E9wUtB7EHQAfXBZwDvQCp/Q77X/nN+Gf56fqU/Pb9s/7v/uT+xf7m/gj/H//5/qz+VP5S/gP/cgBeAlsE+AXeBvEGWAZYBSkE9QKyAWMAFv/5/VT9RP23/U/+nP5q/pj9Uvzp+sz5UPl8+SP6+vrI+278+fyL/Sb+vP5J/7L/9v8yAH8A4gBMAaEBugF1AdEA7P8g/5H+X/59/s7+Ov+x/+f/rv/d/ov9+ft3+mf55Pj/+Lj51foR/Dr9Iv69/h//LP/c/iP+H/0Q/Fb7TvsL/Iz9gf+WAU8DXgSCBMoDgALuAI7/hf7z/dr9Pf4H//f/2ABkAYYBSAHGADAAl//9/lz+yf1i/TH9TP24/WX+L//v/24AlgB6ADsA+P/A/6X/qP/S/xwAkQAzAfkB0AKDA/ADCwTHAzEDawKhAQQBtgCYAHwAXgAyABUA9v/Y/5z/S//p/oT+P/4c/iH+O/5v/rP+Af9N/5X/3/9AAMsAbwE5Ag4D1wN5BLYEgATpAykDbQLbAXYBMAH0ALAAdABUAFsAcgB/AFsA6v8g/yr+P/2X/Fj8gPz//LH9i/6H/4kAjQF0AhoDXwM2A8cCRgL0AfYBSwLIAkwDvgPzA+ADggPaAgoCHwEiACr/Tf7V/eX9T/6+/ub+n/4Q/mn9+fzr/Cn9n/0b/o/+4v4b/13/2f9+ADoB3QFGAm0CYgJcAmACgQKxAtoC6ALBAmMC5QFeAe0AjwAjALj/PP+2/jn+z/2G/Wn9j/3b/UD+s/41/8j/RgCOAJYAegBOAFQApwBlAZYC6AMlBQ4GYQYDBs8EGgMoAWH/Ff6P/dn9t/7a/6MAtgDq/4H+5fye++P65Pp0+1L8Xv1a/iz/5f+GAAEBYwF7AVAB+ACMADoAIQA5AIcA7gBBAYABrwHaAfIB5AGZAfgAAQDV/qn9yvxd/Gz83fyH/TX+tP72/hL/Jv8z/yz/Df/Z/qP+if6l/vb+dv8AAFoAiACMAIgAkQC4AOwAIAEiAdsARACG/+b+f/55/rf+IP+U////WACSAK0AkgBBAND/VP/r/rT+of6t/sr+4v74/vf+/P4d/1f/k//B/9z/1P+t/3v/SP8c/xP/Pv+a/ywA/ADgAdACiwPoA8QDMgNHAjABHwA+/7r+mv7y/qb/mAB5AQkCGQKQAWEA3/5I/fn7VvtV+737ZfxH/U3+Zf+CAFEBpgGQASABswCTAB0BTgLFAycFBwYrBpMFngSqA+0CVgLIATgBpQAbAKb/Uf8Z/+f+j/4K/mX9zfx7/ID82fxd/ef9Xv7G/in/p/88AMYANwGCAbQB2AEaAnUC5QJXA64DzgOTA/gCGQINAREASP+6/mn+XP58/rH+3v7T/or+Hv69/W39IP3T/Kf8sfz4/Gf91f0w/oj+BP+m/3wAfgF1AiUDYQMBAyYCIgFZAO//8v9RANQAVQG5AfkBEgL/AbABHwFMAFP/Sf5p/fD87PxD/cr9Tf65/g3/S/+I/9X/MwB8AJEAbgAKAKD/UP8L/wP/Nv+w/10AMAEkAgQDmAOZA+0CpwEUAJT+pP13/Qv+Kf9iAGcBCgIzAgYCtwFZAfAAawDW/y//qf6D/vr+3v/XALQBIAIuAr0B5QDn/8f+1v05/fP8EP1x/QL+lP7y/v3+tP5F/t/9t/3i/Vz+If/9/9cAkgENAmcCgAJnAiQCvwFoASYBAQHiAL4AcgD9/3D/3f58/lH+Yv6a/rn+lP4P/kb9dvz9+/37j/yG/af+uf9zANgA4wDdANwAAAFLAZkB6AEgAlQChQKUAoACHAJoAYIAk//k/o7+qP4O/27/i/8+/5/+2/0t/eT8+fx9/TX+7f6J//b/VQClAPIATAGvAQICQwJOAkgCNwIQAvIB3QHLAaYBfAFSARABrgANAEb/YP6M/SX9Hf2W/Xf+aP8IACoA5/9M/7L+cP6p/kH/IwAiAfQBfQLKAtsCyAKhAlsC7QFRAagAGgC7/5D/j/+Y/5T/hf9w/13/Vf9V/1X/Rf8e/+L+ov56/oD+uf4j/7//bQAeAbcBFQIcAtUBXgHXAHQAUABqALMACQFGAVQBHQGyACkAjv8H/4/+Jf7W/a39yP0i/q/+Xv8LAHAAggBWAAAAuP+p/+D/PQCxABgBXwF2AWQBVQFMAUYBNAH2AIcA9/9c/+f+q/6m/sD+uf6E/ib+tf1f/VH9vP2F/pf/mABPAaYBhgE0AdAAmgClAPkAcwHoASYCGgLQAV0BAQHDAKIAeAAqAJX/1P76/Tn90fzA/Br9s/1K/sT++f4U/xD/I/9X/5v//f9JAJEA0gAoAaQBSAL3AowDxwOTA+kC4AHIANv/Vv86/2b/pP/J/8f/gf/0/iz+Q/13/Oj7tvv3+6r8p/3I/tL/mwAiAXEBmAGlAbQBxAHoAQ0CJQIvAjACJgIfAikCHQLyAZcB/wAqACv/NP5Y/cj8n/zV/Fr9Af6d/vv+F//w/rn+sf7c/kT/xf9OAKQA1ADuAAkBPwGQAfsBYQKwAsECiQLrAQQBAgAe/3v+I/4j/mH+xP4a/z7/H/+5/jL+o/1E/UP9sP1w/lz/QwDyAFUBfAGHAX0BcgFkAUIBEAHeAMMA2QAbAWwBqgGgAUcBpADl/yj/nP5Z/kb+Vf5g/lf+R/46/k7+j/7y/mT/yP8gAHIA1QA9AaYB9wEZAgQCwAFiAQEBywC5AMUA0wDbAM8AsQB9AD8A+f+n/1n/Cv/G/pv+kP6l/tn+Hv9j/5T/qP+n/5r/nv/K/xkAfQDVABMBPQFiAXgBawE0AckARADF/3n/e/+t/+j/BQDx/7f/dv9F/zX/Ov9J/1b/WP9U/1z/ff/A/x8AiwDhABIBFQHmAJYAKgC8/2H/Jf8Q/xv/TP+c/+T/HgA7ACgA3/9z/wz/z/68/tX+I/+X/zAA5QCkAT0CkQKDAgwCRQFoALH/Sv9e/8z/bQAKAVsBOgGuAN3/Df+G/kf+Rf5f/m7+b/5k/mr+lf7z/mT/2/9CAI0AygD+ABoBGgEUAQUB6ADQAMEAuwDFANIAyACrAHIAKADm/67/f/9X/yr//v7T/q/+n/6y/tf+Ev9q/7j/8/8aACUAHgApADkAYwC3ACoBnQEGAjACFwK+ASYBhgDz/3//Qv8t/zf/SP9a/2n/Y/9W/zv/Jf8N//H+0/6u/o3+g/6n/u3+V//N/0QAvgAmAWkBiQFuAS8B3QCNAE8ALQA2AGAAkQCrALcArwCNAGUAKgDI/1f/0f5P/u/93P0p/q7+UP/R/xsAJgD3/7f/iv+U/9r/RgDFADkBjAG1AbkBqQGIAVcBJgH5AM0AuwDBAMIAuwCgAHMAPQD3/63/bf9L/1T/hf+r/5r/eP8v/9z+oP5k/oH+r/4I/2X/j/++//b/YgDCAB8BYgF0AXEBPQH/AK4AagB2AHEAegB/AH4AhQBtAFsAFgDL/3b/a/+Q/6v/5P/N/7L/cP8F/7z+bf5W/ob+3/5f/97/RgCeAMwA0gC5AHYAWQBLAE4ATAD+/5n/Hv+x/pv+qf7+/l3/n//O/77/wv/W//H/BQAAANn/tf+l/5D/uP/O//v/KQATAAMA2f/k/wsAJwBEADoAMwATAMr/kP9Y/1v/j/+f/9//5/8BAEYAbgDUAPsA7wDWAJ0AcgBOADgAOQBUAD0AHADv/4X/qv/L/wMARAAEAB4A8f+6/xb/+f2n/CP7RPrx+c76Fv1pAG0EQgjbCiIMIQwXCxoJQQZ+A4cAOP7//HT8iPwo/ev9R/6p/ln+wv2F/Wv9uv3g/bv92f3C/Sr+Df9d/+n/3v+Z/47/J//1/tn+Ev8RAAoBVwJlA7MD2QNrA/ICWALIAVIB7gDQAKQAnQCWAL8AAwEPAeQAGgA//7H+fv7r/jz/X/89/6T+cP5G/gz+Qv4T/kT+1v4l/+T/NwCZAFMBhwGuAX8B/QDKAM8AIgFNAT0BOgECAcAAMQB//9b+XP4//iv+Df7d/dz99P0Z/nX+s/4q/6//JwClALgArwClAHkAjACqAJYAzwAJAX4B1QG5Aa8BUgEeAdsAgQD2/0//DP+S/pP+rf7M/gj/8v7Y/oj+M/4Q/hL+OP5+/qr+7P7//kz/vP8XAJsA0gAJARUBIwFCAU4BRQH0AJUADQCL/yj/4P7o/gr/Jv9Q/0L/IP/9/rT+hP5n/nD+Af9p/10A/AB2AQgCqQG0AekAJwDB/4f/p//e/8//Wv/U/6X/DwCPAFgA+QCAATwC0AK9AlMC2wEnAdYA1f+O/rv9e/2l/SD++/6x/2IB9QKOBDkFOgW4BOoD4AIxAW7/eP3k++b6gvp/+l37Nfs3/L78X/0D/7H/BgFLAVcBjwHoAQ4ChgLwAbQBUwHtADwB+ABzAUwBKwGoANP/nP/o/6MABQH8AC8Apf8z/4z+Wf6p/Rr9iPyu/CD97/15/84AnAI2A7EDHAQWBMwE4wPmAlcBcgBVAGf/Uf8O/g/9sPy9/Dn9pv2X/bX9zv3Y/YH+Kv5+/tf+A/9K/07/d//w/5oA/QBHAcMABwFwAQkCNgMzA8cD8wPvA9AEYgSWBDQE/QKOAhQBQwB0/07+yP1q/IL76fqU+u/63vp0+9/7Ofw+/YP9RP4V/63/uADAACkB2QHkARgDeANpA5UDpgLqAt8BIwFcAHL+R/6Y/fH9VP4e/3sAigH1AjMDCAMrAuMBuAE6AY8AJf8v/rX9Nv72/o//RgDEAHABYwLuAtgCZAKEAcEAnf9F/k/94Pts+0b7R/u2+/77Kf1n/uj/JQH/AUYCqwIgAzEDQwNlAg0CawHIAQYCygHyASgBCQF1AFoAAQCj/2T//P7a/lr+PP7L/ff91v2F/XX9jvyv/Kv86vww/YL8kfxP/BP9ZP5G/yQAFwHuARQDIwRABKsEiwM5A4ACzwFUAUwAsgBsALQAggDP/7T/KgBzANQASgAP/83+/P04/kT+rP26/YD9Yv0H/mn+e/4k/3r/7f9KAFwAZgCyAO8AmwFQAfkA5QB/ALIAsACVAEAATwB6APoATgHFARkCBAI2AskBIQF3AMr/Nf+f/k7+Yv6M/v/+bP+G/4L/dP99/3P/i/+l/6D/4/+BAFQBRQIYA5gDoAMwA3ECbgFOAHL/z/5n/n7+qf4T/3H/sv/R/4//U/8E/9b+wv7X/gf/B/8A/wj/Qv/Q/24A8ABBAU0BTwE/AVcBgAGCAV8BIQHhAIsAOADk/73/if9N/wP/u/6X/oH+jP6S/qH+pf7N/gL/Qv9q/1f/Y/+M//z/kwAMAYMBBwJ8AtUC7QK4AlUCmAGrALT/u/7k/Ur9s/xX/FP8avza/Gr9Ev6b/uj+H/9s/xsAywAyAUMBHgErAWMBtQH/ARAC+AGdAfoAXgDD/1b/DP+//qD+df6A/sD+Hv+X//P/DAD//wQADgAzACcAFwAJAOv/7//6/zEAfgDLANUA4wD3ABEBLAHwAJsAEgCc/yz/0v6V/mf+XP5O/mn+mf7j/jn/l//e////DAAbAFMAwgBVAQICogIDAzYDLgPcAjcCNQEPAPn+KP6b/Wz9qP1D/iD/1f9HAI0AtQCrAGIA0f8y/+v+B/92/+H/EgBQAIcAvADtAP0ADgH1ANoAywCmAJ4AoAC1AMYApwA0AI//2P5Y/iL+Cf4N/hT+O/59/tn+R/+f/wAANgBLAG4AgwDEAAIBTQGQAb8BAQIYAh8C1QFZAe4AiQBfACQAwP9U/8/+l/6j/gH/hP/G/+X/rv9Q/zf/WP/g/2YAoQCYAGsAdQCTAMoA9AAFAesAiQAMALH/i/94/0H/1f5Y/vL91v3h/Un+yv47/8b/PwAZAcoBHwIeAqcBKwGiAGQAVwArAAYA5//s/xYAKwA7ABYA6v+9/3H/kf+l/+b/RgCfAPEA8gDlAKIASACh/9j+A/5d/ST9Mv2g/ST+wf4+/7n/DABWAG0AOgAoAOP/tv9//3f/2f86AKQADwGbAUgC5QIrAyADwgIoAlcBYgCL//n+z/7v/jT/dP+e/5P/Uf/d/kL+sf1W/T79Xf27/U/+Hv8RAAQBvAE2AoECjwJxAhAClQERAaIAaAAvABcAIQBhALkA+QD4AKUAJQCl/1P/Cf/a/rr+vf7w/jD/gf/f/xkAIAD2/5r/V/8t/yn/XP+m////UwCBAJkAwADPANoA+AAPAR0BDwH/AAUBGAEzAS4BBwHIAF8A4v9S//P+2P76/j3/f/+y/8P/yP+W/0P/4f6I/jj+7/3B/a/92f09/rv+LP+S/+T/NACUAOoAJgFDAU0BOgEQAdkAogCJAJwA1wANATsBSQEyAQIBvgBnAAAAnv9C//7+yP6n/qH+u/7b/vD++P7p/sf+rf6l/rn++P5p//7/fADuAE0BhwGiAZIBawFCARAB0QB/ADkACwDr/+b/8/8MAD4AYgBwAGgAPgAFAL3/iP9f/0T/Sv9l/5z/1v8DAA8A/v/j/8D/oP+D/4z/uf8BAEwAjADPAAsBRAFZAUcB/wCoAEYA9/+7/5j/kP+J/4n/e/+G/5//xv/h/9v/sv91/zf/7/6x/oz+hP6j/tz+Kf+a/xgAowAXAWIBgAF2AVsBJwHtAMMArQCpAKoAogCcAIcAcABKAAEAsP84/8P+af43/jj+VP6O/sn+/v4e/zb/P/9M/2X/if/C/xcAigAJAYgB+QFDAlcCOgL5AbIBdQFJASMB/QDHAJcAewBgAEoANgAbAOX/mv9F//f+uv6W/q/+0v4A/0H/jP/O//3/GAA1AEUAVwBlAG0AdgCWALwA/QBIAaQBCQJxAtACJgNkA4UDmwOaA4gDUAP0An4C5QFCAaEADQCM/xT/sf5c/hP+2f2j/XP9Qv0a/e/84fzh/AL9I/1U/Xj9iv2L/Xj9Xf1C/T79Q/1W/Xn9rf3c/Qn+Of5o/pH+u/7m/g7/NP9Z/33/lf+j/6z/pf+a/5D/iP+O/5X/oP+p/7P/uf+//8L/zv/W/9f/1v/U/8z/uP+U/1//I//r/sP+nv5//mr+V/45/hT++v3//SX+Zf64/iT/pv8jAK4AOwHRAW8CCgOkAz8EyAQ+BY4FsQWhBWcF+wSIBCIEygOUA3sDhgOVA5wDkwNfAyQD/ALXAsUCsgKWAmwCKgLWAW8BCQG/AKkAwgANAX8B7AFJAp8C2wIZA1cDwgM1BL8ECQUSBXMEPAOgAeT/Xv78/NH75/pC+ln5ofjn99n3Cfk8+wH//wIlB1UK0gwZDwoRYxMRFlwZnBw3H7sgziA9H3ccjhgBFLIOxgiyAlP8b/Yq8YLsd+gs5c3iZ+EA4ZHh2eKa5KrmwOi36oLsMO617//w0fEU8rbx2/Di793uNu4P7oXusu+X8fbznPZZ+TD8Gf87Ap0FQAnMDMMP1hHYEtsSCRKsEOgOvQxACokHtwTnAV7/Cv35+hv5c/cB9uP0QPQF9DP0hfTj9CT1V/V09ZP1vfX09UD2lPb99of3Rfg5+W/62vt0/TL/9gDQAtEE2QYACSoLRg0iD44QhxEeElsSTBIMEocRshCeD0EOvQwlC5kJKwjcBrIFoQSlA7gC7QE3AZYABwCA/wj/mP4y/tT9iP1B/RD98/zN/ND87vwo/Xf9yf0n/ov+9f5b/9T/bAAdAccBcgIIA2EDdgNnAzcD9QLAAqkCkAJZAgsCdgGYALP/7P5M/tn9mf1R/en8g/ww/OX70vsB/EL8ePyv/OP8Df1d/fP9rv5r/ywA1gBOAb8BPgKwAu0C8wLEAlACuwE2AbYANwDB/zj/lv74/XH9EP3J/Kj8l/yA/HD8dvyQ/MD87/wU/Qz9xvxc/Oz7ovt6+2n7RPv0+oT6Cfqp+Zn5+Pmp+oP7TPzf/DP9bf26/Sj+wv58/yoArgD0AAQB6wC9AIsAbwB7AJsAxwAAARMBBQHcAMYA0wAhAbkBdAInA6EDtwN2A/QCXwLqAbkB0QEWAk8CQgLjAQcB7f/y/jv+I/6E/iT/dv/v/ln99vpy+PD27vbG+P77sv/sAhAFWwahB84JrQ2jE+Ea8SFxJ/MqRizfK7wqnyl8KP0mmCQQIfIbUhW/De8Fu/5X+DTzVO917EHqJegG5tLjwuE34L7fn+Bg4nbkT+ZC5xfnEubj5C3kguQG5jforurH7E/ucu+k8HLycPWv+fr+ngTjCS8OOxEmE3QUnRXHFt4XiBh8GEAXwxRNESQNzgi5BEUBlf6n/FD7Uvpd+U74LPcz9qv1yPWZ9r/3zPgl+bv4iffj9Tb04vIX8rzxmvGU8Z3xtvEU8sfyAvTF9Q74yvrk/SYBXARPB9oJ2QtqDb4O4Q/sEMoRTxJVErERiBAHD20NBAwCC0cKuQk1CXcIbAc1BgQF5gMJA0sCngHeAPb/2v6P/TH81/qX+Xj4mPf39ov2W/ZQ9mL2k/bz9oP3Ufhh+af6Dfxs/b/+8P8CAfIB1QKhA14ECAWbBf8F8gXABXAFHQXRBJoEfARfBEIEAQScAygDtAJOAgQC1AGmAWYBGQGvADcAu/9L//v+vP6d/o/+gv54/mz+a/5z/pP+wf7u/hf/Pf9T/1D/G//K/lL+wP0q/Zr8KfzQ+4z7WPsp+wD76fry+iX7f/vn+1X8tvwL/Vn9qf0H/nL+1P4e/0f/U/9T/0z/QP82/y7/F//2/tT+o/5v/kP+Kf4a/gn+7f3Y/ez9Jf5+/u3+V/+4/wsAXQDJAFkBCQLHAnMD2APxA80DegMdA84CnAJpAiICwgFIAb8AQQDl/9D/DgCpAHEBSwL+AnIDoAOkA5sDpwP4A4AE6ATcBPsDKwKv/wX90Pqd+Xn5VfqJ+4n8Ev16/U/+WwAcBJkJ5A/8Ffkaex6jIMYhZCK/IuoidiIvIfQelxsTF6IRTwttBKn9kPcA8xbwwu5S7r3tkezE6vnoweep573oWeqS68Lrjeo06IHlRuNN4sfiiOT/5tTpnexm73LyHfaL+rv/YwUdC1QQqBSPFxMZgRkTGSoY+haIFdwTohGvDiULTgewA9EA5f7D/Tb90/xM/HL7X/o2+Rz4BvcE9gz16POc8jDxoO8M7ojsW+ur6rHqnutl7eXv0PLL9an4ffto/osB7QRoCJULFA6hD1EQahAhELcPVQ/rDkoOWA0hDMEKZwkwCDMHXQaNBawErwOhAoQBYQAy/+r9hPwS+7T5ifiy9zL3+fbi9ub2A/dO9+v38PhY+gX80v2Q/xYBWwJcAy4E5ASBBQUGdwbNBgEHEQcFB+QGswaEBnIGfQaZBrUGtgaEBhIGaAWABIgDfAJ2AXAAUf8i/uX8oftr+mL5j/j/97j3vPfz9zP4kfgH+ab5Zfo4+xf84/yM/fj9Nv5X/nP+kP68/vf+QP+Y/w8AowBWARYC2AJ4A/4DdwTiBDUFZgVbBfcEOwQ8AxkC6QDJ/9H+4v38/AH8/foA+hn5hvhF+Ff4l/jh+Bj5Lvk1+UT5ffnp+WX62/pK+5n75vs//LT8Xf0y/iD/DQDnALEBawIXA6EDGASDBM4E/wQlBTgFRAVMBVMFSwVBBT4FTwWQBQYGegasBm8GyQXPBLUDzAI3AvEBtQFGAUYAnf61/Pf6a/oY+/v8Wv/HAfAD3wX4B60Kfg5FE3YYPx0jIYEjUCS+Iyciqh9NHGoYVhTsEFoOgwynCi0IuwR6APf7s/d39FbyNvHH7zvtTulF5EXfW9uC2ePZ29t83gzh9+Iz5ETlyOZn6XftQfLd9oT6svyg/cL9yP1G/n7/eAHkA1cGSgi0CeIKcQymDjsRuxNwFeYVDBX8Eh4Q0gxcCeIFZAK1/s364PZh87HwMu+t7q3u5u4O70HvkO8N8Mnwf/Hj8cLxFfE98L7v+O8q8T3zzvWP+FH7Mv5zAUIFgQmzDXURRBTdFVQW1xXGFFQTqxHGD4sN8AobCHQFRgPIAQIBsgCaAH4AXAAwAPv/wf9x/wH/X/5y/Tn80/p2+XT46PfP9yr4Avlo+mP80P5oAeoDTgaDCIYKSgzFDesOqg/tD4kPbA6xDMEK9AiIB30GrgXSBMsDkgJEAQ0AEv9k/tn9Uf2C/G77Kvrs+Pf3avdM93D3z/cg+Ij4BPmu+Zz6wvsZ/Wn+kv91AA8BagG0AeUBAgINAvkBvwFWAecAeQAvABMAMgCMAPEAWwG0Ae0BCAIYAggC6gG0AXEBDQFXAHT/fv6p/RX9xPyb/IX8d/yI/LL8+vxP/Zj9yf3Y/e39C/5T/sj+gf8dAI8AgwAhAID/+f7E/g7/yv/NAOMBzQJxA64D3wMZBLYEtgX5BksIfwmfCksLtwvQC6ALCgsoCuwISQdWBQMDmgAN/qv7qPld+Dr4UPmp++r+fgK8BUgItAnjCR0JtQf9BT8EeAJXAOP9Mft3+Ez2SvUz9iT5IP5LBK0KThBoFMoWfRf3FrAVHBRhEnMQOw7WC0wJCgdkBZwE3QTxBWAHfwiZCC4HFASw/5X6cfXz8JDtPeum6XroSOcM5vXkguT15E/ma+gA6xztEu7G7XzsIuvZ6v/rmO418iH2q/ly/JH+eACTAnkF4wguDIEOKw8RDpsLcAhPBdICLgFoAB4A7P9c/1f+FP39+377mvsd/JL8l/zx+2f6MPij9VXzrPHq8BXx9fEx8330yPU19/j4Hfuo/UsA0wLsBFoG/AbrBn4GBwboBTQG1gaqB38IOAnHCREKIAoFCu4J3wmzCS0JKAi8BgwFUwPiAb4ABQCX/z3/sv7I/az8n/vV+n36m/oM+7n7l/yF/Yr+xv9GASQDEgXZBicI2wgeCQQJkwjjBzEHrwZhBiAG0AV6BTYF5QR9BNQDAQMZAg8Bxf8h/lz8l/r2+JP3bfaf9Sv1EPU59aX1YfZX9334xvn/+gn8svz6/Pv87vwP/X79SP5P/4gAuQG3AmwD6QMhBCwEEQTrA8sDtAOgA4IDVAMFA7YCcAJqAqgCJQO5Ay0EWwQhBJsD4wI2AqIBRwESAfAA0QCTAD4A0P+C/1r/cv+8/ykAsgAZAWoBigGhAaQBtgHUAQoCSAJ/Ap4CggI+AtYBdwE+AToBaAG9ARcCeAK5AucCAQMOAxgDCAPtAqACTQLoAZ0BbwFXAVUBYgGAAYMBeAFaAUIBSAFaAVUBKAGYAM7/AP91/p7+jP9QAYMDBQabBx4IyAbaA/T/5vun+GL2dvVh9Qr23/Yr+Cr6V/0RArQHgg3fEQoUbBOREIAMZAhNBaoDfQM4BGEFewYnBz8H7gY+Bk4F4QPbAfn+DvtA9tXwJesY5k3ieuCf4FniH+Xr51/qGuw+7dLtmO6+71rxXvM29dr2MPiT+YD7Qv4LAokGHQsBD4cRKBImEeUORAzfCRsICwd6BiUGqAXZBLwDgAJnAZcAAAB5/3z+4Pyo+hn4dvUu86nxEvFe8VDymPP19CH2Lvcj+B75Mfpp+7P87v0g/zMAJgEJAiUDiAReBnAIfQoxDFUN1w2tDRgNNQxFC20Kwgk2CY0ImgdaBvsExgMBA5ECXwJDAhcCtgH8AAgA0v6o/bb8J/zV+7/74fsm/K/8Uf0r/hb/PwB1AY0CTwONA0YDlQLdAR0BpQBnAIIA0wBPAbQB4AHaAbkBlwFqAT0B0ABFAF3/XP4r/Rf8R/vA+q36zfpn+w382fyb/Un+3P4X/zP/Ef/b/ov+Zv5Z/pX+C/+u/4EAXgFPAv4CkAPUA8YDdQPUAhsCdQH7ANEA0QACAUwBsQEnAqwCRgPkA50EGwVjBSYFkAS0A8oC6wFEAf8A+wBNAcwBUwKCAn4CNAK4ASQBkAATAHn/9v5//jL+DP5M/gb/LgCVAbQCMQMIAzoCAgHK//j+1f5A/0QAUAErArMC6wIrA5YDQgQXBd4FYAZ3BtcFuwRDA9QBkgC9/1f/Lf9R/0D/E/+//t398fy8+yf6vfhH92X2Ofb99qT44/rQ/FT+1v5Z/wUB5AOaCEwNgRHUEkcRTA23CI8FbgX3CNMOahXiGdsamBdlEboJ0gIN/gf8afy0/fL+7f6D/Tz79fhD9zn2a/Ua9KnxWO6H6trmG+Tr4nfjyeV/6bTtwvFX9Pb0tvOs8XTwJ/Fj9IP5Dv9PA2EFWgVaBLwDowQoB5AKoQ1DD/0ONg3rCusI/AcCCH8I2AisCKwH7AWyAxMBV/7Y+975cvje9/z3QPiF+KD4jPh0+MT4V/kN+rH6A/va+jn6kPkT+Vn5dfpr/PD+nwEWBJgFLgb3BR0FFgRuA0sDvAO5BNMF5AaMBwcIZQj0CMoJqQoUC5UKCQmNBsQDUAEKAPP/DQGbAg8E4wSsBJcD8AFDAK/+gv1y/KL74vph+hf6A/pe+tH6e/v/+0n8Fvxt+2r6Qvlv+Dz43fg++h38/P1W/wcACgCc/+j+O/7e/db9/v1V/tz+V//i/2kA1QAEASQB+gB8ANL/Cv9G/sj92P0l/qz+D/8p/+f+m/50/o3+HP+4/zkAbwCSALIAIAHzAQQDEgTdBBcFgwRyAxcCEgGMAL4AcgFRAiQDmANyA54CeAFBAE3/sv6Y/qf+4P45/6X/HwBoAKwApQBvAPT/O/+D/uX9uv0N/u/+VgAVAtcDXQVeBrYGdwbNBfQEIASyA8EDPAQHBeUFbQaABjIGrQUeBa8EQwSVA3ECsgBp/gv8JPo5+XT5b/qk+1L8M/xH+z36iPl9+fX5bfp9+r/55PhJ+PX4cPtA/5sD6AZQCDoHhgRfAU//Kf9PAUUF3QkaDh0R0RICEygSghBgDi4MRgrRCMoHZgdrB2gHCAcdBq4E5wIMASP/Av1J+vH28fIa713snus47WLwCvR49nD2sPNU7+7q6OdI5xXpdexc8KHzzvUO99/3zfjv+Un7jvyV/U7+6/64/8sARQIcBDIGTghOCrsLRwzQC2QKfQinBpcF8AV7B5gJQgudC1gKiQccBPwA5P4N/jH+xv4+/xH/Tf4U/aL7XPpN+X345feP9373qfcW+I/47/gc+Rn5GflQ+dH5tfrm+zf9e/6X/5YAhQGAAmwDNwS2BN4E6gQLBYMFYAZiB3AILwl7CWIJ5ghTCLUHLQe4BjUGtQU2BeME0AThBAQF7QRqBGcD8QEoAHT+FP0u/NP74vsz/Hv8n/x5/PL7GPsc+jn5pPiC+OD4oPll+vT6Gvvg+pT6d/rC+mj7Q/zn/Cr9EP3D/K/8Hf0s/nv/4wDyAVsCOgLZAYQBVwGCAcgBWwIMA9UDtAQ0BTUFqwSmA3kCbAHlAPgAdQFCAtsCFwPYAi8CZQGWAPj/of93/3H/av9A/wb/z/7V/hb/jv8SAGwAoACgAI4AjgC5ACsB3gG4ApMDUQTsBFkFcgVZBecEbAQSBPYDQATIBH0FEgYoBpoFagT0Aq4B6ADwAIcBfgJrA/wDDwR4A00CtACc/qH8dPtZ+3v8Rf62/xUAI/9F/Un7AfrM+XH6Evse+x76xPhy+PX5GP7vA+wJtg2IDR4JxQFZ+rH19/WY+/kELg8oF4waiBhVEl0KGwO0/tr9LQDiBH4KYg89EgMSUQ6+B6v/Kvju8sPwoPHz8+n1nvad9ffzhPLI8YvxxvDR7onr+OeH5W7lB+iI7Knx5fVo+B75rfjC9+D2UPYw9pj2gPjh+0oA6wS/CNsKFAsrClkJRAn5CVoLpQxGDUwNBg2cDB4MsgsdCxQK6wjbB+IG6AXiBF8DPAHK/o787voj+gf6Dfrg+Uf5Pfj69un1WvVB9Wr1q/Xs9Tj24/YN+FT5dfpU+8r7F/yv/LP92f4CAGkB4AIbBP4EnwXyBTgGwQZrBxYIugh5CSUKVwrcCd0IrgfTBpkGvgbTBqwGQQZuBTwE6AKQAWgAdf/U/mX+/P2a/Ur9Bf2U/Oz7Dfs9+pr5MPkQ+SX5Xfmu+RH6Yvpq+ir6zPlz+Wj53vmc+l/7Bfxv/IX8cvx+/Lb8F/2+/Zr+av/7/1EAgACSANsAUQGjAcQByQHpASACiQInA6ED1wPpA9EDgQMTA70ChQJsAn8ClgKrAsgCHQOGA5sDUwPQAioCwQHFAfsBMgJnAqQCuQLBAp8COALFAYwBgwGSAdIBPwLjAnQDngMNA9MBrwBfALMAngHiAsEDAwTtA8MDSAPzAvECVQJrAJH9Gfsz+kf8CwEuBqsIIwdfAkv8z/dq90T7sAFQCKgM9wxiCZAEFQFIAHsCZgboCbgLLgymC0cKjQiOB70H8QjYCiIMuAueCbAGtwObAccA2QDoAFsACP/k/FT6OfiQ9r30fvIu8Ebuh+1b7tPvH/CS7r/rA+nW54zonOrK7FjuLO+W7yjwDPE48n3zd/TB9M30d/VB90D6r/11AI8BOwHAAAwBQAISBKwFNAZABqMG4AfKCQ0M4A38DSgMSQmqBpkFywa2CbQMCw48DcUKhQejBPsCiALMAlwD3QMJBIMDUALFAB3/of17/Lf7Qfsl+5D7UfwC/Uf96fze+5T6qPmG+Tn6hvsF/Rj+av4f/qL9fv0X/lH/hQA3AUkBGAH5AEcBEAIBA7YDBwQHBNQDngOIA5wD3QMwBEQEDwSXAwwDhQISArMBaAEvAf8AxwBjAMH/AP9Y/ur9yP3F/Zz9P/3D/Ff8IPwz/G78pvzH/Lf8fvw//B/8Lfxr/NL8Sf23/Qr+Kv4e/ur9nv2B/cr9gv57/0MAiQBBAKv/Hf/p/iP/tv9iAPIAPQFNAUEBJwEvAWABvQEUAjgCJwLzAeIBGAKVAicDpQPaA7EDSQPsAuACIAOWAw0EWgRaBCAE5APRA+0D9AOpAw8DSwK8AY0BpAHaAfYB1wFWAZMAxf8Y/8n+3P4s/3z/kf8//3D+Rf0D/DH7IPvQ+9n8j/2D/eb8UPxo/G79GP+cAGYBMwFPAJf/AwD4AcoEsgfgCRMLjAu+C/UL7QsrC8IJaghUCGEKEQ5uEUYSrQ+GCkMFUwLLAhgGHQqDDOQL1QinBAsBuf6S/fL8Afzg+kD6ofph+/r6CPio8p3syeg86U3tb/KL9Wb0S++66Hbk++R56WPvTPPf8r/us+md54rqDPHL93r70/oU9zHzR/Km9b/71AGZBQAGHwQsAiECWQSDB70J6wmDCFEHNQhmC3cPMRLNEWwOtgkgBp4FMwhNDF8PjA+0DDkIOARcArQCGgTEBLQDVAHc/ob9tP3E/oT/9/7i/Bz63PcP9//37vnP+9/8x/zC+4D6Afqc+uv7Rv0t/nD+bv60/pf/AgGIApsD4wN5A+wCqAL4AvYDQAVLBp8GTwbABUwF8QSXBBAEXgOuAjkCFAIkAiUCzwEJAdb/XP4H/TP86vsS/Ez8VvwD/Ev7X/qI+e34kviR+On4dPnh+Rz6//nD+Zz5v/k2+uP6oftH/M/8Lv2N/Qr+r/5R/97/PACNAOoAZAEAAsQCkQMdBEsEIgTVA6EDowPkA2cEFAWkBeQFrAXxBBQEhwOOAxgEpwTEBGQEtgNMA1IDxgNTBJkEbgTCA9sCEwKjAZkB1wE4AoMClgJ3AhgCgwHYABwAnf+u/2QAagEeAhUCSQERAO7+P/4j/oz+Pf/v/1EAWwAwAOj/tP+h/4//ef9t/4X/8P+qAHYBQAL4ArcDXgTQBBcFawXqBWwGKAdOCO8J7wuhDR0OAw1MCvAGFQQaA+4EXAmiDlUSbRLjDW8Fuvvj9Fr0y/ogBZsNDQ8rCCj87fCn6xLuBvYV/oUBiP4X95nvFOy37brykPf/+Hn2+/GL7gbu3+/+8YryG/EC7/3t8O6F8Vf0r/X79MHyuvCh8Mfyava3+fP6G/qO+CD4v/m7/ED/8v/T/jH9p/xM/gMCWAZDCYIJBwdMA7YA5ADeAwQIiAvxDC4MUQqrCNgH5Ad3CA8Jbwl7CW0JfAmnCboJXgk7CHoGmwQ6A9ACUwN9BJIF+AVWBakDTAEF/4/9Xv0a/iX/3//5/43/3v4g/mX9wvw//Pv7Ffy6/Nj9F//h/7z/nv4i/R38FfwP/Xf+ov8gAOz/Qf92/ub92P1R/ub+Kf8V/+n+3/74/hD/Jf8q/zX/Uv9n/17/MP/0/tP+3/4H/yn/Gf/A/jf+wP2y/S7+9f6b/9P/cv9//mz91vwQ/RP+a/9lAIsA2v8I/5v+yf6I/2gALAF6AWABJAEIAToBswErAmYCVAITAtEBtQHoAS8CZwJ/AoQCmQKrArACkgJYAhIC0QGNAWYBfAHYAToCUwL0AR8BPACr/63/KgDvAIYBlwEIAQEAAv9+/sf+qf+CAN0AvgBiAB4AMwCaAAABLAHfACAARv/Q/h7/AAArATsCrgKDAgMCdAH1AGwAEgD6/9cAGgM7BvcIvAmUBzYDqv5G/N79AwOLCWwOBA8qC5wEfP6j+zL9SQJiCJ8MJw0RCtIEqP+o/Kb8V/84A3gGwQdnBvICw/5c+wP62/ol/V3/+/+P/nn7/PeF9eT08vWT95j4Y/jm9qz0ovJw8VrxI/Jt88P0k/WJ9af0Q/MR8unxD/M19Xf3+fgn+Sv46fZt9kP3G/n5+u37pPuW+ub5jvqr/Er/EAECASn/t/xS+yb8Mf8gAxwG0AYnBVkCQwBIAGICiAUbCOEI8AcpBuYEwgTMBUUHTQhrCMwH6wZLBgsGAgYPBvcF0AXABd0F9gW6BdoEcgMOAjwBYgFAAjcDiAPYAlABpv98/jX+q/5Z/8b/nf/q/hL+aP0t/WX9tP3H/YD9Bv2t/Ln8KP3E/Tv+Xv4o/tT9kP1k/WD9jP3x/YT+GP9z/3L/Ff+k/mD+b/71/sn/oQAoATABvQAWAJP/gP/2/9EAwwF0AqYCSwKkAQIByAA1AUECiwNuBI8E6APUAvgBxgFGAicD7gNLBBIEfwPtApICrQITA38DlQMnA3QC2wGQAaEB2gERAiYC/AGZARQBlgBUAEcATgBNAC4A6P+n/3b/X/9h/2H/WP9I/yz/EP8I/xT/J/83/1L/dv+0/+b/8//Y/5T/V/9K/4v/FwChAO0AxwBAAKr/P/8j/2P/3/9+AP8ALQH2AG0A8f+1/+P/hwCDAY0CPQNLA88CIgLBASQCPQOvBNIFIAaKBZYE3wPaA6wE3gXfBg0HRgYRBfYDdAOhAyEEiwQ+BEwDsgE8AC7/q/7o/mL/7/8AAGH/F/4//E/6vfgj+Lj4HvqH+9371fqO+Ob1BfSe8+z0x/Y9+Kz42Pds9iH1u/RR9Vv2EvcA92L2vfW89Y725fcn+cL5iPnB+BP4EPjn+GP69/sh/Y/9cv0Y/Q39kf1x/lf/yv/k/+D/HQDMALEBegLBAnoCAwKuAdYBXwIcA8QDGAQiBPYDzAO4A9ADEQRcBLYEAQUuBS4F8wS0BJIEqAQGBXQFswWRBf4ESgSgA04DcAPxA4YErARFBFYDNAJzAUABsAFAAnsCTgLDATUB6wDyABMBFQHRAEcAx/+a/+H/fAD5AOgAEAC6/nj94/wV/bb9U/55/hD+UP19/NT7cPtm+4z7wPvp+/r7DPwn/Dn8N/wd/AL8FPxj/A794v2j/jn/i/+2/8v/8f89AKMAGwGyAToCqAL/AiYDJwMXAxMDIANNA6UDGwSUBN8E7wTKBIoEWgRSBGMEggScBLwE9AQ4BXEFaQUkBcAEagQ9BFAEpgQHBSoF5AREBHoDzgJqAkYCWgJqAkwC6AFSAbcARwDr/6P/b/8z/xn/GP8i/yr/+/6c/iH+p/1w/Wf9pP33/SH+MP4c/gf+7/3Y/bv9g/0r/cz8jvyH/Pj8sf1Z/rr+cv67/ev8nfxG/az+bgCmAQoCeQFfAKX/zv8jASED8AT/BfkFTAWMBEEEqARwBRIGEgZ/BcMEXQRlBKIEoAQpBDAD/AH8AHUAawCmAJYA8//V/pj9uPxM/FP8aPwO/CT71fmF+LP3hvfq92X4evj+9xj3AfY89d703fQb9Ur1gPXr9Xz2Lves98X3ivcV9+D2G/fi9xL5W/p++zb8WPwJ/J/7PvtO+/z7Hv2r/vb/0QAoAd0AfgBOAHoAHwHXAXIC7QJPA+MDkwQjBWYFJQV9BL0DeAPuA/QEKAYEBxoHbQZpBYcEGAQwBIQEvgSsBF0EJwQcBBIE9gNkA5UCegGQACwALACeAN0AyABYAIz/3f5b/jv+Xf5+/pP+av42/hv+IP5O/m7+cP5b/jn+Pf5i/pb+wf7S/t/+3/7z/hr/O/9Q/zz/Fv/5/u7+//4z/1H/Yv9l/1z/c/+P/6//xP+5/7T/tf/c/zgAoADrAAIB6gDVAOIAIwGSAesBJQI0AiQCMwJVAosCwALMAs4C0ALVAg0DWQOzAxMENwQuBBIEBgQtBGIEmgS3BLIEpASDBHAEdwR1BGMEKAS8AzoDwQKCAmgCZgJkAjgC5AGLARsBrwBXAAQA0f+s/5j/uv/Z/9n/2v+F/yb/tP4//hj+Av5t/uD+Sf+m/5v/Zf/m/l3+Ef4N/mD+xf4O/zv/JP/+/s/+r/62/q3+nv6C/n3+lv7O/gv/Kf8L/7H+V/4e/jb+hv7k/kr/W/9B/yX/FP9m/77/GABZAEgAMAAAAP7/OQB6ALsA1gDNALcAuQDFAOgA8ADhAKMARwA8AF0AtAA7AYEBhQFAAbcAXQAmACsAZwCUAK8AsACcAIMAawAoANb/dP/8/q3+bf5K/iz++f2+/Vn95Pxh/OT7dPsf++n6yPrD+rT6pPqM+mD6Lvr++ez5/vkX+jz6aPqa+u/6N/t3+6n7pvup+7H78/t0/Pv8lP3r/RP+J/45/oj+5v5n/9b/EAAzAEEAXwCSANEAEQE9AVUBRAE6AVEBXwF3AW0BUgFLAVgBhQGwAcUBswF+AU0BLwEsAUwBcwGXAZ4BkgF+AWcBWgFGASUB/ADYANgAAgFAAYABlgF1ASUBywCXAIYApwDdAAoBHgEcARwBHwEpASABAAHLAJ4AlgCnANUADwEtATcBFQHlALcAigB0AGkAhgCuAOsAMQF3AbkBzAG+AYwBZAFiAY4B3QE6AqcCCAM6A00DRQM7AzYDTAN6A6kD8QMvBEEEKwT4A7cDiAN/A4IDlQOOA3YDTAP9AsUCjgKDAoICYwI0Au0BrgGGAVgBKgH1AMAAkgBQABsA2P+h/2//Kv///sz+rf6H/m3+Sf4P/tn9j/1i/UL9Tf1r/ZP9y/3N/bD9Z/0j/Qv9Jf19/dv9Lv5U/kH+Ev7k/dv98/0Z/kj+b/6O/rj+6v4l/0H/KP/k/nn+Lf4P/jf+jP4I/4H/y//q/9X/s/9//03/Hf8M/yv/jv8wANoAbAGNAUsBuwAYALH/mP/c/1IAywAZAR0B9ACvAGAAEADQ/7H/pP+t/9H//P8hADwAPwAtAAwA8//S/7T/nP+P/6L/1f8oAHsArgDEAK4AkAB1AGIAXwBSAFgAZQCEALIA0gDkALMAVgDM/z7/3P6m/pn+kP5w/jb+//3S/aL9XP0C/Yb8EvzJ+8X7EfyH/O/8Jf0G/b/8g/x3/KX8Av1w/cv9Cf4r/lP+gv63/ub+/v4I/x//PP92/8b/HABtAJUAmQCVAIwAfgB5AHMAeACXAMQAAgEtAU4BVAElAesArACWAJ0AwQDuACcBawGhAcEBsAGJAUwBJQEcATwBjwH2AVECfAJ4Ak8CHAL5Ae8B8AH/AQwCEwIbAkkCcQKDApMCegJmAl4CTgJeAlUCVgJwAnMCiQKxAuQCEAMQA+ACswKUAo4CzQIaA2gDrAO4A70DogN1A3YDbwN+A4wDiQOdA7ID0gPoA9oDtgN0AxkD2ALFAs8C9AIRAxED8QKoAj0CvwFjATEBNgE+ATYBHAHZAKEAXwAqAPD/x/+t/3T/KP/T/qr+vP74/jv/QP8E/5n+Iv7T/cP9Af5w/sj+7/7U/pH+R/4O/vz9Dv5H/oH+pv6i/pD+jP6R/pz+pv7F/t/+Av8L/wj/Bv/5/gn/IP9B/1b/Z/90/2b/X/9I/y//Bv/x/vj+CP83/2r/jP+D/2P/Kf/d/rD+wv79/jv/a/97/1n/Iv///vf+A/8J//3+2P6k/ob+l/7T/hX/QP87/wL/uf6B/nH+gv6u/tz+7/7s/tL+s/6Y/n/+cv5j/lX+U/5k/o/+tf7G/sv+uv6X/nr+a/5y/n3+lf6v/sb+zP7F/rj+of6U/nf+Yv5S/k3+U/5R/ln+Z/6F/nr+V/4y/gj+8/31/R3+SP5n/nv+hP6C/nL+eP6T/rr+5/76/vb+4P7Q/tr+Cv9Q/5H/qP+f/4H/Xf9B/0T/dP+3/wUANgBDADAAGAAKAPf/6//h//v/JwBmAIsAlwB/AFQALQAKACIAVQCQAKUAmgB5AFgAQwA2AFYAeQCaAKAAkwCPAHIAewCYAMUA8wD1AOgA1ADiAOoAAwE2AWgBiwGMAYUBbQFgAWIBbwGfAcQB3wHcAdkB6QHsAecB1wHAAbcBtQHMAfEBEgI0AkECLQIKAtwBuwHBAdIB5QEDAg4CDgL/AfEB5wHUAdUBzwHHAcQByAHRAd4B3QHXAcUBrAGDAVwBVAE3ARwB9QCYAFkALgAXACsATAB3AHUAOwDa/3f/JP/+/iX/e//w/0IAXAAtAMr/X/8J/+z+/f4f/zr/Tf9Y/2z/gv+B/2L/CP+I/h3++/0t/pX+Df9M/zT/4v6C/kD+Mf5V/pX+yv7c/tv+8f4d/1L/fP95/0j//P6+/rT+8P5f/8H/+//v/5//QP8E/wT/P/+Z/+7/HQAdAAUA9f/y//7/BwACAPz/+v8JADEAaQCSAKAAhABZACUA/v/3/woAKQBFAFQASAAkAPb/1P/J/9b/9/8UACAADwDv/9H/v//G/9z/5//h/8b/rv++/+f/BAD9/8j/b/8V//b+Kv+L/+D/9P+z/0T/0/6Y/qf+6f4//4L/mP+M/3D/Yf9v/3r/ef9j/0v/Rv9g/5r/2P8CAAQA0f98/y//Ef8w/4H/4f8iACsA+v+u/2L/OP9A/1j/dv+V/6z/1P8AACAALAAJAMr/dP8w/xj/M/+Z/xcAnQD4AAQBzQBdAOT/oP+6/x4ApAASAUMBKwHhAJIAaQBvAJMAwgDeAOYA6gD6AAcBCAHtAK8AYAAfABQARwCiAA4BXwF0AUwBBAHEAK8AyQAKAVcBmAHNAfEB7QHSAZ4BXAExASkBTgGNAcYB0wGqAUsB3ACLAHgAlwDIAOIA2ACnAGIAKwAMAAAA+//1/+7/8v8NAD0AdgCdAJkAZAAQAL3/iv+P/87/KACNAMsAygCCAA0ApP9r/3P/rv/4/zYAUABCABoA7f/Q/8n/0P/R/8X/u//C/+b/EgAuACYA6f+L/yr/9P4I/03/qP/j/+T/p/9F//L+2f7//kX/iP+e/4D/R/8Z/xT/N/9r/4r/gP9c/zX/Jf8+/2j/lP+z/7f/pv+T/4j/iP+W/73/5//6/+3/zv+v/5v/nv+5/+P/CQAfABQA6P+y/5n/q//Z/xQARQBXAEYAIwAAAOL/2P/w/xEAJAAkABsAFgASABAACQDx/9f/yv/I/9P/6/8BAAIA3/+j/2n/Sf9H/1f/e/+f/7b/sv+W/3H/Xf9Y/1b/av+I/6f/uv+6/63/qv+u/7v/x//Q/93/5P/q//L/AAAdADcAPQAmAAgA+v8CABoAMgBIAFYAVgBFADEALwBDAFsAZgBZAEUAOAA4AEEATQBcAGAAVgA4ABAA8f/p//f/BgAVABgABwDr/83/s/+j/6D/n/+e/5n/oP+x/8j/1//W/73/lv94/3L/jP++//H/GAAbAP3/2P+2/7H/0f8JAEIAbgCLAIoAdABiAFQARwBJAFoAbACLALYA0wDiAN4AvACMAGoAZQCAAK0A3QD3AOUAtgB3AEsAPABLAG0AkwCzALEAjwBjADwAJgAiACQAQABmAHgAbABIACUADgADABMAJQAvACsAIwAWAA0ADQAOAAYA+f/n/9r/2//p/wMAFgAeABMA+v/d/87/1f/r/w4AKwA3ADAAEQDv/97/6P8EABQAGQAPAPn/4//X/9b/7v8QACYAHgD7/8j/pf+f/6z/x//k//P/7f/V/7z/sf+5/83/3v/g/9H/tP+c/5r/rv/J/87/vP+j/5T/jv+V/7D/1f/3/wEA9P/V/7f/pP+j/7T/2v8RAD8AVABBABoA8f/W/9r/9/8fAEAAUABFACwAGgATABgAHwAlACAAHQAbACsASQBgAGQASQAVANn/qP+a/7T/5f8VAC8AJAD2/8P/l/+A/4n/o//J/+//BQAKAP//4P/B/6X/lv+X/7H/4v8VADgAPAAjAO7/wf+q/63/z//1/xYAJAAZAA8A/v/v/+v/7//t/+z/9f/9//z//v/7//L/7v/t//D/+P8JACAAJgAYAPj/0f+z/7P/1//8/xYAGwAFAOL/yv/G/87/0//O/8n/1//3/yAARQBCABAAzf+X/4//uv8DAEYAYABSAB8A5P/A/8X/4v8JACIAIAAWAA8ADgAVABMACQD6/+X/2//n/wgAPABdAGEARQAQAOP/xP+8/9f/CQBFAGIAXQA3AP3/zf++/9X/AAAmADkAOAAmABQAAwD2/+z/7v/0////FwAtADYAOgA1ACUAEgARAB8AMABFAFYAXQBdAFoAUgBHAEEAOgA6AEsAYgB2AH4AeQBdACoA/f/n/+z/CgAtAEkAUgA/ABAA3f/G/8P/z//f/+z/8//x/+z/5f/d/9D/wf+z/7T/z//5/xgAJAAQAOj/vP+m/7D/1f/5/wcAAgD0/+n/6//s/+j/4f/P/8D/vf/O//j/HwA0ACoACQDk/8n/xP/Z/wEAMwBZAG0AZwBLACMA9v/X/9P/6/8QADkAVQBRACQA7P+3/6P/sP/O//P/DAAhACgAKQAgABQA+f/J/6T/nv/G/w0ATwBxAGEAMgD4/8b/uf/T/wAAJQBBAEwAOwAXAO7/x/+2/73/2//+/xwAKwApAB0AEgAQAA0AAgDy/+f/7v8FACIAQwBQADsACwDQ/6n/q//U/wQAMQBGADoADgDk/8X/wP/R/+r/9f/2//T/8f/2//j/AAD0/9X/sf+Y/5//v//q/woAEQD//9r/tP+d/53/s//b//3/DAAPAAIA9v/n/9v/1f/b/+f/+/8LABUAJwApACQAEwD6//D/9P8KACAAMQA8ADAAGAAFAPH/6P/u//3/FgAoADEAKgAMAO3/zP+w/6v/vv/l/wAABwABAOL/w/+w/7D/wP/X//v/EgAWABEAAgD6//X/7//v//L/+v8KAB8APQBJAEMALQAUAP3/+P///xUALAAzAC4AGQADAOv/4f/j/+f/7v8AABIAIgAiABcABgD1/+v/8/8DAA8AHAAjAB8AFAAKAAYAAAD9/wEABQAFAAIA/v/5/wAADwAgACUAIAAVAAUA/f8EACAAPgBSAEwAMwAbAA8AGQAzAFAAYQBbAEkAOwAtACsAMQAyAC8AJgAnACwAMAAxAC4AHgAIAP3//P8LACAALwAzACkAGgALAP///f8EAAsAFgATABIAEwAKAP//6//e/9r/4//w//v/BQAAAO//5P/c/9X/2v/m//X//f8DAAUAAQD///n/8v/o/+n/+/8PACIAKQAkABMA/v/q/+L/5f/u//z/BwAOAA4ACgABAPH/3P/M/8T/yf/Z/+n/8v/5//T/6v/f/9X/1P/T/9j/3v/p//T//f8IABAADAAAAPD/4f/b/97/7v8MACUAMwAuABYA9f/V/8v/0v/m/wUAIgAvAC8AJQAUAAEA9f/r/+z/9v8JACMAOgBLAEcAKQACAN7/0v/l/xEAQQBcAFsAPgAVAPv/7v/4/wsAGwAlACgAKwAhAB8AGgAPAP//7f/r/wAAHgA3AD4ANAAfAAYA9f/s//P/AQAPACIAKwAyACwAFgADAPD/5f/g/+v///8LABUAFAAGAPH/3f/R/8z/1v/s//7/EgAXAA0AAADz//D/8/8DABQAGwAcABkADwAHAAgADAAOAA8AEAAOAAoACQAKAAoABwAJAAcACgAKAAwAEgAUAA8ACgAHAAcADAAPABcAIAAmACoAJgAdABQADwARABoAJgAuADAAKwAdABQADgAQABIAFwAdABwAGQAXABYAFgAXABYADQAGAAQABQALABEAFAAQAAwABQD9//f/9v/2//7/AwAEAAQAAgAAAPr/9f/w/+r/6//y//v//v/8//f/7P/k/+L/5P/s//T/+P/7//j/9v/2//f/+////wAA+//x/+j/5v/p//H/+P/5//T/5//e/9T/0v/b/+b/7v/x/+n/3P/R/8z/zP/U/9j/2//b/9j/1f/T/9T/1v/Y/9T/0P/M/8r/0P/d/+f/7f/t/+r/5f/g/+H/6P/w//n/AAAHAAoABQAAAPj/9f/1//v/AAAEAAIAAwABAAUABwAJAAcAAwAAAP3/AQAMABYAGQATAAkA/P/1//L/9/8BAAwAEQAPAAoABAD+//3/AQAGAA4AFAATABEAEAARABAAEwASAA8ADgAQABEAGAAgACMAIAAaABIACwAMABYAIAApACwAKAAhABoAGgAgACcAKAAlAB0AGgAbAB8AJgAoACMAGQASABMAGgAlACwALQAqACIAGQAWABoAHgAmACsAJwAiAB0AHwAjACoALQAvACwAJwAkACQAKgAqACoAJwAjACAAIAAhACEAJQAkAB4AFAAOAAsADQATABgAGQAYABYAEgANAA0ACgAGAAcADQAUABgAHAAfAB0AFQANAAgACAANABQAFwAVABAADwAOAA0ADgAKAAsACgAJAAsAEQAWABcAEQAIAAEAAAADAAsAEgAWABUAEgAKAAQAAAD+//z///8AAAAAAAABAAMAAgD///j/8f/v//T/+/8AAAMAAwD///n/9//3//v///8BAAEAAwAJAAYABAD+//f/8v/1//f/+f/9/wAAAAD//////v/9//7//v///wQACgAMAA4ADgALAAQA///+//7/AQAGAAsADAALAAkAAgD9//n/9P/5/wAABAAEAAIAAAD5//b/9v/0//T/9v/2//f/+P/5//r/+v/3//P/8f/z//j///8FAAcABQADAP7//v8BAAUADQAOAAoABAD+//r/+f/9/wUACAAEAAAA/P///wEAAwADAP7/+//6//v/AQALABIAEQANAAYAAgAGAA4AFwAcABwAGQAUABIAEAATABUAFAAUABEAEQAQABAAEwATAA8ACgAHAAcABwAJAAsACAAHAAYABQAGAAUAAQACAAIABAAFAAUABQAAAPn/9v/0//b/+P/6//n/9v/x/+//8P/0//j/9//1//D/8P/0//z/AQAHAAgAAgD8//v///8GABAAFQAVABUAFAAPABAAEQASABEAEgAVABMAEAALAAYABAAGAAcABQAAAPv/+v/8/wAABwANAA0ACAD+//j/+f8CAAsADgALAAQA/v/+/wAABQAMAAsABAD7//f/+v8BAAYABgABAPv/9v/2//v/AAACAAIA///6//j//P8BAAcACAAGAAIAAQABAAUADQAQAA4ACwAIAAcACAAMAA8AEgAUABEADgALAAsADQAQABEAEwASABAADgAJAAkADAAPABEADwALAAYAAwAAAAIABgALAAsABAD///r/9v/4////BAAEAAIA/f/3//f/+v/9////AAD9//n/+v/+/wMACQAKAAcAAwAAAAEABgAMABAAEAAPAA8ADAAMAA4ADwAOAA0ACgAJAAoACQAHAAcABwACAAAAAAAAAP///f////3//f/9////AgAEAAYACAAIAAcABgAGAAcACAAMAA8ADwAOAAwACgAJAAgACAAJAAoACwAKAAoACgAHAAQAAgABAAIABwANABIAFAARAA0ACwAMABEAEwAVABgAFgASABIAEwAUABUAFAAQAAsACQAIAAoADwAPAA0ACQAAAP3///8DAAkADgANAAoAAgACAAQABwANABAADwAMAAkACAAJAA0AEAAPAA4ADQAJAAoADQAPABEADwANAAoACQAGAAYACAAJAAkACgAMAAsACwAMAA0AEgAVABgAFwAWABYAGAAaABwAHAAcABoAFwAYABYAFQAUABIAEQANAAoACQALAAwACgAHAAUAAgABAAMABAAFAAQAAgAAAAAAAAACAAMAAgAAAP3/+v/6//z///8AAAAA/v/8//v/+f/6//3//v////v/+v/5//j/+f/7//z//f/9//7///8AAAMABQAGAAcABgAFAAQABQAGAAoACwALAAoACAAFAAUABgAIAAoACgAIAAUABAADAAQABgAGAAQAAQD///7///8AAAMABQAFAAIAAQABAAEABAAFAAUAAQD/////AAABAAMABAAAAP7/+v/5//v/+//8//z/+//6//r/+v/7//r//P/9//3/AAAAAAEAAwAFAAQAAwAFAAYABgAIAAoADAANAA4ADgAOAA0ACwAJAAoACQAKAAoACgAIAAYABgADAAIAAgAEAAYABgAHAAYABQAEAAYABwAJAAsACgAJAAkABgAHAAgABwAHAAcABgAEAAQABgAGAAYABQAEAAEAAAAAAAEAAwAFAAgACAAGAAQAAgACAAQABgAHAAgABwAFAAMABgAGAAkACgAHAAcABgAFAAcACgANAA0ACwAIAAQABQAHAAkACwAMAAoABwAEAAQABwAIAAoACwAIAAYABAAEAAcACgALAAkACQAHAAcABwALAAsADAAKAAcABgAFAAUABwAKAAsACgAJAAgABwAIAAsADAAOAA4ACwALAAwADAAPABEAEQARABEADwAPAA8AEAARABIAEQAQAA8ADgAMAA4ADgAPABAADwAOAA0ACwALAAsADAANAA8ADwANAA0ADQAMAAwADQAMAAwADAALAAwACwANAA0ADQANAAwACgALAA0ADgAQABAADgAJAAgACAAIAAkACgAJAAcABgADAAUABgAHAAYABgAEAAMABAAFAAYABgAFAAQAAwACAAMABQAFAAYABgAFAAMAAwACAAMABAAEAAMAAwADAAMABAAFAAUABgAEAAQAAwADAAQABgAHAAcABQAFAAUABQAHAAkACAAFAAMAAgABAAEAAgAEAAIAAAD///7//v//////AAAAAP///v///wAAAAABAAEA///+/wAAAQADAAQABQAGAAYABQAEAAUABwAJAAwADgAMAAsACQAJAAkACwALAAsACwAKAAoACgAKAAkACQAKAAoACgAJAAoACwAKAAoACgAIAAgACAAJAAkACgAKAAsACwAKAAkACQAJAAoACwAMAAsACwALAAoACgAJAAcACAAIAAcACAAHAAYABgAFAAYABwAJAAkACQAJAAgABgAHAAcACAAIAAgABwAHAAUABgAIAAgACQAJAAgABwAFAAYABgAFAAYABAADAAQAAwADAAUABgAGAAUABAADAAIAAwADAAMABAAFAAQAAgAAAAAAAAABAAIAAQACAAIAAQADAAMABQAFAAQAAwABAAEAAgADAAUABgAGAAQAAwADAAYACAALAAsACQAJAAkACQAMAA0ADgAPAA8ADQALAAsADgAPAA8ADQALAAoACQAJAAsADAANAAwACgAJAAkACwANAA0ADQAMAAwACwALAAsADAAMAAsACgAJAAgABwAIAAkACQAIAAcABwAHAAcACAAIAAcABwAHAAYABgAIAAgACQALAAsACwAMAA0ADQAPAA8AEAAQAA8ADwASABQAFAATABIAEAARABIAEwASABIAEQAPAA4ADgAPAA8ADQAMAAsACAAHAAcACAAJAAgABgAEAAIAAgABAAEAAAD///3/+//4//j/+v/5//n/+f/3//f/9v/4//n/+v/6//j/+P/3//j/+//+/wAAAAD///7///8BAAUACAAKAAsACgAIAAoACwAPABEAEQAPAA0ADQANAAwADAANAAsACQAHAAQABAAGAAgACQAIAAUAAwACAAIAAwAFAAYABgAFAAMAAAAAAAEAAQABAAAA/v/8//v/+//+/wAAAAD///3/+//7//3///8AAAAA/v/9//7/AAACAAUABwAHAAUABQAGAAkADQAPAA8ADgANAA0ADAANAA8AEAAPAA0ADAAMAAsACwAMAA0ADAALAAkACQAKAAwADQANAAwACgAHAAcABgAGAAcABwAGAAQAAQAAAAEAAQACAAQABAACAAIAAgABAAIABAAEAAQAAwACAAMABAAEAAYACAAJAAoACgALAAsADQAOAA4ADQANAA0ADQAOAA4ADwAPAA4ADgANAAwACwAMAA0ADQAMAAkACQAIAAgABwAIAAYABQADAAMABAAFAAYABgAFAAIAAQACAAIAAgAEAAQAAwACAAAAAQACAAMAAwADAAIAAgACAAIAAwAEAAYABwAHAAcACAALAA0ADgAOAA4ADQAOAA8AEAARABEAEQASABEAEAAQABEAEAAQAA8ADwANAA0ADAALAAoACgAHAAcABwAHAAYABgAFAAQAAwADAAMAAgACAAIAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQACAAMAAwADAAMABgAGAAYABwAHAAcACAAJAAoADAANAA4ADwAQABEAEgASABQAFQAWABYAFgAXABYAFQAVABMAFAAUABIAEQAQAA8ADwAPAA4ADAALAAoACAAIAAgABwAGAAUAAwACAAEAAQABAAEAAQAAAAAA///+////AAAAAAEAAAAAAAAAAAAAAAEAAQACAAEAAQACAAMABAAFAAUABgAGAAcACAAIAAkACgAKAAkACAAIAAcACAAJAAoACQAIAAcABgAGAAYABwAIAAcABwAHAAgACAAHAAYABgAFAAUABAADAAMAAwADAAMABAAEAAMAAgADAAIAAwAEAAQAAwADAAIAAgACAAIAAwADAAMAAgACAAIAAQABAAMAAwADAAQABAAFAAQABgAHAAcABwAHAAcACAAJAAgACAAKAAkACQAJAAkACQALAAsACwALAAsACgAKAAsACQAJAAoACgAKAAkACQAIAAgACAAJAAkACQAMAAsACwAKAAwACwALAAwADQALAAsACgAJAAkACQAKAAoACQAIAAgACAAHAAYABwAHAAUAAwAEAAMAAwAEAAQABAADAAIAAwADAAMABAAEAAQABAAEAAQABAAEAAUABgAGAAcABwAGAAYABwAIAAgACAAIAAcACAAIAAcACAAIAAgACAAIAAkACgALAAsACgAKAAoACgAJAAkACQAKAAkACgAKAAkACAAIAAgACAAHAAYABwAHAAcABwAGAAUABAAEAAQABAAEAAUABQAEAAUABQAGAAcACAAIAAkACgAKAAsACwAMAA0ADgAOAA8ADwAQABAAEQARABMAEwAUABUAFAATABQAFQAUABQAFAATABQAEwASABIAEQAQAA8ADwAPAA4ADAAMAAwACwAKAAoACQAIAAgACAAIAAcABwAHAAcABgAFAAYABgAGAAYABQAFAAUABQAEAAUABQAFAAUABgAHAAcACAAJAAgACQAIAAkACgAMAAsADAALAAoACgAJAAgACAAIAAgACAAIAAcACAAHAAcABgAGAAUABQAEAAUABQAFAAQABAADAAIAAAAAAAAAAAAAAP//AAD///7//v/+/////////////v/+////AAAAAAAAAgACAAMAAgACAAQABgAHAAcABwAHAAgACAAKAAsADAAMAA0ADAAMAAwADQANAA4ADwANAA0ADAAMAAwADAAMAAsACgAJAAgACAAIAAcABwAIAAgACAAGAAYACAAHAAcABgAFAAUABQAGAAYABgAFAAYABgAGAAYABgAHAAcACAAIAAgACQAJAAkACQAIAAgACAAIAAkACQAIAAkACAAIAAkACQAKAAkACgAKAAkACAAJAAkACQAHAAcABwAHAAUABQAFAAUABQAFAAQABAADAAMAAwADAAQAAwACAAEAAgACAAIAAwADAAIAAgACAAMAAwAEAAQABAAEAAUABQAFAAYABwAJAAgACAAKAAkACgAKAAoACgALAAsACgAJAAkACgALAAsACwALAAsACwAMAAwADQANAAwACwAMAAwADAANAA0ADQAOAA4ADQANAA0ADQAOAA4ADQAMAA0ADQANAA0ADgAOAA0ADAAMAA0ADgAOAA8ADgANAA0ADgAPAA8ADwAPAA4ADgANAAwADAANAA0ADQAMAAsADAAMAA0ADQAMAAwADAAMAAsACwAKAAsACgALAAoACQAJAAkACQAKAAoACQAJAAgACAAJAAkACQAIAAgABwAIAAgACAAJAAkACQAIAAgACAAIAAgABwAHAAYABgAGAAYABgAGAAYABgAFAAUABQAEAAUABAAEAAQAAwACAAIAAwADAAEAAQABAAAAAAAAAAAAAAABAAAAAAAAAAAAAAABAAEAAQABAAEAAQACAAQABQAFAAYABgAGAAYACAAKAAoACQAJAAkACQAJAAoACwAMAAwACwAKAAoACwAMAA0ADQAMAAwACwALAAwADQAMAAwADAAMAAsACgAKAAoACwAKAAgACQAIAAcABwAHAAgABwAGAAUABAAFAAUABQAEAAQAAwACAAIAAwAEAAUABAAEAAMABAAEAAUABwAIAAgABwAHAAgABwAIAAkACQAJAAcABwAIAAgACQAJAAkACQAIAAcABwAHAAgACQAIAAcABgAGAAUABQAFAAQABAADAAIAAQABAAEAAQABAAIAAgAAAAAAAQABAAIAAwACAAIAAQABAAIAAwAEAAQABgAGAAYABwAHAAgACQAKAAsACgALAAwADAANAA4ADgAOAA4ADgAOAA4ADwAPAA8ADwAOAA4ADgAOAA8ADgAPAA0ADQANAAwADQAMAAwADAAMAAoACQAJAAkACQAJAAkACQAJAAgACQAKAAoACQAJAAgACQAJAAkACgAKAAsACwAKAAsADAANAA0ADQANAA4ADgAOAA4ADgAPAA8ADwAOAA4ADQANAA0ADQANAAwADAALAAsACgAIAAkACAAHAAcABgAFAAUABQAEAAQAAwADAAMAAgACAAEAAAAAAAAAAAAAAP/////+//////8AAP//AAAAAAAAAAABAAEAAgACAAMAAgACAAMABAAFAAYABwAIAAgACQAKAAsADAAMAA0ADAANAA0ADgAPAA8ADwAOAA0ADQANAA0ADQANAA0ADQANAA0ADAAMAAwACwALAAoACgAKAAoACQAJAAkACQAIAAgACAAIAAgACAAIAAgACAAJAAkACQAKAAkACQAIAAkACQAJAAkACgALAAoACgAKAAsACwAKAAoACwALAAoACgAKAAoACQAJAAgACAAHAAcABwAGAAUABQAEAAQABAAFAAQABAAEAAQAAwACAAEAAAAAAAAAAAAAAAAAAAAAAP///v/+//7//v/+//7////+/////////////v/+////AAAAAAAAAAAAAAAAAAABAAIAAgADAAMABAAEAAQABgAHAAcABwAIAAgACQALAAsACwAMAA0ADAANAA0ADQAPAA8ADwAQABAAEAARABEAEQARABEAEQASABIAEwATABMAEwATABMAEwATABMAEwASABQAFAAVABQAEwATABIAEgARABIAEQASABEAEAAPABAAEAAQABAADwAOAA4ADQANAA0ADQANAAwACwALAAsACgAKAAoACQAIAAgACAAHAAcABwAHAAYABgAGAAYABQAFAAQABQAFAAMAAwADAAIAAgADAAIAAQABAAEAAQABAAEAAgABAAEAAAAAAAAAAAAAAAAAAAD/////AAAAAAAAAAAAAP//////////AAAAAAAAAAAAAAAAAQABAAIAAgACAAMAAwADAAQABAAFAAUABgAHAAcACAAJAAkACgAKAAoACwAMAAwADAAOAA4ADwAPABAAEAARABIAEQASABIAEgATABMAFAATABMAEwASABIAEgASABIAEgASABEAEQARABEAEAAQABAAEAAQABAAEAARABEAEQAQAA8ADwAPAA4ADgANAA4ADQAMAAsACwAKAAoACwAKAAoACgAKAAkACQAJAAkACQAJAAgACAAIAAgACAAHAAcABgAFAAUABQAEAAQABAAEAAMAAwAEAAQAAwADAAMAAwACAAMAAgACAAIAAgABAAIAAQAAAAAAAAAAAAAAAAAAAP///////wAAAAAAAAAAAAAAAAAAAAAAAAAAAQACAAIAAQACAAMAAwAEAAUABQAFAAUABgAHAAgACgAKAAoACwALAAsADAANAA8ADwAPAA8ADwAPAA8AEQARABEAEQAQABAAEAAQABEAEQARABIAEQARABAAEQARABAAEAAQAA8ADwAQAA8ADwAPAA8ADwAPAA4ADgAPAA4ADwAPAA4ADgAOAA4ADgAOAA0ADQAMAAwADAALAAsACwAKAAkACgAKAAkACgAJAAgABwAIAAcABwAHAAcABwAGAAQABAAEAAMAAwADAAMAAgACAAEAAQAAAAAAAAAAAAAAAAD//////////////v/9//7/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQACAAIAAwACAAIABAAEAAUABAAEAAUABgAGAAYABgAHAAYABgAHAAgACQAJAAkACQAJAAkACgAMAAwADQANAA4ADQAMAA4ADwAPAA8ADQANAA4ADgAOAA0ADgAOAA4ADQANAA0ADQAPAA4ADgAOAA8ADwAPABAAEAAPAA8ADwAOAA4ADgAOAA4ADgANAA0ADgANAA0ADgAOAA4ADQAOAAwADAANAA0ADAAMAAoACgALAAoACgAKAAoACQAIAAgACAAIAAgACAAHAAcABwAGAAcABwAHAAYABgAGAAUAAwAEAAQAAwADAAIAAgACAAIAAgABAAEAAgABAAEAAQABAAEAAQABAAEAAAABAAEAAQABAAIAAgACAAIAAgADAAMAAwACAAMAAwADAAQAAwAEAAUABQAFAAUABQAGAAgACAAJAAoACQAJAAoACwANAAwACwAMAAwACwAMAAwADQANAA0ADQAMAAwADQANAA0ADQANAA0ADQAMAA0ADgAOAA4ADgAPAA4ADgAPAA4ADgAOAA0ADgANAA0ADQAPAA8ADgANAAwADAALAAwADAAMAAwACwAKAAoACgAKAAsACgAKAAkACAAJAAkACgAJAAkACAAHAAcABgAGAAcABwAFAAQABAAFAAQABAAEAAQABAADAAMAAwAEAAQABAADAAMAAgACAAIAAQABAAEAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAgACAAIAAgABAAIAAwADAAMABAAEAAQABAAEAAUABgAHAAcABwAHAAgACAAIAAoACgAKAAoACwALAAsADAAMAAwADAANAA0ADgAPABAADgAPAA8ADwAPAA8ADwAQABAAEAAQABAADwAPAA8ADwAPABAAEQAQABAAEAARABEAEAAQABAAEAAQABAAEAAQAA8ADwAPAA8ADwAPAA8ADwAQABAADwAOAA0ADgAOAA0ADQANAAwACwAKAAsACwAJAAkACgAJAAkACQAIAAgACAAHAAcABgAGAAUABQAFAAUABQAFAAQABAAEAAQAAwACAAEAAQABAAEAAQABAAEAAQABAAAAAAAAAAAAAQABAAEAAQABAAIAAQACAAEAAgACAAMABAAEAAQABAAFAAYABgAGAAgABwAHAAgACAAJAAkACQAJAAkACgAKAAoACgAKAAsACwALAAwACwAMAAwADAAMAA0ADQANAAwADAAMAAwADQAMAAwADAAMAAwADAANAAwADQANAAwADQANAAwADQANAA0ADQANAAwADAANAAwADAAMAAwADAALAAsACwALAAsACwAKAAoACgAKAAkACQAIAAgABwAGAAYABQAFAAUABQAFAAUABQAEAAUABQAEAAQAAwADAAIAAgACAAEAAQABAAAAAAAAAAAAAAAAAAAA//8AAAAA///////////+//7//////wAA/v/+//////8AAAAAAAAAAAAAAAAAAAAAAQABAAIAAwADAAMAAwAEAAUABgAGAAYABwAHAAcABwAJAAoACwALAAsACwALAAwADAAMAAwADQAOAA4ADgAOAA4ADwAPABAADwAQAA8AEAAQABEAEAARABAAEAAQABAAEAAQABAADwAQAA8ADwAOAA4ADwAPAA4ADgAOAA4ADQANAA0ADAAMAAwADQANAAwADAANAAwACwALAAsACwAKAAkACQAIAAgACQAIAAgABwAHAAcABwAGAAYABQAFAAQABAAEAAMAAgACAAMAAwADAAMAAwACAAEAAQABAAEAAQABAAEAAQABAAAAAAABAAEAAQAAAAAAAQABAAEAAQACAAEAAQACAAIAAgACAAMAAwADAAQABAAEAAQABQAFAAUABgAGAAYABwAHAAcACAAJAAkACQAKAAoACgALAAsACwAMAA0ADQANAA0ADQAOAA4ADgAOAA8AEAAPAA8ADwAPABAAEAAQABAAEAAPAA8AEAAQABAADwAPAA8AEAAQABEAEAAQABAAEAAQAA8ADwAPAA8ADwAOAA4ADQANAAwADAAMAAwADAALAAsACwAKAAsACwALAAoACgAJAAkACQAJAAkACQAIAAcABwAHAAYABgAGAAUABAAFAAQABAAEAAQABAAFAAQABAADAAMABAAEAAQAAwACAAIAAgACAAIAAgABAAEAAgABAAEAAQABAAIAAgABAAEAAgABAAEAAgACAAIAAwADAAMAAwAEAAUABQAFAAUABQAGAAYABgAHAAcACAAIAAkACQAJAAkACgAKAAsADAALAAwADAAMAAwADAANAA4ADQANAA0ADQANAA4ADgAPAA8ADwAPAA4ADwAOAA8ADwAPAA8ADgAOAA4ADgANAA0ADgAOAA4ADgAOAA4ADgAOAA4ADgANAA0ADQAMAAwADAALAAoACgAKAAoACgAJAAkACQAJAAkACQAIAAgACAAJAAcABwAGAAcABgAGAAYABQAEAAQABAADAAMAAwADAAIAAgACAAIAAgACAAEAAQABAAEAAQABAAEAAQABAAIAAgABAAEAAQAAAAAAAQABAAEAAQABAAEAAQADAAMABAADAAMABAAEAAUABAAEAAUABgAFAAUABgAGAAYABwAIAAgACAAJAAkACQAJAAkACQAKAAoACgALAAsADAAMAAwADAAMAAwADAAMAAwADAAMAA0ADQANAA0ADgAOAA4ADgAOAA4ADgAOAA8ADwAPAA8ADwAOAA4ADwAPAA4ADgAOAA8ADwAOAA4ADgAOAA4ADgAOAA4ADQANAAwADQANAAwACwAMAAsACwALAAoACgAKAAoACQAIAAkACAAJAAgACAAHAAcABwAHAAcABwAHAAcABgAGAAYABQAFAAUABAAEAAQAAwADAAMAAwADAAIAAwADAAMAAwADAAIAAgADAAMAAwACAAIAAwADAAMAAwADAAQABAAEAAQABQAEAAUABAAFAAUABQAFAAUABgAGAAYABwAIAAgACAAJAAkACQAJAAoACgALAAsACwAKAAoACwALAAsADAAMAAsACwAMAAwADAAMAAwADAANAA0ADAANAA4ADgAOAA4ADgAOAA4ADgAPAA8ADwAOAA4ADgAPAA8ADwAPAA4ADgANAA0ADQANAA0ADQANAA0ADAAMAAwACwALAAsACQAKAAkACQAJAAkACQAJAAkACAAIAAcABwAHAAcABgAFAAUABAAFAAUABAADAAMAAwADAAIAAwADAAMAAwADAAMAAgABAAEAAQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAQAAAAAAAQABAAEAAQABAAEAAQABAAEAAQACAAIAAwACAAMABAADAAQABQAFAAUABQAGAAcABwAHAAYABwAJAAkACQAKAAoACgAKAAoACwAMAAwADQANAA0ADgAOAA0ADgAOAA4ADwAPAA8ADwAQABAAEAAQABEAEQAQABAAEAAQABEAEAAQABAAEAAQAA8ADwAPAA8ADwAOAA4ADgAPAA8ADgAOAA4ADQAMAAwADAAMAAsADAALAAsACwAKAAoACgAJAAgACQAIAAcABwAHAAcABgAGAAYABgAFAAUABAAEAAQABAAEAAMAAgADAAMAAwADAAMAAgACAAEAAgABAAEAAQABAAEAAQABAAEAAQABAAEAAgABAAAAAAABAAEAAgACAAMABAAEAAQAAwAEAAUABQAGAAcABwAHAAgACAAIAAgACQAJAAgACQAKAAoACgALAAsADAAMAA0ADAANAA0ADQANAA4ADgAOAA4ADgAOAA4ADgAOAA4ADwAQAA8ADwAQAA8ADwAPAA8ADwAPAA4ADwAPAA8ADgAOAA0ADQANAA4ADgANAA0ADQANAA0ADAALAAwADAAMAAsACwALAAsACgAJAAkACAAIAAgABwAHAAcABgAGAAYABQAFAAYABQAEAAUABAAEAAMAAwADAAIAAgACAAEAAQAAAAAAAAABAAEAAAAAAAEAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAEAAQABAAEAAgACAAEAAgADAAQABAAEAAQABQAGAAYABgAGAAgACAAIAAgACQAKAAoACwALAAsACwAMAAwADAANAAwADQANAA4ADgAOAA8AEAAQABAADwAQABAAEAARABEAEQARABEAEQARABEAEQARABEAEAARABEAEQAQABAAEQARABEAEQAQABAADwAPAA4ADgAOAA4ADgANAA0ADgANAA0ADQANAAwADAALAAsACwAKAAkACQAIAAgABwAHAAcABgAGAAUABQAFAAUABQAEAAMAAwAEAAQAAwADAAMAAwACAAIAAgACAAIAAgACAAEAAQABAAAAAgACAAIAAgACAAIAAgABAAEAAQACAAMAAwACAAMAAwADAAMABAAEAAQABQAFAAUABAAFAAYABgAGAAcACAAHAAgACAAJAAkACQAJAAkACgAKAAoACwALAAwADAAMAAwADQANAA0ADgAOAA8ADwAPAA8ADwAPAA8ADwAPAA8AEAAPAA8ADwAQAA8ADwAPAA8ADwAQAA8ADwAQABAAEAAQABAADwAPAA4ADgAOAA0ADQAMAAwACwAMAAsACwAKAAoACgAKAAkACQAKAAkACAAIAAcABwAIAAcABwAGAAYABgAFAAQABAADAAQAAwADAAMABAADAAQAAwADAAMAAgACAAIAAgADAAMAAgACAAIAAgABAAEAAAABAAEAAQABAAEAAQABAAEAAQABAAEAAgABAAEAAQABAAIAAwADAAMAAwADAAQABAAEAAUABAAFAAYABQAGAAcACAAHAAgACAAIAAgACQAKAAoACwALAAwADAALAAsADQANAA0ADQANAA0ADQANAA4ADgAPAA4ADwAPAA4ADwAPAA8ADwAPAA4ADgAOAA4ADgAOAA0ADgAOAA4ADgANAA0ADgAOAA4ADgAOAA0ADQANAA0ADAALAAsACwAKAAoACgAJAAkACQAKAAkACQAIAAgABwAIAAgABwAGAAYABgAGAAUABAAEAAMAAwAEAAMAAgACAAIAAgABAAEAAgABAAEAAQAAAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAIAAgACAAIAAgADAAIABAAEAAQABAAEAAQABQAFAAYABwAGAAcABwAHAAcACAAJAAkACQAJAAkACgAKAAsACwAMAAwADAANAA4ADgAOAA4ADwAOAA4ADgAOAA4ADgAPAA8ADwAPAA8AEAAPABAADwAQABAADwAPABAAEQAQABAAEAAQABAAEAAQAA8AEAAPAA8ADwAOAA8ADwAOAA4ADgANAA0ADQANAAwADAAMAAwACwALAAoACwAKAAkACQAIAAgABwAHAAcABwAHAAcABwAHAAYABgAFAAUABQAFAAUABQAEAAQABAADAAMAAgACAAIAAgACAAEAAQABAAEAAgABAAEAAQABAAEAAQABAAEAAQABAAEAAQACAAIAAgACAAIAAgADAAMAAwAEAAQABAAEAAQABAAFAAUABgAFAAYABgAHAAgACAAIAAkACQAJAAkACgALAAsACwALAAsACwALAAsACwAMAAwADAAMAA0ADQANAA0ADQANAA0ADQAOAA4ADgAOAA4ADwAOAA4ADwAPAA8ADwAPAA4ADwAOAA4ADgAOAA4ADgANAA0ADAANAA0ADAAMAAwACwALAAoACgAKAAoACQAJAAkACAAIAAgACAAIAAgABwAGAAYABQAFAAUABQAEAAMABAAEAAQAAwADAAIAAgACAAIAAgACAAIAAgACAAEAAQACAAEAAQABAAEAAAAAAP////8AAAAAAAAAAAAAAQAAAAEAAQABAAEAAgACAAIAAQACAAIAAgADAAIAAwADAAMABAAEAAQABQAFAAUABgAGAAcACAAIAAkACQAJAAkACgALAAwADAAMAA0ADQAOAA0ADgAOAA8ADwAPAA8AEAAQABAAEAAQABAAEQARABEAEQARABEAEQARABEAEQARABEAEgASABIAEQARABEAEAAQABAADwAPAA8ADwAOAA4ADgAPAA4ADgAOAA4ADgANAAwADAALAAsACwALAAoACQAJAAgACAAIAAcABwAHAAYABgAFAAUABQAEAAQABAAEAAMABAADAAMAAgADAAMAAgACAAEAAQABAAEAAQABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQABAAAAAAABAAEAAgACAAIAAwAEAAQABAAFAAUABQAGAAcABwAHAAcABwAIAAgACQAJAAkACwALAAsACwALAAwADAANAA4ADQAOAA8ADwAOAA4ADwAPAA8ADwAPAA8ADwAQABAAEAAQABEAEQARABAAEAAQABAAEQAQABAADwAQABAADwAPAA8ADwAPAA8ADgAOAA4ADQANAA0ADAAMAAsACwAKAAoACgAJAAkACQAIAAgABwAGAAYABQAFAAUABAAFAAQABAADAAQAAwACAAIAAgACAAIAAgABAAEAAQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAQABAAEAAgACAAMAAwADAAUABQAFAAUABQAGAAcACAAIAAgACQAKAAoACgALAAsADAAMAA0ADQANAA0ADgAOAA8ADwAPABAAEAAQABEAEQARABEAEQARABIAEgASABEAEQARABEAEQAQABAAEAAQABEAEAAPAA8ADwAPAA8ADwAPAA4ADgAOAA0ADQAMAAwADQAMAAwACwALAAsACwALAAoACQAJAAkACQAHAAcABgAGAAYABgAFAAUABQAEAAQABAADAAMAAQACAAIAAQAAAAEAAQABAAAAAQAAAAAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAEAAQABAAIAAgACAAIAAwADAAMABAAEAAQABAAGAAYABgAHAAcACAAIAAkACQAIAAkACQAJAAoACwAMAAwADAAMAA0ADQANAA4ADgAOAA4AEAAQABAAEAAQABEAEQARABEAEQAQABAAEQARABEAEQARABEAEAARABEAEQARABEAEQARABEAEQARABAADwAQABAADwAPAA4ADgANAA0ADQAMAAsADAALAAwACwAKAAoACgAJAAgACAAIAAgACAAIAAcACAAHAAYABQAFAAQABAAEAAQAAwAEAAQABAAEAAMAAwADAAIAAwACAAMAAwADAAMAAwADAAMAAwACAAIAAgACAAEAAgACAAIAAgACAAIAAgACAAIAAgADAAMAAwADAAMABAAEAAQABQAEAAUABQAGAAcABwAHAAgACAAIAAgACQAKAAsACwALAAsACwAMAA0ADAANAA4ADgANAA4ADwAPAA8ADwAPAA8ADwAPAA8AEAAQABAAEAAQABAAEAAQABAADwAPAA8ADwAPAA8ADwAOAA8ADgAOAA8ADgAOAA4ADgAOAA4ADgAOAA0ADQANAAwADAAMAAsACgAKAAoACQAJAAgABwAIAAgACAAIAAgABwAHAAYABgAFAAUABQAEAAQABAAEAAMAAwADAAIAAgABAAEAAQABAAEAAQABAAAAAAAAAAEAAQAAAAAAAAAAAAAAAAABAAEAAQAAAAEAAQABAAIAAQABAAIAAgADAAMABAAEAAQABAAFAAYABgAGAAYABgAHAAcABwAHAAgACQAJAAkACQAKAAoACgAKAAsACwAMAAwADAANAA4ADQANAA4ADgAOAA0ADgAOAA4ADgAOAA4ADgAOAA8ADwAPAA8ADwAPAA8ADwAQABAAEAAQABEAEQAQABAAEAAQAA8ADwAPAA8ADwAOAA8ADwAOAA4ADgAOAA0ADQANAA0ADQAMAAwACwALAAoACgAKAAoACgAJAAgACAAIAAgACAAIAAgABwAHAAcABgAGAAYABgAFAAUABgAFAAQABAADAAMAAgADAAIAAgACAAIAAgACAAIAAgACAAIAAgACAAEAAgACAAIAAgACAAMAAwADAAIAAgADAAQAAwADAAMABAAFAAUABQAFAAUABQAGAAcABwAHAAcACAAIAAgACAAJAAoACgAKAAsACwALAAsACwALAAsADAAMAAwADAAMAAwADAAOAA4ADQANAA0ADgAOAA0ADQAOAA4ADgAOAA4ADwAPAA8ADwAPAA8ADwAOAA4ADgAPAA8ADwAPAA4ADgAOAA0ADQANAA0ADQANAAwACwALAAsACwAKAAoACQAKAAkACQAJAAgACAAHAAcABwAHAAYABQAGAAYABgAFAAQABAAEAAQAAwACAAIAAwACAAIAAgACAAMAAwADAAIAAgACAAEAAQABAAEAAQABAAAAAAAAAAAAAAAAAAEAAQAAAAEAAQABAAIAAgACAAIAAgACAAMAAwADAAIAAwADAAMABAAEAAUABQAFAAYABgAGAAcABwAIAAgACQAJAAkACgALAAsACwALAAwADAANAA0ADgAOAA4ADgAPAA8ADwAPAA8ADwAPAA8AEAAPAA8ADwAQAA8AEAAQABEAEQAQABAAEAARABEAEAAQABAADwAQAA8AEAAPAA4ADwAOAA8ADwAPAA4ADgAOAA4ADQAMAAwADAAMAAsACwALAAoACQAKAAkACQAJAAgACAAIAAcABwAHAAYABgAFAAUABQAFAAQABQAEAAQABAAEAAQAAgACAAIAAgACAAIAAgABAAEAAgABAAEAAQABAAEAAQAAAAEAAQABAAEAAQABAAEAAQACAAEAAgACAAMAAwADAAQABAAFAAUABQAFAAYABgAHAAcABwAHAAgACQAJAAkACQAKAAsACgAKAAsACwAMAAwADAANAA0ADQAOAA4ADQANAA4ADgAOAA8ADgAPAA8ADwAPAA8ADwAPAA8ADwAPABAADwAPAA8ADwAPAA8ADwAOAA4ADQAOAA4ADgAOAA0ADQAOAA0ADAAMAAsACwAKAAoACgAJAAkACQAIAAgABwAHAAUABQAFAAUABQAFAAUABAAEAAQABAAEAAMAAwADAAIAAQACAAIAAgACAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAQABAAEAAgACAAMABAADAAMABAAFAAUABQAGAAYABwAGAAYABwAIAAkACgAKAAoACgALAAsADAAMAAwADAANAA0ADQAOAA4ADgAPAA8AEAAPABEAEAAQABAAEAARAA4ACQAJAAYABgAGAAUABQAHAAkADAARABMAFAAXABYAFgAUABIADgANAAgABQAEAAMABAAGAAkACgAOABAAEgARAA8ADQAIAAcAAwAAAP/////8//3//f8AAAEABgAKAA0AEAASABEADAAKAAYAAgD///v/+f/3//j/+f/9//7/AAAEAAoADgAOAA8ADwAOAAwABgACAP7/+v/2//T/9f/5//z/AAADAAUABQAGAAMAAQD8//j/9P/w/+7/7f/y//n/AAAJABQAHQAlACoAKwAmACAAGAAQAAkAAgD///7//f///wEABgANABYAGwAfACEAIQAdABYADgAIAAIAAAACAAUADAATACIAKgAtACoAJAAgABgADgAEAPr/+P/+/wUACwAOAA4AFAAhAC8AQABPAFAASgBFADoALgAfABIABQD+//r/9//+/wUADwAdACoAMwA4ADgAKQAXAAYA9//x//P/+f/8/wIACQASAB4AKwA0ADAAIgANAPf/5P/Z/9r/5v///xsANwBRAF8AXwBRAD4AJgAJAOz/zP+r/5P/ff+C/5v/tf/m/w0ALwA+AEwAWQBUAEYALgAbAAsAAgAAAPT/2P/L/9L/4P/u/wAABgABAAMACwAUABQADgAAAO3/4v/a/9b/1//P/8v/4v8FAC0AUwCBAJgAmQCVAIMAaAA8AAUAy/+V/3b/bf92/47/qf/L//j/KgBbAH8AmACUAHcAWAA5ABMA8f/L/6//ov+r/8j/6v8OACwASgBeAGYAXgBHACYA9v/N/67/nf+f/63/yf/u/xcARgBrAH8AgABwAF0APgAUAOr/wv+m/5f/nv+x/8j/4/8HACsARQBRAE8ARQA3AB4ABQDu/9L/w/+//8L/zv/e//T/BwAaACgAMQAwACoAGgAFAPL/2//I/7//t/+3/8X/1f/k//j/CgAVABoAGAAWAAoA///w/93/0f/F/7z/w//P/9r/7f/3/wIAEQAWACEAIgAhABcACgD///P/5f/Y/9P/1P/d/+b/7v/2//j//v8DAAcAEAAWABAAAwD///P/4v/c/9b/0f/T/9T/1v/g/+f/7P/6/wMACwAVAB4AHgAYABAABgAAAPz/9//4//j/+v8AAAMADAAYACEAJAAjAB4AFwAQAAQA+f/u/+n/5v/o//H//v8IABMAGQAfAB4AGgAUAAwAAAD0/+r/4v/d/9z/4//y/wIAEgAiADEAOgA/ADcAKgAdAA4A/v/u/+H/2P/U/9P/2P/g/+z/9v8AAA4AEgASABEADgAIAAIA/f/6//b/9v/6/wAABgAJAA8AEAAVABMADAAKAAQA/f/3//b/9//6//r//v8BAAYACgAOABEAFgARAAcABQADAP3/AAAEAAgADgAUABYAFgAYABcAEQAOAA0AAwD8//j/8P/s/+z/7//3////BgAOABMAGwAbABcAFwASAA4ABwAAAPf/8f/r/+f/6P/s//L/+f8BAAYADQATABUAFQATAA0ABwAAAPn/8//x//D/8v/1//z///8FAA4AFwAdACMAKQApACUAHAARAAkAAgD+//7/AAABAAcADQAYAB8AIwApACkAJgAfABgADwAEAP//+//4//3/AQAKABkAJwA1AD4AQQBEAD8ANgArAB8ADwACAPj/8v/0//f/+/8GABIAHAAnACwAMAAsACUAHwAZABAACAAAAPv/+v/5//7/AgAFAAoAEAAUABYAGAAYABYAEQANAAoABgAGAAgACQAKAA4AEQATABMAFAATABAACgADAAAA+//4//P/8//z//T/9v/7//7/AwALABEAEgASAA8ADQAIAAEA///8//j/9f/3//n//P8CAAcADAATABkAGgAbABoAGAAUAA8ACQAEAAIAAgADAAUABgALABIAFQAXABcAFQATAA4ACgAFAAEAAAD8//v//v8AAAkAEQAYACAAJQAqACkAIwAbABIACgADAP3/+//7//v/AAAHABAAFwAgACUAKwAtACoAIQAYAA4ABQD+//b/8f/w//L/9f/4//z/AAACAAUABQAGAAQAAAD7//X/8P/u/+7/8f/0//r/AAACAAYACwAOABAADwAOAAwACAAGAAAA/P/5//X/8//z//X/+f/9/////v/+//3//v8AAAEAAAD+//3//f/+//3//f8CAAMAAwAEAAUABAACAAEA/v/7//r/+P/3//n/+v/7//z//f8AAAQABwAJAAsABgABAPz/+P/1//D/7//w//H/8//5/wAABAAHAAkACwANAAwACQAEAP//+v/0/+//7f/t/+3/7v/x//b//P8AAAQACAAMAA8ADQANAAwACQAKAAkACAAIAAcABwAIAAkABwAIAAoACQAGAAMAAQD//////v///wEABQAIAAwADQAPABAAEAAPAA4ACwAHAAIA/f/3//f/+f/7////AwAIAA4AFAAVABYAGAAaABkAEwAMAAgAAgD9//j/+P/8////AgAIAAsADgATABYAFwAYABgAGAAVABEADgAKAAcABgAHAAkACQAMAAwADQANAA4ADQAOAA0ADQALAAoABwAFAAMAAwAGAAgACwALAAwADQAPAA8ADgANAAoACAAJAAcABgAGAAcACgAMAA4ADgAPAA8AEAAPAA8ACwAJAAcABgADAAEABAAGAAcACgALABAAEgATABQAEwARAA4ACwAHAAQAAgABAAIABAAFAAYACgALAA0AEAAQAA8ADQALAAgABQADAAAAAAAAAAEAAgAFAAcACgAOABEAEQARABAAEAAPAA4ACwAKAAkACAAIAAoADAAPABAAEAASABQAEwATABMAEgASABIAEQAQAA8ADwAOAA4ADwAPAA4ADQAMAAsACQAHAAYABQAGAAUABQAGAAcACAAKAAwADAAMAAsACwAJAAgABwAFAAQAAwADAAMAAwAFAAcACQAMAA4AEAASABMAEwATABIAEAAOAA8ADgANAA0ADAALAAoACgAJAAkACQAIAAgACAAIAAcABgAGAAcACAAJAAsADAANAA4ADgAMAAsACQAHAAYABQADAAIAAgADAAQABgAIAAkACgAMAA0ADgAMAA0ACwAKAAkABwAGAAUABQAFAAYACAAJAAsADAANAA0ADQALAAoACAAHAAQAAQAAAAAAAAABAAMABAAFAAcACAAIAAgACAAGAAQAAwADAAMAAwAEAAUABgAIAAoADAAOAA8ADgAOAA4ADQALAAoACQAIAAgACAAJAAsADQAPABEAEgASABEAEAAOAAwACgAJAAcABgAHAAgABwAIAAoACwAMAA0ADgANAAwADAAKAAoACQAHAAYABgAFAAUABgAHAAcABwAIAAgACAAIAAgACAAIAAgABgAFAAQAAwAEAAUABQAGAAYABwAIAAkACgAKAAkACgALAAsACwALAAoACgAKAAsADAAMAA0ADQAOAA8ADwAOAA4ADgANAA0ADQANAAwADQANAA4ADgAOAA4ADQANAAwACgAIAAgABgAFAAQAAwACAAIAAwAEAAQABQAHAAgACQAKAAsACwAMAAsACgAKAAkACQAJAAkACAAJAAkACQAMAA0ADgAQABAAEQASABQAEwASABIAEQAQAA8ADgANAAwADAAMAAwADAAOAA8AEAAQABEAEQARABAADwAPAA4ADQAMAA0ADQAMAAsADAAMAAwADAANAA0ADAAKAAoACQAHAAcABwAGAAYABwAJAAoACgAMAA0ADQAOAA8ADgANAAsACwALAAsADAAOAA8ADwARABMAFAATABQAEwATABEADwAOAA0ADAALAAwACgALAAsACwAKAAoACgAJAAcABgAFAAQAAwACAAEAAAD//////v/9//z//P/7//r/+f/4//j/+P/3//f/9//3//j/+f/6//v/+//7//v/+//8//v/+//7//3//v8AAAEAAwAEAAQABQAGAAcACAAIAAgABwAGAAcACAAHAAYABgAGAAYABQAFAAYABgAFAAUABQAGAAYABgAGAAYABQAFAAUABAADAAIAAAAAAP//AAAAAAAAAQACAAIAAwADAAIAAQAAAP7//f/8//v/+//8//3//f///wAAAAACAAQABQAFAAUABQAEAAQABAACAAIAAgADAAUABwAIAAoACgAKAAgACAAHAAYABAACAAEAAgACAAMABQAGAAcABwAIAAcABgAFAAMAAQAAAP///f/8//v//P/9//3//v///wAAAAAAAAAAAAAAAP/////9//3//f/9//7//v///wAAAQACAAMAAwAEAAUABQAFAAUABQAGAAYABgAHAAgACQAJAAkACQAKAAkACQAIAAkACQAJAAkACQAJAAoACAAIAAcABwAGAAcABgAHAAYACAAHAAYABAAEAAMAAwADAAIAAgADAAEAAQADAAQABAAEAAQABAADAAQABAADAAIAAgACAAIAAwAFAAYABwAIAAoACgAMAAwACwALAAsACwAKAAkACAAHAAgACQAJAAkACgAKAAsACQAIAAcABwAFAAMAAgABAAAAAQABAAIAAgACAAIAAwACAAIAAQAAAP///v/9//z/+//8//3//v/+////AAAAAAEAAAAAAAEAAQAAAAAAAAAAAAEAAgADAAQABwAIAAgACQALAAsACwAMAA0ADQAOAA8ADgAOAA8ADwAPAA4ADgAOAA4ADwAOAA4ADwAPAA4ADQAMAAoACQAJAAcABgAGAAYABQAFAAUABAAFAAUABgAGAAYABQAFAAUABAAEAAMAAwAFAAUABwAHAAgACQAKAAoACwALAAsACwALAAsACwALAA0ADQAOAA4ADgAPABAAEAAPAA8ADgANAA0ADAALAAoACwALAAwADAAMAAwADAANAA0ACwAKAAgABgAFAAUABAAEAAQABAAFAAQAAwAEAAQAAwACAAEAAAAAAAAAAAAAAAAAAAAAAAEAAwADAAQABAAEAAMAAgACAAEAAQABAAIAAgADAAQABgAHAAgACQAKAAsACwAMAAsACgAKAAsACgAKAAoACwAMAAwADQAPAA8ADwAPAA8ADgANAA0ADQANAAwADAAMAAsACwALAAsACgAMAAsADAALAAsACgAKAAkACAAHAAcABgAFAAYABQAGAAUABgAGAAYABgAGAAYABQAFAAQABAAEAAQAAwADAAMABAAEAAQABAAEAAQABgAGAAYABgAGAAYABgAFAAUABAAFAAUABQAFAAYABgAGAAYABwAGAAcABgAGAAUABQAEAAUABQAFAAUABQAFAAUABQAFAAYABgAFAAQABAAFAAMAAwADAAMAAwADAAIAAgACAAMAAwAEAAMAAwADAAMAAwACAAEAAQABAAIAAgADAAMABAAEAAYABgAGAAcABwAIAAgACAAIAAgACAAIAAkACgAKAAoADAAMAA0ADQAOAA4ADQANAA0ADQANAAwADAANAA0ADQANAA0ADAAMAAsACgAJAAoACQAHAAcABgAGAAYABgAHAAgACAAJAAkACQAIAAgABwAGAAYABgAGAAYABgAGAAYABwAHAAgACQAJAAkACQAJAAkACQAJAAoACwALAAsADAANAA0ADQANAAwADAALAAoACgAKAAkACQAJAAkACgAJAAoACQAIAAcABwAHAAcABgAGAAQABAAEAAQABAAEAAMAAwACAAIAAgABAAEAAAAAAAEAAQABAAAAAAACAAMAAwADAAUABQAFAAUABQAGAAcABwAHAAgACAAIAAkACgAKAAsACwALAAwADAANAA4ADQAOAA4ADgANAA0ADQANAA0ADQANAA0ADQANAA0ADAALAAsACwALAAsACwALAAsACgALAAsACwALAAsACwAMAAsACwALAAsACwAMAAsADAALAAwADQANAAwADAAMAAwADAAMAAwADAALAAsADAAMAAwADAAMAAsACwAKAAsACwAKAAoACgAJAAgACAAHAAcABwAGAAYABgAGAAUABQAFAAUABQAFAAQABAADAAQAAwADAAMAAwADAAMAAwADAAMAAwADAAMAAwADAAQAAwADAAMABAAEAAQABAAFAAQABAAFAAUABQAEAAQABAAGAAYABgAHAAcACAAIAAgACAAIAAkACQAKAAsACwAKAAsACwALAAsADAAMAAwADAAOAA4ADQAOAA8ADgAOAA4ADQANAA0ADQANAAwADAAMAAwADQAMAAwADAAMAAwADAANAA0ADQAMAA0ADQAMAAwACwALAAsADAAMAAwADAAMAAwADAALAAsADAALAAsACgALAAoACgAKAAoACwALAAoACgAJAAkACQAJAAkACAAJAAkACAAIAAkABwAHAAgABwAIAAgABwAGAAcACAAHAAcABgAGAAYABQAFAAUABAAEAAQABAAEAAQAAwADAAMAAgACAAIAAQABAAEAAQACAAEAAQABAAAAAQABAAEAAQABAAAAAgACAAIAAgACAAMAAwAEAAUABQAEAAUABgAHAAcABwAIAAgACQAKAAsACgAMAAsACgAKAAsACwALAAwACwAMAAwACwALAAwADAAMAAwADAANAAwADQAMAA0ADQAMAAwADAAMAAwADAALAAsACgAKAAkACgAKAAoACgAJAAgACAAIAAcABwAHAAcABwAHAAcABQAGAAYABgAGAAYABgAHAAcACAAHAAgACAAHAAgACAAIAAgACQAJAAkACQAJAAgACQAJAAkACAAHAAgACAAIAAgACAAIAAkACAAIAAgACAAHAAcABgAFAAUABAAEAAMAAwAEAAQAAwADAAMABAACAAIAAgACAAIAAgACAAIAAgACAAIAAwACAAIABAAEAAQABAAFAAYABwAHAAcABwAIAAkACQAJAAoACgAKAAoACwAMAAwADAAMAA0ADQAMAAwADQANAA4ADgAOAA4ADgAOAA4ADQANAA4ADQANAA0ADAANAA0ADAAMAAwADAANAAwADQANAA0ADQAOAA0ADQANAA0ADQAMAA0ADQANAA4ADwAPAA8ADwAPABAADwAPAA8ADgAOAA4ADwAOAA4ADgANAA0ADAAMAAwADAALAAsACgAJAAkACQAIAAcABwAFAAQABQAEAAQABAADAAMAAwACAAEAAAAAAAAAAAAAAAAAAAD//wAAAAD//////////wAAAAAAAAAAAAAAAAEAAAAAAAAAAQABAAEAAgADAAQABAAFAAYABgAHAAgACAAJAAgACQAJAAkACgAKAAsACwALAAsACwAMAAwACwAMAAwADAAMAAwADAAMAAsACwALAAoACgAKAAsACwALAAsACwALAAsACwALAAsACwALAAoACwAMAAwADAAMAAwADAAMAAwADQANAA4ADgANAA0ADQANAAwADAAMAAwADAAMAAwADAALAAoACwALAAoACQAIAAgACQAIAAgACAAIAAgABwAHAAcABgAGAAUABAAEAAQAAgACAAMAAgACAAEAAAAAAAAAAAAAAAAA//////////////7//v/+//7///////////////////8AAAAAAAAAAAEAAQAAAAAAAgADAAQABQAFAAYABgAHAAgACAAIAAkACQAKAAoACgALAAwADQAOAA0ADgAOAA8ADwAPAA8ADwAQABAAEAAPABAAEAAQABAAEAARABEAEQARABEAEQARABAAEAARABEAEAAQABAAEAARABEAEQAQABAAEAAQABAAEQAQAA8ADwAPAA8ADgAOAA4ADwAOAA4ADQAOAA4ADgANAA0ADAAMAAwACwALAAoACQAIAAgACAAHAAcABwAGAAYABQAGAAUABAAEAAMAAwACAAMAAwACAAEAAQABAAEAAAAAAAAAAAAAAAAAAAD///7///////////////////////7///////////8AAAAAAAAAAAAAAAABAAIAAgACAAIAAgADAAMABAAFAAUABgAGAAYABgAHAAgACAAIAAkACgAKAAsADAAMAA0ADQAOAA4ADgAOAA8ADwAPABAAEAAQABEAEAAQABAADwAPAA8ADwAPABAAEAAPAA8ADwAPAA8ADwAPAA8AEAARABAAEAAPAA4ADgAOAA4ADQAMAA0ADQAMAAwADAAMAAwADAALAAsACwALAAoACgAJAAkACQAJAAkACQAJAAkACQAIAAgABwAGAAUABQAEAAQABAAEAAQABAAEAAMABAADAAMAAwACAAIAAgACAAIAAgACAAEAAQABAAEAAAAAAP//AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQABAAEAAQACAAMAAwADAAQABAAEAAYABgAGAAcACAAIAAkACQAKAAoACgALAAsADAANAA0ADQANAA4ADgAOAA4ADgAPAA8ADwAPAA8ADwAQAA8AEAAPABAAEAAQABEAEAAQABAADwAPABAAEAAPABAADwAPAA8ADwAPAA8ADwAPAA8ADgAPAA4ADgAOAA0ADQAMAAwADAAMAAwADAALAAsACwALAAsACgAKAAoACQAKAAgABwAHAAcABwAHAAYABgAFAAQABAADAAMAAwACAAEAAgACAAEAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP//AAAAAAAAAAAAAAAAAAABAAAAAAAAAAEAAgACAAMAAwADAAQABAAFAAYABQAFAAYABgAHAAcABwAIAAgACAAJAAkACgALAAsACwAMAA0ADQAMAA0ADQANAA4ADQAOAA4ADgANAA0ADQAOAA8AEAAPAA8ADwAPAA8ADwAQABAAEQARABEAEQAQABAADwAPAA8ADwAPAA8ADwAPAA8ADgAPAA8ADwAOAA4ADgANAA0ADQANAA0ADAANAAsACwALAAoACQAJAAkACQAIAAgACAAIAAcABwAHAAcABgAGAAUABQAFAAUABQAFAAQAAwACAAIAAgACAAIAAQABAAEAAQABAAEAAQAAAAEAAQABAAEAAQAAAAAAAQABAAAAAAAAAAEAAQABAAEAAQADAAIAAgACAAMABAAEAAQABAAFAAUABQAGAAYABwAIAAgACAAJAAkACgAKAAsACwAMAAwACwALAAwADAAMAAwADQANAA0ADQANAA0ADQANAA0ADgAOAA4ADwAOAA8ADgAOAA8ADwAPABAAEAAQAA8AEAAPAA8AEAAQABAADwAPAA8ADwAPAA4ADwAOAA4ADgANAA0ADAAMAAwADAAMAAwACwALAAsACwAKAAoACgAJAAkACQAIAAgABwAHAAgABwAGAAQABAAFAAUABAAEAAQAAwADAAQAAwADAAMAAwADAAMAAgACAAIAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQABAAEAAQABAAIAAgACAAIAAgACAAMAAwADAAQABAAEAAUABQAFAAYABgAHAAgACAAIAAkACQAJAAoACgAKAAsACwAMAAwADAANAA4ADQAOAA4ADgAOAA4ADgAOAA4ADwAPAA8ADwAPAA8ADwAQABAADwAPAA8AEAAPABAADwAPAA8ADgAPAA8ADwAOAA4ADgAOAA4ADgANAA0ADQANAA0ADAAMAAwADAALAAsACwALAAsACgAKAAkACQAJAAgACQAIAAgABwAHAAcABgAGAAYABQAFAAUABQAEAAQABAADAAQAAwADAAMAAwADAAMAAwACAAIAAgACAAEAAQABAAIAAgABAAIAAgABAAIAAgABAAEAAQACAAIAAgADAAMABAAEAAQABAAFAAUABgAGAAcABwAIAAcABwAIAAgACQAJAAgACQAKAAoACwALAAsACwAMAA0ADAANAA0ADQANAA0ADQANAA0ADQANAA4ADgAOAA4ADgAPAA8ADwAPAA8ADwAPAA4ADwAOAA8ADwAOAA4ADgAOAA4ADgAOAA4ADgAOAA4ADQAOAA4ADQAMAA0ADQAMAAsACwAJAAoACgAKAAoACQAIAAgABwAHAAcABwAHAAYABgAGAAYABgAFAAUABQAEAAQABAAEAAQAAwADAAMAAgABAAIAAgABAAEAAgACAAIAAQABAAEAAQAAAAAAAQABAAIAAQABAAIAAgACAAIAAgACAAIAAgACAAIABAAEAAQABQAFAAYABgAGAAcABwAIAAgACQAJAAgACQAKAAoACgALAAsACwAMAAwADAAMAAwADAANAA0ADgAOAA8ADgAPAA8ADgAPAA4ADwAPAA8ADgAPAA4ADgAPAA8ADwAPAA8ADgAPAA8ADgAOAA4ADgAPAA8ADwAOAA4ADQAOAAwADAAMAAwADAAMAAwADAANAAwADAAMAAsACwAKAAoACgAJAAgACAAIAAgABwAHAAcABgAGAAYABQAFAAUABAAEAAQAAwADAAQABAADAAMAAwADAAIAAgACAAIAAgACAAIAAQACAAIAAgACAAIAAgACAAIAAgACAAEAAgACAAMAAwADAAQABAADAAMABAADAAMABAAFAAUABQAGAAYABgAGAAcABwAHAAcABwAHAAgACAAIAAgACAAJAAkACQAKAAsACgALAAwACwAMAAwADQANAA0ADQANAA0ADQAOAA4ADgAOAA4ADwAOAA4ADgAOAA4ADgAOAA4ADgAOAA4ADwAQABAAEAAQAA4ADgAPAA8ADgANAA0ADAAMAAwADAALAAsACwALAAsACwALAAoACgAKAAoACQAJAAoACQAJAAgACAAHAAcABwAGAAUABgAFAAUABQAEAAQABQAFAAUABAAEAAQABAAEAAQAAwADAAQABAADAAMABAADAAMAAgACAAIAAgACAAIAAQACAAIAAQACAAIAAgACAAIAAwACAAMAAwADAAMAAwADAAQABAAEAAUABQAGAAYABgAGAAcACAAHAAgACAAIAAgACQAKAAsADAALAAwADAANAAwADAAMAA0ADQANAA0ADgAPAA8ADwAPAA8ADwAPAA8ADwAPABAAEAAQABAADwAQABAAEAAPAA8ADwAPABAAEAAPAA8ADwAPAA8ADwAPAA8ADgAPAA4ADgANAA0ADAAMAAwACwALAAsACgAKAAoACgAJAAkACAAIAAgABwAGAAYABgAGAAUABQAFAAQABQAFAAQAAwADAAMAAwADAAMAAwACAAEAAgABAAEAAgABAAIAAgACAAIAAgADAAMAAgACAAEAAQABAAEAAQACAAEAAgADAAMABAADAAMABAAFAAQABQAFAAYABwAHAAYABgAHAAcABwAIAAkACQAJAAoACgALAAwACwALAAwADAAMAAwADQANAA4ADwAOAA4ADQAOAA4ADgAOAA4ADgAPAA8AEAAPAA8ADwAPAA8AEAAQABAAEAAQABEAEAAPAA8ADwAPAA8ADwAPAA8ADgAOAA4ADgANAA0ADgANAA0ADQAMAAwADAALAAsACwALAAsACwAJAAkACQAIAAgABwAHAAcABgAGAAYABgAGAAUABQAFAAQABAAFAAUABAAEAAQAAwADAAMAAgACAAEAAQABAAEAAQABAAEAAgABAAEAAQABAAEAAQAAAAAAAQABAAEAAQABAAEAAQABAAIAAgACAAIAAgADAAMAAwADAAMABAAFAAUABQAFAAYABgAHAAcABwAIAAgACQAKAAoACgAKAAsACwAKAAsACwALAAsADAAMAAwADAAMAA0ADQANAA0ADQANAA4ADgAOAA8ADgAOAA4ADgAOAA8ADwAOAA8AEAAPAA4ADwAPAA4ADwAOAA4ADgANAA0ADQANAAwADAAMAAwACwALAAsACgAKAAoACQAJAAoACQAJAAgACAAHAAcABwAGAAYABgAFAAUABQAEAAQAAwAEAAQAAwACAAIAAgACAAIAAgACAAIAAQACAAEAAQABAAAAAAABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQACAAEAAQABAAEAAQACAAIAAgACAAMAAwADAAMABAAEAAUABQAFAAYABwAHAAgACAAJAAkACgALAAsACgALAAwADAANAA0ADgAOAA8ADwAPABAAEAAQABAAEAAQABAAEAARABEAEQARABEAEQARABEAEQARABEAEgARABEAEQARABEAEAAQABAAEAAPAA8ADwAOAA4ADgAOAA4ADwAOAA4ADQAMAAsADAALAAsACwAKAAoACgAKAAkACQAIAAgACAAHAAcABgAGAAUABQAEAAQABAADAAIAAwACAAMAAgACAAIAAQABAAIAAgABAAEAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAABAAAAAQABAAIAAwADAAMAAwAEAAUABQAFAAYABwAIAAcABwAIAAgACQAKAAoACgAKAAoACwAMAAwADAANAA4ADQAOAA4ADwAPAA8ADwAQABAAEAAPAA8AEAAQABEAEQARABIAEQASABIAEgASABEAEQARABEAEgASABEAEAAQABAAEAAQABAADwAPAA8ADgAOAA8ADgANAAwADAAMAAsADAAKAAoACgAJAAkACAAHAAYABgAGAAYABQAFAAUABAAEAAQABAADAAMAAwACAAIAAgABAAEAAQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAQABAAEAAgACAAMAAwADAAQABAAEAAUABQAGAAcABwAHAAgACAAJAAkACgALAAsACwALAAwADQANAA0ADQAOAA4ADwAPAA8ADwAQABEAEAARABAAEQARABEAEAAQABAAEQAQABAAEAAQABAADwAQAA8AEAAQAA8ADwAPABAADwAPAA4ADQANAA0ADQANAAwADAAMAAwADAAMAAwACwALAAoACgAJAAkACQAIAAcABwAHAAcABgAGAAQABAAEAAQABAADAAIAAgACAAIAAQABAAEAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAD/////AAAAAP//AAAAAAAAAAAAAAAAAAAAAAAAAQABAAAAAQACAAIAAgADAAMAAwAEAAMABAAEAAUABQAGAAYABgAGAAcABwAHAAcACAAJAAkACQAKAAoACwAMAA0ADAANAA4ADQANAA4ADgAPAA8AEAAQABAAEAAQABAAEAAQABEAEQAQABAAEAAQABAAEAAQABAAEAAQABEAEQASABEAEQARABAADwAPAA8ADgAOAA0ADQAMAAwADAALAAsADAALAAwACwALAAoACgAJAAkACQAJAAgABwAHAAcACAAHAAYABQAFAAUABQAEAAQAAwADAAMABAADAAMAAwADAAMAAwACAAIAAgACAAIAAgACAAIAAwACAAIAAgACAAIAAgACAAIAAQACAAIAAgACAAIAAwADAAQABAADAAQABAAEAAQABAAFAAUABQAFAAYABgAHAAgACAAIAAkACQAKAAoACwALAAwADAAMAAwADQANAA4ADgAOAA8ADwAPAA8ADwAPAA8ADwAQABAAEAAQABEAEQASABEAEQASABEAEQASABEAEAARABAAEQARABEAEQAQABAAEAAQABAAEAAQABAAEAAQAA8ADgAPAA4ADQANAAwADAAMAAsACwAKAAoACgAJAAkACQAIAAgABwAIAAcABwAGAAUABQAFAAQABAAEAAMAAwADAAMAAwACAAIAAgABAAIAAQACAAEAAQABAAEAAQAAAAEAAQABAAIAAQABAAEAAQABAAAAAQABAAEAAQABAAEAAQACAAMAAwADAAMABAAFAAUABQAFAAUABgAGAAcABwAHAAgACAAIAAgACAAJAAkACgALAAsACwAMAAwADAANAA0ADQANAA4ADgAOAA4ADQANAA0ADgAOAA8ADwAPAA8AEAAPAA8ADwAPABAAEAAQABAAEQAQABEAEQAQAA8ADwAPAA8ADwAPAA8ADgAPAA4ADgAPAA4ADQANAA0ADQANAA0ADAAMAAwACwALAAoACwAKAAkACQAIAAgABwAGAAcABwAHAAYABgAGAAUABQAFAAUABQAFAAUABAAEAAQAAwACAAIAAgACAAEAAQABAAIAAQABAAEAAQABAAEAAQABAAEAAQAAAAAAAAABAAEAAQABAAIAAQACAAIAAgACAAIAAwADAAQABAAEAAQABAAFAAUABQAFAAYABgAGAAcABwAHAAgACQAJAAoACgAKAAoACgAKAAoACwALAAsACwALAAsACwAMAA0ADQANAA0ADQAOAA4ADQANAA4ADgAPAA8ADwAPAA8ADwAPAA8ADwAPAA8ADwAOAA8ADwAPAA4ADwAOAA4ADgAOAA4ADQANAA0ADAAMAAwADAAMAAsACgALAAoACwALAAoACgAJAAkACQAIAAgABwAHAAcABwAHAAYABgAFAAUABQAFAAUABAAEAAQABAAEAAQABAAEAAMAAwADAAIAAgACAAIAAQABAAAAAQABAAEAAQABAAEAAgABAAEAAQABAAEAAgACAAIAAgACAAIAAwADAAIAAwAEAAQABAAEAAUABQAFAAYABgAGAAcACAAIAAkACQAJAAkACgALAAsACwALAAwADAANAA4ADgAOAA4ADwAPAA4ADwAQABAADwAPAA8AEAAQABAAEAAQABAAEQARABEAEQARABAAEAARABEAEAARABAAEAAQABAAEAAQAA8ADwAPAA4ADwAPAA8ADgAPAA4ADgANAAwADAALAAwADAALAAsACgAKAAoACQAJAAgACAAIAAgACAAHAAcABgAFAAUABQAFAAQABAAEAAMABAAEAAMAAwADAAIAAQACAAIAAQABAAEAAgABAAEAAQABAAEAAAAAAAEAAQAAAAEAAQABAAIAAQABAAEAAQABAAIAAwAEAAQABAAEAAUABQAGAAYABgAHAAcABwAHAAgACAAJAAkACQAJAAoACgAKAAsACwAMAA0ADAANAA0ADgANAA4ADgAOAA4ADgAOAA8ADwAPAA8ADwAPABAADwAQABAAEAAQABEAEAAPABAAEAAQABAADwAPAA8ADwAPAA8ADwAOAA4ADgANAA0ADAALAAwACwALAAsACwAKAAoACQAJAAgABwAGAAUABQAFAAUABQAFAAUABAAEAAQABAAEAAQAAwACAAIAAQACAAIAAQABAAEAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQABAAIAAgACAAMAAwAEAAQABAAFAAYABQAFAAYABgAIAAgACAAJAAkACQAKAAsACwALAAsACwAMAAwADAANAA4ADgAOAA8ADgAOAA4ADwAOAA8ADwAOAA4ADgAPAA8ADwAOAA4ADgAPAA8ADwAOAA0ADgAOAA4ADgANAA0ADQANAA0ADAAMAAwADQANAAwADAALAAwACwALAAsACgAJAAkACQAJAAgABwAHAAgABwAHAAYABgAFAAUABQAFAAQAAwADAAMAAwADAAMAAwACAAIAAwADAAIAAQABAAIAAgABAAAAAQABAAEAAQACAAEAAgACAAEAAgABAAEAAQACAAIAAgADAAMAAwADAAMAAwADAAQABQAFAAUABAAFAAUABQAGAAYABgAGAAcACAAIAAgACAAIAAkACQAIAAgACgAKAAsACwAMAAwADAANAA0ADQAOAA4ADgAOAA8ADwAPAA8ADwAPABAAEAAQABAADwAQABAAEAAQABAAEAARABEAEAASABIAEQARABAAEAAQABAADwAOAA8ADgANAA4ADQAMAAwADQAMAA0ADAAMAAsACwAKAAoACQAJAAgACQAJAAkACQAIAAgACAAHAAcABgAGAAYABgAFAAUABQAFAAUABQAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAMAAwACAAEAAgACAAIAAgABAAEAAgACAAIAAgACAAIAAwACAAMAAwADAAMAAwADAAMABAAFAAUABQAFAAYABgAHAAcACAAHAAkACQAJAAkACQAKAAoACgAKAAwACwALAAwADQANAA0ADQAOAA0ADQANAA0ADgAOAA4ADgAOAA8ADgAOAA8ADwAPAA8ADgAPAA8ADwAPAA8ADgAOAA4ADgAOAA4ADgAOAA4ADgAOAA4ADgANAA0ADQANAA0ADAAMAAsACwAKAAoACgAJAAoACgAJAAkACAAIAAcABwAGAAYABgAGAAUABQAFAAQABAADAAMAAgACAAIAAgACAAIAAgACAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQAAAAAAAAABAAEAAAABAAAAAQACAAIAAwACAAMAAwAEAAQABAAEAAQABAAFAAUABQAGAAYABgAHAAcABwAIAAgACAAKAAkACQAKAAoACgALAAsACwALAAwADQAMAAwADAAMAAwADQANAA0ADQAOAA4ADgAOAA8ADwAPAA8ADwAPABAADwAPABAAEAAQAA8ADwAPAA8ADwAPAA8ADwAPAA8ADgAOAA4ADgAOAA0ADQAOAA0ADQAMAAsACwALAAoACgAKAAoACQAJAAkACAAIAAcABwAHAAcABgAHAAYABgAGAAYABQAFAAQABAAEAAQAAwACAAIAAgACAAIAAgACAAIAAQACAAIAAgABAAIAAgACAAEAAQABAAEAAQABAAEAAQABAAEAAQACAAMAAgADAAIAAwADAAQABAAEAAQABAAEAAUABQAFAAYABgAGAAcACAAIAAkACQAJAAoACgAKAAoACgAKAAsADAALAAwADAANAA0ADQANAA4ADQANAA0ADQAOAA8ADwAPABAADwAPABAAEAAQABAAEQAQABAAEAAQAA8AEAARABAAEAARABAADwAPAA8ADwAPAA4ADgAOAA4ADQANAA0ADQANAAwADAAMAAwADAALAAsACwAKAAkACgAJAAgACAAHAAcABwAGAAYABgAGAAYABQAFAAUABAAFAAUABAAEAAMABAAEAAMAAwACAAIAAgACAAIAAQABAAAAAAAAAAAAAAAAAAEAAQAAAAEAAQACAAIAAgACAAIAAQABAAIAAgADAAMAAwADAAQABAAEAAQABQAFAAYABgAHAAcACAAIAAkACQAKAAoACgALAAsADAAMAAwADQAOAA0ADgAOAA4ADwAPAA8AEAAQAA8AEAAPABAAEAAPABAAEAAQABAAEAAQABEAEAAQABEAEQARABEAEQARABAAEAAQABAADwAPAA8ADgAPAA8ADgAOAA0ADgAOAA4ADQANAAwADAAMAAsACwAKAAoACQAJAAkACQAJAAgACAAHAAcABwAGAAYABgAFAAUABAAEAAQABAADAAQAAwADAAMAAwACAAIAAQABAAEAAQABAAAAAAAAAAEAAAAAAAEAAQAAAAEAAQAAAAAAAAABAAEAAAABAAEAAQACAAIAAgADAAMAAwAEAAQABAAEAAUABgAGAAYABgAHAAcACAAIAAcACAAIAAkACQAJAAkACgALAAwADAANAAwADAANAA0ADQANAA0ADgAOAA4ADgAPAA4ADgAPAA8AEAAQAA8ADwAQABAAEAAPAA8ADwAPAA8ADgAOAA8ADgAPAA8ADgAOAA4ADgAOAA0ADQAMAAsACwALAAoACgAJAAkACQAIAAgABwAHAAYABgAGAAUABQAFAAUAAwADAAMAAwADAAQAAwADAAMAAgACAAIAAgABAAAAAQAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQABAAEAAQABAAIAAgACAAIAAgACAAMAAwAEAAQABAAFAAUABQAGAAYABgAGAAcABwAHAAkACQAKAAoACgALAAsACwAMAAsADAAMAA0ADQAOAA4ADgAPAA8ADgAPAA4ADwAPABAADwAPAA8ADwAPABAADwAPAA8ADwAPAA8ADwAPAA8ADgAOAA8ADwAOAA0ADQAOAA0ADQAMAAwADAAMAAwADAAMAAsACwALAAsACwAKAAkACQAIAAgABwAIAAgABwAHAAYABgAFAAUABQAEAAQABAAEAAMAAgACAAIAAgACAAIAAgACAAIAAgACAAIAAQABAAEAAAABAAEAAQABAAEAAgABAAEAAgACAAIAAgACAAIAAwADAAQABAAEAAMABAAEAAUABQAFAAYABQAFAAYABgAHAAcACAAIAAgACAAJAAkACQAJAAkACgAKAAoACwAMAAwADAANAA0ADQANAA4ADgAOAA4ADwAPAA8AEAAQABEAEQAQABAAEQAQABAAEAAQABAAEAAQABAAEAAQABAAEQARABEAEAAQABAAEAAPAA8ADwAOAA0ADQAMAA0ADAAMAAwADAALAAwACwALAAsACgAKAAoACQAJAAgACAAIAAgACAAHAAcABwAGAAYABgAFAAUABQAFAAUABAAEAAQABAAEAAMABAADAAMAAwAEAAMAAwADAAMAAwADAAMAAwACAAIAAgACAAIAAgABAAEAAgACAAIAAgACAAIAAwADAAMAAgADAAQABAADAAQABQAEAAYABgAGAAYABwAHAAcACAAIAAkACQAJAAkACgAKAAoACwAMAAwADAAMAAwADQANAA0ADgAOAA4ADgAOAA0ADgAOAA8ADwAPAA8ADwAPAA8ADwAPAA8ADwAPAA8ADwAPAA8ADwAPAA8ADwAOAA8ADgAOAA4ADwAPAA8ADgAOAA4ADQAMAAwADAAMAAsACwAKAAoACgAKAAoACgAJAAgACAAIAAcABwAGAAYABgAGAAUABAAEAAMABAADAAMAAwADAAMAAwACAAIAAgABAAEAAQACAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQACAAIAAgADAAIAAwADAAMAAwAEAAQABQAFAAUABgAGAAcABgAGAAcACAAIAAgACAAJAAkACgAKAAoACgALAAsACwALAAwADAAMAA0ADgANAA0ADQAMAA0ADgANAA4ADgAOAA4ADwAPAA8ADwAPAA8ADwAPAA8AEAAPAA8ADwAPAA8ADwAPAA4ADwAOAA4ADgAOAA4ADgAOAA0ADQANAAwADAAMAAsADAAMAAsACwALAAoACgAJAAkACAAIAAgABwAHAAcABwAGAAYABgAGAAUABQAFAAUABQAFAAQABQAEAAQAAwADAAMAAgACAAIAAgACAAIAAQACAAEAAQABAAEAAQACAAEAAQABAAEAAQABAAIAAgABAAIAAgACAAIAAgADAAMAAwADAAQABAAEAAUABAAFAAUABgAGAAYABwAHAAgABwAIAAkACQAJAAoACgALAAsACwALAAsACwALAAsACwAMAAwADAAMAA0ADQANAA0ADQAOAA4ADgAOAA8ADwAPAA8ADwAQABAAEAAPAA8ADwAPAA8ADwAPAA8ADwAPAA8ADgAPAA4ADgAOAA0ADQANAA0ADAAMAAwADAALAAsACwALAAsACgAKAAkACQAJAAkACAAHAAcABwAGAAYABgAFAAUABQAFAAUABAAEAAMAAwADAAMAAwADAAMAAgADAAIAAgACAAIAAQABAAIAAQABAAEAAQABAAAAAAAAAAEAAQABAAEAAQABAAEAAgACAAIAAgACAAIAAgACAAIAAwADAAQABAAEAAQABQAFAAYABgAHAAcACAAIAAkACQAIAAkACgAKAAsADAAMAAwADQANAA0ADgAOAA8ADwAPABAAEAAQAA8ADwAQABAAEAARABEAEQARABEAEQAQABEAEQARABEAEQARABEAEQARABAAEAAQABAAEAAPAA4ADwAPAA8ADwAOAA4ADgAOAA4ADQAMAAwADAALAAsACwALAAoACQAJAAkACQAJAAgACAAHAAcABwAGAAUABQAEAAQABAADAAMAAwADAAMAAgACAAIAAgACAAIAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAEAAQABAAIAAwADAAMAAwAEAAQABAAFAAUABgAHAAcABwAIAAgACAAIAAkACQAJAAoACgAKAAsADAAMAA0ADQAOAA4ADgAOAA4ADgAPAA8ADgAPABAAEAAQABAAEAAQABAAEAARABEAEQARABAAEQAQABAAEQARABEAEAAQABAAEAAQAA8ADwAPAA4ADgAOAA4ADQANAA0ADAALAAsACwAKAAoACQAJAAkACAAHAAYABgAGAAYABQAFAAUABQAEAAQABAADAAMAAwACAAIAAgACAAIAAgABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAgACAAMAAwADAAQABAAEAAUABgAGAAYABwAHAAcABwAIAAkACQAJAAoACgALAAwADAAMAAwADQANAA0ADQAOAA4ADgAPABAADgAPAA8AEAAQABAADwAQABAAEAAQABAAEAAPABAADwAQABAADwAPAA8ADwAPAA8ADgAOAA4ADgAOAA0ADQAMAAwADAANAAwADAANAAwACwALAAoACgAKAAoACQAJAAkABwAHAAgABwAGAAUABQAEAAQABAADAAMAAwADAAIAAgACAAEAAgABAAEAAQABAAEAAQABAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAQAAAAAAAAAAAAEAAgACAAIAAwACAAIAAgACAAMABAAEAAQABAAEAAYABQAFAAYABgAGAAcABwAHAAcACAAIAAgACQAJAAkACgALAAsACwAMAA0ADQAMAA0ADQANAA0ADgAOAA8ADwAPAA8ADwAQABAAEAAPABAAEAAPAA8AEAAQAA8AEAAQABAAEAAQABAAEAAQABAADwAPAA8ADgAOAA0ADQAMAAwADAALAAsACwALAAsACwAKAAoACQAJAAkACAAIAAcABwAIAAgABwAHAAUABQAFAAUABQAEAAQABAAEAAQABAAEAAQABAAEAAMAAwACAAIAAwADAAMAAwADAAIAAwACAAIAAgACAAEAAQACAAIAAQABAAEAAgACAAIAAgACAAIAAwADAAMAAwADAAMABAAEAAQABAAFAAUABgAGAAcACAAIAAcACAAIAAoACgAKAAoACgALAAsADAAMAAwADQANAA4ADgAPAA8ADwAOAA8ADwAQAA8ADwAQABAAEAARABEAEAAQABAAEQAQABAAEAARABEAEAAQABAAEAAQABAAEAAPABAADwAQABAAEAAQABAADwAPAA4ADgAOAA0ADAANAAwADAAMAAsACwAKAAoACgAKAAoACQAJAAgABwAGAAcABwAGAAUABQAFAAQABAAEAAMAAwADAAIAAwADAAIAAgACAAIAAQABAAEAAQABAAIAAQABAAIAAQACAAIAAQABAAEAAQACAAIAAgADAAIAAgADAAMAAwAEAAMABAAFAAUABAAEAAUABQAGAAYABgAHAAcABwAIAAkACQAJAAkACgALAAoACgALAAsACwAMAA0ADQANAA0ADQANAA4ADgAOAA0ADgAOAA0ADgAPABAADwAPAA8ADwAQAA8AEAAQAA8AEAAQABAAEAAQAA8ADwAQAA8ADwAPAA8ADgAOAA4ADgANAA4ADgAOAA0ADAAMAAwADAALAAsACwALAAsACwAJAAkACAAJAAgABwAHAAcABwAGAAYABQAGAAYABQAFAAUABQAEAAQABAAEAAMAAwACAAIAAgACAAEAAgACAAEAAQACAAEAAQABAAEAAAABAAEAAQAAAAAAAAAAAAEAAQABAAEAAQABAAIAAgACAAIAAgADAAMAAwADAAQABAAEAAUABQAFAAYABgAGAAYABgAHAAcACAAIAAkACQAJAAoACgAKAAsACgAKAAoACwALAAsACwALAAwADQAMAAwADAANAA0ADQANAA0ADgAOAA8ADwAPAA8ADwAPAA8ADwAPAA8ADwAQABAAEAAPAA8ADwAPAA4ADQAOAA4ADgAOAA0ADQANAA0ADAAMAAwACwAMAAsACwALAAsACgAKAAkACQAJAAgACAAHAAcABwAGAAYABgAGAAYABQAFAAUABAAFAAQABAAEAAQAAwAEAAQAAwADAAMAAgACAAIAAQACAAEAAQABAAEAAQAAAAEAAQAAAAEAAgACAAMAAwACAAIAAgACAAMAAwADAAMAAwADAAQABAAEAAQABQAFAAYABgAGAAcABwAHAAgACQAJAAkACgALAAsADAALAAwADAANAA0ADgAOAA4ADgAPAA8AEAAQAA8AEAAQAA8AEAARABAAEAAQABEAEQAQABEAEQAQABAAEQARABEAEAARABAAEAAQABAADwAPAA4ADgAOAA4ADgAOAA4ADgANAA0ADAAMAAwACwALAAsACgAKAAoACQAJAAkACAAIAAcACAAHAAcABgAFAAYABgAFAAQABAADAAMAAwADAAMAAwACAAIAAgACAAIAAgABAAEAAQABAAAAAQABAAEAAAABAAAAAAAAAAEAAAABAAEAAAAAAAAAAQABAAEAAgABAAIAAwAEAAQABAAEAAUABQAFAAYABgAGAAYABwAIAAgACQAIAAgACQAJAAoACgAKAAsADAAMAA0ADQAOAA4ADgAOAA4ADgAPAA4ADwAPAA8AEAAQABAAEAAQABEAEAAQABEAEQAQABAAEAAQABAAEAAQABEAEAAQAA8ADwAPABAADwAOAA4ADQANAA0ADQAMAAwACwALAAsACgAJAAkACQAIAAgABwAHAAYABQAFAAUABQAFAAQABAAEAAQAAwADAAMAAwACAAMAAwADAAIAAQABAAEAAAAAAAAAAAAAAAAAAAABAAEAAAAAAAAAAAAAAAAAAAABAAEAAAAAAAEAAQABAAIAAgACAAIAAwADAAMAAwADAAQABAAFAAUABQAGAAYABwAIAAgACAAIAAgACQAKAAoACwALAAwADAANAA0ADQAOAA0ADgAOAA8AEAAPABAAEAAQABEAEAAQABAAEQAQABEAEAAQABAAEAAQABAAEAAPAA8ADwAQABAAEAAQAA8ADwAPAA8ADwAOAA4ADgAOAA0ADAAMAAwADAAMAAwADAAMAAsACwAKAAoACQAJAAkACAAIAAgABwAHAAcABgAFAAUABAAEAAUABAADAAMAAwACAAIAAgABAAEAAgACAAEAAQAAAAAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAgABAAIAAgACAAMAAwADAAQAAwAEAAUABAAFAAUABQAGAAYABgAHAAcACAAIAAgACAAIAAkACQAKAAoACwAMAAwADAAOAA4ADQAOAA4ADwAPABAAEAAQABAAEAAQABAAEQAQABAAEQARABEAEQAQABAAEQARABEAEgASABEAEgASABEAEgARABAAEAAPAA8ADwAOAA0ADQANAA0ADAALAAsACwAKAAsACwAKAAkACQAJAAkACAAHAAcABwAHAAcACAAGAAYABQAFAAQABAAEAAMAAwADAAQAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAgACAAIAAgACAAIAAgABAAEAAgABAAEAAQABAAEAAQACAAIAAgACAAMAAwADAAMABAAEAAQABAAEAAQABQAFAAYABgAGAAgACAAIAAgACQAIAAoACgAKAAoACwAMAAwADAANAA4ADQANAA4ADwAPAA8ADwAQAA8ADwAQABAAEAAQABAAEAARABEAEAARABEAEAARABEAEAARABEAEQAQABAAEAAQABAAEAAQABAAEAAPAA8ADwAPAA4ADgAOAA4ADQAMAAwADAALAAsACgAJAAkACQAIAAgACAAIAAgABwAHAAcABgAFAAYABQAFAAQABAAEAAQAAwACAAMAAwACAAIAAgABAAIAAQABAAEAAQABAAEAAgABAAEAAQABAAEAAQACAAIAAQABAAEAAQACAAIAAgADAAIAAgADAAMABAAEAAQABAAFAAUABQAFAAYABwAHAAcACAAHAAgACAAIAAkACQAKAAoACgALAAoACgALAAsADAANAA0ADQANAA0ADQANAA0ADQANAA4ADgAOAA4ADgAPAA8ADwAPAA8ADwAPAA8ADwAQABAAEAAQABAAEAAQAA8ADwAPAA8ADwAOAA4ADgAOAA4ADQANAA0ADgANAA0ADQANAAwACwALAAsACgAKAAoACgAJAAkACAAIAAcABwAHAAcABgAGAAYABQAFAAUABQAFAAQABAAFAAQAAwADAAMAAgACAAIAAgACAAEAAQABAAEAAQABAAEAAQACAAIAAQACAAIAAgABAAEAAQABAAEAAQABAAEAAgACAAIAAgADAAMAAwADAAQABAAEAAUABAAFAAUABgAGAAYABgAGAAgACAAJAAkACAAJAAoACgAKAAsACwALAAsACwALAAwACwAMAAwADAANAA0ADAAMAA0ADAANAA0ADQANAA0ADgAOAA4ADgAPAA8ADgAOAA4ADwAPAA4ADgAPAA4ADgAOAA4ADgAOAA0ADQANAA0ADQAMAAwADAALAAsACwALAAoACQAKAAkACQAJAAgACAAIAAgACAAHAAYABgAGAAUABQAFAAMABAAEAAQABAADAAMAAgACAAMAAwACAAIAAgACAAIAAQABAAEAAQABAAEAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAIAAwADAAIAAgACAAIAAgACAAIAAgADAAQABAAEAAQABAAEAAUABwAHAAYABwAHAAgACQAJAAkACgALAAsACwALAAwADAANAA0ADQAOAA4ADgAPAA8ADwAPAA8ADwAPAA8AEAAPABAAEAAQABAAEQAQABAAEAAQABAAEQARABAAEAAQABAAEAAQABAADwAPAA8ADwAPAA8ADwAPAA4ADgAOAA4ADQANAAwADAAMAAwADAALAAsACwALAAkACgAKAAkACQAJAAkACAAIAAgABwAGAAUABQAFAAUABQAEAAQABAAEAAQAAwADAAMAAgACAAIAAgACAAIAAgACAAIAAQACAAEAAQABAAIAAgACAAIAAgACAAIAAgACAAIAAgADAAMABAAEAAQABAAFAAYABgAFAAYABwAHAAcABwAIAAgACQAJAAkACgAKAAsACwALAAsADAAMAA0ADQANAA4ADgAOAA4ADgAPAA8ADwAPAA8ADwAQABAAEAAQABAAEAAQABEAEQARABAAEQARABAAEAARABEAEAAQABAAEAAQABAADwAPAA8ADwAPAA8ADgANAA0ADQAMAAsADAALAAoACgAKAAoACAAIAAcABwAHAAYABgAGAAUABQAFAAUABQAEAAQAAwADAAIAAgACAAIAAgABAAEAAQABAAEAAAAAAAEAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAQAAAAEAAgACAAIAAwADAAQABAAEAAUABgAGAAYABgAGAAYABwAIAAgACQAKAAoACgALAAwADAAMAAwADQANAA0ADQAOAA0ADgAPAA8ADwAJAAkAAwADAPz/+//5//n/8P/u/+z/6//p/+z/7f/x//b//v8EAAwAEgAaAB4AKAAtADQAOgA+AEAARABKAE4AUQBSAFQAUABNAEoAQQA8ADMALQAgAB8AFwAPAAIA/f/w/+r/4f/Y/83/yf/G/8r/yv/P/9T/1f/X/93/4P/i/+L/5//r/+7/8v/3//n/+////wEAAAD6//j/+//5//D/5v/g/97/2v/T/9H/0v/c/+P/6P/u//X/9f/1//r/BQAOABwAMQBLAGQAdgCHAJoAqwC5AL0AugC1ALcAvgDHAMUAvwC4ALIArACrAJ8AhwBoAEkAOAAvABoAAADq/93/z/++/7H/qv+l/5z/l/+S/4z/iv+T/6P/s/+//7z/uf+8/8D/vf+0/63/p/+n/6X/nv+R/3T/Uv8w/xX//v7h/r/+pP6G/mL+Nv4M/uv90f23/af9qv2w/br9zP3n/Qv+NP5p/pf+xP7r/hv/Uv+P/9H/EABSAI4AxQD6ACYBRQFfAXABdAFsAV8BUAE4AREB8wDeANEAwwCpAIoAbgBXAEkARABGAFUAZwBtAHwAoADaAB8BaAHHASsCfQLDAhEDUwN9A5MDqwPEA8oD1QPaA8QDmQNsAzwDBQO6AloC6QFiAfEAhgAjALn/QP/P/m7+HP7T/Zn9c/1P/Sz9Hf0f/Sn9P/1p/aH93v0c/lv+m/7e/h7/TP99/7T/8P8hAEAATgBYAFQAQgAoAAoA7f/E/4//X/8o/+j+n/5Q/gT+vP1//U/9Kv0P/fr88Pz4/Bb9RP2A/cH9BP5T/qz+D/96/+b/UwC7AC4BogEJAlwClQLNAgIDNgNhA3wDhAN9AzED7AKsAl8CDAKwAVgB+gCoAFYABwDF/4z/Wv80/xb/C/8I/wz/Fv8q/0X/Zf+J/7b/5f8SAD8AawCOALAA0gDsAAMBEgEcAScBKAEaAf4A2ACtAHoARQAVAOz/wP+S/2P/N/8J/+j+2f7V/tf+3/7s/vv+GP9A/23/lv/B//D/IwBbAJMAxQDtABMBOwFmAYoBogGqAaUBnQGOAXcBUgEnAfcAywCoAHoAQgAGAMn/j/9g/zf/EP/w/tf+x/7C/sP+yP7V/uv+BP8e/z//Yv+M/7n/6v8aAEgAcgCdAMQA6AADARkBJAEqASoBJAEWAQAB5gDGAKEAeQBRACkAAADS/6b/e/9b/z3/H/8G//P+4/7V/sz+zf7O/tj+6v4F/yf/Rf9o/4r/rv/R//j/GQA7AFcAcACFAJsArQC6ALwAugC3ALIApwCaAIUAaQBHACcACwDt/9H/tf+Z/3r/Xv9H/zH/IP8X/wv/Af/6/vb+9v79/gb/F/8s/0P/X/97/5r/uf/S/+n/AwAfADsAVABoAHoAjACXAJ0AogCkAKIAnwCWAIsAfgBuAFgARAAyACIAEAD9/+j/0//F/77/t/+2/7b/tf+7/8X/z//T/9X/3P/k//L/AAAQACEAMQA/AE8AYABwAH8AhwCMAIsAhwCFAIEAfgB9AH0AdwBuAGQAVgBHADUAIQARAAEA9f/q/+H/1v/O/8n/yP/I/8f/xP/D/77/vv/E/83/2v/j/+7/+f8IABEAFwAeACEAJAAkACYAJQApAC4ANAA2ADUALwAqACQAIQAZABAAAgD2/+z/4v/c/9f/1P/Q/9D/zP/J/8X/wv/F/8b/yP/I/8j/yf/r/wwAJgBEAGgAhQCPAJgArAC5AMUAwQCwAI8AawBWAEgAPQAiAPj/y/+z/6X/l/+D/1r/K/8K//z+/P7z/uf+2v7T/uT+BP8n/03/b/+T/77/8P8cAEMAaQCEAJsArQC8ALsAvQDKANoA5ADjANEAvQCrAJQAfABhADYAEADn/7b/jv91/2T/WP9J/z3/P/9P/2X/fv+U/5v/oP+q/8H/4f8DABsALQA8AEkAWwBuAHwAhACJAIcAgwB2AGQARgAmAAIA6P/S/8L/vP+7/7X/qf+a/5D/lf+g/6P/o/+p/7T/x//r/xcAPABgAIQAowDFAOMA+AABAfwA5wDJAKgAkgCEAHYAZgBaAE8ARQA1ABkA7v/I/7L/qv+l/6H/nP+e/6T/u//c/wEAKQBVAIkAwADyAA0BCwHxAMcAowCOAKcA4gAeATwBOAEMAbsAYAD1/4r/Hf+t/mb+Wf5R/jz+4f1l/RH9Fv2a/Uv+r/6M/in+//0y/n/+lv5q/mj+Lv/DAIgCpAO5AzADwgLSAjMDhQNtA/sCfQImAvYBygFzAeYALACN/z//Jv8f/+X+RP5O/Uj8oPtk+5D79Ptd/M38OP2i/QL+U/6c/ub+Tv/B/zMAqAAeAYcB5gE8AoACvQIFA2MDvgPYA5wDJQObAgsCfwH6AHIA9/+b/2D/PP8c/+3+qf5n/jL+Ev4H/gH+AP79/QL+Ff46/nT+u/4U/3z/7P9QAK0A+AAxAUUBOQEbAQsBHgFDAVABNwEHAdYAsQCXAIAAVwAjAPD/u/+K/1r/Jf/s/rv+o/6s/s/+AP8z/1r/eP+Y/77/7f8YAEEAZQCFAKgA1QACAScBQQFQAVABZQGBAaIByQHuAQgC/QHgAcUBkwFEAeEAhwBTAD8ANgArAB8ADQD9/9r/pP9w/z//Gv/y/rf+dv5M/kf+Yv6d/vn+cP8CAKQAOAGlAeEB7AHoAeEB0wG8AbwB2gETAkECTQIeAr4BPQG5AD0Aw/83/5b+1v0J/U/8uPta+z/7RPtd+237j/uy+9H73vvb++j7I/yX/Cv9wv09/qj+Iv+2/2AAEgGUAegBEwIPAt4BfwEYAb4AcgA6ABkAAADY/5P/CP9D/nX9vvw5/O/75Pv/+x38F/wH/An8F/xU/LP8Qf3h/Yb+Mv/C/zcAnQAQAZgBVwJbA3gEhQV9BusGnAa4BcUEEwSGAykDyAIOAtEAjv8t/gD9rfzx/NX9sP7X/ov90Pqj9/L0yvKX8XvyD/bR/MQFPg7BE8IVTRa2F0IbWiDnJJwmWyWbIk8fRxx0GfUV9xEaDkYL9AndCMEGHgKT+gHyEepX5E7h4t/q3oTdw9td2nXawdwY4bbmjuyB8gv4sfxtAJUCAgMuAqsBDANwBpUL+xDuFPEWiRduF9kWfxUOE1IPmwqcBbgADvy+9/7zGPF476PvM/EY8xz0bfMP8djtJevO6ezpK+tW7QrwDPON9o76wv7dAq8G/QmGDEQOXw90D3IOvQzTClsJ9wikCeUKHAzPDKUMcQtcCaQGogOZAIj9i/rH95D1N/TV80b0VvXE9nL4TPoa/IL9K/4d/sb9pv0Y/iD/lQBAAh8EFAb/B6oJuQoNC5YKkQkcCEgGQwQuAjgAgf4a/QT8Pfu4+nj6QPrp+Wv52fhM+ML3Pvez9j72JPaq9vH33fkw/JL+qwBdArkDtwRqBd0FRgafBkAHBgivCDAJggmzCc4J3QnaCWgJXwjEBtkE7wIsAZ3/GP6T/C777PnN+Lv3pfaX9Yv0rfP98nvyNfJB8p/yUvNd9Kz1QPcS+e76tPxR/rH/2ADDAWwC9gKgA5oEwQWqBgoHmwZ9BRIExALIARABbgDC/+H+3v3s/EX8IPx3/Pz8MP3//JP8FPyJ+/P6T/rd+eP5m/oC/Kj9If85ACgB8wHZAqEDJAROBPgDRgNgAnIBjADb/43/rf8qAAwBNAIvA2sDjgLgALr+hfzD+rz5PvnZ+C74Pvd29lP2aff/+UD9WACFAjEDjgI/Ad7/A/8p/58AdQQOC74TxR1yJoksDC/cLu8ttCwKLBcrPyitIvMaxRIeDTELbgwNDxIQFw51CVQCEvnG7Xrg69Kvx6rBL8K7x3XPSdal2nfdAOER59/v8flZAh8HgAeYBBUBVv/BAF8FBwx1E9saOyGpJXEnlyWXIGIZkxHNCkMFkQBt+yf1cO5G6HzkIeTI5i7rLO8Y8T3w8uyl6HzkKuGH3wfgweKW59vtpvQi+8IAewWxCZcNOBEZFJEVDxVnEocO6gqrCGII1AkMDOYNuA4mDj4MUgnEBbsBlf2p+Uz2yPPX8UzwYO9O73Tw6/Jl9iP6cv3R/ygB5gFTAroCVwNhBOMFvQfgCRYMYA6gEI8S+BOrFIkUrBPWEQoPXwsXB8MC4/7Z+5f5/vfF9sD1wfTF8/fybPI78gryoPGn8CPvpe3v7KLt7u+b88X3/fvO/xcDwAXGB3IJgAr8CtYKDgrxCNgH2AYABlYF3wTpBEMFqAWnBeIEGgNgAD39K/qj9+D1//TN9Bz13vUV97H4lvpb/OL9Ev/DAJUCGwQVBR4FMQTLAvEBggIEBc8I9wwtEIcR8hDuDnILUweYA5oAVv5G/BT6pvey9XT1Xvf5+rAATghREOgWDBpdGJsSiQwsCoMMmxJhGoohNCffK5gvKDHbL50rMSRPGqcPrgXZ/TH5V/cH9rPzG/Gj73fwCfM59SP0qu4k5p3cAtTxzQ3Lz8sZ0PPWrd7u5QvsZPHv9ZP5A/w0/ZP9xv0L/tP97vwQ/Jf8ov/LBH4K0A6sEOoPtwymB6kBovst9r/xdu7w6xTqSOkR6lHso+9A83n27/ia+oD7Ifua+WT3lPV89Y/3kfvEAFsGhQvYDxcTORVHFocWCxauFHMSGQ/+CtMGYQM7AXIA5gA6ArsDtgSnBGYDMAF//t77pfka+GD3m/fV+C77cP40AjsGgwq7Dp4S4BXnFzwYzRYcFNcQ0Q2dC2MKGgqcCpILGwxMC9EI6wSJAKH8Zflt9lXzRvBH7Z/qw+jy52voTeoQ7bXvxfEM89vzZfS99OD0/PTF9aH3WPpH/b//hgHSAtMDSwT/A/ECdgEKAPb+KP5j/an8KPzu+9j7yPvJ++r7BPzn+zf7AfqL+Fv3uvaQ9uD2e/c8+Db5iPr4+1r9vf4AAN0AdgH0ATUCSQKGAh0D4APdBOkFwQZsBxsIlghrCK8HnAaxBfgEbgTJA/cCDwK5AUkCSQO9BJ4GqAm/DSESSRXvFW4UwxHNDnoM/wvjDbYSGBo0IvYnJCpcKXEnCyYkJW8jSR9QGTATyw2NCQcGPAI+/r36Lfir9m71+fND8HToA95A0wHL7MdXyg3QYda926zfCeM75yzta/RI+1UACgLGAFr+XPy5+0H8W/0n/+YBgwYhDPsQxxPWE64Rbw76CmIHxQMDAPT7Pfcd8pntperg6Tfrru3E76TwPfAI77Tt2uyR7LLsTe2O7sPw1fN191T7Nv8fAwsHwQoLDrsQrRIEFJIUKxTwEl8RDBBSDxkPnw5JDQULYQj2BesDIAJwAMP+7PwC+9j4VfbS8/7xQvGg8bTyKPT19Vb4aPvT/jICUwUuCAELvw0CEE0RYhGmEMYPaw/MD6AQdRHWEXUR+Q8bDfQI9wMY/xX7Efiu9X3zfPHc79Tube6I7hTvIvCm8Qzz4vPu84bzSfOq89X0p/YE+eb7NP+bAmcFBQeDB2AHJQftBoAGggUHBJwCfQGXAH7/Rv4i/Un80vt4+9v6v/lW+Jj20/Q98z7yI/Ll8mj08fVg99v4i/o//KT9vv6N/xMAqgB5ASgCfQKyAg4DnQOUBPYFlwcHCQsKcAroCQMJPwgTCPYHXAdXBioFlARyBX4H4AlHDHsOchGMFGUXbhnJGZoYahXkDwAJZwOSAqIIYhRNIUkqIS1gK+8oDiigKNEo+CVCIDgZOxHLCL//0/am74rqu+cR5zfofuqY65voeuAs1W7L4cZZyJDNNNOX16va390X4rXn8+4d93n/ZAbZCj8NbA43D1kPYw7SDLQLtwzwD50TkRVxFJcQVgvpBTUACvqJ8zjtneff4kvf+Nz524Xcp95O4ZvjbuU15znphuvl7UPwH/MS96f8EAMkCUcOABIGFdUXKxqvG2YbhxnNFgoUDBKsELcPtQ5MDVwLoAh7BXQCvP8l/Qn6OfY78h3vk+2o7a3u+O9e8VXzO/aM+ar87v41ANwAbwFWAswDKQZ2CYsNvRE5FX0XlBjjGMUYPxjHFkEUBxGUDS8KkAZhAqf9JPmi9YnznPJZ8vLx+fAL7zzsJ+lz5u/kH+W85ufoD+sN7TLvxfG79Nb37vod/k8BSwSGBm8HLQeyBpYG/gaDB7QHaQe+BiwGlQWkBEoDzAFSAPf+8v0M/ez7UPqD+L32S/VW9PHzQ/Qo9YT2yvfV+OP5PfuR/Jj9YP4u/zQAoQFWA+cEDwbfBosHTQiCCfcKRAw2DdQNJg4pDg4O/A12DQ8M7wmuB9MF2gQQBbkFJgZmBqYGPQcSCC8JPgoWCzcLOAlpBGv+d/p2+5YCeA4pGxIliiu2L60yMTQyM3QvXCmBIzcf8hvDF68QCwYT+dDsjuSJ4w7ql/Q2/DH7KPCs3wbRWMnSyGLLL83AzY/O4NE218Hc8uE153zu8Pc/AUEIoQvNC/cJfgfKBfwFogk1EZ4aZCKjJeIjHx8rGjsWgxJSDQUGa/0z9V3v+et26bzmLeSE4sfiROXn6H3rg+vb6PXk+OGw4R/lOusj8nr4cP2QAdIF0wpjEGQVBxk8GzocdxwcHPka0RgRFhcTORDXDSIM+QrjCewHYwRg/9L57PSI8WzvtO3F69HpgOhW6CTpdeoa7G3u1PEM9l36Yv4RArQFWQl9DI0OQw8uDzEP/A9BEV4S3hK/EnkSDBIgET0PUwzlCEAFhAHD/ej58vUE8n/unut86V/ofeiF6bvqs+tX7ArtM+7f78jxm/Nz9Xf3wvkh/Cj+x/+bAQAE9AbxCS4MKg3VDOoLwQqQCYgIzQdrB/cGRAYqBaQD5QFMAMb+Zv0w/Er7kvro+Wv5uvgN+ND3YPiQ+e/6VPyf/bv+9v9MAWwCQAP0A+QE+QVaB7IItglPCsEKSAvdC8kMMg7nD1YRDxLrESkRSxCPD8oOHg2WCnoHMgQ4AYn+W/zN+rr52fgH+Nb37fib+3j/PQODBQIGpAXtBewH/gsVEocZ5SH/KnszyTl9POw65zTHK5whJxgsEWQN9QvTCbUEe/xu9DrwqfGL9jn5rvWJ667dRNBcxRG98re1t3G+estj2vTlpOv77Ivuz/OE/M0FWQwfD8EOLgyJCIEFNgXOCIkPuxajGycdwRtXGI4TEg3qBFn8qfX78aHw0O/67eXq1udV5mDnseoU7wbzsvQ08x3vPupC5xfntulk7h/0s/qwAWsIyA0KEaQSQhPHE3cU4RTAFNMTOhIIEGENBQu3CUAKRAxsDu4OogyuB10B7vpk9dvwDe1B6qXoWegV6UTqxevY7bfwKvR99yL6MvwP/hoARQL7A0YF2QaNCaENKBLRFaoXrRdyFnEUyhGfDjkL8AfIBJABEf5k+gj3pPRA8z7yOfET8Nrut+2U7FjrPur16SXrye1I8cP01veP+ij9l/+hAfECpQMcBNEEwgWKBu0G2waMBjQG7QWxBUIFawQ6A3MBM/+Z/BT6Bfi09kf2Tfao9mn3kfjP+c36Zvuv++T7X/xD/Wn+jf+fALgB0QIyBMQFbwcECU4KIAtlC0kLLgs6C2ILfQt9C6ALGwzoDNQNSg4dDkYNIgwCC9wJcQitBkYEJgGa/SX6jPeW9sv33vqA/vwAXQEAACX+Hf0N/r0AOAUFC/gQjRZmG/8f8ySLKkgwnjS0NiM2iDJUK68ggBRqCs8FLQjcDl8UyRSSD94GwP3F9R7uYean3ijYKNPYzsTKQseNxe3GJcvJ0ELX6t4Z6KzxkfhQ+ij3q/In8T/1mf24BgUOKBK+E0EUXBTSFJkW4hl2HbIe5RseFVMMHARE/Y33ovIs7+jtQO5h7o7sseig5P7hf+Gc4jnkEua75+foGOlN6LvnFelo7R30evsiAqcHRwxXEMETMhaJF4IYYhkYGgAaVxhPFfQRXw/pDS0NUAzrCuYINwbXArH+GPq69V/yK/CL7grtueso66frd+0Z8Pry3fXq+FD8qv9ZAvcDvgRIBTcGrgdzCS0L4QyfDj8QTRF1EdEQxg+EDs8MPgqvBqkCC/8Q/Kj5iveU9Qr0K/P98ujyZfJz8YnwU/Cn8OfwtPAu8C7wLfEM81T1v/cx+q38Pv+5AZ4DwARGBVoFPgXnBJMEMwTxAwQEBQTHA1MDCAMAA98CMwLYAB7/pv3S/Gz8Afxk+8f6Qfr6+dL5vfnY+Wv6pvtb/Ur/IAGLAmkD6QNRBOwE3AUEBx4I0QhSCcUJTAoBC7sLQQyiDNUMzAxlDHcLCQpdCKYG6wRjAygChQGrAVMCEQOAA5MDcgOoA3MEkQXSBZYEgQLaAH4BqAR2CYAPfhYsHsIlmyxBMRoz0TJxMcQu9ClAIrgYPQ+8Btv+efbF7uvqM+6H97wA/QGb95nlFdStyX7HPsqQzbLPHtFs0szT3NUI2qPhUeyB99L/ZwMgA/cAe/74/CP9yf89Ba4MQRSrGakbzhozGK0ViRRfFMoTHRE3Cz8CTvjW79fpeeaH5aTmUelI7EnuPe7Y65LoPear5YXm1uch6ajqB+2S8Ab19Plf/9AFFQ0+FMkZcRwoHCsaNhhuF3cXdxf9FiMWKhUlFMUSyxCNDpYMzQp8CKMEFf/K+LHy9O236lnosOYk5inncOmt6wTtlu1A7j3w/PP++Cb+uQJyBmIJmws/Dd8OShHnFN0Y7BsVHV8cYRrzF3YVwhLYDxUNuAocCCsEEv5T9p7uw+jo5YHlN+Yj5/jnfeih6HHoU+gY6RLr2+2Y8J/y//N/9eH3V/to/4QDVge+Cn8NCg9SD/0ObA6nDWsMYQq7B1IFKwRnBDUFlAX3BJIDxgHz/yj+Z/ye+qP4x/Yn9d/z1vJs8hjzxvQi99r55PzN/wgCTAPNA/kDIgS8BCsGHwi9CbUKQAuXC+cLkAzUDUYPYBCvEP8PbA5uDF0KTQj8BUkDBQEgAOYA0AKPBPcEEQTgAvwBKwEeABT/pv7d/pj/HQBRALcBCQbjDWgXGCBHJsMpOytaK2EqLSgwJRsiMR9NHF0YdRPoDuoLRwoHCK8DS/0r94/zF/Li7xXpZtwwzPi8KLNbsRe3/8Euzv7XkN2a34XhBee98LT7rAMRBsQDQQBn/oD/lQPQCXsRtxn4IAwl4SQcIU4bqxSbDbAGLwB3+rT1iPH+7Afo6uNB4o/jT+Z06LHo+eY/5J3hst+h3pveN+AI5LPplfDl9zb/NwZ3DK4RthUNGS4c9B5zIJgfRxybF44TgRHKETATTRQfFDcS9w7+CrMGQQKs/e/49/Pw7mbqC+eH5QzmMego60/ul/EW9bL48ftW/tX/2AABAqUDcgX8BkUI3wmADF0QsRR8GBEbTRw0HIYaBxdAEk8NNgkoBm4DPgCF/Af51PYh9jn2TPbM9dX0p/Nf8sPwoe5j7Mrqb+pu63rtcfBF9Jj4gPyH/6EBNQO8BDQGVAedBxMHKwaRBWkFkgXKBQUGQAafBu0GuwbFBfEDiQHr/pv87/ru+UT5rPgw+DD49fhZ+sT7qfzm/Jf8BPxt++T6kPqo+iz78PvQ/Nb9TP+HAX8EngcuCtILwwyCDYcOug/vEEkSphMnFZMWUhe4FqsUFRK0DzIO9AwfC4UIzQW5A+0CbAIyAeP/a//nAVcGKwqbCvMF8v2J9Rfvr+wf8K75/AewF6YjfCiJJ+wlvihIMEU4+jkCM2wmqxmaEM0LcAmFB/sFggT0AtEAxf3b+QL06+oh3l3P2cIGvOG7JcAHxaLIbsvwzkvUe9ox4ILk7eby5+7ntef752Hpcuxe8Yz4+gHyDR0briYgLm0v1CoOIwsblhQtEL0M+gjKA1n9YfdV8/jx3PJ79Ev02PBN6njidNvi1YXRwM30yg3LdNAG2wTo0vO2+xYAVAOuB6oN7xMHGQQcGx3eHEEcTRzjHX4hCybDKcIqaSiUI3wdvhZ9D6wH5f82+WX0OfHa7pTsZurD6OLnhOdI5y/nZuci6CfpQeoL7EXvpvTo++MDcgvAEfoWkRtoH8whTCIKITEf4x2OHeMd6R0JHREb/BcWFKcP9Ar/BbYAvfrf847sveVu4P7cGduN2nTb/d0j4iPnXuvr7enuRe/l70jxZPMk9ob5VP2HAa0FaAnhDP8PlRJcFOcUIhQlEmUPRAwECdkFEQPOACf/C/5Z/db8WPzF++P6rPkK+Fn2+fQO9HrzH/MP82TzY/Qe9qP4qvuc/hUBBQOhBFIG4wcdCf0JcAoECyEMFw7IEIgTsBW7FoQWWxXTE/oRDxDvDecLJQozCBwGHwTQAnwCNgOgBHIGTgiqCR0KJgnfBloEtwJuAnMDxAScBd8FsQNwAaABDwVuCygSkhc2G5Qdqh87IcYh9yE0IqwjliawKqsu+DBgMDosKyRPGocROgtNBe/6TukW0+m/8rfHvW7LEdfe2IDQy8SivcW+K8YVznLSctJFz1XLfMkMzALUSuDb7Rz6IgSDDNkTbhm7G8gaNhiQFqQXpBoVHbocBxlmE9QNQwq2CT0LwwyhC3QGdP3Z8rPp9+KV3s/bxdmo2CjYU9gJ2SzaWtwT4HTlKuyz82372AIyCXMNpw/XEH0SAhY2G9QgHiXxJqgmfyW9JPokVSXDJDoiiB3lFr4O7wU9/df1hvAH7dDqOeli6IzozunP67Ht5u6s733wbfFB8qLyt/JY83b1hvll/1gGbQ3yE0oZOR2YH5cgZiBJHycdwxkzFRgQgQs7CE4GPwViBDIDjwFm/3/8oPjl8+DuI+oM5t/ieuDk3nDerN+o4sLmCeva7uDxV/Rq9hn4R/kX+j/7Bf17/yQCwwRDB80JnAx6DyUScRQRFnsWMxUrEhcOJQplB+oFLwVtBDYDywFnAFv/Rv7o/Hv7O/pR+Xj4n/cf9/z2L/fE99v45vrR/fsAtANTBfoFBQbQBd4FTAZFB3EIigl3CggLegslDDkN+g4EEfMSZRTeFH0UVBOEERAPuwsWCNsEpgL/AZACHQMSA6oCoQHu/+z99PtA+k747PXs8Q7spOZ65QLsCPpFC2gZriFhJXEnpSlUKyMr+yjfJoQmECepJa8gMhnUEogQuhG+E9MT1BDfCn8B1fNs4iXQbsCrtcmwjbCVs5y4A74jwhXE48RCx/7M0NUO39fkmeVg4oneNN4/5A/xDwIgEzAglSeeKscrtCyoLE8qeSV0H8kZUhUQEccLYQXO/rL57Pam9dj0bfNJ8P3qp+NP28zT5M7AzTfQcNSi2HnchuDu5TXtzvWR/hcGrwuSD1gSohSfFnwYYRqJHCUfAyLtJHEnvihRKM4lkCF9HG4X+RK+DocJtwLA+uvysuzS6B3nwuba5gvnZufy58Do7+mJ65/tPfAV8xX2Wvkw/ZEBDAZbCn4OoRL3FlobDR9fIfch1CCfHhYchxkAF4AU0BHWDlwLMQesAkn+nvqv9yj1mfLZ70HtAOst6c3n5+aq5jXnd+gX6vbrFe538BXz4PWL+P76a/3o/5kCNgU5B3MIKQnFCXUKJQuDC28LEQuYCggKSgl8CKkH2AYRBkMFPgTzAmsByP8o/rr8l/vU+m/6aPqP+qH6jvqk+vn6T/tg+0L7K/tL+/77Wv0b//UA6wISBUAHzgllDLgOoxDoEZISkhIoEhISvxKvE2UUwBTbFCoVuRV+FsoWWxV7EQUMOwYIAcr8Ofnd9eDxsuxO5xbjNeJJ5mHuGvfb+1P6mvTB77rwZPkIB+cUgB8vJjcqLS1/MCQ1EjqtPH86STSJLNQlBCHGHFsXixDcCS0FqwI0APv6+PGT5bXX9MoAwcq65rfPtnu1BLMesRGy27atvirH8c3f0mzX/txe4/PoU+1t8Tv3wv+QCnAVOB6SJLgoKSuoLDktgyxhKqgmXyGeGiATLgxEBgcBN/xp96Xybe676tTmL+LI3FTXHNPn0OfQwdKT1djYbNyY4L3l6usA82L6KAGJBlcKKg0MEIgTJRcrGmUc4x1bHyMh/CJcJHQkuSKkH9kbwBdyE+4OTAq7BWUBhP1Z+jD4Dvew9oH2DfZC9Wz08/Md9AH1I/ZA96f44voe/tIBIAWMB1MJ9ArJDOIOLBFREwAVuRU/FZoTJhFsDgEM/QnqB4YFqwJz/0P8Ofle9t/zTfK28bzxqfHV8Evvpe2d7J3sqO0+7wnx1vLE9Oj2MfnR+4/+OwGIAzsFZwYFBwsH3gaWBkYGFAYpBo0GGQedB8kHfQfoBkwGnAWMBCcDrAFsAL7/pP/n/18A7QCQAS8CBAOjA9QD1APNA94D5APZA78DiwM6A+4C5wJyA4YErQVVBkYGzgVHBeIEygQBBZgFaQYrB8YHSAjyCBUKlQsbDXgOSQ+tD48P+g6tDUAL7wdEBHQBkwC0Ad4DKQWPA17+1vap77PrZuzw8IT2svnT+CT1X/JI9fv/tw9WHv4lySQCHnQXDxUTF5ga9xzdHZkeqSCyI+wlvCVGIv4bgBQnDYoGFwBJ+Jzt+99/0crF0L+4v2vDx8eHyj3LDcvcygHLbsswzC7OKdJB2Nbfiucn7rnzDPnA/9gIwRN1Hh0mLCneJx8kKiAzHQsb0RgLFt4SBRCnDWULTgirA3z9dfbK7xrqmeXU4dndTNmO1ADRAdDU0STWz9tn4U/mvuoR74nzRfi9/JkALAQKCLcMMRLAF6gcYCAsI6klLShVKoQrIyvjKL0k9B5XGL0R3QsBB7UCa/4U+gb2yvKS8AvvqO0q7I3qD+ku6AHonuhE6hnt7fCD9a76OwDbBUALMxBcFLMXkhrqHJMeTx++HgkdCxs+Ge0XkxauFP0RNQ6cCX4EVv91+jL2fvJB71Hsmukd5+/kOuM14vjhouIb5DDmiej36kTtsu+l8mf2yvpG/2cDuAYzCRELmQzFDYEO2Q4WD1UPlQ93D7IOng2rDA0MdwucCnIJwweNBegCTAAm/pX8lPvW+if6rPl2+YP5+/nv+lb8v/3A/lf/4f+bAJIBrALLA9wEHAYECIYKJA1rDw0RIRLwEnsTvhOjE0ITwhLDET8QPg5WDBELZwpaCigKQAlxBz0EDACK+0j4F/eN92b4/Pek9un07fP+85b1qfgl/TYCLAYrCIMH8wUjBWMGHglHDCoQPxWJHPMkRixJL0UtrSdrIVId8hsVHcQe1h7ZG/UVTw+eCi8JHQpmCugGZ/5Z8gHlCtgwzEnBd7iVs8azCrh+vebBasSZxbzG68jazBDTN9vM44fq+u3I7sHvSfST/YwK4RcnIuQn1ygLJoohCR2ZGVsXTxUSEq4MtAWZ/qb4dPSm8WPv7Ozv6W3mHeJH3XHYoNTx0kzTw9UO2qDf7uWX7APz3vhD/mkDsgjpDb8S0xbJGeUbpx1VHxAhFCMkJf0m2CfTJocjbx6OGO0SCw5fCVUExf5U+eT09fFJ8EHvW+6K7Qrt7OwN7Q3t5uzy7LTt0O9D83P3zvsBAAwEAQjkC3cPZxKoFE0WcRfMFxYXlxXNE7ASsxJgE34TZxIVEPoMngkIBg4CrP1R+Wv1AfK87mHrTegk5hPl1+TX5BPlz+Vy55fpfeuF7ArtLe7G8OD0n/lT/pgCgAYPCkYN6g8hEukTPBXUFV4VBxRhEgQR3g/cDsgNXAyhCnYI6AU5A78Akv6O/E/6tfcC9eXy4PE78mrzw/Tr9bf2n/ed+Mv5VPsZ/TD/UgFEA+4EZwbdB2EJ5Qp6DBoOxg8jEeUREhKKEaMQoQ+iDsgNtwx7CxgKoAhABwcG1gSqA3UCYgFxABP/iv0T/OL6QfoR+kv68/pD/Pb9YP8qAIcA+QDTATsDQQS9BKcFIQjuDFoTKxoqIGclmSn+K/IrqynlJgYl6CMuIkoeJxgVEmAObQ3LDWcNIgvNBzEE8/+M+WDvzuHl0lDFB7vEtau1IbnTvTDBtcI5xInI+tDP25nlgOvd7IbrweqU7LLxt/k4A8YMrhQ3GukdkSDdIgck5CKyHlEYhxHqCqYE6/079nzuAegn5N/iruJm4kLh9t6S237XodMk0avQVNLJ1Sza8N5p5AzrFfNP/MsFeA7yFfgbtSDEI+0khiRXI5si5CIfJJElfiZZJsMkxiGIHTYYeRJrDC4GtP+Y+FfxxOqx5ajieeGw4RDjmeXt6Ivste/+8Ybz5vS89nD59PzZAO0E+wgtDV8RfxXQGRQeAyLtJOwlnySiIbMdsRnOFQASRA6pCn4H+QTCAjQABv1r+Q/2WPM58Szvwewy6p3nROWh4/fim+Or5aHonutt7jDxVvT/98T7+/5TAS0D+QQEBxIJswrDC7EMyA3iDpgPmw9AD9AOhw4UDv0MdAuCCVwHIAUeA6kBogDM/93+zf0H/Yv8YPxe/H38+vyU/Tj++P7b/8UAZQGtAeABLgJGA1YFxAfzCVYL5guvC0sL2QpHCtAJqAmzCX8J/ghZCJ0H5wZABsQFsQUSBmEG4QX3A/wA4P2++z777vvX/Hv96P1U/sz+Sf8QAGoBWwNaBbgGvwZABQoDYwE7AUUDIgikD5kZ7SRbL2w2BzkUOIU1xTKMLx0r2yTeHFMUqwzxBn0D+wHyASoCwQCw/CT2Yu2t45TZCM9QxVi+1buuvc7BjcXTx7nJU83w03/cGeWj7GLynvZr+br6V/ua/MT/ygW2DcgVxhyQIaAj5CJPH58ZchM7DvkJSgX5/ub2mO7Z57njF+Lg4VPiIuPM43HjVeED3rjaNNgX15HXudkD3pTkGuz08kL4r/y+AXQIQhBiF1kcpR4GH4EerR0JHcAcAx2OHbkdnBz0GS8WNxKsDmIL4QfLA0T/pvop9t3xtO0E6mbnYebt5nfoY+pa7Gru3vDP8wn3aPrc/WsB+gQ2COUKFQ0fD4QRaBR9F2EatBx7Howf7R9VH60dCxvqF7EUUBGzDbQJXwULAQH9Yvkv9lXz/PAa73ftmOtY6e3m1+Sn463jb+SZ5RfnLenk693uufFu9Bf31/nM/Lr/XwKaBJIGXAgGCn4LzwwpDpIP5hDWEUASQxL6EVMRDxAmDucLvwn/B6cGfAUrBLwCVgH8/+z+6f3i/Oj7Eftr+un5nfmv+SD69fo9/NP9qP+ZAZgDcAXbBu0HpggkCZAJ4gk+CrYK4groCrAKIApKCVAISAdOBnIFaQThArcAEP4K+/n3t/Qa8hXxnfFG8770tfRw83vyRvMD9n35Efwz/ZL8V/vk+lL8wQH3DIgdEi9yO+g+Zju2Nd4x8y/wLMcmYR9/GgAaERsTGX0SagpjBTUFTweMBn8AxfWx6G7bRc/ixQDBYsALwsDDdsSBxTPJLM841Y7ZVNyB36bkFuun8JLzP/QV9bj37PxrBBUNWxWKG1Aepx1CG1YZphhdGPEW1hOYDxELygaGAuz9PPlT9aLy4fDX7hHs3uiH5TXi/N4F3PvZoNk923De/uEN5annh+pJ7g/zZfiM/ScCLgarCYYMkA4hEK4RxxN4FiYZBRvNG50bVRpRGHwV3BHpDSgK/AYVBNoAM/2Q+YX2bPQl81nyB/JB8uLynvPl84zzJfOP8zb18Pcy+4v+tAGmBHIH8wliDDQPXhKhFUsYgRn7GGgXthV6FJETjBL4EAcPEg0mCwAJSwYXA5b/Hvz7+Eb22PN28UHvOO2D64rqZuoS60jspe2n7lHv8e/z8I3yifSW9rr4Jfvv/QkBFASpBrwIhgorDLMN3w5GD+sOHQ5SDaUMDwx9C9AKAwodCT8IQAcXBrwEQAOgAc//zf3A+9v5ePjI94T3n/cx+F355vpY/FH92v1Z/kr/3QDkAgMF5QaICNwJ7QrSC64Mpw3NDuEPcBBFEJIPXQ7MDCYLrgloCGgHZgbUBIAC7/+k/fn7DfuF+vT5Ivk8+Dr39PXS9FH00vRy9uP4WvvH/Pj8ePzT+877Of29AHIGkQ2ZFDca+x2iId8mpS6bNwE+wz7WOPstoiFDF+kQ3A5VD0kPcgtiAgr26Oq45Ajk6eT+4bPZs876xc3Cm8PXxHbEa8NoxbXM+Nd34yrs9vBn80319vfE+w4AJAR1B4sJ8wrbDFoQyxXyG2AgXyHQHhga5xStDysK0wOD/MT0X+015y7j/uGt4+Dmc+ma6SnnieNW4IneId6P3tDfZuI35uLq9O9O9Tv7MAIFCt8RghjkHNwehx6DHDEajhiCGO4ZChx8HUUdeBsNGdYW2xSkEkwPiQqNBN/9CfeJ8DTr0OfC5p3nVOn96jnsL+1D7rvvhfFw81T1OPcB+az6e/zx/oYCMwdiDFkRiBWaGLwaBBxTHIob1hl3FyEVKRNTEVUPBg2HCvsHXwXAAicAcf2p+rv3cfS38ATtIOpN6E7nKed45zfof+l66xvuEvEZ9Ln22fic+oL8xf5ZAd0DDQbaB3AJ3gorDFUNYA5GD70PcQ9RDpMM0Ao1CbQHIwagBDkD/wHuALT/I/6J/E/7m/pO+vj5VPl3+NL3tvc3+Fn5zfpf/ML9r/4x/5r/UgCEARsD/wToBrkIQApcC/sLDQwFDEEM2AxYDQ8N0Au9CVkHiwW/BMAEGgVpBYsFQAXsBHUExAPYAq0BCgDB/Rb7Wvg+9uP0VPT29B33uvoH//YCOAXXBeAF3wYbCcALmw0XDjMNaQs+CVcILgudEwQhZy8HOb05oTLRKJAhpR7FHe0aiRT7C6wDpPx29g3wwums5FvhXd+W3dbaZ9b1zyjIPcE0viTBG8nx0tza9t6l4Pfiyufz7uz2DP49AyAGyAYaBpYFAQcZC+MQkBbOGl4dgR4UHn4buBajEBALKgdsBBEBLfxY9vPwUO2e60breuuP60nrgerG6AzmIuNV4bDhUeQ36FrsUPB39Dn5Yv6CAzEIbgxdEI4TTBVSFTsUXRPyE+wVURj0GT0aYhkLGGkWLhQdERINagihAwP/nfpz9q7yoO/l7c/tQe+m8UX0YvaV98r3YfdB90P4qfrE/YgAkwIXBAYG+Ai6DHMQThMSFaEVWxUiFMARkA5IC7EIvwb7BO8CoQB7/rf8MPug+dn3BvY/9JPy/PBj7/Tt++y17BztOu7Z79Tx8PP+9dz3qPmg+9b9AACsAagCIQPFA+UEjQZOCI4JKwo0CgYKpwkwCagIDAh3B7kGwAV6BO8CUQHg/6j+qv3r/Gj8BPyp+1H75fqk+t76qPu//Mz9rv5t/y8AJgFaAqMD3gT5BQUH+Af+CLwJDgoSCuIJqgleCf0ImQgKCD0HLwYZBT8E3APeA+wDtgNFA4ICcQFGAEL/mP5w/of+gv4s/rX9TP0R/Tf90/3Q/gYATgFeAvkCAwPyAlcDpwT0BrMJ9Qu6DKQLNgkWBxwH8wkoD4UVHhoRG7gYJBX5EqwToRfGHBMfLxvmEKUEEfs79m70H/OP8Njttewy7Wjtsepp5KTbBNMXzbfLXs6b05TZot0n3jDcH9tS3uDmb/It/c0D1wSgAQX9/vkP++0A7AkXExkZfxpXGPQUXhLUEEMPvQzICOMDzf6y+aT0WfBl7bPrceuv7D7vR/I99IPzkO+56b7kKOOT5a7qDfAd9OL2MPnS+03/sgO5CL8NmRFpE9ESWhB8Da8LlAseDX0PsRFUEw0UlxOoEYEOzQpGB1AElAG2/nb7I/hB9Xfz9PKS8y71bPfa+dT7xPyZ/OP7gPsN/IL9kv/qAVwE+wa9CYkMLg9uET8TfRQPFZkUFBPOECkOhgsHCd8GDAWQA2gCXgESABv+c/uS+PT1y/P78RDwD+5L7EzrVetd7Enu5PDi8+j2jvmw+1f90P6TAKYC0ASsBhkIAAnOCecKOwzdDacPMhHiEUcRaw/SDDEK5AfUBeID6wH9/zv+lPxa+1z6dvnk+J74qvjS+PL4MPma+TD6JPt4/Ej+jADwAhcFzQYhCDgJLAr/CqML+wvtC4EL0wr2CSMJZwjTB2UH+QZmBpAFbgQSA6YBXwBm/+7+l/4F/iT9B/wX+5f6uPqC+5T8mP1V/sT++P4d/1D/uf9PADMBTwJnAzEEfwSdBMAEGgW4BXsGQgfKB/MHfQeNBosF0AR3BF4EJASLA3UCXgPCBScJKg2REIAScBLmEIcOvgsYCMAEewIvAdoAzQDM/q37jPiQ9kv3D/nN+m76pfYl8ITnNN6d1wzWQ9sT5UDuZPP38kzwze+/8736VAEIBXwFsgNmAOj7sPfh9WP36/vbACIEYgUwBaMENQNlANr8Qfls9//2mPZ99fTyVvDC7mfuoO/18T71yfj6+lD7rPlv95n2Mff4+A77ofwP/nv/MQE8A2YF6QdzCpkMJg6vDpMOEQ70DCALlgjOBWED2gECAUUAO/+y/er7jPro+ez5LPog+oX5cvgd98D1yvSn9Lf16PeZ+gf9DP8WAbED6gZyCrkNGxCcEY8SFxNIE/YSZxLNET4RyxAnEHEPnA58DbUL/giABa0B9/0X+9n4nvY69MXxsu9e7ujtQ+4d71DwrPHx8iL0xvQ19fL1KfcW+Wr7pf21/8oBNASJBjEI3QioCHMInwgmCbQJxQlVCYAIgwdyBmEFrwRfBHEEuwQnBPkCpwFqAJv/xv7Q/RL98PyB/VD+6P7t/o/+eP6V/sj+wv58/mL+kv4r/7z/JgCUABcBxQGCAioD1ANpBKAErQRUBOsDmAOCA9IDMQS/BBsFPQVIBTYFLAXzBJwENgSEA+YCbQL4AYsBKwELAQUBAAEOAf8AoAAaAGT/E/6q/Fv7svrE+gX7wvvj/EL+XACtAvYD5QP7AtsCagQdB/IInQgJBh4DNQHjAPgCdwdJD24Z0SLMJ6ImRyFlHHkaeRoxGp8W7xCyC4MHLgRPAG/7rvYS87Twb+/u7WfrI+dQ4HfYttG/zu7QHdeJ3pTk9ect6dfpfeug7wb28PyIArkE1wMcArwBuQNCB+oK5g0IELoR6hLYEukQdg1PCQ4FCgEc/Xr5sfa+9DTzo/Hu73nuDO7w7sPwXPLT8ibyuvCH72PvevCl8oL1svgM/Cn/9gGNBCcH0wklDMgNbA4gDlUNnAzgC9MKewlBCIsHhgfnB+8HMAeQBV0D3gBQ/vH79/ls+Dv3NvZF9XX0RfQY9c72H/mP+8b9qf83AXACSAPjA5wErQVJB0cJXQtGDeUOKhAsEf0RkhLkEs4SNBLyEAoPgwxvCToGbANeARgAT/99/mb9A/x9+vL4bPfp9Zr0jPOi8sjxCfGr8PDwBPK287L1wvfJ+bb7fP3E/nf/5v96AIcB3gIVBPYEpQV9Bn4HXwj3CBgJyQgkCDoHBwaGBNMCJgGV/yL+4fzo+0T7+/rz+tr6s/qq+rv6rfpI+oX5x/iU+CX5Sfqp++b8Df4//1UAWwEfApwCEAOTAxQEZASHBKIEwgQBBWYF5gWSBloH+Qc5CAIIgwfWBhIGTAWXBAwEoQMuA7cCSALoAaIBXQECAY8AEQCI/8P+gf24+6n5rfct9qz1bPb39xv60vtY/GD8/PxV/woD1gbKCRkLOgubCzMNzhBjFq0dkSVgK+osySniI9cduBjjE9oN/waWAXD/LwD8ACr/svoy9hH0S/S09Iryu+yU5CTcVtUw0WLQCtPH19TcVeFW5Yvple6t8073Evm4+Yr6cvwt/6oBWQN8BDgG8gjADGsRpBUtGPAXmRQKDwAJGAQrAF/8Zvhv9DPxVO+h7pLuoe7R7ibvVO8I79vtS+wA637qoupS683sQe8c8yv4tv34AlEHqgoqDfQOORDyEDgRWRGEEdYREhLxEa4RdRE+EbsQjA+UDRkLmggmBogDbwD2/Mz5pPfa9v/2dffQ9xb4afjZ+FD53fmr+tj7Lf1B/tr+Dv+E/+YARQMFBoAIZwqkC0EMegw4DL0LXQsqCxALrwq3CT8I1QbHBeUEMgRbA3ICoAEFAXAAcf/u/fr7GPq6+AL4tvd69yL35vYa99P3//hb+sH7Hv1R/vr+LP9N/7D/bgA3AcgBGAJkAt8CpwOMBBIF9wRsBK4DCwNTAhoBhP/3/cT80fvu+hf6hvll+cD5a/oi+6n72/v8+/z7FPw//H/8Dv3//UL/YgA+ARICQQO2BPEFnwa5BqEGxAZGB9UHKghFCGIIfQiFCGEIQQh3CCEJ2QkMClwJ/AeHBiAFqQPzATEAhf4D/XP7Ufm09n30ufN/9NL1YfZB9ln2hPcF+aL5vvip9+H4Of0wAxEHyAZDA+D/Vf9BAogI4xBPGuoiISgnKHokbCCBHjgeLhyEFikOkAZEAhoBIQH3ADAAuf4Q/Jj31PER7ELnIuN83sbYs9Ns0sLWDt+p567tLfHu87b3l/zsAF4D2gMgAxYCDgFzACoB5gNFCPQMYBAJErkSRROaE/MSMxBuC8oFpwB+/Nb4R/W28XzuJ+zu6rTqOuvt62nsMOwD6zDpiue85trmeOdc6Kbps+sU77zzLvnL/hsE1wj0DFQQ2xJcFPQU1RQfFCYTcBJAEqQSQhOvE34TkhL1ENMOPgwgCWAFCgF8/ED42/R+8uHwvu8L7/Dune/S8FDyxfMZ9X/2DviM+cD6ovu3/KP+dQHvBHAIwwvcDoQRgROoFB4VWBVnFQkV8hMMEo8PEg30ChAJUQeNBcQD4wHk/9r90/v++Vz41vZF9Z7zRPKg8ZrxAfK68oPzkfT09bX3pvmf+4v9LP9jADwB+wHaAuYD7wTbBacGYwcMCKMIIAlsCYUJaAn0CCUIDQfeBaIESgPsAbEArv/m/lj+1f1P/fH8wvyw/Hv8A/xO+4n6AvrL+RD65Pof/IX99f5AAG4BigKeA6wEgQUuBp8G5Qb/BvkG3wa1BmAG8gVqBb0E6wMCAwQC+gAEAAz/2v1Z/KT69fh795T2e/Ym91T4Vvld+RD41/Xi8yXztvNZ9Z733vlp+0v8n/0AAHYEjwvuFGkeViThJC8hnRt+FrYSyxAjEX4TWBdCG8AcsBpmFjQSmw8vDmIMcwhZAtX7RvaR8QHtYuim5GvjB+Wh6JHsY+8o8GHufur05Zbi5uE55JXoR+3Y8Ebzz/VB+fv9rwNMCewNyxBcEfMPlA1PC3YJ3Qd3BmwFGQXSBfkGtAdXB9UFuANaAdT+0/tr+A/1+PEj73zsU+oG6eHoxekW6y3srOzd7CXtye3C7rXva/Ab8R3y0vMy9uT49/tC/6kCygVFCB8KoAswDQEP2hA0ErkSYRKKEcIQJxCwDzcPlg6nDVkMhwpRCA8G+gNFAu8A2//M/rX9lvxZ+/r5d/jr9r31RPWX9Wf2S/cj+Oz42/kw+9n8q/6VAHsCFQQtBZEFYgUiBVwFKAYlB+8HWghzCHEIXwgzCNgHJQclBt4EVgOmAfn/ev5Y/Zn8E/y3+3z7Z/tq+2j7Pvvt+p76T/oL+s/5kPl3+b/5dvqc+/r8Mf4g/8H/RQC5AB8BiAHzAXYC9gJeA5oDpgOnA+YDXAT3BJ0FKAZgBjoG0QU6Ba8EVAREBFQEMATHAxEDOgKRARUBpwAsAJ//E/91/lv+jv7R/hT/SP8w/9z+0P4+/+H/HwCO/2j+Of2h/Nv8Av1L/Lz65Pi298L32fgX+iT7zvth+1H5wPZR9Qb2qfka/yoD0QIs/8b7Yvut/3kIoxMJHYcj5SZ9J7YlxSL6HlAZBhKfCpIGAghpDlIVXxetEkcKTwN9AXQE0wYkA2P48ukE3VzVAtSX15bdJ+Q76gjv4PFk84j0pfVB9oX1wvPB8mP06fhb/l4CZwT3BT4JKw9HFqkbZB1CG3gW9RDVC4AHSASXAo0ClAOoBIMEqwK7/4H8evmC9jTzrO/V69/nUeTC4XrgdOCq4VfkU+gQ7drxk/WZ9773sfar9cD1e/ef+rP+RgPSB94LKw/QERMUWhY8GOkYwxfYFPUQSQ17Co0IBwdVBZkDbQIEAtMBBwEq/0/8Cfno9Svz9vBO7z3uA+6S7qnvPPFS8xL2Svll/MD+JADkAK8B2wJMBNcFTwcKCSoLng0IEL0RgBJkEsYRqRANDwYNngoiCMcFrgPYAT8A9/4j/qj97/yM+6L5j/fL9Wv0LvP48djwevAq8ZzyRvTS9Rf3Tvi1+XL7Sv3h/jAAJQHcAVwC1QJfAzUEXgWcBtMH9wjzCaQKxwouCgEJjAdIBlQFkwTYA/MC5QHDAMT/1P7c/fb8Mvyo+zH7ovr7+VD52/jp+In5r/oX/Hf9oP5s/wIAcgDWAEQBywFpAgwDpwMuBJ4EGQWNBesFOwaEBqcGnAZ6BiwGiAWhBKADnQK8AR0BqQAjAJ3/M//l/rv+oP5g/uv9fv03/f/8sfxo/Fz88vxQ/h8AvwG6AhIDFAMUA14DBAT7BOMFdQaMBjUGrgVrBcEFdQbLBoEGpwUoBOkCbAJYAgQCNgEuADv/5v41/7n/8f+3/x//OP5V/Rr97P3L/zUCWgSRBc8FegUjBfEEuQQ+BGkDjALyAV0BdgD0/jb9ufvQ+nv6V/oi+rH5BfkN+KX27PR68+jyUvNj9G71GvZ19rr2K/fk99X4GPqs+4H9Sv+gAGYB0wFJAhcDMQRcBUQGywb3BrUGEgYjBT4EpwNuA18DGwNhAjcB9//Q/sP9s/yM+236ffnG+Bz4ePfo9rH2APfI99348fnd+oz7CPxi/KT8B/3J/ev+PwB7AXwCSgNCBIkF5QYJCLcI3Qi3CF0I0gf8BvQFHwWOBG0EeQRLBMIDCgNFAmkBXAAi/9X9sfzd+z37vfpX+h36S/r6+hP8Wf1//mX/FQCUANYA4wDvAGABNQI6AyIEyAQ3BaEFFAZjBmcGGAaTBd4EEQQ6A0UCVAGgADAA7f+w/1T/3v5u/h3+0/1h/br8Dfxy+/X6mfpf+kz6h/oq+/X7zfyW/UP+y/4Y/yr/Ev/x/gf/Wv+1//L//v/0//X/NAC+AGEB8AFGAj0C0gEzAZwAIQDC/4b/df+K/77//f8nADsAXQCNALIAvADEAMkAzwDSALsAcgAdAA0AaAAcAfABlQK/AosCNwLTAXQBLAEhAWEB8gHUAqgD+wPHAywDegLbAVAB6ACzAJ4AgQBJAOH/lP+L/+v/vQCQARoCJALJATsBigCv/83+Pv5S/gv/DAC1ALgAYQAnAFoA4AB4AekBCQL8AcoBaQHiAHUAaQDJAGkB8wEhAvkBswFzASkBvQAtAKj/VP8q/wT/w/5R/tH9fP1t/Zf92v0i/lf+YP4u/sL9Nv2l/D38CvwK/C78M/xD/G78ofzj/B/9Zf29/Sf+j/7l/hf/I/8X/wb//f4p/4D/8v9eAKAAvwDPAOUACgEkARIBvgA9AKz/Kf/E/nj+QP4m/iv+Mv4v/iP+Ev4a/iz+N/4q/v/90v2+/dz9Gv5Y/pP+3f5K/+L/kAArAaEBtgGaAW8BSAFGAXsB4gFJAo8CvQLrAj4D3gPgBPQF3wZlB3sHTwcnBw4H6AajBhwG5gVmBpgHDwkOCjcKewlaCEMHRAZ2BfsEmQTrA6ACtgAF/zn+wf4mADsBJAHY/yD+d/zg+qT4mvWE8nfwSfC58VXz5fNJ8zjytvFZ8iD0c/a1+JL6pPuw+wf7q/p8+7j90wDYAwkGRQfvB3oIBglNCSYJuQg8CLEH7Qa/BTIEbgKoABz/yv2f/Lz7IPum+gz6JPkg+Cj3Wfb69TX2APcr+Ev5I/qX+tb6WPuB/D7+MgAMAqQD7gQKBvsGrgcQCFAIlAjlCAYJvQgPCDAHZgbDBVUF6gReBLQDCwNMAl0BQAAB/8r9sfy4+9X6Gvqy+cj5Xvol+8z7NfyQ/Cj9Cv4L/9j/SwCIANsAYwEZAtcCjgM8BP8E3QWwBlEHqQe0B28H7gZABngFwgQhBH8DtAKkAXkAdP+//kb+0f0+/Wv8evuE+pb5w/gI+Hj3LPc094n3HPjs+Pr5JvtE/Eb9GP7W/pr/XwAPAZ0B+wFIAqcCFQOeAyYEhQSsBJIENgTBA0oD3wJyAuYBKgFMAH3/2P57/kT+EP7R/Yz9Wv05/R/99/y1/HL8SfxD/GL8l/zc/DL9kP0B/nn+8/5w/+r/WAC9ABcBfQH1AX0C9QJKA3oDiAOUA7AD3QMEBAwE7QOrAxADeALvAWsB/wCfAEoA+P+j/0j/4/5+/in+4v2n/XP9Xf1a/X39vf0M/ln+p/4M/5v/UgAGAYUBwgG5AZMBcwFeAUYBFwHxAAkBSgGcAe4BIQIwAhcC1QFuAcwAAAAy/4T++f1//QL9lPxl/HT8sfzz/CL9Pf1M/Xj9rf3Q/cL9u/3Q/Qz+Zf7l/q3/yQA8ArQD3QR8BZYFjAWcBd0FKQZhBlEGFQblBdYF4AXOBaIFTwXsBHkE2gMFA/kB5gDm//r+Gv5U/bD8R/wj/Cz8TPxU/E/8Q/ww/BD83vuv+4H7dvuW+9T7Cvw2/Gj8uvw2/cv9af70/k7/Zv8x/9P+bv4o/ij+cv7a/jL/b/+X/6r/tv+4/6X/Yv/h/kr+3v29/dv9AP7//dn9y/0c/sv+mP8yAF4AMwDy/83/xP+5/5P/bP9k/5f/+v91AOYAQAF3AYIBdAFRASwBFQEEAfQA1wDDAMUA4QAgAU0BUQEyAfkAtwCBAFkAMAACAO//CgBRAJkA2AATAVwBqgHsAR8CRAJaAmYCbwJhAkoCWgKcAgYDdAOpA6ADaQMjA+oCwgKIAisCowELAW0A2v91/0j/Wv9//6H/rv+e/4n/Z/8r/9L+d/4v/hT+G/4m/hj+Cv4J/jT+jv7//nD/r/+r/3D/GP/D/n/+V/5S/nj+uf75/iT/Ov82/xD/0v6S/lz+Gv7W/Zf9Vf0E/af8bfx1/KT82fz9/P/8A/0O/Rr9Jv0y/UT9cf2//Sn+mP7r/iz/Zf+1/zEAwABcAfEBeALxAkQDgAO+AwMEYAS9BAIFJAUUBeAElQROBBUE5AO0A4cDMgPgApsCVwIeAtIBdAEDAZkASgBjAPAA/wE6A4gE0gX0BhUIMgkpCuEKFAvOCjUKRwlwCA8I8wfgB70HuAfyByEItAdmBgME2wCE/Zv6V/i/9qL1+fTH9Pb0f/Uy9gP3s/c/+L74Kvl0+Zz5zvkD+jb6f/op+1/8FP4HAO8BaQM1BGgEdARjBB8EfAN7Ai8BtP8//h79Z/z3+6b7SfvY+jL6fPnW+Fn4/Pep91L3+fa09qr2yvYi95n3IPjW+Nr5Lvuq/Ab+NP8/ADMBIAIKA9MDZAS/BOIE6ATfBPcEQwWoBREGdAbCBuEG0AZ+BugFAQXjA8ACuAHpAEQArv8c/6T+eP6t/jT/yv89AG8AXAAZAL7/aP8c/+b+1/4D/2D/6f+YAHIBcgJ4A2sEFAVsBXMFOQXMBEMEoQPpAkECsgFBAe0AoABOAOz/bf/R/hj+YP2q/AH8Uvuh+gL6jvln+ZT5Cfqk+lL7//u//JL9av49/+L/VQCjANgA+QAkAV8BuwE3ArACHwN8A7cD0AO3A2gD+QJ+AgwCnQEZAYQA2/8y/5f+E/6u/Vv9IP3p/LL8gfxS/Cb8Cvz4+wT8NPyW/Bf9pf1D/tv+fv8XAK0ARAHtAZ8CPgPBAyIEUwRoBHMEdQRmBEAECQS2A1cD+AKPAiMCqAEwAcUAdABIADMAEgDf/6D/Tv/n/nT+IP72/fH9C/5I/p7+8v5R/8T/OACLALIAtwClAIQAZQBFACoAFgAjAHUAAAGNAfYBNgJaAmkCcgKEApkCdQIcArIBVAEEAc4AxQDqABoBMgEhAeIAdADt/2L/uP7t/R79f/wy/C38VvyM/Lj87/xA/bf9R/7K/ir/Wf9u/2r/aP9z/6L/7/9ZAM0AMAGMAeIBJgJFAjAC7AGKARoBsgBSAPv/rP9u/0z/Sv9t/6n/7P8sAF0AZgBHAAAAr/9w/0b/LP8g/yj/Uf+W//T/RwB4AIYAfwB/AIkAlgCgAJAAYQAoAPj/1//N/+L/DgBDAHoApAC0AKQAhQBZAC4ADQD3/+b/4f/a/83/tv+Y/4X/iP+s/93/AQALAPH/u/94/z3/D//s/tT+zf7Y/tf+3P7j/vL+Ef9C/4f/zv8MADUARwBPAFEAVABgAHYAnQDAANoA4wDaAMgAvQC7AMEAwwC2AJIAWQAIAKb/R//z/rj+ov6l/qf+oP6d/qX+tf7d/gn/N/9l/5D/sP/D/87/0P/h/wkATgCgAPgASAGFAacBowF8AUIBCgHZALMAggBBAPn/rv9x/0//R/9T/23/hf+V/5n/hP9f/y7/AP/Z/sj+2v4H/0//oP/2/0cAkwDSAAcBOgFmAYIBjAF8AWgBUwFKAUoBSgFGAUABOgE5ATYBHgHpAJQAIwCo/zz/4P6a/mn+Qv4j/gv++f32/f39Hv5V/pX+0v70/gL/Cv8j/1H/j//Z/zIAlwACAWYBrAHaAfcBFQI7AlYCZAJYAj8CHQLuAaoBUwEDAc4AuwC2AKEAawAVALL/Vv8I/8z+r/6q/rv+0/7X/rb+gP5N/jH+RP6F/uD+Of94/6P/uv/Q//L/LgB/ANMACgEbAQIBzACKAE8AIQABAPj/CAAvAFkAcwBsAEEA9P+k/2v/Tf9K/0f/PP8n/wf/8v75/if/a/+x/+b//P/1/9v/vP+a/4P/e/+O/6//2v8GADQAWgB5AJYAtADRAOwA/ADyAM4AlgBhAEUARABZAHQAjQCiAKQAngCNAGwAPgAUAPL/0/+0/5j/g/+A/5D/sf/X//f/EgAgACMAFQD+/+z/7v8HAC8AXQCEAJ4AswDLAOQA9wD+APAA1ACpAHcAQgAUAPn/5f/u/wgAIQA2AD8AOgApABEA7P+3/3//UP8p/w7/AP8C/xT/OP9q/53/0f8GADgAYgB6AHcAWwAwAAQA5f/a/97/6f/z//n///8EAA0AFAAQAP7/3/+2/37/OP/w/rj+kP6A/oD+jf6k/sb+7P4R/zf/Wf9//6v/2//3/wgACQAIABIALwBZAIcAtgDmABMBOAFPAVQBSAEzASABEwEAAekAuQB5AD0ACgDu/+P/7v8GABgAHQAWAPn/y/+b/3v/aP9Z/1L/SP85/y3/Mf9N/33/wf8UAGkAsADXAOkA6QDcANcA4QDzAAUBDAERAQgB9gDqAOQA3wDaAMwArgB9ADcA7/+t/3z/Z/9j/2T/Y/9X/0P/KP8U/wb/AP/5/u/+3/7G/rL+rP68/uf+Jf9s/7D/3f/y//T/9v8DACIARQBoAH4AiACGAIEAggCTAK4A0gDlANkAqgBaAP//qf9q/0L/Kv8e/xb/Df8H/wj/F/84/2X/kf+6/9L/zf+5/6D/kf+Y/77//f9FAIkAxADqAPsABwEQARcBGAEJAeoAuAB7AEMAGQAEAAYAGgAwADkANwAlAAEA3f+7/6P/lf+K/4L/ev91/3b/gv+i/9P/DABIAHMAjgCWAJAAjACLAI4AmgCoALcAxQDLAMgAxQDDAL4AvQC9ALMAmwB5AFEAJwD8/9b/uv+p/6T/of+b/5P/if9//3z/gv+L/5f/o/+t/7P/uf/D/87/4f/5/xMALAAjABUACQD9//H/4P/N/7X/p/+b/5X/mf+c/57/n/+j/7r/1v/u/wIAFwA0AFYAdwCNAJAAhQB2AGsAYwBdAFYATgBIAEEALwASAPX/2P/F/6//nP+I/27/Vv9D/zX/Mv89/1b/ef+n/9n//P8QABgAJQA+AGIAhgCfAK4AugDJAN0A8QD7APEA2wC8AJYAcQBMAC8AIAAaABEA/f/i/8b/sf+r/6z/qf+W/3X/S/8i/wD/6P7f/u/+Gv9Y/5L/v//g//T/AAAQACcAQABbAG4AegB5AHIAbABtAIMAsgDsACMBPQEvAQABvgB4ADgA/v/Z/73/pf+T/3b/UP8l/wb/+f79/gL/Af/q/sP+l/5y/l3+af6e/vL+W//C/xwAXwCTAL8A7QAXAUABVQFXAUkBLwEYAQsBBAEGAQ8BHQEjARQB6QCeADwA1f97/zf/CP/o/tH+u/6v/qr+tf7M/ur+Ef82/0b/Rf8+/zn/P/9h/53/6v9KAKwACgFUAYIBmgGZAZkBmQGSAYMBXgEwAfgAxQCjAI4AiACEAHkAYAAwAO3/nf9G//T+uP6Q/oH+hf6V/q/+x/7k/gP/LP9e/5X/0P/+/x8ANQBEAFcAcgCXAMEA6AATATkBWgFtAWoBTAEdAecArwB7AE4AIQACAOj/zf+q/4P/Y/9J/zv/Nv81/zL/Kv8i/x3/Ff8S/xr/Of9z/7v/+v8iADUANwA7AEgAXQB0AJcAuQDWAOMA3gDIALQArgCzALYAqQCHAFYAHQDd/6n/hf9y/3L/ev9//3z/Zv9F/yL/C/8J/xT/Jv84/0n/Wv9y/5X/xP///0IAhwDDAOMA5wDPAK8AmQCQAIwAfgB0AHIAcwB1AG4AYQBTAEkAQAAuABIA6v++/5f/ev9s/2n/dv+R/7L/1//2/woAFgAbABMAAwDt/9P/wf+4/8D/0v/l//r/CwAgADMAQwBOAEwAOgAdAPn/1P+0/6L/m/+h/7T/1f/3/xYALgA8AEIAQAA8ADQALQAmACEAGgAVABMAGgAtAEoAaAB/AI0AiQB3AFsAOQAWAPX/2f/D/6j/lf+K/4X/hf+M/5b/pf+5/8j/yv/G/7v/sv+p/6z/wf/f/wEAHQAyAEMAVQBtAIkAoQCyALgAtACkAIkAbABOADkAMgAwAC4AJQAYAAYA8f/d/8n/tP+e/4n/cv9Z/0H/L/8p/zb/Uf94/5z/wP/h//r/DQAcACYALwA4AD8ASgBRAFYAXgBsAIUAogC+ANMA2wDPALQAkABsAEkAJgAFAOL/wv+l/4//f/93/3f/ef92/23/ZP9a/1H/Rv9G/0z/Xf97/6b/2/8NADoAXwCAAJoAsADAAMsAzADHAMEAuQC2ALgAuwC5ALcAsAChAIgAZgA/ABIA4v+v/4T/Y/9K/zr/MP8w/zT/P/9O/2H/cf+D/4//nv+w/8b/2//y/wsAJQBGAGoAkgCzAMwA1wDYANQAyQC5AKQAjABxAFMANwAeAAgA9P/e/8j/sv+e/43/fP9q/1j/Rv83/y//MP88/1H/b/+R/7H/1P/v/wkAJAA5AE8AYABzAHsAfwCAAIAAhACMAJQAnAChAJ8AlACCAGkATAAsAA4A7v/Q/7X/nf+K/33/df90/3v/hP+Q/5//rP+v/6//q/+r/7D/wf/b//j/FQAvAEoAYABxAH0AhgCIAIgAggB5AGsAXQBPADgAKQAhABoAEAAFAP//9v/u/+P/1v/K/8D/uv+2/7b/vP/G/9X/6P/6/w0AHwAvAEIAUwBeAGUAZABcAFQATABCADgALwAlAB0AFgAOAAIA9v/q/9//0f/E/7b/pf+U/4X/ef9x/27/ef+J/5n/rP+8/8n/2f/w/w4ALgBJAFoAaQBrAGcAYQBdAGIAbwCBAI8AkgCKAHgAXgBHADYAKQAgABIA/P/k/8n/q/+Q/3//ef92/3P/c/93/3j/eP9+/4b/lf+q/8j/6/8IACMAOQBQAGAAbwB5AIAAhgCJAIwAjwCUAJUAjAB7AGoAWwBIADYAIAAHAPH/2f/D/6//pP+f/57/o/+u/7j/vv+//8H/wP+9/77/wv/N/9r/7/8GACEAOwBZAHYAjQCdAKEAnQCSAIYAdABeAEcAMAAdAA0ABAADAAQABAAEAAUA/P/q/9X/wP+t/6D/nf+f/6P/rP+2/8H/z//f/+7//v8MABYAHgAjACEAHAAXABQAGAAlADIAPQBCAEAAOQAzACsAIwAdABEAAQDx/+P/2f/Y/93/5f/p/+n/4//a/9P/0v/V/9z/4P/i/+L/3//f/+H/6//8/w0AHAAnACwAKQAiABwAGgAcACQAKwAtACoAIQASAP//7//k/9z/1f/P/8f/wf+9/7v/vv/D/8n/0f/W/9r/2v/b/9r/3f/k//H/AAARACQANQBIAFoAagB2AH0AfAB0AGkAWwBJADsALwAjABcADgAIAAMAAAD6/+//3f/L/7f/p/+d/5j/mP+d/6X/s//D/9f/7P8CABwAMQBCAEkASwBGAEAAOgA5AD0ARQBQAFkAXgBfAF0AVgBQAEcAPQAqABUABAD0/+T/1v/M/8f/yf/J/8z/0P/Q/9D/zP/I/8X/xv/K/9P/3P/q//r/CgAeAC8AOQBAAEMAQwA+ADkANAArACUAHwAdAB4AIAAkACcAKAAkABsADgAAAO7/3//W/87/zf/Q/9T/2//f/+T/6//0//n/+//5//b/8P/t/+v/7f/z//3/BQAPABcAHgAnACsALQAuAC8ALwAsACkAJQAkACYAKAArAC8AMAAuACgAIQAaABEADAADAP3/9v/x/+z/5//j/+H/4f/f/+D/3//c/9n/2//f/+T/7v/6/wAABQAHAAkACwAOABIAGAAcAB4AHQAbABkAGAAaABsAHQAaABMADAACAPj/8f/u//D/9P/7/wMABQAHAAkACQALAAcAAQD5//L/6f/h/+H/5f/s//j/BAAQABwAJAApACcAIAAWAAsAAAD4//T/9v8AAA0AHAAqADQAPQBBAD8AOQAxACUAFQAEAPb/6v/l/+f/7//7/wcAEQAZABkAFgAPAAIA+P/t/+f/5P/m/+z/9v8EABcAKQA5AEUASQBEADcAKAAWAAMA9//r/+X/5v/r//T//P8CAAcACwAKAAIA+f/p/9T/xf++/7z/wv/Q/+L/9f8KACAANABHAFUAXgBhAFwAUABAADMAKwAsADIAOQA+AEAAPwA6ADMAKAAbAA0A/v/u/9z/yf+5/7H/s/++/8v/2v/o//L/+v/8//7////9/wAAAQADAAUADAAVACIALwA+AEsAUgBWAFIASgA/ADUAKwAiABkADQADAPz/9v/z//L/8P/u/+v/5v/f/9j/z//J/8f/yP/K/8//1//c/+D/5P/q//H/+f8AAAYACwARABQAGQAiACoANQA/AEYASgBJAEcAQAA2AC0AJAAcABQADQAGAAAA/v/8//r/+v/4//L/6v/j/9z/1P/R/8//zf/O/9L/2P/h/+v/+v8HABQAGwAgACIAIQAdABoAGQAXABgAGgAfACUAKQArAC0ALgArACUAHAARAAMA9v/r/+D/2P/U/9X/2f/d/+T/7f/0//n//P/8//z/+v/5//b/9f/3//v/AAAJABMAHQAoADEANAA0AC8AJgAdABIACAAAAPv/9f/y//L/8//2//v//v8AAAIAAAD8//b/8f/t/+r/6v/u//b/AAALABYAHwAoADEANgA2ADQALwAoAB8AFwASAA8ADgAPABAAEQASABMAEQAMAAQA/f/z/+n/3//V/87/y//P/9f/4f/s//f///8EAAkADAAMAA0ADgASABUAFAASABUAGwAhACcAKgAqACYAIQAaABIACQAAAPn/8//v/+3/7P/w//L/9f/6//v/+P/1//T/8v/w//H/8//1//v/AQAGAA0AFAAcACIAJgAlACIAGwAVAA4ACwAKAAwADgASABMAFQAWABcAFgAUABAACgADAP7/+P/1//T/9P/2//3/AgAHAAoACwALAAkABQAAAPz/9f/x//D/7v/y//r/AgAKABIAFwAZABsAGgAYABUAEQAMAAgABgAIAAkADwAVABwAJAApACoAKAAkABsAEgALAAIA/v/7//r/+f/5//r/+v/+/wEABAAIAAgAAwD///r/9f/w/+//8f/0//r/AAAFAAwAEgAVABkAHQAcABgAFAAOAAoABwAHAAcACAAJAAkACwAMAA0ADgANAAsABwACAPz/9v/y//D/8f/0//f/+f/9////AAACAAQABgAHAAcABgAEAAEAAAABAAMABgAJAA4AEQATABMAFAAUABUAFQASAA8ADgANAAwADAALAAwADgAOAA4ACwAKAAoABwAEAAEA///7//n/+P/3//b/9//6//z//v8AAAEAAgADAAYACwAOABAAEwAUABMAEwATABQAFQAXABgAGAAYABYAEwAQAA8ADgAOAA4ACgAHAAQAAAD9//r/+P/2//T/8//z//X/+P/8////AQAFAAsADwAUABUAFwAZABkAGQAYABgAGAAYABkAHAAdAB8AHgAaABYAEgAOAAgAAwD+//n/9f/z//D/8f/1//n//P8AAAEAAwAEAAQABAACAAIAAwAFAAcACwAQABYAHAAhACcAKQAoACUAIQAeABkAFAAQAAwACQAHAAcABgAIAAoACwAKAAoABgACAP7/+//6//j/+P/4//n/+//+////AQADAAQABAADAAIAAAD///3/+//7//r/+//9/wAAAAACAAQABAAEAAMAAwAFAAYABgAGAAcACgAMAA4AEAASABIAEQAQABAADwAOAA4ADgAOAA8ADgAPAA4ADQANAA0ACQAEAAMAAAD+//3//v/+/wAAAQADAAYACAAKAAsACQAHAAQAAAD9//r/+P/5//r//P///wAAAwAFAAYABgADAAAA/f/6//f/9P/z//X/9//7/wEABwAMAA8AEQATABMAEAANAAoABwADAAAAAQADAAcADAAOABIAEwATABIAEAANAAsABwADAAEAAQACAAUACQANABIAFwAaABoAGwAZABYAEwARAA0ACwALAAoACQAKAAsACwANAA0ADQAKAAcAAwD///v/+f/3//b/9f/1//b/+f/8//7/AQADAAcACgANAA8AEQATABUAFwAcAB8AIQAiACMAIwAiACAAHgAdABoAFgASAA8ADAALAAcABQAEAAAA/P/6//b/8f/x//D/8v/1//n//f/+////AAADAAYACAAJAAoACQAJAAoACwANABEAEgATABMAFQAVABQAEgAQAA4ADAAJAAcABQAGAAYABwAHAAkACgAMAA4ADgANAA0ADAAJAAgABwAGAAcABwAJAAsADQANAA8ADwANAAsACQAHAAUABQAEAAUABgAHAAgACgALAAwADgAPAA4ACwAJAAcABwAFAAMAAQAAAAAAAAAAAAAAAAD//////v/9//7//v/8//z/+//8//3//v8AAAEAAwAEAAUACAAKAAwADgAQABEAEwAVABQAEwASABEADgAMAAkABgAEAAUABQAEAAMAAwAEAAUABQAEAAIAAAD+//v/+P/3//j/+f/7//7/AAADAAYACQAKAAoACQAHAAYABAAAAP///P/8//7///8AAAMABAADAAEAAQAAAP7//P/6//j/9//3//n//P///wMABgAJAAoACwALAAoACwALAAkACQALAAsADAANAA8AEQATABQAFAAUABMADgAJAAQAAAD+//3//P/8//v/+//7//v//P/8//z//P/7//r/+v/6//v//P/+/wAAAwAGAAkACwANAA4AEAAQABAADwANAAwACwAKAAsADAANAA0ADAALAAsACgAJAAkACQAKAAoACgAIAAgABwAHAAgACgANAA4ADgAOAA0ADAAMAA0ADQAOAA4ADwAPAA8AEAAPAA0ADQAPAA8ADgAOAA4ADgAQABEAEgAUABUAFQAVABUAEwAQABAADgANAAsACQAIAAgACAAIAAgACAAGAAMAAQAAAP7//P/8//7//f/9//3//f/9/wAAAwAHAAoACwAMAAsACgAGAAMAAwABAAIAAwAEAAcACAAJAAkACgAKAAgABwAGAAUAAwACAAIAAQAAAAIAAwAFAAgACwANAA8ADwANAAwADAALAAkACgAJAAgACAAIAAgACQAJAAgABgAEAAEAAAD+//z/+f/3//f/9//2//f/+f/8/wAAAAACAAMABAAGAAcACQALAA4AEQAUABYAGAAaABsAGwAbABsAGgAYABcAEwASABAADgANAAoABwAGAAMAAgAAAP///v/9//z//P/8//v//P/9////AAACAAIAAgAEAAcACAALAAwADQAOABAAEwATABQAEgARAA8ADQAJAAUAAwABAAAAAAD///////8AAAAAAAD+//3//f/8//v/+//9//7/AAADAAcACQAKAAwADwAQABEAEQAQAAwACQAIAAcABwAHAAgACAAIAAgACQAIAAkACQAIAAQAAQAAAP3//f/+////AAAAAAEAAgACAAIAAgAAAP///v/9//r/+P/4//j/+v/8////AAABAAMAAgABAAAAAAAAAP//+//7//7/AAAGAAoADAAOABAAEwAUABYAFQAVABMAEAANAAoACgALAAwADgAOAA8ADgAMAAwACgAIAAUABAABAP///v/9//7/AAADAAUACAAIAAkACAAJAAoACgAJAAcABQAEAAQABgAHAAgACQAKAAoACQAJAAgACAAJAAgABwAGAAUABAAEAAQABgAHAAkACQAIAAYABwAHAAgABwAHAAYABwAGAAYABQAFAAMAAwADAAIAAwAFAAUABAADAAMAAwACAAUABgAIAAkACgALAAsADAAMAA0ADQAOAA4ADwAPAA4ADQAOAAwACgAHAAYABAABAAAAAAAAAAAAAAABAAEAAgACAAEAAQABAAIAAwADAAQABAAFAAcACQALAA0ADgAQABAAEQASABEAEAAQAA4ADgANAA0ACwAJAAkACQAIAAcABgAFAAQAAgABAAAAAAAAAAEAAgADAAYACQALAA0ADwARABIAEgASABEAEAAPAA8ADwAQABAADwAOAA0ADAAMAAwACwAKAAgABwAFAAMAAgADAAMABAAGAAYABwAIAAkACQAJAAkACQAJAAkACQAJAAoACwAOABEAEQASABIAEQASABEAEQAPAA4ADAALAAsACgAKAAoACQAIAAkACAAGAAUABQAEAAUABAAEAAQAAwADAAIAAQAAAAAAAAAAAP7//v/9//3//f/+//7//f/+//7///8AAAAAAQABAAIAAgAEAAUABQAGAAgACgALAA0ADgAQABAAEAAPAA8ADwAOAA4ADgANAA8ADwAOAA4ADgAOAA0ADAAKAAoACAAHAAcABwAHAAcACAAJAAsACwALAAsADAAKAAkABwAGAAQAAwACAAIAAwADAAIAAgADAAQAAwABAAEAAAAAAAAAAAAAAAAAAAAAAAQABwAKAAwADAANAA4ADwAPABAADwAPAA4ADgAPAA8AEAARABMAEwASABEAEQAQAA8ADQAMAAsACgALAAsADAAMAA4ADgAPAA8ADgANAAwACgAJAAcABwAHAAcABgAGAAYABgAHAAcABwAGAAEA///5//r/9P/1//T/8//u//H/8v/0//P/9f/1//b/+P/6//z//f/+/wAAAwAIAAwADwARABMAFAAVABQAEwAPAA0ACwAJAAkACAAFAAQABQAGAAQAAwACAAAA/f/8//j/+f/5//z//f/7//n/+v/+/wMABAACAP7//P/6//j/9f/1//X/9v/6//7/AQABAAAAAAD+//3//P/8//n/9f/1//P/8v/y//L/8//2//3//////wAAAAD9//j/9P/z//D/7//v//D/9P/5/wAABgAIAAgABAD///n/+P/8/wAA/////wAAAQAGAA0AEQASABAADAAKAAsABgABAP3/+v/4//n//f8BAAMAAgAAAP//+//7////AgABAAAA/P/4//n//f8AAAUACQAOABMAGAAbABsAGAAVABQAFQAYACIAKwAuADAALQAqACQAIgAlACMAJAAkACMAIgAiACQAJgAmACQAJAAhACAAIgAmACsALQArAC4AMQA3AEMAUgBfAGoAdAB+AIMAhQCFAIMAgwCFAIgAigCMAIcAggB/AIEAgQCFAIYAgABxAGAATQA/ADEALAAgABUADAD+//H/4P/Q/8L/s/+j/47/dv9c/0b/MP8k/xj/D/8F//n+7f7b/s/+yv7F/sH+uv6t/p7+jv6G/oT+hv6O/pj+of6o/qv+sP65/sT+1/7o/v/+Ef8i/zH/PP9K/1v/dP+X/7z/3v/8/xIAJwBAAFoAdgCPAKsAyADfAPwAFwEzAUwBYQF4AZIBsgHGAdEB2QHeAeYB8AH6AQUCBgIGAgQCAAL9AQQCAAL2AegB1wHHAbMBnwGIAXIBWwFGAS8BGAH7ANoAsgCNAHQAUAAyAA0A4v+9/5//iP+A/3f/av9U/y7/Af/X/rT+qP6n/qT+n/6d/pT+g/5t/lT+O/4r/iz+OP5I/kr+Rf5J/lj+a/6A/oj+g/5//ob+n/6+/uv+GP8+/1z/eP+K/5z/r//H/+D/AAAsAGsApADLANIAyADBANAA8gAPARsBHAEoAUEBUwFKASsB/gDgAN4A5gDiAM8AuQChAHoATAAbAOz/wP+j/5X/jP+E/4H/cf9P/yD/8/7e/tv+5P7u/vb+9/7u/ub+4P7X/sf+uP69/tn+B/83/0//Sv8z/xX/AP/4/gz/NP9n/5r/wP/I/7D/jv+H/5f/sv/X//r/HgBJAGkAcwBfAD8AJQD8/9T/0//0/1cA7gB2AbYBvwGZATYBuABgAGoA2wD0AVgDZwSMBOkDGgNrAkACzQLSA6gEPwXHBRIG5gWMBU0FEQXEBLwEFAWEBdYF+wXiBZIFMgXZBIYEJASsA0MDQAOTA/8DKATUA/MCpwFkAJr/T/9w/+L/NwANAG7/j/6R/YX8ovsP+836v/re+gX72fpF+mr5kvjB9wX3cPY49lj2rvZL9+T38/d+98v2PPbm9d31O/bI9mP3F/jj+Jr5F/ox+vv5rPmI+fL5+vpS/LT94P6v/wEA9P+x/2v/XP+9/64ACwJ7A5IEDwXlBFUE0AOmA+gDgwRJBfAFXQaJBpUGewY7BvgFzgXRBQAGQwaABo8GdAZOBjIGGAb4BbkFWAX3BKYEhQSHBI4EhARWBAgEpQNAA88CXgL/AbcBgAFbAT0BGwHkAJEAGwCZ/x7/tf5e/g7+1v2j/X/9X/0o/cz8TPzX+4z7XftC+xz79vrd+sH6uPrG+tr68/oI+wX75/rH+sf6DPt6+/T7ZPyy/Oj8GP07/V/9gP2q/fr9dv4D/2r/mv+z/9b/JgCdAA0BOgEUAbIAdQCOAAwBzgGHAusC1wJJAqcBOAEtAYoBJwLYAngDHASvBAIFCAWdBOYDSAMgA+IDsgUZCGQKxAu4C2QKgwjxBpYGzwdPCiENNw/bD/0OKg1cC1sKWwr/CrgLIgwEDKMLJQt7CoUJHAhLBnsEFwNAAtQBewHRALP/Jf50/K76CvmD9xj24fTx80/zyvL+8djwkO9Y7qLtfe2T7XHtoOx9667qeOoZ61Tsk+1b7o7uNu7S7eXtv+5D8C/yE/R09S32VfZQ9oX2S/ej+HX6fvwx/k7/tP+R/1j/gf9MAK4BZwP/BAkGZAYYBnAF5QTxBMQFNAe/CNYJMgrfCScJugixCP0IhwkpCs0KWQvZCzUMSgz4C1oLrwoxCgYKKwp+CrkKpAobCiQJ9QfHBrkFrQTBAwADggInAqsBvgBZ/8f9W/xO+576Ffp6+cz4OvjW95n3WPfz9lD2vfVi9Wf10vWF9mD3EfhZ+Dz4B/j69z340/il+Xf6/PpE+3D7qvvW+xj8i/wM/W39of26/av9gP1l/Yb9xv0n/pX+/f4z/xT/sf4z/uv9Qv4u/1EANgF4AWcBPAFQAfYB9QLWA0UELwQKBCsE3wSVBuAIHQuoDE8NtAyzChUIPgapBvYJ0g9pFpgaEhreFLANIQjnBgcLyBIAGj8dtRuoFmMQngsgCp0LYw7gEC4SyhG0D2sM1Ah5BfkCqAGGAe8BuAEsAHP9I/r99q70gPMY85/ymvET8F7uu+yJ683qR+rO6V7pGOme6DroAejr50bo2+h56fjpAeqg6XDpyOnZ6mbsMO6T7xPwEPDo7y7wDPGB8lr0M/bC9/j40vlq+uD6a/tP/KP9SP/xAHUCmANRBMIEQAX4BfMG9geyCAoJNQl/CT4Kbgu0DLkNCA6RDbcM2QtRC2sLCQzkDLANCw7LDQYN8wvLCtoJLAnbCOgIFQkYCakIzQe8BrgF0gQNBE0DkgLcAUcBxQBIAKX/3P4H/jv9c/yo+/f6Yvru+ZD5RfkM+dj4lPgl+IH31PZb9in2PvaF9tD24vbF9q72vfb29j33bfd993P3hvfe93X4IvnR+W/69vpg+6774fsT/HL8EP3z/Qr/KQAGAX8BngGcAbABMwIdAykECwW5BRoGSwaJBvcGmAdBCIYIMQhmB3AGGAa4BlcIvgonDZAOaQ60DPEJ5AbTBD4Flwg7DoAU0Ri4GLITmguNBC0CFQZGD+IZ8iAEIYYaWREbCpoHiQqaEO8V2xdEFhQTMxB4DpcNXAy9CTUGgQOSAmADEAXcBYsEDQGO/Ib43fWY9O3z9PKU8Sjwde/+7yrxS/Es7yXrVeau4uDhP+QW6JLrRO1p7JHpW+ZL5LPjReSZ5WDnFenl6u/svO6g7zXv1e1L7JXrcuwF75/yL/at+Mn56fmT+U35ffk8+nn7K/1I/7kBLAQ4BncH9Qf2B/wHVAgPCSwKjAsVDb4OdhD3EQUTQhOtEqsRyBB8EAERMRJ+E2gUnBQfFA4TtxF5EH0PkA5/DT4MEAtLCvEJxQk1CeoH2gVVA7kAfv7v/Pr7YPvx+l/6f/lG+Kv26fQl84XxOvBj7xrvV+/l73HwevDT78vu4u1o7XHt+u3d7vHv6vDa8ZDyBvNY86TzFvS69Jf1h/aE93r4fPmd+sH7sfxy/dj9G/5U/pz+Fv/c/w4BUQJgAyEEoAT0BCYFQAVDBVUFigUrBjMHSwgbCXIJZAkSCQcJNgmRCdYJ5QnrCT0K/gpuDDUOng8tEJUPWg5GDbQM5AwUDksQwRP8F/gbSh7jHUMaGRTmDeEKTA3JFI0eLyb8JzgjJBraEMcK4AhXCosN/hDyE60V7hS1EPIIaf9p9xH0PvY8/OoBPQNv/hX1ZOvP5ejlJuoO797wEu7H5zDhI92p3NHeyOGt49jjruLz4Fff8d1/3HrbpNuc3ULhbuXJ6Brqaunf5/nmAegr63jvYfMg9r/3wPjG+ZP7Nf44AQoERAbAB5EIIAnuCVwLag0nEPwSNhVUFiMWtBSqElYRVhGtEsYUnxZfF7sW4RS5Eq8QAQ+zDbQM8AtyC2YLgAtiC6EKEgnZBjgEnQGM/0X+6v1Q/gj/cf8A/5r9VPuj+Dz20vSh9GT1Zfba9mL2VPUz9GrzBvPB8nvyX/KN8tDyHPNA80nzZPO28y70sfQu9Zz1+vVJ9qX2Hfe892X45/hf+Qr64vrM+4b82fzP/F786Pv9+/T8r/57AJMBeQFnAOv+4/2v/Tz+U/+nAM0BYgIsAiwB7P/m/nH+sf6l/90AIgLtAvYChgIbAkUCDAP/A3gEYgQNBEYEpQVKCIAL3Q1ODk0Mwwj5BekFGwmBDv4TpBeCGAoX9xTfE6gUDRdDGt4c3R1kHRAcYBtHHAYfRSNeJzgpIiedIGgXdQ6/CZgLVxNFHRMkgSPuGQIKTflr7Zrpou1/9m3/4gMhAUP3Ren/27PT7NG91TzcquFx42fhCt0i2C3UC9Kw0XjSG9RV1i3ZbNxj36Ph5eJ94w7k++RV5iXoU+rs7EDwl/SJ+RD+TAGVAk4CzgF/AvsE0QixDFwPjhD4EK4RWhPdFT8YdBnFGFQWHROIEO0P0xFMFVEYRBmJF6ATxw47CgEHzQWDBjMIqgm2CbcHHQQYAAn9jvta+4P7bfsF+3X6vPkJ+X74gPgH+Yv5kfne+Kz3lvZG9t/2EPiA+Qb7ifyT/WX92Pti+Ub3x/ZL+DD7NP4QAC0Aj/73+4n5Gvg0+Lz5/fvc/af+Pf4D/bT7tPr++WT5/Pgo+QT6C/uN+1370PpP+vv5tPk++aT4Efjb9zH4FvlJ+lT71Pte+x760vhC+OP4k/qx/Kz+4v8XAHj/Zf53/ff8Yv35/oUBgAQOB0cIqQeRBSgD9AGpAigFXQjlCvALVwsjCosJSwoCDIINpA0QDNkJ0giACiIPeRX/GkwdfhvoFv0RfQ9EEUAXPR9ZJnkqKSu+KNAjrR3SF18UMxXUGiwjPSr+K34mwRszEH0I0AaZCSoNIA6zCl8DH/tH9b/zg/Va9xX2YvCp5yDfjtkc2K3ZndxX34bgH+BA3g3b1NZB0r/O5c2T0OfWlN/H53zs+evz5m7gNtz43C7jpuwG9l/8gf6C/Zz79vp4/L3/XwP2BfMGHwfMB8UJpQyYD8ARhhLZESEQ4w2dC/QJeAlaCkcMnA5LEFcQcg6yCs0FLQE//tH9xv/XAlEF0AXUAzQAjvwS+kH5t/nI+gL8Cf20/fT9F/5N/of+jP49/tb9pf3j/YL+ff+1AAcCUgOSBIsFvQW0BJ4CVQAU/6f/xQFkBEYGpwaUBYMDIAH8/oL92fzp/G395/34/Yr9v/yj+zj6afiY9jv1p/Tv9Nr1+va295z3h/bz9IPzyvIS8zP0hfUV9s/1UfVX9S32lvf++KP5Wvmv+Hv4GPlg+gb81f1Y/zEAYgArACQApwCTAZMCaAMuBGwFMAfjCPEJFQqiCRoJjQg7CCEImQg0CtIMxg/fEYkSaxFKDtcJeQUUA4AETAq/EhIaohxQGXkSuguACLwKnBHcGYAf+R8vG7sTnA4IEFEYYyPtKmEqzCFwFWsLnQg/DbAV9xxPHxAcCRXIDU0JtAf0BtUEagD5+jT3t/ZT+Wv8z/z2+MXxOOol5S7jUuMD49XgA95g3FPddOCt447kl+F62xnVi9G10vjXRt5N4gXiv94F3ArdZuKX6Qjv+O9p7GDnS+R05SjrwvPQ/GUD0wV0BCUBGP7G/Ib94v8zA7YGCwquDN0NRg2ACx8KHQo/C4MM3gzqCwYKKwhmBygIBQorDJsNbQ1oC1AIkAVLBKYE0wWtBo8G2AVTBWwFDgatBq0G4AVhBJMCFQF+AC8B+wL+BDUG9gWNBOECsAE9AV4BnwHZAQwCJAIXAucBzQHtARcC8QE8AQ0A9f5a/jj+Nv4x/jb+av7I/vr+k/50/f37uvoE+sX5xvnr+SP6J/rD+Rb5Y/gc+GX45/gh+d34PPh79/T27PZp92D4lPmk+jD7Ivu/+nj6lvoi+/b7zPxy/fT9hf4y/wAAywByAeABEwIVAiQCZQLZAm4DKgQABe4FvgYwBzkH8wasBpAGuwZLBygINgk6CgILawt9C1YLXwu7C3oMZA0pDn4OYA5HDlcO4g7qDzgROhJDElkR3g+iDj4Ovg6qD04QMBA9D6oNLgw3C+0KMwuIC3gLrQpzCXEIGQhXCLcIuQjkB1oGuwR+A0cDBgQjBQAGEgY9BbgDzQGq/9b9ofwh/Gj8Mf3p/dT9afwc+l73yvQu8+XytvPe9KX1f/Ud9Ozx3O+87svuo++A8OfwgPBL7/rtGe0E7ajttu5v71TvW+4Z7SHsreuz6y3sCu0k7nLvnvAn8b3wbO8D7mLt8e2770Tyo/QD9hL2K/Uq9OXz4fTu9lb5Tvtg/JT8ffy3/Jr9H//9AM0CPAQqBckFVQbkBpIHdwh+CXMKMQvKC0EMmQzYDPQMCQ1JDb8NVw64DnsOhQ0xDDoLBAuxC6gMNg33DNULRgrYCPkH1gcfCFQILQhsBzoGDAU0BMYDbAP3Aj0CWQGKANT/Bf/n/YT8GfsE+oX5hvmr+Yb5vvhm98j1RvRw85XzhfSu9XL2YvaQ9XX0yPPz8730t/Vw9rb2k/ZG9in2VfbH9mf3/vdX+Fn4HPjr9+33Nviy+HH5e/q0++78x/0K/sn9dP2N/WD+2P+WASQDVgQNBYkF+QWBBj8HHwgMCegJsAqAC1AMDw2eDfINCw4sDo0ONA//D6kQ4BCIEMMP5Q5XDkEOig7ZDtAOUQ5YDRAM3woICq4JugnjCeIJWQknCJUGMwWhBPgEDAY3B6QHAgeYBUQE0gOTBEkGTgizCeAJBAnVBwgHEwf1BzAJCQoyCsUJIQlfCGgHIgZvBKgCcAFAAdIBQgLNAR4AW/1G+tv3xPbF9iP3QPeC9tv0vfID8UPwUPCP8G7woO8w7r7sv+tq64zr6us/7FrsJ+yq6wbraer76drpLOr96irsce1z7tTum+4M7sPtMO5U7/bwmfLL8330w/QJ9av1xfY9+OH5dvvc/AL+CP8AAN4AmQFbAioDDAQMBR8GJQcJCOUI1AnBCpQLFgwPDJEL9AqiCs4KawtBDAwNng3sDfwN7A3jDfwNOw5jDikOgg2rDDEMXAwPDcUN4w1SDS4M/ApGCjEKnAowC1QLkwrVCKMGowRTA/4COgOXA40D5wLFAVYAy/5P/Qf8GvuB+gX6hvne+Bn4RvdP9lr1cfSw8zfzEvMo8yjz4vJN8p3xHvED8Ujx2vGN8iXzm/P881f0xvRQ9dj1XvbR9lH3FPhQ+fT6ofzb/W3+Zv4l/jz+3f7+/00BlAKNAzQEgASQBKAE3gRmBTEGEwfQBzsIXwhZCFcIjQgHCbAJYQrwCkYLUgstCwgLBAszC3oLrwusC2UL6wpUCq4JGwnDCNoIRAm6CeYJiwnLCP8HpwfSB0cIwAgACQYJDAlGCdYJlgo8C5gLlAs5C8oKoQoFC8kLawxfDHoL8wlaCEIH2AbxBhMHvwarBeMDuQGv/xP+IP2Q/O776fp2+dP3c/ao9W71hvV59QT1J/QM8wfyZ/EY8fnwvfBJ8LXvKe/w7g7vZu/N7xbwAfCE76fulu2R7Mnrceue6x3s++wV7kjvUPDh8PnwnvAu8PvvNPDt8NTxwfKt8530iPVz9jH3p/fr91b4O/nE+rr8aP4Q/1f+f/zW+tT6R/3bAQIH2woNDLYKzAfVBB0DRQMABacHigoDDYcO3w5mDp4N+gylDKIM3gz3DMkMWQzBCy0L7gpaCzgMEg1GDZ8MVgvoCcsIJQjYB48HJweWBgkGogVqBXoFtwXkBcEFCgXQA3ACQQGUAHgAtwAHAf4AaABe/zv+bf0H/Q39Bf1s/Bn7PPkV9/70LvPm8TPx+fAV8ULxPPG38M3viO5B7U7s8Osz7A3tZO7Q7w/xLPJ08xn1Qfel+fD75f2W/44BwwPABSUH7wdtCP4IEgq9C8INDxBhEgQUgxTcE54SYhFwENgPHw//DcAMEwtECfsH8Ae/CZwMGQ8lD3ILZASR+5vzkO9n8fj4zwPpDVoTQBI7DNAFQAN6BnsOGxh6H1giTiAFG4IVHhIAEvcUYhlkHZIfSR+oHLMXPhEmCh8EGQEHAmoGdwueDV4KpQGJ9Rvpad/E2qrb5+AQ6A/uj/DC7p3pa+O/3sDddOC35UbrZO5Q7UroHeL23hfiguxE+5sJFxPxFHEPmAWQ+3T1GfWI+Q0ALQUiBz4G4wN9AREAo/9N/8D9ZPr89OXtQ+bo3xjcDdvm3GHhtedz7nfzuvUP9WLycu/b7Wfu//Aw9RT6Ff/iA38I2wz1EGsU4hYIGOcXChfmFfEUdxRZFGUU9RObEmcQtg0lC+AIzwasBGYCDgCp/QX7UvgJ9r307/Qe9lH3vPdH95D2QPbX9rr4y/uo/5sD2QbhCMcJHwp1Cu4KiAsbDFwMRAwVDOoLtAuBCx0LIAo7CEkFdwFv/SH6EPgL94L2wPWR9Dfz8vES8Xfw2e9X7w7vIO9U743v6O+G8JrxN/NO9b/3MPpY/Bj+Sv8WAKoAPwHtAcUC0APmBOMF2wa4B2EInQhxCAQIbAfkBngGBgZpBbQEGgTNA/YDkgQ3BZEFaAW7BL4D3QJyArICbwNGBAQFVQU3BeUEKgRJA94CfwMaBmwKSQ+5EsISrw4NB9n9TPaD8133gQGhDyAeSinVL1gyiDIbMlkxxC5oKdwjGCBVH/gglSI0IsMfqBxzGkMathp2GCIPlP3i5SLOTb3Nt32+Cs2X3NTm6+e34CbVV8rLxO7FkcyH1ajdA+Or5cHntusY87/9VglUE1AZ0BlSFSkObAcGBAQFHgnmDdEQdhDGDLgG///J+Vb00+/M66/nieP1367d4NwW3aLdFd4J3qLd391X34riiuex7fHzLfkZ/Q0AtALNBegJnw5LE4MX7RqOHcMfoiFRI24kbiT8Iu0fYBsFFoUQcQsFByoD4/8g/RX79fnX+WX6lPp0+Qj3F/Sp8WLwnvCr8or22PuUAaQGPgp3DAIOQA9nEOwQcxD9DjMNwwvYCpkKkAqcCowKEgrmCOEG8gMyAMv71/bj8Zbt2epK6nHrIu2L7mDvze8Z8GXwkvCn8Pbwc/Hv8Vzyt/KY85P1fviz+3D+AABDAHn/Nv7a/Kj7t/ry+Yv5hvn/+d76kPuq+1b74/rU+v76UPun+yP8Bf3o/QP/sgBMA8UGNwq6DKQNGw0NDEAL5QroChMLZQvKC24M9AwkDUMNcw2FDQAN5AuJCiYJGwisBwEIEgmPCgIMXww6CxIJEQcdBnsGygdlCToLuQ1QEd0VthpVH/AiSCWEJvcmRiezJ/YnciYvIawYNA+xCGwJtBHRHdMmoyXTFiD8BN0Ww3u1nbftxpLbAe3L8//uQOM812HRWNM925rkQOsy7eLqF+eZ5WTpGPNzAGoNRxY4Gd8WMhGGCskE/wCT/ywAtwG0AhICeP+Y+y/3U/KK7SrpjeU64yPivOF/4QzhgOCA4CThZuKm5CvoEO368vX4GP7DAegD9wQ5BT8F8AX8B8ELwhDCFWIZzhoGGnAYqBYVFewTDhPGEWUPrwt9BuoAPPxf+aD4SvmP+l37jvrB90zzXu516kvpquv88K/38v18AuUEqwXaBUwGvQdbCr8NJhHEEycVTBWGFGMTXhJyEW0QEw88DeoK8Ac6BOf/gPvk97z1MPXF9Wr2Yfau9Yn0Q/NH8vjxn/JP9ND2nfk//LD+IAFPA8gEPQW3BIsDUwJ3AZwAWP+X/YL7UPlm9yb2g/WT9UH2Rvcg+Jr4p/g9+JD31/ZP9lP2NPfW+K/6Tvzs/aH/aQEvA9YEIwbwBlMHQAfEBmYGigYfBwcI7wihCTEKvwpjC+EL6QuICxoL6gqqCwkNLw4IDl0L0QUS/lP2/PCp7xzzXPoyAvIHvAkTCAoGpgaGDEEW1R+SJKghpxeYCr0Amf8GCUMaJi4AP4dIVkkUQ104qSvWHtESTQil/zz5uvSJ8KfraOXF3l7Z59Yu2J7bAt8N4PjcQ9azzvbJnstR1EfipvEv/vYFZwlmClYLqg3mEKwTgBRwEtENWQj6A6oBFwE/AdkA9/68+2T3I/LY66bkI90r1uHQFc4VztvQVtUU2hXeNuEU5E7nautM8AT1nvj1+oX8Lv4WAcQF9gsUEyQaJCAZJIUlkiTMIfUdqxlbFQERvQzdCLoFgAMaAkQBxwBVAKv/gf5Q/Of4sfSV8IPtMOym7G3u1fBY8+71jvhR+3n+BAKRBXcIFQoMCtgIwQfWB3AJMQyAD30SqxS8FUUVIBMIEBUNzQrSCIkGSAP2/q36kvcD9tj1zvYi+Bj5M/lA+Fn2DvR+8hfyovK58xX1nPY0+OD5WfuP/M79Y/8MATACbgKfAQ4ATP7r/N77G/vE+uL6Nvtf+2j7HfvD+p76zfog+2D7aPvj+uD5a/jK9oD1AfV59db24fhq+z3+AgGEA64FoQd8CWALiA3SD7oRpxI3EmMQgg1nCuYHbwYPBmoGBAeABxsIBgkVCu4KFgtLCsUI/wZHBQYE6QJ3Ac3/YP7z/Rf/7AGhBUEJVgxlD84SuxZbGtMbaBkSEiUHVPw29hH48QEkEF4d7SS2JScijR6lHvYiASkiLFApfyDWE08G8vn77wHo2uGE3W7bnttr3crfeeHO4WHhvOGV47zm3emi6ujnnOJB3RnbTN7g5sfyyv5UCIoO5RHTE2EV+hYOGLYXCRWAD9gHPv839zbxxu247Cjtse397WfuBe/l73HwFvBz7sLr2+jI5j3mSOeC6Y7sifDv9QL9mQXiDlgXlB21IJ0gRB7/Gs8X6hTDEZ4NTQhwAjf9v/l++Ar5gvoU/GP9gv6s//sAQwIGA8kCXAEg/+P8d/td+4j8Uf4JAH0B3QKQBJMGYgg8CZMIfQapA+EApP4L/cz7fPrp+Az3O/Uq9KP0+fbF+gj/bAI+BMYE8QSeBccGzwfEBxEG+AJb/0/8sfq8+vz7rP36/lr/zv7Q/dD8BPxP+2/6Qvn39wX3qPbF9gb3F/fj9tD2Zvfs+Gr7df5tAYsDVwTrA60CUAFVAK3/5/6e/db76Pld+MT3Rfif+VT78vwV/qX+1v4L/4P/OwA5AX0COARRBq8IygoeDKUMqAyZDNUMVQ3mDTUOIA6eDegM8wu2ClgJ1QdeBgEF4AMAA2YCDwL4AQACIQJeAq0CDgOJA0QENgUxBuIGBweWBr8F6wR5BIcEBgVyBXgF+wRBBLgDxgNyBG4FIwYRBh8FKAbrCbgQpRlYIm4p0S2rLgktVim5IlUacBC0BYT66O8H5craeNLmzFTMXNDT14HfXuPI4Qvcn9WD00fYTOM08Fz5t/vb92zydPA/9UEApA0mGWgf+R/SHKAYPxXkEn8QnwzlBun/qfjR8afrKuZh4Sfe7Nw63jbhsuR+557oieju5x/o9ek+7STxjvS39sj3Afmn+2IAFAeHDp0VThsNH1MhmyJRI2MjJyIGH+4ZshMnDTkHFAKF/Xn5Cvb286rzHvWT9/T5Zvus+z777/pT+2T8Zf2q/cT8//pd+a/4hfne+yD/ngKvBe8HlAlSC7MNqRCpE4sVlxWOE88PRQvVBlgD5wAe/0b97/pU+Fj26PWA92H6OP3q/vP+0/2B/Mv7xfsF/Mj7n/q3+Lb2efWD9Q73nPl4/Bz/LgHDAj0EvQU9B6UIcwllCVoIdwbFA4cAAv16+Wr2XfTb88P0hfZX+K75WPrA+of7/Pwn/64BDASuBYEGwQbLBv4GHAe8BpcFFQTMAj8CeAINA5oD+QM/BJAErASABDUE3AOKAycDpwLxAQMBDAA4/77+CP8rAPYBKwRvBsMI5AplDDYNMA2uDBUMjwtUCxoL0AogCr0IqQYxBO0BOgAZ/0T+X/1Q/Gf7BPsl+2n7O/uk+qL55vhf+an7dwA0B9YOIxZxHFIifCh6L5A2uzu6PAg4IC41IYETRAb2+Nfpd9gFxyG5u7JKtXG+WMln0b7UDdVJ1gXc1Obt8zD/IAW0BOf/OfrQ9ub2Afpj/lMCSQV0B20J+QsBDzoSAxW4FuUWORWcERgMCAUH/eb0me2p5yjjgd9a3LnZHNhH2J/a194O5Evpye2F8b30X/jG/HMBPQVAB3EHjAZ9Bj8I4At5EHcU9BYFGIgYhxlyG7MdEx+HHnIbTRZzEPQKWwaTAuP+yfoK9kjxZe396krq5eoI7CLtHu4I71PwTfIC9Rr47/ow/fr+lAB+AgcFyQdMCiUMPw3sDaYOxg9cEfAS7BP1E/MSVhHSD80OIw5PDb0L5QjOBOn/8/qQ9k/zV/FW8OLvae/F7j3uSe5j75fxmPT+91H7Pv5kAKEBKAIgAvcBAgJeAugCLwP+Al8ChAHbAMUAYwGNAt8D4QQqBdwETQTnA9sD7wPHAxID4AGQAI7/Cf/O/pT+T/4I/vr9MP6m/kj/4f8tABEAjv/h/mb+Vv7K/qb/qQCVAUoCuQItA/MDRQUrB0wJNAt3DPEMogzsCxkLgwo+ClEKeApRCpkJZwjYBjUFrwNjAl0BqQAvANH/Tf+E/pP9jvyo+/n6a/oF+qP5VvnW+N/3WPbQ9Eb04fU0+r8AFQicDmkTAxfOGgsgcSe2L9k24DqYOsA27DCYKh8kgxwYEkIEC/RX5OzXYtAKzW7LJ8kHxW7A671uwInI2NMO3zXnPetI7Gbs0u0V8VD1Jflc+7b7qvqI+Rz5z/nk+1z/LgQjCk4QWxU5GKAYJRfJFJUS6RBPD5YMoQcsAOn2g+2N5Urg391N3YTd0t0J3oneK+CD467oS+9f9vr8QgL/BbwIDQukDekQTRTlFhUYkhfXFbUT6xHdEHMQHhBGD4gN7goCCFgFNgOYAUIAz/4H/d36WfiL9a7yB/Dl7YvsAuwt7LvsYu1V7qnvy/EJ9WL5ov5CBJ4JUQ4bEioVzBcxGk0ciB2OHSgcmRljFuoSjw9HDAEJ0AWJAnL/uvye+if5NPiE96X2MvVw87/xofCD8FTxq/Li87f0D/U89b31C/dF+Ub8f/9oAscEnAYbCGoJlgpyC9gLyQtIC2oKRgnWBxcGKAQ7AroAtf///nj+zv3n/NX74fpL+j76yvrB+9b8xf12/gP/g/8yAC8BYgKWA5YEPQWBBYoFdwVTBSMF1QQ8BFsDWwJbAZwANQAeAEkAkwAcAe8BPgPsBPYGOwmLC7MNng8aEeURABJuEUgQ5Q6UDXoMgwtXCqAIBgbDAnP/2fxn+wT7C/t4+rL4nfVH8sHvRe/58Gz0lfi2/HoATwT0CPoOchaTHs0mJi49NKY4ETsFO+Q3TTHMJzQc0g8aBGr5He+45JTZkM0vwlK5oLSgtEe4D75Tw4vHScumz+LVLt6v57fwIPiB/RkBmgOhBZgHYQl1CtYKmQogCqgJTAnACAwIVgfzBlYHagjKCZUKGwpWCLoF4gJ+AJL+gfyp+av1yfDJ65DnoOQJ42biU+LB4vzjT+a26e7tk/I697T7LwD3BCAKgA+AFHYYCxsiHFkcaxy6HFIdiB3MHKoaQBcjEyUP4ws2CbAGwgMVANv7vvda9Bfy7fBx8CLwyu+W78HvifD18e7zGPZF+IH69/zE/9kC+gX+CLsLIA5jEJ4S2BTiFlcY6RhdGLsWUxSfEcQO0guTCMIEVwCc+xf3WPO38BTvVe4A7vHtMO7z7m7wq/KC9Yz4SfuO/VX/uADSAbQCTwOMA4gDXwMtA/MCkwL7ATcBdwD5/+3/OwCgAL0AUgB4/3L+if0D/ez8Af3v/Hn8ovux+u75l/nG+U/6Fvvn+8X8wv0C/28A9gFyA8ME0AWvBmMHMQjeCF4JmQmNCWoJRwkyCfUIbgh+ByIGmwRAA1gC+QHCAYIBIgGVAB8AAgB8AI4BOgM3BVcHWwktC9gMaQ7SDxAR0BHfEeAQuA51C48HnQPC/5f8Hvoj+Jb2U/Xe9JD1K/iW/IkCSQkSEGkWFhwcIUglPyhKKTkoEiVaIHkakRNSC70B6PaY607hUtlw1C/SqtFn0aXQB9CZ0MbT6dkR4kTqt/BP9FH1GfUl9TX28fdo+av5e/g49tXzWfJi8qfz4fWY+Ln7S/89A08H7QqnDSUPtA+6D48PLg/5DU8L7Qb0AHb6qfQx8D7tT+vU6WLoVOfn5nLnMOnJ6+3uSvLM9X35K/2AACwD5gT5BdMG3gdYCesKHgx6DNYLtgq2CVsJ/AlfCxgNrw7PD2cQkRCFEFQQEhC3Dx8PJg5oDLMJAAaMAdb8d/jS9PLxme9Q7dzqZeh55rflmOYk6drsDPEu9fb4ofyaAPYEkwnvDZARARQwFXwVIRV3FGwT5RHeD1UNmQoCCLQFvAP4AVQAy/52/af8T/w6/Cf8vvv6+gH6Nfmy+Gz4I/h+90z2sfQS8/jx3fG98mP0UvZJ+CP6Dfxl/kQBoQRiCPML3w7UEKsRohH+EDMQUg9RDgMNFAuUCKYFrAIOAOD9Svwi+z36kPkf+fP4FfmQ+Vn6dPvz/MH+wQCjAiEEJQWsBeYFGgZ6BgIHlwfvB+8HrgdyB6MHgwjpCXULkwz3DIMMpAvOClEKLgoSCmcJ4QdlBWICd/81/eH7SPsk+037r/uR/Cj+yQB3BCYJkA5BFMkZhx79Icoj0CM6IpIfKBwIGN4STQxmBMP7g/OI7Dvnd+OY4A/e7du+2h/bhN2d4VXmnOrM7QHwxfG/84j2//mN/a4AFAO7BLEFWAbrBp0HpQjsCVQLVgxNDJkKXAdqA77/O/0E/JP73voF+cb10fFG7h3soetU7Gvt9+207f7seOys7K7tL+/S8JPyg/T59gf6kf0ZAR8EeAZ2CIoKGA38D8ISlhTDFEUTfBBnDc4K+wixBzQGAgTmAGb9QPo8+JP37ve3+FH5gvlh+Uf5WvmO+Zf5NflU+D73WfYK9nP2XveU+Nv5QfsB/Vz/TgKcBb0IPAv9DBoO6w6bDzYQahDqD40ObgwMCr4HzwVTBAkDwQFjAAX/3/0n/eT80/yk/Bf8Gvva+YL4TPcz9kf1gvTz87bz5fOb9Lz1LvfS+Kj6pPzV/jsBwwMsBkgI9gk3CxsMrgz0DL0MEwzzCosJIgjcBsUFtQSNA0IC1gB+/3D+0/2H/Vf99/w//Cn7DPpB+e34HPl6+c/50fmf+XP5iPkQ+g77Yvzx/bj/uQHmAzsGfQiKChsMEg2hDQsOlg5ZDwwQWhDzD74OAA1CC9cJAwnACK4IYgiLBxIGGQQbAk8A4f7V/eP8yPtk+r34Cfd/9U70qvOP8/fzvvTh9WP3OflU+5T9yf/HAY0DQgXSBgwIoAhkCCMH9ARLAsP/7v0N/QL9Xv2M/VH92fyF/MT83P2T/1sBtgJMAzMDngIGAqABZQEsAbsAFgBx/x//KP9m/5n/h/8u/9T+xv4q/6r/0////un8zvlJ9kbzWvF98DHwyu8s73nuhe4B8D3z5PdD/XQCxAYuChUNyQ9GElMUcBUwFXgTrxBnDRUK2waDA+X/Gvym+Ar2mvRL9Kb0/PT59KT0S/Ro9DP1f/Zm95739vaZ9Sv0MfP98mTzI/QC9e71D/es+Nz6rf3DAN4DvAZNCYULZA3cDsMP5A9DDx0OrgxDCwAKxQhWB4wFdAM0ARj/aP00/FX7hfqW+Xr4TPcn9lP13fTP9Ar1YfXX9X/2avev+Eb6Dfz1/e3/CQI4BHAGbggCCggLbwtyC0ULFAvrCrAKLAomCaQH0AX/A54CwQFVAREBrwD3/+r+sf2L/KH7AvuM+hv6ovkl+dP40vg1+fT5Cvtn/Pn9s/+AAUIDygTjBXAGdwYlBroFUwUABZgE7QP7AuUB4wA3AAYAPwC0ADABgAGIAVMBBwHRAK8AfQAZAHT/lf6h/bv88vtK+936tvrj+mP7M/wn/Sf+Ff/l/5QAQAEBAuECxAOGBAEFIwX7BLUEbQQ/BDEESwR8BLYE2ATUBJwEOwSzAw4DawLNATUBiwCo/3L+8vxR++H58Pim+AH5xfm8+qz7iPxi/Wv+rP8ZAYsCzAOvBCcFQgUVBbsEXAT9A60DeANxA5ADvQPQA6kDPQObAtEBCwFSAKT/0P6k/ef7i/ng9kD0LPLn8Inw//D+8U/zw/RP9hb4gfqg/WMBXAX3CLQLag0jDi8O1w1YDeQMjAwxDMALBQvfCVAIdAaRBM0CQgEaABv/A/6J/F36b/f783fwZe1D6zLqEeql6o/rl+y37RfvG/EN9OX3bvwNASoFOQgaCgELXAuSCwUMmQwYDSoNqAyaCz0K4AinB7IG6wUnBUcEHQOkAcj/Zv2O+mz3VvSF8XjvW+4M7lLu0e5y70PwkfGq89D2wfoS/yUDeAblCJIKyQvkDBcOTA9OENcQwhAYEAoPzg16DDML6QmrCGkH1QZ4BvUFIQWxA5oB+f45/Kj5ffex9Uz0LvNc8unx9fGQ8tXzpfXI9yb6p/wi/08B8QLgAyIE8APBA/ADsgT2BYIH+AgVCqwKrwpACn4JowgBCGsHvga8BSMEyAGx/kf7Dvip9Wj0TvTp9K71NvZ19p72/PbL9/D4MvpB++z7M/w2/FT82fzz/bH/9wGvBIMHVArkDBMPuBC3EQASfhE5EF0OHgzHCXUHQgVDA2ABpf8P/rf8sPv++nv6BPqF+eb4MfiQ9yb3A/cs94z3E/i7+Jf5v/oz/Ob9wf+TAUQDtgTqBeEGoAcTCEUIOQgECKwHNwekBvYFOQVnBIoDswLjAQIB/f/E/lP9r/v3+VT49vb99W31NfU/9Xr18fW39uX3evld+1n9Ov/LAO4BoAL9AjwDaAOLA6ADrAOtA68DtAO9A70DqwOFA0YD3gJQAo4BhwA9/8j9Rvzd+rj54/hX+Pz3vveT94D3jffT91/4K/kd+iD7Ifwd/Rj+FP8NAAoBEAITAx8EFAXwBaQGMwedBwQIXQiZCLkIrghwCOkHHAcLBrAEFwNjAbL/P/4q/XL8/Puj+0H7yPpE+tf5o/m3+Qn6hfoX+7/7kfyT/cP+DABpAb8CHAR/BeoGRQhzCT4KngqKChUKZAmXCLsH0Aa0BVEEugINAZr/if7f/Y39Yf0j/bf8LPya+xX7qPpD+s/5Qvm7+Fz4V/jP+Lz5+fpZ/LL95/7+//0AAgLzAroDMgRcBEYEEgTYA6EDbwM9AwsD1gKgAmICCAJ4AacAq/+Y/pf9wPwX/JT7Ifu0+k/6D/oQ+mv6Dfvk+8z8nv1J/sX+If9e/4r/mf+c/53/qv/L/1IAmQHAA2MGPgnHC84NEA+6D8AP6A4tDcEKzAdzBEUBU/6k+1/5qvfU9gD3I/hc+cb5Wfjv9JvwH+1p7Hjvq/U0/eYDVwhnCisLGQwgDkQR4RT5F+IZqhrOGowa7hnLGMEWARTOEIIN7wmMBcP/nfjG8GrpzOOl4NDfpeAX4jTjoeOt4+Tj3eTg5uPpkO188Xz1efl2/XMBlwXiCTIONxKLFdgXExluGQcZEhi1FvcU7RKsEC8OYwtCCKcEywDX/OP4JfXO8fzulOy76pTpMOms6QDr4Oz57vnwt/IT9CT1PPa+9wD65/xHAK4DvwZBCUAL0gwpDlkPSBDIELUQ+Q97Dk0MmwmkBq0DBgH1/nv9Wfw5+8v56vem9WfzqfG68LrwWvEy8gzz1fO69PX1tfcH+rL8gv87AucEdwfoCRYM/w1rD0IQlBBaEKQPkA4qDWILLAmmBhMEoQGC/7r9MvzG+kj5m/fY9Sr0yvLp8abxAfIG87j0Effv+Qb9BgCkAswEeAbWB+gIpQn2Cd0Jiwk+CScJWwnFCToKgApmCroJZQiTBkoEqQHA/sr7FfkA97/1TfWL9Un2Y/et+N75tPoh+yP76frD+iH7Kfzf/fD/5gFpA4AEeAWzBkQI8QlAC+YLsgucCskIgwYeBNoB+v+D/pr9IP3n/JH83vvM+oz5bPiy95D3+vfn+BT6Ofsc/Mv8eP19/h4AaQL5BE4H6wixCeAJ1wnsCUkKrAq5CigKBglxB54FwQO3AWX/0Pwq+tD3M/Zw9Wv1vfX39en1kfU79Vf1MvbI99v5/PvI/Rf/JQA4AZgCUQRLBjAItAmYCtkKkgrWCcAIbgf1BXwEPAMCAtcAjf/V/ZP75vhs9tP08vQA97X6DP//AsEF5QYEB7oHEgqQDqsU/xrhHyEiZSFvHnkauxaAFPUTwBQIFpkWlBVVEmsM9ANl+frtfeOk26PXbNdw2Ybb4dsy2tPX59Zw2Y3fx+eK7530SfaO9cP0U/ab+1EEbA4lF5Uc7x27G7AXjhNtELsOCA6FDX0Mago0BzoDJ/9l+1T4CvZR9LTyvfD67ajqhOdi5SXlO+dY64zwo/XA+Yv8RP5r/3YAtQFGA9gEUQagB+8IfgpZDGkORRCQEeIRBxEZD0cM3gg9Bb8B+P4z/Xr8oPwt/aT9gf1d/Fz65/e89Xj0ZvRq9QD3qvgT+jj7aPz9/TIA8QLNBU4I2glECroJvAjkB6wHUQjACbILsA06D+oPfQ/sDZIL9AiABncE4QKQAVcAE//Y/ev8ify9/HD9Kv5c/qT97fu0+az3iPa69lf47vqw/d3/+wAeAcQAbABuAMIAKwFKAdcABQA3/97+Lf/p/5kAzAB5ALD/tf7G/Qr9gfwt/A38I/w//DP87ftK+1n6NfkX+Eb31va/9uL2JveT9xT4pvgx+Z/59Pkx+kb6M/r7+cL5l/ms+TT6N/uI/Nv98v6U/8j/sv+e/5D/Yf/v/kr+wP1t/TT+VQAuA1AFVwWFAlr9/Peq9Pz02fhz/nsDJQaPBiMGIgc2C3kSHBzsJd0t6zHgMH8qHx9uEdEE3P1lAAwNBSAzMtM7szd5JYQK3O9+3SnXW9ug5D/s6O1R6cLh4dsN24ff4OY+7bLvLO2F5kDeu9eZ1afZv+NK8kgCFRDRGB0bsxcKEYQKyAb3BugJoQ32D8MPZA0ICkwH7AXvBVIG9gXbA7D/5vl08+Xtn+p+6qvtNPNX+Sv+ZQCw/8f8K/lo9oX1qvZf+Zb8eP9hAS0CZgJqAmMCUQIRAokBuQCr/2r+KP1M/Dn8Mf1O/xACrwRbBkAGTAQ8AXb+if1W/4oDzAgkDUMP6w7rDK8KYgmICeUKbgwbDV8MOgqIBzkFDATZA0kErASjBAcEsgK2AH3+5vyk/M/9tv9xARcCSwFA/w/9n/uf+1z9UQCMA7cFDAZ/BKYBlf5w/PT7N/2U/+sBLwOxApcAe/1b+iD4D/fZ9r/2X/af9an0z/Nw88Lzo/TR9ez22fdl+E/4ofeo9hT20/ZF+Tv96gErBtsITAmLB18ERgGe/wAABAKjBMQGtQcgB54FwAMjAocB9AEBA5UDYgJo/lL3Ru7D5e3ghOLl6iX4uQX0DtcQUguVAaH4MPVZ+n4HBxlPKkY3Gj7CP28+NDy9OZw2ZDL+K8QjhhqEEYUJGQMT/lH6Ivj39nf14PFB6lLevs//wVK5tLjDwIPOEN3458Tss+vH5+Pk7uWe69P02P4iB6sMng9HERcT0RWfGcsdLyHdIsYhcB07Fk8NrwSh/mL8hf0NADQBo/6V943tWOPt2xXZxNpp31HkWuej5+7l/ONS4xnlbelv77n1ffsuAMwDuAZMCeMLyg4DEmQVYxhzGmAb1BosGVUXAhazFeYViBV+E/EOSgjJAGL6jvbu9cv3ovrj/HL9MPzJ+W/3CvYk9pn3/fnI/KD/YAJABX0IOAxFEE0UyRcMGpIaShldFpgS7g56DOML+gzxDm0QDxAMDboHQwEU+1j2Z/OX8fjvme116lrnmeU35jDpg+228ZL0YvV49NnytvHs8ZLzi/Yl+qf9awA9AtACSAIAARP/Hf1/++n6g/v8/PH+ewCbAWcCDQNmA8sCIAEk/v75bfU88QXv0+8u9BX75gFLBi4GugGL+knzHe8N8Bv3/wI1EV8cECFdHtAWuxAkEC0YTiWWMVM2xzD8InQUsA17E7YlKDzXTexQgUNiKYcK3+9j3xraTd105YjuYfXT9wH1qez64F/Tu8efwG7AEMhj1Jbife238rHyYvBu8IL0BvyyAxgIjQg4BvwDvgRbCUQRMRoQIaAjlyABGSUPcQX0/Tn5K/dp9w/5a/vD/JP7Xvar7T/kc9wP2ZnaN+Cp53TtEPAX78nraumi6kDwqviUAO4EDQWAAmYALAHGBVINthUWHEQe0xuwFfEOXQpwCZEL3A6QEc4SiRLCEB4N7QdWAj/+YP1W/z8CngMIAt/9LvkH9qL1EPgL/BkAPgKYAe/+pvsC+lf7k/8YBZ4JiAutCuMHqARZAnwBZAKYBO0GBwgCBxgEGAAD/OH4+fZM9kz2efZw9oj1v/Me8STuZOtY6bfoRenl6pfszO1e7qfufu9C8djzdfZW+JH5Svp7+zf98//KAwIIKwyQDmgPgQ60DN4K/Ad1BBMA7fzl/KYAYwc1DuURTw+FBc32hOcP3rneGuqZ+6cKmhCNCl3+o/RS9mkF0xsLMOQ3ijFrIbASwQ7OGvQzflCLZcRoKlpKPtUfIQjA+4L6vQCPCh8UCxspG2YTPgMJ7ijYKsdkvm+/Wcia1JrfIeRt4Q7aKNP60PXUFt0N5bbpKepK6O7nnusE9WwCbRAXG9YeNhsGEkAHcv94/aABNQpLEywZIBm5Et0HqfsK8uPsSOw97hnwx+8k7Hnmf+Em3zHg0uNO5wPpluc55Bjh9d9m4ivo//A5+5UF8Q4tFfkXihYPEr8N+AutD8MXkCFJKqUuxS0nKKofoRehEvQRyRQrF+kVpA+tBtn+l/r0+XP71/y0/SD9y/qe9tjwMOyp6dPqs+6b89X3zfoQ/Gf7Zflv93P33flu/nkCowSJBPwC+wDf/uX8NPty+uz6ePxn/fv8p/p19yX0i/Fu8B/wOfGN8k70JfXe9IPzcPGp70nu6O2S7mvwOvOR9QP39veU+Pn67v22AtAG3wm4CxgK2wfwA2sBCwI5BVkLqxH1FacX9RUaEUQJbgDf97/zGvaL/ckHDA2mDgsK3wV/BdwJiBOCHU0mjig/KCUk2yRRLUw8QlCKW7lcilBKPtctGyK/HWAbLxuMGu4Z0RgGFS0Q5QjM/svx7eC+z7XCx715wRvJac/h0F/Nccj7xDnEBsaIySLOm9NZ2Avcrd6i4h/r0PczB1QTMRp7GZIUCg/oCWcILwkJDV4SqBbMF3cUkw5hCNMCKf6I+MXxXOpR5IDgv9523q3eJeBz4a7iXuMU5AHlveV/5m3mTueX6Q7vRPer/zgI7A2tEnIW7hkOHvMfFiHDHzgecB37HZcgYyNNJjko3Sg7JgsgrBa9DKYEQP88/V382vwx/eH80fpz9vnwxev45wXnSOeY6JjoQueM5vrllOnU7hr2E/wXAF4C0AEYAGX9Vvwe/sYClwibDckPKw+xDAYJuQRcAd7+Jf6d/Rv9avvL9770L/J+8vvzDfa89p30AfLa7rTtHO3S7YDwv/Mh+dr9awElAz0ChwHX/5D/hwB2AiMH0wsQETcUGBWDFPkSGBJrEe8Qsg4CC50HdQSKA2wDIwTNBUwHRglgChQLUQvvC18MPw32DUwP8xImGRojvy3lNlo7WzpUNTMtySQUHqMbDh5WJNkrbDCGL9coSh7kEtEIkwEo/VH6PPj99Zzyme3g5gjfSNeq0VbQm9Ot2afeG96G1unJTL5FuhjBW9Fv5M3yJfca8jfoY98w3PXfw+go8zf84wF/BN0EKgRIA8cCNQO6BP4G4AhECUIHmQJP/E/2dfIy8o710Po5/y8AcvwN9YXsq+VT4ljj7ufr7TTzSvb89jv2tPVP9mb4vPuY/xQDkQWCB0oJUQvgDbUQ+xMCGJwc1CAII0wi7h5/GtwWdhV1FrIYhhrCGvUYkRW9EWMO9QvmCfQGWQJj/EH2qfHT79XwJfMl9Zn1KvQp8mLwLO9S7gnuZO517/nwkPLb81T1Vfex+Sf8a/2C/WL8GPsp+gH6x/ru+0n9T/5U/4oAOgJlA2IDCwKd/6z8Nvlv9k317/WN9/n4pvl/+fL4Vvgw+Gz4JPk9+mX7Vvz8/Hj9Lf6g/+IBWAUhCZwMhA5XDt4MxwqbCVIJSQr4C5kOnBFuFH0XWxpSHU8ffyA8IFAeNBzUGscbKx8xJBIqJS/eMVkx3iz+JTEfVBvlG7AfMiPRIuQc7RLUCMkC4wKUB+4M+Q0tCBv8X+3P4OPZlNnf3WvjC+dm59HkYuBV24zWu9Ir0IHPBtHw0/nWothN2MjWsdVb1prZ5N6U5OToWeoz6c7mYuVz5oHqsfBL9/n8sQCCApMCkgFGAFb/N//i/2YBpwMrBkgIIAmOCKwG9QOzAfAABAIABFwFCAUhA40AgP7B/Tn+7/8EAi0EjgWOBXQE4ALzASMCcgMEBYkG8Ad1CfEK9gsYDBcLeAn7B0UHqQcsCTwL6AwnDZoLrghBBeUCkQJIBN4G+wiBCfgHDwXLAQT/YP3v/IX9oP57/3v/U/5+/On6RfqR+hX7V/s9+y77NPsu+9n6EPo1+YX4UfiU+A35f/nP+b/5OPlD+En36PZP91b4RPm4+aj5ZPlE+Uf5Qfkb+Q35k/nw+sr8pv73/44AeADU/yz/BP/q/74B0gNcBewFvQUtBcwEzAR1BY8GLghACjsMIw5ZD88Pww9PD6EP9RB1E8oWhxn/GqoaJhnhF+oXvRnSHJIf5iA8IAgeeBuxGaUZYBvjHecfSCB1HhEbABfHE6gRdhDDDxMPig7dDfEMMQtZCEsEaP+g+sT2XfRS8yXzgfJA8BrsF+dA48LhzeIB5STm6eQe4cPb59YV1OrTHtZM2ULc393x3fLcbtvv2ffY2NgC2ovc0N/94sTksuRA4wvix+IM5l7rz/Ch9Lz1PfS/8fTvdPCV84v4zf2jAUkD2gJcARgACQCjAcgE5ggeDU4QrhEHEd8OiQyqCwANPxAHFOIW3hfEFmgU9xGUEL8QBhKdE6IUgBSaE2QShxEaEe8Q0RCvEKMQbRChD+wNdQv0CGwHNgf+BwwJRAkQCJMFrgIlAKz+VP6L/jT+m/zh+f/2KPXw9DL2+vcr+fP4e/f/9DvyB/Cn7mTu9u4K8Pzwi/Gp8V7x7fCe8Izw2PCC8UTy9/JM8/fyR/LO8Rryj/Mz9n/5tPzO/kn/A/6r+5r57fiE+gr+bAJRBqkIPgmgCOwHOwgGCusMDxBhEjYTvBJoEW0Q0RDtEpAWpBoyHnkgFiF5ICsfoB0oHC8bIxtxHA0fCSKGJIUlUCRHIXYdfxr7GBkZJBrtGmEa1Re7EyIPbAtkCSEJ/wm5Cu8J2waeAR37iPQ47yHshutm7Iftw+1L7CfpjuRL34fa/9Zc1dDVkdet2R/bMdsU2onYTtcv12vYq9pZ3Zrft+DJ4FzgaODU4cTkt+iU7FrvffAT8LbuJe1X7AftS+/T8tP2YfrW/Pr9/f0//Tb8fvvC+0H9vv+rAnQFngfuCIcJ2QkxCt8K7AtbDQ0PvxA9EmkTWRQqFfUV4hbbF7IYOBk4GbgYwBeEFlgVgxQiFCIUKxT4E3ITcxL4EO4OYgyBCbMGvATYA/cDcQSXBN0DLgLp/4v9o/uK+jH6Uvpu+iv6cPmC+MT3gfez9/n3+vd993z2HPXI8/fyx/Iu8+XzgvS99FT0VfPa8Q3wW+7y7Dbsb+yx7Znvo/ED82Tz4vIm8vXxsfJT9Dj2IPig+cD6tfv6/M/+IwG4A/MFQwdyB9wGLwYyBjcHQAkPDEMPWxKrFPkVRxYyFikWeBYuF10Y1hlmG+ocLB4fH6Qf8x9IIKkgKSGKIaghFiG9H8sd7BvnGvMa+BteHRoeIR36GTAVtA/SCosHFQb6BfwFMwXrAiP/efq89bLxs+517I3qiehP5gjk7OFQ4HvfOd973yXgz+Aw4frgE+Ch3hDd59u92wrdrN8i47bmfOnZ6rHqZ+nH59Tm/+Zu6MTqR+1O72jwxvDM8PbwoPG38if0n/Xg9tj3lPhZ+U/6pvuH/cz/JwI/BOYF/gaeB/IHSgjsCAkKpAunDdUP0xE5E9ATqRPwEhgSgRGTEVISbBODFDMVQhWcFHsTJRL1EC0Qug9uDxkPVw79DBEL7wgtBy4GEQZ+BugGvga5BfkDzwGk/+T93fym/BL9zv1j/mr+sP1c/ML6YfmI+EX4Zfhx+P736/Z69VP0BfS+9CD2Zvfb9xr3X/Ve887xMPFt8U3yZ/Nd9Cr13fVc9ov2O/Zx9X/01fP78+30aPbc96340viq+Nb43fmk+6/9Hf8//y7+vPwk/Cz93P+OAxYHmAm5CtMKjQqNCisLPgxhDVcO9w6hD68QNBL1E38VchaNFgUWPBWGFAEUnRNCE/YSBRN7E1MUJBVwFeQUXRNQEWgPDg5nDQYNkwzJC4wKYgmxCI4IbQhxBxIFXwEQ/Ur54/ZV9tT2YPcX96j1ffMz8UXv0u2U7Ezr8um36BboQOjz6M7pZuqE6mzqn+pn64XsaO1T7TzsvurO6ZbqZe2m8f719vjV+br4rfYQ9e30avbb+Dv7+Pzy/Y3+Vf+ZAEYCxwPEBBwF+wTYBAAFewUfBp8GKAcJCHUJaAt2DfcOTw9HDkoMJgrgCB0JwQohDT0PRRDhD4cO6AzAC0YLQws2C6wKcwnkB30GngWIBfQFXQYmBiMFcgOGAcv/gP6E/af8yPsJ+7j6Bvvb+9H8W/0P/fT7c/oe+Wv4ffgC+YP5t/mi+Yb5sfkY+or6nvoA+sP4VPdS9iD2xfbT97j4//ij+P/3s/ca+Bb5SPoL+xL7i/rp+dL5rfpg/G7+IgAMAQ0BfQDL/2L/dv/v/7IAkgF/AngDagQfBUMFvgS4A58C9wEAAtECOQTABdgGJwe2BtoF8gRqBF8EpAQHBVAFYwVYBVUFngV4BscHRwmACh8L6goPCvUIBgiUB9YH5giWCpAMig4CEHkQqg+/DTMLywhGB8IGZQecCJsJrQmgCJUGIQT3AX8AsP9G//n+bv57/T/8x/pk+XL4H/iO+Hn5afqV+oj5QPdy9DXySPHv8cjz6fVD9xf3iPVJ8z/xOvBu8JTxLvOO9Dz1G/Vm9KrzdPMT9HP1VPct+X76Bvvk+ov6gfoi+2v8GP6s/9wAiAHUAQ8CbALgAjwDTAMsAzoDyQPeBBUG3gbZBvkFnQR/AyYDwgMDBWoGZQd4B54GTAUOBHUDqwONBKoFeAazBnQGBgbEBccFGAaQBtwGzwZsBgQG1AXgBf8F9wWLBb8E+QOqA/oDswQxBd8EbQMiAcv+K/32/Ar+1P8+AWMBEQDb/cj7wPoW+1n8wf1+/kb+cv25/LX8gv20/p3/rP/p/uL9UP2j/aL+o/8IAKf/3v5S/m7+Gf/f/wsAWP/k/U/8UftE+wb8/PyF/Uv9iPzH+4n74fuI/CD9Qf35/JH8afy//I79uf7k/84ARgE3AcUANwDj/+7/UADyAI8B5AHVAX0BFwHBAFcA1P85/6D+PP41/o/+CP8b/5n+mf17/NX7CfwP/WD+Tv9P/4L+aP2r/Pb8Wv5LAP0BvAJfAikBzP/z/gT/EQCiARwDBAQ7BO0DbwPwAm0C5wFlASYBVgH2AbcCIgPuAhkC/AAnACIABgFcAlUDSwMlAmsADv/S/gAAFgIxBGoFawVwBBoDKQIGAqcCpQN1BMMEnAROBCAEGgQ+BEEE8wNvA9YCbAI8AgoCtQEXATsAYP/v/gv/sv9zALkALgDg/kH9Bvy++4H8//19/1QANQBC/wX+M/0m/dn90/6E/4r/6P7y/TH9/PxK/df9Of41/tD9M/2e/B/8r/s0+6T6NvpA+tP64fsY/fb9Lf6O/ZT8B/xG/ID9Sf/7AP8BPwIHAtEBOgKOA4UFkgcQCWUJeQivBswEnQOYA5MEDgZTB90HeAdUBroEAwNkARMACP9b/iL+UP6l/uX+x/5G/on9BP3//FD9pP1w/YP8Gfvb+YL5kPrT/Hj/YwHnAbsASP6U+735XPlV+gX8if08/uT94vze+3b74fvN/KH9zf0b/cL7avrR+Vb69fsU/gYAOwFfAZUAVv8z/pP9r/1g/nP/qAC8AYEC6wL+AtMCfAIeAtcBvAG8AdMB8wEAAhoCbgIiAzIEaQVRBmwGewW6A8sBdwBzANIB7QPaBaYG9AUhBCUC1AC3AGEB9QGqAR0Aw/2b+5T6PvtS/d3/1gFaAh0Bif6x+3/5m/gx+QH7eP3v/+YB8wL7AigC1wC9/1j/9P9NAeQC6gPtAwEDxgE4ARMCUgTeBnwIEwhQBewAmPzu+cn5BfxZ/yUCPQNFAr3/jvzk+Yj4jvhz+ZT6cPva++v78ftD/P/8C/4Y/+j/RwAyAK3/8P47/t/9JP41/xIBUANLBS8GeQUwAwgAJv2Z++L7yv1NADsC4wIkAogAAP9o/gb/dgDrAYcC9AGHABv/df4P/9gANANSBX4GiQaiBSQEbwLrAPr/1/+dABoC8gOSBWwGBAZ8BE0CLwDT/ov+LP8+AAwBDQFTAD3/gv6q/sX/YAGcApIC4QD0/dX6z/jh+CD7s/4eAhgE7QPuASj/t/yJ+9X7/vxI/gn/Dv+l/kv+bv4X//r/iABXAGX/+P2I/IX7Hvtl+z38cP3H/ggA3QADAVMA7P5B/fH7hvs8/Nv9wf9GAdoBYgEvAOv+J/4d/qX+Yf/M/6b/Ff95/kX+zf78/1sBbQK3AgwCugBJ/13+V/4x/50ALwJoAw4EPgQwBPwDqwM9A7MCKwLoAUUCXwPyBHUGVwdRB20GNQVHBPADKASPBKYEMQRRA2YC+wE4AvwCtAPWAxMDeQF1/6r9kfxZ/Ob8yP2F/tL+rP4x/pH9AP2q/Jv8y/w4/cv9Xf7I/vb+5v6//qz+uP7y/kf/nv/M/87/df/E/vb9Qf35/Ez9Kv4y/9j/s/+q/hT9lvvR+hX7LPyA/Wb+dv7B/bj87vvE+0v8Wv2R/q7/kgA7AbAB2AG3AVAB/QD8AIgBrAIgBHMFNAYuBnUFaAR7A/8C+AIyA08DCwNcAnUBpgBHAGYAzAAaAdUAz/8s/lz8//p3+ub6E/x5/X3+2P6I/sn9Dv2h/LH8Of0W/gn/9f/PAJgBTALpAkYDSAPxAnECEgIJAlYCrgK9AksCXgFDAFv/4P68/q7+Sf5c/QT8j/pr+cz4qvjA+N34+/hB+dX5uPq7+4/89/zy/NT8Af3R/Tv//ACgAtQDmwQmBbQFZwYoB7oH1QdaB4oGqAUEBdUECgVEBUIFqwSLA0ACMwGrAMsAQgGDAScB5f/6/Rb81vrE+uD7vf2k/+MAKwGSAIn/m/5G/pL+ZP9fADYBtQHVAccB1QE+AiADcwS6BWMG/gV0BDAC8/+f/sj+aQDmAisFWwb2BSsExAF0/8X9+PzH/On8HP1d/dT9pf6u/4AAtAD1/0j+IfxS+o75M/r9+0n+WACtAVECaQIyAs0BMQF4AKj/E/8Y/9v/JgF7AkoDPwNeAv8Arf/A/jD+sP3p/M77wPpD+rr6H/zR/f3+5P5l/fb6kvg195z32vlu/T4BTgTwBREGLQUaBEsDGAOIA3gEkgWkBoUH/gcHCLoHIgcyBvMEQwMgAYL+r/sH+T731Pb+91P6Df05/+j/3v6I/Nr54vd+9+H4yvta/6ICDAV3Bg0HJwcTB/AGbwZJBYUDbQGw/+X+Sf+uAIAC3QMUBM0CNADZ/Hb5vPY89RP1D/bQ9/75KvwC/jr/pP9J/13+Wv2x/M78xv1t/2QBYgMgBW8GKwc2B5sGaQXgA0AC0gDE/0b/Yf/3/8MAjwEKAvEBLwHF/+j97vsf+iH5V/m/+gj9jP+WAZkCbgIzAYP/+f0w/WH9iv5UACsCoAN7BL8EpgRwBFkEcQSIBF4EuAOaAkwBUQAeAN4APwKcAzkEngPRAVr/+vxo+/P6V/sW/MT8L/17/eX9j/53/zsAggA2AIb/vf4v/gb+X/4g/zYAegGwAq8DVASLBGcE/ANOA3gCkQGrAOj/cv9Y/7f/fQBMAbIBXgEgABX+yPvL+YD4M/jh+EP63vta/VL+wf7Q/q7+u/4M/6v/WgD+AFgBigHFAVoCbwPuBHUGZQdaBysGFQSnAZ7/df45/pf+F/9Q/wr/QP5C/VL8ufuG+6T74fsX/DL8OfxP/KH8bv2n/iMAqgHsAoEDTANhAjkBWQAnALsA8QFZA2oE1QSABJwDYwIuAUUArP9S/xv/9P7N/p3+df5f/mb+f/59/kL+x/0J/Sz8cvtN+/n7Tv3y/nUAcgGbAfgA7f8B/4X+h/7g/m//AwBpAIoAggB+AIkAqADDALEAZADS/xr/hf5M/qf+pv8UAZACmwPIA/wCiQH4/+f+rv5c/50A8gH3AoEDqwOWA2ADFgOeAuUB9gALAFv/G/9n/xQA5QCCAcMBkgEuAbsARADi/3H/6P49/p/9Tf17/T3+bP+lAIQBmQHAAGn//f0V/Q395v1m/wkBYQIDA/ICXwKxAUIBVAHNAZwCPQNUA+MCFgJUAQEBNQHQAToC9gGpAGD+ovsN+Vf3xPY190X4OflU+Xv46fY59TH0WfTG9RT4m/qs/N39bv4H/zUAWwItBSgIhAq3C7IL6Ar6CZYJIAqkC6cNKw9JD4UN+QkrBVYAxPz4+tX6bfsD+9j43fTc79XrL+qS67nuiPHL8Yvu+egO5IPj2ukP99UIZxqQJnkqQSYnHdwTLA4SDbcPvhOoFmYW3hJhDQkIhgRVA2ADWQI3/jL2H+sT4KLY2dfw3tXrmfrHBUMJ1wMZ+C7rkOLO4Ujpf/bsBCcQzhWhFfER1A3WC6IM6A64ECcQAA1iCFEE+QICBW8JvA0fD5UL4ALT9r7qZuJW4OnktO0G90/9iP4a+x71Zu9j7D7tZ/E199P8BgG9A6AFtwe8CmkO6BE+FKsUNhNgECcNxAoICjkLpw0tEGIRLRArDLsFcP4T+Bn0/fI69Fz24vfS9z72//M18uPxT/PY9Vz4+vl3+kT6cvog/LT/pASNCQkNDg7VDJIKvAiRCIkK/A1oEVETCBN5EIYMgAhvBdADOgPNAqYBa/9f/D/5zvaa9Y31A/Yw9on1/PMy8uHwvfAK8nX0I/dX+af6FfsS+wz7i/uW/BL+xP9bAbIC0wPiBOUFsgbfBjQGuATOAtoAQP8v/sv9Av6J/gz/PP/V/sr9b/wJ+/X5fPmv+Xv6h/uR/FT94P1T/s3+cf8YAKUA4gDUAHsAMgA5AMcAzwEaA1YECgXGBGIDFwF2/lz8dfsk/BT+ygCBA3IFQAbQBQoEvgHo//b/7gOdC1UV4x1BIT8dfRLeBDj5g/P49AH8sgRaCzsOIQ2HCakER/+X+ZXzA+6L6Wjo0Oyt9ngDrw57E/YPPgbc+oDzZPNG+tsEGg5VEnwQzgqXBYoEAAnUELAXXBmgE2kHX/hh693kQ+bD7Vr3Nv5Q/3X6BvE95mXdTNkG25Hh0+rt80n6Nf2h/cD9fP/0AyMK1Q9jE8cTvREWD84NEw+eEpMWuBhbF3ASYgsBBAT+0fno9l30c/FG7k/raukA6QvqzOsQ7VPtyuyL7MztFfH99ZH7wQAXBcYI+AvEDhARahKtEh4SRxHaEH4RFBOrFLcUQBIDDQEGU//Z+lz5TPo3/IT9Hf3p+mD3ZPMf8Hbu2u7t8OLzvPbG+Oz5cvoP+1D8TP7BABcDqQQCBVgEqAOqA84E/AaBCW8LygtMCowHNQQVAeL+zf3A/Vf+Cf9D/8b+rf07/LH6PPkT+HD3Z/fr9yH51frg/Af/9wBvAk4D0ANABPUEDwagB1gJEQuoDOwNyg79Do0OrQ1ZDG0KvAZzASP7cfUP84b0xvgJ/KX5ge8s383NkMJ3w5DSfevwBYgYxhzeEncBsfLC7ov4mgt/IDYwIjfCNQUwYSpAJzsm8yR/II8XqQu0AE36Hfp+/pUDjgUwAmj6ZfDI5rLfntuy2nncH+CB5fDruvKG+O77ffzl+pX4ffcE+Ub9IQO3COEMTw9LEJQQfxD8D9MOwwzfCZAGJwPw/1L9tPs2+2772fv3+/z6g/iS9LvvMesf6GbnNunH7Abx8/T096/5F/px+WL4rPcl+Eb6C/7gAm4IeQ0NEZIS9BEIEL8N+QukCnsJOAjkBuQFcAV4BWIFMgTuAIz74/TU7pvrYOyM8JP1AvmL+WT3aPSu8j3z+PWG+Un8g/1M/br8OP2r//YDaghGC3cLCQliBVwCOwFEAp8EswZsBzoGfgM2ACj94vpu+U/4Jvfr9dL0bvT79HL2ffiF+jf8Z/0b/pP+If8xANMBIQQNBxcKyQyKDtkOuQ2PC+UIewbVBC4EkwRpBSAG1gUVBMsAxPxo+fn3LviU+Zz5uffs9BXz8vUa/iUKBhUTGYgTkgX69avtYfNPB0UjoTwkSodIijtOK24feRpPGm0ajBcFEyQQ7xBWFHwVcBD9BDb2eenZ4oXhbOJI4WDcyNYB1SXbE+h/9jT/ffy87rXcgc9ezjfbS/G+B8EWSRo0FPMJIQFH/Vn+dgLkBoEJ6QkSCU0Idwi5CbgKtAmvBUH+HvXp7K/nhebk6KvtN/O49yL6VfoF+JXzPe686Qfoluqg8ez7rQbEDlUSBxGrDCoIhQWoBQwI6gruDJENRg0eDa0NxA40D8gNCQo+BNL9lfiT9RX1VfZX+DH6Hvu0+vL44PUB8nbuM+wa7JvuH/Ni+EP92QDgApsDaQOZAokBqQBhAPoAUgIDBIgFhwasBqYFkgOrAGT9Vvog+M32LfbP9Xf1D/Ws9Kr0LfUd9vr2QPei9lD19PNA8/bzFPYw+Ub8Yf4F/1f+4/xd+4X6ufrq+x3+DQEtBMsGZAi/CCgIWQd7BtAFawVXBFkCnf9A/ar9ZAKkC2YWsx33HDoSyQHH8m7tJ/YQCx4laDlIQL835yT0EbsG/wYzEMcbVyMyI7ocrhTFEIQTCxsJIq0ifxoYCP7x6N+d12HbWufa9Fz9cP149ubsReT23jDc9dlU19fU3NWE3dvryv2oDM4SXQ7dAvP2FvBz8Wr5kQNLC7ANZQu8Bv0ChAGmAW8Bvf4b+bnx6Orn5jDmu+fd6Z7r8uww7nXvYvD775bt1OnC5sjmz+uI9XABwQsEEV0QygsOB8oF/QiZDt8TLBbPFAoRIQ0gC7oLHQ5IEBUQfQxbBsL/1vqA+Dn4xPg2+ZD53fn1+a75gPic9tb0I/Qt9bj3Avsq/gYAVQB7/3D+df4lAEMDYQZiCNEI5geABicF0QN1Ag8BFQC3/5//P/8Q/jz8Ffor+J72cPXt9Pz0rvVz9un23fZl9v719PWe9jP4nfps/eb/VQHeAQ8CUgLyAskDjgTyBBYFUwUcBmUHSQlXC8kMeQ2CDQYN8AtzCToFiv8E+l/2VfYm+ggA3QQeBe7/XvfM8NjwNvn2BlETPxhxFFkMDQivDnchfzqkT+VW5ExHNkUdHg30Cr8VtCbDNE86zjXJKVsa7go0/U7xEefq3hTaWNlO3CThjuQU5CzfBNi20V7OFc6Uz3PRa9Ok1sHceeYP83MA4Qt5EnkSmQzmA1/8k/ke/fQFhBEiHLkieyMaHl8UrwjA/Rz1I++P66DpIenI6f3qC+yY6yTpE+Wx4HHdydv/22XdRd+j4Vzls+sP9SoAQAotEE4QYgvJBK8A4AFwCD0SxxtSIrckOCNJH0kaUhXgED8NYQpCCPcGhAaQBhcGQQT3APv8r/n09zL3ZPY69GvwUeyw6WnqBe829ln90QHTAdr9Ovga9AH0evgxACsI4w0nECsPogwvCuMI6Ah/CbQJFAnbB6kG/QX2BTgGpgXtAwoBrf1Z+hH4+vYf9973XPhj+LL3DvfL9hv3hPe+95D3KPdz90n44/m0+579qP+iAW4DDQUrBgUH4AejCM0JTgswDfMPWBIiFCIUBhKvDsEKIAn7CCULPA0LDn0MDwjrAmD+MP2//j0DYQRYA6P89PXv9Z79UxE2JZE11jhDL3ofzQ72Be4EHAv6FLge8iWZKR8plyW0HCEQNwAS8Wznh+Wt64b0Sfrt95LuYOKf2iXbKeI16prskuZD20rQCc4L13npdv5bDQYSQgtb/kryjuzO7qH3HgJXCq0NwAtUBwUC//3v+jb4w/Wo8oTvRexC6RHngeUH5Yfl+eYM6Y3q6+rs6Z3n4+Qi41HkYenX8Zn70wNwCNgIpgZQBEUEVgf9DJQTXBkbHY0e+x1HHG0a6RjzF98WNhWqEhIQAg5bDXMNiw3JDN8KJwiWBAsBZf1V+kX42/cl+Zb7Hf6P/4D/zv1q+y757fdP+M75rPtV/N77Z/uq+9n96QB0AyIE7QKeAEX+w/xa/DH9Hf/WAZAEOAbABdcDvAAz/l/8cvsS+1D6tfmd+K336fbi9sL2yvYN9tb0z/MJ84zzUfSR9Tz2p/ZL94P4vvpz/Q0AHQItA5IDVASGBVwIxgtlD3ASwRMWFDATgxKVEnITYRUlF3YYyxgDF3cUlxCKDs8M4QwGDakKGwkwBSoF2QbPCzESWBW1FkYSJQyWBHQAqgFhCH4Tkx5HJqwosCWSH74Y2RHJDNII8weTCfQMRw7KC3cDnvg470vpyOnE6sTqROU32+/PKMjeyOfQLt7n6LXsj+hw3hnVjs/D0ELXUd8R54Drt+0t7m3u7e6T7wzx3/Ly9er3R/li+eX3/Pbp9qn5gf5wA0wH/weUBdAASfvw98v3KfuTAJEFgghkCJcFFwL4/jL9x/xr/IX8Zfy6/CX+uP+6AfACPgP8Ak4CNQJqApgD2gTIBX4GFwdECbcM9xEHF4YaqRv6GbYXMBVHFCcVExcAGhwcGx0iHDgZHhWXEIYMCQkjBogDiAFC//L8uPnP9UTyKe+67YXs1euu6gPpx+ee5hfna+i06i/tXe/P8IjxivI69DX3f/oj/roAvwKKBNgFCgh4CYAK7wkiCDsGAwT/AmICygIeA5UCxQF2ALL/sP60/aj8Afv1+Qf5kfko/AIAZgTcBt0H4gb2BOADrgOMBfgHqQrMC8wLMAu/ChAMNg3KDuUOtg1uC5QIwQa6BRgGEQcPCFAJqgqQDMQOhRClESkR9g8ZD94PqhKKFj0a7BuRGwAaUBm9GTwb2ByRG1EY/REcC/UFJQPiAzkFcgYfBTMCIv4n+or37fSf8jLvZOsx6NXl7+RQ5Xnmo+cu6LvnKuag5OXieeEe4frgR+IU5D3md+hn6Zfpz+hl6JLooOlx6wHtau7w7gXvQe++78/wQfIf9LX1v/bu9qT2mfa39q/3BfnZ+pn80f0k/vn8ZPuj+Q353vlx+wv9Tf4C/5n/FgBkAEYB0gGwAuQC5gLwAlADIgVuByUKYgyQDsMPlBDOEBsQORAIEPUQkhJcFLUWrRf8Fw0XPxVvE34Rzw+sDvYNiA1PDVYMqQpNCCkGxQRJBEcEaQS6A6ICtQBm/uD8svtU/C39Wv4D/+j+R/6z/XP9Vf2I/Sf9qvyD+8D6L/oX+kb6PPq3+Z34Ffcf9Z7zVvJ58UPwyO4Q7d7r5+tH7UPwEvNI9YL1N/RK8rrwCfGl8nb1I/jL+Vn6YvrQ+ub7uf2s/3wB0gLnAxkFDgZjBtIF0gRcBEwFDwjtC4wPmREQEV0O4QoYCGsHTAkhDZ8ReRXbF5QYJBgoFy8WhRXOFdkWyxhgG+MdGCCEIRsigiKhIoIiISJHIQsgXR4JHS4c8htNHFMceBsBGQ8VahAZDDAJsQevBu8EoQGz/Dv30PJ38NDvB/Dr75LuietU5wPjjd+03XHdm96A4JziP+TR5BvkEeKB3zvdqdwP3qXgLuMz5KHj1OEN4IffeuCW4r7kPeaq5irmVuWg5I7keuVC58Xpo+yj7xfyofMF9EDzDvIk8XDxK/MS9m35aPxy/mX/f/9K/2f/CQB1AaEDRAbPCLMK3QuTDBUNsw14DiUP3g+mENYRaRMVFXUWHBc0FxwXXxchGHsZ+RoWHHEc0xukGlwZphigGDgZKxrOGs4aKxo/GCcVHRHMDG0JbgdTBzgIOwl+CT4IewV1Ae/81vjg9Xr0S/Rp9Bb0zfLD8K3uSu0B7V/tz+297QTtnusB6rHo5ee75/LnRujP6J3pgeou6zrrfupY6WXoeugE6tTsDfC98m/0KPVk9fj1VPeG+fT7Of5BAPkB0AOhBVYHjQj1CP0IQAmACroMNA8QEVkR9g/gDWsMqAysDqUR+xPbFPgTMRIXEYERDRTzF6gcBCFQJOwlEiUhIvsdcxq9GS0dyiNsKxAxWDIlL90oFSI5HSMbeBsVHdAe4R/DH28eqRt9Fx4SCgx3BnUCtABnACUAtP7n+jX1OO+u6r3owOht6fnoheZT4rTdMtq02C3ZpdoR3LXcYNz62uTYsNbj1NjT6tNi1c3XY9qF3Jbdit2R3IDbH9uA2+zcGt+d4Xbkcuf76Qvsbu3b7ZPtIu1u7QLvsvEC9RP4V/q4+4P8If3x/Rn/XADJAVcDCQWhBuwH8QjjCcsK+AuLDZsPDBKMFKwW5xcnGOQXzBdLGGIZyBo6HLMd7h7bH4UgqSAkIDcfXR71HRQeSh4gHhUd1BpuF6AThRDiDs0OXw9ZD4sNpwl5BFT/iftx+fj4XPnu+ev5D/la9/X0ZfIZ8FLuFu1I7NLroeue62Tru+qw6b3oQOgi6Afo2edy58jmN+YG5m3mSOdo6IXphOp061TsLO0Y7mPvM/ED83j0ovWn9gX46/kQ/DD+6f9DATsCFAMrBLUFiweOCUgLdwwADesMiQw4DFkM6wzsDXEPShEpE8AU4xW+FoAXXRiHGfkaqBx7HjYgtCEgI6Uk+CUuJ/YnGijwJ8Yn3ic/KEUolScLJu8juiHnH0QenByMGtsXJBWYErIQFg/9DDMJ1QJ6+uzxHezf6lXuMPTk+ET5QvRY6/7hsNsy2grdneFW5VXmaeTz4Efdh9on2cDY6tgz2WrZxdn72bPZxthm12HWVdbH14Had92a3xngY99M3iHelN+E4h7maumw6/XsDO5173zx9vNq9nX4APpR+7z8Vf4kAN4BagPTBCkGngdsCXoLdg0QD0IQTRFnEr4TPBWiFqoXPBiIGCAZTxoWHCAe/x9lIdIhNSHnH28eah1SHQ4eNx//H70fRB4WHL0ZuhdaFmQVjBRRE2URzQ7EC7oIHwb6AzgCggC//un8Cvsb+Rf37fTE8szwGu+67ZHsXusX6vPoFuiK50jnC+eS5qvlY+Tx4rzhKuF54dPi4+QL59Xo9emW6u7qKOuz64jsxu1s71rxevOm9Z73Kvlr+oD7jPyQ/Zr+rf+vAHgB5wEkAn4CLgNIBKcF/AYqCOYIIQndCBUIEQdnBqYG8AcyCr0Mvg6bD1wP3A4iD18RghXIGsMfrSK5IqMgYx5EHlMhIidjLj00wDZ5NVkxlSy+KJYmIyaKJrsmNSYMJWkj9yF/IDIebRqoFFUNowVK/+b7uPvs/YQAmgHo/z77zPQq7tLoq+X15CrmBOhb6XPpLujc5RDjyeB13ybfGt+C3qncudlz1hXUDtSq1u7ay96A4D/fT9tt1uXSQdLp1IjZZN7s4WvjHOML4m3h2uFr47HlK+hp6jbsye1771fxSfMk9eP2a/i4+Rj7q/x1/kIA/wGuA3gFcgeQCYYL6AyODacN7A3iDtoQphOsFkQZ8xqKG0gbpBo3GlUaBRsuHGQdXR70HiUf7h5dHnwdcRyEG6QanxlqGNYW3hTIEssQHA/FDZAMSAu5CckHbwX5Ap4Anv7y/G372vkx+Jv2cPXj9L70e/Sz803yjPDa7pDt++wE7Xft8e0q7g/uqO0l7bvsiOyd7OPsOO197bTtAO5Y7unu3+8k8YryyPOU9PD0B/UN9VP17PXL9t/3GPlM+kz7Bvx2/LL86vw2/bf9W/4q/xkABwHsAc4CoQNhBAwFnAUxBhoHqAj2CrkNahBVEjMT/xJbElUSexM+FhgaRB66IcQjViT7I6YjASRCJQknlChKKQcp0ifyJQckjyK6IZAh0iHZIeAgPh69GcQT0Q2UCV8I6AnDDOIOOA7fCbQC6Pqm9GTxOfH98vn0kfUl9BXxWe3+6Wznn+Vj5EzjWeIq4THglN/d3sbdPNyT2gnZLtg02AnZAtpp2vXZzNiE18jWWtdw2ancJeAW48Tk9eT246jiwuE14mnkVuhQ7Sbyv/Uj92r2b/R18uPxhvNg9z/8vADfAy4F9gQXBNID0gQXBwMK3gwTD2oQ7xApEdMRURO/FawYYBshHZQd5BydG38aJBrOGn0cxB7HINIhayHJH2Qd4RrRGHcXxBZEFpQVXBShEm0QDg7jCwYKSAhmBi4EmgEb/zj9JPzS+9D7k/u9+jn5QfdE9aTzwfJ18nXyfvI18pfx1fAu8Mfvje9X7x3vwu4z7oPtlOyb6/rqH+sh7MbtbO938IPwsu9z7mXtAe2r7Wnvv/Ec9O716/Y+91H3hPct+Dz5dfqy++z8D/7+/sX/bwAoARECHgNRBI4F2AbhB7UIagkxCmsLQw3MDwUTCBY2GGgZ4hlVGn4b3R01IaskOidpKD8oZCe0JrsmzCdWKVUqNyrKKFMmrCOcITYgsB9hH+geyx2XG0sYIhT/D8YM0grpCWwJZwj/BfYB/Pwx+Jf02fLH8onzkvPd8VjucOld5FDgCd6Q3TTeS9/i35rfXt5a3NHZctcS1u7VBdfq2OjaJNwF3O7aiNmo2C3ZANvZ3cngweKb43Hj0+KQ4lLjXOV66O3rCO9e8YfymfIg8uzxq/Kn9Lz3Xvug/sgAYgHcABIAAABVASYE8Ae6C5kOAhASEGgP4g5cDzIR+BM3F1saxhxQHsoeUB5SHXccKByuHOkdbh+dIOYgTiD6Hj8dZhulGTwYHBcIFrQU8xKOEKoNpArkB9MFgwTYAz8DJgIjACP9tfnK9v/0j/QZ9ej1NfaT9Sj0ZfK68H7vZO7P7cPt9+1D7lLu+u0o7Q7sFuux6vHqyevp7PHtf+6C7jruCe5M7izvmPA18pvzpPQ79YX1xvUX9r/2/Pe/+eT74/1e/xIA/v+M/0r/uv8VAQcDJwXnBuAHHAgSCFQILwl9CgUMYQ1vDj0PAhAQEZsSpRQNF5MZEBxKHgsgRyEVIpsiJiMxJOYlAijoKf8q/yoSKrgolSffJkEmQiV1I9Qg0R3tGsUYWBc7FroUTxLlDtUKvwY/A5gA1f55/S78sPrj+Jj2xfOr8KvtBusV6QrokOc152Hm4+Su4iXgot2G2zLagtkb2ZXY09cL10/WmdUs1QHVINWT1UnWQtcu2N7YRdmI2RTaQ9tH3fXf/eLP5f7ndulm6h/rKuzr7XHwbfOU9o75Dvz5/T//BQCCAP8A4QGOA/AFqwgfC9IMlw3IDc4NIA4HD3AQGxLHE1sVzRYYGDIZHhrhGmAb5RuuHN0dNx9OIM4gkSC2H7Ie6R2aHY4dXh2cHCMbARmWFl8UoRKNEb8QrQ//DWkLNggGBVMCaADs/oX93PsI+iD4UvbP9IDzL/LA8EHv2O2d7LPr+ups6vvplOkq6eroyeiJ6PXnC+cw5r3l9OUd59vopeoX7MTswex47DnsfOxu7ebup/CQ8nv0MPZ49z34p/j2+I755Por/QgA1ALIBHoFFAUyBLQDVwRaBlkJkwxSD+AQBxHeD+8NDQwOC8cLcg6zEoAXYBteHTkd3xtnGisa/hukH+IjdyefKX8qiyp/KgUrKCw5LXYtqCwdKz4pfScpJjwlHyRYIrAfWRy4GBgVkxEvDvEKtAeWBJsB3/4e/Cr5I/b38rvvmuzF6X7npeUt5APjC+IY4fvfy96W3VTcJdtK2tHZp9mI2UXZ3thl2BDY8tc62CfZe9rb2/7ctN3G3ajd392P3tDfYeEW48TkW+bl52fpD+vs7ODu5PD98iH1/PaI+MX5uvqk++X88f6UAWEEswY/CCAJfgmZCbYJ6QlqChYLzAt6DDANDg4xD7IQKBJREwEUUxSAFHQUGRTEE74TWRSFFc0WzxdFGGoYahhFGCcY5BePF08XAxdvFm0VHBRzEp0Q1g5bDUQMcgufClUJWQfIBBoCwf/9/cP80/u4+kT5cvdF9RzzS/Hc78ju5e1Q7ezshezq6xbrQeqj6V7pkekB6ofq3Orf6nvq8ums6f7p9+pp7Pftde8b8d/yePR29ez1EvYk9p72zfeX+cH79v2w/8AAZQFsAnYEmwczCzsOGBCaEAwQzQ5kDVMMaAw1DsoRPhY9GhwcHRuwF1oTGBC0D4MSmxf9HK8g/SFlIXkgryCzIgsmUClyK+UrESs+KcEm9SNrIbYfbh8KIegjzSYhKLQmOiJgG5oTkwxfB3kEMQM6AlQAMP0Q+a/0lfAK7e/pF+eO5EHih9/h2xfXpNF5zHHIW8awxhvJhcyazzDRq9CDzjDMAct6ywrNy84l0BjRQdI/1GDXjNuA4JPlJurM7VbwzvGf8h/zT/OG8zz0CfYW+Q79TgE8BZcIVgtPDXsOuw7vDXoM/AroCXIJoglGCjkLLgzGDLoMOwz7C00MZw21Dj0PbA5TDMIJjgeMBugGkQgxC0oONRFgE6sU/RSrFBYUgRMdE1ETKxR8FZYW9xZsFioV7xNUE4gTExQrFEgTQRFgDisLMAjPBTkESQOYAqYBCwCf/Zj6jfeR9ErytPC47yzvre7S7R3srOna5m/k8eL34j/k9OVI58fnYOd/5s/lw+Xn5iTp3usq7pnvRvCe8OTwG/Fe8dHx6/Lq9NL3I/v2/QQA3wEQBKMGBAmyCmwLbAtGC1cLsQtNDCcNQQ56D+8QnhIlFB4VGBXEE3sR8Q4DDSgMPgwDDeANFw78DXIOVBDcE1cY3hyRILkihyPoI7EkFyabJ74ogiitJ8YnySnRLZUyzjW2NaIxQyopIVEYchHJDB4JxQSk/kv3d/Bd7BTsju4/8Srxvux85F7Ztczdv1a1y68GscC4RsOeyzrOuMp2xNC/MsCYxu7QqttY48nlKOPZ3ePZstqq4Zntx/o9BeEKAQw4CrQHFQYPBskH+goiDzwTCxaiFv0UbRKsEIgQmRGhEmESXRBVDS8K3gYNA/L+VPtX+a/5mfs+/bv8jvnG9FbwSe5a79nyDPce+vr6qfm59+X2Bfj/+tf+VgLjBO0GQwlrDCEQoBNKFjkY9Bm1GxUdmh18HTMdcB11HgUgcSF2IjIjyiO4Iy4iyh4rGk8VVhFvDhYMbwkGBkkC1f4x/O75V/fL8yPv1Oms5JjgTN6i3ffdNN7A3cHcKtzm3CbfQeIN5drmnef4533ogulh6yruVPGD9D33Jfl++rP7Dv2F/tb/wQA0AWkBwwGMAtoDqAWhB0MJpAolDAgO8A8jEa8QLA4DCkwFNAGJ/qT9ZP5JAK0CKgVZB/IImAmGCG4FIgGy/Vf9tQBJBigLyQwRC40IgghxD+8d7DBSQm1KHkXcM1sfcxJcFGgk4DrATBtSO0saPt4xiyoJJ6Aj6R3jFfYNMQcrAKz3newr4GjVac9Rz/DTPtrl3Unb1dCGwFGv5qKhnniiDatktPm7PcE4xU3IxMqQzcjRcdgq4f3oQe1/7LfoSebq6DvySwEUE40j4i6tMr4uVSUeGngRyw0KD4sTvhg6HGQdwBwRG5MZrBigGDYYbhSaCy7+Pu+D43DePeA35q3rn+0U7KjoYebn5n/pJOze6y/nFN+q1q/SvNbB4ijzmALADBARPRKOE+sWkRvVH3YiDiNSIrQh3SLlJiwuLjcxP41DaUOSP3Q5WDILK9Yjjh2mGCcVNBKBDpwJVQTO/zn8X/kV9nzx3Ooj4hDYds4QyCrH28tA01LZH9tf2JvTVtCx0A7UcdgF3HbeK+Ad4j7llOkv76X1E/ysAQcGMwlrC00Mowt2CY0GPQQEBD4Gogm6DMQOpA+eDz0P+g7TDkoOOQ3dCzUKfwguB0AGiwXPBMoEwAWIB3IJNAqLCMoEeADD/A36Cvju9jX3Lvkl/UIC9wbVCmYOIhTeHNInJzI5OIM3JS+EIdMTpA3eFIsqfEe2X7lniVwERk0xxCgULkQ5bz54NhUi9wik9DLquenR7r/z0PQr8OfmbtvLzqrBJ7TIpwGgcJ+9pseyKb3DwE68ibOEreOvErxrzdXbkeG63W7V9c8E0xPgtvPtBxYXgR4+HhMZaRMBEWATexmXIMIlrSc6JzUmvCV5JRIl4iO6IQAf8hv5FzcSdQrhAWb6c/Xx82X1MPg8+pD5B/Us7Wnkut1h2zXdHuFR5NfkA+Ol4A3gtOJD6I3vJveJ/cMB0wOKBE0FggdxC68QkBaJHGoifSdOK3wtAS6OLVEt4y0SL9svAC/rK9Mm1CBsG4AX/RThEvwPewv3BNj8EPQO7IzmReQ/5KDk0uNV4dndq9qJ2KnXu9df2LnZKtyB3/HijeWw5rDmYeaw5k3oRutF757zpvfs+mf9pv9+AiIGCwqFDY8P2w/fDnYNQQyhC9MLLgyMDBgNAg5MD50QXxEQERkPlAsqB+4CRQD2/5oB5gMUBT8EKgJDAPX/cAFvAy4EbQL9/Vr46/MM8732xP2rBeYLWQ8aEQUT4haVHGoiria4KMQorSc1JuckgCSRJcoomS4KNhs9U0EWQUA88zSHLiIs1y2LMKQvfSc8GB8GL/fr767wMPXh96r0autX30XUzszSyFDF9r4ztGimIpmZkBKR75qgqvy5OsNFxLm+zbfptKi42sH+zL3VXdqA24vcl+Hj7Bf+QRFlIVQrgS7kLJkp9yawJfglvyftKjcvYzPyNW01AzIPLawoCybOJfcm8SZdI8gaLw68AGr23fHr8lj2V/iN9irxSupv5ADh79/c36bf3d5f3bDb0NpJ20HdGeCP48Hn8uxJ8xz66/9kA4AEZwQfBTAImw1HFFUaXR5gIOAgKSFeIvokgiijK/YsliuPJ0AiIR0gGVcWUxSMEnkQiw23CQ0F0P+5+kb2mfJg76PsderG6DXnGeUX4mreJduI2b/ZANtI3ArdO91N3S7eK+AW45LmWerr7cbw5fKj9Hn2/Pg0/OT/xAO1B30Log6vEJMRdRGmEKQPtQ7mDRgNLgxWC7YKOArsCe8JWAoRC9ILUwxTDK0LhAoGCawHxQbbBlwIIAvvDYMPTA/XDegMAg5yERQWDBpmG90YbxP2DRUM/hDSHJYr5TalOSYz8CcOHskZZhvtH+8jGCWgI5Yh+CBwIhIlTSbKIwkdXRN3ClIFIgRnBM4C4/wl85joz+C03YLeseCX4b7f4trA0+fLmcX/wW3Bd8PIxqHJ3MqfyunJWMlwybjKkM3a0TzXYNwZ4MjhsOFC4ZbiTudg7/z4ewGQBh8HQQTBAOr/SAMCCooRNBduGV0YahW/EsMRlRIQFLEUhBNXEA0M2wfGBCADpwKhAnQC4gH4AMj/S/5c/Pj5Z/cZ9YbzBvN382/0YfXY9a71TvWQ9Uv3kPpl/nABnQLeATgAF/95/6sBKQXxCNgLMA0YDW4Mgwz5DYUQPBMDFQYVXRPjEPcOrA78DwkSaRNyExIStA/YDCgKXwiPB1EHxwZZBS4D8wD1/gD9uvo6+OD1PPSw82D0zvUC9yj38vUf9K7yWfJP8y71A/fW90/3EfZi9Ub22Pgz/AT/lwD2ANMA6ACWAbsCsQO+A6UC+QC+/6f/rAAkAmsDIQQiBNEDmgOuA+ADywNPA5gCEgIzAgMDTwSYBVcGYwYBBr8FAwajBtwGKQa5BIsDsQNnBdUHvwkbCvsIYgfLBmcI8gv5DyMTjBQHFOgRQw+kDY4NYw7iDkQONg2uDCQNVA4uD+IOiA0CDGwL6QveDBINhgsNCK4DOwAV/90AxQSuCGMKpQhdBO3/Yv1B/Wf+FP9K/g/8Wfk490T2cPYG90T3vPar9eH09fTF9Wr2EfZv9P7x5e8m7/vvqfHZ8pnyA/Ed7wnuT+6v70jxNfK/8d/vZe2S6zfrJ+yo7QLv3+8u8CLwMfBx8Lfwq/Br8GLwvfB88Zby6/M+9S32qPYI96n32fhy+gP89vzr/CH8UvtE+1H8GP73/1oBAQIcAv4B8gEyAr0CbwP2AxUE5gPxA6YE9wVvB0gIOAiXB0sH0Af4CCwK0gq1CvkJAQlTCFwIMAlnCjwLQAtnCjkJiwi3CIgJVwp7CsgJjQhTB3AG+QXcBdMFtAV4BRQFqQRcBDsEKATUA08DpAIVAswBxAGpAU0BpQDY/yD/k/4q/uf9zP3R/eb96f2//Ur9hvyk++P6W/oN+uv56Pn++ST6W/qb+tf6+voT+1L70PuK/Fj9EP5x/nj+TP5H/sb+2f89AX8CJwMmA8QClQIRA1EE/wWUB4kIvAh/CF0Isgh+CYkKmwtuDAYNkQ1XDlkPSBDLELgQSBD/Dy0QzhCTEQkSxhHgEMAP9A4ED60PThA/EPcOwAyACh0J6whkCbAJLAmeB20FUwPrAZgB9gFhAj4CVQEFAOj+Xv5g/nn+L/6A/a/8GPzF+2H7jvo8+a33YvbP9R329/at93X34PVJ86Hw3e5/7h3vze+p72rub+xQ6vboq+hF6R3qlupc6oLpK+ja5hjmGObO5h/os+kl6wvsGuyA677qiupY6yjtWu8t8S/ydfJp8p/ykvMb9eb2kfjd+en66/v3/Pf9wP41/5L/KQBfATcDRgW/BkkH/gZjBk8GPwcYCTELqAz3DEEMIwt7Ct8KQQzaDeIO9w4sDg8NZQxiDMwMGw0JDZwMKAwxDLQMWA2ODQYNvQsXCrwIJwhWCNoIHgm5CJ0HQwZSBQ0FYQXhBQYGkQWDBAUDVgGh/zX+Tv0a/W39xP2l/df8bPvk+cT4ePjs+J35Bfqi+Wz42vas9W31A/YS9wr4hfiF+FT4Q/hs+MD4B/k++Yn5Kvoq+3n8sv1t/pz+iv6v/n3/CgENA+UEDAZABuQFogUSBk4H7whXCgIL0AoVCoQJmQmECucLNg3pDcUNDw1NDOcL7QtQDLQMxgyQDE0MVgy3DFgN+Q0pDtcN+gzTC7sKAgr8CZAKbgs+DIYMOAx3C6IKAAqtCcgJCwoLCnUJPwivBj8FNQS/A6sDqQNsA6oCVwG3//r9T/z1+vL5FflD+F73X/Yf9bDzKfK68KDv6e6/7s7up+7x7V3sX+q06OLnPeia6UbrWuw/7C7rs+l36Cjo2Ogv6sLrAe267Sfuc+7p7rLvvfDa8Q/zKPQc9d71VvbE9jT38ff4+Ff6G/zu/YP/hwDNAIsAKwATAIkAegGUAnAD9gMcBBUEIwRmBN4EgQUrBqYG8QYFB+0Gyga2BtIGIwfTB8UI1AmSCr4KdwrpCZ4JuglRChYLjwugCz8LsgpPCjUKcwr0CnILoQtpC9sKIApkCcgIMQiPB+0GOgZkBZ4E6AMsA1ACRgEQAPL+Hv6F/fT8Pfw7+xD6+Pg2+Nn3v/fE97X3Tveu9i/2DPZy9jv3GvjD+Pv48Pjg+A35rvmh+rr70Py1/W7+Ef/X/7IAeAFfAkcDBwS7BC8FhwX8BXsGLQcNCM8IggkRCl0KpwqpCqkKjwp7CmQKagpRCtQJpQleCYUJAApnCowKJgqnCRUJRQi4B8oHCQiACP4IGwmyCOkHEAehBucGugfuCLwJmQmICBAH+QWcBQYGRQd8CAYJwAiIB+wFUQQXA5QCdwKcAo0CBAIWAcn/lf6Y/cr8Jfxo+2368/gg92X19PPi8j7yv/Ez8YPwxO8g74Xuxu3d7NLr1uop6gHqb+of64nrgOsu6+7qAOu26wHtcO6B7+Lvx+97737vK/CC8Rjzi/Sm9XX2Mff29/j4Hvoi+8z7Qfyi/AX9hP36/Zn+RP/4/6AATgEYAtoCagOvA64DiwOIA84DSATRBFsF1gVXBvsGowdCCJkIiwhNCBwIPgjYCMoJ0AqRC9gLrQsqC5AKQAp9CiML/wu6DOsMegxrCysKSQkDCWIJKwreCg4LbAoECS0HZQVJBAQEbQTbBMwE8wN5ArwAN/8g/qX9i/1y/R/9Y/xn+136evkE+QH5U/my+eP5uvlC+bf4WfhO+Jf4H/nk+bT6bvvu+zz8kvzy/Gj90P06/pv+9P5V/8b/PACUAN4AQAGkAQUCPgI6AtoBTAHgAL0AEQHaAcICaAOhA10DqgL0AacB4gF7AjMDzQMeBDUEVwSsBCwFwQVDBoMGfQZJBiUGSAa/Bm4HHwivCBsJdgncCVEKygoIC+cKfgoRCtEJswmlCZgJhwlvCUQJHQnjCGUIlQeZBo0FfgSrAxgDuwJYArgBwACb/2X+Wf2L/Pr7jPvv+hD66vie91z2YvXy9Bz1rvUa9un1GPXS84TysvGj8T7yLvMU9Iz0d/Tw80nz3/Lr8kzz5fOF9Ar1bfWo9cz18vX+9fv1D/Y49n721vZG99/3gPgq+c75ZfrT+gn7BfvN+oP6X/qa+iX7y/tP/I38i/x8/KD8IP3y/eP+j//C/3r/8v6H/p3+VP+sAEkC1AP1BK0F+QXgBbgFpwX2BaMGjwdwCBUJdQmFCYUJognzCVsKywr8CuIKbArFCTwJ0QirCKsIzggACQwJ0ghECGYHTgYnBTQEiQM9A0ADXANQA+cCGgIoAUsAx/+T/47/e/8s/5f+3v1A/ej87/w8/aH96/0E/un9s/1z/T/9Gf3//PL80fzN/P/8U/3E/R3+MP4J/sT9kf2X/cT9H/5r/oT+Yf4C/pH9XP2a/VT+T/8wAJ0AXACF/5D+7v3m/Wv+L//X/zYARwA9ADQAPQBZAHYAjQC/ACwB2wGfAjUDYgM1AwMDIAPJA/gESAY2B10H2AYfBskFQAZ3B9sIxwnFCfII2gf+Bu4GoAerCHgJignSCJ4HkwYlBk4GxQYlBwgHYQZhBWcE0AOPA5kDlANJA6YCvQG+APD/Zv8o/xr/Ev/2/q7+Kv5w/af87vtz+z37JfsF+7z6RPrD+U75//je+N348PgP+R75CvnA+ED4nvcG97z25vaH9074vfiL+LX3kfa/9Zz1Kfb/9of3ZPeY9oL1tPSF9Az19PXR9lL3Y/c39xj3MveM9/z3X/i4+DD55PnW+r/7b/zL/Oj8Hf24/d/+WADHAb0CEQPeApkCtgJnA5ME1wXNBk8HXQcuBxwHXQftB5oIGAkmCasI7Ac5B9AG8waABzMIvAjMCFoIlwe7Bg8GvAXJBfYF+QW6BU8F3gSZBIIEigSOBHoEQQTwA6cDgQNoAzkD2AJcAukBwgHnATECbQJQAs8BFwFxAB0AMQCIAMoAwABUALL/Jf/l/vz+KP8i/9H+Sv6v/UX9Gf0T/Qj90/xj/M/7YvtQ+4376/sY/N/7S/uf+jP6JPpr+ur6bfvG++D74fvz+zD8ofwt/bj9Lf6H/tb+GP9b/5z/9P9tAAABmgEcAnMCtwL0AikDawPdA1cEzwQmBUcFRgVOBX0FzAUgBlcGWAY7BiIGFQYgBjcGLwYHBs0FkQVyBW8FfAV9BVIFAwWYBDsEDgQGBAwEBATSA3cDGAPSAqcChAJHAvEBjgE5ARoBKgFGAT8BBgGXABQAof9R/y//GP/w/pr+Hv6P/QP9lvxD/Aj83vut+2z7B/ty+q/53fg8+A34bPgh+bX5zvkt+Rb4CfeB9sr2tvfn+Ov5Wvow+p/5/PiS+In42/ha+en5Xvq8+gT7Ovtl+4T7nPu/+xX8jvz8/C39//yJ/B38Gvyl/LT98v4DAIYAeQATAJP/Qf8y/2X/pf/V/+7/DQBQAL8AQgG/ARoCVwKCAp0CnAJxAhwCwQGaAbYBLgLjApsDKAR1BJMEpwTSBCoFggWsBaQFVwXiBIEEWgSEBPsEgwXuBRgGCwbUBXgFEAWRBAoEkAM9AwoD6AKtAj4CpwEjAeUABQFzAfIBPgIAAisBBQDk/jH+Hf6F/g7/dv+T/2r/Kf8D/wj/I/9G/1r/Zf9X/zD/7P6T/jv++/0A/lr+9v6p/y4AXAAQAGn/pv4T/ur9K/6b/vz+J/8o/yH/Ov+L//r/XACNAHEAFACd/zz/HP9K/6P/CQBfAKUA4gAJARcBBwHRAGwA8f+l/5P/sv/u/x4AMAA3AFwAtAAxAaABywGmAUcB3wCbAJgAzAAjAYkB4wExAnACoAK+AswCzALKAssC0gLCAogCEAJwAewAsQDRADEBmgHOAckBjwEtAcEATgDN/zz/rP5C/hH+If5S/oH+jf57/mD+Yf6C/qf+o/5X/r39//xh/BX8N/yj/Br9df2X/Xj9Nv0C/fb8Cv0g/SL9CP3c/LH8hvx2/Ij8vfwZ/ZP9Fv59/pr+X/7h/U/96fzQ/BL9jv0e/pf+1v7X/qf+cf5P/lv+j/7e/jL/dP+J/3D/Of8L/wX/Qv+2/y4AfQCAAEEA5P/D//D/aQARAbMBHAJGAjYCDgLjAdQB6QEYAl8CyAJOA8sDFwQVBMsDXAMFA/gCQAO3AzIEewR2BCIErQNMAyUDNQNjA4ADaQMKA38C6QFyAS4BTwGyASsChAKNAkACpgHsADUApf9P/0L/ef/p/2EAuADAAI0AOgDp/7n/uf/E/7b/XP+o/s/9If0C/af90f4YAO8A9AAxAAX/7f1R/UL9mv0F/j/+OP4C/tb91v0M/mr+1v48/3H/X/8F/3b+2P1J/RH9SP3p/cX+kf8MABsAz/93/17/mv8WAIcAtAB7APv/bf8O/wH/Rf+//00AyAAkAU0BOAH6AJ8ANQDR/5L/jP+u/97/9f/h/8X/x/8LAJwANQGMAWQBvwDq/zH/4/7//lH/pP/H/7z/t//h/zwAsQD4AOQAcgDH/yL/tP6R/q/+7/4y/2r/lf/B/+j//f/5/9//q/9v/z3/Ef/s/s7+uv7O/hb/hP/x/zgAQAD9/4j/F//K/rP+yf7u/hH/JP8c/wv/Af8J/y7/a/+4/+//BwDv/6v/W/8i/x//Y//c/2sA3gAZARUB6ADHANEACQFcAZoBrAGFATUB7wDWAAIBZQHjAVUCnQKoAoACQwL+AcIBnwGaAbMB2QH6ARQCFQINAgUCBwIiAjoCQwImAtgBbwH9AJ8AdgCFAMQAFgFQAV4BMwHdAHoAJwD2/+3/8P/v/9j/tP+O/3H/ev+j/9f/AwALAOr/qf9b/xr/9v7r/vX+Bv8S/xr/E/8A/+P+w/6v/rP+zv7x/gb/Af/m/rz+jf51/nj+lP69/uD+5/7N/qb+hP50/oD+nv69/s3+x/63/qT+kv6E/n/+fP5//on+tv7i/gP/Kf9A/1L/UP9S/13/bv+F/4//jP+F/5H/rf/m/yEAWQCVAM8AJwF/AckB5wHJAZYBbwF7Aa8B1wHrAeoB2wHQAakBVAHsAIMARQAsACoAJAACAOT/yP+s/5H/fP9j/1P/Qf8j/+b+o/54/qv+GP+M/8D/ov9j/zD/Ov8u/yX/Mv9f/6D/tf+E/0b/Ov97/+r/NgBTADkAHAAKAAQABwAAAAIABwA2AGIAcwBqAFgAVwBbAD8AFADr/7v/iP9M/zv/b//G/x8AZwCHAKIAhwBPAC8AHQBSAHoAdgAiAJz/oP88ABoBoQGUAUgBYAGdAaoBUwGnAJ0A3wBVAb0BugG9AY4BYwFmAW4BcwGJAZgB0wEEAvEBnQEvATgBlQEGAlsCdgKBAncCGQKsAWIBagGWAXsBGwGNADIANACkADsBjgGNARkBhwAAAKH/qv+c/4L/QP/w/tX+t/5l/hX+2/0H/kn+/P1x/an8Zvxc/E/8Q/x8/ED9Bf5X/hn+9P1M/tP+D/8j//L+rf4B/qb8WvsI+777Hv0D/kD+9v0T/fj7nvrr+V357PlE+S754fer9rj3n/l2AKcFPAluCJkEewPaAi4EngP6Ak8EMwdaCvcJSAeOBKwETwcpCW0IggVBAo8AAAAT/z/+xP4bAe0DFwUkA////PyN+xP8ifw//RX95fxv/bj9k/1K/Zv9t/6UAPgAigCV/o38OPy//JH+V/9j/23/VwDfAZoCxwGCAJIALQHwAfIAn/8g/1P/fgAZARECtAIcA94CrQFoAEP/wP54/s/+If8z/9r+t/4e/9X/YACLAJEAbwBwAOf/Jf84/u39PP4p/14ATgHGAVUBywCn/5T/e//6/4oA2QC/AMkAsQBrAG8AYAD0ABECtwEZAVYAjP6k/4P/PAGYAcgCcwNNAykCi/+a/u79GwHGAn8EuAOTAmYChQMrBAgFWQVZBV4G2gWIBb0D/QPBA8QFXQYfB0MHrQaHBlYFtgTmA3IDlAK6Aq0AJgAU/1cAiAG+AV0Bf//2/tj9ZP2p+3r76vuG/bH+3v0E/Zv7dvyY/ZL/sQBfAGT/zP6s/hj+YP4j/rP/DgDQAKkAlQCKAL4A4gCk/8X+xfyI/JD7ofzc/Ab8ifv/+gn87/tV+yT5WPc+96n4Tfnm+Gn3/fXL9Yj1jvZG9iL32fex+MH4F/fs9W/0H/Un9sT3Fvkn+uD6ufq6+qX5zvmF+TP6HftM+8P72Pq1+nr6//qd+5n8h/1M/nf/Rf/m//3+gP5R/Zb71fpF+iH9pP8mAxQEJwR9AvIA8ACuAaUElQcwC3sLYwt6B2sFvQUtCX4RuxaXG2Ea1xiaFUYSwA+uDHYNww81FhkZ4xgHFO4OMw1ZDwQUlReGGskZMRejECcINABK/Iz+WgSKCvQMSQsgB08C2f4Z/K37n/uZ+4L6rvXZ70vpheYv57PrXvFq9cj3qPa/82fuf+mx5e/kf+bI6fXslu928RjzpfWm9+L6gf0vAKYBPAF8AF//MABeAl8FSwiBC/0O5BIXFtMWoRX0Ea8OCQwCC7sKogq4CqwKtgoOCjgJtQaRBCgCmgBu/3T9mPtF+XH4Avje+FP5v/nr+fH5OfqM+YL5cvhu+IP4Ofki+gz7U/zr/VEA8gFkA28C2QCO/nT91/3u/qkAuwHUAuQCNwLR/z/9j/th+y78M/yw+hH4sfVl9Nb0YvYw+Un8+v7SANr/l/x49zvyxO8c8P/z3vk/APYDTgQeAYf84fm3+Un9zQAhA5YAkPnc70jpY+oL9GUDTBIbHQYfpRlmDu4CUfs9+8gCjQ6SGtQgZSF8HXkawxmSH+4pPDVkPRw8izCoHO8J+v/wApoQpyKkL3wyXCkOGGkFwvaW71HvgfK09Jzyt+pu4JfXatSe1nPcx+JP5lDloN8A1vTKkMInv5DCrMqT1QLfXOUf6BfnyuTl4ojkuenF8df5hP/LAWYAl/1F/D7/BQcrEpQdESbiKXwoUiI3GkcUAhMLFlQbdB+LINYecxrCFYcRwA8kEHgRCRIxD7oJDgHK9z3wHeyX7Pjv4fT394j4yPV08KLqn+Vr433j1eX75xjpo+lK6rjsdPAe9dP4m/uH/fz+aAA9Ac4BJALzAjoEjQZqCSQNYhEMFSgXYBZgExYPswrMCE0IZQmhCuQKxQjaBMoBcABXA+oGcwrpCMIBbfZh6Qjf4toO38vp1vdvAokGMgLX+QTyHe9/8Qr4kAD8BkMKoQe1Ah3/+gPfEdMm7DqARJxBfDIqICARmQyxFP4lXDmWRkpJzj/zL0IgwRZAF8Ud0yYqKoAkXhVrAGvtSOFg4j/sAPoLASv7Zuduy2ayOqM8osOrCLqaxCrHwsEWuAaxy6+rtT+/x8eozS7O5sxUzI7PLNrS6KH69wgUE5UX2xeaFVgSUxEZFDMd4yiRNXA9YECePzM9xzvgOn86aThJNFEtLCPFGFMRAhCREzAYGBr5FbQMPADl8zXqFOQG4T/fwN1J28zY29aS1nfYYdsb3ifeztyy2mTZCdlq2QDbid4y5eLtafc3/6YEGgf0Bs0F6ASfBtgKIBHZFkMaZhuYGjcaWxpsG3cctBwXG0wXGBK0DKUIzQapB80JJgu0CUwESfzF86vtXuvC6yjtru137U7sO+p450XkKeJh4YrifOTi5bflp+Mj4pbiLOoF+lwRDCoRO7g96zFIIAQUUBbNJiNACVdcY7Ji7ljvTZVHP0j7TXtTlFI/SMM09xwBCeX/cAPwD2scUyGeGooJnvOh3oPO8MMPvmm6/reftYmzcrJmsj+0JLd1uq+84Ly+us+2r7JcsEKyRrkgxfbTruKk7qL2KvzWADcG8gsHEXoUZhbFGPAcEyS/LfA3F0BPRE9EO0GtPL83YzOGL5ArTCfRIj4eABrvFUwSnw5BCnAEJv2s9KrrZOOp3CLYONX2097TdtRK1YHVV9Tg0cTPRc8M0V3UQdgq3NDfxuNi6Kjt8fIg+FT9xwIqCKgM3g9NEZMRtxGqEvoUrBjqHGwgAyI1Iekd3RhgE9MOxAs+CdYGIwQuAdf9NvqF9hXzOvBb7mvtpuzo6ornqOJx3a7YMdZC15jb1OFy5wfqcehj5G7gh9/S4+frxvV2/RECwgQ1CAcRqSBfNtlL01s5Yqlg+FqpVQJTP1LRUp5U4lh5X65mz2kEZnNa9En7OEkqmB+kF6MQkAj//nX0++kw4fXZUdT8zgPJ2sH9uDqubKKdl1CQXo/FlNKeuKqttI26Qrw3uzi6mLs9wWLL8tct5PTtQ/Sq+F7+NggKF28oRTi/QkJFkUCyOCcyWjA9NNM7+kPbSRZMwkpBRrY/pjiuMeAq+yOoHKIUAQw9A1r7evXC8QHw6e7X7IzoneGJ2HbORMV9vu27Qb1JwRLGlMmGy1/N1s9300HYTN6B5bvs3PKv92f7Rf+2BC4MYRUGH0AntCylLoItpCpSJ4Yk9iJkIushBCEZHwocSxgZFBIQJQz4B0gDQP6++OjyCu1g55biy97B3Pnb/9t/3ArdBN0Y3A7a09ce1oHVhtZq2RzdQuEf5XHoJ+wE8Mb1lPzHA3wIZArPCOYFfAR+BhYP2BwML1NB7U9eV+JYp1e0VppY61t6XgNcPFXNS11DAT6hPN09qz4/PcA2qSvGHFAMv/u77Fzg89YZ0AHLZscHxcHCVsARvS25DrXusJCtDautqdGp26uNsNq3MME8zGXYyuQZ8Gr5hv9tAhkDHQOyBEcJHRGEG1MmdC8KNtU5NTs1O086vjjyNd4xiSw7JvMf2xqnF0EW/BV/FWYT4g7kB9r+EPX8613ky9432z/Zldh92KLY8Nin2aXagNsL3Dbc89uA21Xb/9vx3WHhVeZa7KXyZfg5/eMAmAOeBSsHiQgrCigMdQ6/EAgTdhUFGG0aIhy0HAocNxqYF3oU/hAkDUMJsQXKAokAy/5w/T/8Uvtx+qb5YPi69sf0h/JA8C3uwew57JHs0u3c71byD/WE92f5UPpK+pH5svg9+M/4ZfrG/BP/5gAQAuoCOwRXBnUJPA0aESIU2hURFlUVkhTuFC4XThvyIJAmLysOLmEvdC83L+4u0C7vLaMrpyc0IqIc6hcbFccTSBMhEmsPlQrVAxD8QvRT7a/nUuO438HcONp92N/XqNjQ2mvdAeCj4Wbi5uFc4Gre1Nxg3HHdDeDM4/vnzOsL74vxdPP49Cn2FPfT92P4yfhF+TX6xvv5/X8A/wL7BDsGrAaWBhwGVQVgBFMDewJbAX8Ajv8J/4j+0v0h/b/74fq8+RX5HPgF9+v16fTB9Iz03fVH97r5HPx//fr+kf+xAN4BRQK6AvwC1AOsBakG+wZ6Bg0G3wYZCA8JHQmOCMYH4QZABYcCL/9p/L76A/qG+ab4ZPcv9ur0HfRq83XyXPJ/8QnxbvD077rwufEB9En21vjh+4H+fwCzAQwClQJeA28E2gW4BqEHHwiLCMgIrAiCCGgIwwgeCSwJ5QgYCE4HiQZ8BVYFSAVnBaMGzQYrB0AHuwaeB0kH5AfNB10HCQh3ByMHtgbpBPoEcAXoBbcHYwfVB2IHoQX+A1oA2wA2AhcGVQqACsAMAQvLDTgOpA1UECIPBhITFB0TsBJUELYN1BDdEMYU0Bb4E2wTqAy6CSgGkgIqAKr+wv6rAMIBhv/j/DT4G/dY9lz2JPWZ8jPxYO/F7jLt8Out613sSe6T73TwJfBi8GjwcfAb8ZHxKPN99O/1NPew9074NviS+GL5KPof/GX9Cv4N/qv8pvu5+ub5uvkn+Q35Avne+Lr42Pec9jz2Bva89jT3cvYp9iT1xPRv9PTzIPSG9Dv1dvV59an0xfPl8kHyGvK58cHyA/O285f0pvQP9uv2dPjF+fv64fzI/hoBWwIRA1MEYgVDB4YI9Qg3CsUKHwycDEQMhgwrDFYMKAzDDLsLUg1kDRMLPgznB1IKkQuwClsNuQiKCTAIdAZpBZUCCgUOBxIN1g64Dh0O3AoJDZgLQAqdCBQG1wlHChMLxwe6BQcGngO/BjgFpAcQCM0ESANT/o3+XwDzAIAE5AQiBq8HbwVfBI4B1//kAb4C7gONBBEDVgNBAqcBOwKxAVMCmAISAkUCwwDG/kf+dP5RAc0BZwJIAksCNAXBA0EE/AEgAdEChP96A+D/ogEKAj4CSQoWBxgNSgjSBggLygfqCtkGSwRDBWwE+wbHB+0EbQa4BrUGIAVtAU8CZP8I/i/9r/cJ9y/2u/iB9kf2Pvbj9r74xfYV9sTvVvU081r4FfPL8Vr0+/G4+aHzkPVB7zb1yPe59bX0le658+PxQvkG9lf14vdC+Iv8hPdg+N/zcPaE9nX2avWa9E/4QPj++5X4t/qu+2/6Hfxi+AD3DveF9u34KPiH9+f6gfxE/YH+3PxMAPv+R/51/vj4+fyB/Yf+ov0Z/80CpgPMCEYH6wQsApgF7gJYBWkGVwJIBgMCkgZlBysIxArkCu0KGAwRC/AKJAjuBt4IGgkUCe4JJQsoDPINVQ3LDfEJAQwjCkkHbgTcAWQCaQRjA/kDvwFJAUAGnwMjBBIDYgPjAW0C7f8Y/0f/zwDuA24CsAMMBNwA2wTlA5MD8AZ0AmIJQgjMBzIFLQNVAf8CsgYMBt4GbQHgBUwDmwXwA18DNgR///0D4QDCABAAfvzh/lr9WP8I/pf8g/3Y+3r9KvvG/jL9DPzj+m75H/mI+nz53vz8+lz66P+T/RcABfvP+rH7K/t7/ZP72fjI+av7ZP1+/AT+s/4iAJgHrgUjAfEAb/6BAcIBsv2U/vn+uwAAA+ADlgB9AvgBhwLNAL79f/zq+1f75Pgo+Jn1mfuR+uX84fdA9qb7Rvst/zP4zvV18qP33Pb7+I74A/ft+/v5uv9z++P+Sv1k/T3+cf3pARb7Dfny9If71v2t/rv+R/ln/xr7a//O/WP46/un/Ff9Tv7d+7r5ff3v+ab/Y/1a/joANvzk/Yv9Ff5n/hX+t/qE/TEAE/7h/nj+B/5FAZwFWAGlA8IErgP0AVv+xP72/noDaATSBwj/fgXfBlgE+Qf0AZoEpwMyCgoHwAMGA1UDqwjXBC8KWv4iBYQG6AZyBjD/UwND+zgJzf7/AkcADgGYCbgBygNg/5z7wP9eAn0AlgalAiUGUwjbBIEB1gDFAFcFygS2BIQCbv3NAg77N/3kAKf/qQh1/9cBKgEl+2cFtPnNAPYAlwPrBJIAegHC/XsDev4ECVD+PgKgAlz89ge/94r/JAE2AVACMwIDAPX4Yf9E/QH+lvY4+tL58ff6/0r5pPwM9kH+TP5n/FT+x/pb98H6GgLo9V0AyfiU/HgACP4z/k75E/8+Au79mAGX/j/7Xv8q/cEANgCO/a39UP3CBoYETgS3Bw4BlAjAAEsHTfro+Xj+xfy5BFMBRgJl/bEAggfy+WD7xgEY+U0IKgM0+Gr77PgIA37+uvmhAnT8dgPEA80BKPoh/vn8QP4OA90DuQBd+yAFgvrMA3/+1ABdAtgDngoo//IDb/5r/xwDhPwcCET/vwBUBP39mQGYAxwFSAD0A9wCcwUP/D4EOPXn/d4Gdv8SCID4nv9rApEDNgKr/8jzgwCbADIA7Pw5+fYBRP3GCMH7QPZQ+2f7GASK/sf4U/tS/DQAef3d/Qr56gJUBJYMwgYi/P0BAfzWBYYGs/9E++QETwPvCcL8wgBBAOD5cAomA5oBJvr7/+0Bfvb7BK36ovwMBv//7Qbf9zEBnfzy/WT75QXm+2L+cwE2+uIBcvsjB7r6HgSr/cIFzQWxAP0BLP3yA/cANgXx/nj7jgNtANsDYgOKAZ0EXP8NB378bgAx/KX6KgMX/Xn8/ASX9BoB3wYY86wEvfLqBdQE2f1MAmL10gUd96kItPw68NMDSvoECxgA7Pta/A4DNAXkBAIBLfaFCG0CcAAq/1oAPvvNBxMBOAaDBFwCmQjn+jwItvuTADoCpfoRBSL7lwBoBZz3uwYd9IkBIQPw+3wFB/DKAbD8KQKq/Jb7X/oYBJwCi/2pBHP3GwoH+kgC9vpc/P8EyPqYBjj6rwGJAN//mgBqATsEz/uE/g7/GgPY+1r32gCM/+EILAA0/NT/i/6BCln4rAFU/kH9XAOl+6kH7fcQAAQC7QFHBEEI+P4LACMB3QKRCRH4QAq/+iT+xAWOBcYAJPs/BPn74AKjAsX/Bv+BAEMEXf8s/gUDrPuAAVP1bwW9/g32wg2Q7S0ILwHu/XcMNPAlBVgAcQDJAxbw/gjZ//oAtwvK7D4MJv8t/9wK1fV7A3/8g/4aBg77gfeQAUn8/Aqp+9MGrvtR+METkuvbCvjxOv2GDPf67wle85j/ZwijBFv/z/zD+owLI/yrBN36VPqHCQ/74AV5/KIB1Qas+3IBnf4UADsIZP2xAQP7lQTIApf8twA3+tf+PvtFB1D/Aves+6r//PrYA3T4ufO9AE/4hgvt8z//0/+v/CkGtfQABHf6/wCxAyn7qv+2ALr/PgFE/nkByAZn/vn/YwQWBQT/6/6T/RD9ugLPBd7/PvpxAJEDqv9ABDwFhvhECIL+vAgC/pr42P9s/9IMG/33BI71+gThBk4Ek/1eBN/6qAHSDDTzZQ9n9boBPweG+u0KDwY2+H0C4wWC/2cIxff7AFT1owi3/4f8sQFY9lkIkfi+A0/9l/gM/9EDyPvF+1YDZvtp/2oCYgOA/QT2uAQOBSf7VQFg9DcK4/+DAmoFt/DeCnP8WQNCAGL8Yv4O+JYKS/19+KMEfvu1CKT8vPwhAYkA/wEV+SH5d/dkDT/1DAap9H39ugvX8SoJ8/NC/NcEUwGtADb4X/2SB0P9W/+rAcv5kAw396IER/4EAywGFPfmCdn73QRZ/wQCBvsWCAr8zQUDAhz6/Ak99IMMnfrPBYD4Wv3hCigAQQEz9nAGLvtoCKYAxPjq/YYMi/sg/YsElfcVDcb1dQeD++j3JAij93n9EATY/Hr4iwInA3MA9f/P9QEAuAIXBVwB8/PeBQD9UwWq/eP9XgQUAKsB6wPC/qcHkgER/L4GhPcbENH6g/+pAYD46g/iAIv70v9RAnEEmAek90II//qHBCsI5PCcCW/9Ogqz9v0D9/6//L8KhfblBEv0RgS0AGn47gLJ/Zv3pAAuAkf80Pzv/rL/M/t7Bmj6Av4e/TP8oAQH/1sCMPiPBYwEhwB7ADn8/f7ZBhT/4/wZ/Zz7OQWjAzUBUve9BHkBRQHZBlH0eflRCIT8mggk9k74Vwp9+CsHuv3w+kYCD/lUCFsANvltBsz49gNNBSYAf/0EAMr+WQGmBIz5cgJ5/W7/Uwf8+mr+Sf1BCHX6QfxvAxf0hAkn/IoA//jTAgIBAv37Bun4IgCQAcEB5QEG/XX/hf+n/JkBjP6QAIn/wQAoBGgBov2aAmX4ggnO/0H3KQa3/dgGqPqc/ET/1QNtAhr7UQJJ/t8GGvyjAZMB+v1zA8T7p/4tBesAhv7PAhT2BhJt/vr/8wYW+B0F+/5cCH3+cPddA1IFbwONApT28AQa/+AD6AFq+1QEaPiLCar7rf4WAnj+lgQ1+h4I7vloBWX7NwGvABf3eQ1k9fEAnfz5AOv+RgLw81kDUQQT+HsFN/DtC9n9r/s9AU71EAhg+roHIPqR/lkIi/bYDGL5qv8ZAej+qQcr/mr+kwRV/aQH//rV/bACl/6FAdn6SwUr9UEJ1vvs/x0G7fPFCnT8pQD2/eL7/v43/2gJrfMJAX/+KwaNAc3/gf9O//0BUQG6A672+wfo9qQHbP+B/JkExwAoAxQGrfwN/XsKF/SsCCf+Mvv4BfD8xQEC/ZEFQvglAxoHbfvMAvX4wgTA/oD+ogFG+mv9JQbo+/35Zfwi/ocDNP3AALv65P3eBNIBBfQkASABOfupBd36JvoT/s0BswMY/tEA5fod/5sFcP7HA/f2FQFfBx33JQpp+G7+sARb/34KxvV4B6n+nQSHA/H9RgM++7ELjvjdAtACGvqhCpv6GAEdBtD8oAUD/hwDvPrJ/zEAX/8dBaf0/QmH+zcArgL89iQIy/qIAb/6af/8/yP9Q/wHAPn8E/0yCuP0Cwf4/vz+6wIz/DIEp/7Q/IIB1PwoBQ8Ckf1WAt79/wmD/VQBVP8N/+ICeQNK+2n/JAK2/7sExv3wAbn/8ATl/CUEyf7e/08GIflWBGb4ugQuAR7+9AVT+doFjABHAg0AAfu+Agf9VwFC/AX7kgHL+2wJXPa9AKkHpvhOCFj9TPysAej/Xf+GApH54wVA+7AB/waL+QUHPPrzANsBK//e/6L9UfzUA9gCW/tOAdz9s/32A4/9VPmLA7/+fgJM/DEEjf/++rkGB/iyBCf8yQCmAO/6///E/5YCNPwnA8YBtv59AIcD4/lPB6X8SP/3A2z4IQX4+8oH8flT/a8HAfrKA1sB4PyZAT/8/Py8BbT83gCE/1b6ewY8APH/Jf0E+/wFKgCj/W8C4/iUAasCiP1VBDj5IgCXAToC7gBNANr9av6mCOH+uADU+1YCkwHMAecAHPveBa4BnAKB/LMBEwE9Ai8BvQEgAkT/zwWM/sgAhwFCBNj99ALs/uYClgHr/jMCOfpkBKT9iwDM/xf/8f09/2T/PAFB/iD7/gBi/JYCCf4m/Sr7owIy/WQBsv+0/GkF3v1vBLz6rgH8AET+PQPu/pgCNgL8AIIC3gCJA44ADv+QBHkAKAUS/Rr/xAJZAZL//v7OATn+tgXk/Gf/N/8//SX/mf9g/gr+swDe/RcB1f5r+kwAQ/+l/wYB5/g7AWf/vQGH/Vz6QgG3AmoAh/72/zD8eQPF//7/Pv0TAMYBIv/HAU7+bwDFANkA7//U/0H+1QNb/ikAggKl/YgCwQDq/lAB3P8qABMApv1PAwf/6P7r/VYB0P0dAQQD+/n2A1L8qgIrAJX9bgKu+zsFZ/4BAVkAgPsxBGX+fwG2AMv+aQMAAAsCQf+9AXUAKQBNAH4AmQJBAEsCe/7vAkT/8gCIAbj+twBN/iIDfPxS//AAWv+6AEr/a/7K/isAAADh/TMAy/3Q/e8A0/3LACD8bv7d//oAkP1hAZ/7gvzzA7r+ef8h/Nj+/P/KAtv9gP4YACABrwG//pwBcv7bAXEB7v5xAAQA0QGKAAcBnwHr/XECCgEWATABeP44AuH+5gOe/roA5//P/5EC8vwSBHYAeP7MAPz+Zf7oAnX/PP67/zAAKgHo/mj+QQDH/vL+2wBn/v//EwCq/hf+0QEG/lwAHgBh/igBT/9oAuj9+wDbAC4Ctv9a/+0DoQB7A1YAT//0AFL+vALlAvn9gv/g/3wELwLB/xr9l//NAl0B/wA/+/T8MwETAfL8F/9A/EMB4gEv/cUAgvsl/2v+rP4w/3b+7P3I/hIAJf4g/+z/VfxnAoEAbADSAt35bwXZ/yEAVwMl/F8DFgGgAvIA9P09Avz/WgOdAef/1wH5/e8D/f2R/3wCYvuYAyX/9AD8AVD9xwCh/ioA9AFB/lX9I//SAWr+Yv9e/br9JwLc/SIBO/09/xsBVP4a//z9PP3C/zIA6QD2/ywAWwBr/9QBQQCD/08A5QB1AL4CwP86AUD/MAAdBPD/qQGx/osD2QFr/0b/Df/8AyoAbgCOAAX/cwOK/nv9yQB7/SQBTP/e/3v+Vf8w/ycA3f5P/fYA3f3mAUT/nv2p/wn9IgKf/q7+EAGx/EEDFQEX/T4AJQAVAl7/uQH7/xYB5wDJ/t0D+P2vAlwCyQAcAiIBzgKSAaP/JAGrATAChAGC/wX/RwD6AsD+ywEm/1f/fwKI/6j/Lv2X/7//DP9H/bkATv+n/joBIf1r/3QAuwD6/rT/dgCz/gb/7v/g/j8AFwAHAT0APAD2AdH+BwGG/aEAKwDIAGIBO/2aAdn/QwIY/kMAIgFz/msDF/1K/fgA5v2eAd79+P0BAUr/+wDj+1UATPx//70AuvywAFz6cwDx/+X/PADf++X/Yv+mAY4A/vxb/pz/owKiAbr8Z/9TACwE+//d/14BsP7/A8H/8gEGAGMAAwI0AaABMAB+/xgBEQIiANYBBv/FAPYAGwB9/0H/UP8EAd7/mf4bAIwAhP76/cIA+/x9Ak7+k//PAJn8dgJH/qP/pf9l/l8AQACTAYT+Kv/QAI7/RQHT/JIB1P/M/4YCN/tmAg0BKABeAbT9yAE7AMgA1gHm/cYAUwH0AVH/p//7ANL9MwMv/yT/rwCn//YBbAD0/xoAH//f/3EAsf9UAHf9z/5fAHUAtf5o/h7+6wA5ANv+Ev9m/XMBuP8Y//z8k/+3AHQB9QB5/qoBqACrAHcBTgBaALoCIwD+ARIB4QB9AXEArAGlAc4AGwDXAgT/uwEy/+H/UAM8/dAAMABsANIBB/5B/mgAc/5RAHQAc/0L/+//XP4l/sr/Lf0gAaj+4P0tAVz+M/+M/jv/OQARAJsAPACb/8//2wA8AYMAzAF+ABEAAQPo/2EBEAAiAroBRABuAtr/OQGLAr8A/f7VAQ0BMP6eABIA4/0zAFz/Lf4DAAP+VP+9/sb+x/4c/6L//v5y/f/71wFl/nn/Lf5V/dr/EAAoAZj9Xf3bABwAs/9jAMb+GwFtARsBiP4vAR8Bx/8zAhn/4gG+AJwArwCsAF0BWgAIAVMBRwI+/mAAHgB7AEwA/f5NABsBxP8mAKf+MP9+Aeb9pwDk/k//f//u/mr/Lv6Z/43/iv3k/8/+VP/0/6z9FwA//i4A5f5A//j+DgA6AkD+d//p/dsACQKh/wcBN/9iAMgBBQGm/48AHQDQAGwCh/6WAqwADf7bAer/iwBdASMA9wAOAcf+ugAQADz/+gDM/iwAYgG4ALL+Bv/v//4ARwBE/nwAa/+DAdP/Gv3ZAJ3/XQChANP+MwGo/+kA/P4eANL/dv9ZARj+YQAm/5IAJ//R/1kAZf50AN//PAED/x3/WQBgAA4BQv+r/9/+0QAvAmz/hACy/00BGQENAg0BC/65AOj+C/+j/f39i/ptAI7+/AAcA6n8IAGP/p8BV/zW/Ur9dvvMAGwBh//q/CcAngCPAlcClwATAasCIQE8AWIAe/8M/oz/KgDo/+gBnf87AzkAjQBWAMX+2vwa/0L9Qv8cASIB+gDKAAEBoP38BZ3+BwIsANv+NgFD/R4APf0kAMICzQM9A1QCSQED/RT/S//R/HIBiv48/z8ALwAXBLYBCwEKAYb/c/8n/zH7Pv2I/8r8HAJ//p/+t/+M/yIA0/2p/0X9iP9z/qAAYf4p/8H/L/9pAlP/UgP9AMv/awFGARkCJABtAUj/JwDMAOsBJwER/4AEVANrA78BJwDIALv/9QDuAEH/BP9kAlEAQP/m/wf+YwLB/xf/nwA9AKQB9f5S/zT+Hv8YAdr/9v7n/c0AUAD0/roAvfxG/3YAZ/+e/2n/kf5DAA4B2f2yANf+bf9j/40BoADjAScCvP56Akv+ewNl/pD+jP+K/1MCXQARAUv8mwPI/1cBpwGt/UIBrv6pAJf/HAHC/voAlADnALgCgf+RAbn+SAF/AEMACP/dAND9fv/pAEP+nACg/hz/NAAE/1r+yP8w+3EAEv1H/qr9wf1hAf7+CgNF/qIAGf7O/6j9WP43ARD9aAI+AKn+aAGlARD/HgLE/3wB7QK0AeQAs/4L/2wCugGp/0gCMf5tASUCJQK2/vr/2v7pALABDv5IAPb7XwES/3f/wv/1/lP/2//hAfn8JwGl/wj/wQCX/9H+PAAE/6MAy/+3AEoCXwCWAQT/AAGM/3UDgADe/UoAmP8HA4EAEQCUAD8DJAEMAYz/Sf17AV3+KwDj/Yr+9/6UAF7/8/34/1D9NQEU/cIAQAAx/eoAQ/8M/lj+ZgIn/ywApwNpAVUEYQPMAr8BKwHu/rsC3gFnAHj/Mv+qBIgCWQPEAM4ARAG0ABv+PvtB/J/82fxi/1f+VQBlAFEACADF/Zv9TP/k/awA2f9mABL/uwGPAGH/agHs/IUD7P1sAjgACAFiBW7+dQJB/fT8TwCL/MH/mfw0APkAQgFpBQz8bP4z/tr7wgDh/cMDsAIGA0UD4wIhBFkBrADu/9X7Pv/XAQH/FAEkAW4DKwN+Bl///AGX/EH9bgFZ/OP6T/uC+yYBUP7m+Nr6Q/ps//z8n/4S/PYBeP71/ZYAE/64/NoBhv7F/msFygHiBFYAU/8zAlcE9QFtAXoDxAJWBHcGDwBcAhQD6AKdBVwB0wL1ArECcf8yA8L9I/9L/5T6/v0o+Mv7wvyK/CH7rvyi/Nz/K/6L+nz2Ivv/+8n7s/tV+u/9twGpA0oC9AAH/sICMfxHAzv+Zf/SBMUCqQaRAcgDIwJn/34Dm/5aA2wF5gBEBcEAPwExAWj/W/3U/fH+WAEz/8oBhgEqAF8Cq/8g/YH7Ovx2/Ez+P/yO/2P8mwQaBU4BaP5N/5UDIf9L/879dQLk//MHGQGs/mQE0v8gBFn+tPzC/v8BqwD+AP3+UPz4AQ8Eev4pACwAHv5TB9P/QgHi/tf++QHfADQBsQO3BEP+WgWEACAGQQEk/yT9Xf4pAg7/sgak/Pz+6P57AcIA/gIQ+9z8awAb/N4FN/vx/q3/0ABPAX/+Ov6O+kUCGP1z+9sAhv28AqUAwPzc/3YBlgJB++b/lv0l/rsCA/0vAfr7FQFXAuj+Tv+m+RMBE/7v/3f/1P2OALf9pgCI+mT/PP1D/WX/bfyW/7z+rP6A/Tn+L/+D/swARP4c/7EBDgBqAHX+rf5J/1H+2/5b/o/7ZP3t/bX82/1D/iD+Gf6//cD95PzT/d79yf6E/YD9MP78/AT9yPvJ+1f8B/4g/9j+YP0v/+8AKwC4AWsBYAKDA44BowLgAfIB3wKsAb0BPQOdAwEDFwNlAykG3gZZBwIILgjzCcoK6ApJCwoMYQ14CwwNhQt1CWUMvAkrCxkLvQkhCYQJLgpsCVkJZQmqChAI2gdmBWQEjARq/x3/4/46/+b88fkv9yP0/PT78x/zS/Gs8WrxBPIL72jte+847cfvKO0h7qXtxOxS7ubsz/DJ8PzzRPYZ+Zv8+f0UAIAA9ASxBbgH1wkQCSIKBQdiBUIDRAInA+4BUv8OACb/e/xf/FX66PpN+qj7yPmz9lj2jvTS8+rwYfHZ7y/vne/j7OHrVOxM7uXt4fCQ8lb2zvm//WEEWAVwCGcJOQvxDNoNcg4BDxYPkQ3VDL4KxwpVCZMJ/wmeCpYMRAxTDDgJLAqwCoALgQuDCq0LngmrCGQGvwYuCEkL3Q3wEtAW3xvxIRsiHip7Lto1jjiQNgg4GjNZMZ8pKyTRHTIZyhbmDU8GI/xf9qvy2Oss6vPmzeIS4X7didh71QvSOc85z2vNnM1tzAzMqczyzI7PDtRr2FffvOay7PLx1veS/s8EgQu9D/EURRjhGgQcKxr0GRMZoRdiFyQVABISEDkNognkBTYDzgBv/iT8c/mi9cXxs+7t673oQufR5OzhDeAD3vjckdwp3Zvef+GJ4zXnVev074n0wfge/8MDfQjNC+4MEw+hD90QqxHrEWESTRHLEBYPGg6xDOoL0ApyCo4J7QcXBnwDyQJyAET/hf0p/Lj6TvmE92j15vRA9Gn0uvQC9UH14/Y999z35PeI+d/7P/0a/xX/TQETA34EvQVDBn8IKAp6Cw4LYgxDDRoOKA81DnIO/A2XDbEMPQv/CXwJ6gc7BTkCMf+j/dP7GPq99oPzlPFO70PuSe447zHztvaf+QL9wf6yA+8IyQ/oFg8dhiSUKBstTy/oM182mDrQPoc+tj8EPMg6OjfPNHExMS/MLOQnsiMBGf0R5gn0A8391fSK7erjANti0GfGNL6/uai43LWus16ulKp6q26rQ7Hmt92/0cln0UfYX92I5DLtbPdbAvoKAxJpFhMZvBqDHHkghyNeJ2gpdii0JpQjqCEfHyEd5xoyGV4V+Q8VCosCDf4x+DD06+8Z62Dn9+Kz3gbbatk62DTYCti62C3Zjtkf26/c6N9r40jnPevp7kzzr/d+/TED+Qn1ELIWXxwVIpooMi4+M783xzs+PgA/qz7qPHI7gDk6Nz4zFS0LJmMeVRcbEJMJGgPn/LP3rvBE6jnk6N933aXa0tgX12fW0dTM00bTFtOa1E/W0tgl20DeJOHY40LnXOrL7jrzLfga/Bz//AFhBCsHSgkWC5wMQw3FDegMLQs1CbIHeAa/BPsCMACB/fX6t/jH9mX1H/VD9M/z3PLL8abxOfHm8V/yCfOM88Xzd/TW9MX1k/bJ+Nv6/vw8/0gAigKOBLEH2wooDzYVLxunIlgnGi5YMso4kUBARzVQF1WAWaNasVmcVjBVk1O6UdZOcEcLQEg1WyqtHT0SRgkKAQH4yuzg4cfX4dAOynfDP7/5u0O7Ubrmt6m327ZHuLK6Qb1IwuDH/M720yjYu9z44drpU/Lp+WQA6AZWC8APGxK6FAgYvRkEHIobZxo8GOsWjBQhEN0NEwv5B+MFiwLE/mT73Pf79DPxb+8n7r/rpulg5+/kCeNr4xzjcuLm4aPh4eBc4KXgJOEv4jvi6+Lr4o/jeuWM6Mnree718cH02PgQ/YwDBwvAETIZ7h4TJJsn3iwOMwg46jw9P51Aqz4QPIA5CjboMx0wVCuyIx0b5xLFCmMDH/1m96zxZOsf5Uvfstpf2P/WZ9ZV1mDXcdir2ufbGt/N4j3obu2d8Xj2mfna/f4APgS2BjUKOQ11Do0Ofw2lDJUL6AqWCTkIGAYrBIMBOv6n++j5bPg19171tvMa8ijwKe8b7rbusO4a76DvE/CJ8Mnw8fIE9NL1Ufed+NL5tPp3/Kr99v76//QBbwOmBGQG1QaCCO4JZQwBD0YSlBXoGV0eNSFNJs8pHTAvNoo75EGjRaxIJkgOSAJI00YERl1D0D7LNwsw6ie5HX8Vsw0CByMARvdR737n6N/K2kjXTNN50bjPqM0NyxvJrsjeyAHLI81dz2HRENP71L3Vr9cT2w7fG+SD6Ivsne+98iH22vlc/w4GWQwEESsU9RUkGDwb4h5SIp8kiyWAJMYhbx4FG1cY5hWMEgUOcAgYAgH8BvZc8L/rbOfG443fz9tl2DjVWNPa0XnRedGc0sDToNRJ1q/XONoW3Yzgb+Rc6MTsmPBO9En4s/wkAcoFAgrXDWgR0hTbFzcaxhz6HsYhxCPzJBEmQSbZJuUmZibmJYslEiWBIxYhsh67G1EY5BQBEVgNUwmnBbYAfft+9kHyUu7u6tzn4+QQ44rihOJz4Tvip+MG5rTo+uoV7mXwpPOl9hX56/vw/80CiQTNBfQFEQcIB5UHvQcrB7YGeAXQA40BhAC+/7r/XP5S/ZH7SPkh+SL4YfdG9tr1FfUO9LbzxfOt8/nzNvUG9fb0+fSG9Sr21Paj95348PgO+vP7AfyJ/ar+bQDFARoCWAMsAycDfQOhBNwFHwgfCmYLMQwSDZIPHhKzFT4Zjh0DIs4lWyrFLZUydzdMPIRAmEQ/SHpJ50lYR/pDnUDqPO84xTJ/KuwgrRXqCokAwvey7wfoXOD/1gjP4Md3w0nB6b/2vii+ur2tvlbAqcJDxpTJFc5H0qTWY9pq3njiSuXV6LDrne+q8xL3y/m/+kL8Gf4xAPcCuwXWBwkJ4wmnCk4LlgxgDv8P0RBKETIRrBCjEP8PpA+iDosNRww3Cg8IPgUxAmX/pfyx+ZL3WfUi84Pwve1065HpiegQ6B/o3+fB56Pn0+cq6dDq7+wv76nxQ/S39p35gvwCAKAD8QbzCQMN2w8xEqIUeBb5F3QZ+RoQHGscRxx4G08aXBkwGMEWRRVjE58RDQ9uDEcKUAhUBk4ESQJ2AKv+P/2R+9j5R/kI+Br3BPb49Cv0vfL18XHwUe+k7hXuce3H7FfsP+w87IjsU+3r7RfvU/Ds8W3zevVv9y75Wvtc/cn+cgBTAqgD8wSBBRQGRgZeBuUGZgYcBpEF4QRrBD8DjQLuAa0BSwGxACcA3f/7/ysACwCKAHQB0QHJAkoDIgTCBGAFNwY7BogHkAhQCcAJDAovCscKJQtlC/sLHgxkDekNrA4rD9IPeBGMEvUTqhXzF38aqBxKHvkffiECIzwl8Sb2JwIoUieJJ8cm0ya0JuYl7SSJIkkfmBrpFQcRJQwdB+gBZPxP9tzvNulH4p7bJNbm0WrOJcsQyAfFI8Ldv62+0r6fwArDscUoyMTKLs5B0n7Xd93w4yPq3O+99MP4e/yUANoErggVDJMOIRDFELIQRRDqD+0PQhBnEDMQWQ/jDSIMlQq3CTwJAAl2CJoHNQaUBL4CFAHv/zr/vf7I/Ub8dfqa+Nr2i/W09En0B/Se8xzzZfLy8enxHfIS82P01fVg98P4KPqN+1L9r/+EAoUFbgjlCicNLg8EEQUT5BTxFo4YbhmfGTIZghj8F1IXWhbuFEUTexHKDtkL3ggpBtoDxgF2/w79mfo3+B72LfS68rzxCfEu8EHvNu5T7cTsXexR7Gbs8uw+7Vztq+0D7tHuvu/n8CnynvMr9WX2e/eD+O/5i/sm/Z3+EgBXAWYCMgPfA7wEswW2BmAHtwfJB30H8QZhBrcFKAVuBJEDrwKTAY8AjP/T/nT+ZP7E/jf/u/9TAAYB9AHdAhwEkQUCB18ISQnsCUEKYAqZCtkK/gpMCwoLXQpDCf4HEwecBrkGgwciCDwIrgjpCP8JwAv/DQERbBOnFR8XSxj6GcEbyx2wHyMh2SHMIXEhlyCSH7Iepx06HPoZxxa/EuwN7AgXBFb/+/pJ9kLxleuf5VDgpNtH2PTVJ9Si0jbR1s/LzpvO0M8p0jjVTdgN24Td3N9+4oHlFeky7S3xpPRk93r5Mfuv/FL+GwDHATYDKwSqBIgE/gNcAwcDDQNUA64DyAOvA0gDvAJpAo4CXAOABMkF4gaUB/MHSAjoCNEJ4gq4CyIMAgxvC4oKVgkwCB8HGgb7BJQD5gEYAHf+Ev3z+wz7XPrF+Tn5pvgc+PD3/vd6+Er5JvoF++j70/zE/cr+EACVAfgCYQSeBbgGtweNCHMJMgrxCpoL3QvDC4YLQwvqCncK/wlYCXEIcgc7BugEqwOUAosBcQBO/yH+3fy4+6H6hvmm+PP3Mvdb9p/17fQo9IPzIvMA8+7y9/Lr8tby+vI083rz8fO69IX1MvbX9oP3Wfgw+Rb6FvtB/JL9x/6h/2QAVAFKAjED+APSBK4FZgbfBg0HKgd3B94HJAg+CHQIyQjyCOgI3Qj1CBgJWwmRCaIJmQl2CVUJEAnPCKwIgghRCCEI2Ad9ByoHBQcjB0AHgwdICAwJ7AnHCpELdAw/DXIO9g94EdESXxTvFV8XvhiNGaoa/ht8HVYejR6THlYe4x0JHSIcsBoyGV8XdxSLEMELhwZWAfr7rvY28U/rq+VK4PraK9Y70l3PU83byw3Lk8q4yp7LF838zp3RINXY2K/cXOCn4xfnwept7u/xR/WM+ED7U/0J/2wA2QF4AxoFOwbcBhEHIgfzBt4GAQczB10HbwddBwsHpgZEBvoF1gUBBiUG3gV4BTMF9ASuBIMEcQRGBP8DqgM2A7cCSwLeAWEB9gClAEcA0v+E/1T/T/92/6j/5v8nAIgA/AB/AQYCjQIXA6YDNQTIBFgFxwUlBpUG7gY3B2wHiAeJB3EHYwcxB7UGPQbLBVMFwgQkBGcDhAKvAd4A+/8S/0z+g/29/Pr7Gvsg+lP5yfhJ+NP3Xvfz9pb2dfZQ9in2Pvah9kD3u/ct+Jj4G/mW+Rr6i/oV++P7nfwn/Xj9/v17/uv+fv8KAKYANQHKATECkgIHA40D/wNvBN4ERQWYBREGnAbwBlYH7AeQCAcJZQmrCccJ4gkpCnoKogrrCjYLJQueChIKnwlACSYJIAmxCPIHKgc+BjYFjAR4BLgEDwVYBVEFIAVnBV4Gwwd5CacLCw4hEMYRRRP9FAcXwxllHHse5x+FIIUg1R8ZH40eIB5FHZcbghjsE+sOAApZBcoAD/xS993xretW5WnfY9q81j/UL9JQ0I/OO815zG3MkM3pzyLTZ9ZY2b3bA96x4NLjQuex6uLtjPBy8p7zhvR99fP2tPie+j78L/3A/Tz+3/7G/woBmQIxBFkFDAZvBqYGEwfKB9UI0AltCrIKfgr2CZsJYQlfCWIJMgmgCH0HJga2BHIDkgLuAUcBWgAu/8b9a/xf+636Y/pj+mv6R/oV+ub58flS+iH7XfyU/Zn+Z/8jAOoA3AEKA1gEqAXBBnoHpAeXB48HnQe9B8EHiwcCByYGIQUcBDADegIMAqQBCgFMAHn/vv5K/h7+Bf7r/fb92v2H/Rb9pPxQ/Bb89/uz+yb7kfoK+nz52fhC+OL3rPeq97D3ffdb94r3//eI+Bz5z/mZ+n37cfw1/db9rf6+/7sAeQFBAhQD8wPbBKMFMgawBnUHSggECacJJgqqCvAK9ArYCrUKvAr0CvAKigrRCeEI6QftBgkGYQWwBO8D7wKKAQoABf/E/mL/YABTAU4CfgMLBRMHswk5DWIRkRUNGfIbgR7sII0jhCZoKWwrUyxZLC8rxChNJjEkFSKkH1kcwBcoEmUM5wbGATD9Cvnw9Bzw3Oqr5dXgEN2B2pXY4dYs1WvT1NHD0KXQqtGh0+LVBNi/2U/b+Nwg3xfit+Vt6ezs7u9N8lb0SvZj+Nr6e/2DACQDHwWPBqQHqQgFCo8LEg1BDrsOmQ7yDQ8NNQxjC3AKVQm4B5gFGQN/AA/+6vsH+jb4SvZM9FzyrvBy77bugu6V7uPuO++N7xzwGPGc8nv0nvbW+Pz6IP1M/4YB4AOZBmQJAgxEDkIQDBKXE9IU8hXuFroXORgeGE8XIxbqFJcTAxIMEOMNoAs8CX4GewOMACL+M/xr+nH4QfZZ9NbywvHV8BPwrO+T76nvge8+7zvvu++D8DDx1PGB8kPzDfTE9GH1PvZ699b4LfpZ+3v8oP3Q/gcAOQF3ArQD1wS6BU4GrQYQB4UHBAhECEoIGQjdB5gHHAeJBh8G9AXrBccFJwVZBL0DrQPhA/AD3QPzAyUEKQS+A7QCvwFNASoBkQBI/7D9R/wH+wj6Yvl/+Zf6fPye/pIAyAIaBgILOxEkGL0fFif7LfQzODnFPWpC30YASiNL3EhcRN09XzZjLgUmgh2fFPQKyP889JTpveAO2vvUJNEJzknL98hCx6TGu8dXys3NJNHM07HVSNfA2GPai9wa3+DhP+TP5efmN+gj6lbtTvHa9bf6Zv+LAzYHxQrlDr4TphjeHHQfJCCqH40eMx2vG6sZChc5EzIOLgjQAd774vb98njv5Osl6I7ko+EB4KzfeuD44aHjPuV/5q/nKukG60ftuO/y8cXzEPXh9XD2Nfem+L36Pv3P/0wCuQRcB1UKvw23EYEWchu9H/Ai+iRZJqcn9SjDKY0pDihCJRAh8htyFgcRAQxGB2YCKP3e9/fy+e7n67npQ+h+5zXnQudy58HnhujR6W7r++xt7pbvj/BI8abx6fFf8iXz0vNG9IX0tfTv9Ef16PXd9i349PnM+1/9qP7//4ABSQMqBbUG5we0CDUJWAk+CSkJMwkeCZYIoQdgBhcFAwQVAzcCWAGYAOT/F/8y/nH9OP2N/Rb+f/6+/ur+H/9u/9j/hwB9AegCqgRnBjUI3AnDC+YNChE8FaQaBCGtJ4gtGzIjNrA6bECuRndM1E+8T0ZMlkZUQLw6VDXWLrwlaBlxC539pvEc6EPgJ9nU0T7KU8MPvje71roSvK69ub58vyXAbcHAw+HGPsqQzc/Q5NPt1hTaOt534+DpG/G7+FoAxwe1DkUVkRvAIRQo6S2tMpE1CjZiNE0x1y1bKsEmlSInHTsWbw6YBrz/DPp99YLxgO2m6frlweIB4KjdsNss2ifZnNiD2IPYNNij1x3XL9dT2KvaFd4X4j3mWerF7vDzAvrLAA8IPQ/8FRwccSHyJeIpIS2eLygxrjFlMTwwMi5aK6cnLCNEHjIZQRS0D08L8QZWAo/96vik9A/xG+6e62rpYOdE5Uzjo+Gf4FDgn+Ae4aPhQeJA4+PkEeeX6VHsL+8X8uz0vPdl+uf8Z//qASkE+QVUBz4I5QhVCaEJ4AlACq0K3Ap6CqoJnAisBw4HqgY+BjkFtgPPAbP/fP2M+yD6Ifkm+Az32vWP9IPz9/IV87PzTvSh9LT0kfRo9D/0MfQ39EL0QPSS9Kn1/vdS+9b+pQJCByoNMBVVH+Aq8jUxP7tFqkqYT0hVlltgYAliVV9DWUBRuEhsQOM4WTGyKI0eCxNMB3H8jPNX7Enmq+Cl2pTUg87ryF7Ew8AcvhK8FLr+t0m29bSttMS1hLjUvBfCEMi/zgbWNN6E58vxjPwXB38QlBiAH38lTiuXMM80jzcIONo1fTE0LBwnlSIsHoEZ8hOUDTYHnwFZ/Vb64vdo9dbyHPCD7Zzq1Ob+4XPcHdf30m7QRc+nzpDNYMwwzKfOlNSo3Qfo1/H1+WkANAZHDHUToxssI/YnSikUKDsmlyV+JmMo+ikwKrgoziV8Ih4g+h4gHlMc6Rj1E+wNaQebAM/5IvPQ7ODmc+Hg3D/ZZ9ZL1CjTd9Nu1bTYWtyy32DiuOQd5w7qQe2D8Krzgva4+Ef6yPt1/dz/CgOfBggKwAzBDkUQXxEAEhISsRHvEMAP4w0OC68HQgQVAQ7+O/vN+L32kfRB8nfwO++e7l7uOu4Y7sntkO1T7U3tq+1z7lTvQPBz8bfyGvTY9UD4ePso/yADgAbyCBkLMw0PEMETghhMHcwhCyZzKjwwLTgVQsBMkFYNXoJi1mM3ZMhkmGQhYilb7k4lP/8vxCMxGqUR0gdF+/7sMeDy14jULdQi02rOW8aWvVS3rbSttIe1SrXHsjmvO62nrg+0+bu/xJDNedZc4GHrFPd1An0MVhSGGvMfNiWSKnUubS+gLU8qKCeXJfgllSeyKNInhiRJH5MZDBVGEgIQdAxYBkv9DvKS5sjcVtWUz9zKT8bawYm+rr2gv8zD98hSzurTAtrn4Fnoge/D9R/7dP8RA8QGLQsqEDMVRBmiHJ4f9iJSJyIshTDoM0c22DfKOMo4ajf0MyAufiYyHmYWVQ93COkAQvgd723mY9/K2onYWdjY2D/ZM9mu2LrY9dnO3CXgRuON5R3nQ+gP6RHqjOs97iPyp/YJ+wH/iwLNBfgITQzbD2ATERYDF8sV8BKJDygMCgnLBWUC+P50+8/3VPTL8UbweO/87qTuju7z7oTvyu+d7+bug+2n67bpu+eB5VLjNuGN34HfHuE+5bvq1fCq973+uAbbD+IZCCN0KUAsiivDKYsqBDG6PBdLs1dKXmJeKFzGXMtimm2Od9V5l28dW0RDyS/6JAohiB1KFHEEwvEd4rnZwNhp2gPZqtEfxvy5BrHarJ+r9qlopjCi9Z94oleqn7U9wUnLUtPQ2tLj2u4q+3QGJQ+fFJgXYRpQHqYjvSltL4cz8jU6N3U47jngOnM6vzdwMnIrDST3HAIWtQ7wBQr7Gu+n48TaYtU000HSRNB5zLvHzMMLwsHCFMWLx9LIcch+x07HQMnlzenUcd1J5kvvI/jGAD4J8RHnGnUj+SoXMJUybzO4M+c0CTexOd87HDzJOYU17DAbLVsqxicTJEoeMhaDDKQCGfrr877vIeyQ51XhMtr80/vPm87kzsTPk9CF0dnSDdVr2EjcN+Dw49nneOzp8Ub36/tX/+ABUQQ6BwULcQ/HExMXrBjRGA4YqBaSFJkRyw1DCbYEAwEj/iT8n/oM+Qn32PRk86vyb/IO8gzxBe8L7JbnWeKK3cvZctfI1vnWd9gA217eleNT6vHy4vxTBzAQthUWF/cUqBEsEToXuCMNNCxDRkxpTbZK5kpwUi5hfXG6e6R5nGu/V0FGTDyNOUU4WDJIJTkTcQFL9FPts+mZ5TreJ9TdyRjBOLqUtF6uHqfcoBCexZ8spc+rZ7FWtSG5P7+IyYrX4Oae9Bz/kAaDDBcT1BrFIm4pdi0lLxEwJzKENkw8O0FEQ0dB6zvONQQxDi5CKx0mohx+Dhr++e5F5F7ettuz2QbWgNCsykPGUcRexCDFjcXjxLTD8cKPw5nFA8nlzfzTYduC5PzuH/q2BGkOAxeTHsglZSxkMqc3rzurPkhAMEBJP909iTzTOyk7mTlfNnExfis2JV0eShaTDJsB9PYJ7s7mkuAg2v3S88tbxnfDOsP7xMfHk8q3yyXL0ckzyTHLk9Dw2M3iPOz783X6YwCABpAMtBE8FZMWIBaoFBcTkhLWE2wW+xhJGqUZHxfyE1ARKw/VDGUJLwSh/S/2me/Z6vLnquYM5ofl1+Rp5N7jcePf4sjh1eBp30XfaODM4zXq0PI8/fMG5A/iFsAcWSF0JC8mVyi5LfA300aEVrJi3mb5ZAphwl/7Yohn0WfPXr5NaDk4KfEh1iMwKi0tgyf6FjD/7eZi1f/LTchoxRq/PrU/qp2ikqErpuWt3bTluFK5/7ZktJWzPbZCvL/E/M7d2TLlG/Ge/RUKUhVEHlAkmye3Kc0rjS6iMegzqzQZNFcz9DMKNrM3wDY1MZYm+xjwC3ECKf2O+tb3hPLR6YHfDNaOz4XMbsvRyfrF3b+zuTy3v7nowFfKOtMg2tbfw+Vv7HrzlvkM/iQBRATACQASRxz3Jowv5zSzN2g5KDznPzhD7kOeP6g2iitlIX8aSReiFhEWxxMTDyoIvAD0+cr0HvE47c3nQ+AE2MnQ5sypzHbOk9AL0i7TDtSZ1bXX+9kY3GreZ+Gx5TrrXvGB96H8aQDPAkIEgwUzB1wJIwvnC48LbQo+CZAIpgggCfEI7AdLBkwEKQIGALH9Ivs8+M/1Q/TF8330cfVH9nv25vXA9MjzSfOe8wn1kvT68jvvyese7q33OwqkHwMyxjygPfw3EDHLLWYwOTj9QedJRkzpSC1CrD3nPz5JtVX1XTZah0gML1oW1gafAvMEzQa3AYL2LOqF4UzeId6Z2vrQ5cLdtAmukK1asty1VrU1stawebe/xFHUat5j31/YMdCQzYjU/eJM82cBvAqgEIcW3hwgIxcmQyQkICIcjxzfITAqljE9NN4xOysIIyIcBRYJEmsMSwYSALr5OPX58GfuauvI6cfnYuXU4c7cSNdP0ajNSMxpz7jUhtvO4TfmdulV64DtOO828TD0WvktADAHIQ1lEWIUIhdVGhoeDiOnJ6spMyjRIlMcpBeFFcQWfBjCGhgaDReHEXUKRQUUAdD+TPxO+a72IvSc8qHwhe5m7DjqEunt5j7lOuNg4kfi8uH+4WHhO+JM4/Xkwuap6fDrB+0i7YjszO3X7sLxifSj9fX1DPVU9GT1WPf4+u//mQMXBy8J5ArSDIgNzwyLCUMFtgLCA3sJ+xD1GKIcRxzRGFsVYxZMHeonKDGgM2YrWCJsGwkinTVRTSpldmwqZexQczqSKkwiuiGEITUh4h6oIW4pHDHRMhooyhE7907hLthg3NHkLOqU5NzVpcWxu/i8BsYIz2bSwsxtwYa2ErGJs6S7pcXWz37X8tzH4g3obOwH7QXsqOoe7g73MQTKE4cebyOdILwashY9FzocdSNxJ2AmQSFtGsQWBRYmGXEcgxxGFw4OVAME+kbz7u9T8C/yLvTH9Lfyle7v6avl0+KA4DLfWN5L36rhyOY+7TfzEvem9wD2lfPi89z20vvE/xcDDQVtBjUIPwvYD30UHhgzGI0WmBLbD6kOmQ7hDywRmBKgE8QTNxJVD10Legd/A9AB0AC1AMEASf8P/Xz5lvYn9J/yF/IK8kXxje8R7PDo4Obz5nDp9Oqq62nqjOhU5//m7ufG6Fno2ubd5I/jPuUV6QHtfPGh9ML32vo8/mYCsQMeAWX5Ee+753nplvbbDHQkYjT9Nj8tTx9+FgcZbSWQNvpDkkmsSIpGM0g3T6ZYY12LWrFOSj7VL4MnIybEKCMrQCzIKsYnYiQmHscTpgLV7cTa1s9Q0LLa6OfT74rtDeCczYq9MrXFtOO5SsCCxFvG1cY1yD7KbcwizuTOMdC60wja4OEe6Qnu6+838Ijxd/Ub/LoDsgpAD0ERchHTEVQTkxa8GnseWiC2HwIeHRsLGEwVZhM3EmIRMBD5DZgL9witBhgEfQHR/n37Jfhp9Dzx2u5f7TLtMu1f7Y3tA+6C7invje+e7iztlesl693s2PBB9i77o/5q/yr+BPxP+rj5CvtX/lcCwgZsCr0Mkw7wD3YQtA/kDJ8JvAaSBv0IJA3QEVkUcRQ7Ea4M9Ai4BxUI9Aj4CCcHPgSdACf+4PzH/Hf8nfqk9/vzzPBO7ybv0O/471rvAu+h7uvvZPFB8oXx2+3d6W3mq+Wd57fqVe7H77Xv4O5X7yPyG/d4/Fv/ZQEWAUwCUQYwDb0XuiHUKqQv0jFlMRIviC2PLIEuuTJDOixD5UsaU15XdleiUVpFGTTGIRoTJw12EqofxS1hNbAvjh3zAz/sHN3w2KjdLOWL6SXo2uFY2eDRecwbyY3FYcHUvKa6sbuIv9fE3sgNy4bLYMw5z4PTBNji2ufb59tl3c7hAeou9VUAOwmCDfwNwAtDCYMIsQmhDdgSdhgIHnwiTiW8JSUkCiH9HLIYPxU2E84S+BN8FTsWDBWWEXoM3AYrAqr+UPxA+sv36vRy8qPx0/Lz9ML1/vM38Pnr8Oij53jnQuck5jPkhOK74vXkJei36hbrGOk35jPksuS151Hsp/B386r0IvUy9qT4P/zT/4kCOAS1BQcIQAt7Dp0Q1xAuD94M4QpkCoYLxQ0zEN8R3xGaEDUO7go/B1cDhf/v/Hz7mfvK/TcB+gUlCiUMJgqdAsf2Z+lv36Ld7eax+YAPpB+VInQXIARc8j3rhfFuAqIWLyYzLd8rESZzIO8dkx6QIW0lbinLLcYxzzQjNp40+DAELBAnYyOjIEoeBByfGdsX+hbUFfwSEg35A6751fCh67vqRewy7UnrhebD4B7crdlF2TPZtdcB1XjSZ9GW0kTVENit2b/ZM9lM2SXb195A4wvnIelw6fPoG+n66qTuVfP093H7Zf1t/nD/ygCOAlwE0QUNBygIaAm1Ct0LVgxEDMoLgAv5Cy0Nrw5VD5wOgAxtCacGZQX2Bb4HiwlUCtEJCghrBaEC/P/q/cD8jPzS/H39Yv7y/pf+sfxF+eb0FfHz7q3uuO+u8LTwxO8k7h3sVurz6BPohOfN5wbpTOte7lfxevOw8ybyx+9Y7rzuU/Ii+Mz+RgTzBtUGKgR8Aa7/qf/bAZkF0wmCDboPCBD0DnYNcQzSCyoL3QmdCB4IzwhyCxAPahI/E6kQPQtZBRYDJgb2DZ4XMR9ZIfsd2Bd2Eg0RphOfGWYgWyWCKI0pkylRKJElcSE6HPkXrxalGZ4f4CUZKf0meh8GFU4LigWXBCoH0ArrDE0MLQkLBIn9APZA7ornceM64+DmcuyA8LTwJOxd5CrcjNbR1KXVSNci2PjX09cJ2fnbxN8p4mHhtN3M2O7V+dYF3EDjkek47VvuFe5P7g3w9/Ie9mX4efmJ+kL8QP8KA1oGrwjNCXoKowtzDYMP+BAyEa8QNhDCEE8SiRSyFsMXfRfRFYQTkBF5EB4Q/w+YD6YOCQ1uC1IKhwlxCDcGlgJG/pT6RviP94/3VfcM9mrz/u+17C/qfehg52fmk+Xj5KDkDeXD5VXmVea35SzlSuWk5jzpLey87lnwLfER8oDzzvXv+FX8R//pALoB9wEVAoQCHQMzBAUGOwiiClYMawy+ChIIAAUmBOgE6waZCUkKwgqOCxAPcxVaG8YcyxWhB9L3pu9Z9TsJmCSWOxJFrD2wKvcWiQobCjYTjB/5KgIz2DdzOn47+zg1MTckwhUJDB8LzRMVImkuMjMbLYceXg1q/kf1svEd8un0uvi8+xb8Q/id73fj4dZezgrNO9LR2TLfY9912kzThM16y/LM6c/90o3VQdjn21bgReT65fXkZuK34IriyejX8Yv67v/QANz+9fx9/e0A4wVhCgMNBQ7uDjgRsRT5Fz4ZTxdsE/8P9w4mEZQV1hnyG8IaHBeSEpYO6QvOCeYH/gVWBIgDuQNyBKMERQPC/9z6wPWv8aDvXe9f8JfxR/L18avwF++A7Ujsfeu76sLpwOhf6LHohekv6oHq6Opn62PsdO3M7WXtP+yG6/zrT+4s8h32G/n6+aT4KfZl9Ez0cPZy+h//lAO7BjYIzAenBa0CFv88/FD7pfy+AGAGmAtVD/4QghAjDloKNwZvA5YD5AcbEGgZIyErJPchiB0AGokcmCT7LSU0rTIkKsMfABomHuUrcTzQSABKJT92LXccIxPqErIY2x/oI/YiuB7LGAwS9woDA1n6GPNO7+vvFPQF+MP4m/Mq6U3dlNTU0RPVktvV4PLhUt6711vR/c0uzoDQd9MM1qPXidi52U/bndz+3Nrc8tw03p3h1OYI7KnvNvHh8DHwGPF19F/5mf7RAuMEFgUMBSsGyAicDKMQdROiFJIUKBQBFKIUFBanF/sYNxoFGxcbNxpFGHMVgBKLEC0QTREmE24U+xMBEcwLnAUfALn8nPsQ/Lj8gPz2+kv4BPU58QTt5OjJ5ePkMObD6OvqVeth6ZPlo+FR33XftuET5SvoF+oP67br5uy57rfwVvL98l7zWfRZ9oj58vzt/34B4gE1AgEDQQQJBe0ExwPzAV4B1wIfBqgJVwsuCmAGVgInATkEkAp+EYIVmRQSEIQKlQc4CSgPxhdsINgnzCyBLiIs+iTIGpkRkw4DFQwlUDmgSBZMdkLHMDEfjxQEFMga6iJ2KI0piia6IScdMBjsEN4GtfuQ8ojurPFE+Zj/7v/g+PXsPOFX2mrZGdv/27jaCtjb1jnZm96V46zkkuCO2YPTvNH11Izb2eJ36KfrHO0S7rPuXu6j7PjpDegb6VvuxfZj//QEZgUjASv76PYj9hz5g/4PBAkIHwoKCyoLgAo5CUwHdgULBS0HdAt/EKIU1BXTE9sPCQz9CXUKEg1XEFgSDxK3DzsMIAlOB40GIAYaBUIDEgFD/07+3f1H/ff7t/nd9jP0QfI/8dvwffCm75ju7u0J7v/uSfDG8P7vOu5s7JLrUex/7k7xIPRK9nf3ePef9pT1uvQq9Rv3Lvqe/UwAcQGmAJr+cfxn+wf8xv6uAp8G0Al4C34LAgrnB8QFpgTHBWEJgQ64EwcXPRe0FPUQHQ5YDRAPGxIYFeIWDRk8G4Mc/RwEHGEaLBmTGS0dlSI0J8Qo5iVDH8kX0RIbEmoV9BmOHdcdDBqAFAQPrQpIB3MD0v7R+Wz2Bvbk9/T5B/pz9gXvDOZA3oLZzNju2nbebeGc4hHigODF3kfd89td2jPZXtlb2/zeA+Mk5t/nz+jX6VLrCu2V7nXvwe8o8KDxuvRi+bD+hQOvBiUHkgUBAzMBXwFJA5UGtgoiD60SgxRZFG0Sgw/hDHELeAvJDHIOpw/JD8cOWw1KDLoLYAtMCh8IRQU5AjIAm/8lAPAADwEoADf+wfsT+QT2x/JA8DXvGfBf8kj0dPTc8hbwMu306rnpZ+mg6eXqbOzx7ZDvdvF685f0iPSD8zXyF/J69JT4Yf05AaMC2gHN/7L+RP/IAfYFQwonDb8NNQybCY4HhgfOCVgNeRAAEpYRmA9PDd0LkQtKDKcNdA8XEYASvhMZFEITPhEZD38Nqg35D7sTcRcgGWMYTBWWESIPAQ95EOgRcxK6EX8Qkg+AD+0PCBCMD3gOAw3SCwELOgpDCfUHmwZyBdgEwwTrBHkEzwJkAHf95Ppk+Qf5PPl3+UH5FviY9hL1AfQc8+PxrvCT78vuBe/f7/vvLO/67e/sXewR7Dnspuxo7X/uO+9X70jvXe+N7+XvMfCA8EvxQ/Ol9U/35PdX91X2a/Vo9db28vgH+3f8EP1a/YL9jP3d/Uv+kv7h/j//xP97AFIBJAKyAtkCTgJvARgBYwGiAY4BjgHwAfUCVgQZBT0EiwLhAM7/kP/8/+0AdQFTAcgA1v+L/jH98fsu+wX7HPs0+wv7xPph+sD5Tfny+KP4i/hP+A345ff090L4vfhc+dv5lPpJ+y/8F/2w/dL+B/+r//0ARgK2BHoGWQigCCcIVAe7ByEIngdrCGIIWAndCe8Lkw4lD9wO+AscCGQFNQYPCcwMaQ6RDTsKjwdMBocEoQMJBGkFPQZdCNIIMAhWBwEHBQX8AiICBAFJAJv/RgCBAOMAGQGZALj/tv/i/oP9fPzQ/G39VP1g/U7+E//D/zwAIwD0AA4Axv7R/db9KP+SAngE6AQbBGkCRQG//woCxgOXBHQElwPHAc8A9wClADgBCAGIAfEAGgB/AC8A9v9f/6//mf8q/Qj9Yf4GAOQBIgLL/1T+Zv3p/Kn8rvzE/Db9K/6+/pX/fP6t/pb9gfw7/On7H/73/vD/PP/H/F78Rf3t/yIBqwNqAtj+Pfsi+aH7mv3bAW4Bpf6h+2v5f/nY+YD6Dvzr/Lj7fPyN/FX8Yv1r/DH6Evmt+Db4qfhb+9z98vyp+4X7wPlD/Dn96fzR+xv5ffin+E77tv55AjQAVwGG/+P8pvsA+mP8pvwkAToDTQEa/wT+bf6l/3YAfwA4ASkBFwIDBFwF4gQ9AiABXAHkA74HPgmGB/cFiQTvAUsCNwQdBasIhwr6CWEIRgaUBxoGoQVoBAECKAEkAWgEMwXkBMcDDgBF/jb/GwGfAI79L/2v+VP5ZPsx/L/9Mf7s/OH11vQ79nr52v9gADT/pvu0+qX54fln/BYAjwBh/lkBLQHTAa0CXwCLACkBAgCcAPgA+wJ7A9cC7gIPAlsC7gMCB30E6gPUArr+pQDaA1MFlgSDBaAD0ALsBDADNAGI//MAJwEJA5AGbgdkBXYEvQJoAO/+O/8YA1oEogVwBGkCFADBAMIBigJBBIoC0gDs/pf++f4P/8P+a/8i/v7/QAUT/zz+AP5N/Vf82fbC+xT9GQL/AukAwPzL9w74qPWr+1D+rf9BAVb/K/4/+5z9cgCJASD/Z/0d+BP5SP9lAKQDxwL6A1j+2gAb/ur75vxd/uMCcgEBB7QCEgGe+kD73Pxr/Q8EmwKfBdcD2AJR/y35j/jR++8AhgW9BVwFiwCkAJX+Bf+bAQkAcwOQAZoDPf/lAHgCOgM6BVoG2AXtAqEBEf99/uf+TQOQ/xcCRgEBBAsE+ABm/p78If7B/uADngF+/538ePtp/ab7YP2R/Tr/0QKf/pf+g/yM+x/4pvv6+Xr5M/4s/7oD4P5rAA77evdl+Z/5evxU/vEE2gHJ/lb9MP1X/aQB5AU6A/f/Rfr3+4/77AKFBdoFzQMIA8UECQL7BAsC4v7//SMAiwHnBNAH4QbLA7gAhfrc93f5ov+kA0wEqQVlA9b/F/0B/L34Yfyr+xMB+wDHALf/GgNGAdL5sf5Z/H4ALv6jAJv/Kfy7AlACGgID/JkAygGb/psBYf+uApcAsAXKAXL9kfvx+2IDFQPPCHwIvwR7/nv6Nvk4/loCxAYoCLsGdwQhARX9+PnH+1QAwAEWBAEC0wQ+CQoHlAeE/SL5wvcsAFcEGwn/Bs8GxQJM+Pz6HPiqAroDUweIBwACSQDm+jP+HPgz/W3/1QGABVb+VwJw+uj/9vqU/f8CHv7+CoYAXf4Q9O/6//s4/l4JZQWcBQj4QwEP+wv/iQHp+mz6wvrDBSwCbwRuA5v/6/u3+SD31fe6+BcBpgfWBXACofyO+aD7Wvx1/Q0D2QFz/6L+H/53/iD9Af7e/t/9RQGt/00BmgGTAaf8Afy8/W38RPyD/hgGlQO0CJoCN/iU+ML5nf7TABcEGwUdAFEERgH//8P6lfs8/5v+sQi3BYkHZf6a/rf8/fyTAFwBjAR0AdoDKf8P/kH+RAAcA/UBVv2D+Q/5HfzHAR0Fq/xV/T75qP3W+nr/cwQ6BHj9oPQD98/zqwMmARoLWQTTBR0DP/ruAcD1Q/6Y92EDhwoIBasIhfzbBeP/vwVAA/b+fQSd/9gIyP85B/ABgQX4BR4EtQfi/m4FoPm+/QX5DAErB4oGsgrLBFwFkvwo/ob8lPxm93P5iv5EANEEkQPMAhv/Iv4s/KL5yv+WAXL/Tvlr+Jv4/Pd3CIYKSwqcAH39avWq9jL+//w0AzD90AVqBDQDGv+J/F3+dv+tAQoB1wCSAKIAmQE3/Jb7SgBLAjUGBgTnBjb+bf1t+0f2C/fx+94CnwnaCSIGY/+4+dL64vb++K3+lwL8AGICJv4//Uv7wgDPA5MECQajBZ4Aivv29gPz1fpt94QFUgteEmsMnQPQ+FbwPPZP+CMBaP5ZCfADxQJj/1kAowKr/McBqv2B/kj+o/0cAXYAHQNJAhsBsQWl/y4EWwF7A1kAV/wz+1b4PAD6A+MH5ArtA5n+jv1C/r/5nfvu+6z+WAHL/dAFCf8MAhn+Ff8F+3/8pf1a91MAZwKZAiT/1f8g/9QEwgF0AO7/Mv0y/X3+XgFFAjkHcgEoAOf9e/3TBS4HowhABdv71fn/9qX9v/5cAGQFygQBCdwG0AES+sH8y/lM/lb+zf6hAYH/qgXt//H/sf11/ZkAM/0nBTADmP7a9cvxGf0K/vMG8wJBCK8Av/vb+Yb1TvvY/SgICAWvB9H/3v9t+ij//QC0/UUC0/7D/kEBEgUzBVcHZv/tAIH8KQIEAzD9MPzs+8sIBwLNBskH4gWu/sL8Ffk791T/DwKeCo3+JwJe/kT7uvrY/Nj/d/78AmYCawA3+lP7ugEk/R4ChvtEAU0BmgKiBJ35WADL8+4BtPqpAHACFQABCAgBv/92/jT9CPdh+w37EQQFAw7/FgeRARoC2Pv4+Fv+c/3FBdYDdQA+A+P+EfxfAIH+UwhLBPoCoQIL+DoBaPtgAg8BkALKBYUB8AG6/HMBEfqTAUcABALrAQD72AQs+8X7Cv4dA04EFQCwBMb+Ov9+ACMBGf+N/T7+e/0tAowBygXk/wQBAQEsAMb+b/0W+/b7jwVP/fcEfQIFAfwCSv+t/FP2GfnBABMAuAKGAxgEvgBl+xP/R/1o+sn4gPl6AgAC/wPIBtUCGgW4/GIB6PZi+H36Cv1aBeMHCgyPBvQB8PoG8yr0RP5y/0oJiw3AAMb9xPeU/ij7wvW6BRsCXg1LB9gEzfwV94X0//R1AFYHkw7uCrIO1f3o/Ez37vuR/If+dQvbBtUKagQaBEMDL/x9AFz6Hvxd/o0AfP61/kwEHwN6CM4FAAnO+V355u478qP73/w5C7UF3AbqA1AAuvxM/f3yYfZ2+R3+vP8lAPIIHwSoBev+YPuU9jX2lf76/XEAZQN+BO8AvPmF+hT4mABGBncKCAouAxD94PTY+PH9twAS/iUHwgQCBzn+CAEhAMb58QRGAp0F6wABAVEB0/bg/YL5GgB0COkIUg3F/bIADfT69ffzJADWA4oGOAqtAxEDKPgk/kD24voT+B0CyAa5CPcIYgT5BYL+B/8d+531NP00/kADFwc1Br0J0gC5AwP7R/vp9o33x/xQ/0YELAqBBvYCnQc2+HL6CvBc+RcCjAZvCbAEHghD+0wDfwCV+j/8j/2IBNYH2gRl/Mz9ovnH+6kAzP6bB2kHcwJB+4j6ifDZ92T9eAO3CMkFHAZhAd7/Jfv1+DH36PbG/dwFHgk8DV4A5//28Af2hvsPAsoLmAV9BtL+CgGh+/AAkfpO/2777v34BRcBoglMAIMFSvug+VH71Pz0Bp7/QAGq/Nb8SvrgAB0KFQYOAQL9aPzZ9hb1Nvq+/jMHwAdFBBoEV//GAoL4d/l8/d3+WABW/xgGJ/6P/B36Hf/9AccJEAYy/2j8z/r5AMz4NgEW/qr8HABUCJEHqwUiAi7/k/lY9jP7dPqrBTwCUgtXBB0DagHG+578yf9iA4X62QaX/h4C6wBB/b8GNgKKAaL9eAFA/+34Zv/G/aYE4AmT+ZUDLwBZApUDTP/aACv/ZPxd+t77uvSP/jz59wQJBCEIlAimAVAJtPKK9mDvH/n//6kIAhCpBfYDQvsHACj5aAIm/ZUBGP97/8n/Nv0OBXMAOwQs/4oDLAAE/3v8gP0w/Zz9tP8fAUwFRAhlCd8A8vmf9vT3e/hlBBsFRQeiBAwEwQLH/rv9LPas+a34KwOmApEIvgqzBs7/ZvS1+Rv3+/+YAxYHyAa6ATL/I/6a+ZX8A/+f/noExAeaC2IBQv5j+NDy6fZX/kEE8ALbBJsExv0F+UT9mfsdBVoBdQN4/+r3Mfmr+nQElgI2BX388QF3/+YBI/5n/zf8pPxtBYT63war/t4BZgHb/OwAtP9C/TD8owZTA28HFQDv/RH31voc/eH/kgWOADQHSAHfA67+1/uo+SD/w/7d/OgDqARTA4L/uQR+AL38TfwDA+z/nPtJ+lwBYAa6AuQC3fqPAKcBOQD8AIUCLQLb++r+mP9H/c7+JP7qBHoDLAZ6BPIEfQLe+534i/Gm+276ngS5BcIK9QdLAHcACfva9U71Jf/hAosFg/9+BA0CsANr/YT8bAC1+/r9a/yDBmMGOAPWAmAA+AB5+lz6m/geBLwFagM+BhYBTQRE9v78aPpm/m79B/9bCV8H3wY5+u/7X/TE/sz/+QGCA2sIwgXS/kz+8PcrABv+2AaoAU8EbwEB/QX5Lv1rAdr92QZ1BW8GIP/V+ZbyOPoSAwoIDwasBGwCDABL+3j40PgW/Mj/SwObBhEEJwUW/0UAXPaO+fz3jP1PAh4AxAnWA+f+8fYC+9X6ogAFAdUHoQaIA/8AX/Uk+ZL4ygEf/qAHoQOeA7gH1P9IAez1xP4S/U799ABlAswBI/6PBYT//P27/VYCVwSZBBECh/4I/YL5xfzL/pgBSf61BkAHmgcdBC4BAv+w/K/8fvbT+tL5uQBGA6kE+wJTBBQDLQAEARb6+/R5+af+JQU3A/L/8AQ6Ao7/AABD/5T//PwwAHsDif32/l373gDxBt8GRAStAfYAovxp/cv7Rv2QATH/TwdIBCYBBf6iAf3/CvyXAHL3VgBw/e0BXgAbBGUECwBZALn79vo++/UCMQbbB3gFhP/d+Pb0J/UL/pUCtAgTC3UK0gFu/GLyFvhGAOr+wQShAosIwAKS/xH8cP3b/9X7WQCpADUGzAFXBGkBCf9W/FX6s/0N/lsC9v3VAB/7XwXmBGACTgKMACr66PaX/N7+2v8V/VMFXQMzBK/7YP18/Nf+YgF/AMQDfv0uARX+xv3D/Nj8rwGNApIKpgWlBfb7uvuY+MT0Rf/dAqEJvQKNBiv/BwBh9zX6mwBz/IAE6fw7BZAEIwF8/v/0dfo8+fsCZgIcCE8L2wQ0BQ35J/nc8nz1CfzPA0MJdwwmCncHWPv/9jb1YvbR+z/9eQhmBEUIz/+Z/RL+NPqtAh3/7QP//zb90v3J/MgENf4DALf8aQJNAyoDngMB/87/3vmSAHz9DwLZ/Yb9Cf48/bkB9gQcCLcHCQRc/Vv+v/Yb9xj5dQB9B/IIjAfNAqcD0vhw+tL9Qv/dAkwBHwR6AFX/cQAy/jj+4wPiAc8Byv08/qz/fP2+ATIAeAIrA2wE2/si+7n9o/98ApwAFAE3/44B/AJwAJ/+q/o5+uz8NP+5AzoCmwMuBJr9qf0y9+v5Mf0hAJMIHwRjBaH9xvyt+mH7AAGmATwJmQbOAzYANfnK+oL2mvg4ApoFmAuLCGoISP989iLz//Rp/vn+UwghCboHXAM2+0L8VPrb+9b8nAKgBLAGQQF9/r76M/nl/33+ygJ/BdgHEQaAAcr90vzK+On7Y/xkAd4EaARGBp4BcAQB/hj9gvuv+3v9IQHLAA8Ah/87AKUDOwCFAiL+mv1O+dT7Xf4IACMGXwNZAxf8+fsm+nD7FP8cAR8E0AIlBOABMAD4+2v60vuJ/Ej9WQF0AyYG1wJAAhkCSv0O/k/8h/1l/qACdARhBaYBrwAo/NX8NP9S/w0FhgM5BbkA0f4X+1H7EPrZ/fMDWwVdB08EfAFk/uL6z/WS+Nb8nQMKBZwI3QfaAfP+7fj2+qn5yv55Ac8CkgFgAOQAMP7Q/3kApwGd/o0ALP4fAHz/bv/ZAJr+/v4m/qADqwJsAW8CCwKyAWUAVv9W/gv/Tf3A/1UAaAE+BMEB8AOhAwsDzP4T+6n8HP91/yMB9wJ2AmEDZAFyAVf9+/sr/Hj9SP9mAjUGSANcBX0EugLj/G75Dvpv/CH+R/4RA1oFLgaBAAkANv/3/er86f7tAUP/4v/w/1IA9v5WAQMBZAFi/8QAMALd/+D/EP05/7b+Mf9Z/ij+ef3C/Vb+MQBZATAAzADH/4cAIP6w/NX4fvq++pL+YAJqArIFIAOhA6X+D/xG+q75R/wk/cIALwNVBLADZQGMAjgBBf8YAJIAeAPpANf+Df5h/g3+df7JAUQEyAb+BPIDRgG4/bz5fPkq/Mb+EwL8AwQFLwX2AlsCKQD5/Vn/W/5CAPP/XgINAjv//AGiBN8EuQDA/xj/5P8i/xz/O/5t/kz/FP/CAJwAtQD8/zMAPf8V/tz8nf4l/oX+HgDP/2MASgCuALoAQgD3AMj/cf4BAFH+2f00/P7+oP+TAJgCGAG4ATH+Cv+l/l390v+y/1IDMQOiAhwCsv3m/Iv7IP0M/gv/TwLdA4MFcQL9AAf+d/t5+Vn5p/2v/u4AmgGhA2sCawAKAC/+/fy7+yv+3f1i/gAAWQFRAiMBwwC4ALUANAGTAGMB/ABfAO8AcAAPAZ7/OwE9AkIDewJqAt0Bg/9S/0f/Pv81/Uj9Zf7hAOYAcQAaARMB4QCS/nj+1v1i/W79HP1P/iT/TABqAIj/Kv/j/bL9Of1c/WT+0/5FACIAEQKtADf/rP0M/R/+9v11APEBMQKpARkBv/+kABkBGgHeAAcC/gLJAXkA9/+4/97+o/+kAIIBwAFNAscBjwI+AW0AnP/4/Qj+of2n/0T/Iv/s/s3+Dv7S/eX/nQFVAskB4ACy/9X9X/z0/GL+JwApAm8FzQZLBxcHVQbgBbAE8APxAdgAqAFHAx0EHQbHByMJ3wk5CdAHbwW5A8wBOgG0AZMCzwJwA00DNQLvAEQAA//G/Vz9bvwg/EX6nPmx+Pf2O/bx9Qz2aPZb9qP1CfXy9P70DfU59Yj0WPNp8k/ziPT59h75/fkw+9f7M/yC+yn7P/q1+XH5A/rM+uj6MPsa/PH8t/0b/hv+wv5d/iD+rv1n/nL+O/1D+wL6JPqZ+/7+tAKCBQQHfgZ+BBsCYf9//br86/3S/oMA5gEeA9gDEgTqBSMHugj1B6cG9wTzAiEB2QBPAzYHeAu1DrERNxKOEEEMlggDBSED5gHpAQsDJAX1BywK+ws1DMALGgpzCG4HEghhCdYJMQq+CokLcQwsDqMQ/hM1Fp4XBxkAGtYZORglF8IV9xS+E5YUXRb2F9wZhhoZGfoUJQ8eCNwAo/t7+Cj3EfY59Ub0k/Lb8BXupOu06PXk+uCE3Unbrtjs167Yn9pN3YzguePj5HTls+OE4pbi/OMT5drm7OkC7Nvt4u+x8iv16Pc6+yj+4//gAF4Aiv+0/ov+ff+cATUFNQgrDLIOjhB2EHoP4w1PCtgHQQWTA1gCowJQBKoFSQZ6Bj8FnAKY/g38aPoN+Yb4AfiI+MT36/eU+LL5F/qr+fX5LfpO+kb6e/qn+iH7V/zX/Qv+L/9eAVsEgAXsBbsGZwZnBlUGIQjECWkLOwyZDHQMwAsQC/8KiQuUC8QLzQvVCxELbAp5CeUIagjuCOYIMQhZByIGrARMA3sDHQOWAzwD+QKGAkUBYAAH/sv7VfqG+QP6Afsz/UD+TP6w/sj+J/9C/g3/v/+LAcsEoAdrDF8P3BFTEcoOkwwCCoEKqg3QE34bliEeJYwkoiHLHUoZjBczGPkaUh3iHoAfgR5IG24XcRREEZ8OhArnBe7/GPnX8eTrEedR5OXiu+L24/zj8eKb3tjYnNJTzdHJZMnDy/vPy9RZ2FXbtN3h4Jrk4OnE7zn1e/iJ+TP52PeA9+P4+fyLA+sKOBEGFYsVHBSCECUMiQhLBpAFzAQEBNwCjQEWABD/zv4M/7b/Y/+I/Xr6Jfdw81zwle6F7jTwXPIV9TX3EPls+s77IP0M/mL/EQCeANQAvgF0A1sF4AdBCr0Mnw75D3MQfBA2EEkP9g0iDJkKQwmyCEQI8weGB88G5gWLBDID7QCq/iD8Efow+J/2zPU/9Vn1RfXJ9cv1+vVv9kH3qvj/+YT7DfyA/Lf8zfxI/QD+//7O/z4B3AJ2BNoFEwcTCNAHgAZ7BPsCAQLVAT0CwQNYBdQFzQUHBTsESQPwAWABXwFWAfcAFQAc/6j9kvrb9xX1vPPI81b0pfUp96f4wfga+l/8tQG0B8kMyhEjE94SQhACEBETpRnwIqMrcDLDNHo0xzB3LIIovCXvI6kgUxyFFTcPxQj3BBEEfwRtBd4CM/6o9hju7+Ty3AvXg9MY0V3PhM15zAnOBtG81lTcheGD4/7hUt4I2n7XLthf3U/mcPFi+y8D4gYzCEoIeQgSCjEM7g4qEI4QLg+eDSsMKwz/DScQFBMiFAoUchEVDeMHWgL//eD5DvcQ9RT08fNm9Oj1Mvd4+KP40/cY9lvzzPAt7kHtSu3/7v7x0fWr+SX8d/75ABMEiQbJCD0LsQyqDREObA4lDy0QKxKoFNwWxRiZGdcYuBa+E4IQxgxbCcgG5QR7A0ACvAC5/l/8CPro9y32AvVa9MXzpfLC8S3xofCx8IjxFfOa9Kz1gfa19zX5pvoU/Ff9RP6d/mn+h/4v//L/5gDvAdoCAANpAm8BNAAG/9b9Jv0V/ZP9LP6l/v3+1f4Q/g39O/yV+y77EftD+2P7WvuW+977HfzF/HP9G/5O/nX+0v7N/vH+Xf9sAB0BYgLzAwgGugmnDccTbhnWHokiXCSmI5cgUh36GcsYuBjfG9Qg/iWLKvUtxC5OK4Ykfhu2Ei8JhQJx/zP+wv19/M76Afhv9AnxI+/Y7ZTs9Oqh6KXlBeI03r3bmdr02uzcK+C/4ynnU+pv7PTtQO6z7truWO5D7s7uQPBl8pn1DvqZ/igCFwXWBt8GaQU3A+IAR/7x+6n6ZPpF+6H8/P19/zkA//9g/53+sP2N/Dj7z/lO+N32tPUb9Ur1gfZi+Kf6JP0Y/z0AUgCj/5L+Kf3e+6n7jfwo/kwArwItBRMHEglfC6QNZQ9REH8QPQ8wDecKPgmiCN4IJgoxDD4OoQ+sEJEQJQ9BDPoInwXxAeL/A/8///3/vwCnAdsB5AFKAXYA+f8P/wb+Fv1W/Cn7ZfrP+T755/i6+E750fl4+k/7Hvwm/M/7Mft7+r35BPkF+SL5oPnm+WL6O/sA/J/8Hv2u/d79k/2C/ZH9Yf1V/Wf9xv3//Wj+bf9hADIBEgKZAtAClwJgAlECGAIMAvEBwAEvAboA5f++/8kAegK7BYsIXwtuDAIM6wnIBkAEXAJXArwDEQcBC+IOZxK2Fd4XahjtF5MWyxVlFGUUyBWhFw0ZbRq7G/0ciB26HJcboBhQFKkOMglOBJ0Aq/5V/t3+fP+Y/yP+KPub9ovxbOwu6NXleuUG5rzmO+fn5pPlp+Oc4rvi6uMY5u3oauuR7IXs/+tM65zqn+rh6w/unvC588j2a/m/+jn75Pop+hv5K/jQ9+H3e/hd+fX6e/y4/WP+1P6l/g7+e/0P/fj8svyx/K38hfwu/PX7E/xM/N78+f1p/9EAHQKxAqsCdwIgAtMB7QGtAqEDtQS1BakGkQc8CPQIsAlXCrAK5woNC/oKxAojClMJrAh/CHkIAwmeCbMJmQloCRcJUwi6B/wGOwZ4BQMFQwRiA3wC3QGQAeQAfgA4AOL/+/7y/ez81fv8+mX6Afr++VP6W/qF+oj6Gfpn+aP43/dB9xL3TPeS95n3lffL9yL4TPhy+Kz45vgV+Tv5sfki+pn6/vpG+4z7kPuf+/T7cfzn/Hr9A/53/pL+UP7k/Uz95fy3/NX8df1u/oz/ogCkAWsC6AJFA3sDewOIA8oDMgSlBGUFhgapB3MIhQlGCpUK8ApuDMQOChFjE9cVBRiUGAcZtxlyG8UdryDbJPYnEip6KfAnPSSyHlEYZxIvDugKrwpBDC8ONQ7ADF4JdgN+/JT2ovKN7+Xt2O0P7lzt9uuo6gPpKedP5tTm7uf96Czq/erE6nDpEOgF5wDmseVD5oTnnui86S7rguxE7e7t8+5j7yDvle5e7h7u1e2V7knwRPIL9PT1y/fE+BL5R/mc+cP5C/rm+jL8pP0U/4gAugGHAjsDuwMCBEEEoQQRBaEFfQZ3B0UIwAj9CBUJ5QhzCPUHxAe7B8kHAQg/CE0IOQgVCPUHzAeVB5IH3QdwCCMJogmlCSkJhQjVBx8HhwbrBVYF4QR9BPMDewNPAx0D1QKvAlMCYQECAI7+af1I/Cz7gvo5+ub5g/lZ+fn4Rfj69zz4Q/g6+FH4P/jY95P3WvfW9i32PvYO95/3E/jN+Jf5rPlB+dj4svit+LT43fj++FH5iPnR+VX6+frQ+/T8cP5+/xYAnQB0AakBIgHfAD8BrwFyAeYBUgPFBI4FAgZmBgYGeAXrBHIELwSsBGUFewVqBTQG7wd/CQoMDxBTFKoXvRlOG2YbSRqrGckZfxp3HPkfsiMDJx4qiSybLAAqHSZxId8bhBZIE64R8w9EDjEMewlGBk0DNQHF/6L/3//v/l38uvjf89vtgOgH5fDjguRJ5vDoSet47PDr7OnQ5+LlzONZ4hHieOK04v3iAuQZ5cPlf+br52HpZuo067brs+sJ6wHq6uhu6Mzo4+nk68LuvPEK9H31XvZ79hj27vVS9kn3rPiY+qr8fP7+/1MBPQIOA1cEmwXbBtAHRwhUCPgHZQf0BigH4Af3CIQKYgwjDlkPzw+0DysPGg4ADUoMBQwiDKIMPA3UDZwOMQ9AD+sOrw5aDpsNgwxgC2QKHgmbB2wG4wW5BY8FiQWrBU0FYgREAxECzAA//7j9cvyb+9D6Cvpi+Sv5Tvk5+Qn55/jY+GL4nve69s/1/PRD9N/zufPL88jzGfSe9Lv0YvQt9GL0RfSb8zTzW/NY8wPzBvPF8+P0DfZ99+34MPow+xz88fyZ/T7+/v69/z8AmAAXAekBuQJkA2cE8gU3B9MH+Ac+CN4H5wY0BjUGwQaaBxQJ6wq0DBEOEw90D+oPqRAyEb0RfRI7FD8V8hUNFywZ5xp3HL4eLyEOI3UjrCMII2Uh3B5ZHO4Z5xfHFhoW5hV8FaIUcBIlD0IL2waDAlT/Jv0r+6n5EPhl9ZHx2O3E6qjowecS6SXrNuyC7MnroOl55szjx+I642PknuYw6avq2epT6mTpLuhs5+7nG+kO6vHqmOtn64rqs+lq6azpZuoO7EzuH/AM8XPxefHt8EzwffCp8U/zKvU69zn5w/rg++P87f3t/jIAnAH/AkEEKQW3BSsGrAZAB/gH/ghpCucLNg1BDiUPmw+VDzQPog44DvINrQ2RDeMNVA6vDsEOnA4mDogN9wxcDNgLKAuECugJOAlTCIwH/gazBqYGngavBrgGgwbmBQQF7wPdAtgB7gAfAG7/Kf+x/hb+av2F/JD7gPp6+Xr4hvfc9kf2efWa9NvzQ/Oo8jvyJvIR8v7x/vEH8tHxiPFh8VHxefHj8YTyNPP/88H0RPWi9Rf2hfbI9in30Pdv+Ob4c/k5+g77JPyV/TP/9gC4AksEHQWIBZ4FMQXYBNcEaQUMBmsH6wiiCogL7wvZC1wLWgsZCxkLUgv5C68L3gqiCkMLbgxvDqEShhcWHNUf5CJWJHsjzCFmIA0f6R0+HuEfXyHxISEifiE3H7sbdhgCFosTchH/D04OiQuAB+ICGv7C+bD2J/UE9bL1CvZE9SXzB/BF7H3ojeVL5EvkxOQ+5ZPleuVj5NPiHeKK4mTjmuQ35rvnHOhC50nmk+Ul5T7lVeZN6ErqBew+7f3tOu737brt9O3O7uLvHvGc8vnz6vSL9Un2Mvc2+K75qfu9/Yj//QAEAnQCjgK/AkYDGAR6BSUH6Qh9CqQLSgx6DIwM2AxYDfINsg53D/MP/A/MD5IPaA90D+cPqRB4EQYSGBLNETgRbRDVD6EPyQ8kEJoQ4BCvEAIQ3A6FDS4MAQsvCsAJbwkMCWIIWgf6BWYEwQIeAbz/g/5t/Xj8nPvA+s/5zPjS9+n2GvZq9dX0P/SD867y1PHz8DTwrO9m70vvV+9j73Xvje+y78Tvwe/E79nvE/Br8OrwdvEX8tPyofN79GT1WfYv9/T3o/g7+bf5Jvqp+kr7MfxP/Y7+xf8GATYCNgP7A7QEeAUyBuEGhgckCIYInwiQCIMIjgjoCLEJ0go1DIUNRA5RDuYNKg1iDAUMhgz2DdsP0BG1E7cUyRRuFHoUPxVdFvMXABqvGwockRvhGlsaGBqwGq4cxB7nH54f3R0kGr0UBw8xCqkGpgRoBOAE3QSJA8sAt/y196vy0e6y7LbrdOs361PqWehW5UfiuN8b3iHeoN+24ZXj0eQZ5RTkU+IA4XTg5+CK4hnl2efv6WHrS+yv7LjsIu0z7oHvyfDv8dnyRvNY833zB/Tk9Nf16/Yc+AL5i/na+RH6QPp++gv7BPxA/Yb+uP/MAK8BdAI5AycETwWtBigIognoCuQLqAxJDdQNgQ5iD2AQVhFJEh0ToxPHE6YTYBP5EqoSlRKnEp4SfRJDEtMRJhFREJIP0A4gDpENAw1lDJsLmApoCSUI2wauBaYE0gMdA28CjQFwAC7/wP1J/OT6q/ms+M33//Ys9jz1N/Q082ny3fFt8TPxG/EJ8eTwwPCV8IDwjPC08BLxkfEX8qXyRvPF8zb0l/QH9ZT1DfaF9vT2b/fb91T4+Pi/+bf6zfsC/SD+Ef/K/2MAygAcAW8B5wFzAhADtgNRBOMEagXgBVQGvAYuB5sH1gfpB9oHoQdiB1wHvgeaCLEJJQvGDAIOrw7HDrsOeA4LDi8OEw9CEGgR0RKAFLAVHRalFnEX/BcqGJoYXBmNGSAZmhjPFzgWNBRtEg0RsA9gDmQNXwz3CgEJrwYdBJMBXf+6/bD8DvyT++D6t/kO+A32+fP48X3wpu8+7+nuf+707Rzt6uux6rnpFemx6JLozOgS6SfpG+kM6fno5+gY6YjpO+rx6onrF+xX7E7sC+ze6+3rM+zQ7NXtFO9M8HzxovKt8470ZPVe9mz3gviu+e76Ffwk/TL+av/JAE4C7gOdBR0HSwgVCZgJ1gn6CTcKqgpiCz4MHg3jDV0Okw6HDjUO1A2CDUYNBg3GDKIMWQztC4kLTgs/C08LlwsJDG4MmQxlDOcLHQsUCiYJbQgJCOEH9QclCDgIDAiaB88GwwWgBIoDnALBAeMA5f+5/nD9EPzD+pH5pPj+95L3LPe69h32LfUH9MTykfGS8NPvbO9p75Dvu+/o7xbwLvAc8BnwNPBu8L3wVPEp8gPzyPOU9HP1O/Yi9yv4SPlG+jv7FPzD/Db9bv26/Rr+xf6///wAbALDA/cE6QWYBgcHYAfSB2II+gikCVIKAgueCy4M2wyODVEOBw+hD+EPng8TD1EOfA3MDIMMqwz9DGEN0Q0CDtENZA39DLcMegx0DL0MCQ0SDcMMMQx0C6YKHwoXCn0KPAsVDL0MDA3uDFkMhQvHCkEKCwoGCigKKwqiCWgIwgb0BAMDWwE2AID/7P5D/nX9T/yp+qD4qPb/9MLz6/KW8pDyX/Lj8TzxevCZ78LuKu7f7bHtje1r7UHt++y+7LLs7+xZ7f3t5u7o78bwWvGs8dfxCvI78oTyEvPV85v0X/Um9s32N/de95L3z/cE+Ev4nvgS+YL57PlZ+sD6FftK+3H7tPsL/IT8Mf0P/v7+4v+tAGAB9AFIAp0CEQOlA0sE9wS8BXoGDgd6B94HMQh5CLII+ghTCaEJ0QniCdAJhAkNCaAITggnCCcIVAicCNII1widCC4IowcHB4cGPQYgBiMGKQYaBtwFTwWYBOYDZwP7AqICaQIwArQB7wD7/w7/M/5v/fz82/zs/Nz8gvwU/Jr78/pG+tT5ovmJ+VH5Dfm0+DT4pPcy9wn3Jvde96f35/cK+OL3fvc09wX39PYY95L3QPjq+Hn5B/qY+gX7W/u8+y38ofwP/Zb9K/64/kL/5f+hAHUBQQIdA98DhgQMBWYFrAXVBfAFAwYRBhUGHwY1BloGmwbrBjEHXwdvB2gHOQcEB+0G+wYXB0sHlQfyBy4IUAhZCEUILgj+B8QHjgdjB0YHCwfYBqYGfgZXBj0GNwYvBhoG3gWHBQ8FgwT8A5cDYwNQA1cDUAMnA8sCOgKkASUBvwCFAHUAdgBTAOn/X//N/kH+5/3b/Tv+rv4f/3j/hP9L/8/+Tf7j/af9jf2f/bT9ov1Z/er8c/wW/OP73vvz+wn8+Pup+zP7ovo0+vX5+PlM+sH6OPuN+637rPuD+237bfua++T7HPw//E/8WvxJ/DD8QPx4/LP8xvzK/MD8lvwy/NL7oPuQ+5D7kvuq+7X7hPsv++D6p/qF+oz60Po6+5778ftD/Hn8sfz2/Fv95P1O/qv++f4o/z//UP+L/+X/VQDYAFYBwgEJAiQCKgIbAhECGwI/AnoCpgLQAgMDLwMsAzQDEgP5AgEDBwMnAy0DPQMdA88CSgLvAaQBdgGrAfYBnwL+AjUDJQO4AkACnQEfAf0AIwFOAZsB2wEDAvIBfAEpAdgArwCXAMcAGQEzATkBBAG5ADwA9v+j/3b/Z/+S/7j/qP+d/2T/Ov/M/pj+P/4r/h3+Hv4t/hf+OP75/cT9lv1y/W39df24/QH+QP5r/nj+fP52/qr+3/4i/3H/qv+8/7T/kf9P/zv/MP+R//j/iQAnAYEBtQHAAasBhQGOAXoB3AEaAj8CmwLKAg8DJwM6A20DngPeA/cD/wMSBB8E7QONA4QDkQOQA8MDDAQMBC4EGATaA7EDPAMCA6YCPwI1AjECIgIZAu0BygGqAXwBSgEhAQMB6wDXALEAfwBGAAgAov9n/y7/9/7o/tL+w/6t/nD+TP7x/a39mf1p/X79pv2p/a/9sv2K/Xb9X/10/db9Nv6T/sH+Zf4+/qT9KP39/Nr8mP0I/sX+Qf9R/yj/n/4d/oz9ef3A/QT+Pf6H/s7+9/69/pX+w/7d/gz/V//B/w4ABwD5/7z/bf9C/yr/f//W/w4AUQCbAJAARAAAALH/hv90/1D/e/+W/2f/X/8//xz/+v6r/rb+vv6P/o7+bv5U/hr+Fv4A/h7+kv68/gf/g/+o/5v/hf83/0f/IP8E/1j/u/8SAIwAAwEyAYQBZwFoAX4BPAFIAUIBPgE3ATEBUwFeAZMBoQGcAbcBoQGZAX0BMQHsAMcArgC7AIMAYABIAB0AHADx/xEAKABjAHoAFADO/3T/If+m/pP+//59/9b/8/9wAEkACAD0/9v/+/8dAIAAvgD9ABIBHgHZAKcArwCZAIwAiACsALsAywCJAFQAKQDn/9T/+v87AH4AqwCnAM8AZADX/4L/Pf84/1v/j/8eABoA/P8mAHv/GP/a/tD+5/4T/0z/VP8x/9b+m/70/cX95v0E/of+8f5t/6j/qf9w//X+av7e/RP+Zf7g/qn/RADuAMsARADI//n+rv6T/gX/2v+zAGQB1gEhArABHAFqAD8AAAAiAI0AmAAaAVMBJQHoAJUAdAAyAD4AyQD9AFgBRAH4AGoAv/9Z/zf/mf/8/8gAMgGDASsBsADw/7v+qP7B/k//4v/5ALgBrwGLAcAAJACG/0j/Jv9N/2H/kP+4/43/s/9W/2n/uP8vAGMAmgCCAB4ACACK/0H/Ov/H/w8AaAC7AKAAnwBPAHAAbgBfAF0AkwCcABQACAC1/5j/X/+1/0EAiQAUAVABpwGuAXkByQBpAGsAPgDx/x0AhgB1AJQAUADR/5X/g/85/xz/Tf9R/2z/g//Q/33/Mf/p/s3+vP5R/oL+wf5J/5H/xP+2/8D/sv+K/2z/g/+j/+T/QQB0ANwADwF2AWgBhQFtAUYBAgG7AGgANgAGAAIAXwCOANIAVAHSARUCBwLcAVABpgCIANH/p/8cAEwAwwBAAWcBgAFNAU4Axf///0v/6/6l/yEAZADAADMAjP9i/kf+yP1k/Qb+Sf5G/4P/Xv4P/Sv9KPvI+4P7E/0cACQAFQJ4AY4Aiv4t/BX6jvlh+pD7I/6TARECugIvBP8C6QDr/0sBxv4RAD4BIAKuANAAvwNQAZAESwR/BHUGswQxA4cAbf+R/yb/YP5uAW4BewLHAwIDDgPlASwBUAAdAJT+0v4t/jn9F/3O/VX9bfy5/HH8wPxw/Mb8YP1//Zv8HPwg/Hn65vgc+DT4DPm1+eH66fxL/gr+4P7l/rL+L/9F/wcB+QE1AhcD5QJHAq8BNwAGAOL/0/9vAG0AmQDEAKkA5/8HAEcAIAH7AfYCzwRGBbMFHQXXBP8DEwN2AmIC1QJPAtcCfgKCAgwCdAGKAdcBGQLdAU8C+AE3AYcAj/9g/4T/3/9vAHEAkgChAA0Agv95/9n/ggD4AFwBzAGiAfIAQABT/6/+9P61/v/+Df/a/pn+6v1r/Tb9qv2k/Z/+fP/l/xkAq/9JAGgADgCJAEoBEAJQAkYCQQI5AkcB5QDtANsAMwEzAUUByQCpAEYAh//3/jn/oP9r/wIAuQDmAIsAZABcAAIAjf9e/7T/gv9g/4v/vf+8/8r//P/v/28AvwDpABYBIgGsAAsAVv+l/lL+6/13/Y39w/2h/an9uv0N/jb+J/6M/h7/Sv+X/yUAZwChAOYA6wA/AcIAawBZAJP/Gf+7/oX+E/4C/h7+M/5F/mP+RP8D/xL/u//G/xkA1f9gAFQAGwAtABwAfgA2AKEA6wDdAOQAywCeAH8AXQCYABYBLQEwAfEAbQC4///+hf5M/pP+6v7A/0UAKwBgALL/J//G/pX+bP5P/mP+d/7n/RT90Pyl/O/8Q/1k/pr/bwDDADwBZwE7AZEB5gG5AlkDLQRFBOgDoQNtAscB4gDtAEUB/wD7ADIBeQGaAEkAMACNAJwAewA5ARgBvAAbAML/r//L/wEAbACXAW0CigIlArIBGQGHAIX/PP9+/2//gP9r/zT/Bf+9/k7+uP4Z/2n/AABqANwAyADdAM8A5wBVAXQB+gEfAlICYgIQApkBCAGFAG8AkwBKANoAEwGhADoASP9j/uf9sP0B/h7+Xv4p/uf91f0D/q/9OP31/cz+6/+UAGgBagHZAG0AFQAAABYAswCyAMwAmQA3AJf/tP55/jr+Ov52/kH/1/8fAIwAYwAcAOj/egC1AJwAlwCbAEsAm/9k/6T/XwDeAGkBSwFaATMB3wBkALH/bv8a/yn/h/+x/5//df/D/3IAEgGgAcIBCwIgAooCWgLlAU8BnwD0/xb/gv7Y/aL9fv3G/ZH90/1T/qr+BP9A/5r/1v8RAFgAAgHOAF4ADgC8/5f/ev94/4z/t/+X//z+V/7h/bj9Sf3N/Az9dP32/af++v45/o/98vwv/VL+N/8yACAAn/97/4H/hP/n/6cAsgHCAkwDWgPqAj4CzAEuAYgAWQBvALsAmQBCAJL/u/5Y/lX+jf7//n3/WwAOAaEB6gHHAfgBWQKhAuQCeQN1AxsDSAKSASkBBQFmAcwBDQEnAPf++/2R/Qn9zP1h/m//TAAkAaEBKwGDAMT/6/8EAVACtgL/Au4CrgKrAcIA8QALAVABjAEqAnoCigEVACb+k/xc+7X6XvvT+2/89fwT/gn/t/+aANoArgG4AoYDhgRqBG8DTAJuAbsA5f9Q/w7/Jf+X/hr+jP3H/AT81Pu5+w78+vyK/Wb+p/+JAIsAaAATAIkA5wC7ADwB2AFAAp8CLwOIA2YDdAJFAb4ASAAuAPD/5/6A/Z77T/rA+Tb6s/oe+z/8w/2I/7sAJQHrAFMB9AEOAwME4gREBfcErQTIA+4CCALkAfcBPQGJANz/z/4F/ZH7RPud+/X7Pvx3/VX+uf6r/tT+S/85AIwBXAJpA9MDEQR6A7kCagK3AfUANgC4/8T/mv9R/+H+Qv51/SD9vf1A/n7/SQAFAWkCGAKYAiACiwGeAF//sP4e/qn+q/7+/3//Gv8d/9b+bv/M/3oAdwAAAO7+iP6u/en8mf2i/bX++P4sABwBcwLeA4kDQwMxAbUB4QFJAlQCSwH8AO7/tf7W/cn9jf1y/YH9Yv40AL0AqwDYAKwA8ABWAEMAXwDMAHIBagC5/zP/SP7T/jb/WQFrA90DSAQGAygDOAOyA1cDjQKZAfb/rf5B/ab9avwZ/KL7xft+/b/9Xf+NAFUBswEEAykEaAS1BMYDOQNzAnECLAJjAVMAC/+P/ov9XP3G/Fb8R/wp/Pf7tPyB/f79df/f/zEBIAJyAvwCTQNzA2gCKQF5AAsAU/96/rP9D/3r/GL8T/yQ/If85vwE/gr/EQBpABEAbwA7AGsAgwB0AGEAdADKANIAlgGxAesARQA6/wP/PgCSAP0ArwGNAAgA1/8bAAwB3QD+/4X/uv+N/93/r/9F/xj/DP9//3wAsQG3AbABJAHFAB4BjAHAAZ4BfgHPAFAAj//n/kD/5/6g/ob+Wf6Q/vv+Gf92/9D/3v/m/9z/eQCj/9r/Jv/f/pL/Wv84ACAAMgCWABIBZQHCAQEBxwDgAFABVgHRANEAHAC3/1z/Jv/4/sj+p/7T/sD+av9fAA4BCQEPAWAByQLdAyUEDAQ7A2sCCgFkAIEAkAAl/07+YP3E/eb9gP0b/jD++/5U//7/IACEAMwA1P81ANn/CABlABwAcACu/zv/I/4x/jP+A/9O/wT/uf6S/v3+4P7A/4P/FQCp/9b/egAfAW8BugDgAEAA8f+6//D+EP8x/0P/c/9b/2n/LP8x/57+9v4f//f+Z//q/x8AjwB5AJX/uf8B/zP/ev/x/1IBEQJkAgQCHAJQAbAAuADg/9P/7f8ZAFYAvv+c/u39f/2V/Vn+Y/6Z/vD+0v6m/gD/TP8MACsBPwI2A38DawPUAkYCdgECAXEAlv94/0H/D/+K/mH99vyt/BP9CP73/tf/OACHALMAbQG/ASAC+QHCAZ0BXwFbAf4AxwD4/2X/lP7+/Vb+m/4h/1v/I/8w/0f/Pf+r/3oAuACtAFgA///s/3f/TP+J/2MA1wC8AKcA8P+1/2D/Iv+X/zIAiQBsAHYAWgBAAFcAowA8AfEBlwG2AKP/3f4Q/87+e/44/uz9CP6n/kz/uf8UAEkAdADeAIcBFAKNAmgCFALUAQUBVwD3/0//Wv9y/9v+/P4Z/0D/v/+x/yIAwAAjASgBKwGbASQBYAFyAWsBIAIyAX4ANwCO/3P/8P5t/pH+Yv5X/nP+p/4m/4P/lAC9ADEBfAG+ANcA6v8R/7z+qP48/wYAeAB9AAAAWf98//f/vAAgAWkBUgEIAdIAjQCKAGQAMAC1/2n/Ev+a/mX+Lv5g/sL+CP+a/wQAtAAoAU4BKAHeAO0A7ABJAX4BgwHXAC0Ahf8e/wn/yv7s/tj+Zv/G/ysAogCcAIoA2/+J/83/XAD+AGgBSwHcABcAmP9R/1D/tP/Z//r/rv+Q/13/yv6T/qz+//7K/8UARQE2AUUBIgHmAPgA9gAiAagA3P8J/zj+Wf0R/ZH9Kv6//rL+ev53/kL/yP+yADIBKgG2AQwB2gCzACoAHQAGAJ3/bP8q/5r+ev6b/p3+tf7r/qT+M//j/2QANwEwAUIBYQFBASYBJQEAAdQApwD3/33/jv84/+H+pv6w/pP+i/4H/7H/RADe/6wAewFcAgQD5wGuAeYA/gBPATIBvQGbANn/6f8fACQB2gCRAGQAEACgALAALABc/zb+G/05/Vb9Qv60/rv+O//d/gT/FP9o/+T/rgDbAcwC1QKDAgcCdQENAUIAFgB//xL/qP7B/lT/T/9c/3P/x/8iAMUAdgGmAhMD9AIgAs8A7P/h/kH+q/1A/Y78VfyC/Cj9GP5j/sH+Ef+2/wIBbQJiAxwE+ANlA84CGwIFAm0BVQDq/nz91Pzn/MP8a/wp/Nf7g/yh/UP/lADpAO4A9gAHAjYDsgNEAyoCmgF/AZYB5gHyAbkBPQF9AHkAQAAOAOv/Of8X/5z+Fv7B/Uz9tf2P/pH+hf6n/gv/PwAKAVMCGAP+AscCWwKKAsMC2ALlAdwA6P9A/zz/sf6Y/g3+Zv1K/YX9U/5C//z/WQDMADMBmwG8AQoCMQLqAUsBowBZAPP/4f/q/wAAm//S/nj+Lf5T/oT+Xv4j/r39q/0k/uL+xf9dAIwAlwDuAMwBHwJMAgYCAQHvALoAwgDdAI7/8v4X/rX9wv0+/VL9fPx6/Ez9+P0Y/5f/ngC0Ad8CzQMLBAYEhgOrA6cDgQPzAu4B+gAhALz/uv7+/fH8/ftC/LP8q/0d/mT+UP5X/jL/DABXAcwB6wG7Aa4BFgL+AQ8CaAGIAIn/If98/zQAfgBHAA0AK//n/lP+oP6c/8//3f9x/yL/6P6+/r/+H/99/3L/5v6s/i//wP8aAN3/QP+h/nX+vP5n/y8ASQA/AOX/MQDfAMwAqAAZAMz/rf/l/5cAigBYAAMAnv+o/1b/Yf9W/3T/+v8fAJUAfwB5AI4AuADoALMAlAA2AAsAx/9q/+X+XP4e/ur9Kf50/qn+k/5r/oz+3/5V/5b/9/80AFcAgQCZANkAxwCZAJYAywAdAV0BZQFcAWEBLQHkAJIAQADn/4L/Qf81/0H/Yv94/33/b/9O/1P/hP/I/wMAQQBfAHMAiQCJAHUATgAGAMT/fP8h/+f+vf63/uP+F/8q/zL/dv/R/0EAogD3ACcBNwFXAXMBdAEwAdMAmQBvAFsAPwAJAMz/gv82/xT/B//z/uD+6f4S/yf/Ov9G/1z/Wv85/zH/Hf8V/xb/HP9K/57/CgBvAOEAdwEJAqYCGgNwA7QD3gMCBO8DnwMIAz8COAEZAAn/S/7G/W/9Vv1Y/aH9I/6b/hj/jv/2/2sA6gBqAaQBjQFQAd8AOwA9/z/+WP14/B385/sC/HL8DP0F/iL/DQD9AIsB4AEMAuABSAEOAAj+4vtk+S/2wvPR8aPxKPMK9p77QAHwB/YN3BPDGbMdQSG/IuoixiE9H5EbOxa9DxAJ7QHm+kv0Uu4H6pLm3eTR5EnmN+g16j7t3vAC9RL5cP2uAQcFvQfLCbsLAw1VDdUMLgvYCP0FOQPTAEL+gPu9+GT21fQT9BP01vTs9Zv3rPkN/O3+xgE/BPkFxQayBu8FrATwAqoA5/0T+2L4DfZd9DrzxPLx8sLzTvV39zD6Iv1LAKEDtQZGCSMLRAzYDPoMwAwuDAcLewm0B/EFVQTzAs8BngBv/1/+a/2b/AH8efsX+876ZfrS+SX5kvgf+ML3ePeD9+73o/i4+R77vvxM/rn/FwF3AtUD9wTdBW0GjwZhBvkFWQWTBNQDDAM4AmQBzwB5AGoAkQDEACABnAFQAkYDXQSxBRoHgwjQCfAKxAsrDDUM5AsHC7kJ9QeyBRoDeQCg/bX6offj9Jzy9vD778HvRvCj8Z7zzvUd+Fb6jvxX/sT/rQA7AR8BSgD3/in9nfsL+jz54fgl+s78EQFaBjUMbRL1GPMf0yazLTIzdzc4OZo4JDU9L30nGh57E6kHQPwV8R3nwN3D1SDPPsq7x37H3cmDznvVnN0R59jwuvqHA/wKlxBKFIQWNBf3Fi0VqhI3D5QLawckA8H+jfpJ99X02PMQ9LH1Xfib+9r+4gE1BKgF4AXpBPcCHwDI/OD4mPTl7wPrT+ZB4jnfnN1r3dHe1OFV5u3rUPJN+ZMA2wefDsAUKxqNHpYhFCPqImUhkx6kGuYVnRAIC2UF+f/w+tf2g/MJ8V3vle6t7qDvQvFM86n1Jfi7+lv97v8qAvkDMAXbBd4FUgV5BFwDEQK6AJn/0P5P/gH+5/3e/QH+V/7d/oz/OgD4AH0B5QEoAjUCEAKAAasAgv8S/oP8+Pp2+ff3kPZZ9Wj0yPOS87DzMPQY9Xz2VPiF+v78mv84ArwE9AbRCGQKqgufDA8NDw1uDDwLWQnTBsgDRQCl/Ar5v/UJ8znxhvDq8BryN/Sw9pz5p/ym/8QCcAVTCC8KoQuPC8cK9QhwBj8DRP/y+gb27/G27kHtRO2g73v0Sfz5BngTQSFWLjY6FEOrSQdO1E8qT8FLl0XePHwyIya6F2sHT/Zi5dDViciVvl+43LXbto26n8CWyHPRANvE5M7uAfmrAu0KShGkFXcXoReBFmUUCRJiD9UMRgrsB/YFFARWArwAaf9x/tn9pf2R/Xn9Ff0P/HH6jvjL9vj0S/G+7FnoS+Q84TLfdt6z3h/gu+K85iTsSvKU+H/++QMDCXkNOBHfE0IVWxWMFCkTqxH2D+ANlws1CS4HvQXdBIMELgSwAwQDOwJBAdr/2P01+x349fTy8Wzva+0I7HHrC+zV7dXwyvR0+az+LgS5CccO/BI7FoIYqxn0GQEZwRY5E5AOFAktA3r9/vfu8nzu+uq96Aro0ujZ6sPtRfE59Sj55vwlAM4CvwQRBrMGqQYpBmQFXgQGA38B6f92/i39DPwH+1z6Nvq0+r/7Hv3I/oQAWQIeBL0FJwdHCBsJoQm9CZAJRAnaCFEIiweSBmgFIATHAl8B+v+u/pb90PxC/L37Tvvz+rT6kPp4+n/6tPoa+6L7G/wz/Af8Sfv9+RT4OPab9Mvz9vNk9V34Av0UAx8KZREOGD4eGSRJKjUxUTgAPwVFt0khTaVOXU1XSEk/MzKcISsP3vsS6SnXsMbMuPGtjKbmorWisqWfqw+06r63y8vZMeju9XQCTw0gFkccyR8EISQgGh54G7gYIxagE7oRlxBdEDIRcBJ1E9ATVBOZEZwOSQoSBDP8zfKV6FLeuNTby3bE3r6Auwe7Wb1UwtHJa9Oz3kPrlPjcBUMSAx3yJbosTTHcM1Y00TKGL5IqYiRYHdEVOw78BkIAVfpu9azxL+/37Zntz+097rnuVO/o71zwnvCx8MnwKvEK8n3zzPXB+Cn80P+mA8YHBwwhEPITQxf0GRAcUh18HWscNxrKFjESogxmBu//lvnY8+nuRuvY6J3nbOc36O/paexy79zydfYt+u/9bgGkBDYHPAmfCmULngtgC9AK/wkPCfwHrQZfBUAETwObAvQBbwEHAckAnQBVAOP/XP/S/ln+6f1w/eP8Ofx2+836Xvp7+kj7rPys/jcBHwQxByMKnAxXDi4PXA8KD3UOvA3kDOALdwpqCJgFHAI2/if6JPal8g3wfO4e7jjvYfGs9Kn4B/1OAZ4F9wmiDgEU9BnmID4p6TK4PcRIM1KmWH9a2VayTTBAwi8nHZAJgvUv4j7QPsD4sk2oSqC+ms6XR5gdnR+mZbO0w/TVG+lm+5gL7xgUI6spfSwoLIEp7CUbIr4eiRwpG7YathrCGrwaTxo4GacX0RWRE8IQMw1oCDsCgPoe8X/m9NoUz/DDXbpls/uvdLCgtBK8K8YX0gjfb+yW+RoGXBHtGt0iOCkOLhAxQDKWMdAuKioNJMYcAxVeDUMGWAC5+5L4pfbR9an1y/Wi9cz0TPMn8dHueOxH6nroF+cG5lblh+WF5lPovuq37TPxUfU2+g8ArAaqDZwU+RpgIHQk5SZeJwUm/CKTHjgZORMYDQ4HIwFO+6L1Q/Ce6+jnPuW/44njsuQ75/rqk+/B9Db6gf9XBEQIBwu0DEkNCQ0PDG0KbQgyBqoD5QAF/hz7evhP9s/08fPr89D0p/ZK+U78ev9yAhMFRgfxCPMJXQpdChgKkQnoCEgIvgczB30GmAWGBIsDwQJMAkACpAKRAwYFsgZOCIEJ6wlYCaQHBwWvARX+NPo29mXys+7J64Xpx+c95vvkG+SO5Ofm3us39AEAjQ4AH7YvGD86TEdW6lwXYMJf61upVTlNjUP7OAMtQx83D0P9BOp51iHElLTrqJKhG58loWanKrERvcXJGNZC4cfq/fKD+qsBtAgxD9sUexlZHI4dWB3NG6sZNBfPFBcTJRJeEl0TZRTMFNkT/hA1DJ4FGv0l8zTozty20YvH3r6EuKC0fbNKtcu59MBvytzVu+LY8Gv/KQ5ZHEopbjRXPYFDlkZlRuNC0jyGNJgq2x/hFEYKugDJ+KvycO7Y62/q0eln6QbpuuhN6MrnL+dV5lblduT84yfkE+Xn5ovp7+zw8N71r/tZAsIJmRFoGcEgCSfNK74uhi8aLlsqViRxHDMTfwnH/6H2ZO545+zhxt0T29HZINrz2znfueM86Vfvq/Xw+8kB3wbqCrYNXA/bD2gPTg7DDN4KzwjEBtgELgOfAQMATP51/JL6qfjd9mL1S/Rw867y1/EP8Y/wm/BI8YHyPPRA9ob4EPvj/QUBbATpBzcLGg6IEHMSshNiFGIUshNzEsIQvg6TDGkKSwhpBt0EpgOzAvkBcgEcAc8AgQARAIP/wv4N/ov9v/3I/tcAowMxBzELtw/YFMIa8SHaKqk1FUJDTzVbT2SsaPdmt15mUA89oyXjC0LxQdhUwrGwIaSZm0mWcZMdkseSYpaWnQOpIrj2yV/dz/AUAyYTiyBnKuEvKDHKLkkqBiU8IDkd+BtNHI4dyh5oH8oeUxwbGFUSMAszAxj7BvNG67PjHtyO1NrMUMWtvka5n7WItDG24rqQwhfNv9m75yn2oQOPD1wZ4CB4JkkqrizFLdctgi0DLcAsWSx4K88pHCdLI8oeGBp2FRMRwAwkCAgD+/zv9T3uW+Zw3tTWxM/pyeLFUcSxxZ/KotIQ3dLoIvVkAdIMFhfnHy4nrixmMA8y0jHzL18sdyc1IdYZ6xHmCSUCd/sp9lDy6++n7h7uBu4b7ifuIe7S7Uftf+yV683qVupE6orqP+zU7g7ywPWG+Uz9zADhA5MG9wjkCnEMeQ3dDbMNyQz2Cj8I6wRUAcr9gfqk91T1vPPo8tnyZPNy9OD1ivdK+e76i/xP/kkAbAKTBJsGXwgSCmMLEwwEDDQLwgnSB4UFqAKB/078Tvm99vv0ZvQw9T73Kvpk/T8AfwKrA38DBwJD/5379vcS9fzzKvXd+Ff+AQViDEQUgh3KKJw200bLV4hnPXSVfP9/GX7BdQRmvE/QM50TjfL807K61KeAm9CVxZS1l1iei6f4sle/YssY1vbeYeYQ7W3zffkr/xoE1Qe5ClgNSxBoFJ8ZvR+WJlEtezNpOHI7EDyNOSYzsiiqGr0JR/fX5IPTXsQKuPCulan4pyaqy6/mt5HB/8uM1s/gt+oL9NP8pgQrC1cQHxSTFl0YvRnzGnEcLB5IIBQjWSYGKnAt7S8QMTYw2Cz9JgAfAxVbCcz8+O/k40XZsdBjysjGysVyx6rLHdJv2vzjMO6J+HICegtRE5kZGh6RIOYgpB98HcIa6hfkFK4RkA69C8gJdAiRB/MGSQZFBc8D7QGd//n87Plf9nvyiO7Z6ujnT+YA5trmuuhP64vuKfLs9Wf5V/yM/v3/vgANATQBVAF1AYgBjAFwAUIBFwH3ALYADQD0/m39pPve+Ub48/bG9XL04vIh8W/vMO7M7a3u3vB49C752f4HBUML+xCIFWMYXBl2GOYVDBJDDQoI6AIt/hT6vfYr9GXybfEV8STxcPHs8dDyVPRZ9tX4SPtc/Z/+xf7c/Sn87PnT97H2O/dq+qcBWA0hHRcwB0SQVgRmNHGOd+J4tnSEa1ddwkoMNb8dsAYw8S7e/c30wDC3ErEtr7Kv67LMuAHAKMh60OTY7eAr6JLuFPSI+AH8H/+DAr4GZQxmE2Ab6CMKLPYyOTg1O/c7TzpHNkgwfCgGH5YUvwmS/m3zWehT3bXS68h6wDi6wrYZtiK4BrxVwX7H2c0n1BTalN/d5C/q6+919j3+IwdiEWscayeuMTY65z9GQuZA6zslNE8qeh99FOkJgACp+HXywO1K6njnE+Wu4jHg393n23vay9nR2Y3aNtyz3vjh+uWN6sTvjvW2+0wCYQm7EHAYHiAuJz8tujFJNLc03TL0LhMpfiGsGEAPvQXI/Nr0cO4B6orn+ebf59fpeOyQ76XyYfVs96b4Ffnv+EX4WPek9kr2ZPb/9iv46fkN/FL+egBDAogDKgRDBPYDbAOVAlsBr/+a/S77g/i39ffyaPAS7kLsIuvH6kzrzexB73XyXvZy+l3+ygFUBOAFUQa4BQwEuwFB/9/83vp5+fD4Vvm3+sD8P//oAWoEjAYeCBAJNQmmCHIHmwVxA+IAIv4++1r4i/Ve8ybyrvKQ9Vv7JAS3D78d6S2eP0BRRmErbiJ2sngXdXlqElrURaQv9RjtA1nyOOWL3LvXhtbB1wLaPNzy3OHbXtmB1cPQ/8sQyI3FssR1xeDH/8sd0sTa3OXE8pUAwQ7SHKoqjzenQlNLKVCjUGtM1kPLN1ApShk5CUz6Te0i4zDcU9hC1xbYxdmk29rcCt1C3G/a7Ndc1UbTQdL30tzV7tr+4ZDqFvQV/ucH6RCsGO4euCPNJl0oxCgIKH4mGSSvIFMcExf7EHoK1AN3/bv39PJF79Tsd+sS61vr9ut47HLss+tQ6pjoyOZK5cTkeuWd5zTrEPDu9Y38SQO/CisSARkNH9AjQCcNKUop5CcSJa8gIxvJFAsORgfGAPL6vPVO8ejt0usW663rU+2W7/Lx+/NW9fH1/vVz9VH08fKU8W7w2e8Q8CfxHPPg9f/4M/wl/4wBGAOyA2UDMAIWAE79HfrN9sXzQvFg7x7uz+1J7m/vEvES83b1Ofhf+6H+rgFeBMIGlwjFCWwKcwrTCeUI4we8Bq8FCgXyBEYFvwW1BgEIggktC1MMiQybC3sJ2QWnAEb6JfP/643lz+CV3jLffeNS6432XATvEw0kGTREQ4pQfluNY0tobmlAZ49hgVgKTIg9xS2aHR0ONgD49IDtEeoX6tTsj/CV85v0n/JE7bLkUtlgzHy/xrPcqu6lQ6YwrP+21sU218XpJvyeDfAcLClAMuQ3vDpyO0865DduNOcv2iokJZkecRfYD1cIDwEP+jrzx+yw5gzh/9tC16/SOs4CyoDGFcTxwkbDRMVYycrPKNgF4uDsP/g5AzkNqhU6HBwhNyTmJXgmNSapJXkl1CW7JtIndih2KEYnSiRDHzkYQA+3BDb5kO2Q4kXZBdIvzdDKn8qdzCXQ+9R12jfgKuYd7Onxffe9/IQBIgaACqIOeRLdFZQYjBrBG3Ec5Bw/HY4dgh3GHC8bghioFLAPjQl5Ar/6x/IM6yHkxd4r217ZTNm42mXdveBd5OvnA+t67Vfvm/CL8VbyJfMt9Ib1RPdU+bz7aP48Ae4DUgZFCLYJoQr5CpwKsQlkCH0GGARdAZP++Pu9+Tf4dfeS95H4gfop/U0ApAP/BiAKwwysDo8Pdw9XDlYMqAnWBjgEIgLrAM0A4wH5A+4GQAqIDVcQRhIaE9EShxF0D+4MiAk4BnQEiwRjBx4MzhLhGnUj5SvpMkU4BDwaPm8+iD0pO8s3GjNFLdMmHx+TFu4MGgPp+RTyvOt45yXlduRu5cjmeOf05VXhv9kN0KbE8biPrpimqKOMppqvZL7g0VDoLQBGF2YrljtxRnhLF0vIRQ893TKaKJgfORi2Ej0Pqg0zDegMBAzRCfoFZgAw+bfwNedx3V3UJMwsxem/l7yxux299MAqx1HPM9mU5O3wXf1tCVwUdh2lJHQp2SsuLLwqYyi2JQIjtSAxH5ke+h7JH50gWiCfHmAbhxYqECUIOf/I9Zfsb+Q13UjXotKOz17O2M6l0EbTedYm2oLeQONT6IDt1vJW+M399gKRB4MLqQ6QERkUNRbnF0QZhhrBG8Ac9xxBHKQaPxjxFJEQKAvyBFf+x/eC8cLr4OYc45/gV98C32PfMeBb4cHiV+Sx5efmFuh86THrB+0R71fxvPNA9vX4uPuN/mkBNQSvBsIIewqRCwkMGAzqC4gL4gobCmwJzAh8CJ8ICQmbCRcKeApvChgKDAkcB4YEZgHV/Qn6cPZb83bx7fC/8QH0ZPej+3MA8gTJCLILWw3XDfEM8QoZCBoFigIcAcsANQJoBZ4K/RE8Gx0mrjEBPoVKR1b/X01m0WeAZMdbBk/QPt8raBe3AtbvB+BX1P7MJsqqywHQgdVp2rTd6t7A3VfaLNUIz/fI/MNVwZ7By8T0yvDTOd+w62/4NQRHDnUWlRwcIYAkuyYzKO8oDSnpKEUo5SbJJOUhhx6MGssVWhBXCskDJv2x9lnwHeoO5APe+Ncv0ubMfchcxeTDmsRmx0jMa9N53O3mVvLU/aYIcxK2GmshTSZcKQYq+ygcJx4lYyMJInchZSEbIiwjSiQ8JXMlgCRGIp8eexnzEkALigJX+QfwKedX3/fY/NNQ0NnNtcwXzcvOvNG31W/alN+y5Hnp1e288Tv1S/gQ+7D9XABMA58GrwpPD4kU3BniHkUjZib2J9InyCXSIU0cpBVRDsUGl/8k+dXzsu/p7Fjrmepv6lDq3emr6G3mTOOa34zbhNf800/R+88l0DvSW9Y23GvjW+uG81f7JQKxB9ALnA4FEHkQmhDUEHURhhJcFAMXMRpkHX8gJiMMJeYlYSV7I9sfsBpcFBgNFAVy/O7z7esT5azfKtzQ2lvbrt2R4Wfm8+uj8Q/3Bfw3AJUDDwbjB2QJzQp3DA0PsBJoFxsd0CMXKxsyHzmSP39FeUq+TXNP4k79S4pGwz4YNcMpUh2OEE0EBPmT73HoAuQ74pziLeQ35sfnqedo5SvgZdj8zrLEH7t9s7Ouwa2NsJG3nML60KrhIvNfBNkTiyDcKYwv0jGjMNgssycPItgclBiFFSsUgBQjFo4Y/xrSHEwd3xtXGKoS9gqMAfn2qutW4NbVqcx1xavAQL6Vvj3B+sWdzGrUr9zd5KPsqvO0+Xv+0AG0A1YEBwRuAwsDhQM2BWoIVQ2vExcbPyNsKxozRDknPWI+lTyzN/8vESaqGs0OPQPG+DrwDupb5g3lpeVm57Dpv+vv7Pjsresb6Vzl4eBU3E3YmdW41BjW0dnQ36nn5PAT+1MFBA+MF1Ye8CIqJUgllCNOIP4bXxfUEtMOegvVCMgGIAV+A9MBz/96/ZP6Jfcu86Hu4+k+5SThft2T2onYVNfh1kLXfdhX2trcxN9G40Lneuvx7530evmk/V4BpwSLBzIKgAzBDukQMxN/FcwXBhrsG0UdCB4OHg8dCxseGGsUDxBcC6EGOgJh/iT7kviu9oX1AfX59Gf1b/at9wr5XPqG+3D8Hv2f/bf9ov2t/d79/f4vAcUEAwq4ED4Z/CLFLeM4RENeTAJThFZfVtJRSkkbPSYuCB5EDoAAr/WC7knr5+vN74D1yPv1AL0DLwNX/uv1vuqu3VzQd8OouLyxOa/UsVK5UcTU0SXgxu2p+ckCwAhfCygLnAi5BMsAvP2R/I79lQDBBTsMxBM8G5AhbCbKKIgokSU2IAcZqRAZCOL/j/hi8nft8uls57HloOTM4wnjR+JV4Xrgst9L35TfXOCq4VjjOOU751Hpd+vJ7WLwYfMJ93T7vwABB+8NXhXYHNwj1SlcLgQx6zHUMAcuzymYJLge6RipE3cPcQx3CmQJ1Qh2CNUHqgajBJ4Bgv1o+MHyB+2150DjH+Bq3ifeLN9b4YLkMej563Xvb/LH9IT28fdX+QT7Bv2r/9gCVwYUCsUNExG4E4IVHRanFUoUOhK0D/cMXQrvB8MFvwPFAa//Y/3Q+tP3iPQY8ajteOrB56vlb+QO5ILkt+Vy51vpautT7fzuN/AP8ZTx8vFs8gbz9vNL9Tf3k/mE/L7/DANXBlkJ7QsUDskPEBHcESUSDxKQEcUQzA/HDtQNzwzbCx0LmApnCpMKFwvSC8wM4A3oDroPJxAIEDoPvA1xC5MIhQXbAg8BlwCoATAEtQhMD4kX1CAeKkAy/DewOr05bjRCK0MfxhELBLn3WO7q6FDo7euP8zD9nge4EPQWbhk6F0gQAgWC9hLmt9Wwxqa607LjrxGy5bj+wojPedw96ObxUfhN+xH7ePij9NXwLe5r7SnvevP4+UUCZQuGFKgcGiNkJx8pSyh5JSkhKBxJF8USHA9rDH0K/giRB34FqwI3//v6O/Y28WPsMeg+5Y/j6+L94onjb+RE5ejlQ+Zt5rbmVOeM6J/qz+3s8fn2nvx7AhYI9wzmEMQTixUmFs4VzxSIE14SkBFcEcMRxRITFHYVkxYWF7IWTBX8EowPrQuuB+0D1gCP/i39hPxf/FX8S/wU/KL75frF+WX4D/cM9oD1evX69fz2bPgW+rD77Pyh/cH9Z/2y/M774/o2+tT5y/kZ+qL6VPsJ/J78yvyC/Lz7j/oc+Zv3RvY49ZH0aPS79GX1RvYu9+r3a/jK+O/49fj1+Pz4IfmM+Ur6T/ua/DX+BADnAbcDZQXuBk4IdglvCjQLyQs1DIYMwwwPDUMNYQ1zDVUN5Aw1DEULHQrFCFcH/wXYBBoE6gNNBHIFDQevCAAKsgpaCr0ItAVmATb84vb+8YjuDe1D7kfyP/lfAlkMexZ6H64mhCuOLYksiChAIn8abRIaC6QFhwIGAjEERwj/DTEUtxlwHSYeYBvqFEILH//L8UvkzdeEzRLGYMK1wtXG/c3/1rfgsOnk8Ib1Ovfv9Sby5uxy5+vibuDJ4Pbj++lW8jP8egYFEP8Xdh0LIKofrhybF8MR+Au2BtECtQBzAO0BrQT5By4LrQ3TDl0OMQxfCD4Dcf2W91PyRu7P6/Tqletu7Q3wCfMj9sr4wPrn+zv85/s++4b6/vkA+q/6F/wt/rwAggMmBo0Icwq+C2IMXAzYCyILYwqrCRsJxgioCMwIMAmrCR0KcAp+CiwKdQldCOQGPQWCA4UCygE0AdYAjQBIANP/Sf+E/rT94vwx/K77XftC+y37Hvvj+mP6pvm++M336/Yt9pb1OfUV9R71WfW/9S32ovYR92P3jPeW94/3h/eB95z3ufcB+F/4z/hH+bf5KPp++tb6HPt1++f7ffxA/Sv+K/9fAKYB6AIRBPsEngUCBh0G2wVFBYcEzwNDAwYDMQPWA+EEUQYECLkJOQtQDNUMnwzJCyAKxwfxBOAB5v46/Ej6P/li+Yr6cPzw/noBtwNWBSkGBgb5BGcDwQFQAND/aAB8AlEGlQsPEg0Z1R+jJasptSt4Kwcp7SQLIP8arBaBE08S8BKDFIoWDhg5GCAWexEyCugArfZv7HHjtdwD2XHYpdr83kvkZOk17cLuMu2S6Lzhv9k10nnMockyynbOJNZo4PDrUfdtAQwJpw3lDv0MoggKA7v9o/m/92L4vPtuAeEIzhDwF14dSCBaILMdoBiiEd8JhQJf/CD4DfYe9ur31voE/ssAnAL3AsEB/v4R+2321/H97TTr1+ns6Wfr9+1F8aH0lffo+Vz7B/wY/NP7kvu++5r8Nv6HAG8DuAbrCdsMKA+mEFwRTRHCEAgQjA+MDzMQkBFpE4UVjBcBGYEZ4xjrFs0Tug8rC4YGXwI1/zj9kvz6/Df+vP8ZAccBVgGw/8f82/hW9MTvquuJ6NTmnuYH6M3qle7r8kH3B/uv/Rn/Iv/l/Z/71vj79Z7zNfIU8kbznfXv+Ln8kgDnA0sGbwdTBxoGGwTCAXj/xf3o/AL98v2o/9UBLgRPBuYHsgi1COwHdwaTBHQCeQDi/uz9eP2M/e39c/7n/gv/t/7V/YH8w/rz+DX36/Ur9Ur1OPav+Bz8/P/LA1MHTwqWDDUOdA+REOURqRPjFb4YLhzPH10jQSYaKKAouSeRJXwi4h5CG3AYzRaWFncXExmYGvMasRlvFrUQ3gjU/1n2OO2Z5Urgrt3A3eLfEONJ5rHoZOno513k9t4c2AbR6MqwxnXFr8c7zYHV1t/i6i713P38A6kGDwbgArf95/fr8u7vh+8E8lf3pf5dB4gQxRgNH7kieyOEIZQdURiVEjMNFwmnBg4GHAc4CdULYA4qELIQtw8tDUwJgARQ/0f63fWr8s/wa/Ah8ZPyd/Qy9or3FvjK98T2QfWt80fyXvEz8Rry9vOW9rj5A/1DACsDngWDB8sIjQnxCSwKZArECmILQQxbDYoOoQ+CEBARQREQEYUQqg+TDlUN7QteCrEI2QbsBPEC7QDy/hP9Uvuv+Tn48fbU9eD0//MV80TyavFr8EvvEu7+7CrsquuD69LrqewA7sfvAfJi9Jz2kvgH+t369vqJ+sv5/viI+I74XPkE+2r9SQCsAxoHCApEDJsN2g0GDYMLqAmjB+YF1gS2BJoFcQfCCRsMKQ50D7oP4g7oDP8JgAbEAiz/Efyp+Tz4svcF+A35uvq1/LD+UQBpAfwBLQI7AlkC/QKGBCUHHAsYEKQV7RpoH14iRSMbIgAfVRrGFFIPoQrEB4MHMQqqD08XHiB2KNwu3jGXMM4qLyFBFHUFfvb96F7el9cg1YbWGduL4VPoFe6p8SPy/O636D3g+dY6zh3HqcKFwdjDTMkw0W/a2OOg7Mvzxvhj+7r7Z/o/+A/2t/Ts9BT3LvvZAFwHAg4QFBkZlRw4HvsdBByyGKgUfBC9DPoJZwgnCEYJRQuXDboPqRAkEB0OrAoxBi0BO/zQ91z0GvIk8TbxHfJ387j0i/Wm9f70ufMO8kPwtu7J7Z/tee5G8OjyNvbg+Zr9CAHpAyAGhQchCBUIjgfHBiYG3QX8BZMGsQdWCX0L9g2REN4SkhRYFRIVuBONEcEOpAuZCLkFVwOlAa0AbgDMAIABOwKpAnMCVAFB/0z8yvgk9cLx+e4s7XXs2uwt7jrwxPJr9RT4G/or+0T7TfqU+G32NPRQ8kLxSPF18pr0gffg+jn+OQFbA5AE3wRdBDYDzQGEAJT/Xf8vAA0C2wRFCMoLzQ7vEKIRrBAjDm0KFAbRAW3+6Psb+1z8af/nA9sIag2CECESdRELDlYI/QAz+Qry7+yN6lvrfu9l9iH/XQi7ECsXFxs0HO0amBdFE80OMwtACWwJ2QszEBEWcRx8IvEm9SiUKKklxyCMGukTgg3hB4MDOQA5/mD9of2v/hUAWQGiAWwAdv3V+LTytuus5EbeTNkY1gHVGNYD2UHdU+J+59Lrre6B70zuceup5/zjc+Ht4NPi/+bp7PnzN/veAVYHAQvPDLoMEwtHCBQFEAIKAG3/NABfApIFXwkkDVEQfRJOE6oSoxCXDegJ9gU6Ah//7PzL+6H7P/xa/W/+Dv/f/qz9W/sj+Hr0vfBZ7bvqSOkt6UrqiOyZ7xLzZfYV+d36bfvm+m35Xvcl9V7zk/IY80X1Gflc/ncEwgptENUUdBcwGDoX4RTZEZMOxgvLCRUJvQnPC9YOJRI2FV8XFRj6FhYUsA9zCi8FfgDv/L/6/vmE+vL7wv10/6gAAgFPAJX+8fue+CH1B/LH75XupO7r7xry7fTT91X6PvxO/ZL9NP1o/Db76fn7+Lf4a/kC+2H9FACqAtAENQbZBscGKwZDBVoEvQN5A6QDJQQCBRUGNAdBCPgIRgkbCXcIgwdpBmwFoAQiBOIDxQPBA9sD+QMPBA8EygMhAxYC0QCT/5/+Lf5d/hX/VADmAYMD+wQaBsEG2waSBrsFkwRIAxkCLwGxAMEAOgEiAl0DuQT6BecGWQclB1gGFwWfAx4C1gDg/1L/NP+l/1cA8AA6AS4BgAAY/x39pPo2+Ef2XPUD9jP4wfsGAFoE/wdXCtAKfwmhBqgCQP4z+ij3pvU+9hz5Gf6GBFcLOBEDFekVxBMxDxgJkQKJ/FH3g/N28WHxVfPi9k77dv94Aj8DdQFR/Yf3J/E3657m0uM6447kiueS6+7v/vPa9gT4OPeX9MPwo+w86bvngOiD62jwWfaI/BECWwYdCRUKeQlvB3sEPQGq/mf9+/2PAOgELApVD6ATXRZAF2MWEBSaEJwMzgiTBV8DfQILA7wE4QbrCD4KigqqCckHLwVBAmb//PxI+1n6Qfrs+jP80P12/6oAHQG3AIX/3P0m/Mf6E/os+v76Wfz6/a3/NgFwAioDQAO4AqcBLwCU/jb9Wfwg/Iv8b/2r/v7/MwEaApMCqAJeAtMBJQGEAAgA2/8PALEAhwFZAhcDqwP7AwcE5wOVAzoD/wLoAg4DcgMPBMsEgwUABiUG5AVKBXIEggOjAt4BQwHPAH0ATgBGAFsAgAChAKkAhwA+AO7/qP+Q/7X/LwDEAEcBqwHVAcMBhQEtAcgAYwAaAPL/DABjAP0AvQGrAoADEgREBPMDIwPgAXMAEf8E/nD9bf3s/cr+5v8DAQcCvwIWA/UCbQKFAW4AXv9b/rv9kv3r/aH+f/9JAMEA3wCFAKr/av71/GD73fmq+Ov3wfci+AX5SfqW+8P8fP3B/Yf93fz6+x77ZfoI+jL62foC/HD9Hv/DADYCSQPmA/MDhQPeAigCjQEfAf0AGQFBAXIBhwFrASYBmgD6/1L/t/4y/tD9nP2O/cD9E/52/gH/mf8UAIsA6AA2AX0BwgEcAn8C9QJiA90DVATGBDMFlQXyBUYGmQbSBvYG8wbIBnQG9AVKBYMEoQPHAgMCWwHUAHkAPQAjACIAJwAeAPL/t/9T/9L+Of6e/SP90Pyx/Mj8D/2D/Sj+5P6l/0kAuAABAdwATwBj/yn+6vzN+wv7q/qs+hD7sPty/CL9pv3O/cT9YP22/OT76PoI+ln5JPlh+RP6LvuF/OP9Ef/q/0sAQgDi/2X/3v5u/iH+Af4b/mH+0f5H/7P/AgAoAB4A6P+i/0z/9v6y/o/+k/7I/iz/yf+wANMBIANtBJwFjAYRB1cHNwe/BgIGHQU9BH0DHAMkA68DvAQmBrEHLwlBCrMKYQokCSsHkwTaAV7/c/1o/C78x/z5/Xr/8AAJAngCCQLRANb+iPw0+kb4F/fC9m330/i0+qr8Tv5R/1v/kP72/PP65Pg991n2UPYm96r4mfqK/BD+zf6o/p794/vj+ff3b/am9d71GPco+ar7V/65AGUCOgMXAzoC4QBg/yL+X/1w/U3+1P/CAbMDXAVVBoMG8wXBBEkD0QGsABkALgDrAGkCJgS9BfEGgwdlB4oGPgW1A1MCfwFQAfcBWANJBXgHhQkaC+QL1QvhCkQJSQdHBYoDZwIGAlMCLQNjBJgFgAbtBqwGvgU+BGgCcgCr/lH9Pfzl+xH8qvxi/Rf+h/6R/iP+T/1L/O/6/vkS+ZT4g/jg+BT6G/vI/FD+r//JACwBVgHlAEwAmf+w/uz9Wv3A/IH8dfyT/AD9ff0K/on+d//Q/woAFACs/1b/Mv44/Q78m/qG+cr4Tvi6+JD5t/rD/AL+KQByAeABYAL5ADoANf6c/FX7CvoB+v35LPt5/E7+HQCgAVECnwJWAqAB2ADR/xj/V/5t/qr+jP87AEMBDgKGAg0D0QLjAjUCpwFSAf0ANgGdARYCBAOeA04E6ATIBOUEKwQnA0sC1wAqAFb/7v4+/07/PADmAMcBtwISA44DfANDA98CVQK3AfsAbwD6/8r/yv8GAGoAlwDMAO4A1wCzADgApf8c/2v++/2z/Y79uP3j/TX+kf7R/hv/Jf/Y/pT+4P1K/dP8UvxM/CX8iPzd/Gb9Qf7N/pD/BAC9ACwBuQFFAsMCQwN9A8cD5QPTA8ADNwPSAmgC6AHgAY0BzgHkARkCXwJiAnUCHAKcAecAGgBN/67+L/75/RH+bf72/qn/bwD0AFQBcgFgARMBugBZAPb/yv/E/+D/IwCEANQALAFoAZQBwQHCAeIB2AHtAQkCGAJNAk4CUAI2AuABggH8AFwA0v89/9D+af4m/h7++v0K/iL+L/5G/lL+bf58/oD+nv6u/sv+6/7y/hL/Av/+/t7+uf6//q7+yf7x/j3/jP/q/zwAawCEAGsAPgDL/2H/5f54/jP+F/4w/nD+9P51/xEAgwDXAOwAqgBlAMX/L/+O/gj+sv1y/Xv9mP3M/RX+Tf5q/nD+Vv4p/tj9gP1E/SD9NP1i/cn9SP7r/oz/DACWANYADQEUAfcA5ACsAJkAhwCqANcAKwFyAbEB7gHrAeEBngFFAegAlABWAFIAUACfAAABagHiARcCQAIDAqUB/wBHAI3/8v6Z/nb+v/43//7/0ACrAVcC2AL5AsUCWQKSAdMADgBu/xP/Av9E/7D/MQDJAFMBkwGlAXsB9ABpAIn/xP4Y/oX9X/02/Y/97v17/iX/of8dAEQATwAEALX/Qv/e/qn+kv7K/hH/j/8ZALAAOAGTAcUBvgGBATUB1ABvACEA+f/d//P/HgAyAGoAYQBfAEwACgDr/5v/hv98/43/z/8FAF0AkwCiAIkAOwDX/1P/xP5g/hX+Bf44/pf+Q//q/5cAKwFzAZUBZAEGAYwAAACd/2T/eP/Y/4oAbQFkAkADxgP9A6ED8ALEAXAAEP/Q/fb8bvye/B/9Ff4q/0QAIwGVAb4BXAGtAK7/n/6T/en8ffyi/Pr8ov18/hf/rf/D/7H/Tv/x/kb+//3M/fL9sv5V/8IAmQGIAhcDCgPbAgUCWwFaAIn/+v7E/gn/j/9oAE8BOQLuAkYDOwPIAvIB+ADv//X+KP6W/Vf9Vf2G/eX9O/6G/tL+0f7f/qT+Wf4+/g7+U/5+/vD+Uv+i/w4ASgCgAMkA9AAOATwBagGrAfwBRwKXAssC5ALDAnsCDwKlATYBygB4ADIAGwApAEIAWQBbAEgADQDS/4X/TP8O/+/+Bf8u/5n/CQCEAOsANwFUAUEBDgG0AEsA5v+r/5T/vf8OAIAAAQF8AeQBHQImAvUBkwH0AFYAo/8P/6D+Tv4w/if+Rv5k/oz+kv6G/lr+Ff7f/Zf9d/1o/YP9xf0m/qn+Lv+z/yoAfACZAJ0AegBSACcAGwAeAEIAfgDUAEkBrgEXAlQCgQJ+AkUC8QFsAegAXgDZ/23/Af+h/mv+Q/4n/iL+Kf5I/nL+vv4H/17/tf/0/ycAKwAdAOb/lv9D/+P+kv5n/mP+i/7q/mv/FwDPAHwBHAKPAt0C7wK4AlUCzAE+AbYAUQAIAOP/5//y/xgAMwBMAFEASwBDACkAEgD4/9z/uf+h/4T/aP9M/yH/8f64/pf+j/6q/vX+Wf/W/2IA4QBQAYkBjQFjAf4AgwDg/zX/pv5B/gv+E/5G/qb+Mf+5/1AAwQASATQBGAHjAIkALADI/3n/Uf9T/4T/2f9FALAAEQFWAXQBZgEtAcIAMQCj/xn/tf54/nP+nP7v/nn/DACSAPUANQEtAe0AdgDU/yX/cP70/a79u/0a/rb+jf97AHgBUQLxAjsDJwPIAiQCXwGEALn/Gf+y/oX+n/79/mv/9f9+AOIAIQEuARYBzABzABMAxP+G/2D/Yf95/5//xf/5/xcALwA0AC0AJQAbAB4AJQA9AFoAjQCuAMUAyQCuAIcATgAQANL/l/9p/1r/Zf+H/7n/9v8uAFAAXABKACIA5v+j/2L/Hv/r/r/+sP60/sP+5P4I/z7/b/+s//L/NQB6ALQA6QAGARYBCQHYAJIAOQDZ/3v/LP/7/vD+DP9F/5b/5v8wAHIAjACMAGsALADu/6n/bP9C/yf/N/9d/5X/5P8nAHIAmwCrALAApgCMAFoAIADp/7j/iv9p/1L/UP9Z/2n/gf+d/7z/xv/A/6v/jP9V/wz/xv57/lH+Rf5f/qf+C/+Y/ygAuQBBAZYBwwG1AXEBCwF7AO7/bv8e/wX/IP9///j/kgAvAb4BKwJoAnUCTQIBAp0BDgF8AAkApf9f/0f/RP9f/5T/zv8GACwAPAAwAAYAvP9z/yT/6P7T/tH+Af9F/6z/GQCKAO8ALQFIATEB7ACAAAwAkf8o/97+wP7P/gT/Yf/K/0QAqwDpAAQB6QChAD8Axf9F/9T+gv5j/nH+tv4f/6z/TgDiAGQBrwHJAawBVQHgAEYAq/8Z/6f+bv5b/or+6v5y/wwAoAArAYkBuwG8AY8BPQHEADwAtf9A//X+2v7v/jT/mP8QAIkA8AA1AVUBRAEMAbMASADj/4P/Rv8u/zn/af+o//P/LwBfAG4AXAA1APL/o/9T/xX/7P7j/gL/Nv+O//D/TACcAMwA3ADFAJMAQgDh/3z/HP/W/rH+rv7W/in/of8uAL4AQgGsAe0B8gHDAWQB3wBIAK//Iv+7/oj+iP66/hH/fP/t/0gAiQCSAGgADQCO/wf/jP44/h3+Pf6T/h3/xf9uAA4BjwHPAdABkwErAasAHwCu/1r/RP9m/7D/HACMAPEAOwFLASwB4QBuAO3/ZP/5/q3+lv6v/vf+av/o/2UAzAARASMBCQHAAFoA5P9w/xf/4f7b/v/+Tv+6/zEApQANAVYBgQGJAWkBOQH9AL8AhQBYADgAJwAkACYAKwAtAC8ANAA6AEMATQBfAH8AnAC8AMkAygCyAHsALQDE/1n/9v6t/oH+fv6k/uv+U//G/zYAjwDJANYAqwBTAN3/Xf/f/nf+Nv4o/k7+nf4G/33/6/9GAIUAogCbAHIANQDv/63/fP9w/4b/t/8EAF8AsgDuAAkB9ADBAGQA7P9s//L+oP5n/mv+k/7i/lT/z/9TAL0AEQE6ATwBHAHdAIoANADq/7T/pv+1//H/QQCbAOYAHgErAQ4B2QB5AB0Ax/+I/23/d/+m//b/QQCBAK0AsgCSAEsA8f+D/xf/v/6I/n7+nv7x/l//4/9jANIAIgFEAT8BFgHQAHgAIADK/4n/Yv9Z/3b/qf/y/zwAhgC/AOkA7wDSAJ4ASADv/4f/Jf/W/pb+gf6G/rX++f5P/7L/FABqAKsA2wDkANYAsQB7AEYAEADu/9X/zv/M/9n//f8eAEMAYAByAH8AfAB0AGEASwAgAPH/u/9u/0T/D//2/vr+C/9C/3v/1v80AJMA4QAcATsBNgEMAccAfAAxAPz/1//T/+D/BQA1AGsAowDAAMIAmwBXAPj/kP8w/+b+x/7O/gH/Uv+x/xEAZgCrAL8AtQCCADUA4P+L/0v/If8l/0r/k//5/2UAzAAYAUgBSQElAeYAlAA+APT/t/+U/57/t//v/yQAUwBsAGEAPgD1/6P/Vf8Q/9v+yP7N/vv+SP+f/wQATQCJAKQAlQB3AEIAFADg/7H/l/+K/5n/uP/a//z/GAA0AEUAUwBNAEkAUgBTAGIAWwBQADkADQDc/5f/XP8m/xX/Cv8x/2X/tP8xAJcAEgFOAXcBZQEiAcsAVwDy/4b/Qf8a/yr/ZP+0/xAAYACbALsAtACPAEIA5P+O/zv/CP/r/u7+Ff9T/6X/7/8tAE4AWwBaAE4AQAA1AEEAWgB9AKYA0QDxAAIB+gDUAJgARADr/5b/Vf85/z3/ZP+e/9v/EgA6AFIAUwA9AA8Azf+D/0b/FP8S/yj/ZP+w//j/PQBrAJUAmgCIAGMAKwD+/9D/vv/E/97/DAA/AHIAnQCtAKgAgQA/APf/pP9e/yn/Fv8c/z//fP+u//D/KABQAF0AYABOADAAEgD1/+n/6v/w/wAAFQAUACQAJAAaABkACAALABAAJABAAGAAggCcAKIAlgByADoA+/+3/3n/RP8w/y//Sv+H/9D/KgB0AKUAvAC1AI4ATwABALX/ev9W/1X/c/+p//n/RwCPAMAAzADBAJAAVAANAMX/jf9v/2v/ev+m/9f/DgA6AFUAWABBAB0A8P/I/67/of+t/9X//f84AGEAfACMAHIAUwAUAMv/j/9X/yv/Kv8u/1T/m//S/yUAUgB0AIUAaQBMABAA3v+r/4P/cf94/5j/y/8MAEgAfgCmALkAuACiAHMANwD2/7z/k/99/4b/oP/U/xcAWwCYAMEAzwDDAJQAUQADALj/c/9C/zX/Sf98/8T/HQBvALUA6AD4AO0AwQCHAEEAAQDM/6T/l/+h/7//6/8eAD8AWgBmAFsASwAnAAYA6P/R/8n/y//Z//D/AgAUAB0AGQAWAAIA9v/d/8n/vv+2/7v/w//V/+H/+/8FABAAFwASAA4ACAAEAAAAAQD//wEABQAHABEAHQAwAD0ATABeAGkAbABlAFYAOAAXAOv/wv+e/3//eP9+/5//xv/4/yoAVQB0AIAAeABYADIAAADR/6f/jv+D/5D/sP/W/wYAMABNAFsAVwA/AB4A9P/N/6//nP+e/6f/vP/W/+//CwAWABwAGAAMAP//7P/e/9f/3P/k//T/BQAXACYAKwAuACMAFAABAPH/4v/d/+X/8v8EABAAIgAmACMAGwACAPL/2v/I/8X/w//S/+z/AwAqAEYAXABqAGQAWwBAACIAAQDm/9X/yP/R/9//+/8fAEMAYgBzAHoAdgBmAFAAJwABAO//5P/k//D///8PACQALgAsABsABQDp/8j/pf+Q/4n/kv+v/87///8pAFYAdACDAIQAeABdADkAEADk/8b/sP+p/63/u//R/+v/CAAXACkALwAjABIA+P/W/7r/nf+H/3n/dP+D/5f/uv/g/wgAPABgAIEAkQCVAJEAfABnAEgAJwAKAOr/2f/J/8j/zv/e//X/AwAfAC8APwBKAEYAQgAtAAwA6v+//53/h/91/33/kf+r/9r/AwAmAE4AWwBmAFgAPQAsAAYA+f/r/+D/6//4/xAAJAA3AEQARAA9ACsADgDv/9b/xf+//8z/4f8DACgASABhAGsAaABRAC0AAgDU/6r/iP91/3T/g/+g/8n/+/8tAFYAdgCIAIoAfABeADMABwDe/7z/pf+a/6X/wf/q/xYAPwBmAHsAgwBxAE4AHgDk/6n/ff9c/1n/cf+c/+T/LwB/AMMA+AAHAfkAzwCQAFAABQDT/6r/o/++/+j/KQBmAJkAwwDPAMQAnQBjAB4A0/+Z/2f/Uv9U/2v/mv/T/wcAOgBlAHgAgQBuAFAAJwD6/9T/rv+c/5X/n/+5/9f/8f8SACkAPwBMAEcAQAAtABkAAgDl/8n/sf+c/43/hP99/4P/kP+l/8T/4v8HAC0ATgBpAG8AbwBbADQACgDU/6b/hP9w/23/f/+e/8n/+f8fAEYAUwBUAEUAHwD1/8T/m/9//3L/d/+P/7f/6/8cAEgAZABzAHQAZQBPADIAFwD///T/8P/+/xEAKABHAGMAcwB+AHwAZgBUACsABQDh/73/sv+g/63/tv/M/+7/DgA1AE0AaQByAHgAcQBjAE4AMwAbAAMA9v/u/+X/6P/9/wcAIQAvADsARQA/ADkAIwAIAOz/0f+2/6n/n/+i/7r/1P/7/xoANgBMAEoAQwAoAAYA4P+5/5n/hf+D/5H/s//c/woAOABaAHIAeABrAEwAHgDu/8D/mP+F/4H/lv+///T/MQBqAKAAwADNAMMAnABrACcA4v+k/27/Uv9F/1P/dv+l/+P/HwBQAHcAkACKAHoAVgAsAP7/z/+i/4L/gP+B/5v/wP/o/xwARwBwAIcAlACLAG8ASgATAOP/sv+O/3r/df+I/6f/1/8MAEEAbACMAJgAlwB+AFsALwAAANr/s/+o/6P/tP/Y//7/MABZAHUAgQB2AFwANQAAAMz/of9//3n/hP+f/9H/AAA7AGYAeQCEAG4ATQAcAOL/p/96/2L/W/9v/5T/yv8BAD4AbACEAI8AhwBqAEQAFwDr/87/uf/B/87/8f8cADwAXgBuAGwAYgBKAB4A+f/M/6j/lv+J/5f/o//G/+r/BAAlADUARQBGADsAJAAJAO7/1P++/6//qv+v/8H/4f/+/yUAUwBzAJIAoQCgAJgAeQBTACEA7P+1/4j/Y/9X/1b/bP+f/9L/GABSAIcAqQCoAJgAaQA3APT/tv97/1T/Sf9X/4f/v/8JAE4AiQC5AMUAvgCZAF0AFgDM/4X/U/88/0H/ZP+W/9f/GgBeAI8ArgCyAJoAewBFABIA5v+//6v/pv+z/8z/7P8TADUATQBiAGcAYABRADsAHgAFAO3/2v/R/9H/0f/W/+D/5f/z//z/CgAXAB0AIQAZABgACgD+//H/3v/Q/8P/wv/G/9D/4//3/wwAHwApADAAJQAUAP//4P/G/6z/oP+d/6T/uf/G/+H/+v8MABoAIAAiABoAEgAJAP7//P/4//f/+v/3//r/AAAEAAwAFwAjADcASgBeAHEAeQB+AHUAZgBRADMAFwAAAO7/4P/f/+b/9f8LAB4ANgBGAEwAUABGADcAIgAHAO//1/+//7X/sv+v/7v/xP/S/+P/6f/4//b/+P/1/+z/4v/T/8j/vP+2/6z/q/+r/67/tv+7/8X/0//j//f/BgAYACkAMwA/AEEAQQA9AC4AJAARAAAA+P/v/+3/+P8EABYANQBSAG4AhACRAJUAjwCAAGUASwAqABAA/f/t/+7/9P8FABYAJwA1ADoANAAeAP//3f+3/5L/eP9j/2P/bv+H/6v/0P/2/w4AHAAYAAcA7f/G/6f/iP96/3//l//D//v/NwBxAKEAxQDTAMoAsgCLAFYAJAD4/9X/xf/F/9X/9/8hAEQAaQCCAIkAgQBlAEIAEwDq/8b/qf+b/5//rv/M/+n//v8WABcAGAAJAOz/zf+r/5T/gv9//4H/mf+z/9n/9v8GABkAHwAeABQAAgDx/+n/6f/3/wwALwBVAHwAogC7AM0A0ADMALsAogCKAGoAVgBHAD4AQgBKAF0AbwCAAIkAigCDAHYAXQBAACUABgD1/9//1P/I/8P/xP+//7//vP+0/63/o/+X/5D/hv+E/4P/g/+M/5H/k/+Z/5D/jP9//3D/bf9f/2L/Z/9v/37/kf+p/8L/0v/b/+T/4//g/9X/y//J/8f/z//e//b/EgAtAEAAVgBdAF0AVgA+AC4AGQAHAAUABAAOACQAOwBYAHAAggCRAJAAjgB6AGIARQArABkABwAJAAwAHgAzAE0AZwB0AIEAhgB9AG8AaABWAD0AGAD7/+X/0v/T/9v/2f/j/+X/8/8AAP3/4v+1/3//WP9X/3v/tv/v/xwAIgAeABQA/P8AAAMACgAYADAASgBdAHoAfwB1AFkAKwAVAA0AGwAwAE8AZwBwAHgAewBfACEAz/9x/zD/FP8d/1n/pv/u/wAA3P95/+D+Uf7W/Z79u/0r/rz+Ef8O/5L+0P0F/Wn8Gfwg/FL8jvzQ/AD9Q/1g/Sj9vPwT/Ib7bfvC+7/84P3i/mv/hf8C/6b+B/5x/Xj9iv31/gIB+QOcBvIHfgcBBcEBrP41/h8APQR0CPMK6gpxCIIFiANwA8gElQbPBqQFKwQwA5QDIAV0BvwFeANk/wT8a/ox+5r9qv9VAEn/tPzV+bL3Cvad9Zf11PUL9wf4m/g5+HP2SfSE8hfyK/Mc9ZH2IvfL9iH2bPZV9+r4Jfo2+l359/fl92v5cvwpAOMC+QM5A5sBvQA6AWIDkgZHCc0KCwteCgAKfgrsCxQOgw/bD0YPmQ6EDm4PUBHqEqATrRLREOIOmw2IDUEOFg8iD0cOsQwaC9YJBwmoCAoI/ga6BVcEPgN6AgoCeAGlAHb/Dv7p/CL86/vv++H7nfsG+xb6Jfls+Of3u/em96r32ff09yr4b/iq+O/4H/k++VD5cPm1+Tz6G/sg/Dz9JP63/gb/Nf9s////2QD8AfYCpgMPBCQEQgSEBAIFcQXWBf8F8AXbBcgF1AXjBeUFtAVNBcIENgS5A1IDCwOVAgoCWwGbAOr/c/8T/63+OP6W/fL8T/zf+5b7ePtX+zn7B/vd+tH63foD+xT7L/sr+0j7ofs5/Af9u/0+/nP+dv5h/m/+sv42/8j/VQC8AMYAvQCpALMA2gD2AO0AuACBAGcAhwDJAAUBCgHPAHIAEgDw/w0AXADIACQBXgFNAfIATQCC/93+pf7s/oj/GQA3ALP/yP7s/Yz9tP0G/iL+wP33/B38hPtW+237lPud+3j7OPvp+pH6SPoT+vX5+vkv+oL61/oL+wX75vrd+gr7Y/vb+078k/y0/M78Cv2C/S/+3/5O/1j/Ff/A/rP+E//G/5UANwF9AWQBMgEUASkBagGoAd4B+AEaAlQCowLhAgwD9AKzAnMCSwJhAo0C3gIbA04DdQOfA+YDAgTkA20DpgLxAawB/gHBAowD/APRAx0DQwKgAYgBAwK5AlQDngN/A3UDggOXA3sDDwNOAtMBtgE7AlEDLATVBOoECgVIBZEFVQXNA1cB0/5N/pYAOwUfCtIMygt7B3YCff8FAKsDagiXC/sLFAqOBxcGWAaAByUIQwc8BUoDTQLUAiIEBwW0BAQDpwBr/sD8h/tr+oD5+fhK+U36MfsS+0H5QPZS87zxJvIN9B72TPcr91X2q/XR9Yj2Ivfu9gz2RPV39Sv3y/lU/KH9Yv0H/Jf6EfqM+qf7x/zX/cP+xf/VAJUBoQHXAMb/If95/7sAdwLgA30EagQQBN0D2gP8A+8DogNEAy4DsgOnBLMFQwYYBkUFPARxA/oCzAK9Ar0C1gINA1QDcQMhA0kCOgFJAOH/CwCPAP4AEQGsAP7/Y//2/rT+d/4T/pT9Nf0j/WD9w/0R/hj+uf0a/XL85Ptt+yj7MvuW+0L84/wh/a78sPuR+uP56fmj+qL7cfy8/Hb84ftR+xj7EvtD+3b7uPso/Lz8Xf3L/ef9o/1N/RL9FP1E/Zb97P0s/o7+5P4l/xj/wP4v/pz9Zv2L/RL+o/4O/zv/Gf/C/m7+J/4T/jf+lv4f/7X/OQB/AJwAsgD/ALYBowKZA0gEgARpBGoE9QRgBlAINQprC2kLeAo5CWsIogjFCXELAw2eDXMNiQw6CwIKLwneCAwJDwnUCGEI5wc+CLAJJQyBDigPtwxIB+gA7/xM/kYFaA8SGOcaVxaMDK8Cr/2I/+0GSQ/WE14SOAwYBccA3QALBBQH/gY/A3X9S/hY9vH3kPtq/j3+0vqF9cbwau627rfwlvIM8x3yaPDp7ifuIe5q7q3u1+727gjvAu/g7qruc+7I7tbvkfGJ8yL11PWJ9Zr07fND9OX1hfhX+4P9uv4q/1r/1f/aABkC/gJGAzUDhgPEBD0HNwpxDNgMCAumB04ElAI7A8cFwwipCm8KLQjhBMcBkv9y/g/+4f28/af90f0Y/h7+jf1S/KL6CvkT+Pf3lPig+ej6JPwg/cX9+f2g/dP8E/wH/BL9NP/YARwENwX/BNcDkQLuAUgCZQPNBOoFWgYjBoIF4ARwBEYEIQTXA1kDrwIBAoUBRwE7ASkB3ABMAIz/w/4W/qD9Rf3r/H780fsd+5L6TfpU+mL6QvrD+ef44vcF93/2WPZ49sD2Dvc79yb3xPZK9t31xvUh9gD3KPhd+VX64/o++7z7m/zV/Sr/UQBKAR4CDQM1BIwFzQaGB4IH5QY4BiwGKwf9CB0LtAw/DesMKAyvC8wLbgw/DfYNVw61DkkP4Q9qEKkQfBCREIERKRPPFAYV3hJyDrQJMAfaCF0OhRWYGiQanRNkCdb/qvp9+xgBuwd+C1UK+gQv/u/40fZY94P4bPhl9k/zvfB08F/y6vQt9tr08PD26y7oC+fn6IjsTPDN8l7zSvIo8A/ujuwU7PjsDu8g8nP1IPiC+Sf5svf99R/12/Xx97H6Hv2Z/hP/Af///kr/4f+UAO8A8gDZAA8B2wE/A+sEXQYRB9MGzwVjBC8DuQI8A58EZAbzB5YI9QdDBgkENgJxAewBQwOuBH8FSgUaBHsCDAFQADwAgQDBALMATwDL/3r/av+I/7b/2//3//n/8v8MAFAAwwBTAeQBVAKKAmsCAwJ1ASIBYwEhAiQDFQScBG4EugO6ArAB3wBXAA0A8f/q/+X/zP95/9T+0P2y/Lj76PpG+pH54fhM+Pb3z/e895z3Nfee9tT1LfUB9Wv1O/Yu9+v3Y/is+OT4PvmT+Q36dfoG+xX8u/0AAEYCCQToBOEEUQTuAzkEagUUB8kIHQruCjcLCgvQCrMKrAreCgEL0AqmCpkKpwrhCuUKiQrmCa8Iawc1Bg4FOQTfA1IEewUlB3QI7wfGBEX/hvkU9iP3NvxyA28J/wpyB4EA5PkI94n5MAB9B+oLpgt6B+QCCgGnA20JCg/fEWMQ7QudB/YF7wfeDMAROxQsE0wPogqQBgMEyAI6AtoBaAH7AFIA1f4Y/PD3OvPm7hrsausL7N3si+yB6q/nXOWm5LflZuc06H7nseU/5KDkfuf865vwxfPY9G70s/Pf8yr1b/dS+l39dAB8AxoG3QdzCAIIBQdOBtMGjggFC0wNdQ47Dt4MNwsLCoUJcwlECZ8IrgfYBp8G9gaDB6QHxwbgBGgCPAAQ//7+0P/zANUBKwLIAdEAhf8m/gv9ePyd/I/96v4pAMMAegBd//X97vyp/Dj9Pf4t/9X/FAADAAIASADMADoBVQEKAXwAKQA9AMIAlAFmAtMCqgLcAZMAL/8B/j/9BP04/WX9Zf0O/Uv8Sfsy+kL5nvhi+E/4PPgF+I33Effg9ib3sPdS+J74pviF+KP4Ffns+Qb7E/wW/br9OP6y/k7/5/+pAEMB7QGrAm4DTgTyBKQFEAaDBigH/AcMCbMJ2gmUCfgInAjmCNAJQguMDEwNHg0TDLgKbAnaCPQIcgnzCQYKXAk+CMcGIgUMBK0D3AO0BPQEdwTrAsEAj//y/7wCewY8CfoI6wR1/pL43fbv+uED2g3xFAsWExHeCKcBuP7wAJ4GjAw5EHYQFA51CgQHWASXAhgBnP9s/kz9a/yA+zz6dPix9oj11fQl9F/yoe5k6Uvkl+GE4nnmYetb7uvtROpE5TDhvt824QHlv+lD7uPxS/S09SP24fV59bz1pvdw+2gAQQWUCK4J6Ah0Bw4HiAiOC6IOcBA2EEEOEgwIC90L7w0FELIQdA/DDNkJqgfQBv8Gewe7Bz8HKQbBBF8DMQJdAdYAeQA8AAAAvv81/3D+cP2R/C38Yvwk/ff9ZP4H/vz8lPtH+sj5Q/qX+2v96/6p/3D/tf7s/cr9bf6B/4kAEQEbAdoA6ABtAYcC2gPlBBsFfgRQAw4COwFGARICQAMsBEsEoAMvAmMAk/5L/Zj8e/yh/LX8lPwo/HD7gPqJ+YD4pPf/9qv2nPa29vT2MveA97b30ve+93r3Sfd+90z40fnh+9/9mv9zANEAvADPAJQBmwInBGIFewZTByUI8QgsCpELAA0yDkQOpw0iDPQKbwroCokMew7SD70P/A0TCzYIHAZtBc4FngYCB3gGKwWWA4ACqwH/ABgA3/6B/ZP8m/zJ/aX/egEZA+AD9wN2A20B+f4C/T79/gC1BxUQMhaVF1QT1gpRAlf9b/5RBA8MGBI0FK0Sgw+lDMgKHQkRBvUAivrh9VH1u/hw/mQCbwFV+xHyl+lj5BbjlOSF5lTn5+aF5gvnYuiF6RXpHuZC4bXcjdok3Fvhd+hj71f0XPai9Q/zKPAt7hvuw/D+9eP8ogOjCAILuQoVCXoHMAeACKEKkwwCDgEP8w8jEZgSxxPvE7YSghD8DeML4goQCx8MbQ1RDj4O5Ax3ClQHGwSQASkA+P+DABUBEgEUAEf+Lfxt+l35AfkJ+SH5Cfm6+Ij4kvj4+J35Tfrt+nP76vtj/AL9uf18/j3/9P+vAHABQwITA+sD2wTABaYGYgesB30H6wYdBmIF/gQGBV8FxwXdBUAFAQRZArgAb/+b/gT+gf3Z/Ov7//ou+rj5f/k/+ab4ePfu9Yj0ufOz81P0QfUs9of2dfZA9jP2sPaw9/j4Q/pR+zD87fy4/cf+AAB5AfsCcARcBbgFzAXTBWcGlQc8CRQLcQwVDdIM8wv5ClUKPQqTCrAKhwoMCjMJegjvB+EHIgiGCLwIcwiPB0gG8ATOAyADLwP6AyIFPQaQBpsFmwNBAZn/Sv+RACgD6AU7CI4J6Qk7Cn4Kvgr8CsgKHQr5CaoK1Qz5D7YSRxRaE50QwwzGCEwFEgIx/5/8MPuA+6P9dwCpAT3/mPgv7x7maOAN4PzjkenA7W3uoeuw5rzhWN4c3Wvdat5736vgTeKa5Ejns+lq613sx+wW7bft1+5W8DLyt/T/9y38rABhBD0GtQV7AwABHQD5AVIG0wupECATBRP7EIoO8QzDDMINJQ9IELsQlBAbEIAP7g41Dm0NZQwUC5gJ9QdgBu4E7wOBA5sD2gOmA3QCKwBA/ZP6DPkW+VL6wftv/PD7g/r/+EL4ofjr+WP7Yfye/Gr8YvwM/Xj+YQAdAioDcwNMA0wDsQONBNkFEQfjBwcIegdwBlQFoQRhBM8ErAWfBioHuQYMBZACDgBR/qH9u/0g/j3+w/2l/B37k/lW+K33d/dg9wD3T/am9Tj1PPWs9YT2jPd7+AT58vhc+ND3yPdx+Nj5l/tX/bf+e//b/wAAOgCgABoBpwEmAr0CvAP6BHAGowdNCG0IKwjpB5IHgAfNB3kIUgn9CTIK1gm9CC0HsQXJBK8EtAWSBpsGfwUzA2EBWwEJBOoH5ArBCjsGu/6K9xn1r/mZBL0RHBx6H9QaXxEuCLcDrQUuDGYTURhoGXcXKxSoEYUQMxD2D3sOAgwtCN0DqP8M/En6Ovt2/qkCfgWmBCr/5vVm7CrmGeXk6Lzu2fI388fvtOqw5mLlZ+Zr6L/pc+nc56XlOeRL5NzlqOjn6/zuOfFf8lnyLfGK7yTu0u1y7yvzNvhK/TIBCAOxAjMB/f8nAAMC+wT2ByYKRQvTC5AM1w2YD0ERLhIMEgQRpw9pDpcNWw1eDZcNxQ3sDdQNAA1IC3kI7gRQAYT+B/23/Cn9lP38/Bj7Pfg19cfyfPFC8Zfx4/Hs8ZfxIfEz8S/yDfRQ9mn4xvlu+s/6Nfsd/PX9wgA2BHUH7gk5C3ULbwu4C5kMPg4wEOURfRLWEV0Qcg7xDDUMCQz5C2ALIwoWCI0FQwM7AeH/xv6g/VP80PpR+eX3lPZn9Xf01fOV86Tz//Nr9FT03/Mf84fydfI98670Tfa796H4H/l3+SD6Zvs3/Sb/2gASAvUCsgOIBHYFcgaCB2EI6AghCTUJPgk4CSYJ5Qh6CBkI/wc/CL0IHgn1CBsIzwZ7BYMEIAQ3BHEEXgTiA+wC9gFAAfIAAwEHAW4ATf91/e37F/yU/tYDmArCEN8T8BJEDvIHwwJSAQEFiQxtFYkc7R8xH6kbsxcSFTEUOxQNFOQSShFOEJEQpRFYElAR/w2yCHICq/zQ9zH0kfG47wjvx++U8TTzLvM68DLqfuJo22bXhNcN2/vfDuQM5qvl5OMF4rHg6N+a37LfmOCo4tzlFOqC7izyj/SX9c71APbK9jP4I/o+/EH+HAA4AukEAggdC6oN+g7WDpsNFQwTCzwLkAx+Dk4QXBF1EbUQeg8pDusMugteCtcIRgfqBf4EZwT1A1oDXgL0AC3/Vf2K+8z5PPj09jb2IPar9on3T/iY+ED4e/eq9i/2UPYp93X46/lz+/T8bv7j/z0BZQJVAyoEzwReBfMFrAasBxoJzgpZDIIN6Q18DWsMFgvcCfUIegg8CBsI7AeeBygHbQZKBb4DzwHA/+j9e/yH+/n6rPpF+sD5Ivl4+L/3/fZE9pz1IvXb9Nb0EvVw9fv1t/aJ90j44fg/+Xb5v/lK+g37HPyN/R//qQATAlYDcASCBZAGhgc+COUIeQnzCWcK3ApXC+kLUAxEDLsLnwoMCVYHzwWiBBkEOwTPBFkFZQWzBEUDawGW/1z+Ef5P/sr+J/9M/7j/ZAFeBHcHMAnVB+ACjfzT98H3fv3BB1cTbBuOHasZkhIlDOsIvwlzDcoRBhVmFjsWfBUDFckUZRQzE8UQcw1TCVwFlAJAAUcBJQK8AjgC5v/J+5H2+fDS68HnfOQL4jHglN/n4Orjx+dp6gTq3OVj3/3YE9VE1WrZ3N+F5kbrOO3g7K3rKOsU7FXuJPGe82710fZF+Db6Cv14ABIERgetCRALoQuPC+EKugnDCOYI5ApyDnkSiBVdFqUUBxHYDI0J/gcSCBsJNQqeCukJQggvBjsEggLHANz+vfzD+jX5QPjH95n3lvey9/D3HPjo9//2dvW8837yNfIY8y318Peu+sb83v0V/tb9zv2A/vr/AQIkBDUG+QeQCRkLdwyqDbIObg/DD8kPYg+4DiMO1A3RDdcNpw3uDLsLMgpfCE4GFATwARMAuP7r/Yj9LP1h/Bj7O/n99uf0W/OW8oTy3PIM8/fy1vLf8gzzSfOV8+7zafQk9RL2Jvc8+GX5nvrS+x39gv7o/y4BRAIiA8cDWgQdBQgG/gbbB4kI9AgvCWEJfgmfCdcJGApPCl0KCwoyCQYIWgZtBIQC2wAOAH8AOAKYBAgHdwhECFIG+gIN/5b7ffmF+cf7C//YAaICXAEt/+P9OP/mAngHvgoKCwkIsQNwASMEOAzDF90i3Si/J2wgrxaBDpkKugtaELkVpRm8GtcYwBTDD6cKpAXrAGX8MPjD9DvyhvDt7h/tT+t86QfosObv5LTiGeCK3b3bBttu2wTdvt8c40PmNOiM6H7nmeUb5C3kZ+aK6sTvDPUV+Vb7D/wB/DT8Jf3u/iABOQPuBB8GIgdxCDoKcQyTDggQahCtDzgOnwxgC6IKeAoCCyUMmw21DtYOoQ0cC9oHqQRIAhEB7wBrAdQBogGkABH/Rv2p+3X6f/mL+GH3I/ZB9f/0SvUP9tn2Yfe29/P3QviL+KH4pPjv+LX5Lvt//a4AQwRoB3gJNArZCScJ/QgICj4M9A5WEbkS2BLiEWoQIg+iDvQOfQ+VD5YOhgzICRkH/QRyA2ACZAE5ANj+T/2G+4D5T/dC9XrzNfKU8XDxc/Et8WjwUe8w7nTtce0b7jLvXPBI8fvxn/KG88n0Qfay9xD5Vfqk+zv97P6XAAoCOAMmBBEFCQYiB2sIxwn0CpgLlAvlChIKewlkCeIJqQp3C/AL0wtPC+cK0AoIC18LiQs/C30KEAntBjwEKgGl/nH9Mf66ADUEBAd0B6AEGf/T+Gz0H/S1+MEASQkxD2oQWw1lCP4EuQWTCkcRihbSF8MUeg9pCzcLdA9sFhUdcyBVH20a4xP/DdkJfQddBoAFsQT0AxMDnwEW/w371PV98CTsmunJ6Iboiufj5Nvg7NyT2tzaX92A4KjizeLz4FjeZtwq3NndPOGH5ebp1e3t8OvyufOt84DzI/Rh9mn6c/9cBPgH0AkiCu4JRArJC0oOBxECE5oT7RKlEZcQXRABER4SJhOdEykT6BH/D5QN/AqrCAcHJgbhBc4FYwUyBDkCt/8V/c76H/nx9x33ZPav9f/0X/Tl87nzwvPF86HzZ/M08yXzavMN9Pn0LPak92X5ffu3/eP/yAFOA2cERgUgBlcHDQkuC1gNLg9jEOwQDREKEQQR8hCgEPkP6w6eDVwMWgumCisKgQlTCJsGXgTlAY3/rP03/A/74/mD+Lz21fQG83zxRvBv7/DuZ+7J7Tvt0OyO7Hjskezy7MztFO968KnxgfLx8kbz2PP49PD2qPnW/OH/cQI2BG8FbAayB18JYwt8DRMP5w8FELoPdA+tD3MQihFzEr8SFRJ5EEQODQxRCmUJNglyCb0JtglECV0I9gYLBZ4CLgAi/gT9Fv0i/oL/TwADAID+VvyG+tv51Po0/Y8AjQTbCAkNghCDEoAS1xB1DjMNRA6ZEf8VVhn6GRIYNhXfE1IV3RhlHIIdzhreFFUNOAa2APL8h/rB+Fj3PvZQ9RP0v/EA7sbou+IQ3ffYBdda1xXZ6NrJ23TbddrF2T7aJNzL3n/hreMB5frlVOdY6errBe9f8rL13fjb+5P+4wD5AucEwQaOCFIKCQxVDR0Obw5vDrUOcQ+7EFUSlxMfFGkTtxGVD4INLgx7Cz0LCwtpCjAJjAfQBVcETgO6Ak0CpAFSAC7+ivvp+OD22PXD9Vb2JffE9/b3nPe89qD1ofQU9CX0rvSD9Vz2MvcK+N74A/pV+6/8EP5f/40AlgFbAtACJwPFA+wEpwbDCKIKxwv2C10LdQqZCQkJ4QgbCaIJ6wnWCV8JdAhfBxUGjQTlAlsBCgDS/n392vsB+k74+vba9fL0CvQ684fy7/F58SHxIfGC8TLyDPPz8/z0L/Ze92D4J/nj+c/6/vtw/fT+cQDIAdoCywPRBBEGdAfbCA4K3AoxC1ILYgusCxgMogwzDYgN4w0ODvYNbQ1oDPkKHQkUByEFkQOTAlcCtwJBA8ADngMXA4MCKwJ+AjYD3AOlA0gCof94/P/5r/mQ/IUCFArOEMkU8RTxEeAN6wo+Cr0Lig5BEUUTnxSqFa8WlRfeF2gXJhZBFAkSbg9xDPcIZQVuAtwA8wBAArED6QPTAU39c/fg8QPuY+xX7Jfs4eum6YzmieN/4bfgz+AS4QzhpeBu4LHgYeE74sfiCeNr42/kqua/6fjsbO9u8Dfw0+998NbyufYs+97++wCRAUwBEgGQAecC2QT+BhIJ/gqxDAgO3w4lDwEP3w4WD7QPfxAEEcgQiQ+UDawLpArBCtgLIQ2RDaUMbApvB3oEIQKdANH/X//+/nb+uf3O/OH7Afs/+pz5H/me+A74Zve69jj2BvZV9jr3lPgW+m77a/wT/Wv9jv2v/eT9Sv4A/xAAbAHYAh4EBAWMBd4FIAZgBpYGrAaGBhgGagWgBOwDgQNpA5gDvQOoAzgDWQIvAdL/YP7y/Kz7pPrJ+RD5TPh698j2QPYM9u/1v/V39Qz1mPRC9Cf0YvQB9fH1Hfd7+P/5avuZ/K/9nv6e/64A2wEPAz4EcAWEBokHkQiuCcgKoAs7DIkMogyiDLEMzwz3DBgNHg0DDcYMiQxHDCIM8guXCyALgArQCSMJXQh1B4AGpwUSBf4ERQWpBewFwgVLBb8EWgQKBL4DzwLyAFT+zvv1+rj8/ABkBhALWA3hDOEKSgmeCQ8MrQ+kEs0T3hLgEAEP/w3dDekNfw0lDAwKowdcBVYDkAG4/wL+uvz0+337xfrt+IL1BvFd7LTotuZb5u3meOds57bm3OU45d3kguTG48HikeH64FXhiuJ25Krm2+gA61Dt4u+o8jn1KfcZ+DT4KPiy+Ev62fwHABMDewU6B3oIiwmMClQLsQudC0ML8ArfChALRgtXC2ALmAseDMkMSQ0tDUEMmAqaCMIGhAXnBK4ElARPBNkDZQMgA/kCuwIVAtIALP9x/fH75fpK+hv6Rvq9+mf7JPy9/PT8t/wh/Ff7jPoH+tT59flF+pj66PpT+/f7c/1T/x0BigJGA1wD3gIWAikBSwCn/2H/nf9eAIsBwAKLA5ADtAIxAWv/6f3n/HH8PfwK/Kn7EPuA+lL6ofpR+x/8sfzO/Gv8kvuL+qD5Jfk8+c75k/pK+9j7SPyx/BL9Yf2z/R7+m/4x/9D/WwC9AAwBRQGNAf0BqwKOA4UEggVUBvsGegfgByoIHgjTB2gHBQf0BlcHCgjSCHAJvwmqCXIJIQnCCHQIEghmB08G8wR8A0kCmwGkAYsCBwSmBegGSweeBhMFKQOYAdUAGAEJAg8DxgM1BLUE7gVOCI8L6A5cETESaBGYD9cN7gwPDeAN3w69D1QQkRBdEH0PeQ1zCuIGhQMLAZ7/y/7Z/RX8evl/9g70nPL+8bLx9vBF76/s0elU55/l0eTE5Djl3OV/5ufm+ea85knmBuY95lTnTum56yfuHPBt8S/y2fIB9Pj1rfip+3n+jADYAa8CkAPeBKMGkwhkCqALMQxQDDUMKAxKDKsMMw3ODTsORA6tDXEM1gpGCRwIfQddB1YHFAdjBlcFIATPApwBeABl/2D+a/2R/NT7MfvC+pD6wfpQ+xH8zPwd/ev8T/yI+/X64PpX+z78Y/2H/oj/YgAXAagBDAJPAnUCggJxAj4C8gGjAXMBdAG9ATMCwwJJA48DXQOWAlEBxP88/u78BPx/+077V/tW+y/73vp4+hv62/nD+aj5bvkE+Xj47veW97D3Ofgi+Sb6Cfuz+zD8j/z3/G79/v3C/nf/DwB3ALgA6gAuAaYBRgIEA7oDMgRhBEwEDAS4A3sDYgN5A8MDHARkBH4EdARMBCIEDgQ0BKgERQX5BZIGCwdGB1kHYgeSB80HDwg1COkHUwejBgMGmAVfBT0FCwXCBIMETAROBJgE/gRIBVoFOQUKBRgFdwUpBvAGiQe1B34HQwdRB9oH2AgpCnILVgzbDMkMLgwrCwsKGgmJCIgI4AiZCXUK/wrZCqUJawd3BEMBZP4J/Ej64fih9xf2Q/RH8rHwxO9s75bvje/z7kfttOqj577ku+L+4eXiB+Xc53Lq6usa7GHrh+pH6hbrteyq7mLwyPHl8tvzCvV+9j34TPqA/L3+wgBNAjcDhQOMA8cDggT/BQkILgrmC64MegybC5AK4wnoCYEKUgvpC/gLlAvVCuwJ1winB28GTAVtBPADvQOWA0cDtgL8AV4BEwEcAU0BaQFFAcQADABU/+n+Bv+T/1gAIgHOAWEC6QJXA4gDUwPBAvkBUQEFARkBfgH+AXICwgLaArkCbwIGApAB6wA0AGj/jP7H/Sv9y/yA/Eb8HfwR/Cb8Sfw8/N77FPsK+vb4EPiS94P31vds+CT5v/k/+pn62foY+0X7a/uL+7779PtE/L38XP0u/jb/XACYAasCYwPKA+cD7QP5AyoEcQS/BBMFYgXCBSUGjAbPBvsGAgf3BtkGigYVBocFGAXGBL0E9ARWBbMF1QW6BWIF/QSyBKkExQTbBMgEkwRGBPADsgNxA1IDSQNcA2sDdAN0A28DgwOeA8oD+gNGBJAE7gRJBZgF0wXXBdYF6QVOBv8G6QfDCDYJGwl0CHgHdwbEBX8FqQX2BSIG+gV/BdAEIQSvA1QD+QKFAt0B0ABY/3r9V/sr+Vf3LPai9Xr1WvUQ9UX0CfNt8crvUu4Q7RHsNOt46gfq++lE6tnqdOsC7Frsi+y+7PjsNe1W7W7tn+1h7qPvXvFt84L1Yfe4+Kv5kvqS+6z8uP2E/hH/hP8mABUBRwJ/A6IElAUyBoQGlQavBvAGMQdLBxcHyAbQBgQHIwcKB8sG5wZrBw8ILQjSB2AHPwdsB28HFAehBpwGHQfDBxII8ge9B8wHBwjpB1MHzwaWBooGRgaOBb0EWARxBHoEGARfA6cCJgLCAQkBGwBM//X+8f6m/g3+Wf3+/On8s/wy/JP7Ovtg+5X7Tvus+vj5v/nb+fH5uvlf+Wv57/lN+kf64Pl/+dH5w/q2+/j70/sC/LX8Z/2w/Zf9rv1q/mz/OwBRAAsAHwCrAFcBwwEgAo4CHwPMAywE6QN4A2wDsQMPBFMEigTPBAoFbAW9BZEFVQVIBYAFtAWeBYUFTgU0BUAFOgU0BUMFbAW0BT0G/gaeB7IHVwe1BgUGoQVkBSsFuARPBGME8QSVBe8FuwUwBeEEtgR4BA8EjgM/AzoDWQN1AzoDEQN9A/8DMgSjA8oCZwKLAscCiwIFAvMByALvA3gEEwRMA+0CJwNOA8sC3wFYAakBQgJBAn8BmgArACQAuP+2/on9t/x5/B38KPu6+WL4m/cl94j2sfUi9Tn1jvW09WX1w/RD9BD0B/S/82TzEvP98gzzA/MA8yvzvPNp9Pv0g/Ut9t/2OPcD9472Sfa59qf3rPiM+Tn6FPsB/Oz8mf3B/QT+f/5C/+3/KgB/APoAewHRAQICYgJGA1oEJQVUBSsFXQX1BbkGHAcIB/4GVgciCLwIsghHCOQH6gcqCEQILggVCEcIowidCDkIoQcXB80GZgbEBfcEMAS1A0oDzgJCArIBcAFQAfIAZwCw/wr/j/4E/mn9zfxi/Ez8IPz6+9P7Dfwa/HH8qPv6+qT6qvp0+wv7nvs0+rT6afpU+6b7wvoD+zL6ePye/BH+ef0Q/H38l/yj/TD+8/3W/S7+5v6d/1D/9f4v/xL/CwBJ/8wAKAESAu0CEgKdAlsAzgL6AR8E8gPgBDQFtwOOBboDgAcjBxIK7wcGBjkHewaWCuYHFQgfBbcFtwgnCdoJNAa1BmAGPAkGCVkHvQUcBGQGAQbSBuUDfgOkAlwD+ASrAh4D9P/QAfMAjAFWAWL/mP8A/g3/6/23/v398/5J/tb+AP8g/nT/hf70/6/+gP4c/mn8n/6V/2IAwP+Q/o7+Mf9DAYABuQD6/RT+9P1b/xwAoP6T/tT8U/6o/2r/l/7E/W79X/7p/b39jfwk/O78w/xr/Jz7y/tb/O/8HPxC+9H5DvqW+ov67vnp+Jf4v/k5+pP6ffne+Fb5nflH+vL5f/oi+iD7Gfvz+hz7XfvB/En9zfwm/bf7ffw+/V795/4i/Rv+HP6C/yYAlf++/ib+Sv96AIcBrAAyAbEA7gH7AccCggOoAsIDogPlBAYFbQROBZgElQXTBZIFvQUkBdEF4wU/B3cGTwbeBKkEZQTkBF8FvwQUBAMChwLoAgMCDQIAALsAtwAB/w0AOv1E/pz9Av60/Kr6lPyG+8v+1f5M/En79/rg+1n+PftE+xL6qvxc/YD89Pyj+KsAqf3mAOn8cPmh/w/+TAPI/QH6I/t3/dADTwKN/pb7K/1JAt4DcwMB/Oz91f0QA80DYP9eASb8ngMHAuMDjwGMAMkEGgKVBwECRQNpAJ0DIAlBBskIYQKbB4YHDQkmCw8GnQfuCPAKXwxxC9UH/ggUBiMKywlCCCQJwgUzB98FsQgnB94FEgQqA6kEewMRBBQBdwHDAHIDSAHX/g4Ax//2AST/TP4G/Q/+AwEcASj+O/sm/Z/+bf9m/xz9fPzv/c3/8QDS/VH9vf42/8EBDP87/1D9Ff/pAMj/1AB1/MX/+/7aAUUCv//q/9v9CwBXAGv/Wv1o/Oj9j/9OAD79Lvzl/cL9vv4N/JH7zvoC/Gz9ePrt+hv57Pi2+kT6Gf0P+w36sfrh91X8RPki+ov5t/ke/Pf5I/w/+uz87PrG/Gj87Pu9/V76cP8d/Tr8c/zQ/bv/a/76/4X9rf25/l0ALP+W/vb9OP0ZAAb/7gHK/dn+3/4AALEBh/+x/1j8VAKd/ucAx/+Q/f4AogDRAgEAq//qAIIBZgHYAZQBgv83/wAASwFhAWQAT/4TALUBwAIHAon/KQES/tUBxv+i/gT/Nf6MAMT/pgCZAN7+YgHC/0X8FwCc/bMBsQN9+wL9i/pvAUMEsP6YAAn64P9JAMcCwwER/aP9VPznAHwE/QPT/Uj+l/yIA1kDhwIp/0P84AReA7cHsQCW/98BbQBSCbwD6QFs/7QAwAOPBlkFLgGsAQUBLQveA+gIeP9s/6MH1wNWC5D/wP9eATEGeggQByn/m/+rAyIIEwf6AM0BHP/QBIED8AHE/yQAhgPjAVQBHgDhAeMB5gDCAPr9FwE+APgBaQGT/rn+3v1EASoDIQL3/Gj/7v8tA0UB+f4kACf8pwF7AZ4Bjf8d/mUB1/7SAsr/V/9d/0r/nAEz/g0An/1q/9T9KgHW/zj/h/46/Yn/N/4cAbj9g/5g+zD+Wv9F/8f+MPz//sr96P9q/xP8S/1D/Pj9LP7o/Kj9Xfut/aX8wP0d/TX7GP0F/aX7NP7c+s36f/4N+bj9iPhV+zb+hvxu/Qn5af21+ar9aP26+MX79fm+/sz9tPuX+VH7b/2T/koAhvjv+4v9rf7V/9L9GPuN+8L+HwGTAVH/2f2H+zT/xgB9AgMCF/w3/hr/VwH8BTr/wAH5+pj+wgN1AvkGcP0x/gf9EwH7A9UEOwFl//v9N/4mBHABNgXk/88AMP7T/rkCmACKBKEAcv84AG8BrwFLAjICc/8hAEYBMQReAtf+fgAHALEF3QSIApoBv/4lBmMCowSJA4r/vwF0AaoHmwT7AXP/bQDmAlIJywanAn7+uPw8BY4CZQi9AyH9Iv2eAWUEpgTpA20BYP3+/W8BSQNTBdsCXwAr/fX/JQC6BVAAngOw/7348gQNAPEGjAFB+jQCg/1yApEDEQHuAuL3Zf4mAR8CbQls+sD/bvyI/MUG2gDOAOD+hPo9AKkA2f4cAw397AM+/OP/RACn/d4ILPx8AZH7lPxLBP0BqAV6/wL7U/8bAtIChgR+/HABGv7UAq4D5/1JA5j9ngLRApYCLwM2/s7/q/+0AjMFCQJLAcL94P9HAgQE7gGY/wz/Qv3fAOoCxgIk/qz+mvvE/i8BaP+mAB77Uf6y+zL+OwHb/1j/k/nq+oP7Kf6rAJL+Yvs3+5P5q/3p/fT+p/7T+Mz50/vBAE7+V/wd+sj3Uvtk/3MAH/ya+eD7wvsd/Sj/Cfv2/pb7+f4B/s76Hvsb/b0BYQAr/9j5+vzS+9YC8f75AeX8EPozAwD6KwVs/x79JAB//J4BmAMmAfH8+f/e/Y4C+QLkAWH9Zv45AKcBMgSN/iAC2f2vAJ4C+QBBALEBCAKC/sMB0AGYAcQAEgIwAbz8HwIoA5UD0QGR+5AATABmBqEGIP04//n8WgI9A4UDlgSN+5z/eAEvAaoEPgGYA0sAz/5jAU0B0gIoAwcCDf5AAo//tgPOAB4BjQUw/2oEKP/k/j3/GQThBlkCZgBbAG3/GQAjBZoDHgWH//gAC/+3AZQEggCnA2EBRwGN/+L/9v/eBGMBnAKQAAT8vADg/hgEbQI5AhP9SPssAM0BbQJ0AKT/Zv1M/gUAmADl/GYE9QBl/b/+Jfx/AkX/lgPz/4/7xQAg/xsAcAB6AB79G/2IAUsE8AKi/YT8Jvq/AqAHeQN2ANT7Kf6P/gQAtwNYA6QAWAFz/TcAMv+5AFcEgf90BaH/1f23/d77jAQsBvEA0P6I+3D7iQBQ/+cGKABA//7+3/an/sgAFAfI/vn9M/vB90gCuf86Ai7+KP4x/6D4Rv3eAbL+cwGWAC/8Zfgb+3YBZgBZA9D90fvs+a76YgDf/3wDrP23/Bz9Zfwj/zf/VQArAe79aPxJ+3P7mAFFA40Bi/v++sf+qP6JBLn/nvj1/er8YAX7AVb7z/9r+qoB9AIi/wcBhfoxAN8B4v9jA7v8J/4FAPQB1AEBABf/7P00ArsB3AFL/yv+0AFwAbwChP8hA5n9mv7XAub9hQVCA5kBAPwC/ocBOQHLCLYEvf5L/Ij+qQE7An0HKAXAAAf9Yf2E//MB4gbIBu0Dm/6t/oz5HwM2CGkD2ASI/9D/7v30/v4BQgSgCMoCGP5V/KsAhAPaBVQHlgB//Aj+ZgDFBbQHEgQHAf31rALZBYQEHAiD/3X+YfpmAk4G2wB6AH8A6AEjBCP+if9b/u8A/wQoAR8C8PobAfYBeAHNAXv+twAb/SkDngEKAxv+kv7i/yX7pAQFAzcD7P1R/mj8gwADAIwAJwWU/uIA9vgT/SsDRQNRBHj+df0w+mX+gAFPArcFWgDO/ir9wP3e/jX/TgJ6As4AkAE0/Yn/qf43/tAAAwFhAuv+AgCT/Mn+mQAZAI4Cev5//jn/CwAJ/6z+xP7v/iYEmAG7/Rr6Lf3b/y4DjgPJABH9wvr//Q39FwNJATUB3f8N/Rr9Df16/2QDXgHe/VsCT/wr+zP9If7PAZkEiQGN+1f+GfvN+6kBmAJvAjn/3P0N/LT7Wv6XACQA1wIZAa/8v/mZ+6n/GQE6A0YAe/z//N4BY/tS/BAAMQD/Ah8Cwfz597D8yQASA7gEggBV+6r6Nvx6AZUBVwFvA3r93/61/pT93f6AADEGtwHoAJr9jvxB/7kBKgVbAQACC/43/FYAWgEBA9gBp//A/7H9xP46AJMEQgOcALD9avteANT94gQ0BtACQwC0+X37Jv+2BC0DEQLpAKcAKf1e/uD/7P0PBuIDXwI3AHP9P/7O/kYD4AVIA/EAN/2c+z4AOwLwBHoCogNDAf/8lv2J/W0AXAccB1UDCf6X+Wb8ev/IBrMGwQaCADf6avlA/LUFVgcnCdMANPud+UH7qQJfBYYHgQOJAHz9yPmM/a4AiQRBBeIBZv+x+uL/if62/3UG8QKNAjsA9frv+gL/ZwP+BjsCxAC5+ov6JgCuAKwFlAOHAD/9Q/x9/d7/pf/bAZoEDgEFANL8Qfs9AMcDpgCyAJL/o/9//U0BRgP2/yACNf3O/br90wDsAq8C7/8l/gj+w/toAKMC4AP9AJH/lfuh/VUAmwDEA+4ALf65++IAogAD/4oClf+a/TsA4P4D/68AlP6AAPAA6f9n/xT8Jf9AAQ4DVAPj/BP89/2a/1ECoQBr/0b/Mf70AOz/Gv1g/p0B9ADIAawAG/vI/dIAXwIgAJj/nf4P/VL/Z/6i/qYBcgN9/9D9uvzW+yb9HQF4AxoB4QAY/7X7TPxiAI7/IAHKAP3/6v8F/5v/ZPwV/sMA8gAYAUkBX/7G/R//jgATAXD/Pf/7/hoAYAIYAnf99/6l/k3/LgILAZYBvgCWAeX+vf0s/9j+DAE1AkYBYgBNAIT/zv5eAa4Atf/mAC3/gwFdAX//VwB+Acj/av+Z/2f+1wJ6Aj4CUwHB/9j9jv2B/4D/KwNsBPQCfwJy/gD8nf3CAFwDNQN2A5kAyAD0/5P7Xv32AtUENwShAj39AP0p/w4CLwLrAYABVv9WAJT/Zv/HAJoBdQLxAVT+z/6t/kr/0wKaAuoB2QB4/0j/3P2l/3wA0P/aAoMC+/+I/TP+6fxUADgD8QAnAsr+C/+f/kz+cwCe/igCugHaAOYA//yv/k7/SwBJAY//HQCPACEBSABEAcz/+f1D/mT+sgAJAgcCpP/H/yP/R/6B/5QASQDt/z0Baf7t/Ov+cwCCAcsBAABl/az9YP/J/1wBMAHG/+H/Gv87//79wv1tAH4CPQEpAZT+8/vG/vgAmgB+//L+ev68AHIAtf6h/jAA5wCQ/x8A/f4Y/3cA7f9R/1P/CAA4//L+mAC8/yAAuwAxACH/Iv5h/7T+zAFTAmQBG/80/dH9c/zAAMQDbQJ3AXX/F/zy/BD/8P/9AGcCcQK5/3f9Pf2M/Rr/lwHMAQkB2/8r/jj9DACYAM8AqADb/mT+XP59AQ0BtAG1AX8Aov4C/Zf/hAF3A48C2P+M/vL8u/xW//cA4QAHAeQCfAHC/9n+Jv91ABoBYgKy/pv89f7s/8/+SwC7/2r/iwENAdAAmv/1/3L/kP6d//n/hP6T/6sAs/5r/kcAOv4M/20AqP9qAUX/ngHWAOv+WwEtAD8A1AEVAmIAnP8hAKT/PAE0A7cCOwF0/mz/UP5L/4sCTgCTAUoBRgAfAJL/EQApABkBWwK9Adz/af/c/0n/mQBmAaMAKQFw/+L+u/73/0gCWQLpARYAJf2m/HH+3QDbAp0DpwJYAPX+if5Z/oX/WgGcAUAC7wDm/5L+UP19/6z/fgAKAEsA5QDB/3X/e/9xAJEAVAAeAMH/xgDL//n+EQBZ/4v/iP6D/pr+P/8uAGABSQGM/8D/iP7q/tv/0QBDAQAAKgAH/1j+Rv8Y/0wARQGo/zX/Rv+3/2L/rf/h/z8Alf9H/v7/Df+U/w8BaAHnAEkAPv9J/g7/GgA9AREBfgBH/3v9cP4rADQAWAELAen/eP91/w0ARv8PAKsAcv91/vD/iv8F/+gAFAB5/z4A8QDC//z/JAEzAP7/vQAPAHT/q/86APX/EgDdALj/U/8w/1j/M/8AAOQAyv8OADEAJABY/+gAmgGAAFQB9/8N/sz+WP99AC4BrwEqAskA//88/sn+Af+XAMEBggB6APH+4f47/zQA3gArALsA3gAOAPz/uv+S//H/pQD2AOn+S/65/kgA8f8tALIAtf8mAGT/uf9W/9z/UgCGAHgA8P/U/rj+8f++/44AfACyAIsALAAqAI3/Zf9yAOcAjgC0AN4Af/8F/10A0v8RAdcAeQCiAGT/jgByANH/NwD4/3D/t//YAHwA4f9FANj/7/+W/ij/tf8q/+oATf8v/0EA1f81AEv/5v9a/97+QgBc/1n/FQDCAAQAov/3/0f+Rf8xADD/1P9XAF4AVAAGAHv/Yf/V/3QArAArAKj/2f5C/2IADwDx/4T/HwAbANz/SgCO//v/PQBe/13+nv5r//MAcQFaADkA5/9B/5j/2P8GAL4AkwAoAJP/vv+x/7//PACOACgAmv+FAK7/LgDl/y//rwCJ/6T/dgBwAHwBuABB/xgAY/95/zsBuABVAOwANABw/yoAhv8FABUBOQBfAF0Aef+W//r/egCvAJIAigAnAI7/of/W/7T/lACOANX/IwDf/4n/Y/9CAGYAyP9lAA4Ao/8MAFkAiv9DACcBXv93//f/QP+c/1UAzv/O/1AAAQDs/0MApwBnAE8AwgBs/zT+WQDNAEoAngA8AMz/8P/MAO//0v4eAB8Akf8nAO//6/+sAOIAk//U//z/Zf8nAPX/CAD9/wkA4f/A/x0AMgBHAL8AEQGC/2r/hP+A/y8A/v9GAKYAVACAALH/dv9pAO//PABqAAsA1v/1/zcAv/8kAIkAiP/Y/9n/uP8eALL/9/+x/4D/gv+w/9D/GgDOABkAX//h/i7/DgAEADMASADM//X/AgB9/+n/5f8HABgB1P/g/2wAIf/C/8//2P+DAB0AugDYALb/3v/h/0T/5/8OAI3/RwANASUArf+B/43/vv9l/wcAu/8hAF4ABP9a/5//mP/4/ywAZAAjAFYAqP+K/5j/bf8XANn/4v/n//P/oP+s/xAA1f/d/7j/EgDD/4X/SABQAHUATADc/2z/qv9vAE0APgAnAPb/8/8lADQAgf/k/2kA0/+DACQAK/8eABQATAB1AAUArP8OAPAAxv/Z/+z/7P7d/xQBvACl/9j/EgDF/+P/yv8SAJsAWQDL/6j/xv9o/6//fAB5AMj/mv/x/6T/sP9oAIkA0P/i/8H/bf9RAIAAJADUACQA6f69/7D/4P9XAJwADQHW/6L/hP8W/28AHQGSALAANAC0/kb/BwAyACUB8gBXAJ7/FP/j/1kAgQC3APz/0//4//P+9P8XAU4AqgAhAGD/h//M/zgAYgCSAOn/v/8YAF4ARgAoADEACABUAP//KgBKAMz/xv8AAB4A9/9FAE8A1v/Y/3sA4v9H/0MApQBpACUAGAAEAMb/xP8IAOb/o/9DAEkAJgDm/1n/3/83AP//3P8vAIcAJwD6/7b/gP8GAF4AKACi/w4ADQCu/10AxP94/wYABQDA//z/3v/e/1sA4v+g/6z/k//k/1QA//8YAO3/pP8pALP/IQAxALL/uP+7/zkAkwBJAHf/8v/f/+L/ZQAEAEAALwCa/87/JQDG/+r/SAB4AEcA///X/57/MwB5ABoANgB7AMD/m/8RAPn/HwAwAA4A4f9K/9n/VgDJ/00AJQDK/2H/dP8QACUArgB2ABwAxP+x/0j/iP+cABIAZgDtAAAApv/N/6b/EQBZADMAVAAxABYAwv9h/0kAkQAzAG4AAQCh/xIAeQBdAAcAkv/b/0MATABZAMX/8P8cAMb/v//p/9X///9zAOX/l//r/+b/CQBTAD0A8v+b/8X/zf/6/2AARQAKANL/pP8i/9L/tQAlAPH/pv9W/7n/jf+//0AAFQBFAM3/FP9t/+j//v/f/+z/cP+5/+v/nP/t/w4AdgC3/5P/XwCY/3//rAAdAAj/BQBGAF//BACeAPf/OQBsAKT/ff/S//P/5P+rAJsAlP+3/x4AEAD7/xYAzP/u/6IAMACr/83/0v8MAPH/CwBHABMAbQA/ALb/4v8rAAgA8v9oAD8ALwApAB4Auv+e/5kAEgAlAIEAtP/P/+r/CgD2/wYAfwA0ABgA2/+5/8L/EgDeAG4A8/+t/1H/y/8qAJwAxABYAOf/Yv+j/+b/CwCaAFsAy/9DABgASf8DAD0A/f/DAHYA8P/L/4f/7f9nAK4AIAB7/+f/IAD5/9b/wP/x/1kAVwCS/8z/bADd/+//iQD2/w0AQgCA/7r/RQA5ACsA8v+G/63/KQD1//H/QADi/xMAAwCY/7D/vf86AGgABwD7/yMA1f/G/+b///8SAOz/MQABAJ3/AABWAOv/+P8sAK//MQD8AAMATP8WADwAAgBHABEAzv/3/34ADQDC/4wAAwAMAG4Anf9+//3/ZAAwAD8APwB+/8n/BACv/xsATwAOAAAA1P+Q/7f/GQDv/8v/NgAhALX/4/8XAOn//P9CAOr/jP8/AD8Asv8ZAAYAh/8aAMsANACt/+z/LwD6/+3/FQDm/1MAcQAFAPP/vv8QAGEA6f/0/0cAGADd/zoACgBf/z4AjAAOACQA/P+4/73/OAA+APr/FQA9AIv/tP9SAL3/AQBBAD4AIQAAAIT/Lv8FAB8AfwCnAOn/jf9q/6v/LABhAHcARADV////CgC//9f/WQBKADwAFABV/8D/NAC9/9//HwAbADoAMQCs/6H/XQAVAP7/NADw/9T/yf8JAMf/7/83AC0ANQC+/8b/1/8KACwANAAaAAsATACp/wkAcwD2/2YAUADI/ygAXAC3/xQAfwDZ/zwAWQCy/yEAagBQADEA8/9TAAsA6/+sAP//of9NAPz/x/9IAFEAIAB8ADgA/f9PAAMAPgCzAI8AagCpAKkAdABbAGIAkgCOAOUAJAEAAbkALAB0AIcAbQCAAVQBowAOAUcA/f8XAe8A5wC5ASkBbACdAF8AfwCCAb4BOwH5AEgA+/9FAHAAYQFxAeUA7QDn/3T/OQBXAKMANgGLAO7/AgDM//H/cgACAeYAbQBEAJH/3v/jAIMAZAAgAZwAFACcACQAYwDtALkAlwCKACgA/f+zAGgAlQDBAAwAEQArAAIAUwBNAO7/EQDl/7H/qv/O/+f/+f8tAIL/Ev+H/4j/WP+U/3T/Ff8L/73+jP7F/tf+rf6+/rv+pv4n/h7+eP7v/Qr+Nv5z/R39o/2z/VL90/2b/cP8OP0S/Zf8Vv1m/eX8Gf3v/Gn8VPwT/Yz99PzQ/PX8tfzy/JH9ef1a/an9V/0a/cf9BP73/Wv+Uf7V/f/9Z/6S/gL/W/84/w3/xP7q/k3/Zv+4/9r/Z/9D/1H/T/+U/+b/VgD1/6P/9P9w/7z/OgAUAE8AdQBVAA4A9v9RAKcApwAYAeEAKwCTAAoBygD5AGcB4AAUAZIBCgErAWYBJwFeAWABbQG8AeUBFwLmAX8B0wH8AQICmAKpAkwCRQLaAcwBGwIOAoMCfAKIArQC2wGkAfgBwQEzAv4CgAIoAkQCjgFUAdcBPQKCArcCpAIJAnABjwHNAesBsQLXAlQC9wHeAZ0BzQGgArsCBgMcA5YCQQKHArACxgJwA3IDGAP/AqMCdwK/AhsDMwM6Aw4DqwJAAuMBCQIUAhcCSwL0AZgBnQE8AUsBwAF9AZIBugFkAegBnQIzAkgCFAO+AvQCwwOOA64DHARLBFwENwRyBLgEfASOBKEECAQEBC4EXQMuAxMDCgJ7AWIBuwDs/1T/w/4R/kT9Z/x5+5H6wvlK+fb4fvjH97f28fVh9fn0KvVI9Q/1ePTz87DzwvM/9Pz0YfVU9Rb18/RQ9Sf2BffF93r4Wfjh9xr4xvhX+V/6SPsg+x77T/tn+wT8/fyq/eT9I/48/h7+hv5c/zIAmAAEAQ4BuAA5AY4B8gHFAjQDPwMcAwsD5QIcA5AD5gP2A78DSQPsAsUC4QJAAx0D6QLaAk0CBAJKAlwCeAKzArECZgJWApMChgLzAnYDQgNyA5EDaAOEA5MD8gMGBBIEMwSJA0ADMwPEAsQCtQIPAnIBHgFvAJr/bv8X/4X+Zf69/eH8ovwz/Nv75Puv+2H7Mfsx+wj78/oo+xX7VPun+7P72vsG/Dv8Rvyl/BH9Of23/Tz+Rf5E/qL+0/43/+v/BQAiAKQAqgDGAGcBygHXAV4C0gLEAicDoQPtAygEgATCBOQEPAWZBZMFwAUEBuMF7wUxBkEGNAZmBmQGSwZVBkQGMQZRBkYGCwYPBuwF8gX1BQ0G8wWWBY8FMwX+BCEFNQU/BU0FSQUtBUkFaQWbBfwFbQakBggHkQfWB4UIBwlTCf8JKApwCisLUgtvC8QLuwuUC7ELQwukCgwK9QjbB/EGdgUtBBUD9QDz/hX9p/r1+Jv33vVL9JPym/D87rHtwex/7P/rQOvE6rnpM+nC6Q7qtOq869Lrxesk7JTsou3z7lbwhfEB8mXyDPO/8wf1qPaM91b4yvhj+KH4o/kO+pT6evtE++f6B/sF+1T7F/yj/Bb9Uv1z/dD9Mf7j/t3/rABFAdoBggIgA88DuASgBS8GsAYQB2AHwAdaCBQJSQmRCboJbwkzCU0JnwmiCX8JkwlECcUItQjICL8ItQilCFoI7AeVB3IHTwcjB9AGVwbaBTIFuwRpBOwDWwO1AgsCdgHDAO7/S//c/mH+0P1C/aj8OfzW+3b7QPv5+qr6efpZ+ir6GfoS+vX51fnk+f758fn9+Rb6MPpP+kL6Qvpd+nz6uvoM+y77TPuT+7f71fsE/I/88vwx/Xj9pv3z/T7+dP7W/nD/8v9QAGoAuwBhAa8BCgKJAusCWQOuA/oDRQSBBMwELQVgBZsF3QXNBdEF5AUCBvwF1gW8BcIFugVyBTIFHQUVBS0FeQWUBaEF/gV9BsoGpAcJCUkKjgvrDGYOdA+4EE8SUxSWFiEYUBlPGqQafxp/Gs4a+RptGj4ZVRfAFNkREA9uDLQJpwZNA4n/ffuW9zD0BvE97urrTuna5prku+KL4c/gXOAx4CvgN+C94ELhHeJY447k7uVa573o/ulx69rsEu5y79jwCvID8+vz0/Sy9Xz2RPcz+O34VvkM+tr6V/vr+7r8fv1H/jb/AQDTAMcB5AIJBC0FXgZRByII/QjOCbkKlQtEDOEMGA30DN4MugycDJMMKAyXC7kKfglrCIAHhga5BecEtgOKAmABTwBw/7X+Pv7C/TL94Pyq/Gv8hfyw/Pr8h/3f/Rn+lf4p/7L/bQAPAb8BWwLBAioDZQPDAzYEhQS8BNEE2AS0BHgEWAQiBOADbwPxAnMCtQEUAW4Awv8D/1P+jv2x/O77YfvN+nH6Mvq6+Vz5Evnh+JX4Wfgi+O334vfr9+j30/fx9yD4LfhM+ID41vhR+eT5fvoN+837qvx//Vr+Wv99AKoBxwLNA8UEigV7BlcH1Qc7CJ0I5gjCCMIIpgg8CMwHiwfcBvwFcQXhBI0EgAR6BHsEnAT0BMkFsAYCCAkKBwwRDhIQNBKSFM0W7xg8G0wd+h5zIKIhQCI0IgMiayEYIPsdYBskGIkUJhF8DS0JwgQIAA/7APY88fvszOg45RfiP99/3DjaU9jn1iTW+tV/1mDXidj12b3brt3732zixOQ155TpFOyO7vbwRvNR9UD38vh0+rX77PxJ/mT/dwB1ATgCwQJZA/MDkwRMBQQGngYzB9sHlghHCeMJaQrHChkLaQu1C+YL3gunC1ILuAr0CQEJ1QesBmwFHwSmAgMBOf97/bz7IPq9+FH3Afbs9Bn0cPMM8+vy2fIP857zd/SG9cD2C/h3+RD7t/xs/hAAwgGBAz0FygYfCHAJhAp3C0cM6Aw/DXYNpw2nDYUNNg20DBYMbAueCqcJlgh+B2wGXwU/BBgD5QG/AJ7/af4//RT8Cfv3+fn4//cO9zz2c/XK9CX0tvNS8wDz1vLT8vTyH/N68/TzgPQo9fj11vbP9+z4I/pX+4v82/0N/zMAYAF8AoUDfgRjBSgG0AZxB+8HUAiaCMgI8gjsCOUIugiICEcIAgipB08HCAemBmkGGgbVBasFkgWbBcMF7AVJBuoGqgeTCKQJ4gpcDN0NjA+TETYTXhVDFyAZbBsVHW8evR9OIEIgMCB0H7IeDx2kGt4XDRTqD3gLjAa3Ac/8Xff+8ZrseOcJ4+TeT9tB2ETVFtN50VbQdNAx0FzQi9Hf0ojUf9YD2cnb5N4j4o3lFelv7KDvx/Lv9aD4Wfvm/TkAlgKpBNgGlwhaCpsLqwwFDhYPjhAbEpETyRSqFfIV/BXvFZ0VRRWcFKwTSRKOELgOqAyKCjwIrgXNAvP/bP00+3T58PeF9gH1Z/Pv8bfwAfDT7x/wnvAz8bLxMvK98kDzK/QM9R32VPeX+AH6d/sN/X3+DgBuAeACiQRyBq8I9ApDDSIPwhDfEcgSexP+E24UjBRQFLITpxINERAPzwyEChMI0wVcAzYBIP/p/Dr7LvmW9zj2FfU69NXzj/OG833zd/Nq8x/zDPOu8rfyk/Kf8lzyB/Ky8S3x3vB98OHwWvFK8nfzxPRG9uf31PnB+zv+kAA2A+YFjgg5C3YNjA9EEYkSSxPpExYUGRTpE6MT/xIVEvIQsA9vDlsNmQzpC3gLEQuhCgsKiwkgCaAIQQi3B3UHJwf0BsQGUQb0BUgF8wTCBAIF1gX+Br8IvAoDDXcPYRKaFQEZaxyeH5UiySRZJgMn5SawJUUjHiAKHFUXGxIbDI4FXP6R9tHuQueA4J/asdW80VLOt8sbyULH4sUUxTjF4sVOx8bIV8rPy4TN5M5K0C/SjtSv1xnbMt9k47XnF+y98H/1qvoQAHYFCwt5EJ0VHho+HjshgSPbJGcllyVzJfok6CM0Is8fcRy4GPcUFxHgDc4KUQjsBXYDGAHj/vH8GfuL+eL3iPYq9RT0FfME8uHwSO+Z7errxOo76j7qxOqM62zsTe2b7mXw7vIh9sD5w/3aAdsFwAmkDSwRaBR3FwAaOhwIHm4fJCBOIOEfsh4DHdsaYxjdFVETqRDUDdgKrAduBDgBN/1c+cX1h/LB7w3tkOof6CTmrOS542TjieP249Hk9OUd54zoO+pX7KTu5/AV8yX1OvdU+cX7CP5fAKICwwS4BlQIrQl9CksLCgyrDOsMMw1bDSQNFQ3YDFAMiQvlCn0KGwrTCa4Jdgk5Cf4IwwhOCNgHXAfxBp8GTwYPBqsFVgXqBG0E+wPJA9oDHQS3BHsFVwZZB3cIhAmJCpELpQykDZYOaA/MDw8QcBCREA0R2RE5E4IVvRckGmUcaR5UIHYiqyScJiEo8Cf3JgckpB/QGfcRSgnS/xr2Kuwu4z3b0dTcz4bLx8fAw2LA3r6JviXACsPuxcbIGcs8zKnMzswKzSLO+88E0xfXttsY4eDmo+zK8nn5ngCTCOYQ+xh5IK4mVCsyLj0vDC+aLUgrLShDJPkfYBviFq0S0A4qCxMIdwVyAxkCUgHpAKQAVQBs/w3+9Ptl+cT2K/TC8Yrvse0z7HrrXuvz6zXt8+458SD0uffL+xcAQATqB+cK7gzsDT4ONQ4pDkQOjQ64DpMOXQ7pDf8NXQ46D2oQPRJWFEoW5BdRGMMX4BUsE2sPIgucBtAB0Py295PyXO1N6LPj798W3Wjb1tor21TcJ94N4OzhoeNo5efmWejX6T3r4+yb7nHwQfJj9LT2Pvkt/KX/ewNgB2ML6A7xESgUjhVHFl0WIxZtFUQUoRK1EGYO7wt4CVMHggUhBDMDgAL9AWwB+ACTAGkARQAkAAIA3/+7/6j/2/8VAHwA9QC3AccCRARnBrkIlws1DnAQQxLHEyQVWhZ6FzAYURhrFx0WShQPEsAPfw3jC78KdQpSC3MNxRAYFY0Zpx07IYEj7SRtJdskLCMFILQcExlqFesRaQ7fCtAGEALS/JL3fvIG7jvq2ub34l7eOdk/1A3QCs2SyyXLDcufypTJx8dnxjfG+MeSy5/QEta42rPeC+LP5aXqD/GX+H8A6gfdDUMSJBUAFzAYRBkxGtsaHRvnGkMaRBnDF60VBRMwEG0NEQsgCXIHyAW0AyEB5/1J+o72A/MH8L3t8Ouf6tfpdump6VnqdOv+7BfvqfGq9PH3Lvsn/sAA3wJqBJUFpwbJBxgJngobDHANkA5fD+0PbRDyEJARTBLOEgIT3hJJEi8RsA/FDZQLSQn/BtwEFAO9AakAlP8a/ur7Ivkw9lvzKvG47xrvI++g70Pww/Ah8WHxvPFf8oPzJPUG9+/4vPow/Df9xv0S/mT+4f7G/9AA9gEXAxgE9ARvBZYFawXtBD4EdQONApMBnwDV/yj/e/7D/fL8N/zC+8D7Kfz2/BD+AP+J/3z/6P4E/kX95vwH/Yj9Vf4j/87/XwDSAFsBCQL5Ak4EBQbzB+gJpgveDIUNZw2GDD0L/Ak4CTwJ7gkzC6IMuQ3sDYsNawwiCzsKFQoKC4kMJg4fD3cP1g7RDcYMiQxgDmQS+xgKITgpDC/gMKAtkSWGGpYOiwQq/iz8Wf3Y/+8AGf8/+ljz8Ovi5QviaOCx4HPhZ+F732HbStVGzuzHCcR3w+3GRs671xLhmOhT7YrvifC58Uz0r/hU/jIEcwmCDVcQDxLzEmYTexPsEwMVFhckGnYd8x/OIDcfSBu8Fa0PQwpRBuYDLQJzANb9IPql9f/w3eyR6WznW+YA5lXmbOf26KLqF+z47ErtTe2Q7aHuq/CY8+n2HPqn/Gj+i/9vAL4BrQNaBoUJ0gwjETwVXRhDGtQaNxr1GIAXRxZSFX0UuxOtEhcR6A4+DO8IOgVzAQj++/qS+Aj34/V/9OLyyfAh7o/r1Okb6WTp/eoT7fDuIvB68CXwCvAD8c3yXvV++M372P6xAU0EWgbsBxUJBQqYChMLkQvdC+cL7QvNC04LZAo1CeEHkgadBdAEEgRcA7cC3QGGALH+g/wn+hD4iPZ99dP0jvSX9Lj0D/VT9Vr1bvX49Rf3xPgJ+6v9ZgD4Aj0F3wbjB5QIQQnaCVoKCgvKC6IMXg2bDesMPwsbCRAHpAVjBUsGvgf4CGwJDQn1BxcH1gdaCkQOpBIXFskXURgBGWwbjB8eJRgqIiyFKrckLhydE3MN0ArPC2kONRFOEw0UNxQjE6AQ1Qu4Azn4OOpo24POvMYsxa3JT9GP2Nrc2tzv2frVitKZ0A3Qk9AF0j/UF9cT25/gL+cM7iP0ePjD+j/8t/6dAz8L8RRdHhIl3idTJl8hWhuWFokUjhVjGKkbgh3AHGIZuxO3DDoFNP7895byHu636mjoC+dJ5o3lReRg4lzgv94u3hTfi+FK5bPpCe688ZH0ofaG+On6L/5eAh0HEwzvEE8V4xiEG0UdFB4mHqcdohwvG40ZJxg3F8EWjRbjFTQUShEeDRIIygIT/m/6Dvjs9rb2ofYh9tj0x/Jf8O7txesj6gPplegn6aXq0OyH72zy5PSf9sX3WfiU+FD58PpR/fX/gAI9BAsFVwVjBWEF4wUuB9EISwodC/EKpQnmBw8GUQS8AnABYABm/9L+PP7C/f/8WPxg+0z6MfkF+DX3v/YY97/35vgM+in76vsW/Pz7jPsp+9H67/pa+w78Af0c/jH/XQHpAw0G6QcsCdMJxAlNCQMJwAicCM8IQQnsCb8K1gu3DCYOrxBHFCoY1BpUG3YYfRL0ClEEeQAmAWcGrA6qF4Af7SQWJ4QmDSQeIBcb7xWTEUkP6RDfFoAfiSeKK4gopx1BDKb3xOQu2OrTKdcO31rn3ez37c3qmuSR3MbTPcvYwye/ub7+ws/LbNeP4x/t1PGa8RLuHepG6Hvq/PDD+sYFug8rF04bjxzTG3kaMhmOGMUYYhlJGhEbHRsMGncXBRPYDAwGhv8i+o728PTV9GL1qfWM9IXxFu0u6JvjQ+Ct3g7fNuF25CjozOvz7mTxBvMd9Af1B/ab9y365/25Av8H6wwdETQUQRZ9F0UY9RjWGc4aZhtCGysaBRgeFfcRBA+rDBELRwr5CZgJiQhJBskCN/44+WP0dPD67Tjt6O2E72rx3/KV82Hze/IY8abvpO6O7sHvRPLV9d75YP2W/38APQBc/4L+Tv4J/7AABgNJBQgHIQidCKgISwiRB3oGMgUHBCcDiwIiAs0BdQH/AHoAj/8v/sn8k/vV+oX6jfrM+hf7Xft6+2L7Lvsr+0f7rPsX/KH8Sf0i/h7/+P/HAGQB1QFGAs4CPAOfAxQEbASrBAEFbwURBhMHFQjICAcJ9Qg4CAsH+QWYBbQFFwcDCXoLNQ72D5QQcBAeEEgQWxLTFj4eUidCMPE27zjONQEuPyMkGA0PaAmLBxoJDA2xER4VahUgEdYHaPr96k7c1NGozUTQzNjY4x/tkfEy77DmV9rAzV7EDcAjwqHJiNRu4EnrGPNq9zD4i/XV8LnrU+ho6EftD/cLBKgR6hzwInAijxx4EzsK9wMEAhYE+giZDrUTjRacFuMT0A5UCF8BCPv79cTyavGa8avyv/PS82XyUe8A64zmA+MA4QzhA+NJ5vXpX+0K8Kzxh/If89vz9vTr9uT5sv1DAlcHZQzjEHQU6BbqF5sXmRawFWEVLBb2FzEaLhxMHUwdKBz6GQMXbBNcDwsL1gYUAwkA4f18/Jz7ifr1+Lf2//Mh8XnuMOxQ6uToE+jo54bo4On2657uP/F68wz1y/Ub9n/2Y/fg+Oj6aP0HAJMCwgRyBokH/gfBBwcH4QWwBLwDTwNjA7cDJgRRBB8EawNoAjMB6v+1/rv9B/2u/Pb8z/0P/08AQgGaAYsB8gAHAFz/Lv+u/74A/wEKA9kDNQQDBIgDygLFAd8Ay/8v/5f/KQFXBPYHHAseDGAKSAaiAJD7H/ld+q//zQf4EOIZVCDiIyskXyF9HA4WsA9yCrQH3gh1Dr0XaSPFLegzhzNgKyweFg/FAo38cv0cBIsNghViGTkY9BGfCNn98fKw6TXiFt3Q2pLbGt+h43Lnhuji5Yffndef0NrMhM3m0brYGeAk5iPqSOxZ7fTtue4T8A7y5PQJ+YD+JwU7DJgSChfvGEUYuRWMEhgQHw8PEKcS4BXdGLAanhpRGOYT+Q1cBygBGvyC+Fb2BvX285bykvBA7rPrIem25kXk5uF734Tdndz+3N3e8uGl5VjprOyH7w7yjPQa96X5LPyg/jEBUQRqCG0NJhPdGI4dZiA7IU4gXR6cHLUbwRt9HHAdOB77HcwchhocFwITYw6UCeYE/QAk/l78dfvV+oL5F/et82PvIuvB55nlB+XJ5WDn9uhE6hzrZ+tx633rzOs57ATtJO6+7+nxo/TF9/z64f34/z8BxQHpAf4BbgJZA5oEFQZLBzgIsgjVCN0IzwioCIUIPAjEBxcHOwZLBVMEzwO+Aw8EoQRbBfkFJgbvBWAFoQQZBB8EtwTHBfMGyQf4B5UHmQY4Bf8DPwMEA2wDKwQ2BVQGxAY+BvwErQLB/3n9xfud/OEA8wdiEUkaMCAQIY8cGRRtCnYCbf9mAhEKIRWjIJIqljGeNDIzmi0ZJDMY0AvyAAb70vtTAiIMwhX/Gj0a8BJOBhT3+Oc23AHVctKa1O/ZeuCS5nXqDOsK6P7hY9qP0wjPCc6A0KXVc9wW42joz+uW7R7uSe7z7gbxX/TZ+Bf+LQNUB2YKVgw2DYgNsw01DmsP0xEAFTkY5xo6HNkbhxnOFU0RugzXCBoGuwSNBBgFkQUuBWID/P8I+yL1Mu9E6i/nAOZn5vLnB+rh62jtD+7A7aDsFuvy6abpBusJ7oTyNPhE/qkDmgehCcsJ1QjTB94HvAlkDYYSPxgzHXMgiiGXIBQe7Rr2F7kVaBRBFJkUzxSGFDkTlBD6DDwJzQUGA8UAzP50/On5wPYc84TvV+xW6ljpUenp6aLqzepH6jPpwedt5pPlgeU95uvnI+qd7FHvHfLT9Br3z/i3+fr52PnR+Sz6Lvv5/Ez/sQGzAxoFiQUbBQsEnAJmAdAAKAEjAqEDVwXeBg8I0gg1CWUJPgkSCfcI3QgKCXgJRApyC5MMNg0MDdMLwglsB2gF/wPtAycFXQfLCYsLRAxsC1wJQAZLAoz+I/wx+279ywLtCvEUoB00In4h1Bq3D70E4/tK+RP+LwlKGRkpzjXfOwY6uzAuIo0RDAI096Lyg/WI/eMILhSdG/UdBhoVEKQCzfJe47XXc9Ew0UnWRt7P5QnrOezR6W/kot1a15fRI824yhrKnss5z3DUadpQ4BPlLuiu6hPtWfB39Jr4U/yK/h//l/4c/nD/CAOACMwP5RZrHG4fgB9MHbcZ1xUuEkwPkQ36DFINqQ5FEP4QKhAPDZQHrADy+Xv0KvE08PbwWfKb85LzB/Iy77nrleg95jjlk+U7593pKO3q8Mz0MPi6+nf8Sf1q/ZX9mf4LAfEECQp9D00U+RdDGjYbBRsxGu8YTBekFVMUphPTE7QU0RV7Fu8VfhNiDwkKaASy/yf8M/qG+Vf5JflD+LT2T/Sg8RTvtewD66np9ujJ6Ivpvuow7IrtWO7t7i/v3O8G8d/y+PRS90H5n/pt+7v7Hvy9/Bf+4f/eAa4DNgVJBq8GqgZSBsoFTwUPBRIFoQV1BpUHgAgXCQYJ7AdwBgQF7QPvAwIFrAYACakKXwv/CpAJUwdkBWIDXwHmANMALAOyBn0L8A/rESAR2wubA2/6dPPS8PPzv/uKBpARnhpzIKciDyKlHhIaWhMxDIoGDwUqCdMTfiHWLhQ44zgyM1coLR23FNIPnA7VD5EQrBD8DzgO5AwTC70HWQN+/WH36fHl7ZLrlOn55qji7NxV1h7Rs87pz0vURdkj3TreEdyX15DSFc56y4bLUs7205LbS+Ss7CvzsPaR9hT0BvFO7/TvXvO4+UwBxAk1EUoW9RigGA4WOhJBDqQLVAs2DTURGhZhGt4cUxw4GY4TqAwJBrIAv/3Z/NX9nv9oAZoCmQJPAZr+v/on9qzxA+6w6y7rbOwO71/yqPVi+BD61fqR+iP67Pkt+iX7nPyF/ssAngPCBgMKDA1oD70RfhNZFJIUfRRNFAcUxxNmE8gSTBIhElUSthLeEisSJxCDDIkH+gG+/Jv4EvYt9Q31VvVu9en04vNf8ivwX+1v6pDnROUC5A7kn+WS6Frso+/v8d/ymfK28efwxvBw8fTyNvUd+FH7lf6CAa0DowSuBO4D5gIVAgcC4QJ9BLMG7gisCrQLHwzhCwoLtgk5COoGFAYPBsIGHgi8CSYL2AvdC9YK8QjBBsMEbQOyAqwCGAOxAyQEQAT8A14DbAJcAQAA7/7m/nMALgQ5CUEOXxFfEfYNQQhLAtH+Wv8iBDsM5hWkH48nAy2AL8QukioUI7IYVQ0QBQ8DWAmNFn0nwjVZPDg55SuyGFQEyPN26XPmv+lR8Zv6pgLdBy4IjwMa+ifs2tybzkXE9b+Ewj3L4dba4VDod+gd4t/XnM28xqXFDspg0lrck+XN7AfyifV999/3tvZd9BHyefHL85b5GQI0C7kSYhd8GPoWRBTiEcIQaxH/Eo8UuRUOFtEVRRWMFMcT0RKQESoQvg4VDSsLogjeBD4AhPtj98f0E/T+9LT2Fvgo+LH22PNf8Dvt9+rs6fjpDOvm7Dvv+/HT9DX3uvhQ+Rj5uvj2+IH6mf2uAd0FTAlaC/8LAgxQDGQNTw+ZEccTPBXUFbAVLRVTFBETUBHlDhsMewm7By4HuwfCCG0J7AiqBvMCO/5a+U31h/I88RjxyPH08i70TfUH9gH2wfR48mPvNuzv6QPp3el17EDwM/Rj9yj5nfkM+Qv4C/dq9ov2lffD+aL8/P80A+UFgAduCJMIcwhhCLkInwmwCisMcA2KDmIPGBCFEHAQ1Q+yDjwNuguWCtAJjQl8CVIJwwgoB/YEygJOAQQB6QFdA14ErwS9AywCjQDo/y4AhQDQADcArwAUBFcLZBUrH7ckxSIAGn8N4gLL/jkDgQ7yG+smlSzGLI0pMCWdIKkbwBS0C7QByPmN91z8bwauETkYRBZ+C7L6c+mj3HLX49kk4Q/pnu5T8AvvtuuQ5zrjqN0814zQksufynbOmNYA4YTqJfCD8LzrY+SE3dfZMdtn4ejqTfUp/hgE0AYwBx0GegQEA+ABmAGxAqQFego2EKoVXBnQGdkWxhFWDC4IhgaGB10Ksw0hENEQYg93DLQIjQTPAKD9RPvv+YX5GfpA+378If1y/GL6Xfcf9JTxTPBc8HPx7vIt9P70hvUV9vD2IPho+X36Q/u3+y/8F/2Q/mIATgLEA8YEqwW8BncIwQoADZwOGQ81DlMMVQonCUkJvwrPDHIOLg/TDnwNwQvzCSgIfQa+BPcClgHCAK4AMgGYARUBUP85/KD4bvVq89zybfO+9Lr1Eva/9fj0DvQM8yzyWvGb8DfwYvAz8bHysfTI9pT45vmL+qv6sfoM+x380P3h/xoCHQTPBR0HEgilCPQIGgk2CScJQAmbCVUKXwtoDFINwg28DVsNwwwiDIsL/AqEChgKDgpmCjkLgwyIDaQNIgwvCQoFRAEX/7L/fwKYBnAKiQweDfkL3wmgB9QFFAQUAzsDpwVcC9kT7x1yJgsrmSmCIgUYTw3UBY0Dlgb3DNMTjhh0GfIVBw9bBsX9XPb/8CLtmeom6vnrrO/x84H27fT67cHiK9bzy9PHAcuJ07TdseXe6ITnRuO/3r3bmdrQ2p7bO9094HTl5uxX9fn8swEzAg//HfoS9hz1//df/hgG8QxKEZISjRG0Dz4O1w1aDk8P/w8eEPMP8w9UEBARrhGBESEQuQ3TCkEIrAYUBkEGcAYRBuAEDAMgAY//aP51/Vf8w/rW+On2mvVl9UP23PeM+Yj6Wvr7+AX3XPWV9Bj1wvYr+d/7f/7BAGoCUQNuA+IC9AEmAfgA4wELBC0HjQoYDQUOJA3SCgkIpAUcBLoDTgR4BbsGpwf4B3QHKwYpBGkBY/6W+9T5gvnX+uv8t/5u/27+QPyI+Tv37/XD9Xv2ffdj+O34Bfnh+J34Wfgf+NL3pPfS96/4VPpr/Ib+AQCpAEYAXP+D/lP+NP8nAc0DoQbuCA4K4wm0CBwHrwXWBLsERwVGBoYHyAjXCYoKnwpECjIJ3QeBBmsFMgXDBSUH7ginCowLSQvECWIH/gRlA1UDFgVRCBsMHw9zEKoP+gyqCb4GtASkA70DMAX+CKcPJBjyIGYmYSWgHYERMwXR/cr9hQXoEWMe6idsKzgpZCLzF5QLIv748b/pLuhL7zX91Qw0F2wWkwjF8SzaxclQxRjMy9mM6E3yYvRs70nmZtxd1EXPqczzy9nN2dLo2qDkMu2j8Vbw7OlI4Wnad9iF3Czl5e+Z+RgAygKSAt4Ax/7q/LH7Zvt//I7/swRdC8YR+RV4FlcT3Q12CGEFtQUzCV0OFBOqFZEVURPVD0cMhAm7B+IGtQb8Bq4HhQgECdoIhQcDBd0B5/4C/br84v2c/+kABQHX/9P9wPtc+gf6rPoN/HL9XP6m/n3+Q/4K/vr9DP44/sD+t/8CAV4CXQOWA/ACjwHs/5f+8v0z/jH/lAB1AYQB0QBw/+L9ePxt+8X6avom+vL5t/mC+UT5EvnY+En4offc9mH2Sfar9kP32/dD+Fz4gPjT+Kj54/pY/Jb9gf4O/43/OgAcARsC9QKyAyIEbQTKBHwFrwb1B/EIYgkvCZEIBwjqB30IcwltCgcL+QpUCl8JqQiWCCoJLAoxC6QLPwvTCfYHWAZ4BXwFZwbuBhkHCwcIB4YIBwvsDTEPWA3vB84Aq/r/+HH93gYDEiQa6hwyGU0RUAkdBQ8GnQtUE9AZZB18HXIbshi1FqgUVRJMD6YL7gg/CJYKPg4sEdoQawyBBPz7ZPV48oPzpPYg+gD8FPtw9+zxGuxC5yHkiePR5B3n8OiR6brosOYz5NThDeDd3lLecN6H33nhM+Q754LpZuqL6TXnfOTx4uTjqedr7bnzX/gz+kv5ovYn9GfzP/UY+dX9JQJZBTYHAQgnCMMHHwd6BiwG0gb0CB8MmA8VEuQSohEQD24MvArLCgIMsA33DkYPtQ6FDUEMOQtkCn4JRwi8BigFCQS6A0EEBwWFBSoF0APrARQA0v5f/oX+wv7g/tj+4/48/+//nQDdAFsAH/+r/ar8nvxV/ZD+sf9BACsAlP/F/vr9cP36/JT8HfyU+yD7w/p7+in6xfkY+Vf4wvdj90v3WPdd9z33/PaQ9jL28fXg9Qb2aPb59o/3JviV+AT5evkP+pX6KPvZ+4v8aP1G/iv/8P+0AGsBPgIdAxcEAQW0BRcGBgbjBcQFDQbLBvkHMwnmCesJQwk1CEIH4gY0BysITAkoCpMKkwpHCvQJ/AlACpkKBAvxCq8KdQo9Cv8JpQnlCIUH7QX7A2wD0wSZCP8NhhJiFNAR2wswBRABxAFaB2UPWhaTGSQYJRRLEAEPBBGWFGIXQBd+E4gNkwjnBlwJjQ5LE1kU3RBUCvkC+v1f/Fv9HP6n/OT3yPGc7Xft7/Em+CH8X/pE8p7mvdvi1TbXod6x6LHw0vMJ8e/pquGY27PZ+dvz4DDm9em56+Truev/69DswO367Vntcuw87OvtrPGk9kj7Bf5A/oj8Avor+Bf45Pnk/N3/GgJZA+ADKwSnBDMFhQV4BfAEZwRwBGwFVweLCTwL2QsHC2QJuAfQBv4GBwiNCaYK+QqpCvYJSgnICFAItQfuBhUGeAVrBeAFoQZTB3oHwgZvBe0DqwL6AeYBHQI/AgECagGwACAA5v/s//P/pv+2/kn9uvuB+gT6ZPo5+/r7F/xO+/T5jvi295z3IvjQ+DX5Hvmd+Pf3gfdY94D3zffn98/3tffP90j4CfnF+Uv6ZPoX+qX5Ufll+ff5+Po2/Ez99v08/kT+WP6d/h//uv9RAM4ASAHsAcoCtgOZBEMFugUJBlsG2AaRB2QIHQmQCbEJpQmhCesJngp+CzgMkAxZDLILCgu+Ch8LCQwMDbANbQ0uDHcKJAm3CFIJiQqmC8wL3AoSCSUHEAZ3BqkHBwk8CdIHlwWzA2cEMwg7DtwTIxZgEzgM3wMu/kr+GAQqDVgVmRmyGHsTwAxGB34EPwQjBZ0FSgWWBHMEQwVtBnAG+AOn/rz3yPEy7yfxLfZ9+zP+QPwg9hLuWudv5MPlAeqC7vPwU/AW7efoq+WO5I3lludt6Ufq1+ne6IDoeem/60zuJfCe8MTvue6e7hDw1vL69U/4Vvkx+Z74oPjS+RH8kf5zAF4BUAHjANoAjQHiAjYE9gQABa8EpQRvBfkGtwjNCZQJMAhDBsUEdgR1BUgHOwlYCkEKIQmXB04GiwVsBaMF8wVeBuUGjgc1CIYIPAhOB9wFYwR+A3UDYQTWBT8H5Ad9B0AGkQQTAzYC/wFRAsAC+gLlAn4C8gFiAdQANQAx/+79pfyp+1r7tvs+/Hf84ft1+pH4zvbD9XH1svUG9gn2oPXp9Cr0p/N082TzVfMM86jyfvK98o/zwPTb9Zj2wPaC9jb2Q/bd9gj4ifka+1b8Ef10/c79Yf5L/18AewGCAnADYwRTBW0GgAdcCNgI/ggKCZEJ3wrMDPcOtRCTEXgR0RAnEPYPVxDaEAERfBCJD+UOIg9LEPcRCBOAEvYPOwyRCDIG4wUQB9UIPgqMCtMJzAjEB/EGQQZIBSwEXAOBA08FCgjfCrEMdwyGCpcHMQVqBAoFqQZcCHgJ+QlDCpsK7QphCj4IrQR4AEz9mvxZ/osBTAT8BEED+P/3/F37Kvt2+/L6D/l59mz0SfRN9sT4Hfrq+Az1cfAE7WDsfO6d8bzzQPMc8L/ra+i157bp7Oxj79bvJO7F63XqN+vi7dvwe/Ls8a/vd+3y7A7vNPO298j6R/ua+Q73U/WI9Z73ifoI/Xr+wv51/nn+Vv/OABkCoAIVAvsASQDXAMUCaQXPB/EInwg8B8cFKgW7BUYHBgkmCkkKpQnUCHEIpQhGCasJcAmoCLEHEwciB8YHhgjUCEcI+wZgBQsEfwPFA5MERgV/BSMFTgRsA74CPQLdAWQBwAAHAG//K/83/2D/Sv+U/lL90/t4+pn5Ufln+Yn5VvnE+Pn3Ivd89gn2vPV59UX1EPXv9AH1TvW39Qz2Q/Y19vf1yPXL9Tb29/bf98z4gPnu+SD6QPqG+gf7yvu0/Nj99/7f/6YAdAFNAlQDeATFBQIH+QeoCDgJ3wm4Cp0Lkwx2DU4O9A5MD18PFg+cDiAOwg2qDQUOmQ43D5gPjw9DD7IOEQ6UDR4NhgyqC7kKzgmBCSAKgQu3DHoM9gmmBU4BO//eANAFsQscD60NggdP/1P58vjV/msILxEwFd4SKAyxBNv/Lv+YAeIECgesB8YHiAhXCh8MVgylCTYEDv7M+VH5kfyFAVsFzAVyAun84fch9Qr1qvZD+Iv4NPft9OXyGvJE8n7yAfKA8GTunezh6z/sMu3x7Rvuxu197YPttO2o7f7sv+uQ6k3qhusq7i3xbfMt9EPzbfHK71TvXPCH8iX1mfdT+Tb6gvqS+qv6GPvI+5T8Zv1D/lH/ogAuAroD9ASOBX4FEwXFBOgEmQWyBtUHvwhNCZYJ0wkaCk4KWAoJCmQJwgh9CN4Izgn3CrULrQviCqUJfQjJB5sH0gcVCBwI1gdTB8IGTAbyBaQFLgWeBBgEsgN1A1QDFAOZAt0B/AAWAF3/5P6n/p/+kv5I/rX92vzt+yr7ovpB+uP5Wvm9+BT4gfc79y/3Wvd493D3KffE9n/2bfaU9uL2Mfda94b32Pdu+Dz5Kvr3+pf7AvxP/Lf8Uv0m/hj/EgDeAIkBGQKkAjUD1QN9BCUFzgVqBgoHuAdfCPIIPglYCUcJHQkeCYsJRAoTC7oL6gu0CzcLtgpOCgMKmwnsCAQIPwfEBvwGqgdICBUIqgY8BKkBSgADAQQE8wevCj0KowZvAS79z/yFAIQGbwtiDFQIVQHy+qn47PuUA5MMsBLQE9IPGAkKA+n/aADBA7sH+QrbDE8NJw2lDFQL2AhUBXcBtv4s/hoAsgPBBosHUwVtAKH6vPXN8izykvNl9qL56/vd+0X41/HQ6snlOOU26X7vhfR89f7xoeuT5Zbi2OM06P7s4u/N75Dtyuo56ZTpXuuo7SDvlu+H79zvP/F38/X1xPdx+CL4kPem9934Cft3/XD/qABaAQcC5gLXA5cE6ATgBMEE3gRiBXIG8AdzCX0KsgobCgkJ6gcoBxMHygcMCVEKFwsuC7AKyAnCCPgHsQfsB2cIwgjMCIAI6QcfB1sG4gXEBasFYQXOBPQDHgOUApEC9gKCA70DOgMUAr0ApP8Q//r+M/99/7H/qP9f//L+jP78/UH9Sfwq+0P6+/lE+tH6L/v8+jb6D/kI+Hr3h/f395H4+Pj++Kr4NvjZ98j3EPhp+Nb4ZPk2+lf7fPxZ/cj9zv2J/Vr9hf06/nT/HQHPAjcEEQVGBfUEbwQABNYDFASzBK4F5AYPCOAILwkYCbkIOwipB1MHQweFBxwIvQhACXgJZAnoCOwHZAaXBAIDVALdAq8EOQdwCVcKagnqBrUDLAFGAEkBdgNWBfAFQAVnBIUENwaxCIQKfQpaCNcEkwHL/3IA1AMQCdkObBM2FTMT2g0WB3UBPP9sAREHcw29EUASXA8UC18HYgWsBKoDWAGU/b35CPiT+dL9eQJ0BKQBdfoe8RjpPuV/5rnrBPJ79pb3d/WU8V/tuekd527l0eSZ5S7ofOx28WX1yvbK9Bnw3+pO5x3nY+rx77/12vl2+676uPj29hf2XvZ+9wf5w/qd/Jf+mABVAmIDfgO3ApQB2gACAT0CJQQMBncHGAgYCMQHVAfuBp4GZAZVBpUGKwfHBz8IUwjmBxwHOwarBZEFTgY0B64HnQczB8oGqQbVBvEGowbrBSIFowSuBFYFQwbEBkkGtgRxAjAA5/4N/2EA2wGnAi8CcwAm/hP8zfqR+iT74vtU/Dj8rfsM+7X6pvp3+gb6M/lO+M/3IPgk+WP6Tvtw+9L6zvkB+cf4KPnh+Zf6GPtg+4z72PtM/NT8Sv11/WT9eP0I/jX/rAAKAusCMgP0AqMCqAJNA3sE8wVWB24ICgkmCe4IkwhcCFkIdAiiCAAJiAkuCsoKIgscC54KrQmjCBIIJQjRCNwJrQoLC/MKVQpMCQYIhwYXBfoDlAMyBAkGhQiJCusKDwk9BcgADv6U/nACzQfDC7gLYgf0APT7r/uTAHYIaA8uEpIPJgkuAur9+v0LAmsIhw7LEl8UhBPUEKUMYAeZAZr8GvpD+wcAxwa3DNYOpwuPAxb5yu9p6inqFe6w84P4vPoj+jT3uvJ37dnn0+KN31fftOKx6MjugfI+8ujtZueF4Y/eV9+04gXnzeo17ZXuh++r8M7xI/It8SzvE+117HnuD/M4+fP+dQLuAsUAjv0D+2/6E/xA//UCNQaCCNkJYAp1CjIKiAmTCLEHXQcHCNQJVgzWDnkQrBB3D3ANewtPCj4KAgvvC2gMRAyaC9wKbQpXClsKJQo5CZsHugUuBIQD2QPxBBAGqgZIBuYE6QLbAE7/f/5h/rz+NP+Y/8P/s/9m/9H+7f2x/Fv7QPq0+Qv6Kfud/Ob9Xv7M/V/8nfo2+cD4XPmn+if8Nv2f/XL9Af2I/Bz8tftS+yX7UfsD/CP9aP5X/7v/eP/b/j/+B/5X/hP/FADwAKgBRALdAp0DSQTLBPoE5wS5BLsEIwUfBm4HtQiCCRsKBgpqCdcInwgdCSIKfgvhDO8NYA4ODhsN4wucCpAJ/QjpCJYJ3goKDIMMqgtvCYYGmgNeAVoAQgDOAFUBlQG/AUgCcQPkBOUFvAUiBMYBwf94/4ABQAW6CE4KLQk0BgkEZATAB30M5A9xDzoKkwLz+z/6hf+HCjQXpB+wH4cWVgdM+PzuEu4X9HP9Uga9Cz8N9woaBkL/sfaN7VDlXOC94AXnV/F0++sA1f4S9Rfnh9qz0yHUb9pA49zq4O4L70jsYujp5ITiYeGX4WTjtuYG62nvivJt88Xx1O517CTsiO708u33nftK/Ur9k/x4/Cb9kv5BALgBNgP3BGIHNAqfDMgNMw0lC6gIBQdcB8gJiA04EYETwRM6EtUPXg2IC48KPQpgCucK9QthDb4Odw8ZDzkNPQr5BmEEJwNgA6AECwYQBz0Hdwb1BOsCmgBK/mD8KPvT+nz70fwz/uH+aP7g/KL6bPjs9lP2lvZy93j4MPmD+Yn5VPn2+FT4Xvcz9ir1qfTm9N31L/d7+H35APrb+Tn5aPjY96339veP+HT5gPql++b8Av72/sf/bADzAI0BSQJNA28ElAVsBtgGEAclB4IHZQjZCbULYQ14DrIOPg5/DdIMiQz0DP8Neg8BEToSsxJMEmgRPBAKDxQOZA3SDGsMIgwSDE0Mtwz6DMAM5wsgCgkIOgY1BSUFhQUCBjUGRgZPBm8GpAaQBp4FtwMHAcj+lP4aAR0G3gvkD0UQTQyyBUz/3/u1/HQBzQcJDeEPwA9SDUkJJQSG/tL4bPRq8w/3Lv9KCWgRkRN2DX8AhfEY5sHiVuh389n+hgUEBVT+f/R069XlFOSB5Wvoautu7aTuYO9R7zruBez56AbmXeTE5BHnOOrs7EPuD+4s7drs6+1i8DTzQvXP9e30sPNb88D02PfZ+7f/qgIkBFkEzQPeAiwC/wGnAlIE+wZBCioN9A4WD7YNjguHCakIMgmcCj4MWw2wDXkN+gyDDC4MzAv5Cq4JLQj0BoAG2wa+B2sIZAh1B/MFdARYA6oCPQLHAScBeAD3/+v/WgD1ADYBpgBW/5/9LvyA+6z7UvzV/M38E/z9+gT6gPl6+cj5DPrv+Vb5Zfhm95z2J/YK9jD2W/Z49pv2yvYG9zj3PvcD95j2I/bs9SH2rvaE9374ifmD+jz7pvvY+/T7KPyO/CT9Gv5Z/8kARgKuA88EmAUPBm0GvgZOBygIOwlnCncLWQwDDZQNKQ61DjcPkg+qD5IPZQ9SD5sPIRDLEEERKRFUENkO4Qz8CogJlwhTCIIICQnICZgKBwuNCjkJRgf+BAQDlgFxAawCIwW/CLcMMBDiEbUQZQyKBfH9IPir9uD62QOZDncXVBvXGIERUwjRAIz9i/6gAuQHnAzJD/UQMxB2DboIIgLA+kj0j/Dq8Mr0Evox/tz+n/tz9bzujumk5tXlveWf5Xrlk+Vt5hno7+mf6jDpz+W84XDeTd3R3n7i2uZQ6iTsdeze60brTOvk68rs0u0a7/bwmPPa9hr6qvwJ/jr+xv2j/Wv+JQCCAt4ExAYcCDAJOwpACxAMUwzWC7gKvQlvCSMKrwuLDRAPiQ/oDqcNOAwBCxoKfAkQCcwI6wiOCaEKsQs7DN4LRwrTByIF3AKZAYIBhgIfBMQFCAeCB/AGJgVXAvT+1fvv+dH5ffsb/poAAQKzAdn/Df08+jD4R/eT96f4Efps+2b8sfwJ/Hz6QPj69X/0T/SF9aT3vfkI+/r6vfnw91P2fPWL9Ur2Ovcd+On4ovlc+gf7YvtP+9v6RvoI+lr6Lvs7/EH9EP5u/nr+if7q/qf/mQBtAegBNQKIAjMDKwRfBbMG0geLCOwISgnpCaQKTguBCxwLfQrZCZkJGwpCC6IMZw0VDcYL4gk2CDoHCwd7By4IzAgaCVgJuQkMCjQKvQltCIAGowS0A04EUQYwCQoM4w1ODkwNNgsSCbsH1gdtCRkMJQ+BEbMSRhI8EPcMMAlIBi8FmQZDCkMPFhTKFvwVFxH7CPX/yvjC9V73nfzaAlYHLQi5BPr9o/Wx7eXnROXc5bHoC+wP7sntd+sW6ErlOeQl5f/m+OcL50XkmODG3YrdhuAA5i3s4fDW8qnxT+5T6innDOYp52bqS+/T9Bn6KP5ZAEAA7/0m+lb2QvQz9XD5KwB6B/QMFg+/De4JfwWDAj0CsQTFCPQM1Q/gEH8QgA+cDjUORw51DmYOCA7ODfYNeA4fD2sPAQ/pDZ8M2AvACyEMXAzYCysKqQc2BcED4AMtBcEGeAeSBkAEWAHV/nL9aP1T/mn/EQAFAGL/oP79/Vn9aPwR+5b5e/gz+Nn4Dvo2+6X75foY+dT29fQL9Cr0tfQf9QL1hvQT9PbzOfSP9Mz0uPRP9M/zp/M/9Hn13fbi91n4T/gq+Fr4Avkw+sP7Xv2M/gj/1f52/j7+Rf55/vn+//+ZAWoDBgUVBmAG/AUwBWwEFgR0BH0F2QYkCB4JswnOCcsJvwnOCfMJCQr9CdMJ0wkVCpsKJQuJC7ELhQs3C/AK2Qr8CkgLjAvVCyIMiQz6DBUNogxuC90JvAi8CB8KqwxoD8YR0RIeElEQ8g2sCz4KXAmZCdULLRCQFhUdoiG0IZUcRRN5CCsAH/0AALsGYA7KExIVZBLSDPYFDP/V+NXz8e/o7Zjuv/FT9kr6EvtV9/TvVOdD4Jfc4NwH4MbjGOY95ojkI+If4DnfV9+y377fXd8m36zfSOG/42fmYuhF6UjpJOm56T3rd+3N72TxIPIU8hHyCfMG9cf3p/oY/QL/ZABaARUCcwJpAhgCBgLjAhMFjQiTDPkPtxGBEb0Pgg0eDA8MXg1rD4oRSBNQFK4UaxSOExsSQhCcDmcNDw3LDQ0PDxASENMOyQyJCsYI5AemB4wH/AbTBTgEowKkAY0B8gFGAv8BAAGc/zv+Q/24/Er8n/ug+n/5xPjM+HP5Rvq3+lz6Iflp9+X1OfXU9V335Pjp+RT6lvnk+Gv4X/im+P74IfkQ+en4B/mR+Uv63/oC+7r6L/qj+Wj5hvnm+WT6tPrH+sT69/qQ+2j8Rf3X/fv9zP2f/a/9Kf4U/1cAqwH0AtkDPgRABAoE2APmA1cEIwU1BkgHEghWCA0IegfuBqQGygZ+B4AIaAnmCc0JLQlWCIgH8QaTBk4GSAaqBnoHtQgrCnELEgz1CysLCwo4CU0JfQpBDPwNHw+DD8MPlBBqEmEVYxgxGkMajhgRFisU3BNbFdgXYRoiHGUcqRsMGn0XqRM4DnsHigBJ+3D5p/t5AGcFlwcUBdv9ofM/6YXh8d2J3vjhMOa26VjrvuoQ6OrjGt+B2jbXJNbT18PbyeAy5bvn4ufP5aji1t+P3hTf8+DM4/Pm0ek27AzuQe/E76nvNe/27jvvQPDs8ejz2vVL93L4tPkg+738Rf6I/1sA5wBxAUgCgQMCBaEGWggxChYM5g1lDz8QPxC0DwoP7g7zD9MR0BMAFfoUxBPrEU4QfQ+GD/kPRRAhEFUPIA4DDRYMRgt3CqcJ6whwCEsISAgVCDYHtQXzA2kCnwGnAVQCCgNAA6kCWQHB/07+Qf22/Gj8Ofwo/EL8r/wg/ST9cvz8+h/5e/eC9nD2G/cj+Pj4Dflr+FL3RPaW9VT1P/UV9dD0lfSd9AL1wvWf9kf3kvd+92n3yvfd+GX67/vq/BX9uvw1/Dz8Fv2i/oYANgJlAwMEPgSCBOcEXAWUBYIFWAU/BX0FCwbeBpoH6QfEB1cHEAdRByQIMAkOCnMKZAorCigKqQpaC+YLFgzMC4ELbwuOC6cLKgv/CZQI8wdMCbEMUBG2FfwX+hYgEwsO/AnjCLgLohGgGNAelSJFI5AhOB7uGUkV4BCqDdIM/Q7WE7cZ4x0CHiYZNhD4BZ79c/nj+SX9wAAZAvD/9vrY9Gbvxesd6o7pJOkE6JjmROUn5GvjQeKx4A7fA9403tzfYOJp5N3kLuPi33Pck9pP27Peg+Ml6DHrCOz06uHo5+b65VXm1udQ6lbtp/D087D2Qvho+D33evVT9LT08fZy+if+8AAUAsgB2QApAFIAXwH2ApAExwWeBlQHFgjlCKQJXQr/CqELRwy0DLcMHwwcCxgKrgk6CqwLcw3TDkwPtQ5YDbcLPgo8CbIIogj3CLAJqgqVCyIM7AvKCvoIFAfZBaQFdAbSB+EIAwn8BwsGzQPaAbYAPQAqABYAx/9T/8D+H/5q/YD8Ufvh+Vz4KPeq9tD2Tveb90H3Qfba9JLz5fIS8/HzqvQB9bH07vMx8/HyXvMx9Cf16/Vf9o32rvb99pb3XPgo+fH5w/qv+7f8q/2C/j//yf9cACkBZwIhBP0FrAe5CDsJNgn3CP0IngneCnoMLA6eD3YQqRBnEO0Pdw93DwIQ9RAlEiMTvhO+EwgT1hFzED0PkA6cDncP7xChEuYT7BOtEjkQCQ32CbgHBwcNCHUKPw2PD4IQqg9zDaIKOAjtBjcHyAjYCpwMiA1PDRMMSQpxCCAHeAaDBjcHNQiWCOQHwQWUAl7/Lf0J/cL+NQGiArMB9f1G+HXybe6Q7cHvtvNh9/D4n/ek82fulOlb5kTl+uXW5w7qwuuF7B3su+q96Nrmh+UN5Z/lF+cn6SLreOwQ7SXtOO2D7Qzu4+7l7/bwMvKq81D1DPen+OP5dfpT+r/5MPlf+Wz6U/ye/rEACwJKApgBaABA/6z+7/4TAM8BdwOMBOsErAQGBF4DKwOhA8YETAa+B7EI6wiGCNoHWQdMB+cHCQmHChAMPw3ODZcN0gzAC84KTgpUCu4K2wuxDBgNyQy3Cx8KgghWB7sGuQYIBz8HFAdqBkAFxwNTAhkBIgB0//z+rv5u/hj+k/3j/P77D/tM+rj5V/n2+HH4rPek9p31z/Rp9Hr0x/Qi9U31BvVj9I/z6PKo8tzyYfMR9KP0/vQ/9XP1sfUH9pD2Ufcg+Ar58fnZ+sT7j/wr/Yz90f0g/qv+if+9ACQCpQPkBLsF/wXgBbMF1AV0BpgHNgkTC6gMoQ3mDZsNNg0bDXwNRw5ADyEQshDvEPsQ8hDgEP4QGhEmERARwhBOEMAPXA8ND+sO5Q7rDv0O9w6mDt0N6wzQC8QK/AmkCZsJogl2CewI6QeABhcF/ANlA0MDdQO3AwcEDgSrA/IC5QGlAHr/hP42/qn+vf9CAYsCLQO2Aj4BJ/8d/dr7uPvG/JP+dgC0AcgBtwDo/v/8rPsx+6/7vPzn/b/+4/5n/ln9F/zz+hr6qfmi+en5XPrJ+vP6tfo3+ov50vgu+Lb3jfeS98H36/cO+Cr4OfhO+Fz4YPhD+BD4wfdy90T3Ufe191r4Gfmd+cP5i/kJ+YX4K/go+Hf46fhU+Z35xfnA+cj53fny+Rr6IfoX+gP62vnX+en5I/p8+un6ZvvP+yv8avyB/HX8T/wu/Cr8WPy8/Ef97P1//uv+Fv/7/sr+pP7J/ib/wf9oAOcAOAFBAUIBOwFpAakB7wEdAhwCOwJrAssCMwOUA80DtQNpA/YCoQKRArIC9AJDA5YD4QMTBCEE+wOhAwoDTQKvAVkBbAHNAWcC8QIqA/oCXgKPAcwAQAAKAA8AUgC1AAQBIwH+AIYA3v8p/57+Qv4l/kz+kP7Q/vP+1/6H/iL+u/1u/TX9Jf0p/TD9OP06/Un9Z/2a/dj9D/4t/h3+9f3N/bz95v1C/rv+UP/L/xsAUgB2AKkA3gAVAVsBngHoASoChgIAA5ADIASkBP8EMQUvBQsF4QTGBMUE7ARMBeYFpgY9B3sHXAfZBiUGdAUTBTAFxgWjBlYHowdaB5YGkgWfBAIE8ANdBBEFvQUJBu0FUgVUBC4DHwKAAWgB2wF9AhYDTwMCA0ACPwFGAJn/S/9H/3r/wv/k/+3/4v/E/4j/Fv+P/gj+s/2b/bf9CP5y/sf+9P7i/pn+OP7j/bT9nP2u/d79Lf6O/uH+Ef8J/+P+nP5d/iX+FP4h/kz+hP7r/jr/RP9H/zn/Rf9C/0j/Wv9N/0f/RP9Z/6X//P9KAH4AWgABAIj/FP/h/tb+FP9K/33/nv+T/4b/Vf8L/57+EP6H/S39Gv1i/dL9NP5K/vD9Lv0z/Fj74Pr/+n37Jfye/J38IPwx+zb6hfk++XT56fly+tn68/rZ+nv6Gvqp+Uj5Fvn2+CH5evkN+qP6FvtB+wn7mvod+ub5Fvqw+pn7h/w3/XX9Tv3o/Jf8mfz//MX9u/6D//v/DwDs/7//v//7/20ADgGRAQkCRgJiAnQCZwJhAlECTwJJAmcCwAImA4UDqQN+A/gCSwLKAYcBrgEMAnQCpgKDAhgChwEUAeIA6AD5AP4A5QCoAHcAcwCbANsAAwHsAIsABQCT/2X/mf8RAKcAFQE2ARgBzQCMAGQAYABlAGsAcAB9ALIACAFlAZkBfwEoAagAQAAwAH0AEgG2ATgCXAIbAp4BIwHgAO0ARAG/ATkCkwLCArsCpAJ2AjMC4wGnAaQBzwFAAtkCbQO5A5EDFQNsAusBwQECApACJQOoA9QDogM6A8YCdQJcAm0ClQLMAvoCGgMyAzIDCQOqAhoChwEdAfUAKwGZARECTwIlAqAB5wA+AOL/3/8eAHkAygD3AOMAogA+ANH/a/8j/w7/KP9+//P/UwByAC8ApP/1/mH+Iv5X/tv+dP/f////1/9q//v+tv6f/rL+1f7x/gj/Iv9C/2r/ff93/0P/6/6S/ln+WP6J/sz+CP8Y//v+uf50/kb+Mv4u/iX+Ef7p/df95v0M/jr+WP5K/g7+u/1s/U39a/24/Qv+QP5A/hD+xP2I/XH9jv3N/Qn+P/5V/lT+Rv40/i/+Kv4v/jv+X/6g/vL+Qf9w/33/TP8O/+f+6f40/7H/RACdAJgAPADC/07/J/9k/+L/hQD8AEABKQHKAFUA8P+9/8D/7P81AJQA+QBFAVMBDQGTAPH/ZP8o/1P/zf9cAM0A7QCvAEoA4/+V/3v/hv+o/8r/3P/q/wgAMQBVAGIAOQDq/3r/G//z/g7/bf/M/xAADwDG/2L/Bf/b/uv+H/9W/2v/Vf8s/xX/Gv80/1f/a/9h/0T/Hf///gj/MP90/7D/3v/s/9v/z//K/83/2v/s/+//9f8HADMAhADWAA0BFAHpAKMAZwBVAHgAzQAkAWABbgFRASoBHgEqAT8BRgE2ARcB8gDtABUBUQGDAX0BQwHvAJsAbgB6AKoA8AAwAUUBKgHzAMAAowCbAKQAsQC+AM8A5gACARYBGwEDAccAfQA/ACMANwBlAJ0AyQDTALQAhABHABcA9v/W/73/r/+w/9T/DgBJAHYAYgAVAIz///6f/on+6v58/ysAqQDBAHYA3P81/8T+u/4C/3X/6v88AFUAOgD1/67/e/9S/0j/UP9r/5b/zf/y//H/zP+G/zb/CP8H/yT/XP+U/6j/l/90/07/QP9U/27/kv+i/6H/j/95/3T/e/+J/6b/yf/l/wQAGwArACIAHgAAANz/3f/+/0wAugAYAVIBUAETAcQAgABoAIoA0gAdAVkBewF7AWcBTAE6ASgBCAHjALoAngCZAK8A3QD9AAYB3wCYAFQAJAAdADAASABaAFUAPAAdAPr/7f/s/+7/4v/B/6j/m/+6/+T/8//h/5r/Of/Q/pP+n/7d/ir/Xv9g/yb/yv5r/jf+QP5o/qD+v/68/pn+Z/45/ij+Nf5Q/mT+cf57/nr+g/6P/p7+sv7B/sf+y/7Z/vT+IP9d/5P/tP+y/6D/j/+T/7j///9RAIsAogCWAGQAMAAsAF8AtQAkAY8BvgGpAWkBGQHKAK4A0gAhAYYB4QEWAiICCALBAXABDQG3AJ4AtAAGAXoB3wEgAggCkQHkACwArf+T/9L/VADuAE4BVgECAXYA4P9o/0T/U/+M/9T//f8KAP//3/+6/4D/Sf8N/+j+6f78/kT/if+7/7//e/8Z/7j+hP6Q/sj+I/93/6D/mf92/zz/A//p/uH+5/4O/07/lv/L/+z/5v+s/2j/Hv/z/vX+LP+G/9v/GwAfAO7/pf9i/zf/K/89/13/jf+7//D/FwAnABEA4P+T/0T/If9E/6T/IACOAMoAuABjAPf/lv9t/5P/9f9rAOMAPwFaAT8BAAGmAE4AKAAvAF4AwgA1AYcBqAGVAVAB/QC9AKUAuwDyADMBaQFyAWMBOAEXAQ0BAwEKARMBFgEHAesAyQCqAJwAnwCsANgAAwH/AM0AeAAkAOr/3v8KAEIAdACCAG4AOQD+/9v/yf/G/73/nv97/2H/U/9t/4X/m/+a/3b/P//2/sT+qf6w/sT+zv7Z/s/+x/7H/tb+6P7J/of+Ov79/fr9Lf6Z/hz/cv96/yn/o/4e/ub9D/5//hb/mv/o//L/v/97/0L/O/9j/7D/AwBMAH8AkwCWAI4AiAB+AHsAgQCgAMMA8gAsAW4BqQG6AZ4BUQH0AKoAlwDPAD8BxQEgAjoC6QFhAdQAaQBYAIAA3QAwAWIBXQE0AQEBwwCSAFoANQAQAAYAHABbAKgAzQDKAH8ABwCI/xz/9v4W/2L/uv/0//X/uP99/yn/7P7o/vX+Lv90/5v/wf++/5n/gP8v/xP/Df8V/2b/w//Y/7L/v/+B/3D/sv+6/+3/BgD9/+D/fv9N/0P/Pf+T/8z/s//O/9X/xv/R/+T/0//N//P/EQAyAGQAqQDiAP4A8QCdADUA+f8KAEoApQDqAOEAwgCGAF0AYwByAJkAkQB4AFgAKgAwAD8ASABxAIIAkgCNAHgAagBaAGcAjACOAHQAYAA2AD8ATAAlACYAEAATAD0ARQBRADcAEADd/6D/hv91/67/yv+7/57/Z/93/5f/zP8CAPn/zf+U/0b/Iv8s/yf/Pv9X/3n/hP+V/7D/o//L/+D/xf+0/6H/nP/O/z4AhgCWAG4AFADK/2z/Gf/1/vD+Ov+k/8v/9v9uAIAAggCtABAAlf+p/97/DgFbAsMCzwJzAoABmACl/1z+v/2p/Zj+bQBLAPgA9ADI/0wBUgGRAewCygEiAUn/7/z4/cb9KAEoBZEF5wXiAs4A0v4C/Cr7dfrp+z8AFwOOA9ICDADL/n/+Lf6K/nX9//w1/Un9IP6+/mEADgIXAsUBj//D/A/8F/1Q/4oBAgP8A9wCdwKSAU7/Uf5X/Tn9xP0j/hX/k//U/2kBNAFrACz/Iv1j/PX8xv5X/4//d/8M//T9Rv27/ZP9hP4t//X+Bf9J/53/aAG3A8oDDAW/AwMCswGD/24BYAFYAUYDKQJmAn0CnwBM/uX+tgDIAnMExAPPAgIANP/h/xoArv84ADkAz/7l/339JPu8/Nr+3v9cAjoB7v9XAcoAzwGGAHv+sP4K/lz9+AGoAt8CxAVpBMUEZgLv//39PvxR/rgAywFeAkcDOgKFAnYCEwG//2H+M/4v/Q/+oALR/x8CJgVY/vD84fzZ+n78wP41/DsBSv46/sz/a/qBAJ//WABnAikABQMMA3wBzQHjACIBWgNTA38CYQHzARIESAT6BKT/j/1x/yL79wCyACj9Qf8e/JH8RwB//uz5q/xV/pj9Sf+o+ff30fvP/ZYF0gDv/rL9lPj/AAABtAAr/oj6+/4TAicEqwGCAHgCMwU3BJUFhQO7/0ADcwCZAv8DDwLjAwwEWwJjAQUCwv3a/rn+F/01Apz/ZP5sAnr9iAOXBFH9AQMj/Fb9VwLB/FL8Xfpw/W0C6ARnA5j8IPp0+UD/LAKbAKcAafog+mQC/AFt/jEBZfuk+wcDq/05/uf9SvqYAEj+PP4VAVn9JQNXA5AAVwF1/lf/HwI/AVEBhADDAtkDWAI8BI3/7v5VAD//2P5U+/P60vyq/Fz/jf4V/b//mv4t/a/7g/14/tb+9AAj/1D/QwBHBAkEuQLWBXYARwAnAfb9JwFvAs8AdAL7BN0DLgPwAPH+Pv7u/0j/2/2x/5j9QP+AAIgAAwPVAT0A8P+7/779Sf30/mX/awL7/4X/QQHf/6T/hf4cAN79d/+TAhn+J/9RARf/5APxA/T+3wB2AI//egBq/bD+Yf8a/QYC8QDr/w4BqP8B//j+eAA1/RgAEgQHAssCMQGK/3ICxQECALsCkwG0AH8CWwHPAdwDSgCT/83/yfylAdsAN/+NATH96v21/+T+4gBk/9z9sP5B/9IAmf7D/ZD+3/4fAVD/HADZ/sr+VwF8/8UAtP9K/2n/rv/tATgABP9X/U/93ADWATT/1v9TAY79+/72ABX/tv+uABsBNgJgAbwA6gBi/lABAgHi/lcB4f1a/kECOgEKA5kCCQB0/kIDZgIf/8f++vz+AoYEZgFRA28AIAItA2D98/xz/ZP/6wIjA2n6hv2wAKL+agHI/Dj9qP2W/+8BwPyx+gj+CgHAAC8BFfxz/WIAoQPv/1/+Tf36+7gFOf3T/8b+HP5iBLUAiP9g/0r+Z/7eAOD+4f9CAJf/KwKGADX/Bf3zAPkBe/6CA3D/DQDrAR78pv7LAI0BtAeqASQBHgKp/psDDgA2/8UAxQHiARcChv+v/joBpv0dAhP/of+GAO/7lgHd/yn9Rf4iAroAuAAhA+z9jP53/zAAJgBi/+n+jP9aAvoAugGX/rv+mAGs/5f/EAF4/fz+MgPC/0IBAwGt/9kAZwGeAKX94v3RAMH/1P9vAK3+lP8OADT/BAH1/4v9b/7k/2IAzQHm/1r/eQGv/3oBe/+m/XX+vv98Ad8AxAHG/iX+vgGk/U/9JwA3/L8AOwKk/Ez+Wv2jAFoCHP4+/x3/Mf+x/3j/8/7f/mP/iQBxAd0DOgL3/60B4v4bAJIAEACSAMAAewK+ATsCZv+U/18Bkf5FAOD+8v3n/gj+8P59/kMAaABM/RsBXv+O/Ef/hPr2/VcAu/7pARz+CP0VAgQA5wD5//T5x/5nAPwAYv+L/hEBYACeBGYBL/79/ib+vQLDAWX9uf8HAccARANc/2L/LgJKAWAG8AIkABsAzf1hARcE9f+E/tYAAgEPBtr/Fv+d/4r8FgE6Ab8AxvzA/+v/Z/7FAWH99//HAfsAaQGZ/Wb8Y/zI/N395AFG/3gAJQBM/z7/av5aADP8av8//g//KAK8AaT/M/+AA4P/igHdAFL8sAA2APgAlQHFAY0BigG4AgL/LgDB/WX8IwBE/l7+AwJ2/goAhQLg/Q/+3vrv+08A3QHaAGP+ywFZAXIDhgTp/dL9F/+WAfADmADN/TX/hgB0ApIChP05/SIA3/8U/6j+Ff2+/rEBKAPiAv8A4QDQAIkA+P6K/lH/3f8iAsUAaQAjAUz+7gAu/QP9of8YAP4CHwAw/7P/NAK9AkQC/f9D/zj/agB1AR8AEgGPAFUCGAAU/gf+Rf01AKX/mv3C/UX+9f2v/yEB7P7v/SD/sQDp/3r9k/1G/40DWQMvAe3/df6zATUARP4W/+H/lQBgAcsBJ/8o/vb/7gF6AukCbACq/+r++//cAY7+P/8tAMD+l/64AOb/8P4NABj/Kv5F/1P/jAA9Ao0ABgGhAcMBgQJrAYj+CwE6AgAAaQLL/4j/9wHRAJACVgE8/6D+8gBmAjv+QgBq/5cAVAQ5/8j/cf9e/9ECAwH0/s3+G/4GALkA5/4o/l3+1QE4ARoC3//W/T0Bq/4a/k39Sf09ACUCiQKZAMX9Rf4jAEUARf/m/Gz+4f42AFAAj/7h/9T/zwAaACj/m/+j/1kABQDQAHoCDgObAzQCXgEAAT0BZgBe/4L/3v4fAHoB3AB3/l/+tf1U/t/+sP1b/cX8jP9gAIYAOgCP/wYAMv9N/y3/t/4EAFgBSQGVAcQAngCNAJ8A2gCzAE4A0f/JAYABHwAHAP3+f/72/1MBSABe/gv/Hf86AKcBMQB6AJD/tP8/AOD/gP6A/tUAyAHfAb3//f1D/tT/IgAHAS7/oP4AAVL/wACMAGn+y/8+ADAAawGyAEn/EQDmABEB4ADA/zP+VP/Y/x4ApQDG/jv/XADf/yoAdv9//oP/mAA8ALT/dQCDALEALwEkAZIA3/8kANsAn/+l/dj+vv8HAOMA3P/t/t3/mQDl/wcAIv+f/Y3+Bv+DAC0C1QGDA/MDVAJqAmkBn/+l/7L+6/1uAM8AmgI0A3sBswFa//b9yv1e/YH91P5fAGAA0/+a/6/+jv55/v78B/52/qL+AABCAXUCCAMwAy8DjQJDAXgAWgCbAQQCYAOAA4oCswLZADQAgf+k/eP8uvw0/TH/9f+8/mP+p/3g/Dz+dP/A/oL/ev8T/wAACQCUAd4BSAFAAZ7/Hv/X/47/1v/RAFMAgACvAUkBBgH6/7j9xP2P/2gBCgLtABT/4/0O/lv+Pf/R/7v/ZgBEAMUA9gDz//X/Uf81/8f/NQDCAE8AiwAXAZEAtgBWAPgAlQG1/0wA7/8B/+3/5v+F/4b/VQCV/5n/B/8j/u7+Lv5N/pb+sP4OAEwAwf8mAAcAjf9ZAOMAUgBwAIQB7wG5AvACuAEMAbIALQBzABUBSgA7AOoAdABfAF8AIv+D/pT+Rv0G/dT9L/53/4QASQCSAFkB/AAlAbkA5/5//8z/rgAcAtcA6gCUAGwARQBU/2b/Cv4Y/jr/HP+E/2j/LP+r/yUAtP+P/x3/Yf5U/7P/JgDhALgAjQC2AKAABQDVALcACgCgAFwAoQBZAY0B6gCiAJkACABJAF8AhP9L/yv/Av/r/m3+Ev6M/Zf9TP3P/Sj/Jf/5/wgAJ/9Z/3v+Gf91AJ8AKgFGAYsBqgFkAQgB6wBtAUkBlwDBAP0A2wDYAIsA1P82/yD/rP71/jb/1v5P/9v+g//TAOMAwgBKANj/Vf/g/9UAiwCLAOsAWQHeAWMBDAGJAIAA6AC3APAAgAB8AKYA+AAcAcsA2QCCANgAnwAvACv/tv5P/yj/HACsAG8AOgAnALH/xf8X/9n+cgDBAB4BJgCO/5UAeQC8/5H+FP6F/tz/nABjAIIANAASAMr/D/+T/mD+Jf8AAEEAjABOAEMAEAAr/8v+M/8KAAsBwgGLAYEBdAEzAdEAZwBwABUB5QEDAfP/0/6C/mL/sv8x/yb+O/7h/o7/if8s/87+sf5M/1H/nf+2//T/qADaAAEBWQGnATcC1QFhAJcAdAAIAHoAgACDABoBGAEWAB0A3f8+/7P/+P+0/3D/dv+h/8L/EADq/4b/FACkAJEAy/9S/9v/tQAqAVwB8wDXAJ4B0gBd/7z+B/+s/10AIADy/s/+Jf+Q/3z/gf7B/fn9Bv8YANz/Lf9R/2T/7P8FAKL/nP9CAI0BtwFJAZAAbwDiADYBZAHZABMBCAGZACgA/f7g/g7/9f51//D/2v/W/9j/5/40/u39gf7h/wAAhADwAH8ARgBR/+v+i//z/1YAWwCdABsBWAAHAIT/yv6y/3cABwFVAUMB+QBJACgAJgDN/4b/iv/u/4QAywBXAI7/e/8CANb/X/8c/xb/BQCWAGYA3v+Q/+X//P/v/3r/af+A/5n/sf+c/xAAQQDV/6r++P1A/gL/zv/8/8P/sP///+n/mP93/zz/pf/R/+7/WACUAHQBkAEkARwB7AAWAUQB8wB9AD8ATgCbADAA7v95/3b/JwAaAFgACwBY/zD/Cv8V/z3/E/+J/2QADAErAbAAGADR/xkADAAIAHgA9AAHAUgBOwFdAK3/G//Y/g3/Uv+c/9z/c/8q/1b/LP8Y/3b/0v+//87/s/+o/xEAPAAtABsA9v+h/4cAKQGiAP0AtAAMAFoABACu/6b/+/5q/ysAWACcAOv/9P/k/4r/P/8B/uz91f74/yQB8gBZAC0A3v/j/zL/Ef75/fn+z/8IASsC6QHgAYgBgACa/jT95fxj/aL+7P9XAWYCYgLTAEn/+P1S/Xn9n/5oAFcB6gEKAkQBWwAKAJj/dv8b/2n/GABGAEgAif9K/9f/XgCFAEYAhP8W/+b+Ev9T/5X/BgD5AKcBugHnANP+Nf7i/WD+pP9sAEMBtgG6AR4Aev6l/Tb93P3T/tn/rQB/AVYBWgBFANj/zv/EAG8BIQLlAeQAYwA7AMr/GwACAYoBcQLzAaoAYf/b/TL9cv2F/mz/jQBLAcEA8P+e/u39RP4f/zsA/ADSAQMCxAERAZj/S/+yACICmQJpAogB9QC4AFoAgP8H/yP/lv9+ANYAqAAhAID/AP+S/vv9Rf7u/pT/owD9APAA5ADsAPgApABSAMn/ef/M/zAAOQD4/6MA3ACJARMC/QAsAJ7+Ef7//Rf+SP8TAPcBzwJvAkQBz/5q/c/8av3A/ur/sQG/AkADiQIYAYv/Gf6w/Sv+o//yAMABzgHpAYsBdwCO/+X+OP7j/c/+Mv9Y/1IA/AAyAa0Arv/w/tf+Y//e/4sAwQDyAG4BfwEpAS8As/8EALwAsABqANr/Hf+S/zcA2//r/m3+j/5Y/0n/5f4j/wgA1wDJAKsA/f9n/yP/vP7S/rz/QAH5Af4BhgEjAEf/s/54/o/+F/82AA8BLALNAZcA9v63/fz9Mf64/24BkQF1AfQAMgBiAI8AXABPALEAGAHoADQAuP9//3P/GwDPAAgB6wA+AEr/MP/G/q/+F/97/0MAxQBvAdUA9v8b/6n+rf64/tb/QAElAjUCfgGnAN7/lv/t/wEAHgCrAO0BkAJkAm0B1gANAcsAWQDx/sb9Lf79/nb/AQDu/yAAmAD2/zr/Jf5a/Yz98f3T/uH/OwCXAKIA9v9p/0H/3f5m//X/KwArAesAVwGvAfcAzwB8ABUANQBoABkABwDx/yIAzgDsANEAPADs/sz+6P5K/3IAsAASAU4BPgEFASEAV/8R/zL/CADhAAQB9gDOABgAef/O/mv+of7l/p7/CACiAAYBlQBy/wD+Of07/Z7+cQDiAQ4DBAMXAtsAzP8I/+/+yf/hAFACwgJrAmsBBgCe/3j/uP8cAM8AXgEUATQAgv9U/yL/Nv+F/7//NgDR/7b+D/5v/XT90/2l/lX/FQCCAN4AkABu/8b+X/7F/pz/9ADZASICUwLWAeMALwBE/yn/vf+o//T/vAAfAeQAeABe/5n+Dv6g/Zb+Qv9HAFMBnQF1AYkAdv+j/oD+O/+eAMEBAwKWAWwAxP/9//T/aACQAMUA8wCCAAQA+v5H/h/+RP5n/lf/OAAbAA8Aef/K/tb+pf9UAOAAfwF4AR8B1QBwACQAIQCHAAsBjgHjAZ0BJQF2AOj/a//9/rD+cv6R/ub+fv/W/4kAuADR/9n+Yv3x+9X7qfyW/pUAGQIBA4ICLgEV/zH+Cf74/pwAwQHbAtcCvwJsAuIBWAFaAEMAlQD6AEABwwAvAK7/dP8q/w7+Uv2j/dT+Wv9o/3H/Lv84/yD/G/8v/1j/oP8AABUA5P9q/3D/3f8XAG8AWgAWALr/P//J/pb+f/7r/rj/HQAzACwAXf+k/qf+f/59/zoA1gDHAcUBzQFKAT8Abv/3/kL/LQBxATMCXgI3AlIBQgC2/ub95v33/R7/k/9CAC8B1QCLAHb/f/7+/bL9ZP7o/oT/MwDSAKAAOgDk/xb/Qv+O/8n/LAC+AEwBkQGDATkBIAE/AYkBeAFJAcEAKgAtAIcAhgDSAK8AygDQAFIACgB4/1L/Lf8d//r+cP8bAMYAAwF2ABYAz/+p/8b/CABEAKkAmQCuAIwAOwA0ADkAmQAQAVQBIAEYAXgADQCu/z3/4v9ZAMgANwFaASEBZgAw/3D+cf6o/pX/JgAyACMAXv+R/uP9Ov1U/X79bP2k/Zf9mf26/dv9U/57/nL+Sf7R/Z794/2M/nL/kwBaAUgBIgGKADwA9P81ACwBtwHdAjwDTwMtA9UCEgJnAZYBoABOAEwA9/8oADIA8f8UACIA6P9vAPQAtwEtAkMBfv+R/fv6+/oC/Jr9OACVAcUCgwIWAa/+Nvyn+iD7M/3EADgFKAgvCmAKiwjFBgEFYwTcBYUHEQpNDMINig67DpAO1A3kDAEL6Qg0BlwDhwHdAE0BcwItA0ADbAHD/er43/NJ8EDuKu5U7wzxFPKK8r/xx++Q7Xrr9emp6bHqxOx770ryyfSr9gX4o/ho+d75iPrd+4D94//OAisGeAmhC2IMIgxpCsAI4wdlBzAIcwmiCnoL0ArsCBcGXgIE/8f8vPvv+3H8iPwp/JT6IPig9YzzbPI+8sfyBPR09fX1FfbY9fv1sPaH93D5QftS/fr+8/89AWwCFwTQBdIHxwlRC9IMMw1hDWENZw0IDloO4g43D3EP+g5HDkYNCQwlCx8KmQkhCYMI4AfxBrIF9gM5ArcA7P/P/4f/Tf8//qr8i/q89331A/P78R3yQfKl8srye/LA9XL6p/7qAW8AgP3T+Mb1e/bd+h8EBQ5xFygc4xh2EGkG2gDlAvoMihvcKZ40jTl1OE0xLid5Gl8PVAecBJYIvg6/FWoYvhPuCJj6We0Z5bfgh98m31/dC9wG27bbG96N36bf7NzU1mjQw8vPy1TS691u6yP3D/2C/Ov3nPIr8JPysfm0A+ANvBXDGQAa7ReFFRMU/hPMFJ0VwhU8FTcUDhPTEWMQOw6kCtcFkADD+0v4RPbp9X/21/Zc9lH08/Av7drp6+fy58Xpvuzr75DyYPSC9Sb2ofaT9wX5PPsJ/g4BMQRDBwIKSgwXDmsPMBBUECcQjA/WDj4OpA33DAkM/gqzCTAIfQY3BLIBSP8a/Sb7QvlS97X1rPQC9Inz+vJQ8s7xyPE48ujy2PO19ID1gvbK9yT5fvrV+9X8w/0G/6cAdQJUBP8FVAczCNQIIQkhCQQJnAguCMkHYgc2B1MHhgd6BxkHSwbrBHYDFQIxAckA1gAvASkBZACo/pj8/fkB+Br3D/bX9e30+fNm9Hr1Mfh+/HL+F//j/Eb4HPjM+zYI3BlbKjw1tjXBK3wdjhDXCaEN/BcoJ3o07DrWOJMutCHhFzYTzhKeEhkPzAg/AfP69Pdw95P3BPbb8Ovnl9za0dDKiMnOzMbTgdqP3sveQ9s91p3RE9CE0i3ZZuKa7Iv1gPvi/u3/OQCjAa4EmQlJD9UU1hn9HA0fHiCLIM4gxyBOIG8eKRsKF8ISVQ8eDZQL7AlZB3kDL/7W91fxv+sK6G3mYeb55innZ+b75EbjyOE84ebhv+Nh5rPpPu3V8Jf0MPjS+xv/dQKwBVwIHAsCDjIRgxQ6FzIZABroGYEZIBkZGVwZdBkZGYMXgBRwENYLoQeZBLsCaAEnAGb+6/u9+C71jvFw7lrsH+uZ6kHqo+n26MzodunT6rvsRu4+78rvTPAP8YHy9fQR+J/73/5TAeACnQPQAwMEfQSFBQgHvAgyCu0KCguyCh0KnAlyCZsJxwniCcIJQQm6CKgIJgn3CX4KIwqGCIwFCgLR/of8MftZ+mf54ffM9QX0EvMu8270gPVt9Xj0ivId8mr1Kf0gCa0V7h7ZIeMdAxXjC/AGzQkrFA4jQDJAPNA+BjpsMJ0lZRy2Fc0R9g96DzkQaxGWEV8PbAn8/9b09enh4GPavNaH1UPWLtiH2kLc4Nzn2z/ZvdUj0qDPRc//0ebXQ+DL6Yfy8vju+x38qvpw+R36dP1tA8IKyhFSF5gazRuEG3kaGRnYFwMXrxaWFmwW9RXnFAgTahA5DXkJLgWlAG780PgP9lP0IvPd8THw4u0S60DoKuYy5UrlT+b45/vpEewD7vHvO/IH9Un44ft5/9gCEAZJCYAMmA+eEhsVAxdqGGIZTxpCGxwcjxzyGwYa+hZgE7APdwwOCjwI0wZNBTUDQgCt/Jv4r/RI8aru7OzP6wDrSura6Y7pNukA6eTo2+gb6bzph+qb6wHtm+508Hjym/TI9sP4bvqp+2/8HP26/ZL+r/8LAb0CagTqBSUHDQipCOUI6QjXCKMIagh0CNIIWwnzCVUKQAp/CTEIbQaRBMICHwHR/8L+8f20/df9DP7C/QX88/di8gvstedA6ILukvrSCLEUThsEHAIY8BKkD1EQlBXRHTonWy8NNDA16DO6MZ4vai2LKmYm+CBOG3UWAhPdEDoPIQ3fCR0FtP4A92ruGObd3sXZl9fm193Z89uj3BPbI9fy0anMoclKyrPOttY94DnpQe/z8AXvNOsi6IbozO1m9wEDag0uFF0WqxQXEbwNkAwvDhsSChdaG90dCB7ZG2MYqxR+EdYOhgxkCiEI0QWOA38BcP9j/Rf7Nvij9JXwl+xF6UjnHed06G/qNuwv7fjs6uvZ6ofqnut87hzzrPgg/qECsQVgB0sIagldC1QOHhL1FSwZKRvyG9MbThu8Gj0aqxmyGBwX9BRMEokPAA2cCkUI2AUuA0YAIv2R+cb1MvJX70ft5+vE6nnp2ecS5iHkQeLh4G7gDOGo4tHkF+cq6bHq4evH7OXto+8X8i31cfin+2j+iAA4AroDTQXoBpMIMgqpC8MMpA1gDvoOZQ+GD08PbA5bDXoMDAzwC7sLNAsgCoAIvAZDBWoEgwQqBUIFUQSuART+KvtP+jj9sQPqC7wSFRVoEY4IGf659rr2AACyEMojMjONOcM0syemGJsNkAoYECMbWCcFMK4xZiufHtYO/f+89bbxmPMP+YP+fgBA/dL0HulN3SHU+88Y0YHVb9oE3Tzcg9ih0yvQ0M/l0jTYqN3g4Wnkq+UL58Xphe7V9Iz7VgGEBewHIAkyCvgL9w42E+oXEBzoHrAfdR4KHEoZQxdBFj4WlhZjFvoUCRLRDeYIHwQ5AHb9mfsf+hr4IfVC8Q3tc+kR50nm1ObW56HoaOhm5z3mjeUe5mvoYOxe8ZP2Ivut/iQB4gKvBEMHBQskENcVLxtoHwkiFCMOI48iOiIPIhsiLiLSIdogHx+6HL0ZRxZwEiMOVQkYBB//7PpM95L0MvKy76ns9uiU5BPgPNyg2a7YTNkA2zvdGt8f4IbggODh4CnimuQZ6BrsUPD88+D2K/kx+0P9bv/mAVgEdAYWCJAJJQv6DP0O8hBzEhcTDhNtEr0RUBH1EK8QPBAlD90NKAxHCtIIhge2BWIDFv+L+dP0t/Lr9aH9FAc4DlUPzwh9/ebxOuul7cn47glCG1IneCvSJ88fMxjjE18UexnsIPso5y+4MyYzRC7OJccbOhKZCmYGewWNBsoH9gY6A/L7XPIx6EXfZNmS1qrWfdj62kLchtt92PDTXc9IzBjMXc+B1Z3cFuOp5xHqButV63zsh++a9GL74AL6CaEPJhO0FAAVBhWdFSgX6BlFHakg5CI/I2Uhmh37GNgUDBLOEJcQJBB+DgsL0gWL/0r5IPS38Czvxe6C7pztsOvG6IHlnOLP4GjgheHk487mpunP60ftZ+7T7x3ycPW3+YH+TgPKB8ELNA9eElUVVxg2G7MdvR9+IQIjPSTPJG4kCCPgIEQeihvjGGAWphOvEFsNSQmmBIP/a/qF9WTx0u3K6hboeuUW4+3gP9/r3S/d1Nzm3FndLt5X38ngeOIt5Azm3+fj6VHsde8V8+z2lvqe/fv/ugFpA0QFegfsCX0Muw5RED4RVhHsECcQNw+HDikO/A3UDWQNrgzmCxoLUQp2CcoHHQWOAf/9/fuY/Nj/SQTEB+0HxAMS/K3zee5778r3JAWaE5MeGiO7IOIZAxJHDBkLig5aFqMgLyvpMvI1QDKgKPIbvQ93CLQHkAwLE0YXZxVDDSUBWvXi7bzrou1Q8PbwKu7o5xPggtnD1ZPVNNjh2yzfvOHB4n7iTuGN33zecN6S4Erl6ute8x36tP5fAJf/xP2d/K39fwGCB0oOMRQwGKsZGRlDF70UkhJrEYQR3hK6FFAWlha3FLIQxwpDBMb+V/ut+ub7g/3W/cD7V/ea8Q7sFuhJ5rDmkujB6kLsUexA68jp0ugS6bHqVu2J8Ojz//av+eH7yP3U/2cCvQWQCZQNgRH0FMwXpRl/GpgajBrzGgQcPx37HY4d2Rv1GHkVCRL3DoYMgQqcCCwGAQMw/w778PZS82jwLe517Abro+kQ6G3m6eSb49/iqOLl4kDjp+Mz5A3lHuZg5+ro3+rv7P/uEvEA8/X0CPd2+UX8Xf+xAocFqgfXCAMJcgm+CmcNdRGdFb4YGBrQGcwXpBXYEuEP4A0+DEMNkg/FEhIVURMDDYYBJ/QA6aDkjulZ9uYFUBFQFP0MYP9f8ljrEu63+J4GxRJ0GQAaPhYSEggQfhEnFXwYvBpyG9kbAx2THjAgJCCaHXQZhhQ/EMwMvQnHBsED7ABP/9v+1f6P/Tn5vPEx6Kzfjdpv2vDeeuXx6mzspunq403dTdhJ1q/X89tB4o7pd/CZ9cX31/YK9C3x2PCM9Pr7MAUqDboRTxL5Dx4NnQs+DNAO8RGDFGoVehRMEsAPvA2DDKoLmQrgCFIGewNVAGn91vq9+Hf3pfYe9uD0qPK475HsMur96HbpN+t07UHv5e9v71Luse1n7r3wOvQ5+BL8VP9OAgEFcQd+CUgL2wypDiARNxSYF6QarhzeHFQbphjvFXcUxhREFqQXfRckFewQjgtABvABJP93/XL8UfuT+QD3+fOn8DjtUOqQ543lXeQ55OPk+uXz5iPnjOYs5cbj3+Ic477kiuf66qTu3fHY8xv1Z/Ub9tD3sfoF/+kD2gjuDE8P7Q86D3kNGAycDIkPzxRPGvsdGh7uGWkTMQyJBusD8APZBTAIvwkoCjUJPwd1BNEANP3j+kn7kP4SBBoJ7gquCAwEpADBAfMJuBbLItcoyCVmG5wOnAasCMkUNSbPNFA5+DBWHqcJePvY+BgBsg5JGnwdTRaJBwn3k+os5SrmeOpn7l3vyuw96DTjDt9a3MTaINrv2XXa7dtw3qPhpuTa5sfnH+i06DjqE+0z8fH1ofpy/hEBgAJRAzIE2wU8CC4LGg7YDzwQEA8/Dc8LuAs2DacP7hGtEj4Rcw2UCD4EHgKbAuwEoAeLCMsGrwJ2/bL4lPWd9DD1Mvae9hj25PSV84fy0fF28czwN/Bf8LLxt/TJ+Nf85P96AY0B5QCZAG8B0gN7B2gLgQ4nEEgQng8cD4MPphAlEjYTERMMEmcQ7g4jDtoNoQ3PDAoLdAhlBYQCOABU/sr8p/rF93r0KvFz7ojsVeuQ6rbpd+jI5tfkFuPg4XPhvOF+4ljjxuPY4+TjoORz5o7pX+0Y8Rf0+/Wo9q72I/fq+D/8/QCkBsELAQ/eD7sOhgy8Cp4KgAxOELQUSxgMGocZEBcQFDURDQ+wDXEM9woSCRkHzgVYBkQIIgraCTEGBwBX+Un2rvlCA90Q9xyKIeocWhBcAhD6F/xyCdgc4S+wOh85uyveF54FTvvu+6YF3xNaIMcmnySqGvkLSf1Q8jLtRu6q84n6H/8F/9L5mPB/5mTe9dlq2YzbIN/B4pPlsOYA5q3j7eDR3jTeuN/l4h3n2+ub8Mz07ffM+Zj60voR+zz8vf6JAlkHEwx6D+kQQhDFDRMLbwmlCacLYA5REEgQCA4OCsEFqQKQAV8CNwSwBU0FiwL3/dn4DPXI82H18vh4/DP+D/0w+R/03O8w7srvN/Tb+aj+8wBAAGr9Yfrd+Pr5Sv1TAcQEuAZjB5cH+AfjCP0J3ApICxcLuQpwCmwK0gpMC4YLKAsbCoMIwgZLBRQEPwPkArMCZAKFAb//b/03+535xvha+Nv3EfdG9nT1WfQr89HxnvDf77LvuO/B76PvRe/X7oXui+4F79zvwPCR8TjyCfP08/L0VvaZ9974AfrN+tP7Wf17/xoCogTqBoMIWAnZCUcKjwroCu4KlQrACWoJdAtfD3gTZxXTEV4JTf4J9T/0gP3lDrUglChwIpkOSvb15HjibPJKDk0s2z9JP9kr2g3W8gbmY+xJBA0kDD8wSmBAdycMDG36iPhOBdAZ5SurNBwxxSLwD1L/MvZG9rj8agSpCAcGeP1i8gDp8ONA46vlGeg36JPljOAr25fXI9cg2sveleOq5u3myuSj4Uvf9t4w4W3mQe0N9OD4TPqs+Dn1QfKy8Sj0J/n7/h4EqgcVCcUI0wZIBM0COwMgBh8KBg3CDewL2wh4BgIGmAekCVQKsQgEBRMBZ/7s/U7/uwEQBBMFrwO5/5z6OPaJ9EP2b/pl/zkDrQTzArT+0fl89pD2LfoWACMGhwq0C7AJBgV9//f7+vsTANgGqg3cEUQRLgyABIz9ofpX/F4BEQdJC4kMCwpBBPj8Xvfx9TD58v6ZAx8F2QKU/iX6Q/cG9wH5I/xf/lb+VPxa+Sf2B/Rh84D0e/Y2+NX4TPdZ9Hfw+OzQ6pnq1+zM8PX0R/fI9ujzIvA77cHsLO/u86j5af5OAWsByv/J/dH8dP1m/7wBMAMSBLcEEQZ/CPoKyQx0CzwH1gGQ/TT+MwRvDvYXKRtFFQ4HrfYL7ATtl/rhD2IkEi8LKx0bZQe4+Sb4XANdFgcpnjTONcstxiF3F7kSlhT/GoIizCddKFAkuR0HF9YRrA6lDCILewnEByAGnwR8Ahz/Lfog9P3tVOnz5uDmPeiC6cLpr+f24xPgR92d3KjdlN8M4Ujh2+Bu4M/gQeKO5PPmxujI6SnqsepX7DXv+vLT9tT5dvuf+yH79vrd+0f+5AG5BbwIMgoaCpkInwZYBU4F9gacCRkMkQ1MDXUL2wg7BlMERgMgA2oDwAMZBAgEkAO4AmkBsv/g/Wz81Ptt/OH9hP+OAHMAE/8D/Tb7W/pU+xP+kAFzBGgFFQRhAfX+3P2U/qUA8AKaBDEFtwS0A6kC7QG7AfkBtgKIAz4EjQQvBHcDrgIaAvEB8AHlAbgBYQEEAYAAAAB9/8j+EP7I/Dv7/flo+dr53vre+0P8tftd+rX4IPf79Xb1l/U89uP2Z/da99/2VfYj9oL2bPdy+C75lvmR+Wf5avn/+Sj7XfxX/eb99v3V/S7+pv9BAqcFpgiUCZ4HuAL0/Nj4qvgN/doEXg0wE0sT6AwRAkT3S/FY89H9wwwAGlsfjBoIDo8A4fiJ+sgE9hIGH+EkEyQfH+gZJRfPF08awBwmHkoeGh4+HtweDR+CHbcZXxQfD5QLFwuhDRoR/xI7EeQKWQFk9zfwFe4D8cT2vvtv/Jj3p+7X5H7dxNrU3ODhI+cm6t3pjOZ/4Wzc/dhr2Ojavt9c5TLqEO2D7RHs9el66JXox+qt7qfzg/gW/Pf9Of5r/Zr8jfzD/UgAtAMuB90JKAvbCkMJXAcSBgUGZgfcCWgM+Q3XDewL8ggCBk4EgARJBmcIsQlVCVEHbQS+ASoAEgAwAaMCrgO0A6oCBQGN/9f+8f5///D/DADq/93/HACKAPAAEAHyALYAngDdAEsBuQEZAj4CJwLsAawBhQGJAccB/QEqAmICmQKyAnkC1gEHAVQA9v/r/wwAGwDw/4//B/9b/uX9rf27/ff9Jf4A/mr9g/yR+/n67vp7+1r8IP1a/eD80Pu1+gP62/lU+iH7/ftl/Cv8k/vc+kr6C/ok+pH6Efuh+0P8vfz5/Mb8PPyV++P60Pp1+7D8Nf5e/7P/+v5u/aD7hPqk+kX84/44AUECGQEp/tb66vhA+tr+ZQURC1gNIgtxBXz/1vz0/2gIVxNxHGYghx7XGAsTKhB4Ef8VihvhH64hECGlHoobjhgaFmsUVBPLEqoSjxIGEpEQJg7zCksHpAOUAFr+Av0R/CL7r/mH99v0B/KW7wDuMu3a7HzsnutT6pjo/+YY5iTmL+eM6M7pkOqK6uzpP+kY6b/pTOuK7RDwUPK28zr0MfQa9Jv0nPUL9574Gfp9++P8L/4u/5v/b/8J//f+vv9WATQDzgSRBWwFsQSfA98CuAI0Az0EXAVGBqQGPgZiBRYE2QLpAb8BnQITBL4FwgbVBsAF3AO8AfH/hv+eAP4CywXTB2EI9AYdBP0A6v4O/wwB1AMVBv8GhAYCBeoC8QDP/8z/6gCvAjwEjgQbAwMB9v70/V/+3f/jAesCmgIjAa/+afxF+6X7O/3p/kYAlwDX/3z+l/wS+0T6Mvrp+gL8M/0W/nL+Ov5q/Ub8OPvK+kH7X/xG/eT98v1q/bD8Dfyq+5P7svvZ+xD8Xvzs/Jv9K/4v/lv90fsd+gz5YflT+zz+2gAeAlEBtv6V+6D57vls/DsA4wPaBZwFnAPmANr+sP6sAL8D6AZHCTUKrQlXCAIHWAaPBpQH9QgYCsQK2ApDClwJawjHB7IHIQjxCKoJ4wl1CWoICgfQBQ0F9wSQBXQGIgclB4QGlQXGBGQEdASoBLkEjwRbBD4EaATsBH4FzwWrBfsE6wP0AoYC1QKnA5cEPgUdBTQEygJmAWsAPADEAIUBCwL5Af8AEv+v/I76LvnK+Cf5qPns+aj5rPgM9zb1xfNS86rza/TV9GP0RvMs8q/xB/If84v0jvXP9XD1wfR39BP1ufbb+Jv6Wvv9+vr5K/k4+Vv6Xvy//rAAmAE7Af//pf7U/Qz+C/9JAFkB+QEeAvoBpQFGAeQAkQCVAPIApAFqAvcCJgPXAkgC2AHTAWkCmwPMBKoF3wVlBZkE3APoA3EEhgXEBqQH1gcXB9oFvAQ1BIAEZwVeBuEGnwaaBf8DTgItAboA/QCmAVwCngJDAjkBm//w/aT8E/w//Ob8ov33/a/97/wA/FL7JPtg+8j7/Pvv+7H7ivvg+6H8g/0d/iP+p/0L/bn8A/3p/Q7/DAChAJYAGACI/13/5f8TAYoCwgNLBPgD3gJtAUYA7f+bANwBMQPvA7QDmAINAaH/1P7e/nz/LgCDAEsAs/8P/6b+kv6S/o7+aP4f/vL9Kv4H/4QAGgItA0MDawJXAbcABgFWAhMEoAVpBkkGkgWmBA8EOgTxBNgFeAZmBqsFlgS3AzADHgNYA5gDrAN2AwMDYQK2AS8B5ADJANUA7wDnAKIAEwCF/xL/7v4z/53/8v8OANr/gf88/0j/4//BAJ8BIALPAQ0BVAAXALMA9wGBA3cEdQRPA3oBxP/N/hz/WAD/ATADPAMYAiYAE/6Y/AH8TfwQ/bf9Ev76/Ub9M/wJ+xT6l/mj+Tv6EPvB+yD8BPyD+xH76PpK+yX8QP1T/v/+Qv8w/y//oP+WAPEBNgP/A/wDbQPCAn0C5QLQA+4EqAWeBd8EtwOzAh4CEAJ1AsUC5wKJArQBnACI/8b+YP5a/mj+bv4g/m39kvyh+wT7xPr9+nj7v/vh+4n79fp7+kH6kfoo+/37tPwC/Qr9x/yn/Mz8Nv0P/uv+qv8SADQAOwAnACgALQBcAKcAEQGNAQQCXAJYAu0BKAFVAMP/wP9rAF0BEQITAjwB3/96/sH9/f39/kIAIwFGAbMAu//r/rH+Hf8EANgAWAFeAfQAfwBcALAAUwE4AvwCbAN8A08DCgPYAvkCYgMBBLsESQWNBV0FxAT/A0ED6wITA44DLARwBDIEeAODAqwBJQEDAR0BKgEJAawANgDf/7j/tv++/5P/Nf+q/jb+D/4t/on+2v7//tH+cf4j/gz+V/7C/jT/Zf81/+f+kv6Q/s/+Q//D/+v/0P+F/xj/wP6D/l/+PP4e/hT+IP5R/o3+kP47/p/9y/wc/Nv7D/yu/GX97v0U/r/9Hv2a/Fn8m/xT/Sf+9f5c/2H/L/8T/03/2P+XAFYBzwHwAeQB4AE2AuQCugOABO0E3gR5BO8DnQOpAwsEuwRJBasFpgUcBT0EJAMmAoMBSgGFAQMCaAJzAvEBzwCG/1r+r/2l/ST+2v5L/zP/hP6D/Y78E/wp/MH8c/3t/fT9iP3r/IT8gfz7/M79o/5g/6r/iv88/9P+rP7O/kX/+/+dABwBVQEqAbEAFACf/2z/m/8MAHoAygDAAG8A9v9r/wP/t/6A/k7+KP4P/gf+Af7j/br9c/0u/fv81PzM/Nv8B/1M/bD9H/52/pz+e/41/u/98f1j/jH/IQDDAPoAvwBbACcAYQD4AJkB9gHdAX4BHAERAWoB9AFeAlYC2gEsAZcAaQCxAD4BvgHoAaABBQFPAMT/ff+S/+z/TgCQAKAAdQAlAML/h/+V/9//YwDiAE8BgwFiAQcBrwCFAJEA8gCZAU4CygLPAl4CkgHJAGQAhwAwAQYCpwKtAgoC/QDr/0j/Rv/C/0wAkgBfALj/+P57/lf+fP6U/mn+6f1O/fD8A/2P/T/+vP7D/lf+y/1//bT9Wf4w/9j/GgAKAOT/5f8rAI4A6gAFAeQAxADaAEEB1wFKAmoCLwK0AUsBKAFTAaEB3QHdAakBVgEOAeIAygDMALMAawD8/4D/Hv/q/vL+L/+B/5j/Yv/l/kX+xv2W/dr9ZP7v/kT/Pf/w/on+U/5+/vb+kP8AACUAAAC+/5//zv85AMgAIwEnAeAAdwAyAD0AnQAdAY4BvQGjAVIBBQHAAIMAVgAsACQAPAB0AJ0AhgATAFz/qP5E/mT+6v6L/9T/mv/l/iD+rP2x/VH+Gf+t/8b/bf/5/pX+rf46//X/qQDuAMcATwDr/8//GQCvAE8BtwG+AXYB/gCgAHIAcgCXALYAywDGALMAowB5AEMA9v+a/0D/D/8i/2j/vv8AAPz/rP83/73+d/6F/tX+Of+E/47/U//5/rz+tf75/nH/0f8AAPz/1/+x/6v/0/8OAD8AWwA6ABgAPgB5ALEA0ACDAAAAav/9/gj/b/85ANMA9gB9AI7/WP5w/Tz9uv3Q/vj/6QAHAWcATf8j/nf9aP0H/hf/SQBCAacBZgGJAIH/qv5o/uv+JACZAbkCGgODAkUBEwCb/wMAIAFwAkMDQANiAjIBXwA9AOIACgLjAi0DkAJOAQUAJ/87//j/5ACDAVQBigBv/6L+h/4S/9r/XwBUALv/4f4x/hH+ef48/+j/MQD1/1H/n/4s/jn+sP53/zEAoQCzAGoA9f+O/2T/cf/B/ykAnAAQAVsBegFDAdcATgDi/97/NwDbAHEBjgEVATMAXf8W/2f/DgCbAI8A7v/1/iz+C/5+/kb/2v/j/2L/g/63/Wb9q/1o/k7/7f8XAMP/JP+d/mn+nf4d/8H/VwCwAMcAmwBBAPX/v/+9//3/dgAUAYYBmgFZAdUATwATAEEA1ACMAfMB2AFIAWwA1v/B/0IAIgHNAQACdAFvAGP/sv7E/mD/cABgAbcBWgFnAEr/f/5d/tP+oP9jAMkAsQA8AKb/Of8b/zf/hP/L//v/GQAqACIACQD0/9f/sv+l/6//wP/l/wUACQDx/87/r/+j/7X/vP/O/9P/xf+r/5L/jf+M/4T/iv+k/8T/6P8AAAkA6//X/63/h/+W/87/JwCRANMA2wClAEcA+f/U/+f/NwCZAO0ACgHsAKIARQALAPz/HQBPAIAAmACAAEMAAADc/8z/2f/r//H/9//v/+L/yv+m/4b/cv9z/4f/nv+//9b/0f+u/4H/bv96/7v/CQA3AD4AEwDP/4r/df+w/w4AeAC2AL0AiAAwAO//4P8OAGAArQDVAMoAkQBJAAgA7v/+/xIAHAARAPj/3f/C/67/m/+Y/5T/fv9g/zj/F/8J/x//T/+I/6H/if9A/+f+qv6i/uP+P/+e/9H/tv9d/wn/6v4D/2X/7/9WAHkAWwARALT/eP+M/9H/NgCcAOsAEAEKAeAAoQBYABoAHwBiANAAWQG4AeMBtAE3AaYALgD7/yMAnQA8AcMB4wGcAQoBawD//9j/KQCxADoBjQFRAcQAHQCc/5T/3v9vAOQA+AC6AB8An/9a/13/mP/P/+r/4P+4/4j/bP9O/0T/Ov8g/xX///4B/w7/H/8n/yT/IP8P//3+9v79/g//L/89/zv/Hv8M/wr/Hv9X/4n/sP/P/9f/yv+3/7D/tP/U/wMASwCTAMgA2QDNAJMARgAWABsAXwDBACQBagF6AUsB8gCGADgALABZALIAIAGIAbABlAFBAbcALgDb/8j/9f9VAMwADQELAbcAGAB//xr/E/91//X/TgBwACUApP8a/9j+9/49/6L/+f8kAA0Atv9R/wv//v4v/4P/+f9kAIAASwDh/3r/Rf9P/6H/BgBgAIgAfQBAAO7/tv+V/5r/vf/c////DAD5/+3/2//a/93/4//j/8b/vP+x/7b/1v/m/wAA///s/+7/7v8LABUABwD5/+D/2v/u/w0ARABhAF4APAAAAMf/qP+9//X/NgBrAHcAUAAOANP/vf/m/ykAaACAAGAAJQDh/7n/xP/1/ykATgBUAEgAHADt/9r/6f8eAFcAhACKAGkANQD///X/GwBlAK0A2wDHAIkAPAAFAAAAHgBhAJAAogCFAFwAOAAVAAUA9//9//b//P8KACgARAA8AB8A3/+R/0b/Ef8E/yP/Y/+d/73/rf9v/3r/Tv8s/4/+Vf4O/pf9D/7//T3+Yv5l/jD+gv73/Zj/8v8hAbsCHADjAvIBgwOfBZgDogRLAgIB8P6w/Dv6+vod/bf/XgPPAmECZwGE/6H9cvzd+qv7xf7cAb0FsQduCPYHfgY5A9b/LP1Y+9T8F/7RABED8AI7BO4BCgDI/U77Lvs7+778iv6FAFIB+wGpAHv/hv2W/Gv8gPwT/or+NgC3AOUA1AADAJr//v6N/vD94P0M/l/+rf9HAJcAqQDs/xP/Zv6e/jL/UAE2AhEDvQMpA90D7wLAApkCYgKTAtIBLQFaAMz/jP9DALkANgGRAC4ATv8x/nX++fwK/WD9u/1s/lD/iP/L/j3/XP52/nL+Gv7V/vb+1/8YAMUAygDV/4QAbP/0//X/9v4dACf/OQCmADwAxQCqAI8B6gDfAU4CZwHIAqQBxAF4AvQAPgIFAmQCIgPIAggCQgLEAKgAQQEa/yMBpv8dA1EDhQPqA/z/fAKA/sT+p/0+/Mr/MQD5Au0CoQFhAaoBngHSAI//af7q/T7/0P4VADr+KP/P/6r9Sf+d/CX8mft0+978a/2P/Zz+SP4J//T/Rf8N/4b+b/6N/zYALgGYAo0AwwLoAWIBlQFn/+wA4f+ZApEC/gFmAl0AngDY/gH//P2Z/c/+rP59/8//8/4x//H++f5l/+H/9v88AEQBBAEdAf3/SADf/6b/cACR/+7+1P9GACQAbQHE/9//z/4W/qX+Vf6w/ef96f4V/53/ef73/V/9jf42/nD/OP/2/p4Adf/eAH8Ax/8fAN//yf8wAAUAFQBmAIsA6wBvAIYAzP/t/7f/5f8uAMX/UgBeAHMAjgBsAGEAgwAeAZkBgAH9ATsC4QEuAmIBgP9q/vL9Tv3G/IH7Evyj/ID9CP9g/oX++v7V/zMAr//+/oD+mP9GAQwDKQR3BWkGdwZpBjME7gFWAPr+xf0j/Br88vyC/z8BBALzAecB6wLDApACbQA+/3z+uP3L/EH7t/pK+/n8AP5x/sj9Pf19/U/+s/5o/ib+6/28/rL+4f0w/Yf9k/6v/1UACgC9AHgBPQOeAwQDpgLlArEEewY6BlEElwPSAqQD7gMkA70BAwFdAE3/Mf5A/Df89/v8/Kn9+Py0/WP+Z/5f/qf9/Py9/Ub/mQA3AKT/X/9oAOMC/gO0AwwC0gCrAMMA+AAXAToBYQJEBMUEbAUIBX8ESARPA1MDEwKBAdkBfQCI//L9EP3//c3++v8DAE7/bwD6AP4AUwBw/mP90Pyz/Zb9Vf0S/XL9/f6p/ygAuf6W/dn8gPtW+tn4+fdl+LH6u/z8/dL+1/9lAXECiQLeAGP/3/9ZAZEDlAXSBu4IPQuTDPsLMwlBBrQDvQHT/0D9TPux+hn7Yvvg+mT6OPrD+nP7Avs0+k76/fum/swAXAFIAUQBhgGnAbwAV/8F/nj+0/+LAAIB2wAJAeUBSAJcAQAAe/65/cv9uv29/fb9Af99AL8BfQJtAowClQIXAjkB5v8b/+X+Hv9k/3T/vv9yAHIBYAKgAl0CRgI5AikChAFgAG3/B/81/3b/DwBWAJ8AwQARANf/Ov9y/z8ASwBcAPD/AwBWALAAAQHIAMkAtgCSAG8AOAAdADYAqADFAHQADwB//1H/B/9//nL+Cv6v/of/r/+u/wP/qf6d/iv/4v/X/xIAiQAsAeoByAG1AZ8B6gFpAggCdwGRAD0APwBEAEkABQA/AGsAnQBFAKv/D//D/vj+IP9q/4z/vf/Y/9//nv9k/0X/Vf/m/wkANgAFAL7/h//p/nz+H/5K/sj+g/8oAH8A5QDsANoAiQAtACAAPACgANQA6QDjAJ0AVgDn/4T/Y/+H/93/BAACALn/iP+B/3//ff9r/37/nf+0/4T/K//m/gv/mf8sAJUA2wAaAU4BXAH6AG8A4f+W/7n/4/8TADoAdAC5AMgAowB5AB0A1P97///+zf7G/hz/lv/+/1QAjACwAKAAbAAPAMf/q/+z/7v/rv++/w0AawCmAKEAWgAJALr/XP/Z/ov+lf4b/73/PwB1AF8AcwBPABcAq/9d/1T/hP/S/93/3//q/ykAXwB2AFEAOQBKAG0AhQA2APT/tP/N/w4AOgBdAGgAkQCnAKoAgABQAEcAWwCGAJ8AlQB7AGQAYgBvAHIAbABfAGEASAAlANX/a/81/yb/ef/Q/zIAaABoAFUA9/+T/xL/vv7H/hT/fP/F/+////8HABQAHgApAGQAyAArAWYBQwHmAIYASAAwAAsA8//u/w0ANgAwAOz/jf9K/y//Kf8J//f+9f4k/07/W/9n/4X/0P8SAEEANQAkABIAAwD2/9P/xP+4/8H/wP/G/+D/AAAeABYA+v/Y/8D/q/9+/2L/Rv9V/2f/af93/4T/vP/p//3/9P/j/+n/7v/3/+v/8P/7/yEAOAAyABoAAAALABcAJgAKAOj/4v/0/xIAJwA5AFgAkQC/AL4AigA5APD/zf/I/9X/8/8rAHIAqwC+AJkAVAAZAPz/AAAHAAYA///s/9//0v/L/9n//P81AFgAXQA9ABcACgALAAUA6f/e/+7/NwCBAKgA1wDhAPgA9wDDAIMALQDt/9X/2v/l/wwAJgBvAKkAwADQAJ0AmQCiALAAvACIAEkABADO/5X/Yf9K/2L/uv8cAGcAkAB2ACgAuP8l/2/+0f2B/X391v1g/vX+iP8FAGsAswDTAPcAGQFeAboB5QEMAgYCAwIAAvMB3wG8AaABkgGKAW4BJAGgAAAASf+V/u39ZP0a/Qj9Jf09/UH9Jf37/Pv8//wT/SP9JP1A/Wr9w/0i/pb+L/+//1sAuADmAAkBHQFdAacB6gElAkgCZAJ7AooCrwLwAkIDlAOzA38D+AIxAmYBsAA1APr/3f/L/5T/Ov++/kH+5/26/c/9+v0S/gL+uf1W/f/84PwF/WL97v2f/lr/DwCpABkBcwG/AQkCJgIdAu8BugGnAbABzgHdAeEB5AHdAcIBfQEnAcgAcQAdAMT/TP/N/mT+Gv76/fb9EP5U/sj+Nv9x/2H/Ef+b/jX+9v3y/T7+5f6//5sATAG3AfABGAJUApkC7QImAz0DIAPSAkwCrgE0AQ0BNQGFAdgB9AHoAZYB+gAiACL/JP5K/an8QPwl/E38rfwt/aL98P0C/vD91P3W/QD+Uf69/iz/mf/o/x4AQwCGAP4ArAFvAg0DbgOMA2sDFgOTAgQCgQEoAfEA0QCcAFEAAgCs/17/Cf+i/jT+2P2L/U79Fv3//BH9Yv3c/V3+3v5G/5z/1f8AACsAcwDYAFEBwAEdAlYCewKQApkCmwKgApcCagIVAooB4wArAIj/Ff/R/rz+vf68/qn+hv5X/iP+5v2i/WX9M/0d/S/9dv3n/Xj+GP+t/yMAbQCRAJsApwDBAOwAGAFDAWgBhQGWAZgBhwF5AW4BbAFwAV4BOwECAbUAXgAGALX/df9I/zb/Pv9N/1v/Xv9P/zT/Bf/X/qf+eP5n/nX+qP7z/kr/nP/k/x8AUgB0AIQAiwCTAJ4AsgDDAN0A+wAVAS0BMwEkAQIB2gCxAIYAWQAlAPv/zf+g/3H/Pf8O/+f+0f7R/uj+B/8l/0D/XP9v/3r/ef91/3f/hf+l/8//AAA2AHEArQDpABUBLwE6AS8BIgEFAeEAvACeAIwAhQB/AHsAewB5AIIAhAB/AGcAQQASANv/of9s/0P/Kv8p/zf/Sv9a/2f/bv+A/43/m/+j/6r/sP+4/8L/zf/e//H/CwAqAEcAWwBqAH0AlgCtAMsA4gDwAPYA5QDGAJ0AbgBEABwA/f/l/83/vP+o/5H/fP9g/0n/Lf8P//X+5v7t/vv+Gf88/2f/jP+4/+D/BAAmAEQAYgB9AJgAsADIAM0A1ADMALQAmABuAFEAOgAvAC8AMAAzADAAHgABANz/sP+H/2f/VP9R/2D/d/+P/6r/vf/O/9L/0P/K/8b/wf/G/9T/7P8HAB8AOQBNAF0AaAByAHoAggCHAIoAhAB9AG0AXwBMADoAJgAUAAgA/v/7//T/7v/k/9L/vv+j/4v/c/9i/1j/XP9s/4f/pf/F/+n/CAAkADEAOAA7AEEARwBPAF0AaQB7AIsAmwCeAJoAjAB3AGUAUAA1ABgA+f/a/8P/rP+T/3r/ZP9N/z//Nv87/1H/a/+C/5n/qv+6/8f/2P/o//z/EwAsAEMAVABlAG8AdwB/AH8AgAB+AHcAcQBlAFkAUQBHAEQAPQA3ACwAJgAhACIAKwAsADEALgAqACIACgDt/9n/0v/Z/+P/8v8HABcALgAwAB4ABADm/9r/2P/V/9X/6/8UAEkAZQBeAEQAJAAaAAgA9P/t//v/KwBOAFsASwAwAB8AAwDl/7v/qf+7/+f/GgA6AEEAQAAyABQA7f+4/5b/k/+p/9b/BgAsAEwAVABJACAA4v+4/6f/wv/q/w0AOABkAIQAkABtADMABgDo/+z/8/8AABoAMgBEADkAHQD5/8z/v/++/8T/1v/h/+v/2//T/87/y//Z/9L/3P/x/wgAKAAaAAcA+P///x8AMwA/AEIATABnAHIAYAAyABYADwATACYAJgApADEAPwBJADIAEQDr/87/xP/B/8v/3P/2//7/DAAYAAkABADd/8H/sf+y/97/8P8NAA4ACgAMAAEA5/+s/5L/mP/Y/xYARQBYAGQAfgCCAGwAMQD2/8L/uf/I/9T/2/8KAEAAYgBdACUA8/+//5X/df9j/3T/ov/Y/wQAGgARAAQA4/+y/47/fP+R/77/6f8YAEAAUgBWAEEAIgABAO7/7f/w//f/CAAnAEsAYgBhAE8AOwAdAAUA5//K/8X/yP/u/xoAKgAwACIAEQADAOb/zf+s/6X/u//m/xIAJgA0AC0AKwAXAO//v/+k/7b/1v/7/xcAKQA5ADgAIADz/73/mf+S/6r/1v8DACoAQAA8ACkABgDg/8T/vP/Y//z/HAA2AEMASAA9ABsA+v/k/+T/8v8EABoALwBGAE8AQwAoAAwA+v/w/+3/9v8HABkAMAA1ADEAJgAJAOX/zv/I/9T/6P/z/wkAJAA9AEsALQAFAOj/0v/M/9H/2v/o//z/HAA6AEAAKwAJAPT/6//s/+P/0//Q/+X/BgAcAB4ABQD//wAA/P/2/+H/3f/u//7/EQAdABYAFQAUABEAEwAKAAwAFQAgAC0AOQA/AEUAPAApAB0ADAD+//T/7//w//f/AQAKAA0ABAD7//T/6//t//D/9P/4//7/AwD//+//5P/h/+X/9P/7////BwANABwAHAAWAAoAAwAIAAwADwAMABcALQBCAEwASgA9ADAAJgAgAB0AHwAsADMANgA1AC8AHwANAP3/7v/t/+j/2//S/9T/2//q//H/8//6/wAADwAPAA4ADQAGAA4AFAAbACAAHwAkACkAKwArACUAHQAZABYAFgAVABMAEAALAAYAAgD5//L/9v/7//7/AwAMAA8ADQAIAAkAAADz/+v/6P/t//H///8UACYAMwBAAEkATQBMAEkARwBDAD8AOwA1ACoAHgARAAYAAAD7//z///8IABMAGAATAAwACgAAAPX/7v/p/+n/9f/+/wUAAwAAAAYAAgAAAPP/4//e/9z/4P/f/+D/4//0//j/9P/w/+n/7f/z//z/AQAFAA0AGAAgAB4AHwAiACQAKQAuADMANQA0ADQAMwAuACcAFgAHAPr/7f/m/+b/7//9/wkADAAKAAcAAgD8//P/7//v//b//P8CAAMAAgD///r/+f/5//v//f/9//n/9f/u/+n/5//i/+P/4//n/+v/7//0//D/8P/x//X/+P/3//r/AQAOABcAHgAiACUAJgAiACEAGwATABEAEgAWABkAFwARAA4ADAAGAPr/7f/k/93/2v/b/9//5P/x/wAABwAJAAkABAAGAAwACgAJAAUACAALAA4ADwAPABYAGwAfAB4AIAAlACgAKAAjAB4AGwAXABEADgAJAAAA/v/3//X/9P/w//D/8v/3//b/8f/n/+T/6f/x//7/CQAfAC4APAA+ADkAMwAnACEAGgAWABIAFAAXABQADgD9//H/5f/c/9f/1f/P/8n/yf/J/8L/wP/A/8L/xv/P/93/6v/2/wAADAAXABsAIAAXAA0AAgD/////AAAHABAAGQAlACsAMQAyADEALQApACgAIAAYABQAEgAXAB0AHQAYABcAGgAaABgAFQAOAA4ADAAJAAQAAQD8//r//P/+/wkADQAUABYAFAAUAA0ACAD+//b/8//0//b//f8KABgAIgAvADQANQA0AC4AJAAaAA0ABAAAAPv/+v/9//3/+//2//P/8//y//L/8v/4//3//v/8//j/9//6//7/AAADAAgADgAQABEADwAIAAMA/v/7//r/+/8AAAIAAgAAAPz/8P/n/9z/2f/W/9b/3P/m//L/AgASABcAGgAWABIACwAEAAEA/v8JABUAHgAlACoALQAqACMAGQATAA8ACgACAAAA/P/3//L/6v/o/+j/6P/q/+7/6v/m/+X/4P/X/83/xP/C/8H/xP/L/9b/3f/m//H/+f8BAAUABAAHAAQABgAHAAkADQAXABwAJQAwADYAPABDAEQAPwBDAEMARgBJAEkASABMAEcAPAAwACEAEwAGAPz/9v/0//P/8f/x//H/8f/v/+7/7P/r/+z/8v/4////AgAGAA0AEwAUABUAGQAaABoAGAASABAADgAKAAUA/P/y/+3/6f/i/93/3f/b/9j/0P/G/8H/t/+t/6X/pP+v/7r/yv/W/+X/9P8CABQAIgAyAD8ATgBcAGYAbwB1AHYAegB/AH4AdABiAE8AOAAiAAUA6P/K/7r/qv+X/33/Z/9a/1f/XP9l/27/fv+R/6X/vP/L/9z/6v/1/wYADAAXABoAJwA2ADwAPgBFAFQAWQBhAGoAZwByAHIAaQBOADYAHQACAPP/5P/H/6v/lP+B/3n/df95/43/p//M/+3/DwA7AGwAogDHANkA5ADmAOkA5gDPALAAjABgADkABwDP/57/eP9h/0z/Pf8o/xL/B////vn++P7//v/+BP8F/wn/E/8d/yL/K/81/0T/Yf9+/5r/wf/q/wQAFwAkADMARwBJADIAEQDv/8v/pv93/0T/Ff/3/uP+z/6z/p/+pP68/uj+Ev9H/57/7/9IAKUA/wBmAdUBLgKPAs0CEQNXA44DuwPKA8wDsQN3AykD6AKlAlgC8AF8AfsAgAAOAKb/Xf88/07/e/++/wUASACqAEEB5wGQAioDiAPEA7ADLgNqAqQBIgEeAUwBdgFBAfoAGAGcAUgCbwJdAj4CRQKsAcv/0vzs+Vn48/fb95/2IPSU8V/wG/GS81v3pvsaAPkDFAdTCTsMRRC9FKAY0BnjGCkWMBOLEO8NcQv1CIAGgAPA/9769fU18m7w++9775DtSuo75+LlsOZ06HXqZuyb7qPx+PRy+MH7w/+4BIIJNg3lDlUPpw8SEJQQfBCGDwgOIgzmCWgHzwQLAx0CmAHpAFP/EP2w+t74n/fW9iH2PvXz8y/yLvB57s/tee4x8DvyXPR29vb4+vum/+4DMwghDEkPtBEOE1ETwhK6EXwQrw4NDJEImgSgAA393vlq97/1svQO9KHzjPO881f0YfXa9p74dfoK/DD9/P2i/nn/hADjAVMDoQSCBdUF/wVPBtAGUQexB8oHjgfxBgAGxARqAx8CCgEqADz/D/6e/C37+/kz+cP4pPjg+GX5C/p2+pb6jfrO+pr7w/wH/gj/p/8LAFoAmwDeAEwBJAJDAzUEkgRXBO0DyQMFBGsEqQShBE8EuQPbArABdgB9//T+rv5X/q79zfwF/Jj7gvu3+z/8G/0e/gj/qP8LAHIAJAEnAj0DHwSsBPQE+wTeBJcEUQRMBIoE2wQEBe4ErgRBBL0DPAPUApYCjwKoAo4CVQIiAgwCJAJoAgoDHgTYBQ8IZwqfDHIOJBDKEWMTIRWvFqQXmxcgFu0S2g2sB24B0vta97zzDfCP61vmDOHg3IHaXdoL3CzfLuML5zvqS+xY7n/xW/ZW/MUBeQXcBv8Gvga4BggH/wfgCVMMRw6yDjwN3gpJCSYJ/AlvCs0JJwivBZYCrf5e+nD21fPH8lnyV/FL7+bsJeur6qTrve3M8Iv0g/j2+yT+a/+aALgCCwbTCQ8N+g6SDygPFA7MDM0LXAudC/8LmAvsCTYHUwQOAq0A9/90/7H+iP3k+9v5v/cb9m71y/XK9rn3IPgR+B/40PhT+oX8BP96AaEDXAWnBp4HgwhvCXMKZgvvC8EL4gqbCVkIUQdVBh0FdAN4AVH/M/1K+6L5PPgf9yf2O/U59F7z7vIx80n07/Xh96/5Ovu8/Gz+ZwCHAoMEIwZMB/UHFQivB9MGuwXOBCYEhAOGAgcBSf/H/bf8AvyF+1D7h/sM/Hv8hvwx/Pz7Vfw2/VH+OP/Q/zMAhwDBANoA7ABkAUoCdQNyBL8EkwQmBPwD/wMcBEIEZgSPBG0E4wP6AicCtQHEARECTAJDAhAC3AGhAVMBNgFmAdsBNwIAAjwBHgAY/2X+GP5U/vf+6v8eAVECxgPGBXcIwwv3DqURSxPMFKgWrBhVGnMaIBmiFsoT/hC2DWIJxwOe/BD0mept4Xva4daY1qPX09dn1pTUfNTT14neTudu8JH4C/9dA9oFnQdOCpYOwRN0FwsYMBUbEAELCAeyBKcDdgNiA64CpQBk/RT6j/h6+fP7R/7X/n79Jvvk+Hf3yPZ19l72VvYS9lD1BPSc8hHy+vIt9R34DvvR/XoAHAOTBaEHZAk/C2cNww+lEUwSnBHqD8sNrAvFCQIIPQZLBOIB1/5k+0X4Ofac9ff1aPZP9rn1K/U59Tj2M/ji+ub9vQD0AoYEuwUuB2IJGwy1Dm0Q4BBgEHoPpg4CDn8N9wz5C1cKyQdgBKkAR/26+un4T/dZ9eLyTPAS7rjsV+zB7NjtMu+b8OzxT/Mu9ab3pPrG/aUAEwPZBO8FlgYIB3cHwQfWB5oH8wYPBskEVgPuAcYA9P8t/0b+LP3k+9L6U/ps+uD6avvr+0H8jPzz/JP9e/6h/84AvQFlAs0CDgNpA/YDngQwBZMF3QUMBkYGvwahB8AI1wmYCr8KeAojCjcK2ArJC4kMtAwbDMgK9QjfBvcEtwP+AhsCdADH/YD61fdv9gv3CfkZ/JH/2ALyBUsIYQpeDTES3RgRIE4lLicqJcEgwRtGF0sT0A4mCZoBGfhy7CXgjdUszy7OBtF21FzVOtMN0OTO4NED2Qnjt+099zb+8AFuA5gEbgfrDL4TMhk2G2IZDxVwEBINvQv2C5kMIgyYCQIFkv8C+5H4X/ha+f75H/l89s3yTu/77HLsfe0v71bwa/Cj77/u2u6M8LPz0PcX/O7//wI4BVwHAgpnDVwRCRWDF10YthfyFfITQBK7EPcOgAwjCRgFwACB/M/49PUo9EPzvfL+8eHwx+91733w5fL69ez4Yftk/VH/SAFfA7gFXAgzC9ENrQ92EGMQDBDGD4wPBw/pDYAM4goGCbgGqwNfAH/9Xfuf+eH37/UF9Fby9vC176HuDO5Y7nLvyfDa8Z/ysPNo9Z739fkE/Of9vP+SARMDAwSrBFAFKwbVBtMGEAb0BAYERgOjAvABJAFWAIP/m/6F/U/8bvs9+8372/wK/h3/DwDlANcBIQPQBM8GzAiKCrcLRAwoDMoLcQslC8cKCQrICCAHdwUnBDoDoQJNAjUCSAITApwBKQFFAUQCpANsBPsDagJfALj+kP3b/Eb81vuR+237KPv8+o37+f16AloITg5pE8MX0xsqIIYkgihaK30sTitSJ1ogWxfRDRQFhf1D9sPts+NF2dbPG8lExfDD78Rmx6zKIs5h0XvVgNsz5IvuuvjaAO0F7wgrC84NDRFoFHoXbhmTGYwX2RPSDyENbgw2DSMO+Q1WDHwJKAYHA6YAF/87/mz9jPsa+HTzue4A68Po0+ed56/n8ud66Fvpzepu7YXxAPcn/eUCowdACyYOARHfE6gW7xj6GZMZvRe3FAQRRg3ZCeQGJQRSAUn+Jft++LH26fXd9Qb2IPYh9k32zvas98f4FPqK++/89P1g/nr+zP7Q/5ABrgOeBREHBAilCEQJCQrzCtYLegyTDN4LSQocCK0FVQM5ASf/1vwg+iX3M/Tj8Xrw0++17/Hva/D28LbxvfJD9Gr2DPnT+0H+9/8KAeUBwQLNA80ElgX4BfMFewWoBMkDIQPSAsECrAIyAmQBeQCh/wr/sv6W/pr+f/5N/ir+P/6T/g7/kf/5/yoAbwD5AMoB3gIJBDIFMgbNBgcH8wbkBigHwQd2CPsI7Ag4CF8HlQZqBuUGjwcTCOMHYweVBtAFiQXfBWwGGgfrBpYFbgPTAKT/Vf+L///+LP2m+oX4lffq97T5ePxlAB0FkwmuDLgOKREbFXMawx9FI/UjXiK2H2UcvhifFOoPZwqrA6L7sfLF6WDiTd0g2vLXpdXA07vSNNOr1XDZRt6P4/PozO3+8cD1Wflk/XcBFwWmB/sIVQlBCTMJhAkJCpgKuwo+CkkJBAgNB6cGkgYiBuIE5AKRACD+xPtT+bn2s/OD8KvtGevn6ELnYeZb5v/mBOiC6bzrZu+F9HH6IwD+BPoIqwyjEOQUDRk0HCAehx6UHZcbxRiRFUkSQw8hDFQI8gOB/6n7+PhU93D26PW39cv1D/Z89v323vce+Z365Pu5/Pv89fwM/VT9qP3D/cr92f09/uL+pv9pAEoBXwKfA/sEMgY5BwYItwgnCUwJBwlcCG8HRAbJBOsCvQBa/gj84PkT+Jv2WvVZ9Hfz0PI+8gHyNfL98kD0oPXO9pD39Pc8+NP4v/kF+2P8pf26/mf/7P9pACoBLwJpA48EdQUVBo0GKAf7Bw0JDwriClQLaAscC4YKvAnCCMQHswaMBf8DHAL8/8T9yPsU+tj46vdD9+j28PZd9zH4f/le++r9+ABoBNgHCwvpDXYQ1BKxFDUW3BafFp0VyhNyEZAOdQtHCGMF/gL9AMf+h/xy+v74vfh6+Wz7Sf7gAa0F4AgaC4YM4w2wD+IRxxNuFFQTrxA8DXYJBgbqAtH/X/wX+O7yJe2j54PjGOFi4IzgjOD139HecN6s37vieOem7F7x+/Rz91/5P/uz/csAOASDB+AJ4QpdChIJGQgECLUIeAmcCQkJ4QehBoIFmQQBBNYDxwNOAyoCbQBy/rf8VfsQ+pv4qvZr9Bfy6+8M7qPsz+uG66frFOzH7Prt4u+E8rL1CflZ/JD/vQLdBd0IlQvdDa0P0RA+EfUQKhAND8INXwzZCh0JOQdqBeADuwL2AYYBXAFmAYcBtQHhAQwCPgJiAmkCJQKHAXgAKP/M/X78PPv7+dD4yPcR95n2ZfaF9iv3bPgQ+u77uv1i//IAjgI2BM4FLgcfCJ8ImggeCF0HWgY1BQkEzQJtAeT/Vf7n/ML7/Ppx+ib6Ifpq+u/6gPsL/JH8Hf3P/aD+Y//v/zoAZwB3AGEAJQDU/4v/TP8e//n+7P4S/3D//P+cAE8BIAIgA00EggWcBo8HRwjVCC0JUAk+CQcJqAgJCC0HFwbDBFYD6AGBAF7/ev7G/S79pPxC/BL8Gfxc/Nz8lv1q/jX/7P+VAFcBPQItA/oDkAT3BEAFtgV3BngH/QjwCioNMQ/UEP0RgRO5FZQYuxtdHhggZiCGH78dZht8GBgV8hCPC7YEu/xo9J3sT+ZV4WvdCNrh1hvUF9Jb0XjSVtWt2bnej+O15+Xqye0P8Rn1svkF/kgBAgObA1sDzwIqAr8BwQFNAhIDawMaA1MC4AFTAq4DfQU0B84IJgo3C9gL6QuOCxcLmAqoCQoIiAVZAtP+R/vc95f0mvH57trsH+vC6fbo/ejp6Zvr7u2V8Ibzy/ZG+t79TQF3BEIHugnTC3YNqQ5xD9UP7Q+0DxMPOw52DdUMdAwlDLoLHwt3CuYJiAlBCQ0JywgqCC0H0wUzBG8CwQA+/8/9XvzZ+ij5ZvfM9Zj03/On8/nzkfRC9fT1lPY+9yv4dvkR+8j8XP6N/0MAqAD2AEABgQHBAdsBpgEgAWIAdP9p/oj9+fyk/HP8Q/z7+6v7eft/+8X7Wfw4/Sn+/f6i/xQAXgC1AD4B4AFzAuACFAP0ArUCYgIMAuEB5QH/ARECCALgAawBjgGtARACmgJDA+8DbQS8BP4EQwWWBfkFYQahBqMGagYRBqQFOwXnBJQENgTFAy8DmAIRArQBhAGUAdMBFAJIAr4CnAMHBeEGGwlfC54Nqg9uETMTPBW2F1UatBxQHtAeGh59HHkaQhjUFQITaw/hCnIFZP8Z+Uzzi+4D61Pow+W04jnfHtwg2sXZDdtT3azfsOEu43bkAOYu6APrau7m8eb06fbh92P4GflZ+mX8t/7LABUCggJsAmAC5gI1BP8F9QenCbsKEAsCC/cKJQvHC5kMGA3DDHcLbQkFB8IEwQLqABT/9fx3+ob3YPRI8aHuo+xb64fq7Olb6dLom+jq6PLpquvl7WXwBvOZ9Q34lPpK/TAAUwNtBlIJrwuCDd8O5w/gENARpBJRE6kTphNFE6cS8RFcEeAQfBAPEG4Plg6IDWUMUQtXCmQJaghPB/UFVwSAAoUAjv63/A37V/mk98716PMa8ozwV+9t7uLtlu137X3tqO0M7t3uLvDU8bbzkPU997H4Dfpz++L8bv70/1kBWQLvAiQDIQMKAwgDDgMiAycDCAPDAlwCCALRAdIBCgJvAtwCMQNzA6UD3QMlBI0E+gRXBY0FnAV8BSYFtgRGBOsDpwNiAwADdQLPASIBjAAeAOv/0P/P/9v/4P/f/+j/GAB3APQAhgEIAmkCuwIeA6QDZARTBWEGbgd2CFkJKQoTCzgMpA1DD+kQlRIcFIIV6BZLGJkZ5xr4G5wcrhz4G54ashifFlwU3BHcDkMLJQeQAtX9Nfms9F/wV+yM6OnkheGh3mbcANtX2mna7tqk25fc5d2s3wXipuRm5z7q7+xj75Hxg/N29Wn3d/l6+y39fv6E/1kASwFWAqUDEgV4BpgHWgjJCAcJUAmwCQkKQwpECuYJLQkoCPYGsQVnBEcDIgLTAFD/of3/+4v6UPlM+H73x/Yd9oX1AvWd9HT0kvT+9KX1U/YL97b3fvh/+a/6Cfxs/d7+UAC1ARIDbATdBVEHyQgbCiIL4QtZDLEMAA08DVsNRg33DHEMuwvfCvYJFwlKCIwHyAb5BQQFEQQmA2cC1wFYAdUAJwBH/0n+JP3u+776nPmL+IP3ePZq9VH0Q/Np8tHxf/F58Z3x4PFE8tPycPMz9B/1RvaH98f42vnH+p77b/xf/Uf+Nv8SAOcAngEwAq8CJAOgA0AE6gSkBU8G4QZaB7QHGAh2CN0IVQnOCSgKSQpECiAK5QmrCWwJEgmpCAcITAd+BpQFtwTnAzYDowIJAmkBwgAkAKX/SP8a/yr/Vv+M/9f/DwBMAJ0AAAGzAYECdgM8BNAEcwUuBjAHkwhYClAMRw5UEDcSxxM8FbgWNhifGcganRvZG3gbsBpcGc8X4xWgE+8Q2g1UCloGDwLe/eD5RPbu8t/vEO1Q6qnnSuVS49ThyeAr4MTfmt+g36bf4t9c4Abh5uEJ41fkveUp56XoROoz7E/uifDT8hv1Y/ed+az7nP1x/zUB3wJ3BN8FFAcTCOUIgQnrCS8KXgp6Cn0KYwoiCrAJGgmFCPgHawfYBjoGfAWkBNwDFANOAocByAAcAIH/5/5H/p/9B/2T/D/8/fu8+4b7WPs8+zT7OPtH+2D7q/sh/Lb8TP3V/Vr+2f5s/wwAvwCQAWoCPQPpA20E3gREBa4FKQamBhYHaweRB4gHSQcEB7sGewY+BvYFiAXrBBgEIwMZAhQBJAA6/1L+YP1T/Cv7+/nY+NP38fYy9ob13vRC9LnzRvP38tny7vIu83TzvPP/8070sfQ59dv1k/ZS9xb45/i3+an6tvvp/Dn+rP8lAa4CJwShBREHgAjjCTYLdAyODW8OIg+bD/YPORBjEHkQZxAbEJIPzQ7gDe4M/AsOCzEKQQkxCAcH0wWjBI4DnQLEAREBXQCs/wP/bv4K/uD97v0o/pD+B/+K/xQAugCDAW0ChgO9BP4FQgdwCJ8J3AolDIgN/Q5aEIQRYRIIE2kTmhOgE3UTCxNAEhARjw/UDe0L8wnQB4sFBgNTAH79xvo9+AH2BPRE8p7w+e6A7TPsIutT6uzps+mj6aPpl+mO6Xzpl+nU6SPqkOrx6kPrhuvM6yrsuOx07WHufu+n8ODxEvNO9JT14vZG+Kv5FPt+/Nv9Iv9TAG8BgQKOA6UEsQW1BpQHTgjmCG8J9AlpCs4KGgtFCz0LCAusCiwKngn4CFQIowfLBsQFkwRcA0ACOAFCAGT/jf6//fz8Sfyu+0L7DfsV+0r7ifvJ+wD8TPy9/Fz9Ff7V/pX/TAD2AJIBKwLIAloD5wNkBMMEAAUbBRgFCgXrBL8EfQQcBKcDMwOwAiICmQEFAXIAzv8e/2L+pf3y/FL8zvtZ++n6Z/rr+XT5Avmp+Gj4Pfgm+B/4Gvga+Cb4Rfh3+LX4B/lk+cj5Mvqi+jv73vuX/F/9Nf4q/y0ANQEuAi8DLgRJBWcGggeLCHIJPgrwCoML9QtBDIAMogy0DKgMbgwfDLULUgvYCksKvwkzCZ8I7wc3B4YG3wVJBcIEMwSqAwoDZAK+ASEBoQAmAMH/bv8t/+v+t/6c/rP+9f5L/9//eAAkAQEC4gL8AzIFgwYECFsJtgryCwkNLw40DzAQBBGiEegR0BGHEewQCBDcDmQNpwuOCSAHbQSiAej+WPzg+Yz3PPUA8+3wIO+f7VTsbuvK6lPqAeq26XDpWOl86dHpMuqW6tbq+uoo627rzOtF7N3sqO2L7mzvRvAY8e/x6PIq9JP1Cfdo+L/5H/t1/M/9Ef9nAMgBMgORBM4F4QbTB7EIlgmBCm8LOAzeDEwNcw1/DXkNZA1DDf0MnAwVDF8LgAqICYgIhgeGBo4FkAR4A1YCLwEdADb/Xv6T/dn8IPx4+9z6WPrm+Y75VPk++Tv5QvlL+Vf5hfnX+UL6vvo9+8T7T/zc/G79A/6m/kD/2/9nAN8APwGOAdIBCgJAAlwCYgJVAjwC/gG3AWQBCwGpAE0A7f97//z+dv7//ZL9PP3h/JH8Ovzv+7H7cvtH+yL7DfsD+wb7H/s2+1n7kfvh+0L8t/wm/aL9Lv7E/nn/OgAJAe4B3gLeA84EqgV+BkgHDQjLCHMJFQqVCgoLYAuLC7ULxwvBC8ELqguJC04L9wqiCjQK1wl1CRAJoggoCKcHCAdgBq4FCgVtBNQDOgOoAhQChgEEAU8Av/9D/97+o/54/mv+ef6p/hX/sf9XADQBHgIfA0cEdgXLBhAITQmECn4LWQz3DGoNvw3gDekNyw2FDQMNSgyAC4YKcwlFCPcGgAXEA/MBAgAG/gz8D/oC+PT1yPOL8UvvDe0r64XpLugL5zDmgeXK5GPkJ+Rd5NfkjeWF5n7naOhC6SzqOutj7H3tv+747xLxHfIP8w70GPVD9oz37PhK+qT7CP1i/tL/RQHkAooEKwajB/sIJgodC/wLzwyRDTIOlg7ZDtYOhw4dDogN9AxcDLIL8wojCkYJZAiLB8UGFAZkBcMEKQSLA+0CUALAATEBpwAiAKL/H/+c/hj+lf0b/a/8UvwH/Mn7mPtn+zr7Kvsy+0r7cPuk++b7MfyB/NT8KP2C/dj9Kv5y/q3+3v4E/yL/N/9I/07/Rf82/xj/3P6h/mj+Mv7//cb9lP1Y/RL9zvyM/FL8Hfzk+7X7ifto+1H7RftH+177hfvB+w38avzX/F/9AP7D/pf/gABmAU0CNQMWBPQE0gWcBlMH/weUCAcJWAmWCbkJyAnRCcsJtwmZCWgJQQkGCc8IpQh8CGEIOQgSCNsHoAdgBxQH0AaHBjoG0wVeBdwETgTAAzMDrgIrArUBOwHQAHAAFQDP/6z/qP+v/9D/CgBVALkALwG6AVwCBAOuA2cEIQXVBZIGSQcBCLEIXgn6CYYKFwuMC/4LXAyZDL0MugyZDEoMwAsLCx8KAAmvBxoGTwRBAhUAyv2C+z759/a09HjyXPBP7nLs0+qO6Xfotecd57bmf+Zh5pLm1OZU5wroxuia6XvqRusd7BDtDO4g7yjwPPFE8kbzQvQ/9Ur2Y/eG+Kb5xvqW+1z8Nv0K/uj+tP+hAIUBXwIoA+8DugSFBVEGJQfyB7kIZAnxCXAKzgoZC1kLgQuOC3sLRgv8CpYKHQqqCS0JrwgwCLQHMwezBjcGuQVJBe0EjAQyBNcDegMkA88CfgIuAtcBfAEmAdMAiQA5AOT/o/9x/0T/H//+/uv+2P7O/sb+u/6w/qD+iv50/kr+E/7T/YX9Nf3f/IH8Gfyw+0P7w/pY+vr5qPlf+SL5/Pjh+M340Pjm+A/5Qvlr+Z/50vkL+k/6kfrW+ir7dvvN+yP8fPzi/FL91P1q/gf/v/99AEIBDwLoAsQDnwRyBToG9AagBzAInAj7CEAJZQl5CXgJXgkwCfoIwgh/CDgI8ge1B4AHTgcqBw0H8wblBtYGxwbIBsUGrwaWBm8GQAYFBrUFaQUKBaAEOATKA2MDBgOxAosCeAJ3Ao0CvQIHA18DzQNUBOsEhwUgBr4GVwfnB18IuQgGCUEJagmBCZgJogmYCZEJgQltCU8JKQkHCdIIlghdCBAIsgc2B5gG5wUBBfMDzQKJASQAqP4H/WH7qfnx9z72kfQM853xZfBO72TuqO0i7cfsoOyp7MfsEO197QDugu4d76nvPfDJ8EvxzvE78qLy9PJS863zFPSA9O/0YfXS9WH2//ak91n4EvnV+Z76bPs5/Af92P2n/mf/JgDTAHMB+wF0AuQCQAOQA90DGwRWBIMEpgTIBOIE/AQVBTAFSQViBXsFlgWnBbQFvQXABcsFyQW3BaMFhwVpBUUFGgXnBLMEgARLBBIE2QOcA1cDFAPYApQCTwIGAr0BbQEhAckAbQAOAKn/Qf/V/mH+8f2C/Qz9ofw6/Nv7fvsy+/f61frC+rn6vPrI+tb67voL+yX7Qftk+4f7oPuq+6/7rPup+5n7hvt2+1/7TftE+zv7QftO+2f7ivu/+/77UPyp/A79iP0K/p7+Nf/R/3QAGgHLAXMCFgO0A00E3gRrBe4FXQbEBhwHcge+BwEIRAh6CKAIvQjXCOsI8gj1COkI1Ai6CJEIVggcCNYHjAc2B94GjwY+Bu4FnQVLBQEFvwR+BE0ELAQPBAIE/gMDBAgEGgQxBEsEZwSDBKEEvATWBOgE+gQKBQ4FEAUIBQEF/ATiBNIEvgSfBI0EcwRnBGIEXQRhBGYEcQR0BHoEfQRyBGMENQQHBNEDjAM5A9ACTAKpAfQAMABg/3j+g/2G/HP7ZPpK+S74JvcS9hj1KPRY85/y+PFq8fbwofBi8DTwJfAu8EbwaPCV8MzwA/E58XPxvPEK8lnyq/ID817zwvM99Lv0TfXs9Z/2Zvc8+B75EPoO+w38Ev0g/ir/KQAVAf0BzwKVA0ME2QReBcQFFAZVBoEGowa2Br4GxwbFBsIGuwa7BrkGvAbCBtIG3gbuBgEHFwcfBx8HFgcIB/EGygaZBl4GHAbOBXcFEwWeBBgEiQPvAlICtgEYAXwA5P9b/9T+Xv7z/Zr9Vf0b/fP82fzP/Nb81Pzc/O/8Af0e/S39Qf1M/Uj9Pv0s/Rz9Bf3o/Mb8p/yA/FT8LPz6+837m/tz+0j7G/v4+uL62fra+uT6/vol+1n7mfvi+zb8k/z5/Gr96f13/gP/i/8SAJwAIQGxATcCvgJJA8sDTwTQBEgFwwU7BqQG/gZUB6cH5gcZCEEIXwhxCHcIegh6CGcISwgoCPIHwQeSB1kHIwfwBrUGeAY1Bj0GPgY1BjcGNAY3Bi4GJQYSBvUFzAWeBW0FNwX3BKcEVAT7A5UDMAPHAmMCAwKUASsBywBeAPn/nv9W/xj/5v7E/rP+rf64/t7+FP9e/73/LgCmABkBhgHwAVACrgL/AkUDggOrA8UDywPMA7cDngNsAy0D3AJvAvcBZQHPACgAcv+z/uz9Hf1A/Hb7oPrd+R/5Zfi89xj3kfYR9qX1SvXy9LT0f/RF9B309vPb89LzwvO587DzsPOw87/z1fP88yD0T/SV9N70QvWi9RT2kfYY96r3QPjj+JD5Rvr5+qn7XvwV/cj9fv42/9//iwAqAcUBWQLhAmUD3wNSBL8EJQWDBdoFIgZgBooGpwa5BrAGoQaJBmcGQwYHBtkFoQV1BUkFIQUHBeUExASjBHkETQQZBOgDrgN1AzUD7wKeAkkC8QGcAU0B+ACyAHQALQDz/7P/ev9O/yr/Df/x/tD+pf56/lX+Lf4G/uH9tP2J/VT9H/3j/Kv8d/xG/CL8Avzy++H72PvY+9n76Pv8+xz8Tfx//Lr8+fw5/YL9xv0b/mr+uP4B/0D/f/+0/+b/JABdAKQA5wArAXABrgH+AUYCogL7AlYDsgMJBGQEqgTsBB8FTgV0BZkFvQXWBeQF5QXcBcoFsQWOBWwFOgUHBccEhwRCBAEEzQOhA4ADYwNLAzMDFwMCA+gC0wK/AqUCkQJ4AmECRwIyAh4CBAL0Ad0BzgG/AbUBqQGZAY8BhAF7AWwBZwFbAU8BPQEwASQBFwEOAQwBFAEgATMBQwFcAXwBoQHMAfcBJQJRAnkCoQLBAt8C7wL7Av4C+QLrAtcCsgKDAk8CDQLHAXABFQGtADUAvf9Y//D+kf4k/rv9VP3g/HH8//uQ+zH7zvp4+ir62/mX+Vn5KvkH+e343fjS+Mf4uvie+IP4afhU+D/4H/gB+OH3wfef94D3ZvdX91L3Ufdg93P3mPfI9/z3Q/iM+OH4PPma+fr5XPrE+iv7jPv0+1f8yPw4/aP9D/5y/t3+Rv+x/x0AkAAEAXYB6wFcAtQCSAO5AyoEmwQMBXIFygURBkQGXgZmBlgGOwYSBt4FoAVaBQQFvAR7BEEEDgThA7cDkQNqA0ADDAPRApACSwL+AbABXAENAcEAeAA2AAAA1P+5/5//iv+B/3H/Y/9T/zr/Gv/0/sb+k/5Z/iD+3v2i/WX9L/0A/eD8yvzC/Mb81fzs/Bn9Uv2W/d/9Lf59/tb+KP+A/9n/LAB/ANEAGgFdAZcB0QECAisCUwJyApMCrwLCAtMC3gLjAuYC6QLrAvAC+AL7AvsC/wIIAxEDEQMSAwoDAwP5AuoC5gLcAtACxQK8Aq8CpQKdApACgQJ1Am4CZgJgAlsCXAJlAm8CfAKKApUCpAKuArQCuAKyAqUCkgJ7AlkCMAIEAt4BtwGWAX8BcQFsAW8BdwGHAZsBqgG4AbwBtAGmAYcBYQEwAf0AxgCMAFUAJQABAOf/1//S/9r/7v8eAF0AmwDZAB4BYgGkAd8BEAI7Al8CgQKbArkCzwLdAuQC4ALSArMCfwI7AugBggEJAXwA7P9H/53+8P0x/Yb82fs9+7L6I/qg+SX5t/hX+AL4s/dz9zT3AvfL9pz2bPZA9h32+vXb9cb1tPWl9aL1l/Wc9av1t/XO9ez1GvZT9pb25vZE97P3MPit+DD5svk6+sr6XPvt+4L8FP2j/Sj+2v6G/xoAqgA6Ab8BRAK6AigDngMDBGMEtwQEBVEFiQWrBcQF0wXfBeEF4wXnBd4FyQW2BaEFjgV5BWYFUwVEBSkFCQXmBLkEfgQ6BOsDmAM4A9MCaAL3AYUBEgGbACwAvf9R//L+l/5D/vT9sf12/Uf9KP0X/Qz9DP0X/Sz9TP1y/aP93f0d/mL+qf70/j7/h//H//7/KwBOAGQAbwBsAGYAUwA3ABMA6v+8/43/W/8t/wb/5v7K/r7+uf6//sj+4P4J/z//gP/M/x4AeQDYAD8BpwEGAmoCyAIYA2YDrQPoAxIENwRRBGEEbQRtBGQEXgRZBFMEUQROBEoEQQQ5BCgEGgQFBPYD5APXA8UDtAOmA5EDgwNxA10DRgMzAyADDgP2AtMCsAKEAlkCKALqAa8BaAESAbIASwDj/3f/D/+1/mv+Mf7//eP91f3Y/e/9Nv6T/gT/iv8lAMwAhQFLAhoD9wPPBKMFaQYZB7EHHAhnCJEIiwhUCOwHXAeTBqwFpQR6Az4C1wBZ/9v9SvzD+lD56Peb9kv1JfQc8zXyavHA8DTwx+97707vNe8472Dvje/T7xnwevDe8ELxvPE18sHyXvMN9Mn0mfV79mr3Zvh0+Zz6z/sK/Vf+oP/nABkCNwNHBD0FIAboBp4HQgjSCD4JlAnOCfcJCAoCCusJvAl1CRcJnwgSCGwHuAb5BTYFZASMA6YCwgHcAAAAL/9t/sL9KP2r/Eb8/vvS+7j7tfvK+/L7Mfx+/Nn8N/2e/QP+bv7X/kH/rP8UAHYA1QAoAXgBwwECAjQCWAJwAn0CgAJ0AmICOgIEArwBbQESAbEATwDs/4z/L//f/pT+Vf4g/gL+3v24/Zn9df1P/S39AP3Q/KH8d/xP/DP8Ffz8++775fv9+yn8Wvys/A39i/0W/q3+Y/8eAPAA1AG0AqcDjwRuBVEGEQfQB24I7AhVCZQJ0QngCccJpAlVCe4IeQjnBzMHbAaYBcgE+gM2A4gC4AE/AasAHgCq/1f/Ff/z/sv+sP6m/o3+jP6T/qX+xP7T/vX+Ev8b/yr/MP80/0L/Of9E/0n/R/9Q/2D/ef+t/+3/XgDyAKABagJGAz8ESQVPBn4HwwjmCQ0L/wvDDGoNvA32Df8NuQ1DDWgMRgvRCQwIKAYJBNMBif8B/Xb63vdR9f3y1fD27jLttut+6n/p1eiD6JXoAOm26bfq3usv7aTuNPDv8bDzhvVE9+/4i/oC/HX9zf4XAEUBUAI4AwkEqAQ2BakF/gU3BlsGZAZOBhUGvQVNBcIEMQSVA/kCVgKxAfcALQBZ/4P+s/3n/Cn8dfvB+gr6Wvm0+BT4ifcX97z2dfZJ9jL2NvZk9rz2Qffq96/4n/my+un7Vf3n/qIAbQJHBCUG7Qe2CXELBg2ZDhIQWRFnEiATlxOsE4QTMxOeEugR1xCJD+8N/wv8CcoHsAWIA2wBTf8u/R37Lflz9+X1kfRt84ryxfE88eHwuvDP8O3wTvHX8Y3ycPNo9JH1yvYg+Jf5G/up/E/+9f+VASYDrQQoBokHzAj9CfwK4AuMDA8NfA2zDdENuQ1zDfEMQQx3C4wKfwldCC4H4wWGBCoD5AGnAHr/Zv5h/W38h/u++hP6k/k8+fv44PjN+NL48vgZ+XD56fl7+kj7HfwR/Qv+Bv8eAD8BcQK0A+YEGgYtBxsIBwnKCYYKLQu1CyIMUwwCDHgL0woMCkEJagiMB48GiwWCBIkDpQLyAW4BHwH/AO8A9gASAUgBtgFUAjsDRgRwBZwGrAejCHwJXQpJC0cMdg2BDisPYg8KD0QOGw2pCyUKhQifBj0EJQFx/S35vfSY8MfsZOlP5onj2+An3r3bv9mJ2IPYfNlb27rdhuBe423m1OnA7WXyhPfm/DYC8AboCikOtRDUErEUOxZSF60XQxfgFZETphBeDRsK9wb8AxgBIv4F++T3z/QU8vTvdu6o7Vntbu2o7d/tMO6V7lfvdPD18cjzvPWb9z75s/oE/Fb9xf5oADMCDATEBTAHRQgpCekJqQp4C24MWA0RDocOnw5pDuwNTw2cDO8LQwt4CnkJKwiSBtAE7gIuAYX/Bf6t/GT7IfrY+J73lPbV9YX1o/UP9sD2jPd9+Ij5s/oY/Mr9rf+gAZEDbAUQB30IsQmtCoELKAyfDM8Mrgw7DFoLPgr1CIIHBQZ2BOICMQF5/7n9/fth+vn40vf59mH2DPb19RH2cvYS9wf4RPnN+oH8bv5dACoC6wORBRwHiwjQCd8KrwshDDUM4QtFC2kKVQklCMoGYQXOAxQCUwCO/gz9t/u9+iP60fm9+cz5Cvp3+ib7GPxM/ab+DgBZAXcCZgM4BOoEfwX5BVEGbQZUBt4FOQWDBNsDTQPqAqoCYAIoAtoBlAFuAXMB0AFCAtsCZgOsA9sD4AP2AzgEqQRMBeYFZwa4BtkG5QYHB1cH4Qd/CCwJvwn9Cd0JiAkjCaIIGAiMB9sGsQULBNMBXv+1/Br6nPcy9dzyVvC67Q/reuhD5nzkLuNy4hfiI+JN4rTiUuM55JPlcue/6WDsEe+58UP0LPdn+tb9iQFlBRAJiQx9DwAS+BNYFWAWBxc6F98WxRXKExcRxQ01CpAG+gKC//77bPjP9FHxPe7M6yPqSOkS6TPpi+ka6vrqWuxP7u3w9vMo9yr6wPzw/tgAuQK0BLAGpQg7CkALpwuDCy4L5ArYCiALiQvWC9ILVwuQCsoJTAkbCScJUAk2CaMIiQcXBqMESQMuAj4BVgA+/9P9HPxF+o/4S/eH9kb2WPaQ9tH2CPdw9zH4ZPkL+w39Of9IAQQDewSuBb8GxAfGCKgJOwpdCu8JEAnNB10G6gSQAz4C4wBw/+D9RPzF+ov5tfhS+EP4oPgS+Y75IPrR+r/78PxX/u//igH4AiAEEAXGBUsGxAY2B5UH2gfgB44H6AYaBjoFZwS+AzIDtgIzAosByAAIAG//Hf8g/3b/9/93APkAcgEUAsQCnAO0BOMFCgcBCLEIDwkXCfoIzwi1CLIIsQiDCP4HDgfSBXcEKwM2AqABQgHfAF4Aof+a/nv9fPzY+6r7Hvza/K79Wv6+/ur+FP+C/0gArgGQA4UFNwdOCM4I0gjyCJMJ6grSDNMOghA1Ec4Qdw+/DRYMuQqwCVMI+AUoAr38F/Yv7+3o6uMl4C/dXdod10bTiM/OzAzMqM2R0e3WtdwL4rbmCevB75P1hfwyBO0LhhJfF1sa0xuPHEUdLB4TH4wfvh5NHDYYCxOqDdgI+gTuATr/Nfx4+Bn0su/z60Lp2eeK59DnGegQ6K/nWud453HoXOoN7RbwBvOJ9ZL3Yvla+8r9xwAkBIYHrQo2DTcPxRAlEpETIRWiFuQXoBi4GCQY6BZYFa8T9BEtEEoOHwycCb8GwgPXADT+8fsa+g74MPag9GTzn/Jc8rryevOx9Bv2z/ey+cv7C/5PAG0CXAQFBlkHWggUCYsJpwloCc4IzAdkBsQEDANiAdn/aP4F/Zz7LfrP+Jj3rfYd9vL1Q/a/9kD3vPc/+PD44/kS+4z8If6p//wAGQIKA9cDoASABWkGUQcKCHMIiwhhCBMIugdvBzAH/Aa7BkYGsQX7BC0EfAP8ArkCnAKIAmwCMQL6AbEBdQF8AbUBDgJpAqgCrQKCAkECFwInAnQC+wKeAwEEOARaBGkEkATyBJ4FhwaOB5AIeAkGCjcKIgrrCaoJqwmqCYUJAwn5B2MGRATnAUj/6fz2+lT5+veT9kX1AvR089jz2vVt+Xz+bgSNCkgQZBUGGlYexSI6J0IrDi6xLn0sjycqIHcXXQ5aBYL8jPP+6ZTfvtQmyj3Bjbrntgy2PLezudS8SsBexOnJNtFp2iXldPAx+1UEdAsHEbYVEhpvHnwiiyXxJv4lsyLRHUIY9hJvDrwKYAeuAyf/9/m79CjwAe2e67nrxOz67b/u9u4F713vd/CH8mr1oPht+1D9Jf5D/iv+cP5v/w4BDgPYBN0FFQbXBasFBQYlB/cI/grADOYNRA4sDvIN7w1KDt8OPQ/xDqENWgtKCOoErwHQ/h38bvmW9nfzOvA17dPqUenY6D/peOow7E/uw/Ce8wv3K/vf/+oE7AmBDoMS2hWOGH8azRtfHDocNhtEGXUW7RLBDigKTwVxAL/7OvcM81fvS+zg6RDo7eak5innfeiN6hntDfA984v24/lE/Y8ArgOHBg0JMQvSDPYNsg4BDwoP0w5pDtoNGA0oDPAKlAk5CPMG2gX4BEoEvQMqA5MC/wH7AVkC8ALTAwQFQAZJBxIIegimCKUIrAjACKsIZAjAB2AGegRpAnMA7P7i/UH9qvz1+1f73fqx+jr7hPyC/sgA8QKxBOwF7gb2BzwJxApxDK0NWg47DjkN8Au8CjgKXgocC/kLcQxWDNkLYwuvC/0McQ92EsYU4xWXFT4URhIkEBQO/Av6CIoEKP5K9q7tgeVG3tnXitLNzZTJscWEws/AYcFexGTJys/z1nzeJOb37TD2wf5dB5IPxBacHPIgviMwJXMlaCRGIu4ehho2FT0P+giEAmL8ufa58YrtO+rl50nmYuVE5dXlQudk6RfsLO9K8kf1yPfI+Xr7NP0k/zsBRgPjBOoFYQaEBrkGWQeDCFQKUwwODhwPTA/uDnUOOw5aDo0OYw5/DZcLsggvBY4BLf5Q+/n4zvZf9J3x1O5X7J/q7OlT6q3ruu0Z8Hvy1vRh91/68f37ATgGOwqCDb0PIBHWESUSQBL9ETsR3g/XDfEKYAc6A+3+Evu/99X0L/Ks73HttuuZ6jLqe+rF6wDuA/FJ9HP3e/po/ZIAswOqBnYJ6QvvDQ0POg/TDv8NCQ0WDPAKkAnyB1EGoATBAjsB/f9O/x//Nf+C/6f/8P9qAOgAlAGYAvQDYgWBBiUHUwdaB18HXwdIBx8H/wbKBmMGvQX1BFQE9gPaA/MDTQTYBHIF4gUQBgUG+AUGBh0GGAb6BdEFfwXiBNwDmwJfAWQA0v9l/yn/Dv8a/1v/1v+hAOkB+gMuBxwLtw+AFDgZoB2cIYslMikbLdQwxDNINZ40WTG7Kw0kERviEYsIF/+x9OHontsJzgDBnraar9urn6vyrFGv1LGttI+5ScGdzBraFeme990DvA1eFQociSLEKKsuVzNtNcM0+DC8KlcjqRuSFCAOWQiNAjb8JfWr7bbm8+AK3WHbgNvg3L/eq+BZ4tjjpeUu6JLr0++69Lf5Cv5BAVMDbwQjBUQGPgjVCnkNvQ/4EAcRYBBrD6YOnA5ZD1EQ1BAqEAIOcwpBBkAC9P5X/Cr6+vco9X/xL+3V6FDlWOM647Lk2uYt6UbraO3073fzK/j//ZkELgsgEeAVMhlyGw8dOB4TH0Mfhx59HOMY0BOhDe4GTABC+s/03O9Y6+fmnOK53p7b9dnv2Zjbgt4p4h7mGupY7gbzT/gH/t8DagkyDs0R+xPqFDAVPBUSFY8UYxOKEfoO6QuWCEEFVgIaAJz+zf1M/fH8mvxz/LP8X/2Y/koAQQIVBIIFYAbiBiUHgAcSCMUIVQmTCXgJ5ggkCGMH6AbnBjcHtQcxCHcIgghnCEoIaAjpCLAJmQpLCzALLApcCCMGYAR1A1gDoQPUA3gDpgKyAVcBeAKbBa0KgREgGecfcyWfKfwsWjDEM4837DonPQI9dDkbMo8nHRvvDVoBg/WT6qbfjtSuyHO8Z7H3qI2lsKa3q9+yRbpVwezHLM/Z17vite+e/bkKMBWJHOYgDiOMJBcmrSfKKFEobSUkIN0YphDRCDMCQ/2j+Zj2IvPm7hfqSuVh4Q7fp96+35HhKOOt4xbj/uEk4XPhcePz5lvrr+9t83z2MPkx/FUAzgVrDHITvRmrHt8hpiO9JIUlFyZ4Jv4lHyRUILAaaRNJCzsDqfv79N3uAOlA48zd/dho1XHTcdNW1eTYlt0c4wzpOO/M9cT8RATzC1QTMRrVHw0kAyeOKAcpoCheJ7EkwSCdG2cVbw4ZBwAAWvlY89jt2+hX5IzgqN3V21XbSNxq3lXhlOTl54brhO/+8+f42P2CApIGrQkKDMgNIg9XEGURLhJhEqgR8A+IDc4KEwiWBVkDOQEY/9X8gfpO+Hb2OfWe9Jv0H/X09eD2xPed+JH5yfpK/Aj+7v++AToDGwSUBO4EXgXuBYcGIgeeB8cHlwc/B+sGsgaQBoQGfgZpBhQGVQVgBIsD8wKqAqYCuwLAAq4CvQJiA8YEGQdRCooOdRO+GCAehyP7KGkuxDMrORo+U0FGQmxAKDw7NlUv9ifJH10WGQtS/UrtTtwYzJW+ZLS1rZWpHqeZpeOkmaXfqMuv+7p8yXzZJ+n69poCAA1AF8AhoSzANgA/N0RmRfxCxT3lNrAvuCjZIdQa/xKTCaH++vLW55ve09eD0zDR6c/LzpzNYMz/yy/NbtCl1ULcNOOI6cLu6PKh9qT6Yv9ZBf4LiRIhGOwb4x2fHsQe+h6SH2Yg8iBOILkdARmzEpILiwR4/ln56vSV8AXsKedm4lLemNuZ2obbQN4p4qTmiet68H/1x/p1ALYGMA2UE3sZMh5TIeQi8CIPIrUgBh/qHCQabBbAETsMLAYYAGb6gvWF8Wfuxes86bbmiOQc47vileNo5e7n3+oG7iTxHPQP9yb6hf0ZAbMEFQjtCvoMRw7iDvEOpg4ODh4N5wtJCg8IQQX2AYf+QftD+JH1IvPb8NfuHO3M6/Tqvupn6+zsOO/+8fn0Cvg0+5P+FQKiBSAJXwwlDxMR/RESEpYRyxCtDyAOLgzaCSsHFgTBAI79uvqF+Pn2AfaX9Yn17/W29uv3q/kh/DX/pwIjBmoJUwz/ElQbJSRkLTs2Gj7KQ3BHhkkkSm9ITkVIQEQ5sC8lJNQVtAWF9QDm6thqzpjGq8Bcu4a267IqsU6yF7czv4jJCNSW3Y3llOyM88r7kAXGD1YZLyFNJsooMimCKL8nCSdZJjwlDiOAH0kaeBMbDPgEzv7m+Q/2ZfIz7i3pv+OV3mPa5tdU11nYRNqR3K3ejODB4uLlOOrN70r2DP1lA7kIAA1UEPwSghX2Fzca7BuuHBwcHhrTFrASGg6ECXoFAQLp/tX7i/j59Ijxju5X7Azr3OqD66bsAO577yfxHPNu9Wj42fuV/1wDtgZ+Ca8LZw3lDhUQxRD7EKkQ1Q+BDpYMDgoOB7kDOwC3/D751PWW8sTvYu1h6+np8OiM6MPotuk960ftx++Z8pr1svir+27+7ABDA6EFuAc7CQYKLArFCcwIYgemBc0D7gEDAAT++vsF+j34sfZz9b70u/Ru9aX24ffw+Oj5wPqZ+5b84P2O/08B+AJRBDMFygVRBgUH/AdMCcUKKAw2DZsNJw3YC/8JLQikBowFkgRnA3QBh/6++rb2TPPj8fryf/au+1wB5wauDA4Tqho3JMkvQDzqRwRR2Vb7WF5XMlMITa9F6T3mNdIsdyE8EzkCu+/S3XbO8cK9uzu457bctXC0QLN9s6q2Eb2kxmDSld7L6Sjzo/roAC0HUQ6HFkkfQCd2LTUx3jFCMD8t3Ck6J0glLCPVH3kapxLgCGv+X/S/68Tk/N7R2azUUc9XyoDGmsTvxJfHSMxN0jnZkuDZ5wLvQfbh/f8F0w6bF08fSCXKKCQq6CnRKHcn4CWgIzwgKRtBFA0MZQNK+3r0Qe8Z65bnJ+Th4CfedNu52YLZ4tqi3TDh++SJ6PPrae9G84/3WfyqAUsHsQylEX8V+ReBGYYachtZHP0cwBwFG2IXIRLGCy0Fav+x+oT2MvJc7Qfo6+KV3pjbJtoI2jfbO92436LiAOb16XbuZPOA+Kn9uwKjBzUMCBC8EmUUJBUeFWIU2xKREL8NaQo9BoYBbPxE94ryZO736jTo+uVv5OTjUeSN5XLnLOq67e/xnPZk+wAAXASiCIYMrQ/rEbsTZBX0Fs8XzxdfF9wWIxalFAYSog7GCzIKAgp3Ch0KfAj4BcoCwP+W/X39jgD+Bi4PnBaoHNIhcScHLqs0TjtGQqtJTlBhVABU1k5mRbI4PikLGKQHzvm57mnk3th6y4q9+bFXqhColKqZsP242sGsyrvSCNoq4YnoQ/Dx97n/cQf3Ds4VHRtWHqQfvR9mII8i7CWrKU0sCS3TK7go+yPpHdwWXA+sB4//8fbb7Y7ketsK01XL78STwBq/k8BFxIjJ1s+81lLebeba7mf3LwD6CIoRexlCILAlnynHK3Es0ytDKm8oeCYTJOYgqBxJFxARXgpZA2v8xfWT7w7qAeU34NXbBNg+1cbTidOO1CPXSdvJ4Avng+0E9LP6fwFfCPcOBhV5Gu4eFSKUI2kj9yGSH1McURijE6IO2glUBfUAmvxU+GX0A/FA7gXsUOpF6czopeiu6MnoQukg6kDreOzP7TvvyfB78kb0D/bZ9535QPue/I39L/6h/gf/UP8F/zT+8fx1+9r5Rfja9rr16vR69Gz0ofQ29TP2wvfA+ff7TP7aAJsDQAZ0CP8J/wqkCwkMIgwKDLELLguMCrAJkwhdB14GsQVjBUgFewX/BW8GfQbwBa0ElQPqAkcDzwShB6ALPxDhFG4Z1x3qImgp3jEQPLpGu1AUWMdbNVtTVplOQ0RSN5QovhhdCAr4Pehw2YbLrb6Js/WqyqVSpMmmhazRtLm+J8lx00HdZ+bI7m32dP0RBEwKBRBPFTcabx65IscmPSonLdwuni+AL40u/CyYKkwnxSKDHCUUkwmh/ZjwreNB2IPOEceewUC+o7xCvHK9VsAHxarLLdT33WXorvJH/NIEGwwuElUXxxtbHzoiJSQSJUIl1ST1IxQjISJNIfkfyx2kGnUWXBFjC/0ESv7P97zxzOsG5jHg7tp/1kzTvNHs0QjUFtjZ3d3ktewC9WX9jAUJDW8TvhjqHM8fUyFrITAg4x2wGsoWahKtDbcIvQML/936n/dK9cXz2fIO8k7xa/Ba7zbuJe1g7BrsQuyv7DXt4u2w7rXvBvGr8rr0L/f7+en83P/AAkYFLQcqCDAIcgf/BRAEwgFL/+78nvqa+PT2svXg9GL0RfR79PX07vWh9/X5qfxE/4kBSANjBM4EnAQDBC0DUAKgAR0B1wDSAPAADAEbATMBmQGdAigEKAZCCCkKgAvQCxELRwmvBtMDaAG3/1j/RQC5AlsGXwtrEUIY8x8zKJcwvjgXQH5GzUtDT0BRHFFETvZH6T2XMKMgww8Q/0zwG+RK2qLSYMxCxxbDxL8Pvve9b794wlvGVcsq0XjXD9645IDr3fE8+HP+vAR6C48SHhrSIfUo7i4OMxg1VDW4M2YwwSvyJTEfdxfHDjgFMfsG8VTnod5y1+bRLs4MzFXLz8sjzYHPkNKk1ozbEuHn5qDstvH39ZT5t/y3/6MCiQVdCCgLpA2vEI4T1xV9F3AYvhhXGGUX1BXTE1MRbA4wC48HvgPW/+r7Afgr9I/wiu0667npDOk/6VPqIexn7vPwtvPA9vr5T/17ADgDjwVvB+AI1wlGCmYKSQr3CXMJ1QgxCKAHHweqBiAGbAV/BFgD+AFmALT+5Pws+4v5Dvix9oP1ZfRP8z7yRfGD8CXwLvCx8LLxJfPw9Oz2BPkL+9T8T/5m/xsAYABmAFYAPgAtABkAEQD//83/f/8m/9b+qf6o/gT/yf/TAA8CRQNMBPQEGgWjBI0D8wEKABL+PPzL+gH6FPro+lL89v2b/x8BYQJJA84DAwS8A14D8wJfAu0BfgExAdYApwCCALAAdQFqA9gGEwwjExYcOyZaMMk5X0EpRg5IA0eNQ7c+gjiWMUkqRiKrGTMQCAYi+zHwgeW923HTL82tyRvJVcuszybV3Npi4OnkKOhB6obrbOyc7Znvq/L/9j78UwKrCNMOTRSyGPIbLB5oH54fQx9QHv0cIxuIGPoUThB4CqsDVvzP9J/tI+fg4f3d/9tu2+3bQd3w3rfgTeKz4+PkPeYN6GnqUO2r8FH05fdN+0j+2ADuArgEaQZhCLsKrQ37EFYUXxerGeEawhpEGY0W/BLfDpgKZgZyAgH/EvwE+mj4D/f39QL1NPR38+vyn/LK8l7zZvS39TX3pPjg+d36oftW/BH98/0R/3oAJALvA7oFXAe0CKoJPQpkChIKRgkPCHQGhQRTAuH/U/3A+lr4D/bf8/vxhvCK7wjvC++K72jwhfHT8gj0MvVP9mT3e/if+eH6NvyG/bD+gf8MAGsAhABkAAYApv9f/1b/nP8+AC8BVQKJA6YEbQXVBdYFrgVhBfQElgR8BKkE9wRRBZoFuwWgBUsFlQSTA5YC2AF1AUIBMQE/AW0BngGlAVABxABpAEcAVwCnACIB0wG4AuwDFwU+BqcHUAkLC64MNQ4kEHYSPBVwGNkbnh+4I6cnQisOLowvvC9pLscr2CfqIjMdkxYiD68Gvf2u9MXrj+N/3LbWkNIf0JrPHtEt1HfYU91g4lrn7esE8KHzvPZQ+a/7Av5IAKcCSQUMCKYK2AzHDmoQ2REdE/ITYhSAFGIUphNtEpcQAg6fCl0GJwEz++f0i+596Lvixt3d2TzXHtZh1tnXddr33S/iyOZu6/7vPfQg+Hf7Kf5dAEoCJQTZBYIHDwmnCkcM1w06D3YQlhF9EiMTZhMjE2cSOxGSD3YN2Qq9B0IEcQB7/Fn4PPRr8Cztq+oP6WLozOhE6rjs8e+t88v3EvxWAEwExweWCrEMFA7EDtYOYw6IDVwM6wpECc8Hlga7BUAFGAU7BZIFBgZOBkgGuQWBBLcCVABL/dj5O/a68ofv1+zK6mHp3ug26WnqQuyw7o7xu/Qg+JD74/7tAZ8ExAYnCKYIXwhdB7EFpwNDAdH+jvyr+kX5hviR+G35+fr3/DT/cwGEAyUFPQaqBrsGlQZbBiUG9gX8BVEG/gbHB3oIDwmQCeYJAgriCZwJWAkaCdsIqwh3CFMIKAixB6MG/QTdApIAMP4E/ED6Pvku+Sr6//vJ/lcCjwYmC/8P3hR0Gb8dliHhJEwnuCgfKYgoxyYBJCQgWhvIFYAPxggCAq37AfY58WvtjeqA6BfnBuZE5azkM+TS44/jd+OD4+rjpuTD5VTnS+mz61XuOfEt9C73LPoT/d7/hQL2BDYImguiDjgRIxMuFB8UCxPdELYNngnxBPH/2Pr39Yvx/e1q69fpMOlI6fvpA+s87FDtNu7U7jXvae94743vyu9T8DbxlvJi9Jj2E/nd+97+4wHzBO8HxQp5De0PLhITFG0VKRYvFnkVChTcEQEPoQsKCFwExAB//cb6vvh+9w73S/cF+Bb5VfqN+6n8jP05/sb+Rf+4/xgAdQDFAAsBQAF/Aa4B2gEPAjQCSAJMAkkCTAJsAp8C6gJEA58DzwO+A0UDbAJNAQQArv5U/RL8//ok+pf5Wvl5+d75hvpf+0n8I/3V/Vr+sf7R/rX+cP4M/pv9Af08/Fr7Yvpa+V/4c/fI9nP2kfYr91f4F/pl/DD/PAJfBWgIKgteDe4Oqg+tDy4PSg4eDcELYwoKCdMHuAanBZ4EsgPbAi4CnQE6Af4AtgCKAH8AigCrAMIAvwCAAEcA1/86/4j+8P2K/Xb96f0c/wMBrAMHB+QKDQ9UE1gXCxuNHrQhgCTZJogoSindKC4n+yM9HyAZBhJDCloCvvri80Du++lO5yTmQ+ZU59voe+rb64vsNuzH6lzoMuW24YLeBdyr2pPa/9vX3vfiK+gn7rT0ivt1AiYJcQ9JFUkaLB7sIEYiQCLaIA4e3BlcFOMNvwZk/0749fGp7MDoVeZi5bHl2uaP6GnqGuxW7QbuHu607e/s/Ov36hrqtuny6QPr3exj72zy0fVz+T39BgG1BD8IjwuHDhcRFxODFEkVWBWSFBET7xBXDnILdgiTBQcD8QBa/1r+CP5G/u/+4f/dALwBbwLvAjEDQAMdA9cCigJMAiECDQIYAj4CdAKxAuoCFgM2A1MDewOpA/MDUgRvBIMEigR4BEME5gNnA7cC9gElAWIAuf86/+n+wP6+/tv+/f4e/zn/Pv8t/wD/vv5z/ir+4f2f/Wb9MP32/Lf8ifxJ/Pz7n/sz+8H6Ufrx+a75g/mJ+cv5Vvou+0n8p/02/+wAxAKjBGcGBghhCWwKIAtgC0ILwgruCdQIhgcYBpwEMwP0AfUANQC+/5T/qP/k/yoAcQC7APcAFgElARkBEQHWAGwA1P9c//f+1/7h/kb/LwDSATgEgwfKCw0ROhcgHnMlmywCM9g3sDrsOmk4MjOvK1gixhfVDPUBAfiW7yTppuTy4dvgBuE14urjw+UL56PnTuf05fbjvOGH35bdMNxb24bbztxF39/ihOfp7PHyhvmBAIwHUQ5oFHsZMx2AH2Agth+zHWca/BWmELIKgwSP/i75nvQY8Z7uQe3y7Jzt8O6b8ETym/Nm9F30hvPR8XjvsuzC6fnmrOQc43ji9+KC5CPnxOoR7+jzFflP/moDKghoDOoPnhJ3FHYVpxUeFRMUnhL7EFUPsA1BDAULMgqtCXAJZQl8CZAJfwk5CY4Iegf2BRYE4AFs/838K/rY99j1RfQ688Hy6/K88y71Ivd0+fn7lf4SAVgDQAXBBtUHiAjpCPsIyQhuCPkHeAfwBmMG0wVJBc8EYgT/A6ADNAPNAmEC9AGKASMBwgBbAOz/X/+6/vz9Hv0j/BP7B/oP+Tf4kvcy9xj3TPfI94j4ifmo+uT7N/2O/t//IAFAAmkDYQQpBcYFNwZ6BpIGjwZhBiMG1gWFBTcF6wS2BJgEkwSdBLYE0gTeBMkElgQ1BLsDJANWAmIBYgBX/1L+Y/2v/EH8MPyB/Ev9c/4IAOYBmgO5BcMIhgwyEXsWIhyiIbQmnir8LMUt0iykKhAncCJwHUIYIxNpDrwKFgimBg4G1gWfBbEEwgKQ/zz7zPVm70robuBN2FbQfMlFxFXBGMHxwvnG8swt1E7cmuSp7OjzI/pO/1MDLAbnB8UIJwk5CZQJTApDC24Mgg07DrsOAQ8fDxMPuw7gDWgMbAonCNsFhAMsAbP+5vvK+HP1FPLX7gjsgukv5z7lm+OK4jvix+II5OjlSuj66sntj/Ao82X1NPeO+Jf5Z/o5+xz8QP28/q8AJwM4BsQJhQ01EZIUaBeBGc4aIxt/GukYhBaaE2AQLQ0VCkkH8wQbA9kBJgHpANIAygCnAF4A6/9P/4z+mP2K/Fv7Ifr/+BH4ePcx9zX3mfdR+FD5kfoQ/Mv9s/+lAZUDXgXtBjAIGwm0CQAKBgq2CSAJagiVB7IG2QUfBX8E6QNwA/sCjgIgAqcBFQFcAJ//xP7j/RD9Tvy0+0j7EPsF+yv7evv9+5b8Pf3x/aT+W//y/3cA7gBYAbkBIwKYAj8D1wNqBPwEfQXwBVUGrwb3BiIHMQciBwsH/gYIBzcHjwf1B0cIJwiLB20GvARwArb/d/zs+Gf1k/LA8GvwjvEg9Bz4ev0kBLQL/hNfHAck6CmgLcQuPy2rKWIk3R14FpwO/AZjAHb7svgW+CX5TPvI/R0A0AFhAqQBW/9U+6/13e545z3g+9lK1YrS7NF30/PWC9xT4jDpDfBl9uL7JQAWA8kESQW9BJsDIgKtAHn/xP6p/kL/mACEAsQENweRCaYLTw1yDusOkA5hDXIL3gjjBawCTf/e+1/47fSp8bzuguzc6sXpP+kk6WrpC+oW68rs6e458X3zcPUA9yD43fha+Zr5kfll+TX5M/mU+XX64vvz/aIAyAM3B8QKOA5KEc0TmhWWFs0WVxZFFccTEhJXELIOWw1NDJQLFAu8CmQK7wlECUsI9AYgBdgCLQAu/QT6//ZF9BHyd/CN7zXvae868I7xQPMt9Sz3Ifng+kj8Of3N/SD+Rv5z/rT+Gv+p/3kAgwG+AhUEbQWtBscHmQgECQQJiQihB2EG1QQeA1wBmP/u/YX8gfsD+x77x/vm/G7+DwCTAdcClgO/A00DSQLQABH/Uv3T++X6qvo9+5b8pP45AR8EHQf2CWsMTg6DD/kPtw/cDlgNaQsdCZYG4gMhAWP+nvsH+dP2HPUB9KHzDvRt9fP3W/uQ/zIE3QgqDTIRnBQ6FxMZ6BnoGQ0ZjBeUFawTWBIAEvMSGxUzGKkb4h5xIY8i6yENH58ZwBHTB7T8QvGS5lndmNao0qrRd9N41xbdZON56Z7uI/Kb8+LyN/An7FrnluKb3iTcw9uc3c7hAeis7zn44wAACdsP8RQqGGIZrBg+FrYSkA6hCmgHEQXoA/kDIwUrB6sJLgwyDlIPTA/sDRoL+wbTASD8UPbh8Avs3+em5H7ii+HU4UzjveXb6Gbs/u9k82/2E/ko+2P85Pyr/OT72PrF+fD4ifi1+KP5cPsI/lEBBAX4CL0MEhC2EoAUWBU2FUcUqhKmEG8OZQz+CkYKagpLC8MMkw6CEB4S8xK/EkERWg4rCu4EE/8E+Uzzbe6r6mXoteeY6NnqG+7p8dX1PPnC+y79b/2M/MP6Y/iu9RLz+fC+76PvwPAS8372tvpg/xEEXwjZCzgOVQ86D/kN5ws2CWAGrwN1Aej/FP8Z/+n/VQEJA7wEOgZTB/wHIgi7B9wGrgVeBBcDCgJSAf0ADwGDAT4CGgMFBNEEXAWgBZQFNgWzBCMEkwMgA9oCwQLlAiwDZANmAz4DtgKsAQoAKv7z+7r59/cP94f3t/l4/e0CSgk/ED0Xvx2NI7MnBioYKrMn0CPEHocZEhWiEcAPNw/5D6sRuxOzFaIWhRXZEaoLgAPF+UXv3eQx2xDT2sxwyevI6Mosz7jUstpc4A3lZeg76orqZOk758rkx+Ls4ajiSuWz6Znv2vbm/hYH3w58FW0acB1EHiEdjBoKFxETDQ9aCzkI4wX3BN4ETQXaBREGvwWrBA4D4QBo/tn7P/n09h716/NS8zrzYfN382HzD/OQ8uPxKvFx8Pvv5e9Z8GfxCfMz9Y33EPpJ/A/+VP/x/wQArv8V/zL+jv2D/TH+yv83AmQF7Ai0DCcQ6hLqFN0V0RXbFD8TNREZD08N/wtmC5sLbgybDb4OTA8KD7MNOQusBxcD8P14+DTzi+7K6k3oC+cX51PoZur+7LLvTfJi9NX1pPbI9oT2Ffal9VD1TvWx9Xb2ofc7+Qn7CP0P/+YAewLLA9UEhwX1BTcGTAZDBh0G4QWlBXcFQwUEBb8EdAQRBL0DgwN+A6UD9QN6BBUFrgVDBrYG9Ab2BpIGswVxBPACRQHM/8j+g/7n/rj/1ADhAa4C9ALLAvMBTAD//XP77PgO9xX2avY2+H37TQByBrMNoRVSHRMkASlmK4Qrkyk1Jicisx1QGb8VhBMOE2IUHxeGGoIdeh+kH1Idmhh7EVcIL/7P8wHqtuGk2wTY4dbZ11DakN3D4EDj0eTK5GTj2+DZ3Svb3tjT15XYBtsy38rkfeuT8oz58P8EBYUIOApHCiEJEQfPBN0CiAEzAQgC6AOYBrwJHg0bEDQSMxPnEkQRhA4BC/8G8wJY/2/8efp5+V35C/ow+4j80f2z/gb/vf7w/cD8Uvva+YD4WveQ9jP2NfZ59vP2ifcz+Nv4avnd+Vv67Pqw+538sP3f/hwAXgGiAsgDyQSMBSgGuwZPB/gH1AjvCUgL0gxmDskPyxBZEUcReRDBDkEMQAn7BckC5v+M/dT7yvpi+mb6qvrm+vX6l/qr+R/4A/aA89vwZ+5g7B/rvupA65fsku7z8G3zyfXP9035SPqr+nv64/k1+Z74dfjd+Oz5nPvU/WgADgOLBakHOwlACqkKjQr0CQkJ+QcEB1UG8gX9BWcGKgcVCA0J6QmECtwK3AqBCsIJtQhiB/4FqwRyA3ECtQFZAUYBawHHATkC4wKVAy4EpATqBAQFFAUyBYoFNQYwB4MIGwrbC7wNaA/7EGcSYxPyEzQUOxQoFA0U9RNHFP0UPhb2F8kZkRu0HCEdfRxDGo0WdREBC80DaPxW9Y3vUusG6cboQeoE7SjwxPJj9H/0q/JB7zLqIeTS3d/Xg9Nh0Z3RUdTw2DLfKuY+7bPzr/j1+0P9yfwJ+2L4gvUf88Lx2vGD86H2CPs0AKEFmAp4Du8QyhEQETEPegwyCQkGfQPXAUYBzgFRA3UF8gdGCgQM0gyGDBMLogiFBRgC0P4k/Cb6D/nZ+Fn5bPrn+3T90P7J/zoAJACW/6/+qv27/Ar8q/vB+0z8O/12/uf/ZgHhAjgETgUaBqkG+wYOB/sG0AaKBj4GAwbLBZgFYQUSBaoEKQSNA9AC9gEIAYsAHwDC/33/Mv/U/lf+wv34/AP86vrO+cT41fcO93b2G/bp9cz1t/Wm9aj1q/Wd9X/1VPUk9Qz1NvW39X/2gffd+Eb6mvvc/OT9tv5a/9//SwC6AE0BFQIyA5YETwY5CA8KyQswDSwOpg6cDhQOCQ2kC/0JNghyBu0E0AMRA78CqwLEAvcCQwOFA5EDegNHAxgD4AKnAmQCIgLeAbUBzwE6AvgC/wM7BaEGJAiuCTkL1QxaDp4PuxC0EXYSHROyEzsUhhScFGIUzRMIEzoSYhGRENsPEA81DjwNKwzhClUJXwcXBXAChv+O/KD5rfbV80Xx8O7p7PfqJ+la55PlAuTB4iniQeID46zk1OYn6W7rce1I7+3wXPJS84DzKPOc8l/y6/IO9HT1yPb690L5jvqZ+xf83fsJ+wD6IfnA+Or4lvnZ+qH8rP6XAAQCtwKkAuUBdQCO/lj8NPqL+Nz3TPim+b37R/4OAc0DSQYnCBoJCgkSCIYGxAQpA+cBNwFEASUCywMQBpwIBQsMDWkODQ/WDt0NRww3ChYIKwa3BMIDNgP6AvUCIwNSA1MD6QIBAsIAWf8A/tD86ftl+1/71Put/Mb94/7m/5QA2gCYANj/zf6a/YH8pfsS+9b6Dfuz+6T82P0Z/zsAHAGsAeIBnwHiAMD/av4N/cn7rfq/+Qn5jvhX+GL4pPgC+Xf5APqI+gL7Xfue+8L70PvR+9P77vsr/Ib8D/3F/Zn+df9aAD8BLgIAA7ADOgSdBOgEJwVvBb0FIgaSBgIHcgfVBxkIKwg1CBIIzQeCBzcH8wbIBs8GCgeDBzsIKQk+CmALdwxkDTUOuw73DuIOjQ4IDmENqAwBDKYLlAvwC6IMcA0pDpkOvg54DqoNcQwRC4gJ+QetBpUFEQUEBSoFiQXNBc8FOwXiAwkCkP92/EL5J/Zb80Lx0O8C77zu2u5U7/7vX/Bu8Afw2u4y7Rzr7eja5jLlM+TM4znkaOUd5zPpZ+uf7azvkfEP8/zzYPQx9JjzDPOQ8jXyHfJN8vHy8fNO9f32zfic+mX8/v1X/24AJwG0AQcCMQIzAikCIAIZAisCZwLMAlwDCgTFBIsFOAayBhYHUwdsB3IHXQdXB1wHhgfWB0cI3ghzCRUKsgooC4kLrQuRC0YLywpMCtMJhAlkCVwJkAnRCSMKeAqtCqEKSwqqCagIQweHBbAD2AEuAOf+7/1X/SP9Nv11/dD9H/5V/lH+/f1S/TX87/p0+Qv45vb09Wf1MPVK9Z/1F/ac9hT3e/fI9+L31fep93r3Xfdv99X3hfh8+bH6/PtD/Wb+VP8PAGsAmACEAFAAHQD0//n/MwDFAIsBeAKFA44EfgUmBooGmQZvBhcGngURBZMEPAQSBCcEfwQrBfQFzQagB04I0QgMCQMJwwhECLUHPAfSBqMGvwYjB+YH7wg7CpsL2wz5DaYODQ86DwQPqQ4yDq0NIQ2rDGIMTQxiDKUM+gw5DTAN2wxfDHoLUgrdCDAHTAVMA1YBav/E/Yj8h/si+x77Jvtc+2f7h/tb++X6X/pw+V34H/es9VT0IvMs8nPxDPH28BXxUfGO8cLxrPFe8d7wNPB474julu3Q7CTsz+u/6+frZuwT7f3t5u6v71nwuvAb8Vrxf/Gm8bbx7PFE8tPyyPPt9Dv2nvfs+Eb6Z/tf/Dv9xv1G/rn+Jv+3/18AKQEgAioDngQlBowHzgjdCYwK7goEC8UKcgoaCtEJqAnOCT0K3wqyC58MhQ1HDs0OHA8fD9AONQ5bDXEMgwu7Ci4K0QmrCa0JtwnOCdcJtgleCcgIAQjtBrsFjARbAz0CRQF+AOv/ev8d/8z+cP72/V39lPyj+6X6k/mI+Jb30PZH9gP2D/ZM9rf2QPfI9z/4jviy+Kn4d/gi+Mj3d/dD9zX3XvfI92P4KPkB+un6z/uh/FX92P00/mz+jf6d/q/+xv7v/jD/k/8fANAAoAGNAnwDbgRaBSwG9AagBysIlAjXCAAJDQkDCekIxgioCI4Ifwh0CHAIfwiZCKgIsQioCIYIXAgWCLQHQAfCBkYG6QWvBZcFtAUJBpAGLQfYB2gIzAgJCf0IxQhUCMkHQgfQBoQGagaKBtkGWgfwB3kI4AgJCeEIVwhxBzoGygQuA5YBDwCu/oz9mfzr+3X7Kfvy+rr6Vvq/+en42feU9ij1vPNW8hvxGfBa7/zu7e4g743vEPCA8Mnw1fCY8Cvwje/w7mruIe4z7oLuMu8x8Grx2fI59Ij1jfY194T3bPcO94H27PWJ9V/1dvXb9Zn2nPfN+Bf6Zvua/K39kv4//7H/+f8jAFQAjQDrAG0BHALzAvkDIgVjBrEH+gg1CkgLLgzkDFgNpA3XDeAN1w3RDcsNxQ3aDfkNIw5KDngOnA6fDoQOSg7mDU8NhgyeC6IKkQmNCJsHuAYABm0F8gSTBD4E3QNvA+UCQAJvAX0Afv9h/kf9Mvwu+0z6i/n5+Iz4Q/gO+Oj30vew94D3Pffs9o72M/be9Z/1fPWC9bT1GPax9nL3WvhC+ST6Avu/+2L86/xm/c39MP6P/s3+Af8//4H/0f8nAIQA4QBFAacB/gFMAowCwgL3AiwDYgOjAwMEfQQFBaQFTwYLB9IHiwgqCbAJDgo6CkAKIAroCaUJcglKCUAJZwmnCQAKcAroCkULgAuUC3ELEQtwCp4JqQi0B9IGFQaXBVAFQwViBa4FDQZqBqoGyAawBlUGxAX3BAwEDgMTAj4BigAbAN7/2f8FAE8AogDwAB0BFwHuAIQA4v8B/wz+Av0A/CX7a/rg+YP5UflC+U35V/ld+VP5KPnh+Hr4AviA9wL3k/Ys9uv11/Xg9f71M/Zt9qL2yvbT9sf2nvZW9vr1lPUu9cr0kvR79Ij0zfQw9av1Jval9gv3TPdw93D3TPcR99n2vPbX9i/3y/em+Lj58fo7/Iz9w/7H/4cA+QAZAQcBygCHAFIAQABgAMcAbwFZAnIDpATXBfkG+AfFCFkJtgnmCfEJ7wn0CQIKGgpECm8KnAq2Cq8Kigo+CsQJLAl9CMwHFAdqBtMFTAXdBIAELATbA38DBgN0AsoBCgE+AHj/xv4i/p/9TP0h/R79Q/19/bv98v0S/hP+7/2u/UH9uvwr/J77IfvD+oj6dvqR+s76JfuA+9n7HPxD/Ef8IfzU+2j7+PqJ+jb6BPoD+jf6nvo6+xD8BP0B/vv+5f+pAEgBsgH7ASUCPwJbAowC1gI+A9ADhAReBVUGWgdNCCMJ1wlaCqQKuAqiCl4KAgqkCUoJAwnICKsIqwjICPgIMwlyCaIJywncCdMJuQmECUMJ+AirCFcIBAisB04H5AZ6BvwFZwXQBCEEZQOtAvkBWQHNAF0ABQDP/6T/eP9S/yv/7f6Y/jz+xf1B/ar8Kvyv+0z7Dvvz+vn6GvtH+4T7vvvi++H7yPt/+wz7ffrh+Ur5zPiO+IL4rPgW+a75U/r5+on77vsl/Dz8R/xJ/ET8OvxD/Fn8bPx+/JH8n/yi/KT8ofyR/IP8cvxh/FT8SPxA/E38dfyn/Ob8Mf15/bb92f3t/ff9/P0I/hz+Nf5R/m7+l/7G/un+BP8N//n+y/6J/kb+Cf7Q/az9mf2M/Y/9pf3V/RH+WP6r/gT/Wv+x/wcAYgC3AAwBTQF6AZ0BqwGmAZcBgAFmAUcBNQE5AU0BdQGmAeABEwI9AloCZwJhAkwCLgIJAuUB0gHTAesBEAItAjkCKwIEAscBcgEbAdgArwCcAKIAxwD1ABMBJQEjAQQB3gDMAOgAJgGAAdkBFAItAhICmwHhAPr/Hv9q/gz+N/7m/gQAXwGyApoDFgQUBIsDsgLFAfgAPADU/8L/4/8bAG8A7wB6Af0BUAJyAnYCVQItAjoCzQLvA2MF6AYtCN4IvwjsB5UG1QQHA30BVQCZ/1//n/8YAH8AjgAbADr/NP5p/Rj9bP2E/iUABQLXAyMFkAUUBd4DDgIEADP+6vxG/HH8YP2Y/s7/zQBPATABkgC8/7v+t/0E/a/8pPzh/Dj9b/1M/bX8rvt1+kL5ZfgX+ID4pflI+w79iP5c/2P/mf5D/bf7Xfqd+Z35TPp9+9/8Ev7e/hn/uf7k/eb8F/yd+5/7Qfxd/cT+PACbAawCRgNcA/kCLwIrATgASf9X/oX97PyB/Fz8rPx1/Wb+Qv/x/z0ABwBY/4L+vf0x/Sv9rP2Z/r//7AC/AfYBnAHMALT/jf6r/Tz9XP0X/jr/mwADAjED+gNFBC8E3wNhA/MCsgKoAsYCjwI8AsgBWwHeAIsA5P/c/tD9O/1U/eP91/6///0AuQGvASMBuv8M/7j+8P7h/3gAYQGkAdEBqQFKAQgBMAHgAGIAQv8a/hX+xv5bAEYBQQIlArAB8wC9/9D+IP6f/p3/FgFAAsgCpAK4AZMAXP/J/vD+pP9qAF8B7gFLAogC0QJAA8gC4AHjAAEA8v+LAIMBrALIAsIC5gEfAV0AKAAuAYACQgQtBWoFiwR5AzQCyQD3/8H/oQBkAUYC5QItAxoDfQGKAP/+lP46AFEBpgKvAqQCxAKUAZ0AOwD5AMoCFwQzBCMD5gHqAIsAPv+E/tD+3P8yAjEDiQO0AVABsQDj/k79gfux/GP9Vv6x/5AAuwDQAE7/ZfxF+YH3rPhZ+hr9tf5y/2IAfgDbAHIAnf+k/lr9v/zN/BP+tP/8AU0D+QKQAZD+YPyB+pH6CvzP/J79cP57/xwBlAAf/0L9APxJ/F/8s/xi/DH/agDhAa0Bk/9b/p/7o/ul+jz64PyDAHcDggJzAZwAmv/2/tj9Sv4M/uP/tgBwAO3/NP/9AR0DkgP9AjUAMf/y/Tn+1/+uAZEDfQRTA5cA1f3j+sD7tvyz/z0CHgNDAxcCZgEsAFT/u/14/Sn9w/+UAsEDIANBAWIAUf25+936hv3BAJsDawXWArkAXP5t/wgAAwG9AO4AxAGI/yAAuPsW/v8A6AM5CI8E7QOS/5P7yPaZ9Vb5//4IBiMHyAYeAXb8LPtB+Vn6Evu4+9P+UwFTA1IB/f+4/h/9x/wO+lj7GP0FALoDVgTPA4ID9wLBAxgDvQDmABQBqwExAsYBOgLyATYB8QDh/7j/uv+nAJwC2AMTA/IAJf9h/mz+yv5GAk4ErQV9B20Cv/1B+778YQCBATMETwNDBFAEvQMi/7f7lfqT+cP/AQOyBxgIeAVUA3D/dv5H/Tv7g/2U/pQB1wM5AfwBkf+OAEr/+/tW/0H/AwGJANf9sf1D/U4BwAHI/1r/B/7m/KT7ffvI/dMBUQadB8ACsQBK/WD7Q/qy+Mj78f1+BMoHHwadAcL75vql+m39zv2p/gIBGQO4BIEBu/+C/TH9wP0r/br9iP1d/87/6/5n/iP/wgEoAgQCyADt/Tf9hPzD/o4A2v7+/73/sAEWAp8AJwIo/wMA+f3p+xL+cv5UAHL9z/6YAH4B/ASVBKABLv0C/Uj7hPwa/50ANgLz/0oBeAEAAKX+NvxJ/HT+DACuAuMCXwIDAgsAJv1k+xb8DgCOAUIC5gNtAQ0CKAHr/Ub8IPsS/gcBqgA4AvT+q/6jAHz/cABYAKwCrwG8/9D9tvsZ/jkAPQRyBcQEDwaJATP/cvq1+Er75/ugAjcHTwptCI0Cqvz++Pn4T/wN/s7+WQLOAwEFNAFi/xz+/foq/Tf+9AACA5kChQMIAff/4P29/lIA6P50/9v9dwECAeYB4wBf/yYC/QE+AxcDKwGI/83+PwG6AGwAZwCjAM4Aov8KAxYAYAFHARMBzgCT/Z79BPoCACkGtAXiA1sAfQDpAdH/rvwH+tb7a/+WAgoE7gKzBBoCqAGJ/877u/8//of/hP36+lz/bAAqB80El/9V/WL89P9E/73+g/s0/hEBewQPA1MAqP83/FL9uPsd/gcAeQGLAloADwLWAbf/Wvo2+NT8kv+hAR4AxgGDALb+jAD8/u3+MAAMAW4BigBL/7YAbP+3ARcBxP73AHEAawBY/1cAKALSAoIC4QCL/mf8KPzu+5T8BP+RA3UFCwawBQsE9v8g/G75V/l0++T9YwKrAdoB2gHtAKYAyf8/ALf/hQCpAOT/uP2D+4z98v4XAqkBlAFDAdUCLQRXAtMAlfvQ/HX9sv+qABkA+QHBApUBu/+p/rD88vz3/c0AMQTKA4QCGQJMAPX+MPys+zj+MQFNBMACRwEiAGj9wf3y/NUA3gNJAxcD3f7H/rn9/P1r/hD/GgCw/wwACf+EAaUAWQHyAGAAgABI/Ef83PsP/aD+iQJnBroF2QaNBKwAqP0L/Uf9sPzA/BD9IQAZAssEfwPxAToCIgHQ/gH+VP3X+8X+/v/eAaUC+gGLAUwBTABG/hr80/36ABgCKAMFA8kBxP/s/ab9Av1P/Nf7Vf50ARQEVQZkBdYE2AElAFL94/qg+b36Lv7wACUEiwVtBAoDuACB/fP+dv+OABMDbgC7/Uf7JPw5/wT/HAAhAQECsQFXAU//Bf5F/sj93/7cAD0DwgH5/2/9lvsE/BP+sf/DAMEDLwVOBfMCPQB1/iP8cPx4/Ov7uvy4/r3/mQEPBIwExgQlA3EDCP94+2j4gPfq+l39wAGtAtQBbwI7A9ACsANFAAb+qv3e/lT/u/3S/rj+KgAMAdcAw/+w/6EBmQKhAa0AfABG/zb9B/xO+7/9BAEKBfEGFQVsAtL+p/0D/68AMv7H/ZD+7QC0AA4AmwEQAWQCTAP/A10BtP7//cX7CP3y/Y7/ngHRAgUEcAF5/zH9sv00/a0AJwP+A2kDjgC+/vb68Pt4+0L9K/5fAPkD1gUdBtIDXAJOAAj/Bv6/+5X7ovyg/lkB9QLCBJgDeALu/z7+z/z3+1393/8qAW4DqANDAUIBNf7i/EL7yfv4/4oDmAXGBFEEPgFu/63/7/yA/AX9fP4YAQMCPwEJARQBngHqApkAEP9a/n78dfq4+u75t/ug/7UCbgXtBagFzwPrAVP/FP65/KH7j/wE/eP9v//v/Sv/S/4p/qgAkQHpA14DsAJ+AfgA+f7F/b77YPuw+0D9zAACAzoGDQXVBG0CVP5d/Hz6r/vg/Bf+QP8HARQCUAKOA+4CcQDb/YT8WPwb++H7vf2zANsCRQOCA0QB1wE+AVT/bf9SAD8A7/63/yD/9v0E/v//BgFjA+wDCwNAAYz/3QCZ/kT+kv75/cP9fABWArgCtwJFAu4A2P6U/mn9UP7j/ev+fv8A/xgA7ADE/wEBzwL2AGMCrgKLAoMCmQDB/8L+7fzU+wz8Vf6e/noBCAMNBNgHzAQLA2QB5v8gAEj+Df2y/Hb7EPwn/Sf9D/88AJ8DLwQzBdkEcAF4AZf9HPv8+JH6EP1gACADQQSBBNcDwAXvAjwBRv1m+xX6PPqd+8/8vP+sAdsD7gKYAj0Bp//K/v7+5f8BATcCKgPSAY4Adf8P/rb8o/zC/hwAWQNfBYQFOgNPAcb+pfxq+y369PpM/LkAQwOaBUwGhQWjA0MAjv4l/c38lfzX/TT+xf5J/hf/uf8GAFgC7wLZAwMEmwSCAub+XPwg+pf4P/kb+wT8lP1PAc4D5gXVBwcHNAaNAikAkvwt+vP4Uvr9/Jb+ogBh/xQA2gBcAiUCwQOcAoIB9gEh/q79Z/vs+rH8/v2c/6ACPANiAuMD9QIVAi0AE/9Z/VT9Mf5K/04ApP+EAPf/L//Y/kH+6PzQ/QL/dv8DAAcBuAENAacAnwA7/xD+gf5A/sH+cP6rAPgBGAMMBAACxgFCADgAu/7R/Yv9S/zZ/Mr+sAB9A0AFFwe9B4QGbQT/AKX9Ivpo+Lz2FfkU+yb/ZgKMA3gFSQOwAigBMABu/8H/NwARAAD/MP6f/Wz9ff5B/iQAt/8yAeMBdQLAA8oClAJbARUAeP4K/h/9Z/7O/h4ATAH0AB4CEwEZAWUAv/9m/2r/MADXAA8BFwBm/xb+w/0K/uz+9v5KAAABlgECA5gC+QOvAjECwgBj/hX96PvP+xb87f2V/lQA8QD0AWwCmAHaAWQBYgLLAhMCiQBl/u/8sfz0/Ar+3P/JAHkCVAKmAo0CVgHKASYAzP9n/nD9Of7q/c7+yf+N/8L/UwBeAIIByQCXAeIAAAASAGX/3/90/7gAAwA8ALr/Hf/b/xn/uf///uv+Vv9k/3L/BwABAML/BwDc//v/iP8KAOr/t/8J/2j+Pv4q/jf/2/9RAbwBcgIcA9UCUALxALf/Z/5T/VL8UPzL/Ab+wf8EAfMBSALRAmACxwEtAVb/LP+T/pb+Zf92/i//9/74/o7/OP8XALX/QAAGAcMAKgHzAOwA2wDeABUAtf8j/8r+Mf+t/4wAQgGwAe8BzAFZAYYAWADL/7H+pP63/bz9sv1k/hj/v/+9AEMB0QERAtgBpQF1ARUBrQCM/9n+nv00/VP9B/6o/1sANwF8AdYA+gAZAHAA3QCMAKIAwP9U/6L+Z/5S/rD+K//B/1cAugDFAeABJALYAR8BPABh/7D+J/5S/hf+F/8P/x0ANQFJAboB9ACfALz/gv/j/57/g/+E/4H/sP9Y/5b/q/8AAI0AqgDvAFUAZgBbAJsAzADKABgBuwDmAFUA7/8T/5f+4v7B/nz/CgCTAHUAkwBTAGsAEgC0/1MADwA5AKz/bP+g/zn/9P5r/oL+3/7I/1UAsgBNAQUB1gAdAID/QP8S/5b/UQC3AC8BEAG0AOf/t/4H/rj97/2L/n//4/+TAPcAIwFNAQoB/gCwAIwA2v9o//P+uf4p/wv//v6//h7/rf9dAMUA4gDFAEsAPQCc/43/Xf9i/+r/KwBNANcAEAEfAb0AjP9s/8r+q/4Q/3P/JAC4AOwAmgDqAKsAUABnAGYAQgDW/8r/2v++/wwAEAC4/+n/x/+K/wD/5f5C/9X/iwAYAXgBgAHeATUBfwDd/6f/k/9R/07/5P4X/5H/4f8cAAYA1v/x/xIAhwCXAIYA3QB+AEQAqP8e/9H+qv5N/2v/3f8gAIEACwEgAVcB+wDaAI8AKgDq/6f/vv/Z/6r/t/+2/5b/df9L/xz/7P4n/6b/vQAMAWcBqQFOAQMBBgCK/2j/Pv9H/zz/OP9g/wT/Af8T/yr/IACqADIBlgGRAW4BlAAXAN3/c/9Y/zv/ZP/R/yYAVQA2ABoACgCs/07/O/9F/9b/LABYAGMATwCdAHIASADS/6z/jP+P/6r/jv/c/+//6v9//2b/vf9cAPQAOwEuAegArgA5AMD/Xf/e/uD+1v7k/lj/rv9rALIA1QAHAd4A0wCiAGQA+/+8/7T/vv+i/83/2f8AAGEAZgCAAEkA+/+s/1//Vf+L/7P/BwBpAIcAfAAeALf/Zv86/yj/Tf+2/14AqwAEASgB0gBiANn/m/9m/2f/j/+d/2//cv+7/+H/DQBIAH0AagBkAE0ASABQADgAKADY/6H/ev/D/yYAIABuAGUAOgAgAJz/c/9l/zz/n//g/ygApwCiANIAngBjAC8Af/9L/4D/xP8RAA0A6/+8/0r/BP+x/qv+BP+i/2AANQHBAcABtgFhAd4Aw//5/pv+k/7g/jD/zP9GAIEAMQD2/7f/mv+a/9v/aQCJAJwAjgB1AG0AYgAkAAQAzv+4/73/tv/V/7T/0P/u//7/EAAGAA0AOQBTAGwAQwAAAKn/f/9e/yP/EP+1/hj/Uf/5/6UA4gA0AdgAuAAGAGH/Bv+n/sP+8v5l/+D/TACRAJoAtwCtAIAAWAA6ADoA6P+e/17/bP+g/+H/TwCkAAYB2QB7AP3/d/8a/w3/b//+/4cAtQC5AKUAZQA4AAgAAgAdAAsA+//P/9n/5f/q/zoAvgABAbkAUwD/////DgBEAFIAXQBEABQABgD+/wUA8f/l/6v/jf86/1L/fv/M/2kAxAAgATABFAHOAEQA3/96/zP/SP9S/3f/Yf+0/8T/+v8gANL/2v+B/5f/uv/t/3AAoADwAOkAmQASAF7/H/8R/3H/+P9QAOIAAAEgAcIARQC5/z3/FP8i/8//UADWAPwAFwEEAZwAUQDp/4f/Nf9D/07/X//N/yUAZwBqAC0A/P/R/+7/9/8QAC0AKwBMAE8AOQAAAPX/EAAiAAQA1v+T/1P/OP89/yf/Bv8t/4T/CABJAHAAjACiAIQAKgDq/6L/bv9C/yv/Q/99/7b/zf/N/9T/tv+5/8T/2v/t/woASQBbAIEAOwDV/2v/I/82/0b/of8IACoAOwA7ADsAYwB0AH4AawBOABsAxv+E/2n/fP+l/93/EwArADIASABNAG4AaQBdAC8A9//u/9X/JQAhADgAOwBUAGwAYgCoANMA2ACWACsA1P93/zn/Tv91/8T/IgCwABABXQFBAfcAzgBHAMX/Hf+e/tf+Vf/A/0UAhQDBAN0AiQArALD/X/9R/1n/lv/b/+j/8f/k/5//Uv8y/wj/M/9s/5n/EwAeAG4AfgBGAEUAEQALABkAMwBTAG0AhwCTAJYAaQAvAP//q//I/wEAOwCuAMEA4ADhALYAnABbAEcAawB8AKsAwwCqAIkAdwBaAFwAewCPANYA/AApAUgBRgEsAcwAPACx/0v/Mv+N/xMArQA4AWUBZAERAbUATwDk/9T/nv+4/7//wv/Q/6j/v/+r/6n/i/+L/6r/t//h/xcAZACUAKIAlwBSABYAtP9w/3H/a/+n/9j/JgBVAIQAlACYAIMARwA5AA0AFAAsAFoAfwB2AGQAOgD8/9v/x//U//H/5//c/9j/z/+w/6X/dv9d/1f/Pv93/5v/3v8eABwA9/+q/1P/BP/U/sr+xf6t/o/+ev5n/oX+1/4M/z3/Of8c//r+xf6t/mX+Uv4z/iH+Gf5C/oj+mv7n/vf+Dv8Z/zf/N/8i/zD/Cf/r/tP+vv6p/qL+uv7W/vr+G/8d/xX/7/7C/pb+ef58/pH+6P4w/5b/2/8FAAAAnf80/7b+af58/s7+ZP/3/1QAhQBRAPz/ff9F/0D/Zf/B/wEAZgCUAMwAGQFCAXcBggGrAeMBGAJhApECuwLPAtECxAKJAnQCpwILA3UD3gNJBJMEtwSaBHoETAQQBM4DqwOYA54DmwPBA+kD7AP4A9ADqwN4AzoDGAMaAwcDBwP/AsUCdwIbAqsBXwFTAU4BfQGNAZkBpwGKAWQBEgG1AIMAdwCnAAEBhQHoARMCIALWAXoBGQHpAP8APwHdAX8CNgPkAz8EYgREBD0EIgQVBEsEhwTPBO4E7ASVBCAEugNTAzQDNwNfA4gDvAPtA9sDgAPVAv0BLQFtALf/Jf+Y/kv+Gf4Q/uH9YP2j/K/7nvpw+U/4Mvcy9jD1NPRA83jy6fF/8STx1fCn8I/whvBo8Ebw9O+N7xrvgu4M7q7tg+2c7eXtVe7I7hHvSO+E7+XvifB28cTyNPS59UD3hfif+Xn6Gfvd+738xv0Z/2UAqgHaAs8DtwRzBQ8GxAaDB1kIWQlUCjcL9QuWDPcMMw1bDXMNlA3FDSAObA6QDpwORA6bDQYNfQwoDBMMKAw7DBMM6gt3C7AK3QkECR8ISQeSBqkFvQTFA8UC0wEJAUYAjv/3/oD+Jv7t/bj9Sf2m/NP78/od+pz5M/nK+HL4I/jk97D3kPdM9wX34PbN9tb27PYl9133ivfN9+r3IvhP+IP42fgz+cb5Y/oS+7f7Tfzh/F39zf0l/mf+nv7l/lX/6v+XADwB3gFyAvECWQOeA+YDQQSXBBEFlQU3BsQGPAeYB8MHzwfPB80H9QdWCOgIpAlzCjkL0AsxDIMM2AwPDUkNlA3XDSMObw7iDkMPcQ93D3cPdA+GD8YPDBBaEHwQfBBnEC0Q2A9lD/0Orw5yDjsOCA6kDfcMDwzYCoIJMQj2BtwF+gQiBGEDgwJdAQwAk/4P/Z/7IvrP+Hj3MPYK9cvzvfLO8fPwMfBy76Hu4u017Y7s+ete69bqVuq86T/pz+iG6F/oUOh36Jvo8OhI6cvpX+ro6onrCOx17N3sRO267Vvu/+6+73rwZPFf8knzKvT79M71vPa198z4Ffp++/D8hP4GAIsB4gIgBEwFWwZ1B4IIjQmQCogLgwxwDTgO4g5xD/APcBDaEGgRBhKkEj8TshP1E/ITrBM8E78STBLTEVkR+BCREA8Qeg/EDuYNEg0xDH0L2AolCooJ0gjqB+IGwQWlBIEDagJtAXYAgf+L/pT9sfzG+9n66Pn7+CL4W/e69iH2pfU/9cz0dfQl9NXzj/M089PybPIH8sLxl/GL8azx3fEg8lzydfKi8uXyT/Po85L0Z/VE9iD3+fex+EX5v/ku+rv6WPsM/Nb8iv09/ub+ev8SAKQARwEDAt0CyQPvBAwGOQdlCHAJWAoNC7ILOwyoDC0Ntg01DpAO2Q4cD0wPdA+bD+EPMxCXEAERZRG9EfoRDxL0EdARnBFNEfUQlBA5ENgPZQ8iD8QOWg7/DZcNMw3JDF8M9gujC0gL2ApkCuIJSQmRCLQHywbNBcoExAOwApsBcABA/yf+Hv0o/Df7T/pR+V34Sfcp9vj0ufOr8sLx//Bl8NzvVO+/7g/uUO187I/rweoj6ovpBul66MHnEedJ5rflLOXj5PXkPuW95TDmpOb/5k7nqec96BLpSurJ65PtbO8t8avyy/PV9Kn1k/ap9/X4c/r6+479B/88ADIBDALQAqwDpwTkBUwHzwg9CpsLxgzFDZMOKw/DDzYQrxA7EcMRQxKVErASpxJeEvERXBG1EBsQfQ8ED5AOIA65DS0NnwwBDEwLjQq3CeEIBggWBysGPQVRBGkDjAKoAdgAAwA4/5r+//1u/d78L/x/+8r6H/qC+d34QviS9+X2OPZ69cT0EPR08/ryh/I78hTyGvIs8lnypfLr8kPzm/ME9HT07/Rw9eD1Zfbs9oH3Ivi4+FD57vmH+hz7tftJ/PP8tP2Q/on/lACwAdUCGARXBbAGBwhZCZ8K0Av3DPINyg6GDxUQjhDXENoQshBXEMkPHw9aDpQNwwzhCwULOwqHCQwJAAlQCSMKaAsYDQcP9RDFEk0UxRUlF3YYtxnzGuUbcRx3HOUbsBqsGAgWyxIlDxMLvwYaAnb9pPju8ybvk+pJ5nLiad8W3QvcsNud3DrekuB346TmWeoq7j7yKfbp+Tn9CQBXAv0DCgV8BTcFdwQwA3YBnv+U/Zn7gvmY97n14vMv8rTwge+I7gbu6+1G7vzu8e/88AfyBvMB9OD0q/Vt9h33ufcl+F/4aPgq+Ov3pvep9+r3dPhZ+Yz6FfzP/a//kgGFA4gFowfECdkLsA06D2oQaBHcEb0RFxHnD0cOOwzjCT0HagSQAdf+Y/wt+lH41/bu9aD16/XO9h/47PkN/Hz+FAG/A20G/ghyC6ENaA+1EHsR0BGoERoR/w9sDmgMIAq0BywFrAI4AAX+AvxP+uz4v/fT9gb2i/U79S71TvWi9Rr2vPaK92D4UPkV+sD6MvuG++H7MPyH/MD8AP0v/Vv9fP2C/Xb9eP2E/ar9yf3x/SL+Kf5B/iP+Lv4a/iz+Rf5Y/p3+1P43/4z/AAB3APQAgAHuAVUCpwLkAhIDKQMwAy8DMAMwA0UDZAOOA64D2wMUBGoE6wRxBS8G6Aa7B5kIZQk1CuoKkgs7DMAMRg2eDc4N5g2bDSoNSgw/C+AJUwicBpsEygKwAPr+J/2F+/v5mPjF9133nPeO+B36Qfz1/toBKwVICFkLNQ6mELAS7BMVFU8V9BSEE4QRqQ4HC7kGKQEr+4z0GO7W5wXil9zT14PTvs9fzWDM8sz8znjSyNa22yrhKecV7qb1wP3hBVsN6RMsGd4caB/4ILohriFsIIgdIBl7Ey0NxQaTAP/6AfZn8Sjtdulz5m/km+MO5Jnl4ueQ6mLtOvAV8yH2VvmT/LP/bgKKBPcFyAZLB7oHJAiICNUI7wisCDAIpgdABxYHLQdCBzwHCgebBu4FFwU+BEoDXAJgAVUAPP8j/hP9EfxE+7P6X/pQ+nb62fpq+xD85vzT/cT+qf9zACwBwgE1Ao0CyQLyAgUDCgP7AvAC5wLIAqACaQI3AgECyAF/ASgByQBcANz/Qf+V/sv98/wA/OD6v/mx+MT3+fZb9vr13fUH9n72R/dl+NT5gPtf/VH/VQFHAzAF9waLCNAJqgoiC0IL+gpLCkkJDQieBv0EMgNaAbL/Mf7l/Oz7KvvB+qf6yvox++37E/13/vz/dgHdAisEYwV+Bn4HZAgVCY4JugmwCXwJUAk5CS0JFAnyCMgInQh6CGcIdwixCAYJSglYCR4JrAgkCKEHLQetBiMGbwWMBIIDgwK0ASQBwgBrAOT/Nf+G/vz9p/2X/ar9p/1z/fL8IfxH+5n6ZvqT+g/7oftS/Dn9lv6TAH8DFgcaC+sOQxLYFHUWbhfbF8kX2RbAFOkQjAviBDb9TvWH7WHmpt982czTCM96y6HJAsqRzADR/9bx3TLl2uzW9If9sAbSDzYYJR8rJBAnAihrJ6Ml1yIGHysaOxRnDQIGaP6D947x2uw26YzmduQD42DifuKn47HlmOjq63vv8fIn9iL51vuK/kEB9gNjBlwI0QnVCm8LGAzDDG0NEQ6HDrUOeA7yDTMNRwwgC78JEwgLBpsD3QDh/cj6xPfp9FDyFvA97tDsCOzn63Lsru2p70ryiPUl+f780ABvBNUH6gqzDf8PohFeEjoSQRGPD1sNxwoHCDUFTwJz/678Ifr691n2X/UE9UX1+vUG91z46/mx+6L9l/92ARoDSwQBBToFKgXbBF8EuQPtAu0BvwB0/zT+M/2I/D78Pfxy/MT8Nf3I/Yn+cf9wAGgBQALmAlUDmAOzA6gDfwM6A98CfwIRAqYBRAHwAJ8AXwAsAA0AAAD6//j/9f/8/wYAIwBGAHAAjgCvAMkA2QDlAPIAGAFKAYMBxAH3AQYC9AHOAasBoAGtAdgBDgIrAicCHAIUAjECfAL/Ap4DRATLBCUFawXCBUgG+wa+B1AIggglCE4HOgYHBfwDCQMEAqYAI/9M/e/7FPsu+yD89v2FAIUD6gamCugOphPpGEoemiPGJ08q2iqNKagmrSL7HVcYaBHICMv+/vN86Urg8NhG0+TObssnyVnIcMnazITSFNq74pXrE/QK/I0DuQqBEZsXdxywH84gCyC5HTEa/BVHERsMaQYhAID5D/NH7YzoAeWi4jzhpeC34HPh8eJQ5Z7opuwD8Vf1Zfns/PL/ngL3BAgHtwj9CcsKEAvNCkEKignICBkIcge+BhIGbwXPBDIEjgPeAiICVQF3AI//jP6F/Wv8RPsV+uz42ffz9nD2Uvaf9kT3NPhk+dj6m/zA/hkBigPiBfYHtwkRCwoMnAzSDJ8M7Au1Cv0I3waPBDUC8P/T/eD7GvqC+Bf3APZF9fX0EPWQ9Vz2UfdZ+Gf5ifq4+/v8Rf6H/6cAngFfAm4CQALxAZUBRAH5AKQAMQCv/w//hv4d/vL98f0J/g/+Dv4F/vz9EP5A/nj+r/7e/tj+tP6L/n3+qv72/kv/if+x/8n/9f9BAKwAKAGuAS4ClQLaAgMDMQN1A8sDJgSCBMME/QRABZQFEAavBloH7QdXCIMInAi0CNUIDQkzCTYJ+gh2CMkHJQezBnIGUQYiBscFKAV+BPEDrQOrA8IDyQOnAzoDjgLHARoBoQB1AH4AcABLACwAKACmAOoBIAQaB6YKew4uEogVoBhyG/sdGCDfIbMi3yE9H4waXxRJDQ0Gu/5X9z7vVeYc3S3U5sz4x43FdcUFx5TJF83O0fLXb99x6GLycfzhBcgNExQNGQ8dTiDkIg0kMiPbH5IaKxRwDeEGlACc+pj0s+4S6UXkw+Dd3q3e798j4sTkfudB6lztA/FQ9eP5Nv65ATME0QX0BjYInwn/CvILQQwQDLoLfQumC/YLJQwEDGYLcgpKCScI5QaBBdMDyAFY/5785Pls91T1tvOK8q/xJPEJ8abxCfNx9XL4s/vy/v8B5QSVBwsKOwwCDjcPvQ9oD2MOugyiCkgI3gVdA80AO/6z+2H5cvcB9iL1x/Tq9HT1WfaE99n4Qvq4+zr9zP49AGkBMgKVAooCMAKgAeAAAwAX/yn+Mf02/EP7aPrU+ZP5rPkc+sP6iPtL/Pr8mv0z/tX+fP8QAIAAuwDCAJgAYwBIAGUAswAUAXwBwwH1AS0CjgIgA80DvASLBSMGfgafBokGTgYFBp4FFwVlBF4DLQLdALT/zP4S/qv9p/0J/rf+t//tAF4CBgTdBc8HwAmYCxsNMg64DtkOig4CDiENHwy1CgMJ/AbxBPgCCgFP/8D9RPzj+qb5nfjc95P3yven+ED6ofyc/88CLAaNCe4MmhCMFKwYdxz5H78iMSR0JKYjISLDH8Yc4xjWE0kNTAUo/DXybuhv3+zXNdJqzufLY8qhyQ7Kecz/0bLaq+Ut8YH74AOGCmoQmRZeHawjJyhKKeUmuiFIG+cUNw8UCnQEwP3Y9bftnuaq4RTfod5R30rgSOFH4vDjT+aO6UTt2/Dt8zv20/fn+OD5C/uQ/FL+OwAPAtUDhAVpB4oJ7As4DhgQQRGEESkRYxBVD+8NAgxPCc8FzAG1/e75y/ZJ9ETypPBg77DuyO7u7/Lxp/TQ9yf7iP7GAdsEtAc+Cm4MFw4HD0kP3A7XDUoMYQorCNUFYAPoAIT+Ofw1+pv4e/fj9sT2Efez95v42Plc+yD9FP8NAeYCfQS5BY0GCAc8By4H2QY4Bk8FIQTQAnQBEAC9/pL9i/yn++D6R/rg+bX50vkk+qH6OvvU+1383vxj/ff9hP4E/2z/u//s/wsAKgBOAHAAkQC/AOcAFgE3AVMBegGTAaUBsAGkAZMBdQFKASsBGAEKAf0A6wDRALAArADZACoBjQENAoUC9wJcA8wDXwQDBaUFLgZ7BqcGlQaJBpUGsgbWBs0GVAaMBUcEyAJdATgARf9U/gP9/Ppo+A32hfSM9En2S/nX/HQAOwSOCMUNOxS7G3UjZyrJL+kyYzOuMWMuKiqRJdQgThscFMEKSf868zfoDeBV20zZnNg02H7XctdY2RXet+U47+T4BwH0BsoKlw1aEE4T+RWqF2IX1RQzEH0K4gQAACb88Pjg9Yry6e5M64zoL+da5+HoIutf7QXvE/DJ8KzxAfI48mLyQfLF8e3wx+9b7mjtRO2S7lfxOPV5+ZH9QAHNBG0INQz2D/MSlhRuFMUSvQ/nC5oH/gJB/nD5E/Vh8cLuFu1R7Gbsfe3W73rzJvgj/bEBRgXeB9kJqguFDToPVxB2EHQPjg1FCzUJwAfeBlEGlAVfBLACugDz/oz9k/zR+yX7SPok+dv3pfa89WL17vVA9x75HfsN/fb+CgF2AygG1wgqC7oMTw36DPYLiQrFCMsGiATxAQ//Jvx6+T33tfXp9Mf0NfUA9h/3e/gJ+qv7TP3G/gcA7wB1AZ8BgAEoAaMA9f8t/3j+//3q/Sf+xf6K/1MALAH/AdwC1APQBJoFDAb/BVUFPgT2AqkBZAAh/+z90/z1+3f7d/sQ/FL9M/9/ARgEzQZ1CeELAg7MD1kRdhIREwgTQxLREL4OSgzOCWgHFQXmAsIAlv6K/Pz6J/oa+uD6JPy9/Uf/wQCFAtYEDAgxDNoQKhWmGNsaBByIHcMfuSIRJqYoeil9J/winByqFWgPmwlOAwb7BPDT4uLVesulxVHET8ZwydvLhM1c0JLWGOHO7gn9DAkEESEV8RasGLwaqBy0HI0ZAhMLCsAAXfgH8nrtL+qK52Ll0uPN4pDid+OH5X3o5Ovj7tXwZPEV8cDw+fAa8s/zg/XH9lT4gPrA/QQCrQYoCzQP0RIdFiYZThv+G1saeBbaEKIKmgQV/wf6wfQs747p4+Qp4gXiV+SD6IDtovKf95f87AFyB+sMxhFzFXoXzxd1Fs0TcxD6DNMJ/AY9BEwBF/7R+hT4avZD9mD3IfnK+uz7gfzS/F79bv71/5gB1QJKA/gCQQKYAWgBzwG8At0D1gR2BUwGIAfsB9QIzgmyCj8LSAtvCskIWgaBA6sA+/2T+035D/fT9J/yyfCK7z7v++988WrzX/UO93741flb+zr9Vv99AVIDjwQpBUMFMAVMBbAFSQbSBvEGiQanBakE1wNJA+ACbQKvAaAAZv8t/hr9Rvy3+2v7cvvA+0f8Av35/TL/hwAHAq4DkQWVB3kJIAtiDE8N7w1pDsQO6A7HDj4OPA35C1cKXwg+BiIEMgKHADT/+P2t/F37Jvqp+VL6h/wAAE0E+AiLDQwSpRadGyMhFic/LYgykTV5NesxuyvWI2Yb2xLrCZv/XvP75DjVjMZou5+1q7WmuhfC9slb0Q/ZTeIb7qj82QsmGcAhvSQ/IzEf/xpLGEQWphO+Dg4H7v1U9Z3vE+0s7TPuy+5Y7lntl+wO7N7rfetT6jHoLOXU4bPeSNyl2sXZoNmN2gTdbeHl52vwAPqVA1kMnROlGR8fSiTdKDQsFS2kKqUkIhyzEtEJVwI3/OL2iPEL7JjmO+IN4LHgDuR56YfvHPWZ+Tb91wAvBWAK0g+MFJ4X0Rg2GI0W5BTBEz8TCBNhEqkQ1A1UCrgGugOcAQMAT/7q+774KvXX8VTv8e2l7U/ueO/D8BHyyPM19qD57/2hAjQHJQsyDjYQaBHuEesRUBEnEF0OxgtOCCgErv9d+5/3kvQ18mXwAu8J7oftqO1z7gTwOPLP9HX3AvpW/H3+eABVAgwEfQWhBlQHlQdiB8UG7wUEBRwESQN7AoABTAC7/vz8cPtg+u759flC+ov6w/oB+4D7cvzg/b//6wEVBAcGmwfJCNcJ4QrpC/EM4w2iDugOpg7mDdgMoAuQCqgJ1AjYB5AG6wQ0A9UB/gDtAJwBrQLVA94ErQUvBn0G0wZRBxUIVgkiC+EMkw4bEJkRhBNBFjcakx4/I2QnwykkKqAo2iVAIiYeVhkgE4wKJv/88BjhndGmxLG7YLeRt3W6NL7awR/GecwF1x7mDvhyCY0WuR2wHxkfuB4wIKEiASRNISQamA9GBHX7FPZL9MvzRPKq7hLpTOPd3vjcwN1134zg+9+o3eja8NgJ2bDbQ+AA5szrGPHu9dn6lgByBxkPgRZ9HB4gHCEqIEQeFhyrGZAWUhKuDPkFEP/g+Eb0Z/H771TvFO8s76/vEvGe8xH3y/oE/hgADQFXAaABcQLMA2IFpwYdB9AGpgYzB8MIPAvsDSQQaxHQEZkROBHFEPYPUQ51C2UHkAKV/Rn5dvWc8lnwdu4f7Z3seu3H7z3zXfef+6v/VQOwBogJ6QukDXsORw4MDeoKHAgHBQYCPP+6/Jf6x/hL9xv2XPUY9U71DPYb91/4ovnN+t/79fwT/j//VQAmAZYBtwG4Ac0BGAKBAugCKwNHAzUDFgPnAqkCbQIEAmUBmgCz/8T+8/1W/fP8x/zM/Pn8V/3Z/Y3+n/8NAb4CdgQNBmgHfAhfCUEKHQvzC3QMawzAC5wKNgnmB+sGOAamBfcE8wPCAmcBMgCC/1n/k/8LAHMAZADN/+z+Af7K/Zz+qwDHA4sHoAuqD/ITARkTHyMmXi0xNI05EDxOO143BDFcKVkhExnbD+IEp/d36MbY6Mq3wDe7OLqXvJPA18QzyV7OgdUs3xbrpvfUAs4KFg+4EPgQgREdExUVaRaOFU8SOQ2eB/sCFwD8/rb+2v0w+432nvBp6lzlhOJz4SrhN+DM3SDaPdZF1JnVMtrn4BDoT+4l85D3w/xWA+0KQxLwF04bTRydGxgaAhhtFTQSNQ7aCYcFtQFX/mf78/g190P2RPYV9yj42fjV+B34G/dE9s/1tfXj9QT2GvZV9ib36fi7+3v/+QO1CDYNIxExFHUWAhj1GDgZxRhPF5kUnRCGC9cFSABh+5L32PT08prxifDl7yjwr/GO9GD4Yvzb/24CGwRGBS8GKwcKCHYILggtB40FoQPnAZYAtv87//n+zf6f/mT+K/4D/vj9Df48/mv+ef4+/pT9rfzT+077KPtH+4P7nfuM+2X7bfvf+7n83P0C/97/OgAjAOP/ov98/2L/WP9C/wz/wf56/mf+qP53/+8A/AI+BXIHbwkQC3QMsw3iDtUPeRBwEIMPpw1IC8sIlQbFBCkDcgF1/1L9efth+kz6IvuH/OP95f5L/03/K/9F/9H/9ABmAssDmASvBHQEwQSmBnULAhPfG58koytsMEszYTWzN3M6lTyhPNY4MDDEI3wVawcJ+73wr+fF3lzVw8tTw/e9+LyfwJfH3M/Z14/eP+TL6d/vnPaF/aYDRwj0CqkLRQtpCogJDAkUCYIJMQqYCl0KQwlZB/YEdwIbAMP9Bfvx9jzxaepM4wTdOthi1S3U9tOI1PTVj9ij3GDioOnL8Sf6JQIkCZwOTxJrFFgVfxVnFRsVUBSJEqEP+QtWCJIFVgRlBA8FgQUhBdUDAAJNAAf/D/7z/BL7M/hy9IDwHO0A61Pq3+pL7GTuJPG+9GL5HP+UBVYMqhLtF9MbMh5hH3Qfqx4bHZgaCheAEjMNrAd5Ahv+zPqA+AL39fUo9ab0mPQu9XD2K/j7+Xr7Yvy8/Lf8pPyV/J/8qvyq/Hb8C/yl+1j7Tfun+2L8X/1j/in/fv9i//3+fP4J/rz9lv1o/fz8Z/zl+7X7/Puv/L396P73/9QAjAEwAs0CVgOmA5kDJwNbAk0BIgAA///9SP3f/Lr8vfzP/OX8J/3I/ez+ngCWApQEagbeB88IVgmCCXwJaAlMCSYJ2ghRCJsH5wZJBukFuwWrBZAFTgXfBE4ExANmAyUD7wJ1AmsBk/8O/TP6uPdA9lX2vPcj+sv8Sf/lAbQFdwu7EyAeLCk+M9Q6VT8KQZ1AVj6wOkg1AS4AJecaghBABl783PLa6cjhMdvO1vXUjdXT16Xa8txY3vzemt/D4Oviz+XM6AnrSOzj7HTtBe/y8RH2vfpB/zYDpwa3CZYMRg94EdgS8xKcEeIODgtyBn4BjPyk9wDzsO7x6ujn6OXK5FfkmuRE5W3mE+hB6vLs5e+r8tL0CfZw9mf2X/bQ9rL3yfiy+V/69vrY+2f9xv/UAkkGpwmWDOUOlxDQEZIS8BLUEigSrxBODjMLsgdjBHkBCP///Dn7pflf+I33gfc3+Ib5Mfu9/PD9qf4R/z7/d//P/x0AMgDt/zv/M/4k/Wf8Ufzz/Dv+6v/KAZ4DWAX3BpAILwrVC14NhA4iD+gO1w0YDOUJcgfrBFICnf/K/Pr5Wvcw9arzyvJs8mLyhPK68gzznvN49Kz1Dvdu+Kb5s/qc+2r8Q/00/kL/YAB+AXYCPwPNAzMEjATrBE0FmQWxBWgFvAS0A4MCSwEzADr/Wf58/ZP8qfvV+kz6GfpP+uP63vsg/XX+u//uACMCdQPrBIYGMwjFCeoKmgveC+8L5gvbC+QL7Au9C1kLogrLChELNgt+C4wLXwusCpkJHwhVBoYE+QLSAQoBYgDi/xf/sf7z/vT/AgJpBO4GrgiHCboJzgltCgoMnw6fEVMUFxbcFqgWWhZUFsEWZRekF/oWJBWkEr0PCQ1nCoMHCgS1/wj7h/bK8lzwGu9h7g/uXO2p7P/rVeuJ69vri+wB7cfsM+wW6xfqYelF6Q7qNOuv7A/uUe+x8E3yyfQH+LX7Fv+sAToDtAOYAzAD8QLaAscCegKiAWgA5P6R/fb8EP3u/e3+w/8SAJj/qf6B/ZD8yvsi+2H6Tvnh90324fTI81vzevMZ9Ar1UPbh97X5xvv7/RkA6AFJAwoEUwQ0BOwDpANZAxgDtgIVAlsBpwARAOr/AABfAOcAQAGUAakBvgHNAcYBygGLATMBwwBBAPT/4v8WAJsANwEKAsECfQM7BN4ElQUrBs0GPAeSB4IHIgdgBkQFAQScAl4BPgBk/57+6v0z/Vj8j/vP+iD6ffnY+DH4ivf39oj2X/Zy9rb2A/dR95D32/dU+PD4w/m4+sv7u/yH/Q3+X/5f/lv+Of4M/g7+4P3m/bT9e/1k/WL9pP0z/vf+GQAjARwC2gJCA8sDHASLBPEELwVQBR8FvARQBNoDjgNpA1wDdAOGA8MD/ANoBNsESwW2BfkFIAYCBuYFqAWCBXwFtAUUBooGHAeaByEIkwgHCZAJDgqwCjcLpgsBDAoM2QtPC4QKkwlTCAEHpgU8BPQCrgGMAIf/ov4E/pv9df1j/WD9ZP16/bX9Lv7+/uL/8wDtAeACugOABD0FCQbHBncHAQg/CGIIMQgHCMcHgAcxB48GwgXHBJoDggKGAaYA7f8o/2r+b/1Z/Db7Afr/+Cr4g/f09nP27vV99SL15PTn9Bv1kPUU9qv2TvcC+OH4wPmx+pP7P/ye/Kn8WfzI+yf7fvrk+T75ePiE94T2gPWh9Af0ofN683TzrfPu80v0t/Q79cv1ZfYm9wv4JPlM+nf7hfxc/Rr+2f6q/8AAzQHFAnEDsAO9A5oDngPCAwgEYASDBGwEDwR8A/QCnQJzAn0CmQKuApwCYgIdAtsBwwHNAQQCQQKCArQC3QL8AiQDZgPXA2wEFwXWBYkGFgeDB8AH5gf2BxAIMAg8CDsICQi6B0IHpgYSBosFJAXJBHQEGgSdAxADdwLbAWUB9gDAAKgAiwBlAAsAfv+7/gT+UP26/Ef83PuA+wf7l/od+r35ovnA+Tn6yvpv+wD8Yvy4/Pb8Tv3E/Uf+w/7y/s3+Q/5p/Xf8gfvM+j364fmf+Vz5Kvnz+OP49fhW+fj55frq+9z8tP0+/qT++v5N/9T/XAD0AGMBmAHFAdcBOgLkAtID/wQJBtgGPwdZB0kHOQc/B0YHPwf5BmwGjAWDBJUDxgIsAsoBdAExAeAAtgCnALoADAGAASUCxQJwA/oDXwSmBMYE8gQKBU8FlgXjBSUGPQZjBk4GLgYIBtgFvQWaBXwFRQXpBGQEpAPCAtkBAwFhAPv/uf95/xb/j/75/Yz9Xf18/ef9hf4w/6z/DAAoAD8AUgBoAK0A4QAZAR0B4ABsAMX/Lf+7/o/+m/6z/r7+ev4E/mr95vyk/Iz8ofy3/K78ePwn/Mv7bvsr+//68Prz+g77Kvs7+zX7Dfva+pv6a/pP+jn6Jfrv+Zr5Lfm7+GX4Nvg9+GL4o/jq+DX5gvnY+VD63/qW+2f8Of34/Sf+Nv5B/jD+ZP6k/iT/xP9OAN4ASAGtARMCWAK4AgoDRQODA5MDowOJA0MD7wJeArkBGwGXAEoATwCfACgByAGLAk8DCgTaBKYFewYzB9oHRQh2CHoIVAj5B44HBAdEBl0FPwQqAzACVAGlABMAdf/3/ln+ov0V/Y78Tfwp/CP8NPw0/Dz8U/x+/M78Rv2//Vr+4v5g/9P/EQBmALMA/wAhASsBJAEHAe0A7AD0AOQAywBsAPn/VP+c/g3+gP0B/bH8Qvzw+5P7J/vd+oH6m/rh+nX7X/xW/W3+Uf8gALMAKwGWAfABRQJoAl4CEwKTAfgAVwDA/y7/o/4i/qn9Vf05/Vb9qf0t/tz+hv8oAMcAXgEbAuYCvQOSBDkFygUgBlgGhAawBu4GOQeLB9oHHAhLCGIIQggPCKoHJQdqBmwFaQRDAzMCPwFpALX/CP9t/sz9JP2N/Az8yPul+7j76ftE/Of8mv2U/pr/owC3Aa8CyAPuBB0GXAedCMoJxQpmC74L0wuhC0ALvwodCl4JgAiOB5MGowXVBCwEpAMfA4YCtQHaAOb/7/4c/lD9iPzE+8P6tfmR+Fj3XPZ99eT0a/QQ9MjzlfN984/zz/Mn9KD08/Qn9Uf1RfVU9Z319PWQ9iv3uPcu+Hv42fgf+b35V/oo+xH8tvxd/ZX9pP2t/aL9y/0V/lj+u/7x/u/+2P6P/jr+6f2d/X39df16/an90v0X/nX+9f6R/zYA6gCPAR4CmQIQA4QDCwRnBK8EoQRJBKgDtALEAaYAuf/R/hD+af0N/e/8FP2k/UX+LP8vAF8B4AKGBFUGLgi6CfcKlwuxC44LJQu/CksKygkwCWUIbgc0BuMEngNpAkYBMQAb/wH+2/ys+436lPnK+CX4n/cg96v2R/b39c714PUt9rn2Y/cK+Lj4WvkC+rj6g/tq/Gj9af5M/w0AowAVAYMB8AFZArIC6QLuAsICbQIJAqUBRwHiAHEA8f9d/8X+Nf64/Vb9CP3B/Ir8WPwq/A/8Dfwh/Dr8XvyW/OH8MP1//d39T/7D/jj/xf9YAPQAiwEdApkCEQNnA6oD4gMPBBwE+QOOA/ACJAI9AVUAlP/o/jz+lv23/Mb7Evu4+gT74/tr/VP/fAHvA8cGLwojDqoSaxc6HAQhWyXpKGwrtCy0LE4ruCgqJRYhuhztF48SMQzlBOX8UfUU73vqo+ce5jjlP+QQ47Dh4eAe4cHiseX26OHrpe0k7tjtYu1r7WruU/DQ8j/1Pvem+LT55frF/KH/YwOmByUM/w/2EgYVZhZbFzwYGRmrGYcZHhhnFWIRsQzhB0YD9v67+mf2wvH17HfopuTU4RngP98539bfBuHr4oHlmOgd7Nzvm/NU9wz7z/6OAhQGPgnHC6QN7g7qD7gQfhEeEmoSTBLDEfIQ8w/6Dh0OTw1cDDQL2QlUCMIGOQW6AzoCmgDl/ib9fvsK+uT4//dO99f2iPZ89r32WPdD+Hz54/pt/Av+pv87AdUCaQT/BX0HywjmCccKbgvQC/8L/Au0Cz0LfQpnCfwHSAZtBHkCiwCg/sH82frk+PT2GfVt8w7yFfFr8ATw2e/f7xzwtPDI8VXzM/Uf9//4sPo4/LT9M//BADQCiQOGBCkFeAWFBVwFGgXHBGYE/AN9A/MCQwKVAeQAVADe/37/OP/r/pz+RP7j/XX9DP2e/Dz82fuE+zb7RPuA+9n7W/wt/Uv+mP/5AGoC3QNCBbAGIghvCacK0gt0DIAM6guTCugILgerBTIEfAI0AHX9bvoI+OP2cPdh+Q/8z/77ACAD+AU1CjAQBxe/HeQiHSabJ28oOCn0KfQpVyjPJBkfRRj4EPoJXQMG/aT2NPD46Tnkjd8e3O/ZtNhT2LrYAtoR3MXeI+IG5iPqUu5Z8hv2c/mI/J3/zQLdBZoIpwrVC1kMtwxYDVoOcQ9LEI4QIRBDDywODA0FDPAKmQnqB8QFCAO9/yH8aPjk9MvxIO+j7CDqfuf15APjF+JZ4q3jyeUl6K7qce2u8Jj0YvmE/owDIQgFDD0P9BFBFBcWSRenFzoX8hX1E5ARzQ7MC8gI0AX7Ak0A2f2d+535EPgG95P2ufZU9yL45/id+XP6h/vu/J3+YQD5ATkDHQS5BEAFxwVmBhkHuAcuCGIIXwgzCPgHxgekB4kHXQf8BmcGkwWCBEsDCQLAAHP/Fv6M/O/6JPlR94v16POB8kjxX/Cy7zXv6e7a7hfvuO/J8Dvy8/PC9Z73bvlN+0T9Sv9jAVUDCQVUBkkHAgiQCP0ITAlfCUYJ9Qh0CNgHHAdkBpMFwgTdA/AC/gHpALz/a/4G/aX7Xfo1+SL4Hfcg9jb1hfT+87nz2PNm9Gv1yPZG+MX5Yvsx/Sv/SAGCA8cFEwg7CiUMyw0QDxgQ4BByEcAR+hHiEUcR/w8XDt4Ltwn/B3sG/gQLA3cAdf13+kb4OPdG9yD4bvmO+sX7KP1c/88C6gdpDkkVihsRIPYimCQLJuonSSrTK0grjyfUIF0Y2w9fCP0BFPyQ9eXtOOXU3O7VYdE5zwjP3M8e0a/SuNSd19XbDOHa5rjsYvK895L8pAA1BCsHmwm+C7ANXw/XEMMRDBLKEQoRLRBVD4QOvA3MDK8LVQqrCMgG1QTpAgUBKv8w/RH7tfga9kzzd/DJ7YPryOmP6LXnC+ee5pjmHedW6IHqZe3V8Hf0DviM+/7+kAJVBikK+Q1cEf4TzhXWFkYXOhfcFjUWJBWRE0cRbA4/C/YH7QQ7AuX/yP3E+8/5Avi/9gP2xfUV9sT2vvfM+NH5xfq4+7j82f0O/0QAYAE9AuMCWAOnA/IDSAS5BDMFjgXABc4FtAWOBWoFTAUfBdEEWgShA7ICnwFxACX/yP1Z/N36Ufmw9xr2kvQ38xfyPPHA8I/wq/Ab8dfx2fIi9Kb1cvdt+YP7nP2V/14B/wJoBJMFhAZAB74H8gfPB04HjwaWBZoEmwOeAqEBkAB5/2v+mv35/KT8m/y4/Pn8Y/3y/Zv+XP8yABgBBQLqAroDYgTZBA0FGgUJBe4EvQR4BCIElQP3AnECHQIOAjcClQIKA4UDCQSyBIgFjwa3B8IIeQm3CXIJ9wiACDAI2gccB5EFCAPp/+n8qvqc+aD5D/pN+jn6HvoM+3r90gFJB/oM9xHLFdcYSBvdHWYg0SKSJAwlrCNCIOEaQRQ8DWwGEQDP+QDzQ+sD49za6tPkztvLb8oyytDKVMyzzhHSsNZ53BzjX+rd8Sv5zP92BUQKXQ7rEUUVQhhzGnIb/xpKGeIWdBSPEiwR/w9+DlwMnAmzBkQE6QJeAjcCAQJWASsApf4Y/bH7gPpR+ev3Gvbf8zzxau6z62Tpu+e85jfmGOZb5vnmPeg+6jjtGPGy9ZD6Uv/EA/UH/AsIEBYU6hcpG2odjR5jHkwdlxuBGU8X5BQoEu4OSQtjB5UDNAB2/U/7tPls+GH3c/a69Vr1cfUN9gz3Nvhf+WX6RPsQ/Of87P0T/zoAYAFYAiYD0wN0BCAF5gWyBoYHNQicCL0IqwiDCEsI9QdoB4cGQAWUA5oBdP82/fD6ffgD9o/zPPEd71Pt+esP65nqkOrx6uHrWe1R77zxdPRO9zr6Qv1ZAH0DhAZVCbQLcw11DtwO3A6ZDiAOWA0rDHcKbQg1BhMEQgLGAJb/kv6Z/aL84/uG+6X7Nvwe/Sr+G//n/6IAbQFbAmUDWgQWBW8FYAUVBaoERgTsA5gDKAOqAggCXAHRAIUAegCoAO4AHgFDAXUBwwFEAu4CngM0BJEEpASPBGEENgQSBNMDagO6AugBLAGpAIYAsgAfAacBMALHAp4DzwSZBtcIVAvUDSQQGBKvEx4VohYeGFwZEhr0Gb4YRxbqEjQPegvTB/gDRv+Q+fHy5Otc5eLfmNs02DjVbNL1z0bO8c1pz+XS39ei3YPjFemV7mX0BftnAt8JlxDgFXQZkRvGHHwd9R31HSEdIxvqF9ATXw8OC2AHTQSKAez+T/yf+UP3ffV/9Ff02/ST9RX2RvY79jv2ZfbI9iz3V/cX9032E/W886Ly2vF28VTxZPGR8f7xzfJX9Iv2cPnZ/IwAUQT1B2wLyg4SEk8VURjCGnEcJx33HAochhqaGFQWrxOIENIMqAg7BPj/NPwM+Xv2VPR48tjwme/w7invGfCa8XrzefVy92f5Z/uI/cT/8wHwA4QFpAZOB5IHpAeIB0AHwgb/BfoEvgNnAg4By/+b/ob9hfyP+6v63vkz+a34Uvgl+Bn4KvhW+Jf4TvkP+sL6ffso/Mj8X/3k/VX+qf7T/uT+4f7U/s3+xv66/pX+TP7v/Yj9Qf0n/Tb9Y/2S/bX90f33/Tz+vP5p/y4A7QCQASICqQIzA9QDggRSBQkGjAbiBhQHNgdWB3cHfgdsBzYH2QZwBgEGlQUxBcEEOQS2AzYDwgJlAisCCALZAZsBXwE6ATQBRQFmAYMBlgGBAVwBOwEzAUsBeQGaAZoBYgEJAbgAnQDDAEoBDQLnAt0D6wQMBoAHigkoDEMPvBIgFhMZZhsnHVYeHx+SH6ofKx92HT0aPBX6Di4IrAGH+5P1Mu8K6Ergfdiq0WDMQMmjx07Hi8ccyBvJActGzmXTMtrs4bnpw/Dr9ob8IQIrCJMOyRT0GVId0B4AH4Ee+x2UHQ8d8hvDGVQWABKIDX4JTwbvA+MBoP/N/JD5dfZf9FXzKPNY80/z7vIm8lHx2PDw8HbxI/KZ8rTyfvIp8iPynPKY89D0B/Ym90X4iPk++3X9GwD7Ar0FIQg0ChUM4A2wD5YRRRNrFOEUnBTEE7YSbhEVEJwO0gyhCgcIHAUHAiv/qvye+t74O/ed9Qr0t/Ld8Zfx5vGc8o/ziPRz9W32kvf2+Jr6aPwm/qD/vwCSATMC1wKIA0UE7gRkBY4FfwU9BeUEoQR7BGgETQQNBJsDBwNbAsABRQHfAHsA9v9N/3n+fv1+/I77v/oR+nf52Pg0+JD3Cfei9nb2jvbg9lr36veP+Ef5Hfoh+1/8w/1V/9sAPQJ4A5wEtwXcBhMIOQlACgoLiAvNC+YL5wvZC8MLiAsmC5IKxwnYCN4H7gb9BRIFIgQxAzECJQEeAC7/Vf6R/fP8bfwJ/LP7f/tk+5n7+vuD/Dr9Gv4B/+r/zQClAXgCWAM2BAwFyAVVBqwGvgaSBjQGpQUBBVQEnAPGArsBgABS/1X+1v31/aj+sf/dACQCfwNBBcQH8AqTDigSfBUbGO4ZLxtHHD8drR0DHZIamRZQEVQLLAU3/yL56/JR7IflDt9F2d3UpNG4z7POas6/ztbPyNHF1NLYxt0J43Ho0u0D8x347fzPAZ8GCwv3Du4R2RPbFFIVZxVCFcwU3BNqEnMQIw6tCycJuwZdBB8C/P/0/QX8IPpS+LD2efWv9EL09/Ot80Pz0/Kc8sTyQ/Pz86P0JPWC9e/1ofac99X4Jvp1+6z8zv35/k4AyQFTA9oEVAayB+UI9wnwCs0LmQxMDdcNJg4vDuYNUg2ADJsLnAqLCVAI0AYVBR0DJwFp/+X9kfxc+yb68vjf9x33y/bp9lr3/ve6+Iv5hvq8+zj91/56APkBSQNvBHsFYAYtB8QHCQj/B6kHKAeABswF+QQSBAED1wGeAGj/Sf5H/Wv8p/sK+5H6OPru+cX5vfne+Rz6bPre+k77vfsv/KL8Jv2z/Ur+3/51/wEAhAD0AGoB2AFMAsICOAOhA+8DMARZBH4EowTNBPEE8QTWBKMEWgQYBOUDxAOrA4kDZwNBAy0DKAMsA0MDWwNqA34DlgOpA7oDyAPUA9ADzgPgAwAEJgQzBC0EDATuA9YD4wMGBCoEJwTrA4MDCwO1AoACaQJNAgoCkQHyAF8A+f/S/8//uf+A/zX/8f71/kj/AgD3AA0COwOTBP4FlAdcCUULRg16D8MR0xN8Fa8WQBcQF1AWGBVyEzURQQ5PCmsFtf+y+eLzgu6p6QflmOAw3EHYB9XN0uDRKdJS0/vUBddM2RHcmt/M44DoXO0d8qj21Pqa/iwCmwXOCL4LJg7qD/UQMhEaEZQQ5w8oDwsOkwyJCh8IggXzAsUA7f5M/a/77vkt+Ln2rPU89UT1mfUV9nP2ufYF9333SPg/+Uz6NPvT+zb8gvzY/Ff97P2O/jj/xv9MAMAAUAEfAhsDSAR3BZUGmweFCHUJdQp7C24MKg2bDbYNag3GDPML7grHCWgIvgbRBJwCUAAO/vv7LPqI+AX3rvWI9LDzSfNb8/Pz7fQ19qn3M/nk+sb80P4CAS0DMAXuBl0IeAlJCt4KPwtiCzQLqgrHCZQIMAe4BT4E0AJgAfP/h/4z/RD8L/uW+jP6//nm+eb5+/kz+qD6MPvO+3X8DP2N/fz9Zf7U/k7/wf8mAHgAtQDlAB0BXQG5AR8CkAIBA2oDywMrBKAEIAWqBTcGuQYjB3oHwQf5ByUIRwhUCDwIBAibByMHqQYrBqYFIAWGBMgDCgNbAt4BkAFtAWsBcgF6AY0BvwEZArUCZQMlBNAERwWRBb4F3gUKBhgG+QVvBYIEVgPiAV4A9P6s/V38FvuU+Qf4t/a19WT1hfUp9vz25fcC+XD6WvzZ/ssBFAVXCGsLOw6gELMSjxQ1FnEX8xebF28WUBSBETIOmwqnBl8CsP2j+H3zdu7g6dzlhOKm30HdSdvX2RXZM9ks2snbzN0r4Mfin+W36ALsde8A83P2tPm0/HX/9AFRBIMGlwhzCi4MkQ2sDnQPBRB2EL8Q5hDUEHwQzA/QDpcNMQytChIJKwf8BIoC5/9H/br6Wfgj9vTz0fHK7wzuu+zw66rrz+tL7AftG+6W74jx4vOZ9mT5Sfwg/8IBXgQEB5MJ/gsUDskPIBEJErASCxMpEw4TqhIPEiwRBRCvDiQNjwvpCVEIsgYMBWUDsgH5/1T+zfxt+0/6Rflg+If3zfYz9r/1jvWN9c71PPbC9lr3Dvjs+Oj5A/sv/Fz9ef6N/5YAlAGCAnIDTQQKBaEFFwZsBqQGyAbVBsQGkAY+BsoFOgWQBNQDAQMjAjoBRwBb/2P+c/1+/Jv7yfoH+nr5EvnV+LH4rfjP+Bv5mvlF+in7Jvw7/VT+fP+bALoB4AIGBB8FGAbtBpEHBghNCGoIZQg8CPIHgwfqBjUGcgWnBOgDLQOAAuABdAEUAbYAfwBmAGgAkgDbACEBbwHEASACjAIBA3gD6AM7BGQEcQRdBDkEBATDA1sD0gIsAlYBdQCc/9D+Hv53/cX8EPxt++/6w/rn+nL7NfwK/fr9JP9vAEACSQS7BlAJ2AuNDgoRdROwFbMXXBmSGk4bfhvnGmgZJRcWFHMQVgzsB0IDCf5m+FnyV+y25tThzN172s3XXNWP05zS39J21CPXjdpw3orituY06/7v9vT++dD+DQOTBl8JrAuqDUAPixBZEZ8RWRGXEIwPYA4qDQ8MBQsLChsJCQjeBpsFbQRpA4YCuAHIAKX/J/5N/Ez6gPjd9kj1p/PI8bvvqO3J60TqM+mY6E3oPeho6ADpHerV6yfuCfFP9N/3mft1/2gDegebC7oPoBMxFzcagxwgHjcfvR+2Hx8f6R34G1YZLxaSErIO0AoBBykDW/+T+wL4yvQO8t/vNu4T7WDsFOwk7Ljsw+0g797w3PIN9Uf3ffmi+7P9tv+WAVYD2wQsBiUHzQceCDAIDAjDB1oHzQYiBroFUwXSBGIEHATrA8oDvQOZA2kDFQPKAngCFQKmARUBSwA6//T9jvwM+5f5N/jW9nD1K/QG8w7yefFI8YXxIPIf82j05fW199H5Lfy//ngBJQSzBgwJIwvrDHsO0g+/EEcRUxH7EEIQJQ/pDYMM9wpWCZsH4wUpBIUCDQHa/wL/VP7Q/Xj9Wf12/cP9Q/7n/q3/jQCCAVsCIAPNA28E+wR1Bc0F7QXpBboFdgUTBZUE+QNMA6wCDwKcAUcBHwEpAVcBwwFvAmkD1AR3BmoIVQpcDIQOmhDFEtIUqBb2F44YuBhwGIkXTRZ6FPERog6DCscFrABy+1X2J/Ed7BfnL+Ku3a3ZttZ81EbT99JM0yfUn9Xy1yvbLN+z44zoU+3y8XP20/oY/0YDIAdtChgNDQ9zEFMR3BEVEvERaBFjEPQOfA3/C4cKCQmhB0MG6gSnA24CTwFNAGb/mf7O/f/8L/xR+2H6cfl1+GP3U/ZK9VT0bfOW8tHxJ/Gh8FPwSfCM8BLx1PHr8jn0w/WJ95H51ftJ/uEAcwPtBU0IkArMDPEO4xCGEr4TkhT3FAkVzBRBFGYTMRKmELIOcQwUCpoHJgWZAgYAgP0L+7X4m/bD9DrzAfIM8Vzw5e++79PvN/Dn8MXx6PIc9Hn18fZo+PT5evsG/Xr+1/8gAUYCTAM5BAoFugVGBrkG9gYTBw0H/wbPBnoGHwaWBfgENwRsA38CjAGaAJT/j/6S/aP8tvvR+gL6Rfmg+B340/et97P35fc/+MP4hfmU+rj7F/2E/gAAigErA+gEmQZCCMUJBQsMDNsMgg38DTgOSg4CDmoNogyVC2QKLQn/B7gGawUKBLsChQHYAFoA9f+9/6T/jv99/4r/mv/O////JwBMAFMAVQBIABkA+v/P/5P/af9G/1z/fv+u/wwAgwAgAQkCJAOQBCAGrgdBCbUKMQzXDZIPVhHqEkoUcxUsFqUW9BYKF98WJhbSFA4TrBDpDfEKmAf5Ax8A5vuJ9xXzhe4X6vrlR+Lq3gXcfNlg18nV49TL1J/VPNeO2WDcpt864x3noeub8L312vqf/9oDngf0Cu8NiBCAEuYTmRSWFBAUBROlEfYP5g2vC0kJyAY5BKMBKf/G/KP6r/ju9mH1F/QD8yPygvEe8erw3vAD8UvxvPFE8uXylfMr9Ob0y/XC9s331fjY+d368/ss/Zj+IACkARcDfATQBUwH4Ah3CuQLDw3/DbgOXA/qD1oQoBCUECcQaA9sDlINLgzuCocJ6gcUBg0E8AHh/9z98fsn+oP4APeu9Yj0qvMP873ytPL08nfzNPQo9T72hPfs+GL65/tt/fH+cQDOAQkDBgTWBHwF/wVdBo8GjAZYBvsFdgXcBDgEigPMAg0CNQFyAL//JP+o/kX++v3I/ab9mP2W/aD9uf3J/en9Cv4t/kn+Wf5m/mD+T/49/iD+EP4C/vf9+/0T/kj+tP5F/+j/rQBsATkCLQMyBGEFigayB8gIhAk6CtwKTgvEC+8L2wuLC+UKIwphCZcI1gf0BtAFkARMAxkCKAFwAPz/hv8P/6T+PP4R/jn+qv5U/wsAzgCAASgCygJ9A04EMgUJBqcGPwfPB1EI1QhkCQsKuAqaC6sM1A33DvYP0RCNEUASIxP+E6UU5xSWFLgTSRJzEIQOXwzICcQGGgP8/mH6q/U88QftJ+lc5bzhOt4G22XYhtaN1XvVANb/1n3YgdoQ3W7gXeTe6J/tPvK89hP7Of9GAx0HigptDZIPGhHxETcSGBKBEZEQQw+hDcELmQlGB9gEcQI5ADn+d/zf+nf5QPgf9xr2VPXP9I70iPSG9Gv0KPTb87zz2PMw9JT01fTw9O30/vRQ9e712vbx9xb5PPpK+3r8A/7d/xMCXQSnBr0Inwp6DFEOLRD9EYsTtxRzFbYVeRXxFC4UIBPcEScQEQ6UC8gI9gU+A6wAQv7r+7z5p/e/9S30+vJN8hTyLPKi8i7z7vPy9DP2y/eF+Vj7E/2q/iIAcQGsAtoD7ATIBU8GcgZABtMFSgWwBAYERANeAl4BVwBd/4r+4f1f/ff8p/xo/Dj8Hfwd/Eb8h/zc/Cr9bf2V/Z79m/2J/Xb9Yv1M/TH9+fy6/HH8OPwv/GL8y/xl/SH+3/6r/6IAwwEzA9MEigZCCLcJ/goQDAMN8g3HDnEPww+kDyUPRw5JDTUMEAvoCZoIHQeOBe4DZwIBAcr/u/7M/QL9TvzU+3v7Xftt+6L7/ftp/O/8ev0H/qL+Nf/S/4MASAEhAgcD7gPQBJkFYwZXB2oIsQkoC58MFw5JD3MQohHIEvsTHhUCFmAWERZPFUQU5xJyEaoPVQ0+CmAGJwLU/aP5zvUg8oXupeqk5vfirN9B3YbbgdoI2tfZ6dlj2qTbot1W4JvjEeef6g/uZ/Hv9H34KPzD/wkD6QUcCNYJJgsMDKUM/QzxDIAMlQttCgQJWQelBfADUgLRAGb/7/10/P/6vPmx+Pf3ivdP9yP39PbH9q321vY099b3m/hI+cv5Gfpp+tb6aftB/Ar9tf0i/lr+n/4J/7b/jgBiAa4C+gMiBUgGsgdDCfEKlgzyDSUPHhDmEH4R9BExEgMSaxFwEAoPTw1LCycJ5AaNBCACsf9Q/fb6zPjm9lD1FvRA89DytPLi8kzzAfT89Er26/es+Xb7Lf3N/k4ArgHeAvMDzQRpBcQF2gXABXEF8ARZBLQD+AI4Am4BsQD//13/vP4o/qz9Sv38/LT8e/xM/DX8M/w6/EP8S/xP/FL8Wfxo/H78nfzV/B79cf3C/Rn+if4T/6//VwAXAdoBsQKJA18ELQXuBaMGQgfNB0EInAjXCO8I5Qi8CHoIHgimBxMHZAamBeEEFARQA4UCuwH4AE8Awv9M/wP/1/65/rL+w/7w/kX/vv9KAPQAkwExAskCXQP4A5AEKgWwBSYGjQbqBkgHqQcVCIII/QiCCSYK6ArQC88Myw2sDpgPahAsEd8RjBIIEwsToRLQEakQHw8bDaIKqgcRBBcA6fuw91vzEe/N6oXmeOKb3mHbxtgF1wDWgdWH1R7WWtdk2Ujc+98n5Ibo9exF8Yv1vfkS/nICegYFCugMFg+dENARmxILE/kSWxJQEecPVw60DAoLVQmFB5EFoAPPARgAkf4p/dL7oPqd+b34+vdO95T2wvXg9Av0VfPH8lDy4/Fq8eTwdPA68Ezwt/Bq8VPyZPOm9C328/f++Tb8lv4AAVMDkgXMB90J4wu/DU8PjhBrEe4RGxL0EYERzhDYD5wOIQ1sC4sJpwfMBQoEWQK3ADP/u/1o/Er7afrC+U35D/nn+Nn41vjs+Bv5Z/nM+Tn6qvoK+2D7ovvr+zv8kfzu/FD9uf0j/o7+//5u/+3/ZgDrAG0B6QFeAs0CNQOOA9kDFgQ5BEgERARLBDUE+AOnAzEDoALvASsBVgB8/5H+ov20/M379vo3+pP5Dfm3+Iv4lfje+Gj5MPod+yn8Vf2f/gQAcgH1AmoEzQULBxYIAQnICWYK3woiCz8LGgvBCkkKxwk8Cb0IPgiqBxkHkgYiBtoFwwXMBfMFIgZABmAGegaeBscG8wYFB/QGrAYsBoUF1wQ5BKQDFwN0ArUB8QA/AMv/oP/f/2sAIAELAhgDUQTlBcYH9wlTDMEOGhEaE7cUAhYQF7oX6hd9F1oWUxRrEdENvAl0BQ0Bnfwa+Fvzle776dzleOLi3yfe8tw83Nvb7dup3C7eXOD34snloehP673tHPBp8pf0uvas+Fz6r/uh/FL96/1w/gr/uf+OAGkBNwL7AsUDmQSnBeUGPgiZCcoKpAscDEcMNQzzC30LxAqiCfkHwgUjA2cAo/39+nv4AfaY8znxC+8s7c/rA+vK6gnrnuuX7N/tcu9w8dLzgfZo+V/8Q/8HAqsEMAebCcwLvA1VD4IQRxGuEb0RkxE1EZoQww+sDmEN6QtXCssIVgf6BbcEggNjAlABXQCG/9L+O/69/Vn99fyk/Fn8CPy3+2f7HfvQ+oT6M/rR+WX5+PiU+Dn48fe+95X3ePd495X30vcz+Lr4WvkB+rv6fvtG/BP94f22/m//BwCDANoAEAEoASoBFQHkAJkAOgDQ/17///6y/oL+av5m/nj+pP7w/lz/5f+IADsB8AGYAjADuAM1BJkE3AT4BPoEzgRyBPkDcgPgAkgCrwEIAXQA//+r/4r/kf/O/0IA6QC6AbcC1gMKBVEGlQfSCAwKKAsSDMYMPw1zDWcNGw2TDNkL9ArgCboIbwcfBtAEIgN5AfX/mv55/Yb83Ptv+2371fux/Of9r//IASgEwQZyCU0MHw/xEbEUJRcmGVUa4RqqGrcZSxhUFvsTExGhDb8JewXyAHL89vfP8+jvY+yI6SPnXOUC5AnjZuId4kfiIuOO5G3mhuif6njsHu6Z7yfx2fKb9Ef2vvcB+fr50vqj+3D8Yf1R/k7/SgBHAUkCQgMwBCUFBQbwBrsHZAjbCCcJLwnsCHYI0gcKBwwG2ARPA5UBtv/b/RX8a/rd+Fv39fWs9I/zvfI+8hryPvKo8jfz+fPs9A32Xve9+C76k/v2/ET+lv/mACwCYANwBFYFFAanBhYHZQedB8YH3gfTB6EHUwfrBnUG+wWQBTAFzQRzBAwEkAMXA5MCJwLBAXEBFAGyAEsA1v9j/+j+ef4W/r39Yv0N/b38cvwx/P/73vvA+6z7lvuP+5D7mfu3+9X77fsE/BX8I/xB/GL8jvy3/OL8Cv0z/WT9nP3k/Tb+mv7u/kT/nf/u/z4AhAC7AOQA+gAKASABLQEsAQoBzAB6ABUArf9H/+/+lf47/t79jf1P/TT9Q/1p/bD9+v1S/rn+Of/O/3cALAHSAVoCywIgA14DnAPgAyEEUQRmBGQETAQvBB8EKgROBKEE/gR2BQQGvgaGB1EINQkjCvMKvQtZDMYMBg3rDJwMDwxfC3IKVQngByIGaASYAjEBBwBm/xD/4/7Z/uT+RP8PAKEB9wPbBukJ0gwND7UQFRJ1EwAVShZJF1IXJhbjE+wQrQ1aCtkGBgPs/oj6PPYU8o7uqutR6Z3nYebc5QbmC+fJ6A/rje0Z8LfyH/WB99L57/vc/Vf/cQARAS4B4AA9AHL/rv73/Z79XP0w/RD9Ev0r/Y79Qf5N/4wAyQHyAvMDtgRIBaoF0AWoBQ8FAgR/AqwAmv5b/P75ofdC9QbzDPFd7y3uh+197QDu/O5l8C/yX/QF9wH6U/2vAMcDgAbGCKoKOAxtDUcOrw57DrMNZQzEChIJXQfJBV0EAgO2AXkAa/+j/jb+Kf5l/tX+Zv/2/34A9ABdAbwBFwJoAqcCugKPAiQCgQG+APf/O/+X/gL+cv3Z/Db8nfsk+9H6tvq++uD6EPtC+3n7r/vl+yH8bvzH/Cv9f/28/d/97P3y/f39Ff45/mL+if6i/qn+rf6x/sf+8v4p/2T/mf+9/8z/0f/W/+r/EABPAJgA3gAQASsBPgFUAX0BwQEPAlQCfwKEAm4CSQIpAhIC+gHRAZUBRQHhAHEACgC0/27/Rv84/0f/bf+1/xgAmAAaAaMBQwLtAqMDYAQhBdoFdwb7BlwHpwftBzUIcwimCLEIkQhCCMwHRge1Bh0GggXBBNoDwQKEAT4A/v7g/dj8/fta+9P6hfph+pb6K/sm/If9Lv//AOgC1wTIBq8IkgpQDL8NwQ5MD30POg+TDp4NPgxzCkIIyQU6A74AYP4K/Mz5pve69Rb00/IB8ojxV/FF8U7xfPHa8WnyJfPx87H0YfXr9U32nPbm9j33pvcl+Lv4Z/kQ+sT6ift2/Iz97P5wAAgCegO5BLYFewYoB8EHOwh0CFkI0gfkBpcFGQSKAgcBnv89/uT8gPse+tj40vcP95n2fPaB9qL2yPb99lf30/d9+EL5Fvrd+pb7P/zr/K/9nP6b/6IArwGpAooDagRKBTEGBwfKB2UIugjSCLIIawgGCIUH7QYjBi4FIQS0AksB7P+o/of9gvyY+7T6Avp5+RX55/jn+Ar5Rfmf+QT6dPrs+lr7zvtN/Nz8ev0g/sj+ef8iAM8AfAFDAiQDHQQcBQoG3AaMBxMIZwiNCIAISgjgB0kHgQZ9BUsE+AKLAToAB/8Q/lb90/x6/Dn8Dfz7+xf8YPze/IT9Sf77/pX/+P8sAFIAggDbAFoB3gFNAoACcAIrAtYBqgG6AesBFAIQAroBHwFvANr/ff9l/5L/2f8rAHMAtQALAYEBIALqAsYDmAQ7BZsFuwWcBVQF7QRtBMsDAwMNAu8Awv+m/qP92fxb/Br8Efwn/F38qPwj/b79bP4q/+T/iwAVAXkBtwHYAeUB4wHcAdYB2wHhAegB7gHuAfgBEAI9AngCsQLnAgsDDgPxAroCaQIHApkBKAGrACYAnv8P/37++f2D/TD99PzR/Mf8wvy7/Lf8uvzE/Oj8Iv1z/db9M/6O/uD+SP/H/1gA9gChAT8CwQIYA0wDZwNeAzsD/gKjAiMCfwG2ANf/8/4f/mj90fxl/CD8CPwQ/DX8ifz+/Jj9VP4a/9z/fwD7AEkBdwGGAX0BUwEWAcEARwC2/xn/gv4E/qn9Zv05/SD9Cf3y/N782fzl/AD9IP1L/Xb9mf2m/bL9vv3V/f/9N/58/sL+A/85/1z/d/+O/6L/qP+p/5z/d/9C//b+oP5S/gz+0f2p/Zb9mv2t/cj97/0h/kz+cv6g/tH++f4X/yL/Ef/a/oT+F/6h/S/9zfyA/Dj84Ptn+9T6O/q4+XH5bvmf+d75Hfoz+kb6T/qF+jr7NvyG/dH+FQAsASoCTwPEBJMGvwglC5QN5A/lEZcT1RTIFaIWTxfGF7oX5BdfF+kVexM5EG4MVwguBNH/Wfvx9ijzN/Bh7nrtQe137Rju9u7+7xjxGvLW8gnzuvIU8nPxM/GL8ZbydPT89iP6t/2JAWUFJAmiDLQP9BE5Ex0TnBHoDmALfge8A2UAiP1B+5P5hvgH+Bn4tfi9+fr6IPzq/BD9bvwi+1z5Z/eA9RD0Z/Ok88f0m/YE+ez7TP8RAzQHXQscDxIS6RN6FMQTIRLhD0YNjwrQBw8FXwLS/4P9mftB+oD5S/l9+eH5Wfq9+vv6Gfsh+yL7J/st+077i/v0+438YP19/uj/jAFdA0MFIAfACP8JxQoNC+EKXgp4CSUIbwZLBOIBW//2/O/6U/kg+FL3zvaW9p725faJ93r4n/nL+uD70PyS/UH++f7S/9EA7gEeA1cEiAWpBrQHnwhkCfEJKAr0CVAJOAjCBvgE3AKVAD7+7fvU+QX4i/Zx9bH0WvRi9Mf0ffVl9nL3hfiM+YH6ZftB/Bn95v2p/mf/LAD8AOQB6gIJBC0FPgY0B/gHhQjVCOgItQhFCI4HlQZfBQIEjQIZAbj/hv6E/bn8I/zD+5L7ivuy+wD8bvz1/Ij9E/6P/vf+U/+r/wgAaQDWAEYBtwEhAoQC3gIwA34DwgP5AxgEGgTzA6QDOgO3Ah8ChwHxAGEA2/9k//b+nf5j/lD+Zf6Z/uz+T//C/zkAuQBDAdABYgLwAmkDwwMHBDAEQgQ8BCkEAwTJA4QDLAPJAlkC5gFtAe0AZgDq/2j/2P4+/p79+fxf/OL7gvs/+x77Gfs5+3n72vti/Bn98/3n/t//wgCOAT0CxwI3A5UDzQPVA7kDbwP4AmsC2wFQAdAAVwDp/3b/B/+X/hD+i/39/HP83vs/+6b6E/qR+Sv58/jw+CX5jvke+tX6qfuU/JX9mP6W/4IAXQESAp8CCANGA2cDcQNsA1YDKwPxAqcCQwLVAWYB9gCHABYAp/8u/6n+Kf60/Vf9Fv33/Pn8Ev1A/YP91/0x/pv+Fv+u/1cABwGoAS0ClALbAgwDHgMhAxQD7wK0AloC5QFfAdcAZAAKAMX/jv9W/xz/6v68/p7+i/5//n7+fP59/oz+nv6+/vD+MP+D/+P/UQDAADABkwHfAR0CQwJZAlwCSgIlAuwBngFCAd8AgAAoAOL/qf91/0b/FP/m/rP+fv5Z/i/+Ev73/eD90f3G/cv96/0p/of+AP+G/w0AkQAZAZgBDQJ7AtQCFwM9A0YDNgMMA9UCmQJSAgMCtwFkAQsBqwBHAN7/d/8R/7T+Yf4X/uT9vf2p/ab9uP3o/TL+nv4l/7r/TwDiAGgB3AE9AowCwQLiAugC1AKoAmQCFgLGAXQBJwHaAJQASwD//67/V/8I/7b+Z/4o/vj92f3C/bT9vf3V/Qv+Wf69/i//nv8PAHIAxwAPAUwBewGZAaIBmwF/AVgBMAECAdMAqgCGAGkATwAxAA8A6//F/5v/av83/wj/2/6v/o3+dv5q/mr+eP6Z/sj+A/9I/4//1P8IAD4AbACUALMAzgDkAPAA8wD0AO0A6gDqAOYA3wDUAMEAoAB4AEAA//+1/2X/E//C/nb+Of4H/uT92P3g/fv9Kv5r/sL+Jv+N//H/SgCcAOUAKgFsAaQB0AHtAfsB+QHuAd4BxAGmAXoBQwEDAbEAWgD1/5L/Kf+4/lP+8P2Z/VX9HP0A/f78EP0+/X/90v0s/o/+7/5V/7//HQB2AMMABQFBAWsBkQGmAa4BqgGZAX0BVgEfAeIAoQBaABUAzf+L/0r/GP/t/sn+tP6s/q3+sv6+/tT+6/7//h3/Pv9l/4j/pf++/83/4v/5/w0AIwA0AEQATwBYAGAAZABpAG4AdAB6AH8AiwCVAKEApgCiAJsAjwCDAHUAZwBQADYAFQDx/87/uP+p/6L/p/+y/8L/1P/u/xAAOwBlAIkAqQC9AMYAzADKAMQAuwCrAJUAfgBmAEQAHwDw/8X/nv95/2H/Rf82/zH/Mf9A/1j/fv+r/+L/IwBuALkA/wBCAXkBowHBAdUB2AHNAbEBiAFTAR4B6ACzAHoARQASAOL/uv+T/2z/Rv8n/wz/8/7l/tr+0v7O/s3+1/7m/gL/Kv9Z/4z/uP/k/wwALwBSAHwAngC5AMYAzgDVAOkA/gANARMBDAECAfcA7gDhANEAtQCPAGAALAD2/73/d/8w/+r+pv5q/jn+F/4K/gr+E/4m/kP+Zv6a/tv+Jf9z/7r/AAA/AH0AtwD0ACYBTwFrAXcBdwFxAWgBWQFDAR4B7ACyAHcANQD7/8X/m/93/1b/RP82/y//NP9A/1f/bP+E/5r/s//F/87/0//S/8//yP/I/8b/xf/C/7//wf/F/9H/3v/q//H/8//4//z/AAAFAAkACQAGAAMA/v/z/+j/4f/c/9n/2f/b/97/4//n/+n/7P/z//v/BQAXACkAPQBJAFMAWQBbAFUASQA0AB8ABADj/8D/mv9v/0P/G//u/s7+vP6z/q/+s/69/tD+7P4O/z3/bv+p/+T/GgBMAHsApgDNAPAADQEmATYBQAFBATwBMQEhAQ4B9wDdAMAAlQBpAD0AEwDi/6//e/9K/x7/8/7K/qn+lP6J/on+j/6i/sL+7v4k/1z/lv/R/wsASgCFALwA6wAUATABQgFOAVUBVQFTAUYBNAEhAf8A2ACtAIYAXAAuAAUA4P+5/57/iP95/3X/dP94/3//j/+i/7v/1f/r//v/AAAEAAYABgAEAAAA9//q/9v/yv+6/7H/qP+h/57/nv+f/6D/oP+f/5z/oP+n/7L/v//N/97/8v8IACYASQBxAJoAxgDtABABKgE9AUgBRQE9ASsBFQH4ANMArAB6AEcAEwDj/7z/mP95/1n/P/8o/xP/Bv/8/vz+Av8P/xf/JP80/0n/Yf99/6D/w//w/x0ARwBwAJcAuQDaAP4AHwE9AVMBYAFoAWYBXQFQATgBGwH3AMkAkwBTAA4Ayf+I/0f/DP/V/qH+eP5N/i/+H/4d/ij+PP5Z/oj+xv4H/1L/mv/n/zEAfQDDAAQBPQFpAY0BoAGuAaoBngGLAXEBUgEtAf4AygCPAFIAFwDa/67/gv9g/z//JP8U/wb/Bv8P/yH/Mv9H/1z/ef+X/7n/1//x/wsAIgA8AFIAZgB6AIQAhgCHAIYAhQB+AHMAXwBDACUABQDp/83/s/+a/4P/cf9n/2T/bf98/5L/qP/B/9j/8f8OACwATABmAH8AkwCiAKsArwCzALYAsgCtAKIAkgB6AFgAMwALAOX/vf+V/2z/R/8g//7+4f7Q/sj+y/7Y/uz+Bv8n/07/ef+q/9//FQBKAHwAqgDUAPQADgEkATIBOAE1ASwBFwH7ANMAqAB5AEgAHgDy/8r/o/+E/2r/Vv9M/0H/RP9H/1f/Zf9z/4L/kv+l/7f/zv/k/woALABKAGYAhQCfALwA0QDmAPcA/QACAfwA9QDjAM4AqwCIAGEANgAPAOT/vf+W/3P/Vf88/y3/JP8i/yb/NP9C/1f/df+Z/8D/6/8aAE0AfwCtANQA9QANASMBMAE4ATkBLgEYAfwA0ACfAGwANgAAAMf/mv9s/0f/Kf8P/wD/9/74/gT/G/82/1f/e/+h/8z/8/8bAD4AYQCBAJsArgC+AMoA0ADTAM8AyAC5AKYAjgB2AFkANwAWAPL/zv+p/43/dP9k/1j/Uf9T/1b/af98/5T/sv/T//X/FAAxAEwAZAB5AI8AoQCwALcAtwCyAKUAnACSAIEAbgBVADwAHgAAAOH/w/+j/4v/eP9i/1D/PP8r/x//F/8X/xn/Jf82/0f/W/9u/4v/qP/P//3/LABgAIwAtQDWAPMADAEjATEBPAE7ASUBBQHdALIAhgBWAB4A5P+q/3X/Qv8b//f+4/7Q/sL+vv7C/s7+3v73/hD/LP9K/2j/jv+z/9f//f8fAEIAYwCFAKUAwgDbAPAA+wAFAQcB/gDtANQAtgCVAG8APwAPAOD/tf+K/2r/Tv85/yX/FP8L/wj/Dv8b/y//RP9Y/2//hf+k/8b/6/8MACoASwBmAH8AkgCgAKkAqACgAJAAewBjAEkALwATAPj/4f/S/8f/wf+//73/w//O/9v/7P/9/wwAGAAhACkAKwAtAC4ALQAtAC4ALAAnAB4AFQAQAAkABQACAAEA///1/+r/3f/V/9L/0//U/9b/1P/X/97/6f/4/wIAEQAgADEAPgBPAF8AbQB2AH0AhACKAI0AjgCMAIQAeQBqAFoARwAxABgA/P/k/83/uP+j/5L/hf+B/4L/hP+G/4j/iv+N/5D/mP+e/6b/sf+7/8j/1P/c/+f/8f/7/wEABQAMABQAHAAkAC0AOABBAE0AUgBZAF0AXgBfAGYAbAB0AH0AgwCCAH8AeABrAFYARAAwAB4AEAAAAOn/1f/A/6v/mP+B/23/X/9W/1b/XP9m/3X/hv+U/6f/sf+6/7//xv/Q/9j/3//n/+3/9/8BAAgAEgAaAB8AIgAiAB4AFwARAAsABgADAAAA//8AAAQACgAVACIALQA8AEgAUwBdAGYAaQBqAGQAWwBRAEEALAAaAAMA6f/S/7f/m/+K/3n/cv91/3v/iP+T/6L/tP/I/9z/8P8IACMAQwBbAHEAgwCUAKQArQCoAJ4AigB0AGEAUgBEADwAOgA3ADoAOgA4ADQAKQAcAA8AAgD0/+r/4f/d/93/4f/o/+r/7P/s/+//8f/z//j//P8HABMAHAAgACMAHQAYABEACgD9//T/8P/u/+n/5P/d/9f/z//H/8b/yf/O/9v/8f8MACwAVACDALEA3AD/AAgB/QDbAKIAaAA8AB0ACQD9/+7/2v+o/2P/Dv+s/j7+9/3W/fv9bv4V/+f/pABIAZkBsAGqAXYBPQEIAewA5wDxAAsBKAEdAfYArAA0AJ//Cv+G/i3+F/4x/oj+4P41/3P/kv/G/+D/7/8RAEYAeQDnAHUBXAJAA+IDXQQPBFwD8gFGAIH+FP0u/AT8pPyp/fv+6P9cAA0AY/+P/gP+1/0H/nX+6v6B/wcAjAAEAWgBoAGaAW8BKQHaAJcAdQCDALMAEgFxAaABpgFcAd8APwCe/xH/nf5V/jP+LP5F/nT+q/75/kH/kv/I//b/HwA7AFMAOwAZAO7/xv+4/7n/sf+Q/1L/CP/L/pb+Zf4p/uH9iv1G/Tr9jv1B/jf/QgAvAcQBCAIIAt0BpgGHAX4BhAGYAbMB1QH+ATICWgJkAkECAAK9AX0BNwHiAHsABACM/z3/Kv9M/3v/nP+Y/1z/+f6a/mb+Yv6N/uD+Sf+4/zMAuAA7AcoBXQLlAlQDhANlA/0CbgLhAYEBUwFTAVgBTQEdAdQAbQDZ/yz/Sv4w/f776voj+tr5Dfqc+k778vt8/N78Ov2j/ST+xP5y/xAAmQD+AFQBswErArkCVgPLA+sDpAP4AhkCNAF5AP3/r/99/1T/KP/z/qr+Wf73/Yn9K/3y/Ob8Cv1e/dL9T/66/hz/dv/d/1YAzAAuAX0BrgHVAQICQAKWAt0C/QLgAnUCwgH5ADcApP9I/xv/Ff8u/2T/sv8DAEUAXQBOACMA+v/2/yAAYQClAOkAJQFjAaMB5gEVAh8C+wGkASgBnAATAKf/Xv8z/y3/PP9W/2n/XP8r/+P+kP5C/gn++P0V/lH+sv4e/4D/yP/k/+3/7f/n//L/9//2/+b/wP+U/3r/bf9x/3P/b/9f/0z/RP9F/03/W/9q/2r/aP9s/33/j/+I/17/If/S/oH+SP4z/jb+U/6I/sf+KP+e/xIAiwDyAEwBhwGyAeMBEwJFAmwCggKRAqQCygL2Ai0DagOQA4wDXAP8AogCLQLHAVkB0AA6ALH/Sv8c/yb/MP8C/1T+HP2m+1z64/l1+lP8ff9kA24HOguQDkcRshP/FfYXxRgWFzoSCAqUAP/4Wfb1+dsCPw2iFA4W0RBIB1f8Q/Ps7E7peOdI54bot+of7dTune917yPvRe808NPy1PbW++UAPgWsCIMLCw55EDcSWBKUEOgMBwgRA/v+MvzD+mb6pvom+5j7gPtn+hD4sfQe8VLuR+2q7kfyRPc5/AoAkgIVBDAFWAZMB4AHgAaGBGICIAF+AU8DdwXTBpgG0wQrAmH/3vzA+gL5pvfQ9uL2Fvgq+oX8Zf5b/3b/IP/m/hf/t/+SAHEBcwLNA8QFGwhECqELwAuwCtUIvgbuBLcDBgOlAlACAQKkAT0BoACf/zT+fvzA+lH5d/gr+Ff4tfgT+XT5+Pna+jX85P2S/94AhwGKAUkBKwGHAVwCdwN9BDAFcAVCBcQEGwRRA14CTwEzAB//Pv6W/Rr9k/zk+wn7EPpF+cP4hvhg+Br4rfcd96r2mPYD9+X3JfmH+s77/Pwh/mn/zwA5AnYDYAQEBXkF+gWJBg0HVgc9B7YG0wXCBJ8DgwJ1AXsAjP+7/gv+gP0T/bf8c/w5/BD8Jvye/JH9Jf8JAe0CagRMBaYFkgVOBSYFAQXuBNoEzATaBAkFdQX5BUYGDwYyBcYDPQLXAAsADgCNAC8BqwEGAmoCVwP3BOUGHgjtByAGNgOiAOz/7AF4BjEMUBF0FEUVBxRZEV4N/weLAfj6vfV685f03PcF+wr8IPoh9t3x8O767WfuHe+H79/v5PBG8/H2IfvW/ksBfgLgAhwDnwNTBM4EywR2BEEEpQSjBcsGVgeQBlMEFwGq/b36nvg991/2vPU/9Qz1P/XF9VL2q/ao9l/2RPa/9u73t/nS++f9wv9QAcICIgRWBTgGvwbqBu0G+QYzB3oHhgcuB1IGIAXcA8MC4QE3AZcA6f8S/yP+Sv2i/Dz8Avzh+8v7uvu8+/T7YvzI/Dz90v2M/ob/wwAvAp0D3gT1BQIH+wf3COMJtQo6C1YLzQqrCfkH2QWIA0MBOv9z/bP7vPmK91n1lfOK8lzy9PLr89L0avWm9en1qvYR+AH6HPzs/VL/ewCgAdwCJQRyBYoGRgeVB4YHOgewBtYFvAR7AyMC9AD5/yj/X/6P/az8xPvz+l76Dfr9+Sf6gvoC+677fPxn/VH+NP8jABAB8QGxAmwDPAQHBcQFTAaPBpwGYwbuBUwFpAQPBIgDBgOJAhwCzQGiAXQBKgG+ADAAhf/f/oL+kv4M/87/wQDHAcgCwAOyBJEFNAZ4BlsGCgapBcAFfQavBwAJFQq7Cv4KXAt6DE4OFRAjEZoQvg6iDMELPA1aEIETnBQ9EpYMIwVj/mX58fUu8yXwMu3V6zXtKvGi9SD4t/aX8fHq4uXK5N/nq+3o8474Hvt5/AL+oQBEBMQH6QkiCsMIyAZCBcgEMAX7BWEG5QWQBJsCFgAN/ZD5uvUO8l3vJO6O7i7wOPLx8+b0LfUi9Uj15vX39lf4FPop/KP+dgF6BFwH6wnWCxsNsA1/DZkMHQtHCZUHbAbTBaEFbwXbBJkDwwGE/yT94vrV+Pb2YvVa9DT0BvWi9rL4ovom/DH9/v3L/s//FAGGAgMEXQV7BoUHfwhcCfoJIAq6Cc4Ifgf3BXMEJwMwAngByADp/8/+hf0i/Mz6jvl7+Kf3Fffc9vT2dfdf+Jf58Pod/Pn8ef2u/c39IP7H/rb/tQB5AccBmQEqAcIAdAA8AAsAyP9L/57+1v0I/VP8wvtQ+/X6rPpl+hz6w/ln+Rn56vjv+Ej59/nu+gT8Cv3W/Vb+rP7x/k//1/+JAEMB8QF3AvACiANqBJsFFAeDCHUJxwlzCZ8ItQcWBx0H0gf6CD4KSwvHC5QLtQosCfYGQQQ5AUL+/Pvq+mb7Nv2c/60BhwLMAab/3PyA+qz5+/qN/qQD+Ah5DZ0QfRLKEwkV8RbFGJMZARkAF7oUoBOMFEwXVRqXG4cZnRP+CkYBlPg+8h7ufOxL7MTsg+0G7kzuD+667WXtJe137U/u3+9N8qb15Plj/o4CtAVMB1kHEgZABFgC1gAdAC8A+AAfAg8DLwMaAr7/TPxM+HL0PPHw7mvti+xp7NTsru3U7vHv5PBe8ZrxB/IA89r0n/cc+/f+xQJIBi8JLgtNDIMMDww3C2AK2gnICQkKgAoFC1YLLgtXCqgIIAYPA9z/8Pye+uT4e/dZ9mL1hvTl823zIvP38t/y1vL38oPzz/QX92/6ev6GAhUGogjxCW8KqQogCw8MZw2pDowP/A/hD3QPxA6zDSUM4gn8BpwDVAB+/YP7dPq4+S75XfgM91r1YfOs8YbwHPBx8CHxGvI085f0e/bJ+Fn73v32/28BVwIEA6oDeQShBeEGCQilCIAIxwdMBlYEKwLm//T9WfxB+3j6pfkJ+XH4H/j/9+73BPjk97D3d/c79333Yvj7+R78Pf4UAHwBigJsA0QEQAVkBrcHGwlECiALmwu3C3QL1gr2Ce4I5wfrBgUGQgW8BHcEewScBJYETwSLA1ECywBO/0/+D/6b/pD/cgD/AA0B0ACQAK4AKgHMAYkCLQO2A5cEOgYzCXYNcBIuF0ka+RoHGUkVYhHTDrsO4BCpE3kVEhUoEqENzwibBEYBZv5U+7730vM98JztV+wz7Nrsfe2l7RPt8+vu6n7qcesV7v7xjvbz+nz+1gB3AqwD0wT/BfkGdAdcB8QGFQafBWIFKAWNBDsD9AC1/dX5xfUs8pDvHu7V7WTuMu+176nvHe987l7uKe8D8b/z4/bm+YH8x/4UAaIDewY2CXcLzww/Df0MawwCDOwLIQxfDCUMBwv7CEMGUAOTAEr+hfww+yb6RPlP+ET3JvYo9Yn0b/TS9Jf1nPbW91f5Ffvx/Nv+uQB6AjgE6QVuB6sImAk1Co8KxArrChYLMAsHC1gKDAlFBzoFPgOIAUQAZP+b/q/9fvwe+9j53fg2+NL3nveh9+j3a/j7+JT5V/pd+3H8a/0W/nL+sf4C/23/2/9VANEAUwG/AQQCHQLtAWoBugDq/y3/kf4m/ub9vP2k/Wb9FP3H/Jn8d/ww/Mv7Ufvm+sL6APui+2/8Sf0D/ov+CP+F/xgAyAB7ASUCygJyAxAEnQQdBYYF6gVGBqEG3AbwBtYGrwaHBk8GCQa3BVkF9QRXBHgDWwIhAS4Aw/8AAM0AxAGEAqYCHAImAS0Arv+r/ywA9gC3AWoCTAP0BJoHOgtfD9sSxhQDFQoU0RJtEnsTAhYyGc0bzBxsG60XLhL1C3gFDP/t+IPzze987mPv+fAw8enubOp05Qvic+GV4/nmDurn66Psd+247w70+PklAM4EzwY+BjkEbQIpAr4DsAbZCRIMjAwzC3cI/gR3AVP+zPvx+aD4ffdb9iv16/Oi8qDxD/HM8JXwUPDZ71fvPu8Z8CDyP/UN+b38nv8/AdcB5wENAr8C/gOVBVYHCgmyChYMAw08DZMMJgs4CTAHZwUFBA8DeAIKAq8BNAF7AIb/af5B/RD81fqo+d74sfhB+X36GPyv/Qf/BgC3ACgBfAHuAawCtgMCBXoGDAiCCaQKMwsZC2EKTAkbCCcHnwZUBusFAwVlAzEBuv5+/M/6vPkJ+W/4qvd89iX1FPSS86fzQPTp9ID1B/aU9lT3VPi4+XH7Yv1F/+MAKALtAjUDPAMtAzQDXAOZA9YD9QP5A8QDbQPrAkgCgwGPAH3/Yf5w/df8l/yW/Jb8i/yJ/H38cvxU/En8hPz//LP9Zv4Z//L/1ACsAYECVQNCBEsFPQb/BngH7wd0CPQIZwnaCVEKvgrwCrkKGAopCTYIjAdFB5IHJwjLCDsJFwk+CJwGlAR3AsYA4/+y/wkApQAHAfoAqQDyADIC+QOuBSkGHQV0A3ACfwNgB90NlBX+G+4eCR1fF4sQ3gqyB78G3gbtBkQGegT4AFL8pPfV8xvx0e5s7NfpWudW5b/jx+K74vzjnub46d3svO6m783v0++S8IHy3fVT+ub+fQJ3BN8EKATxAvABcgGiAVsCKgOfA18DXwLQAC3/zf2u/LT7uvqg+U/4zvZL9UX0LvQP9Z/2UviG+ev5pfkn+ef4M/lA+hT8Zv7EAM0CUgROBf4FoQZLBxkICQnsCaEKBAsQC9wKkwpECusJmwlGCbQIrAciBlEEjwIuATkAhv8W/9v+vP6B/gv+av3v/LL8tfzX/Av9df0Y/s7+bv8FALkAmwGLAlkD7ANNBIcEbgTrAy8DngJ/ArECyQKBAukBHgErAA3//P0w/dj8lPz9++z6ffkx+F33HfdM97z3Rfi9+PX4+/j4+Az5ZPny+a36gvtX/CX93/2b/kb/7v+XAD8B7QGIAhADbAOXA6cDsQOzA7QDogOFA0wD6wJmAsUBMwHKAJYAfgBjACoA1v91/yL/Bf8e/4H/HADCAGMBAQKjAlED/QOZBAAFOAVeBZQF5AVjBhoHBAj9CNcJJgroCTkJOwgwB1IG2wXvBZ8GkQcqCAkI9AYOBcUC3ADA/57/QQAaAYEBIAFLAHD/Wf91AJcCWQXbB3YJtgn1CMQH9gYuB4IIjwqWDOYNFw7uDK8K7QcuBfcCYgFAAEn/T/4Z/ZP7rPmQ94L1tvNs8oXx9vCe8FnwEPDo7/jvTPD88NTxpfJD86rzBPR19Cv1O/ac9yT5jfqv+1r8h/xa/A782PvI+/v7ePwf/cz9TP5v/jb+uP0X/YP8LPwZ/Dz8fvzF/Ar9O/1t/cH9Jf6J/sv+2P6+/pf+l/7V/kz/8/+yAHkBNQLeAmMDvgP3AxkEOARtBLkEFQV5BdsFKAZeBnQGWgYrBuUFmQVHBfMEjwQfBLkDewNvA5EDxAPeA8gDfgMSA54CNwIDAhECYQK+AhgDXAN4A2kDJwPJAnMCQgJIAnICkwKIAjwCwgEzAaIANgDv/8f/pf9i/+/+Q/6M/ez8e/xJ/E38Y/xy/GD8Hvy2+z/72vqR+mz6cvqk+vP6Yvve+1L8uPz+/CD9J/0g/RT9HP0y/UX9Sv1K/Vn9gv3Q/Sj+Y/5l/hj+fP2k/M/7Xftt+wL86PzZ/Y7+1P6n/j3+5/3d/TL+v/5s/wAAVgBfAD8AJwBCAKUASwEKAqoC9wIFA+wC2wL8AngDTgRrBW8GHAdUByMHxQZ+Bo0GAgeeBzAIeQhcCBkI5AfpB0QI0QhVCYUJLwlzCJgHBAfoBlcHHAjaCEcJPAmxCMYH1gYXBq4FlQWdBY8FRwWuBFgEGATWA8AD3gP8A/4DvQNXA8cCIwKmAXYBfwGOAXYBAQE0ACf/BP4C/U38zftb+636l/ka+HL22/TF81LzT/N680/zrvKa8UzwHe9z7n/uFO8Q8BLx0fEj8hfyB/I48tDys/O99Kb1Uva29tr2+vZM99/3vfjI+cf6hvvS+6n7PPvB+oD6svpR+0T8Yv1z/j7/n/+u/6D/uv8nAPIA5gHLAnUD6gNGBKQEDgWVBS8GuQYWBzcHHAfVBo0GgwbBBjYHuAcSCBkIxgdJB9MGfQZkBoYGxAb7BgsH6AaVBjQG5AXCBcQF0AXJBagFewVVBS4FGQUEBfQE4wTUBMIEoAR0BEIEEgTtA9IDwwOoA3cDNwPOAi8CbAGcAOT/XP8J/9r+sf6C/jH+xf07/Z38Bfx5+wX7rfpm+ij65vm6+aP5jvl/+Xn5bvld+Uf5KvkZ+SX5Wfmx+Sb6pPoY+2/7pvvK++H7/vsp/Fz8jvy6/NP80vzG/L38yPzm/BL9PP1V/V/9UP08/T/9af3G/Vn+Bf/F/2cA3gA5AYYB2AFQAvgCwQN6BAQFTAVcBU4FVgWRBfkFcAbeBh0HFwfQBm8GKAb/BfcFCgYgBgwG2AWhBXoFfgWvBe0FAQa3BQYFHARBA8wCAgPzA18F1QbaByoIsQfCBskFSQWRBcIGpQi8Cm4MVQ05DTEMmwoACd4HbAeXB/4HNQjhB9kGKAU6A2MB3f++/sv9wfxm+6j5uffg9XL0m/Nn86fz4vO88/HyjvHW70PuU+1H7RXuZu/V8PXxfvJ18g7ypvF58anxL/Lo8pjzFvRd9Iv0zfQ79dX1k/ZL97v33/fF95n3p/cR+Nv48fkk+zn8E/2c/eD9/v0z/pn+T/8sABgB/wHIAm8DCASTBBMFngUuBrYGLgejBxUIhggECYIJ9AlPCnMKYQolCtoJlAlsCXAJkwmwCasJbAnxCEsIlQfxBoYGTgZIBlsGcAZmBigGxAVYBf8EzwTUBAIFTAWOBZ0FbgUPBZ4EPgQIBO4D6wPWA5sDLQOPAsoBCgFgANn/cf8O/6H+D/5n/ar88ftV+936kfpW+hj62vmM+T/5DPn1+Az5R/mR+dH5+PkT+iP6MPpS+ov61for+3b7qfvA+737tvu8+9b7Afw6/H38r/zP/Nj81PzX/On8Ef1i/cP9IP5u/qD+uf7F/tP+Av9K/6r/EQBuAKkAyQDgAPYAKwGLARcCtwJKA8IDEgQ+BFQEcQSvBBEFgwX2BU8GiQaGBk8G+gWYBUAFEAX9BBEFPQVfBWsFTgUKBbYEZAQ3BDQEZwTgBH4FIAayBhAHOgczByIHKwdvBwII0Qi2CXsK6grwCo0K/wl8CSkJGglBCXIJaAnmCOwHgQboBHUDUwLAAY0BdQEoAWMA+/4N/fb6IvnP9yj3D/c19zX3uvbA9Vf02fKy8S3xNvGs8TXyX/Lv8fPwu++Y7vft9O157h3vne/B72zvwu4S7rft1e2I7pDvw/Ds8dzyg/P582b06fSj9Zn2z/ck+YP6zvv2/Ar+9f7L/4EAJgHGAW0CKgPtA6wEaQUFBm8GrAbHBtwG9gYuB5EHFgimCA8JRglECSQJAwkBCTsJqAkdCoAKrwqYCkcK3AmICWUJewm/CQgKKwoCCpQJ9whICMAHbwdWB1kHSwcZB7kGNwafBREFowRTBA8EygNyA/UCYQLAASMBiwAWALf/Zv8Z/7j+N/6P/eL8O/yr+zf73vqY+k/69PmD+Qf5lPgq+Nz3rPeP94P3evdn9073O/c691j3k/fr91b4tPgE+Vb5nfn3+WL62fpz+wr8lvwR/Xv92v0u/n/+4P5M/77/JQCAAMQA9gAWASkBQwFvAbUBBwJXAqIC4AILAzADVAOPA+YDSgS4BCMFhgXOBQQGLAZOBnAGpgbiBjkHlwfkBx8INQgoCAEI0AeqB6QHtwfkBxUIOQhECCcI5weMBz0HJwdGB6MHFghtCJYIYQjpB2AH9gbuBlMHGAj7CNEJNwroCQYJvgdpBlQF8ARYBT0GNAfKB6AHlQbfBPECRgElALv/4f8pAAYAM/+R/Vn77fjN9l/1rvSJ9Gb00vOE8obwJ+7n6z7qhena6dzqGuwH7TXtlOx363Xq2ukH6gzrwezI7pXwsvEU8uDxgvFz8fvxQ/MB9dn2ePiG+eP5zPmJ+W35y/mx+hD8pP0M//7/YgBrAFsAeAAOARECaAPZBC8GJQexB90H7QchCKkIeAmDCp0LgwwADQwNwwxKDOQLrwvQCyUMjAzbDNsMaAydC6wK0AknCdgI0gjyCBoJDAm6CDAIggfWBlIGCwb5BQcGGgYVBtoFYwXPBDUEvwN5A1EDSgM+AxUDuQIvAnoBwQAbAJf/RP8M/9X+gv4F/lH9bfxx+3/6sfkM+Y/4I/i+90/3xPYh9nz17/SF9FP0S/Rr9J30zfTy9BD1P/WN9f31f/Yl9+j3t/hq+QT6gfrw+l37yPtP/Pz8w/2C/jT/xv87AJEAwgDfAAQBUAHHAV0C/gKXAyEEegSuBMsE7wQpBXQF1wVPBsIGHwdZB5EHvgfpByUIdwjXCEQJnwniCQsKFQoJCgAK/wkSCiUKOgo7CigK/wmtCUEJyQhTCOQHiwdGBxwH/AblBtIGvganBoEGVwZDBkkGbwa5BhYHiAcKCH0I0ggGCQ0J7wivCHEIPggWCOYHmAccB1gGVwURBLkCfAFtAJ//Af9n/ov9Ufys+rj41PZE9Vn09vP/8zT0MPSn83jyzPAL76jt6ezm7IPtbe47753vbO+57s/tFu3m7F/tc+7W7xXx+PFf8lbyLPIp8ofyavOj9PH1G/fL9wv43veA9z73S/fL9634uPm1+nP71vvn+8D7uPv9+7D8tv35/kUAaAE2AsYCJgN4A+sDpASYBacGtQedCEAJfAl8CV8JQAlACXYJ1gk+CpkKzgrLCpYKNwrHCWcJJAkNCRoJLAk4CSkJ6Qh8CPYHYAfNBloGDAbaBa4FewU0BcQEOgShAxkDpQJfAjQCEgLsAa4BTgHYAFcA3f+F/0z/K/8O/+z+uP5j/uz9a/3g/Gz8F/za+7f7n/t9+0z7//qg+kj6/vnd+d35+Pkw+mT6jvqp+sP66foi+237xvsr/Jj8/fxZ/az95v0W/k7+kf7i/jr/lv/r/y4AXQB1AHkAeAB6AIYApQDVAAkBPwFpAYsBqAG/AeABCgI+AnoCvAL7AjwDeQO1A/ADJQRhBJsE1QQCBTYFbQWYBbcFzQXiBfgFEQYrBk4GcgaSBrIG0AboBuUG1QbEBrUGpAaZBo0GigaHBm0GOwb5BacFVgUZBQEFHQVKBWkFTAX1BHcEAAS6A9cDWgQvBR0G1QYnB98GNwZWBXcE5APFAwkEcQTMBMgEKwTfAg4BK/+L/Wb80vu2+8D7mfvz+sz5Wfji9sP1IfXq9Pv0EPXy9HH0nvO08vXxiPGC8dfxU/LT8hjzD/PB8kry4PHF8QTymfJe8x/0rPTt9Pj05PTV9O/0QvXO9Wf2F/e19zT4oPjs+Dv5ovkX+p76NPvO+1782fxS/cj9VP7o/on/LwDPAGgB/QGCAgADfwMIBJ0EPQXdBXgGCAeMBwIIbQjLCB4JaAmrCeMJFAoxCkEKSwpJCksKRAovCgMKwAlsCRIJuQhfCAYIsgdsByIH0AZ9BhcGrgVABdEEXQTjA2oD/gKbAkgC9QGuAWEBDgG8AGEABgCr/0r/6f6H/if+y/1p/RH9tfxe/AT8n/s6+9H6dPoj+tf5l/ln+VH5VPlq+Yb5oPm6+dv5Bvo0+nP6vvoX+3r72fsr/HP8s/zm/CL9YP2r/QD+WP6w/hL/af+v/+f/GwBOAIoA0QAmAYMB4QE+Ap0C9AJEA4wDzwMKBEgEiQTFBPsEMAVnBZsFxwXtBREGLgY3BjUGKwYYBgIG7AXXBcUFtwWhBYYFbQVRBS8FEgXuBMUEnQR3BFEENAQPBPAD0wOwA40DdANnA2MDawN8A5YDqQO0A6cDfgM8A9gCdwIlAvEB1QHQAc8BuwGEAS4BwABMAOr/pf+W/7X/4v8TAEUAVwBIACAABQDu/9n/zf/N/8r/uv+l/4n/cP9c/0v/Pf8c/+f+i/4F/mr9w/wt/LL7Wvsa+9/6m/o0+qb5+PhJ+LP3T/cf9xX3G/cm9xv37Pax9nX2OfYa9h72M/Zc9nD2Z/ZV9jb2Dfby9fH1DPZA9oT20PYR9z33ZPeY99/3SfjQ+GL5Afqb+if7p/sa/Jf8Hf28/Wf+AP+N/xAAfwDmAEMBoQEEAmsC0wI6A5UD4AMcBEwEeQScBMQE6gQUBTMFTAVbBVoFTwU/BScFEAX0BNUEsQSLBGIEOwQUBO8DyQOrA5ADdANBAw4D1wKgAmMCMQIGAuABugGKAU8BEwHWAJkAZQA1AA4A5P+u/3L/Lf/t/rT+jv51/mv+b/51/nX+Zf5K/ir+Cf7s/eT96/0A/hv+Nv5M/lj+bf6O/rj+8f4n/17/if+j/7H/y//w/ywAdgDGABIBXAGVAb0B2wHqAfgBAQIXAjsCYQKKAqoCxQLaAuQC6wLzAvgCAAMCA/8C+wL0AvMC+gIXAzwDbAOXA7oD2QPsA/MD8APnA+ED5APmA+gD7wP1A/AD5QPRA6oDdAM3A/cCtwJ2Ai8C8wG7AZgBgwF/AX0BdAFmAUcBHAHtAMYApgCRAIcAgQCDAIkAjQCQAI4AiAB/AG8AXQBIADQAHwAMAP//9P/r/+v/7P/l/9T/rv+B/1P/KP8I//L+7P7u/vf+Af8B///+9v7u/uv+8v4D/x7/Ov9P/1v/Xv9c/1P/TP9F/z7/Of8x/x7/A//j/r/+mP5z/lH+Mv4U/vb91v2t/YT9Xf0//Sn9G/0Q/QT99Pzg/Mj8sPyZ/Iv8gfyA/Ij8l/yn/LT8t/y2/LD8rfy4/M787PwT/Tn9XP2A/Z/9v/3e/QD+G/4y/kL+TP5O/lX+Yf52/o/+p/69/sv+0v7a/t3+4v71/g//MP9a/4z/vv/t/xwARgBkAHwAjwCfALIAvgDCAMUAxgDMANYA4wDvAPgA9gDjAMMAlwBtAEUALQAfABkAFgATAAoA/P/n/9D/tv+c/4n/ev91/3P/dv99/4r/nv+0/83/3f/p/+7/6v/o/9//3P/n//v/EwAwAEMAVwBkAGQAZwBkAGMAZwBvAIAAmACsAMMA1gDlAPMA+gD+AAMBCAEQARsBKQE2AUYBWQFvAYYBmwGzAcIB0gHZAdgB2QHdAeYB9AEEAhkCLQI2AjsCQwJEAksCTgJYAmUCcQJ4An0CgwKFAo0CmAKkArQCuwK4Aq0CmwKFAnICZAJhAlkCTQJFAioCDALpAcgBpAGCAWYBUgFEATgBLQEaAQUB7gDYAMYAtwCnAKIAmgCTAIkAfwB4AG0AZQBfAFIAQAAtABUA/f/f/8X/rf+Y/4X/dP9m/1P/Pf8l/w3/8/7h/s7+w/69/rv+uP63/rT+s/6p/qH+mP6R/or+iP6I/ov+jv6T/pH+jf6J/oT+ff54/nH+Zf5Y/kr+Pv4z/i3+K/4t/jP+Of4//kT+Q/5H/kn+TP5R/l/+bv6F/p3+uf7S/uT+8f79/gr/D/8X/x7/JP8r/zD/Ov9F/1H/Xf9r/3f/hf+W/6D/qf+z/8H/z//i//f/CgAeADIARgBXAGQAaQBpAGcAZgBnAGkAbgBsAGoAYgBSAEMANAArACYAKAArADAAMgA0ADIALwArACcAJwAkACkALwA0ADcAOQA4ADMAMgAwAC4AJwAdABEABAD0/+j/3v/X/9n/3P/g/93/1f/L/73/sP+q/6X/qP+t/7X/vP/B/8n/zv/Q/9L/0f/O/8r/x//H/8r/zv/V/9n/4//r/+7/8P/u/+v/5//j/9v/2v/j//P/AQASACAAKQAwADcAPABAAEcASwBTAFwAZgBwAHsAiACUAKMArgC4ALsAugC7ALsAuQC5ALkAugCyAK0AqgCjAJkAiwB8AG4AZABVAEwARwBEAEQARQBAAD4APAA8AD0AOwA7ADgANwA1ADYANgAxADEALgAsACsALAAnAB8AFQANAAYAAAD2/+z/5v/g/97/2f/P/8X/u/+1/7X/tf+3/7f/tf+x/6z/q/+t/6v/qv+o/6b/o/+h/57/nP+Y/5f/k/+Q/4z/iv+M/4r/hv+F/4H/fv99/3z/gf+G/4j/jP+N/43/kP+T/5b/mv+c/6T/qv+w/7P/s/+2/7n/uv+//8P/yP/O/9D/1f/Z/9z/4v/q//H/+P///wYADAASABcAHAAiACgALAA0AD0APwA/AEEARABDAEIAQQBBAEEAQwBDAEQAQgA+ADsAOwA7ADsAPAA8ADsAPAA6ADsAPgBBAEEAQAA+ADoANgA0ADQAMgAyADMAMwAyACoAIwAbABYADwAKAAgACAAFAAAA+v/1//H/7v/u/+v/6//s/+r/6f/o/+f/5v/o/+n/6//v//P/9P/2//n//P/+////AAAAAAQABwAIAAcACAAMAA0ADwASABUAFAAVABYAGQAcACAAIwApACwAMQA2ADsAPQA/AD8AQQBIAE4AUgBWAFgAXABdAGAAYgBjAGIAYABgAGEAXgBaAFgAVQBUAFIATwBKAEgAQgA/ADsANwAyAC8ALQArACgAKAAmACQAIgAhACAAHwAdAB8AIAAgAB8AHgAeAB8AHgAeAB4AHgAcAB0AHAAaABUAEgAOAA8AEAAPAA0ADQANAA0ADAAIAAcACAAKAAsACgAJAAcABQADAAIAAAAAAAAAAQAAAP///f/8//v/+v/8//7/AAD///3//f/9//z/+//8//v/9v/z//L/8P/u/+3/7P/q/+z/7P/r/+3/7P/s/+j/5P/f/9v/1//V/9P/0v/S/9D/zP/I/8L/wf+9/7v/uf+4/7j/uP+3/7f/t/+5/7z/v//G/8r/zv/S/9X/2v/d/+D/5v/p/+3/8f/0//r/AAAAAAAA///+//3///8AAAAAAAD///////8AAAAAAwAGAAoADwAQABAAEQAUABoAIAAjACYAKwAtADAAMgAyADEALwAsACoAKAAnACYAJQAjACEAIwAjACIAIAAeAB0AHQAfAB8AHgAgACIAIwAlACcAKQAqACwALAAqACcAJAAgABoAFQATABEADwANAAoABwADAAAA/P/3//P/8P/v/+z/6v/q/+j/5//n/+f/5//n/+X/5f/l/+L/4f/i/+X/6f/t/+//8P/z//X/9P/0//b/9//7//7//f/5//n/+P/4//n/9//z//D/7//r/+v/6v/p/+r/6v/q/+z/8P/1//n//P/9//3///8DAAgADAATABcAGgAdACIAJQAoACsALQArAC8AMgAyADIAMwA0ADUANwA1ADQANQA4ADgAOQA4ADcAOAA5ADoAOwA8AD4AQAA/AD0AOgA5ADgANwA2ADQAMQAtACYAIgAeABsAFwAUAA4ABwACAP7/+v/4//L/7f/p/+j/6P/p/+j/5//m/+b/5v/n/+f/6P/n/+b/5f/j/+H/4f/g/+H/4f/h/9//2//a/9j/1f/T/9H/0f/R/9H/z//Q/8//z//P/9H/0f/P/9H/0//U/9b/2P/a/97/4v/m/+z/8v/1//b/+f/7//3/AAADAAcACgAPABIAFAAWABgAGQAZABsAHQAfACAAIQAhACUAKAAnACkAJQAiABsAFAAQAAwAAwD///r/9f/v/+n/6P/k/+L/4f/h/+b/8f/7/wEABgAQABYAFwAYAB4AIgAhACAAJgAxADkAPgA8ADMAKAAcAA0A+P/s/+b/4//p/+//8P/y/+//6//m/+T/4P/n//P/AQARACIAMwBBAEsATQBLAEgAPAA1ACkAGgAMAPz/6v/c/8z/vf+1/7T/t/+7/8H/y//b/+b/9P/+/wcAEwAaACIAKQAxADkAQwBNAFgAXQBeAFsAVQBMAEUAPwA0ACsAIgAYABAAAwDz/+X/0/++/7n/t/+9/83/3//z/wEAEgAbACAAIAAfACAAJAAvADIAOAA9AEQASABGADcAKQAVAAEA8v/s/+v/9f8BAAYAEAAXAB4AJgAgABYADQAJAAYACwAOABEAFQAXAB0AGgAZABMACgAGAP//9//4/wQAFAAgACQAKQAsADMANQA6ADoAPgBFAE8AWQBkAHAAdQB4AHEAWgA9AAkA0v+f/3P/Vv9R/1r/Zv9+/5z/tv/M/9n/zP+7/63/qf+g/6f/2P8XAFIAfgCYAJ0AngCWAJ4AqQDLAPAADQEjARoB5gChAEwAwf8A/0L+p/1I/Uz9u/15/hP/l/8JABcA9f+9/zf/uv6X/tr+AABpAXgDqQXlBtgHaQfFBTMDXAA5/ZX7+foe/Jb+KADhAscDjQNRAXL9mfmZ9vz0c/XP90b7EgC2A/kFrgVfBPwCNQJMAuIC4ANdBHAFzQZjBwsHQAUEAsb9MPmC9ajyxfGu8gn1Kvgm/KMAdgTwB6QJeAm4B+UE7wEs/1j9Iv2t/QL/AgGFAsEDGgTjA5sCZQBk/ub8H/w4/EL9hf5FAMQBNgP4A/8DkQOEAm4BiQDP/6r+qf5Z/q3+h/8j/wQAVP8M/4T+EP3Y/Nj7V/ut+nH61PrX+6D8lP0U/k3+IP/C/0kA2P/i/1f/RADnACcBhwFrAf4CRANCBMgDFQP1AmQCewKmAekAwQD6AIIBngEZAQkB0gCDARwBgQD1/5f/4f8BAMf/Uf80/5L/lgC7APYAawAdANL/kP8M/13+WP4d/rr+kf5w/qn+sP5k/6v/bP9G/xT/8/5Z/0z/4f4d/0T/JwCbAKkAxQAdAGsAYACOAEUA6/8CAAYAyQDxAA0BvgGSAVcCjAKwAfEB4AD4AW4CtQJ7A4ACUwMqA+4CTQI7AFf/AP6i/kz9MP0d/fP8gv9f/1sA4v6B/rn+s/2//eP7KPvO+yP96/4bALn+Yf/n/24A7P/7/gH+KP4yAJAA0AGw/wcDhQL7BJ0FUQKHAzYAGgEz/y7+X/yX/m7/+wJGBGwBBAP3/sUBYv+Y/AP7sve3+eT6//y//Z/9gP84AA8CtgH5/0T/5/yH/tz8S/1y/ZL+tgLFAo4E3AKxAfQBlgBnAA//1f08/80A/gLUBPwDTQTTA2kDdAO/Ak8BygBrAJIAjwCI/6//PP+kALYANQGGALz/Sv/x/rv+pP2G/iH+v/9UAJYAUAHsAN4AzgDn/5/+U/6O/RT9Tv2W/Bn9Cf4F/jT/I/7S/Zn9bfxh/Kr8UP2M/zYB6gGFAiICAQN9BC0FXwXFBIgDJATUAzcEAQPTAgwDmgLkA/cBbAH0/1n/OP8C/n397fyA/Gb8tfy1+5T77/rD+438E/0x/rb+AABgAEUBzABfAHUANACsAJ0AsAAoARcBJAH0ADYAHgDp/8X/sv9X/1b/pf9TAIwAwwC6AFwBBgOxArIDTAOEA6kExgMSBIwC4gEoAusBHQHJ/9P/dP/p/97/LP6w/DP7D/yh/N/7kPzk+6H8if3Z/Pf7V/rd+mj7VfyQ/SP+BgB9Ab0CYgPuAvwDHgRbBE4EzwFRAU8A/wBxAbUAZgE5AQkC0gGoABP/tf0Q/SD9tPwI/IP8JP3v/XL+4P39/Zn9t/13/uj9XP51/oX/TwDOAEABOQHiAZkBfgI4AsQBsgEYAEoARf+v/9D/xP7a/yMAhAFZAtoBSQEAAPX/MAC//9D/Sv8vADQBjQErAjgBpgHPARUCAQJkANP/4/6n/7D/tv+Q/6X/PQG1AE4Blf/y/kT/KP/z/6L+Q/7M/dz9fP3g/er9NP+FAZMCOAQ9A4MD8AOYAz0DlQE8AL7/LQDAAJQAgABPAc8B1QKCAiwBdQC4/8L/ef/w/sn/xQBDAqcDrgIQAvQAqwC2AD//9v4E/+f/8QCuANL/Lv/f/mr/MP9C/gD+9v3E/gr/8/40/2//XwAJAZIAx//+/tn+1P5I/tj9P/2s/Qr/E/9c//T+KP/f/7z/8f/N/tj+4f+JAEABMwHjAXECAQPjAm4BPQDW//QAMQHyAM8AmgByAdwBiQFU/xH+S/3p/E39e/x4/Lr84P2P/mf+Of7m/qT/6gDXAfcAngA6ALwA6gCUAEwATgCtAGcBeQHFAC4A0/9IAL4AywBNACAAuv8QACUACQAjAI7/bAB8ADUA9//h/qj+Sv7G/jX/uv82AF4BDgLjAdkBLwDW//v+CP9L//z+yP9hAE4B9QHtARABdAD6/zAAKgCj/8D+Hf44/gL/GgAFAOEAigCuACABV/8Y/5H9Sv2C/tr9y/7y/hr/CgBAAO7/E/+S/hP+aP51/oH+Of++/wIBEQLdAT8CuAGLAdwBCwG1AM7/4f/m/ywAPwDC/2QAxgBYAhYDPQM9A3gCOAINAcD/mv3D/Cj8//wx/g/+dP8+/7sAUAFuAJT/z/2o/Ub9nP1X/XT9fP63/9ABZgI2Ao4B1wAVAR8BBQHmAHQA0QAkAXYBFQFEAP7/bv8YAKP/I/9p/r39BP4B/kX+uP0Q/in+Xv8pADgAwwAJAAsBgQG9Ae0BYgFcARUBPwHMALwALQBjADYBTAHDAdsBDwKjAZcB4ADq/+f+OP5c/hD+g/4U/9T/cQALAQ4BWgD3/zz/Qv9z/qv9of2P/aL+rf9qAHkAwAAnAesBmQKdAncCyAGMAQUBsgA6AJL/ff+i/ywAkwAZAaMB5gG1ASMBjABX/8b+iv6h/gz/ff/m/6UA3QAkAaAB1wBZAIT/Iv8l/zn/R/8X/zv/YP/QAK0AgQCGANT/kwCbACcBlAATABIAGACbAAoADADx/w0AlgCtAC8Atf9j/6//8P/S/4j/rf5A/uH9qv0t/b38Of3R/Rj//v84AHkAZAChAFkAHACU/3D/o/9bAOwACgFWAfMANgEIAWABbAEZAcEASAD2/4L/3f93/7n/g/+a/zoAkf8AAEb/Nf+D/0n/iP/j/u7+H/+7/+H/FgDt/9b/kQBVAOAAGACL//b/PAAlAUUBTQH/AB4BdQE0AaYAvv8s/xL/Iv8A/wH/DP99/0EAUgA7ALz/Jv81/w3/uf55/gr+JP5M/l/+r/6w/jr/q//a/wcA9P8OADoALQARAPL/CAC0AA0BngH4AfMBOgLnAYABBAF7AEoAFgDq/0b/p/4C/vf9JP5f/sv+Cf/W/1QA0gCAALH/8v5a/nL+nv4z/7T/awBFAZ4BwwFBAasAIwDI/4//j/+1/8z/HgBRAGoAYgBNAC4A2v+F/3L/Hv/7/tz+Af/a/3cAjQGgAYsBSAGNAF4Ajf82/9D+uv5a/7j/VABLAGoAgACrAAsB2QCyAGYAfAC3APYA1wCkADsA+v/l/6D/wv+1/zMAlQAHAWsBSgEoAakAGgCO/y//5v7s/v3+OP/U/zcArADBAJYASwDY/3n/3f5S/vj9H/6t/lH///+cAEIB4QFcAv8BTgFdAK7/y/+d/47/W/9H//j/pQAbAToBEQH9AOsApQAdAHL/+v4J/1P/qf/z/0YAyAD3AOgAegDO/3T/Lf/y/tj+xv4P/2X/pP+8/4//Zv9p/0z/Lf/2/t/+Hv+t/04A8QBZAYoBsQEhAYUAcf+j/lz+Yv4//9T/ywCLAeAB6gE3AToAMP+O/nD+kf6+/hj/bf/a/yIANwBRAAEA2P+s/53/pP+C/6f/lP+S/6b/rf/k/9X/0f/H/+r/GwAsAFoAWwB9ANUA7gAdAe4AlABhACkAJAAjAA4ADAAyADIASAAKAH///P69/r7+9P57/+D/UADeACoBTQEQAXEA6/92/z3/YP+X/9//TwDSAFABwQHVAZ4BRwHKAHwAGQCk/xX/iv5+/rD+Qv+//w8AewDFAPcAwAAVADn/pv5s/qT+3v4m/4T/7v+CANsAHgHcAKwAoQBzAHIAJADW/4D/dP/g/0IApwCfAIwAbABQAG0AVgBXAE0AaQC1ANkApABIAKf/Vf81/xj/X/9+/+b/gwBUAc0BzgGSARgB3gBoAOz/hP8h/0H/mP/Z/9n/3f/Q/5L/Uv/A/nT+T/5l/tj+7P4G/3z/FwC8AD4BmQGvAcYBtwF3Ac8A+P/F/3b/Sf88/xn/If9t/7H/x/+//1H/kP+3/7n/MQACADcAfgAwAEUA8f+a//H/6f8XAF0AKQBJACAAzP+s/yD/Cv8q/yr/YP8z/wr/Bv/i/i7/b//Y/3wAsADmAAwBCgFXAYQBcQGLAREBuQBmAIz/X/+8/mn+cf4T/iP+/f0q/oz+7f5C/73/UQC6AB4B+ADaANYA/gBKAXoBhAGKAaABhQF7AT0BtABpADQA2v+L/+v+Q/4W/sj9rP2p/ZX9+v19/hj/kf/c/1gA4wBYAVwBGAG7AFEALgATAO//DgA8APQAjAH2ARkCkgETAR0AXP+b/vH9j/1+/Sv+sP5l/x8AawADAWwBcQG3AZYBngHhAV8BLQHoAM4ALAEUAe0AgQAmANj/ZP/p/iX+rP18/X391f0x/mD+o/4J/5b/SQALAcQBdwIKA0YDQwPbAoUCLAK8AW0B3ABNANH/UP/6/qT+Xf4x/uf9uv2v/Yf9q/2S/br9fv73/tX/VABvAA0BUQHAASMC8QEKAiUCcALHAm0CHgKuATwB1gAKACT/Kv6T/Tn9xPxa/FX8v/xz/XP+Mf/r/8YAegEqAgECdAEgAa0AzADZAIQAaQA5AIwA4gCxAKQAUQACAPL/kf/N/jb+3v2a/cn9Bf5u/ub+Xf8HAFoATgBxAHsAewClAGkAcgAJAN3/HQADAFoAZACHAJ4AiwCfAH0ANgDC/3D/Cv/H/rv+rP4K/3z/9P+PAN4A+QD6ALsALQDd/5H/V/94/6b/n/+n/4//SP8///r+9P4Z/1//CQChAAIBBgEgARgB/wAGAcEApQCyAOgAMQEpAfwAvwCLAG4ATQDo/0//1v5s/hL+0P2L/Yv97/2K/jb/nf/i/xwAWwCeAMQA+gAvAZEB5gEKAhEC4gHCAZABZAE4Af4A2QCVAD0A1f9Z//n+p/6D/nf+gv6S/qb+pv6V/pD+pf7M/vn+Yf/O/1AAnQDXAAEBKgF6AbMB2AG/AZIBcAFLAS0B9wDcAOUADAEhAcIAJABW/6z+Jv6l/TH91PzB/PX8Zf3b/UH+vf5y/0IA9wBXAXQBfgGlAeIBEQIeAhUCGAIdAhoC4gF+AeYAZwAJAMH/tP9l/xX/vv5w/kv+9/2s/Tr9EP0a/U79m/3L/UX+1f65/7YAcwH5AUECfALSAh8DMwNXA14DkgPhA6sDHgM9AlUBkQCh/3b+Jv0j/Iz7XftQ+1j7qvts/Gr9M/6I/l/+bf7O/nb/NADWAJ0BwALwA+UEOQXlBHoEHwTpA2IDXQIvAQ8AR/+Z/t79B/1e/Cn8WfyZ/Jb8ZfxZ/Lj8df1F/gz/1f+8ALkBgwLKAqkCagJcApUCxQK+AnMCMgICAsUBVQGZAOn/Zf8n//b+mv4l/qX9Zf1w/aD9zv30/Tv+sv4o/5L/zv/1/zsAtABOAbAB5QHoAeUB6AHOAYoBGQHFAKcAqACcAEwA4v+Q/3D/bv9J//z+nv50/mX+Wv40/h3+Rv64/k//sv/r/wQAVACvAO0AAgHOAMkA0gD1ABMB6wDZAOsA+QD+ANoAlABQAA4Azv99/yz/7v7a/tX+1v7S/sL+zv7a/uH+4v7k/gj/T//E/zAAewDHABsBZgGMAXUBRgEcAQMB3QCrAHMAUAA9ADsAJgAGAOb/x/+3/6T/q/+4/+3/QACsACEBjwH+AVYCiAKIAmQCMAL2Ab8BmwF5AZMBtgHMAZUBCQFKAGz/ov79/Yz9P/0w/Vf9kv3D/Q3+r/7i/8kBHgTKBlIJkQswDUcOog4vDjkN0wtBCnMIhAZOBN8BVP/N/HX6Ufi39rX1Z/Wf9TP21vZR96r31vfu9+73Jvit+IP5f/ps+zT81PyP/V/+RP8nAA4B7wG2AicDEQONAuEBKAGCANz/Gv9Z/qb9Cv1f/KH74PpS+hv6GvoH+sX5f/lz+bT5Nfrd+pb7bPxM/QD+Zv51/lv+Sf5T/mj+ef6X/rn+yP6//qz+pP7J/jb/1v98AA8BlgHzARUCAQLfAc0B0QEFAjYCRQI2AhUC0gFsAfYAhQA3ACUASwB5ALIACQF8ARICvgJ7AzwEEQXpBZgG/gYWB/cGuAZbBtIFGwVUBKkDFANtAq8B6AA+ANX/p/+T/5v/4v+JAHYBhwJvAxkEnAT5BPsEkwTZAxgDkgIwArwB5ADV/7D+p/3Q/BP8t/vA+4H8rf3b/sP/UwACAfsBPQPKBIAGZwieCv0MQA8XEZIS2RPeFIgVpBX9FJQTwxGSD/0MDgrqBrgDugDj/RH7afjx9Sr03/IU8kvxcfCm7/bugu797VPtdezY68XrS+wf7RjuIO9Q8L/xKPN79KX17PaV+I/6fPz2/ez+bP/J//L/9v/H/7H/2v8uAF4A+v8Y/9X9qPzb+1f7DPvG+rf6xPq8+oH6/vmG+Tz5SPmJ+e75VPqx+j/70vt1/AP9kv1J/iX/GQD9ALoBYgIOA8oDeQQXBYwF8AVPBooGngZtBiAGygWIBWoFSAUwBRMFAgX7BOsE4gTfBOQE/AQoBTgFPQUYBdgEfgQDBIAD/QKDAhICnAEQAWoAuP/o/g7+LP1Q/JT7Hvvv+vP6Efsw+177gPuQ+5P7jfuD+437pvu6+7X7lvtq+zH79Pqt+mj6L/oQ+gz6GPon+j/6Z/qh+vv6bfv3+5D8MP3Q/Wj+8f54/wAAkgAsAdMBfQIwA+YDigQdBagFIAacBh0HtwdRCOkIigkUCoEKzgr5Cg4LFwsWCyYLNgtUC5EL2Qs4DLEM8QwSDUYNiw0XDtYO9g8jEXMSVBMuFG4UPhT+E4QTlxOLE1QTJhPnEgkSaBFUEJsPjA+eD50QIBFWEYsQ3A6xDOYJLQepBNQCgQG0APf/2f4A/Xj6h/es9O/xsu9A7jvt0OyF7B3sd+ts6mHpiej+59/nEOho6K7o3ujt6M/ocego6Ovn0OcK6IPoIemz6T7qq+oS627ruesC7DPsfOzj7G7tKu7p7qPvdPBR8SDy3/KS80L0GfUY9kP3kfjr+VD7sfz7/RD/7f+yAGkBHALNAowDTgQCBaQFQwbQBlEH0gdlCCAJ8wncCscLiQwwDbYNKQ6cDgoPdA/SDzkQfxCREG0QCBBxD8cOIA6ODQkNiQwNDJULBwthCpkJtwjWB/kGKAZrBasEBgRQA5YCtgGiAI7/W/4z/TP8QPuB+s/5Mfm1+Db4z/dU9/f2uvZ59l72PPYy9hT29/XU9aP1iPVt9YD1sfUM9oL29PZt9wH4m/gt+cz5fvo9+wv8+Pzo/eL+4f/QALgBfwIwA8YDXATkBF4FxQUpBnQGsgbkBlQHvQcKCGcI0QhACZsJ9wleCsEKCwtLC34LrQv2C2gMLQ1KDpsPChFtEp0TpRRbFe8VhBYDF4wXEhiUGOMYvhhLGD0XvBUNFG0SChHqDxwPhw4UDpENwwydCzsKtwhCBwkGHQVnBLcD7ALfAWcAjv50/GL6gPjQ9mT1GfS98kjxrO/x7Tnsu+q26TnpGOkq6TPp9uho6Knn4OYw5sPlseXi5TDmf+Z55hLmaOWy5Cfk8OM/5AHlJOaQ5/noSupn63Lsiu2/7kbwCvIF9Az27veM+dj60fut/GP9G/7n/sf/wwC8AdACxAOIBBoFiAX0BW0GBAfAB4kIeAlVChQLmAvNC9ALqguXC6QL4AsoDG4MtwzJDKsMXAzbC4MLVwtxC8MLLgyoDOsM/QzADDEMiwvZCiwKmAkECXMIsQeyBpEFRATsApUBYwBc/4b+0P0q/YT81fsi+3P62/lk+QT5svhp+Cj45PeK9yP3t/ZM9un1ifUz9eP0ofRs9EX0MPQx9EP0bvSp9O30P/WT9e71WfbX9mT39vea+FD5DPrT+oj7Lfyt/An9Sv2F/cj9I/68/oL/dACRAacCwQOpBIkFTAb5BtIHoAiZCZkKewtTDO4MZw2zDbkNwg3gDQUOUQ6vDkYP2w9OEKwQBxEyEZkRQxJCE8MUShbqF0oZNxrIGvMathqGGmEaYRqwGrYafxqHGf8X/BWOEyYREw+tDa4MJQypC/MKsAnSB5oFTwMyAX//Tf5t/cT8BvwB+535vvev9afz5vGG8Gzvi+7A7ezsCOwD69rpyejK5//mjOY95gzm7uXu5dXlyeXc5frlN+aF5tTmI+eQ5wfooehO6TXqPesO7Nfsme0z7tfuk+9x8GHxePKq89D06/Xu9tb3tfiW+YP6gvuU/Kn9tv6l/3oANwHjAYACEQOtA1QE/ASyBV0GBAebB0gIDAnRCaQKfgtfDDYN/w2pDiIPgA/JDwIQPBBdEFEQKhDzD6cPTA/lDm8O+Q2XDTwNzwxcDO8LiQtDC/cKpwpGCroJDwk8CEYHUgZXBWcEhgOfAqEBgwBH/wL+r/x1+1j6X/mL+Nj3RPez9hT2dvXQ9EP02PN38yLzzfKT8mXyO/Im8gry+/H48f7xGvJT8qvyGPOt81T0CfXa9bP2kvd6+HP5cvp7+4f8g/2B/mX/LwDmAJgBNQLRAmUDAwSgBDoF0QVpBvwGiwcKCJkIKQmxCT4KyApWC+ALZQz6DIUN/w11Ds0ODQ83D1IPdA+PD6EPug/SD+EP8A8FEDMQahC1ECMRohExErMSJhOOE8oTxxOBEwgTgBLAEfUQEhAfDy8OHg0BDMcKVgmdB6cFpgO5AREAv/76/Yr9V/0j/av8y/uL+hv53vfg9jP2vfUt9Wb0K/OX8d/vFe587EbrY+rL6U7p2+hr6Aro5ee758rnHOhr6NXoPOma6enpKepp6qXq6Oox64Dr3us57JTsBO2i7WHuPu8o8CHxLPJG82P0g/Wx9u73OPmN+tz7Gf08/kr/VABPAToCMwMsBDoFOgY3BycI/QjKCaEKgAtZDDwNIA7uDqEPNhC4EBoRVhF7EZMRnBGWEXgRMhHUEGMQ4Q9JD6IOBQ5tDdIMPgypCxELagq/CQMJNghaB3UGmAXJBPMDIANBAlsBdACS/63+y/3o/P37G/tA+nT5vvgO+G/32vZT9uX1evUn9eP0kfRR9Bf09PPi8+Lz5fPo8/Dz8PP28wL0IvRT9J308/Ra9c/1Q/a29ib3j/fu9074xvhT+ev5ofpp+yf85/yP/TX+xv45/77/QQDXAIABPAIKA9wDrARsBT0G/gbYB8UIugnCCr0Lrgx/DR0OrA4iD3QPxg//DzAQSBA2ECQQ5A+qD24PLg8fDyUPZQ/DDzAQshA+Ea4R8REVEigSDxLTEZwROBG7EEgQsA8HDzgORg1WDFYLVApQCVcIiAe1BugFFAU7BFYDbQJ8AYMAk/+k/sr9/Pw2/HH7pfrd+fb4//f39tH1pPRh80HyLfEW8CDvOu5c7Z3sz+sG61Pqqekh6bHoXOgi6Pvn1ue756nnneep59znN+ir6DPpsOk16rfqSevn65rsX+1A7kHvTPBU8VDyNPMi9Bj1DPYP9xP4LflJ+mj7jPyl/bX+vv/gAAYCHwMZBBgFDgYHB+QHtQhoCRQKvApUC9sLUAzJDDwNwg1EDrUOIg+DD9sPIRBREIIQphC/EOAQ7BDaELgQeRA2ENUPaw/6DnsO9g1zDeEMTQyqC+sKIwpQCXYInQe+BtkF/wQpBEsDagJ+AZwAv//9/jf+f/3c/DP8k/vu+jj6hvnN+CP4gPfi9lP2uvU19br0KPSk8yXzvfJs8i/y/vHj8ePx8vEX8k3yn/L98nrzEPS49Hb1Lfb59s33nfhk+RX6yvqE+zf89vy0/Wb+Jf/Y/4wARgH2Aa4CfwNQBDQFIgYUBwwI5gjCCYQKPAvmC3QMDA2ODfYNUQ6iDt8OFg9JD4kPtA/GD/AP/w/2D/YP3g/eD/YP8A/8D/AP1Q+9D3oPRg/9DpAOHQ6RDe4MOwxrC2AKUAlOCEkHWAaBBboE/ANbA9UCWALbAYMBQgEIAfYA5wD8ABkBIQEyARUB4gCIABQApf8h/6b+Mv69/UP9u/wu/I374/ow+on58/h3+Bb4z/eB9yj3xPZY9tv1WvXs9Hr0CvS584nzUvMP89zyuvKQ8mzyX/Jf8mnyePKW8s3y+vIS8y7zTPNb82rzjPO589jz8PMT9ED0afSP9Lj06fQr9W31tfUN9mT2xfY196n3IPih+CX5xflu+hv74fux/JH9e/55/4cAmQGkAsMD0ATaBecG5gfgCMoJnwpdCwwMogwhDYgN3Q0aDkEOVw5mDlcONQ4gDvkNyA2hDW0NJw3SDIAMHwytCzYLtgoiCnsJzggTCE8HewaVBbIExAPpAhUCUwGeAOP/NP+L/uX9S/2s/BT8jfsD+376+vl5+fv4bPjl91j30PZY9uP1d/Ui9dr0nfRv9Fb0TPRI9Fb0b/SX9Mb0/PRK9az1EfaI9gv3mPci+KP4Kvm9+Vn68/qT+0L8+fy5/Xr+P////8MAgAFYAi8DAATZBLsFmwZuBzgI6QiFCRgKpgodC4UL5gsoDF8MawyADIYMbgxoDEcMOAwcDPkL3Qu0C4kLVwsZC9MKhAouCtkJdgkYCbUITgjhB2gH+QZ6BvYFcgXmBFAEtwMaA4gC8QFXAcgAQQC0/yL/lf4H/nn97fxw/AD8pvtg+zT7HPsL+wP7Cfsd+zT7V/uJ+8j7Evxj/L38Ef1i/ab97/00/nL+tf75/kL/jP/S/xAASwB8AJ0ArwC6AL0AsQCaAG8AOQDt/5D/HP+h/hn+if33/GH8zPs/+8H6QvrR+Wj5BPnA+In4Y/g9+C34I/gc+CP4Kvg6+Ev4X/h4+Jf4t/jQ+On4Avkc+Tn5U/lz+aL51fkM+kn6f/q6+vn6O/uB+8X7DfxV/KD84/ws/Wb9n/3W/Q/+Uv6P/sn+Af84/2f/mP/O////NgBwALAA6QAaAUMBZwGTAcUB9gEnAksCcQKSAqsCwgLMAtcC3gLnAugC3wLOArICjwJuAkUCIwL5Ac0BngFqATEB9AC5AH8AOQD+/8X/j/9X/yP/+f7N/p3+df5U/j3+M/4m/h3+FP4M/hD+F/4h/jH+O/5X/m7+jP60/tz+DP9E/4D/xv8MAFMApADvAEABlAHqAUUCnwIGA2cDwQMZBHAEuwQGBUcFgwW0BeMFHAZEBnAGlga8BtkG8wYXBzQHSQdgB24HdAdxB2gHVgdABx8H/AbIBokGTwYJBsIFeAUqBeQEmwRXBA8ExwOCAzgD8AKxAnQCOAIFAswBmgFlATYBBwHXAKcAcwBBAAwA2P+e/2z/Nv8J/9r+qP58/kb+D/7c/ab9ev1T/Sj9Dv3w/N/8yfy3/Kf8nPyX/I/8jPyO/JT8lfyb/KH8p/yx/Lz8yvzd/Pb8DP0l/Tv9Uv1t/Y79q/3O/fH9DP4m/kD+XP5x/oL+l/6t/rv+yf7a/ur++/4I/xj/JP8w/0D/Tf9Z/2P/aP9u/27/a/9o/2D/W/9Z/1n/Wv9b/1//Xf9a/1T/Sf85/y3/Iv8S/wT/9/7n/tL+u/6i/o7+dP5Z/kP+Kf4R/vf94f3O/b39rf2g/ZT9hv11/Wf9Xf1R/Ur9R/1B/T79Of02/Tj9OP08/Ub9U/1p/Xv9mv20/dP99f0b/kH+Y/6P/rT+4P4F/yf/R/9n/4P/m/+3/8r/6P8DABwAOABSAGgAhgCiALwA2wD3ABkBOQFaAX4BoQG+AeIBAwImAkYCYAJ9AosCmAKjArECxQLVAukC/wIOAyIDNQNHA18DawN/A48DngOwA7kDvwPAA7wDswOvA6sDnwOQA4UDeQNpA1kDTQMyAxoD/wLnAtQCuQKqAo0CdQJeAkcCLQISAvkB4AHGAawBmwF9AWEBRwEpARYBAgHtANIAvACoAJEAegBkAFAAPgAoAA8A+P/c/8P/qv+S/3f/Yf9G/y7/Hf8I/wH/8f72/vX+9v4B/wP/DP8U/xv/Jf8t/zP/Ov8//0f/Sf9M/07/UP9a/2L/a/90/37/if+S/53/qv+1/8P/1P/l//X/BAAUACEAKAAsADQANgA8ADoAOQA4ADcAOwBDAFUAZgB8AJMAqAC3AMUAzADOAMcAugCsAJoAhABpAE8ANAAeAAgA9P/g/8v/u/+l/5L/ef9n/1L/Pv8u/xz/C//z/uP+zv65/qT+l/6H/nP+Y/5P/kX+O/4z/jb+MP4x/jL+Nf46/jv+P/5B/kP+P/48/jj+O/4z/jD+K/4o/h7+Hf4Y/iD+Hv4j/jP+Pv5W/mH+g/6X/qr+w/7X/vb+C/8h/zX/Sv9d/3D/hv+a/6n/tv/E/9H/3f/q//P//f8HABMAJwA6AFIAZgB6AJEAqADBAOIA9QAPASABLQFDAUgBWQFbAWEBYgFgAV0BWQFOAUcBOwEuASgBGQEVAREBDgEPAQ8BDQELAQgBBQEBAfUA7wDaAMsAvgCrAJ0AiAB4AG0AZABUAE4ARgA3ACoAGAAOAPf/6v/b/8r/vv+s/5z/jv97/2z/Wv9K/z7/Lv8p/yL/IP8f/yb/L/8z/0f/PP9M/1v/R/9Y/1X/Sv9c/0D/RP9H/zT/M/8g/xT/Ev8F//f+8P7x/vv+Bv8i/yn/R/8t/1j/cf9f/33/dv+L/7H/xP/P//D/8f/j/+j/0f/e/+f/3//0//P/BwAEAPn/9//w/83/8v/1/wwANwBKAL8A6gAOAfAAHAEuASYBHgEHAQIB7wDoAPwAAQHoAMEAuQCvAIoApgC0AJQAfABEADgAfQAmAFgAEgBgAKEAEgAzAGgA5v8rAMr/hv96AE7/RwBGAHsAdwCg/87/CP+A/4/+8f7R/iL/3/9V/9P/FP+Y/sn+/P3M/o//s/+q/8j/dwAS/1T/Z/8D/6j+Lv6M/hD/gv5C/j7/2f2f/rT9vf3b/Zj8hf29/bn+5/7v/q3+NP8p/4z/bQDNAIsBrgGyAbEB8QFYAd0A2AB5AAMADAAOAJsAvgD1/xMAn/+N/8z/FABhAFcAiQB+AGYCzgCnARIC9wCNAr0ABQK6AUgBjQEHAOsAEgE2AQ0A+v+IAMD/3v8l/7n/gv9o/xAA/v9WANj/4QDUAEIAugAPAIIAYABGAIMAXQCMAFYAgf+W/zr/wP4z/0T/1P9X/8H/bP8Y/x3/rv4k/4f+5f4t/6n/9/8XAK3/w//V/5P/7v/F/4YAMQBEAB4A7//J/3v/5P99/9n/mv8YABsATwC3ANr/rQBhALcA0ABqABEBMQFNATsBxAHzARUClgGuASsCkwH5AXcBUAF9ASUB5gDQAPkAlwB6AIsAiQCxAGgAawDJALcADwFVAWYBPAF/AXMBnwFYAXUBPwEDAQ4BpgDEAK4AYABDAEwAIwA7AAAA/v/x//z/1f/m/9n/3P/1//z/ZQASACAAQADW/yQAYgCCAIkATgCRAG8AdwAFAAYArf+n/6T/Iv99/yn/AP+S/qX+c/5Z/hj+L/5Z/ir+xP6O/uH+G//9/lX/ff9N/1L/1f+U/5X/Zf8Z//n+6f4q/3T+S/5y/q3+Tv5U/oT+wv4C/+3+R/8i//L/sP/3/yMARwCqAGgA4wAEAfwA/gBdAYMBgwFdAS8BWwFNAR8BMAHlAPQAlgBoAE4AGQAKAPr/MABnAJMAYwBzAZMBUwHsAdMBEwIbAqMBxQG4AQoBAwG+AJIAVADL/+j/Tf8R/xX/lf4M/z3/CP+a/iT/r/9V/73/1/+J/6r/RgCm/wMArf9L/13/gv7O/tj+Uv4D/if+Av44/ir+Nv5R/nX+tf7C/tL+6v5B/4L/X/9i/9P/U/+o/8r/Tf9P//v+4f5A/4r+xf7i/rr+Mv/A/mr+2P6E/jX+e/50/hD/3f7L//X/s/9GAP0AuwA6AVMB9AE7A2YCHQP9AtwCRgK5AYMBIwFmARgBqgAYAEoAOwDV/0v/uP+mAHEAJwGwAUYC6QKBAh0DxwKzAkUCxwHtAXwBTwE3AXgBvQAXAQUBzADgAFgAHAD1/0H/PP6a/mL+FP4b/sr9vP7O/rz+nv9p/+j/IgBOAHQALQGDAcUAaQFDAZ8A7v/o/nb+3f2h/OH7Efwj/Cb8dfwJ/dT9YP62/pz/LgBWADkBbAHEAQwC8AEtApsBsgHZAEIAEwBP/wb/T/6p/Vj9kf07/Tn9M/2B/aD98P1a/kD+s/4a/xoARQCJACYBmwHaAVIBpgG5AdIBHgEtALMArf8c/8D+eP6O/pz+4/6e/gn/Ov+0/3P/s/8eAPj/WwBWAKYA6gAPAQIBuQBhAB4A4/+p/5n/0f86AMMAeQHgAUECYQJjAvwBjwE2AR4BnQAVAO3/7f6b/mL+FP7x/e39Vf5E/lH+nP7L/vP+Uf/U/w0AgQCtANwA2wDHAG0ACgDg/7r/NgAgAGUAygD0AEIBywA7AAUAWf8A/8T+tv4N/zv/OP8//7T/wP/D/9b/EABRALwAAQH7AH8BrgHXAQICAgKAAjwCxwFQAXgAKQCe//z+mv5X/hD+Bf5I/qD+hv/j/70AdgHuAVECSgK4AnQCNgIIAuYBLwFwAOT/Bf+N/gb+Iv4W/nH+//6t/5EA4AC7AdMB3QHCAVUBvAA+AMD/Q/9y/1v/sv/V/wIAMQBPAAQAuv/w/wcAPgAiADMAKQA2AOX/Wv9F/w7/C//w/lT/Yv9N/xT///4u/wj/Xf9y/0QAQAErAt8CTAO5A0kDngKwAW0Aev+m/rf9Gf3f/Kj8l/y9/FT9uv3u/Vr+Af9q/6b/9P8UAKUA7QBBAVABjwG5AWEBQQHTAIsAUwA4ABQAIAB/AMIAAAHoAOUAvQAUAJ7/0v4R/qv9Q/0U/Vr91f2W/hH/j/9wAFkA/gAlAfkASAENARQBngBBAFEARgAhAAsAof+X//v/YwCEAMMAMwEPAQAB0wBcAPT/gv9S/y//3/7I/sD+pP6K/s3+Ff8cAN4AZwHYAQECLQLoAc0B2gHaATYB7wCOAGgABgB5/07/5P6p/lv+FP6q/bb95f3k/ab+af9FAB8BgwHQAZsBeQEMAZcA5v+v/0j/9v7h/s7+Jv8x/9T/IQDPADwBggHZAQsCCgKQAVMByQBQAPf/bP9Z/37/if+p/5z/jf9s/2//Sv+F//D/TgDBAFsBdgGEAVUBiQCPACUAMgBPAJEAVAHiATIC3wEBAlsBxQCGAH//sf5U/gL+vv2W/TX9kv3g/Sj+w/6w/jP//P89ANwArgE+AsUCXwO0A5EDTgOcAt8BEgFfAOr/f/95/z//ev93/3b/Tf8T/wz/r/6F/lP+Of7V/Yf9bf2H/bf9JP5u/gn/o/9sAJMBagJrAyME2wQYBb4ELARXA1ICRgEEANX+1v0J/UT82vvQ++L7Cfxw/AX9YP3v/V7+DP94/6T/v/+l/93/of+V/7b/1f8PADQAnwDyAGEB2gGIAhkDjQPKA8MDRgNMAm4B4/9d/hb98fsa+8b6JfuB+yP8Cv1L/oD/mQDwAe8CugMoBGAEXwQiBMcDIANoAsABDAFmAMX/Of/9/p7+g/5Y/jz+Vf4//m/+Wv69/vT+A/+C/2T/d/+W/4v/lv+s//P/NABxACIBxQFuAiIDdgMzBAYE4AMaA6sBpQD2/tv9pPz9+5D7XPuP+0z7oPst/Pz87v20/uT/6QC0AaICKgN/A4MDuANTA6QCMAI9AYcA2v9j/0L/Fv80/6j/wf8RADkATwBMAC8AQQDf/+D/ov8h/0r+hP0f/YL89PvP+2r8M/2c/pH/1wBSAkIDQQQbBHcEYQToAz8DBQI7ASsAjf+1/hj+m/1V/Zb9R/2C/a39UP7I/hb/gP9s/8r/GwAvAB0AuQA3AccB7QHnAVUCDgJNAi8CWQJwApAC0wKcAusCsQJXAqQB6QDc/77+ev1J/ML7/Pr1+kD7V/s8/BL9lf0n/z0ALwF7AjgD2QMGBAYElwMSA4ICtQGUAHT/iP6t/fX8SPwG/O37T/wn/eP96/4kAM0AYgHbAecB3wGXAUUBtAAMAD3/m/7A/T/99vyp/Cv9qf2h/mr/YAAsAYYB/wFFAl8CaQI1AuUBbgGwAP3/P/+Q/ib+7v0H/lb+0/6Q/w8AvgBOAX8BrAGrAZIBHgG5AE4A6v+N/2T/k//x/1YAzwAmAXEBnQGNAaUBdAFoASMByQCWAP//pP8d//v+7f7h/hL/Gv9R/1v/gv+w/wAAWgDhAGEB+gFyAp0C6gLcAu4CqAI4ApoBvwCw/1z+Ov3/+0f7rfp7+rL6/PrE+5b8kf3d/gsAQwFOAvYCZgN2A2QDJwO+Ak4CxwFBAYoAzv9N/4f+8P2E/TH9R/1c/Zr94f0F/kz+yf45/+f/kQAoAdIBHQJUAm4CRgImAuUBpQF1ATUBMwEBAd4AxQCUAJMAigCTAI0AXwAsAOX/gv8V/5L+Q/4g/i7+eP7y/pX/JwDRAGYB+wGIAtoCAwOjAgwCLQEkAHL/rv5O/jT+Pf5i/pP+1/7+/hf/SP94/9v/RAB4AM4AAgFFAWUBdwGTAXABOwHEADgAdf9+/r793PxZ/An84fth/Nj8m/14/qD/vgDCAe0ChgMABDUE8AOOA98CGQIfAUAAY/+I/sf9Ev3W/Gj8e/yy/OT8bv3E/Vz+yf51/yYApgCJAQICUAKIAmwCVwIGAqEBYAEFAdcAgQA3AOz/gP8w/8n+q/6V/rT+6P7u/hn/Ff8V/yv/N/98/67/5/8iADwAcQB+AJQA4wBHAb0BAAI4AjUC6AFyAaUA8f8q/3j+4/0D/ZT8PPwc/Fz8qvzQ/d3+9/8MAfgBxAIXA4sDqgONA1QD1QIrAkEBMgBF/zL+kP0g/eT8Nv16/S3+xv6c/2IA7ACOAbEBAAIBAt0BkgEdAdgAcQAaAIX/Af9w/uf9of1A/Tz9k/0v/hb/2/+1ALUBkgIoA4MDzAOFAyUDdgKyAbQAff/y/gX+iP0i/QX9Rf1s/Sz+uv6C//X/hgAWATsBYQEtAQkBtQA3AND/Zv8k/xv/KP99/9z/OwDAACUBqAHoAQICMgIKAucBpwENAXYAwP/4/k7+gv38/H78MPwt/DP8w/yD/Y7+q//OAOkBtAKOAwQEaQRSBB0EsQPkAi8CCAE9AHD/pP4i/tT92v23/bH96v0r/qb+Q//b/5UAEAF4AbwBvQG7ASsBjADo/07/t/4n/ur9wv0q/pf+O/8mAO4A0AGfAlYDmwOOA1gD2gIfAggBxf+C/m79bvyy+2f7X/vL+4j8bf15/k7/DgDdAFgBzgE7AmACVQJxAnECEgLWAUwBgwDf/y3/j/5B/iD+Hf56/sT+H/+U/xUAmwDGAN4AzwCQACQAiP/m/kb+uv16/VD9X/2t/fn9m/5w/2UAjwGqAo4DOgSoBLkEZASlA58CfAE+APr+5P3n/En8Bfzu+0T8uvxl/R3+0P6w/04AGgGwASICqAKxAtUCpgI2AsoB7QApAHH/pP4f/sb90/32/Sv+tf5I//v/hwATAYUBpAHBAZ4BPgGwACYAnf8K/5n+Qv5B/kD+df7H/gH/eP/h/2AAAgGhAQgCWwKaAsACfwIIAoEBtwAOAFX/j/7F/U79Hf0D/VP94v2R/jn//v/EAGQB8wF1Ar0C0wLFAmAC0gHsABMAGv8+/rj9Ov1T/Wv97P2r/n7/aQD/AL8BQAKHApkCXgImArABLgGkABIAkP/5/qL+Uf5T/nz+4f6E/yoA1gBRAaoBqgGqAW4BPgHcAHoAVgD0/5j/4v6E/v/9e/2e/YT92P1f/gj/4P9+ACcBtwEpAocCoQJDAqgB+AAWAB3/h/4J/q/9sv3g/T3+j/7r/j//n//0/0oAugDgAA8BLgEMAfgArQCIAFYAHQAgAPb/+//T/6v/of+R/53/mv+8/9b/+P8WADkAOwAcAOL/l/9L/+7+0/7Q/vT+Mf94/9//QACYAOAAOwGBAYkBdgFUASgBzgBuAPz/u/9s/9f+aP7N/WP9KP38/B/9iP0t/vz+7v/aAMMBtQJ1A+4DOgT/A5MDxAKfAZ4Adf90/qv9B/2t/Kf85vwy/an9Uv4F/87/gQAoAb4BIQJKAj4CFQLFAWYB7gCHAEcA5v+s/5X/gv+z/6//7/8gACcASAAsAHAAWwBVAFoAGwA3AMb/VP8p/7L+if5c/kz+kP7B/lT/6v+TAHIBDgLOAg4DGQPIAtUBDwHt/+7+Mf6h/XP9aP2R/dr9Iv6M/gj/kv8LAGAA6QA7AZMB0gHYAeEBxgGKAQ0BhwDr/0r/1v5r/k3+Zv6q/ib/i/8DAGcAxgAHARcBHAHiAKwAYwAbAJL/Nv/n/rn+zv7W/jf/h/8XAIsA3QAsASUBMgH9ALwAlwBfADoAEwDY/7b/j/+F/23/ZP94/4f/sP+i/7H/sP+G/4X/hf+c/77/CABGAGQAmwDFANwA5ADpAOMApwBSAA0A0/98/0n/Rv9W/2b/Zf90/2H/gf+U/6L/uf+n/+b/5v/v/yUAIQAzAFIARwBIADgABwDj/6j/df9F/zn/OP9m/6n/9v9eAJkA4gALAQ8BCAHbAJsAZwBzAF0ANABNAEkATAAoAC0A4f9t/0r/B/8C/7H+6v47/1//1P/L/xYARwCVAMsAsQDiAMkA+ABEAUsBbgFXAXoBYgHGADoAnv/m/k3+s/0z/Xf9pf0h/m3+mv4k/2b/2v84ANkAXwHmAWYCdwJaAgYCgAG8AP7/Ov+X/hX+mP1c/WT9ov0J/mb+9P6N//H/ewDgAGkBogHLAd8BoAFsAeEApABoABwA8P/S/83/zf+//5D/Uv8R/+v+BP9M/0z/mP/Q/xAAZQB2AOMA4gDTAL0ATAAJAOj/tP+S/7v/4P8eAHEAoQDaAAAB/QAFARoBGgHUAFAAw/9F/wL/1f66/tj+5v76/vb+Fv9T/3H/s//a/yMAlgDuAF0BbQGdARgC4QHCAYABIAH7AC4Av/8r/7j+kv4L/sX9k/3x/TD+gf7m/ib/9f9uAPgAZwGwAR4CKgILAu0BowFEAdwAcAAAAHT/Pv/t/rH+hP5b/nX+hf7V/lf/5P87AIUA6gD7AOUAhgD1/5L/O//5/uD+8v5T/+v/bgDHAB8BdwF4AWMBLAHEAL8AigB7AGgA2P+3/1D/9/6X/ib+Ff6+/e79Z/6+/k3/tf9KAOoAZgGqAb8BowFiAWYBJgHzANQAjgBNAO3/h/8Z/wL/wP5V/j/+G/45/nz+6f5N/7j/UwDEAC8BdgGXAa0BrgGXAUsBsgAgAKz/P/8L//f+E/8T/xT/E/+3/t7+4P4u/6f/0v83AG0AtQDEAMMA3wD/ACwBAwGWAGAAMQABALj/Uf///tH+6P66/sP+E/9t/ykAcwDsAF4BZgFnAewAiQARAMT/0f+E/2T/ev+i/+//5P/+/xoATACHAHoAogCLAJQAlgCAAHEAMgAZAMT/if88/wH/6f7r/ij/WP/K/0sAtQALAU4BhQHGAbgBdwE3AacADgBO/5n+FP6M/UD9K/1q/fL9wP6l/5gAmwFHAsoCCwMGA8kCSAK6ASIBZwCX/8j+B/5x/RD9//xA/bX9bP5D/wQAxgB2AQACUwJyAngCQQLMASIBZACy/yX/4P6r/o3+kv6w/u7+QP+K/9L/AAAvAHQAkgCyALwAtADIAMIAtQCmAGAAFgCq/yD/8v6//sf+/P43/7f/KgChAP8AaAGhAZ4BoQFqARUBjgD9/3X/7f6h/lj+KP5N/oz+xP4X/6P/SQDvAIkBDgJkAnACZAIGAnIByAAqAIr/z/5N/sX9Zv1R/V39l/3e/U3+/v63/40APgHUAWQCsALgAtICkAIZAnwB4AAdAFv/n/4c/sD9jP2W/cb9Lf6k/jr/wf9DALsAEwFBAT0BLAHhAHAA+/94/xv/2P7a/iX/Uv/A/yoAhgDhAPUAMwFrAYUBewE6AecAdQDK/yb/hP4C/t79r/2b/ar92f0t/nz+Av+p/2EAGAGxATsCmwLNAsACawL8AXcBzgAIAFX/r/5J/gL+zv3X/Qj+c/7t/nf/AACKAAIBZQG0AdgB6gHHAXIB2gBHAN3/f/8W/6f+Nv7s/dn92P0J/lH+p/5H//n/sAB3ARcCmALXAtsCxQIyAnoBsQDK/w7/h/5B/ir+Jv6N/v3+ef8NAHYA5AAQASMBJQHwALIAXQDs/23/+f6M/hz+yP2O/aT9/P17/kP/NwBBAQwCzAJZA4IDUwPoAlECggGpAMz/6P70/Uv9/PzT/OP8Ov3B/Uf+3/6N/zIAuwA4AWMBbgF0ATkBOgH0AHgAWQAQAL7/ov9l/zr/L/8W/zf/YP95/7T/zf8LAEwAfgCqAJQApgCyAJwAhgArANT/hf82/wD/yP6e/oz+q/7c/gr/N/9p/6v/3/8RAB4AMwBeAHcAiQCOAKEAvgDHAMcAxQDTAPQADgEtAVABZgFyAWEBTQEwAfwAtABhACAA///F/5v/i/+I/7P/1//0/xYAMAA+AEEAIwACAOX/xv+x/8H/9f9BAKcAAwGIAQYCfwK/AtYCuQJRAsgB5AD+/xH/M/6O/QX9wPyh/Lr8+fw8/bP9G/6a/hH/d//l/x4AZgChANsAHAFcAZYBqAGuAZ4BagEvAeAAmABeACMA4P+C/yP/xv5t/h7+7P3Y/dn90v27/cb96/00/or+2f5M/+v/dADbACMBVwGgAdMB2AGXATUBrgD3/x7/MP5M/Xj8y/tI+xX7Dvtj+//7zfzU/d7+1P+sAG4B9QFBAkwCKALhAYsBPQHzALMAtwDaADgBswEaApkCAgNcA5IDiANRA/UCgwIYAqIBLwHcAL0AxgD8AEwBhwHFAd4B4wHGAZcBXgETAeIAuwC9ANIA+gAlAVkBnAHNAQQCDwIBAuYBwgGSAUsBIAH4ANgApgBuAE4AJwAjACkAKgAnABgAIgANAAUA7//m/wYAOwB+AL8AAwFXAdYBXALVAjIDjAPoAzQENQTjA28D6QJUAqIB+QB8AC8AHgBGAKkAXAE3AhIDzgNhBJ4ElAQyBH4DSwLHAP3+2fzN+rf4y/Yq9cXz0/Iv8v7xJvJi8tDyZ/M69DD1LPYa9+H3p/hd+ez5V/qp+uD69frZ+pv6PPrR+W35H/kM+S75ifkK+p76Qfu/+xX8Ovw5/Aj84fu6+5r7jfuY+837NfzY/Mj97v5iAAYCrQNGBdUGSgh+CX4KSwvYCxAMBwzNC0kLgwqICWIIBQeVBSsEwQJcASgAC//t/cf8pPt1+k75S/i895v35Pe++Er6WfzM/o0BPgSWBpYIQAqxCycNzQ6aENsS4BWTGeMdoSJxJ80r+i5UMEkviisqJcYcNhONCckASPn783bx3fGg9Oz42f0HAqIEqQRxARz7U/Lr51/dCNRrzZ/Knssr0MHXQuF669v0iPyCAgcGgAdyB3QG8gXSBW8GTgjhChQONRFvE30UDRSlEYsNZwjQAqz9cfml9qj1Z/Yd+ET6F/w2/VL90/vG+I70b+8X6u/kbuAp3Ybbnttl3Yzg6eQO6nXv7fQb+uX+bgOFBxwLLA6UECsS/xIUE4YSXBG0D7YNpwulCeQHgwZxBbIEEgRWA2kCGgFH/9/87/mZ9ivz0+/U7IrqIemu6C3piuqy7IfvrvLl9Qz5Afy6/h4BMwMNBa0GEAhECUcKcQt6DDYNlw2IDRINMQz8CpAJOwgWBywGigUdBd4EoARWBLgDqwIoATn/Ev3E+pf4i/Yh9Yn02vQv9mX4WPtu/rwBnwRgBgsHrQZ+BRQE3gIoArMCEwXcCUQRBhpQJCsvHzmoQRtHSkkaSMpDujw9NAUrRiLOGlwUgw+vCwYICQSu/v/3UPDU5lTcsNFyxz+/5bj1tFi0DLZpugDBushz0T7acuL16djwQ/dH/REDXwiwDaoS0xZDGrocaR62H4Ug8iBfIdkhgiLXInAiHCFvHnkaAxXsDaoFoPwP85HpBuH12fXUWtLy0X3TZ9Y+2lLeneEn5AbmI+cN6DPpQ+t/7vfygPjW/rMFkwzbEjYYQRw3H/ggkCE1IeEfvx3/GsAXUxSUEIkMrwh7BTcDvQHBABUAmf86/6T+gv2W+wX5Qfbb8xTy3vAl8OjvVvA/8X7y9vNt9e72XPjC+Rf7KfzF/Oz8dvx9+xv6j/gr90z2SvYv9+/4TPsG/rwADQOvBHMFKAUrBN0CeAEZAMH+g/1b/An7n/lJ+Br3W/Y59tz2GvjP+cX7V/1K/mb+o/2E/Lj7Pvsw/OT+aQNhCboP8hXUGl0eSCB5IE8f8ByrGXUWRRN2EMUN+QqQCDMHcQe6CSMOkRXPH4QrLje1QOxFf0WrPvcxfyChC1n2d+NQ1WvNkcwS0enZ3eTt7m329fgk9jPuqOJ71QPJxb7MuIS4fb4+yunZWuwFAOMTWSZ4NixD/0oVTdtJLUKnN3grEx+4E6EKgAQqAREABwBGAHn///wE+EPw3OUg2vHNzcJFuia1oLRruBnAn8pV1lniYu1G9mX8EQD7AfICpgODBB8GAQnhDIoRfhZOG8MfsiPfJiUpSSo3KuMoQSZAIuochBaMD40IBwIQ/Bv3Z/MJ8dzvoO/475vwNvF58TDxbvCE763uNu6S7gfw7vIU9wz8VQF6BhELjQ7REJARyBCpDqEL6QeWAwX/hfpG9mXyAu8w7BTq5+jq6KnpxOot7K7tKe808LTw+fBI8RHyifPl9V35IP7wA3MK7BCfFi8bFB7QHjMdYhnTE1gNpwZ0AGX7g/cn9djzxPKv8Rnwve1S6/noteeu6Lzro/HY+fMCvQuHESYTGBABCbz/QPak7pjrYe5l+O4I4x3bNLdJZ1rhZOln7mNoWV5MJj5tLxYhBRM+BoP6M/FK6gbmReTY4wLk0+Jv31LZJdBcxTe7HLPYrpqvDrXFvobLadr06jn8bQ3FHZss/DdWPts/xjw6NwUw9ShFI9Aefxp5FRwP/waY/RD0pOum5OreDtqf1avQbstPxiPCSsBJwSDFestG0xPbTeLA6IvuZfQe+9wCLgspExIaGR/xIXUjQyTzJPIl9yYiJ6Ml3yHyGx8URQu+Am37/fVT8mjwbO/a7sju4+5p71zwufEu81/02PSC9MjzVfMd9LD2cPvuAYcJbhG4GNYeJiOdJdoleiTxIZkeeRqaFdsPaAnkAij8y/XN76vqf+ZY40LhN+Do3zHgeeFM45/luuid7KTwH/UG+jT/sQR6CnwQVxbTG8kf0iHMIfkf5RvKFroRjAxXB4gCyf3/9yrxgukX4gXctNhf2B/b0N9c5WnqZ+4q8dnyvvSQ96L7RgBeBfYJMg7rEcsVvRktHR8fVh4RG5AWARTPFBYcqyk0PH9P2l//aTtrXGPQU2BAkCvJF88FRPal6JfcctIZy4vH08fPy3jSJ9lB3XfdutjvzzjFE7sDtJixiLRzvInIC9dI5yj5TQx/IMM090YLVXFc91voU+1ETTEWHEQI4feM60zjFd6l2q/Xy9Q10pTP5c3AzfzOBtFy0vfSu9I70nLSoNSz2cLhmuwN+asF8hDJGR4gXCTfJuQn2Cf3Jn8lMiPPH8IaRBRJDcUGWwFE/WP6E/gR9kD0ovIS8dnvOO9+7+HwLvMR9kj5f/zr/2ADbAfNCxMRCBaqGt0dgB/tHx8fhx44HsoeNx90H3seBBz8F08SuwuLBLL9WPf48Rntq+im5Gfhe99Y3gLfZ+F05SjrB/JF+e7/egXOCa4MHQ4CDvQMWgtzCckHbQZrBb8ELQSrA0sD0QIoAkwBYQDq/vX8gfoC+HT1ZfId77zruujn5uDmFemQ7bj0fv0EBqgMrxCoEcwPegxyCZgHaQbEBcYEMQPk/1r8svl2+br9xAQmDkcWZhvsG10Y2RMgEUITZht2KC04ZEfdUkVYkFbiTjtB0C4rGmgFgfJT4lbVMcsjwqe54LGRrMSqO60btH69x8dh0WnaXuO67WH6FwksGfAnAjNpOJs3ZDKLKvchPBuyFmUUAhMdEQsOxwlKBYQALfwX+L/zKu7n5rrdUtPGyBnAdLuxuyTBY8ox1qLibe7q+AcCSwqcEeQXiRyrHgIebRoJFR8PQwq3B+kHIgp2DakQQBJoEVQOEgqLBX8B4f2l+jT3WPP57ujqZucB5S3kJeUW6Jfsb/L8+Lj/+wV6C+QPbxMUFo8XEhjGF1IXxBZEFuAVPBV6FPwS0RD8DaEKIAfKAtr9Zfjx8lvugOt76lvrse1w8Qz2s/oE/y8CigRIBgYIqwkzC24MAw3MDH0LQAm4BmwEXAJ2AIb+VPxF+VP14fBd7FPo1+Si4n7iP+TZ5yLtkvP/+WT/uQOqBl0InwnYCi4MTA1RDiUPGQ8vDgkNjguhCYkHzQX+AxMCmACs/y//2P1G/Hr5o/Xa8aru7e7U8V/4XQGpC+AV9B6zJ+Aw+TpNRj9SQFyEYEFbLU1TNo4YF/g322fGUbrmt4u8v8SdzIrStdfD25TfxuPo58HqKOuF6eDmLOXo5VDqHPOw/hwLxBZgINIn5CyML2wwgS6TKQki0hfwC2P/N/Re6z7l8uEw4RfiXuPe4yLjpeAj3WrZedYN1SzVSNeH2iDf4+SY68vzcfwBBT8N5hMHGWAbBRs4GWwWKBSYEoQR5hBIEM8P3A6lDEwJ+wSEAF/8gPgf9B3vJur05RzjBeKW4hnlzul68DH4gf+bBVEKOw6HEYYU0BbPF/MXExf9FMMRyA1OCuEH6waNBpkF/ANwAWj+5vog9+XzV/FW8MzwtvHi8vzzoPX397X6Nf7BAWYF+wgiDEEOAQ+QDr0M4AlJBswBVP12+dH2X/WR9Ff0V/QY9XL2F/hN+bX5wPmA+Vb5avns+Uf7cv1oAPwDIgf2CdgMZQ/uEawTPhRCE1QQogwNCIYC2/0O+uH3NPir+Rj7vfw1/lQARwObBTMIXgk5CXEIewTI/rv3/fJ38xL5MQSeEiciQDJIQEdLfFIMVCZT+02YRFI3vST4EL79/O6r5V7e2NgQ0/LMu8fMw3jCSMKOxHHI88tezo/OUc8p0kzZeebl9VUGjBQ8IPMqGzLkN5g6QzorOTA1ky4lJIEWzAgz/N/yIewR5zrjw+AN4OreKd312WHWjtR81CTWZdif2ordDOHJ5UzrhfGd+VoD2Q5KGccgNiWLJdwjkSCvG1oWqg/9CR8FUwBm/Pr3kfRW8qbxF/JQ8pbyIPIh8bjvgO3M6+XqRez47+T0tPosANMFqgucEacXgxwYIMYhNSGTHjgZ3hJBDEgGewHc/Bz5XvVs8qvwQe/87t3uL+/E76zvo+/57gvvPfBZ8rL1xvjU+5z+fwGjBJIHgAqfDO8NOA7DDCUKowaaAuv+dfvs+DL3D/am9Vf1dPWF9cb15vaO+LP6xPyC/uT/2gDVAfICJwTuBdUHzgmGCx8LIwqxCEAHkAb/BeUF8wVkBpMGzwZyBpQFogWfBPgEOwTTA5YE/wRtCAAKdAwDDWoNkQ0eDdUMqgt3C18LGw1HDjEPtg1BDJMKgQplC50L3wpAB6oCUfy19R7uQueX4WLg4OEf6L/uIPZo/KwBkwieDRMUNxckGowaKxosGQIW2BJjDl0LzQlkCQQJTwepAxz/qPk09Cbvwukw5vDjXeTo5TroZOsD7o3yiveE/Z4DSAhNDEoOmA+YD8QOwg3qC8IKWAkKCKQGTgThAer+LPyl+Tv3M/U383zx6+9b7vLsvOsW657rcuyt7vDwAfQ398z5vfyW/tQAWwIqBMAFwQaXB4kHGgcNBqAESAMmAikBjQASALf/Tv9//rD93/yc/H78T/wU/EH7T/oM+Z/3Q/Zu9Q/1a/U79kb3Rfgb+f/5A/pu+kf6r/o7+1j8xv3b/pkArwG9AyQF3wZKCCIKngshDbkNSgwxCrcFSQKM/pH8nfuK+on6EPoU+u75ffkP+dX49fiU+e/5Evqu+cz44fid+fv7hf/HAsEGQwkHDJENYA7EDqoNVQ0JDPgLGQuPCvgI5wZmBWgDFAOWAXoAWv6F/LP6Tvkl+Hb2vPVZ9TH3hvme/Mj+iABlAssEpgdVCp8MIw4wENwRNxQwFSEVwRONEa0PUg11C8MIZwbiA8wBCADu/R/8Lfp0+aL5fvqx+xD8T/wa/B38VvyB/Mr85vyT/Y/+p/+KAOIASAEjAsADqgVpB5cI5gh2CIMHagYsBSIERAO7AmICuwH0APb/8/6q/l7+XP5S/vX9p/3W/A/8Cvv/+YL5Svml+Tz64Pqg+278Rv0l/tP+Sf+h/wkASQBoATUCWgIUA24DHgVpBkkHoAijB4cGYgSYAT7/VvzO+Yf3X/Z29gn3Ivcl90f3KPid+eT5l/iz9uD1Zvfg+eP6zPq6+af6K/2OAAoD4gS5BqAITgvTCqQK/gecBuMFpwNoA3wA+/6W/Yr7d/tG+iP7RPsg+6n6gvmy+Hj2vvQl81XzhfT99Wz3bvhm+uP8kf8rAqsDdgQyBbgFUgZtBvkEKgScAtcCCgMaAwQDawFmAaEAjAHwALj/qv3P+237TPtk+4769fnD+eT7n/1J//j/1P8fATsBpgLpAosCOwM7ApAC6wGYAXgBfwAaAPD/CgHOAq0EvwQDBAkCqgC8/wD+uPzT+n375/yc/wIB+wCDADn///+F/0UA4v6Q/W79rP1KADsBhgEIAaEBDASYB9MJhAokCXUHlAcBB40G5wPtAEX/8/6gAF4BUwFYAE3/lf/m/3UA2P/D/lf+MP79/h7/FP+k//L/FwKoA/oE9gVUBDQEDAORAu4CzAFWAkkCxQG+AfIAAQHNABkAHwBsAOQAZQGnAKT/bv7E/XH+cf62/nn+Bf/R/0wAZgBaAJcAUQDwANP/Jv9G/mb9/P0m/l8AOAFqAvYD2AReBmEGPwX5AtgArP/X/w7/mf1z+5X67vu7/VH/pv+q/zAAqQDY/5H+RPzN+t76DfyA/hUA8wH2AXECkAMfBMoF+gNTA3sBqwGDAwQCzgDh/Nz7c/xi/VH+Yv3j/JX8Iv1c/Yf8ivrV+Ef3i/gA+qL75fzQ/NH9CP6X/9L/2f8XAJ7/WwA6AckBewPHAkYCTgHY/8QAMQA9AOH+Lf7F/kT/Df/u/dj7H/vb++D8lP72/XX9i/yw/MP9+v4b/4v+pv8X/zsDaAHS/gz+4fxz/1//QwDP/bX9Dv0x/5H+wP7z/1n+1wJsAcQD1wJ+AO0CIQI9A4kCMwJJAVwCgwE4AOb/r/4e/zr9mv3D+dX6uPyl/EsCj/6MATsBRQQrBwoCOgOFADICPAJbAqr/cwKIA8wHGgaABDMFKwHhBg0BJwJ9/EL7Yv8G+5b9jfeL+aj7YPsMAK75jf3//qcAygOlAOwCjQKDAzwEWAAYAfMBHwHDAzYAgAO/A4sEfQZnAi8D8QA3Amr/YABX+wf6Sv2g+cf9NPrq/DP+5P4E/x77ZvxS/gcE/ACmAhEDxAJZCJ0HWwn/AxgIPQQIBp0I4gHBA1L9Qv4bAbn+TwCf/Rr6bf3D+vr7J/kq+IL6Qfz5/Ov8kf6XACoDfwOiBFsBygOKBAkEcwItAREBYQa9BWkDAwRn/iIEVwFD/h7/Bfxl/p3/tft4/ev8zvwBAlj+pf09/1L6e/1V+1b7jgHi/B0DewIsBt0EJwMOAlr/ewVFA+IEt/7/ADj/EgAp/33+cP+J+1L/pPoT/Az7bfkt/Sr6U/yf+Qz7O/0N+f37K/mOAM38ZQEF/0z9jgUtA3IHvgYwBAkEwAWCBWgE1QE6/7f/Vf8B/2UB1Pog/On5y/ry+hf6zPoB9iwB3/53+w4Bsfob/kwAtv4b/df+tACQ/psFCQBVBsUINAHKCjD/cATzBqf+SAF4+oX8cgCu/sn/nvfu+e3+YP6qAhn7pPoR+JIAhfvG/vH7lPpdBCb/XQho/X0EvgJWBP4GEAGRB4MABgII/nsCFgIyAnAB6P7QAwj88wJQAEf8VgMOAGUDkgIsAvkBtALB/2wDB/+x/wQBuvp4/1r99gHhAG39Jvy+/FQAHQGm+5P/iv3XAdAFp/69BWoCQwRlAn7/s/+2ArgCTgHTAZT7ZQLaAloD2AFI/7AADAI5BcQAIf8++rD+HQHw/QMAefVa//f7MQPr/oz6ZgCi+SUIRfsYBNz/Cv5fBID9UALjAXL6kv6U/34A2gi0AO8ASwSrBbIGmwF0AOb/Fv/SBHX9fv1F/mn4JP8x/Cn8awMX+jj/wP1R+aEDMvoKACn8dvub/w3+AACO/K0A1PyeBhX+YgE8A6P+Rwqf/VEDUwO1BSEFAQLGBMn9zgIZAVMA0/yq/O38JPt1AGT7n/5z+RL9FP9N/B7+mPy0+mX89ANO+kQE/f5GAOIFHALoBSb/SQS8BAACvQQ0A1cAl/8U/4f+VQBU/dP7iPxdAB8BowGs/iv+gQLd+koCR/tT+5r90/vU/zz9hwDO/Yr+2QRF/G79hgUK/KwI0wOW+bAD/f5ABxgEZ/wsAcL/JQWOAI4CFP7A/bEA7P1LAYQBYP3C+47/b/olA+T8HP0F/Uj+UARn/jsFdvqj/xEEnv1+Bhr+5/2gAFQB5AKWBP8BuwB6AjQE9Aao/C8GAPfAAWQFxfxgBir28P0dAKoCrQB5/kH3CP9cA00Bfv5o/Or+TwDSBa38dv0I/eb/UgNu/sT8v/79AA0BWgDFASb+YQbCAUQI0QWX/sUC/PyMB8cDz/vF+tD+3f7SBWP6hv3l/qf87gX+/asBhPq8//oBwvp/BSD6PADpAtb9fgZc/M0CYP6cApf+lgVe/5oAuQLj/DQC6v0iBY37XgHw+nUC0wL4ABMAZ/sDA+z83AAq/sb4WwCZ/DgAUwAX/iQCPP1KA+/7/wGA/c37MANj/nsBHAYx/J8CFQi7+qMHS/vaBDEHcwKKBFz8fwX9+7wF7v+r9ToBVPt4A5gB7PkR+gIA4f2xAHj/qfWOAsr9Cf1V/Uj+fvt2Ak8AtALoA/QAwgWA/q8Fe/9gAg8E9P0SBr39ZwGiBQf7qQat+IIApAK0/f8DzvYE/p7+uAA4/SP+F/j+/yD/6f0KAfT6YwUH/BwEh/yI/skCjPxSBiP/aQDHA0QAxgCaAwoDEP/S/2j/jgMDAcr67QB5/qkHsQFG/WEAQfwZB5z75/3O/mD7NABM/EIBM/sn/cz/pABmAbUFUf85Ad4AjgA6Bwf7AAVf/1/8FgLXA2YBuf+QATgBPQFTA50Cpv6qAsf/tgC//8n8f/4P/6D1/wJW/sr4tQad9GUD6AJF+9sHxPi5/xYB3QGJAgn3GwiZ/rkCLAq09KgJPwHb/1cLePvgABUDa/10BJ//qfnr/7v8cgYP+4AEifsj+noLv/FRBUX1vPm+Bhv80wOp+Nb8MQKhBJkBuPwg/fgFsv+QBL/8sf71BKn/GwUi/q8BiAMiAfz/M/9SAisEtwHrAfn8nQEcAH8ABv5g+/f9BPo1BDf/pvk9+v79ZvzNAVT8d/gbAGj8EAnG/F0B2AGOAKsFiPo7BKH+zADFBFz/ewDxAwUAtgHc/8MAcgOK/6v+z/6aBCD8nP3W+9D47v/x/2v+DPnv/EQCPf1WBKMB3flXB9b8hQUQAeX7VP+NAGwJ4f7ABfT5twF7BhQCgACuBeD6rgHkBiD2ZwoT+Kr8ZwKZ+XwC/wRu+c/9+AA0/UQEgfvS/TX34APa/v8AVQHu+dYHo/0/BQsDdf6sA4wEpAPS/+YDSQJY/4gEdAERAlL8GgAGBP/+rQD++f8Ab/+2AAD+3vfY+7/8k/6L+wv+Rfnj/GwClQD6AXoBzAFJB50C/wNkAeUC4wIeABcA5PvJBzH+tgZmADL/FgiX+6oHjvxn+6X/rP8xAJT86PYQ/Cb7Wf0g/qj1oARi9kcBKf5zANMDc/lRBA//kAShAdABff+dBywAlgaHAwUBHAbp+9QJuf1gBUT9RvxZBR0Acv5r+V3+jvsP/y/+0Pu6+J0EUfvZ+5MAzPn0BpL6zQIV/gX72QTd+rn/hAHvAFz+GQLbBI0BmASF/J3/qASKBvYBlfy4ALv9bAJl/gz9c/1i/8H/UgEK/vb/Nf6f/o4CofjUAqH6n/2d/r/7VAEl/lr9jf62Afv/DgTD/DYHrf7m/3IDHPq0A2n/MQbD+OMDaQByAHMIaPpWBUf74wNFBM78Pf9MAMj8c/67AvH7pvp3AKT/f/1UBOb4Nf91/5v+NQFr/3QDovmTBjADdv8WBG0AKP/QB0ABnPyvAeT/6QE7BpoA3fo/A34COgG9BUH5YviXByb7Iwl19vP2aQWW9lMEMPup+Xj9KvlKBcIBM/szBXr6tgTHB/oChQF7AGoC3wFiCUX8jAK2ApP+zwiCAAj/Xv5lBSH+xPycAF34IAEO/Y/8mfnT/nn8qvzkAhv6dfyoAmb9GQIz/wYAjP4j/+ABrf/7BNj/mAOKBYYFZAEDA9H94QjBA6z9TgLz/RUEkv0V/kj7xADk/6b7j/+D+/8AIvyH/wj9P/s5/1v6S/srAcn91vtXAsL3Swt+Au8BLwYF/kIFRgDLCOEAGf04AmYCHgPKAtn7EQKm/goD+QKm/vYBJfnKA9T7fAA6/xz5eP6X+u4EaPtGAUb7hv26AsX81Ahp/W8AxP4LBZYCwQPE/OUA9Qgp/vwFTvlZBYgEbP5vAqf3EQKf+/QAy/31+vsBuvajAG38tvxC/dX5Of7L/iX+sQGQ/XsAlv0Y/wYDowEaAkX/agQRArAJtAP2AY0D/v9xB/IE8QTy/Pb9NP1IAQ0HPPrs+vb2rgEF/yP+0/oR+G/8Zft/A3P5XgA4+aD/mAOA/+sBjAFfAbQFpAKj/mcJhfpTBZME7/9vCYkB2gFG/5gHSfzK/uQD4/3XATD4AADn+xQAk/7Q+vL58QDHAdX48fqu+T4CRgCr/nX8kv4dBtkJvfht/TADxQAVDcYDBf0y/mICxAqHBnoDAfxp+FAFRgOLByT5tPZhASL4/An3/Fn5ufzm+u8IbvtkAQ74ivvo/3T/JgOj+L4Akfn9AMAHiP70BGL7RQFhCpYCnAaA/fwDbgGxA4QDKv5SA6T6DArhAaT/h/6z9uME+v1T/0L4cfot/wj/pvzH+un4HvkJBLb8KQGWAKb9mf6R/+gDJQeX/1H/FP/GBFgKKARn/2j88wRvBRoGmP7N/A/+rAUnAhf/yv1O+iwA/v4PAa/70frA+EP9cP5j/zoApflo/vP6ewJVAEAAyAPD/BwFlQL/A8YC0P4hBBUB/AQrATf+tALAADYJCf6D/1kDYv5oBb3/P/zc/Nb+Zv5UALP6df2K+j7+RAGy+wsB9vrM/Nj+kgCWAHL+5vvhAIEF6gFpAuj+cwDrBCIEiv+OAqkB0QM3AVsEiAJH/h0C9PtvAOz+eP+y/lr+F/qg/sb9LvuSAHb+h/4K/AIAo/qUAnsAbf5hACH9rgCm/9IIJ/+1/sQFY/9hBV0Fkf4bAk7/OPy8BMYAMv+hAGT5twNUAz0Bp//e+DoBHQHV/6YBvPkN/Cr/n/qUAgT9Efrm/mwAPAI8BLcBO/09BvsCRgSj/m7++AFDAJgBvvsxAbcCOAJT/pj/ef5SA1//UP+IAv38IAO9/Fv9R/+QAtn95f97+2b/agL6/TYDF/oO/2//bP98AUIACvzC/+D+sAOuBCD+QAJt//MDHwRxAgL8FAI6/+MCUwKA/sQCsf7eA6r6oAAr/vr80v8O+rX+wv2t/bX+MvwFAef9iv1ZA7f+0QVK/WH/1wINA14C9/5RAnv/agbf/3UAdQG4/TEAmwF+/7ICzQHT/lMBbP4d/D4AI/7t/0D+5vaCALT+egNg/ur46v9MBP8EuABk//X6SwLbAF0Ddv/n/ocB5f4TBHoAAwF/AfT/6gGrAJr9zAIb/jIAxQJ5/ooBGgEM/w8CHf9p/ZD+vPszAZ7+rPzs+pP/Yf1eATkCkfn2A6/87QPQAk/+oAMQ/NYFyQCCAmMAp/pdApL+aQMyAjb/uQPfANUBlgCDAED/7v1E/Mn9cv/J/hwB+PxiAR7/bAEsAp7/jgAP/g4C2vuu/rv/cP9YAYX9Sv6j/kkBrgJX/zQCK//AAKEEQQHqApn9Bf9qALcDQ/+qAD/6FfvEA9r/fABr+i/9Wf8tA73/+v2s/10AawE1/xsByv8pAukAqP9hAPL/kQLw/ycBTAHx++4AYv+HAbQAMf2uACz+6wR8/ywB+v16/W4BJvweBJAAw/1d//L9wP+2BLcAe/5q/xMAlwImAEb+N/99/cj+7gC5/loAKQDJ/W7+XwKG/jsCxv8v/gIBV/7jAhL/cQFbAA8B3P+P/3MDaAGCAjD/wv1S/739ef/m/4n8n/6w/tUCzQG5AND+vwBeBGECnAJt/YD+lgHOAcr/QQEu/xcCCQP//4oBOf43/3j+vf7A/sb/Qv31/lH+SPxa/Wv9lftzAFb+T/4NA8r6RQWXABABUASw/lME3gLLAxQDCwHxAaoAHgM1Ai4Az//u+88A//z4/47/yfpWAGz8JABH//b8bv7j/YT/2QD//sj+Vv+VAfr/TAGjAN4AsQTW/68C8f+KAqQD7f8mAKj+oP3S/w0AAAAyAI4AUwBa/wkBV/5u/m/+cP6f/hYA+v3T/tH96P3wAYf+0gDR/usBggLeAGABBwF5A6cBIQIQAzwBrAOS/mL+6QA7/R4AdPwz/vf9MP+r/br+DP7Q/I7/tPx2/0T/Bv83AFD/twHw/4AATgLFAMEDAwJ9/xACAgIHAhYBOQHB/wcB+f8m/0wCBv6JAdn/TQDZAHv/Wf9P/rD+Lv+UAIf/Qf9k/m/97f+8AXz/zAGP/zEAawGG/1MBCv9KAOL+aP7b/cAA6//H/pkA+v3rAFIBBAIYAJMAFQHX/zMAzP8p/8//q/86AEQAdgAZAbr+dQB6/ngAXQCr/0IBt/45As4AcgLBAJwBJQKt/ysCcf0U/gkA1/3kAPP+qP/FAC7+y/5l+hP/r/xD/+7+Rvzo/yD8QwEDAFYB3QGH/7YCbAIAA54C1v/1AHICagJQAsf9g/8AAHwCj/8N/+b/Hv69AU3+NwDN/bz+Xf5K/9b+Gf7N/bX9ggCY/vwAcv7M/5wAZQC0ALAATwCpAacBHgFYAiEC2gDN/7UCHwBsBDMBJQGrAsf/ZgTGAToCGgKDARED1gMUBdMDTwMVBIICQAMaAf0APQHh/1UBz/5vAEwAP//M//793f5n/rf9Jf6R/Mr8e/yz/Mj79vpW+5f6WfxI/IP8Jvwb/cP9k/2f/RL9Sf2W/X3+y/53/6X+k/5q/5cAfgCrALz/FgFWAlcBEwFa/xkBEgEAAFX/RwDvAesCiwLkAKUBdAGBAb0A9v8v/83/a/8+/3/+Kv2R/Q79IP2O/PX7Uvp8+qn46/c397n18PcY92r3Z/ef97L5Ofm290z4R/mT+z/9/vtM/fX+sP8eAMkApQBkAwsEIwPIBNcDIgZnBQoFtQY3B5kI7wjcBlUGpwa5BXMFowN4Al0AWgGH/l7/LP/6ABkFGAR1CgkK+AumC38JIAexBSAG0AKqBMMEyQeZCuYNJg5iEUYSbRVSFwIWARlpFqYYWBcCFkQUjhj/Gq4cAx1dGFAZnRVFE4UN5AcKB0sGIwV+A6YCxwEbAXP+ifki94bzr+8R7KrmfOTn4I/eTtzt28HcRt713yvgtuE53xTfs97X3mjgVeH841TnFuvC7ifx6/Nl+Jr73v+MAqQFgwcXCZkJZAnaCYYKFwsHDGoNRw4VEGIPxg8rD9wOLw4JDW4MgAtcC6gIEgZhA4gCtAIMASMAtv6g/Zv8ovsA+tv4Afj99iL3+/Vn9hr2iPQu9Qn1QPbF98f3UfiY+DD4yPdW+Gj41/kL+wf8Pv7C/14AlgCsADUCJwOPA0gEEwWgBXUFGAS6AwwEEwRCBDUDJANsAl8CbgDW/of99PuE+4b5XPjr9h32CfVR9M/z/fIo82rzUfTw9FT1WPYS9833P/iq+ML5kPs8/XX+KQABAZsCjwNlBAAGoAXKBqMGgAbpB3cHwweYCZsKmw0uD1EQGhOlFJQY+xg4GbAanhoCHocerhyVHJcbZB2AH2YgLCPJJGAmlSdWJOcfeRrfE5cQfA3oCq4JSweOBf8Dlf/h+rz3gPNN8v7vY+qQ59Th1Nx62yjY9dmu3b/eO+Ly4dvgkeG/3qjdut0I3yXlIenz69zv4/FV9jf8ZAAdBVYJ9gucDowPYg9MD58OIg/LEDYTixVsFsgV5hN+EZAOtQvGCJ0FtQNXAez+7Pz++Rz4i/Y79QH1mPQU9PTyt/Bb7ojs0+rl6pvrpuxk7qbvA/GC8X/xxfEj8pjzRfUg9+f4FPpk+378yf1t/n7/8QChAlsEKwWzBX8FvQV7Bo8HqgmKChwLQQxTDO8L7QrsCMcHoggpCZwJ3QmwCVIJnwhMBy4G0wVOBVwEVQNZAnoANP+8/Rr8nPsM+7/6/foV+y36H/lk9+/1DfUX9NjzCfMl817zVfPl81/0dvUh9l732fhR+Sb6BfsN/MT9Lv7s/sEARwL2BGQGDgdqCFgJVQqtCn4KogrYCisLOQvOCn0KRgoCCjsJDAhmB5IGMgbxBawE4wP4Av4B8QBWAJH/QwDeATcDUQXsBY8GbAe9B4MIPAlvC8INjhBbEigUBxTBE/oUkRO6FDkV0hS+FrgWzBTqFPwSKBJmE6AQqBF2EtcQCA7nBnf/q/n/9KTwh+13653sCe5W7ajqoOTQ34Td4trp2RXZx9eD2NjYX9jB13jX8Ng13QPjuuhr7RzwG/FC8avw2vEq9Cb4yf4yBJwJaQ5wEO0SKBQ2FVEY+hnlG7sboBgsFpUS9g/vDfwLEgz9DAANlQtLCEEElgDk/AT6b/fv9eXzefHg7k7sZOv76Qvqn+pD68Hsyet661XrUuuC7L7sc+6J8CnysfL38jf0avbZ+IT6i/1qAOMDlQbnB00JHwogC6EL/AucDAMNpw2wD1kRbBP7EwoU5xRHFDMT2hC1DtENZQypCiEJ0wdAB+EFoASuA+AC0AHQ/9b95vtB+hT4ivYw9rH2kveA+Cj5qfkK+uj5FvoN+mz65vrP+zf9+v06/zsA1wHpA1IF/wbrCM0JNwrcCScJiwkVCYQJ0QlDCnsL2wtoDGgMQAtpCt0JYQhdB2wFMwSgAwoCJgBS/qf9X/3E/Kn7sfof+aT38fVD9ADzzfJP8+XzsvUl9YX1TfUi9Cv1KPPf8/v1A/e6+ez5ifr5/L3+8gCLA1kFQwmeCq8K3gpnCOsI8gjYCmMOahBLE0cU1RQ0FIsQjg3JC/wK9gr6CXYJ2QlhCQ8IXQZaBKkDpQGS/gf8x/ga9gDzJfAR7zXvme868K7wcfD77y/tWeq155/l9eS+5HnmMOk/7AXvPPH38mX0d/Up9+345fr2/JD+tAC1AoYEwQYqCe8L9w5wEIcRhBGUENsPmQ64DnQPshC8EtMT0BPnEs4QCA7oCogHEwURAxQBuf5b/Jf6qfmg+I/3wPYz9sb1WPOD8Fztn+pz6fDopumA65LuQvHl8171svX29oD3yvh5+Ur6Gvyp/af/ZwHeA1cHegt4Dl8RgRNxFFsVcRTfE2YTVBN0FCcVTRblFmAWBRZzFcETFRJrD/EM8AqxB7UEgQEN/+v9lvyA++/6IPr++AX3RfTC8anv+u2g7LDrZOsw7K/sYu0k7vbum/Aj8jrzC/QT9Xz2E/gH+Vz6YvyP/vEBvwNiBScH2wdqCcQJtgm5CmALJQxMDVsNIA7oDgcPng/fDikOoQ1HDHUL6QlWCJoHBwcqB3UG7QQPBBwDMQLSAL3+Sf1I/Cv7afoH+bP3xfde9/T2zvan9lX3vPfm9lb2RPZy9vH33fic+Zf7QP0w/zUAYgBcAfcBzAIRBJwEbAXzBTUGgwZaBvcGawdUB4MHNAfQBvoFoQRkBPADeQPBA6IDoAOSA5ICsQGYADz/1v40/qb9yv1q/en8zPy//Nz8Vvyp+xL8lPw8/On7dftF+5P7nvsD/Az8cPxy/ZP9hf0//Rf9b/2R/Q7+uP4+/g3/AAB1/2X/rv6w/tD/T//P/v7+I/7f/un+fv0P/m7+bP9v/xf++/3D/Y79fv1P/bj9uv4BABQB0gDgAM8AsAAfAZ0ASQBs/8H+ff8X//j9Bf5A/j7/vv8P/xb/l/4L/rf9Gvy1+5X8Df0G/vz9wv3Z/r7+D/9A/73+zf8BAPH/LACi/6//xP8IADAB7QFqAtICdAJHApgBkwAiAKb/uP+h/0L/Cv8U/03/Yv92/5//ZgBmADUAAgBL/1z/Q/91/wQAfwCoAXQCyQIyA7UDZQT2BFQFDQaqBkUHEwiFCCAJygmfCo8LCQy9DBINnwxQDNYLbgv5CloKLAriCfUISggWB5sFpAT1AoIBGQDe/iv+sfxe+7T6Hvqo+Uj5+/i++IX43Pci9zD2tfXj9bf12vVe9hH3wff+9zT4Xfhp+BL5cPma+WH61vps+9L7JPw//Uf+Lf8bAKAAQQGrAXYBGQGPAK8ATwGMAb0B6AEKAl8CMAJ+AUoBIwESAeEAGgCW/zj/uv6j/mv+SP5u/mb+uP60/gf+g/0K/Qr9N/3p/MH81/z1/CT9JP0q/a/9Sf7j/kP/RP97/9j/LgBUAEwAZgDeAFsBewFSAV4BDQK6AuYCogKzAuUC0gJ1ArwBMwEoAUAB+QBqACYAKgAKAMP/Kv/I/r3+bP6k/cf8Ovzt+8L7JPvA+sD62Prq+pr6Yvpq+qP6nvqR+qD64PpB+537AfyI/Hv9Z/4m/8P/VwAIAaIBQQKKAgUDsAMYBLAECwV1BQMGbQa8BusGEAcwB1EHYAcfB8IGmwaTBmkGDQZfBe0EwgRJBIsD1AJsAggCwQE4AYcALgAWAAQAlP8H/8f+0/6C/kz+Gv4a/qL+v/7M/hj/sf8BABQABwAsAHMAOQAdABIAZwDdABMBVAGnARQCRgJkAjcC/QHhAagBUQH4AH8Az/9v/z7/Dv/x/sv+4P49/zf/qv4k/pP9NP02/en8pfyz/ND8U/3c/bX90f1y/hb/cv/D/h/+Hf6E/n7+0f2b/Zj+/P/9/6j/rP9PABUB/AC6AGAAtgAHAb8AQAAgALMAgAHRAecBEQLzARkCqwHmAIwAWwAyAKv/M/8I/wD/Bf/4/gf/Cf+M/zQAJgCm//n+7f4S/97+Qf68/Rv+5v4E/0/+Cv6o/nP/8f/R/5b/eP+V/2//Hf7v/LH8N/0C/rf9i/0y/ij/QACw/8P+Hf/z/0UA3f42/Sb94f3D/Sn9OP2l/kkAngCnAHwAhQB2AOL/tP/K/77/Nf9B//j/PABMAFYApwCOAQ8C9gGcAS8BSwF9ARYB4QD6AFoB6gHEAY4BvQGlAZYBSwECARIB3ADGAJoALQDo/77/7v9FAAQAv/+8////GwCB/zD/Sv+O/wYAw/+N/5P/z/83ABIADADm/9n/b/+y/7X/pP/Q/5n/VwC1ACQBWwFBAXEBzwH7ARwCHAKuAdcByQGnAaEBSwG+ASQCSQJTAqYCEgMRAy0D+QK5AkYCYwJDAq4BRAFTAYcBSQEIAQMBegGAAYsBDwG7AG4A9v/c/2T/Q//J/oL+1f74/vb+f/6h/h//lP/H/5T/ef9j/3H/Qf8o//j+6/7b/uz+9v7k/hL/Lf+u/4j/n//x/7r/h/8y/wb/9v6p/lr+qf6A/mD+jP6H/sH+rv5w/kX+Sv45/t79of2P/bX9uf2T/bz9xv2j/Rf+ff4h/hv+Df7h/Wr+lf6//rf+Lv6H/jP/Ov9K/0//f/8wAJIAuQACATwBvwFAAlcCWwJ/As0CzQKyAmgCJgJZAnMCigKYAnQC0gL0AqsCZgLMAZ0BmQEiAdcA4gC+ANAAxgDZABUBNAGMAacBJAEzAcsAdgBuAM7/TQBDACYAUwCQAN8AvgBpAOH/xv/3/7L/2/5S/iv+SP7t/a79Rv5x/nb+iP6e/tn+t/5//mT+cP53/qf+Dv9O/2j/of8yAHMAugAAAQIBRAGNAX0B1gHyAaAB7wEQAhYCKgK8AZEBjAH9ALIAdQAWAM3/1P9//5b/6/9o/1v/nv9S/9r+V/7N/c79e/3W/PP8L/1U/bb97v1c/gL/Gf83/3v/Uf98/4L/aP+J/1z/rP/2/50AFwEbAZ4BCAJ9As0CagL9AesB0wH2AaoBdgFDAQgBGwHaAMsAkgCmAKAAEQC+/43/IP8k/pH9g/2k/W39uvzY/Nj89vwM/eX8Cv1t/c79qv2l/XH9ov2G/Vz9iP2G/fr9PP5Y/nD+8f5o/7r/uv9e/5b/6v8NAM//Xv+l/2kA0wCgAFgAegDeAAUBhQAYABcAawDFAD4Ayv/5/3IA5QDyAP8ALAGfAfMB6AFMAawAyQDSAMwAVgAMAFQA8QBZARYB9QAHAcAB+wGPAU8BGQE5AfIAQADf/9r/FwBoAKoAFgGzAfsB+AEJAhYC8AGgAWoBWgF3AWQB1wB/AH0AmQC/AHwAngDxAPUAuwDF/x//2P6q/nP+6f2r/cH9+f3h/cP9jv3e/W7+r/7h/tn+TP/f/zIAVwC8AHYBEgK3AucCFwNcA8UDPQRnBJYEzQQoBUAFUwUnBdgEvwSVBFMEGASkAxkD5gKVAlQCMgL5Ad0BCQIKAqsBLwHcAK4ATgDW/2r/Fv/z/sv+wP7L/sD+xv4f/2f/ov99/xr/1v5l/hj+tv1j/Sv9Kf1d/VD9Yf1l/R79I/0O/c38v/x1/Dr8JfyJ+wb7zvrs+jj7LPse+0H7evtg+yj74/qs+q/6mfpy+ob6wvrK+sv65vox+5H79/sm/FT8pvya/IP8Jvzo+xH89fvr+xf8XPzZ/Br9I/1u/d/9hv60/of+rv7I/mP/cv8K/z//uf+jAC8BMgFwASQC4QJ1A1kDNgOLAzsExwSmBJoEtgQjBYwFnAWLBZkFBAZsBn0GWgZABm0GvwYWByIHNgdXB5gH0Ad1B9sGRgYRBkYGPQaoBSEF9gQtBSAFqARBBBIEJgQcBLgDBANiAvQBdwEKAaQAbQBlAF8AMwDq/6b/ev92/z//Jv/v/rT+YP4X/u/91v0P/kj+p/7H/vn+Nv9l/27/If8M/+7+1P6i/kP+Ev7u/dD90f3m/QD+Hv4S/t/95f3V/Y/9UP01/Rb9BP23/GL8hfyX/MP84Pz//Hv97f0a/gL+Gf7//QP+TP4d/iD+XP6x/jL/Vf9r/7r/AwBMAIsAagBFAHsAkABoAH8AigCcAOgALQFoAZABlQGhAaIBfgF0AXEBQgE6ATcBKQE/AS0BNwEcAfIAAQECAfsAxACLAHgAdQBhAEgAKQATAAoA8f/P/4z/V/8f/wX/3/6u/sP+0/7f/tb+1P7R/s/+v/6t/s/+uv56/m/+n/7l/gT/Gf9v/w4AcwCSAKkAkgC4AMgAlABhADoAOgA3ADoAIgAbADoAUABWAFMALAABAK//UP8c/8r+dP4//gP+wf3C/dX9vv2b/ZX9r/3T/fv9Ev4r/jD+Uv6J/qv+7v4u/2//zf9FAJEA1AAwAVwBswHxASECaQJlAmcCrgIJAwsDLQNPA3UD4gOeA2kDfwMuA/kCqAJCAv4BlQFEARkBAAGwAHAAagApAAIAj//t/rX+R/7t/ZD9Nv0j/SX9Ev3Z/IH8aPyI/I/8YfwK/An8BfwH/AT83vsE/ED8k/zH/O/8PP2U/ez9Ef4m/nL+xv4e/0b/Wv94/6z/8f8jADkAKwBRAKQA+QDtAN8A2AAJAUsBYgGJAaYBAwI8AmQCWAJRAnECXwJWAkgCYQKMArICuwLdAiQDcwOvA9YDJgRoBIEEfQSGBJsEkwSZBLYEzAT8BEQFfAWIBZwFyAXaBd4F1gXFBX0FLQXlBJwEEASbA30DXwMnA8ECVAL+Ac4BXAHxAGYA4/+7/0f/2P56/iD+7P3B/W79Mf0Y/dP8gvwY/Kf7a/s7++L6pvpc+jz6RPoQ+uH5wPnA+dr5yfm1+a75g/lz+UX5HPkJ+cz4xvjj+KP4nfjN+Pb4Nvnj+PX4gvnG+Qn6w/nC+ST6d/rD+r36AvtF+9f7hPzg/FL9uP1k/uf+Gf8x/4z/4v8vAG0AYQDkAFcB4wEzAlQCyAI/A8QDBgRHBGAEtAT/BAcF9QTcBB0FVgWABWAFdAWbBboFuAWqBckF2QXpBQQGCQbnBdMFqQXHBYYFXAVWBUoFXgUHBf4EIgU2BSQFGgUiBTcFRgUbBe4EzwS/BLkErwQ7BA0E5QPDA3wD4wKmAlMC7gFuAckANwDo/3r/EP/2/pz+Vf4O/sT9iv0U/YL8HvwI/AT8qfs3+wH73/ri+rz6p/rV+v36D/v1+gH7Cvv7+uX6uvrW+vf6Jvsu+zD7ffvv+y/8JPxM/I78+fz7/On88fwK/TX9RP1H/Vj90v3//SL+E/4i/oX+mf65/rP+yv4e/13/kv/C/wAAMAB+AL8A1wDZAAMBQAFhAXQBhwG5AQMCXAKnAtICygLnAh0DDQPaAoECMAIzAi4CAgLSAdAB/wFWAn0CXAJbAocCvALiAuACugLaAgYDQAN4A18DfgO9AwkEYgSOBL8EwgT8BFwFcQWFBWkFiwXABeEF5gXHBacFegV7BTsF5QSlBFoEJQS6A00D5QKtAl4CzwFhAfQApwBUAA8Ap/9Q/w7/sv5w/hD+rf1W/fL8uvx7/Cf86Pum+577dPth+2H7OPtB+y37Afvq+qT6rPqo+nL6UPos+jj6KfoX+gj6LfpU+lz6LfoQ+hr69/nG+Yn5ZflQ+UH5Gfkt+U75YvmJ+W35lPnh+Qr6Fvrj+dv5/vlO+qj6qPrA+ij7pvsj/EL8k/wN/Zb9If5a/rP+Cf99/+v/SwCXABABowEIAnQCpwL4AjADaQOnA7kDBwROBHoEkwS5BPgEXwVsBYEF1gXeBf4F5gXWBecFzgWwBZsFpAXLBfEFAgYLBhgG9gXdBb8FpAVyBTMFBAXTBKkEZwQSBMkDfwMxA9kCjwJKAgMCxwFZAQcByABnABUAv/9Q/xP/yv5U/gL+qf2D/Xj9V/0o/fT86fzW/Nb8sfyJ/Gj8Sfxc/Fj8YPxl/IP8vfzl/BD9O/1X/W39cP1f/Y/9qv2p/cL98f0X/kv+bf5w/rj+4v7w/iD/Rv94/4X/k/+6/8H/7//1//n/IgBNAJAAmgDLAAIBZAGcAdUBBgIZAm8CbAJxAnAClgK8AtICAwMcA1IDhQPHA+sD8APvAwMECQQhBB4E7wP+A+sDBgQcBBkEHwQrBGYEaQRMBBEE/APgA6oDhgNFAywDCgPpAsoCmQJ9Al8CLwIKAtcBjQFZATcB9wCqAIUAiwC5AIAAbAB5AGYAWAALAPb/5//U/7P/mv+b/5P/fP9y/2v/Zv+X/6P/mf+N/27/TP8E/9r+y/6d/nP+Qf46/jj+FP7v/bX9hf2B/Vn9FP3j/KH8pvyC/E38MPwT/DL8Ifwp/Pz79/vi+8D7rvt5+4f7efuJ+237dvum+9b7C/wL/CH8Lfw5/EX8N/w//C38Vfx4/JX80/z+/Fz9gv2e/df99/0I/h7+Kv48/lv+Zf6a/qP+wP7S/u7+FP8c/1D/UP9Z/3r/pf/E//T/DwAiAFwAhgCQAKEApgC5AOoA8wAlAVwBkwGuAd8BEAIOAisCKwInAk8CXQJsAosCdgKKArcCyALSAvMCHQMJAw4D/gLrAvgC0wKKAmYCUQILAhMC9gGFAYoBUQELAfcAiABPADAAxf+X/1z/Gf8F/6b+jv6J/nb+Yv4N/vj9+v3Q/b79jf1i/Wr9aP18/ZH9kv2r/ej9IP5P/nP+iP6z/ur+IP8X/0X/k//S/xkAPgCGANYAGgFYAZ0B3AEkAlgCiQLNAugCFAMzA1ADcQOWA64DvAOxA7UDrwOeA5cDewN8A3MDcANsA1EDSANDAycDJwMZAwMD3gLIAr8CuQK+An8ClwKWArkC1wLNAtcCwALFAogCewJ4AmkCeQJxAnkCigKPApAChQKIAnMCTgIzAhEC9QGtAWwBRAEzAQ0B7gDPAKEAkgBWACAA5/+w/5b/f/93/1r/P/8h/wL/8v7Y/tf+2P7Y/tL+wP7D/r/+0f7U/r7+xf7r/v/+8v7h/tv+8P4A/w///P77/gb/BP8G//n+9f7u/uP+z/7J/rD+vP62/qP+rP6Z/pH+eP5d/kn+Ev75/cr9mP2H/WD9Sf0d/RT99vwD/Qf95fzy/N788fz1/O/88fze/PL87/zy/Or80fzg/PL8E/0w/Tr9Sv1D/U/9M/01/SX9F/0I/fb8G/0X/Sj9E/0Q/RL9AP0H/fz87vzf/Pb87/zq/Af9Gv0//Vr9cv2M/bb96P34/Qj+H/44/mX+kP67/tb+/v5A/3T/kv+z/8b/6f8kAFgAawB3AKUA1wAXATkBWwGDAbsB6AH3AQ8CJgI7AkECPwJFAl0CfAKIApECowKsAs8C4wLyAvQC9gIBA/cCBgMDAwwDBwMFAxoDFgMzA0MDPANNA1wDUwNjA2kDYgNTA1MDTwM/AycDGQMbAwkDCAMFA/sC6wLbAr8CsgKYAn4CbQJNAicCFAIgAusB5gHWAfQB5gG8AdYBzAGwAX8BZwF1AUoBSQFwAVIBYAFsAaUBuQGmAVoBUAFyAW8BbQH5ANUAHwFIAT0BGgH8ACgBOAH/AO8A0ACoAJoAdwBnAHMATwBUAFYAGgAaACEA2//0/+X/s//c/33/nv/L/5n/ov+B/3D/k/97/3P/X/8d/zv/M/8p/x7/9/7N/vL+8/7h/hP/y/7Q/tj+1f7m/r/+s/7C/sL+3v7r/tL+wv7O/r7+x/67/q3+yf6t/rL+lf6e/qH+jP56/lX+XP5J/mL+YP5L/mf+TP4+/j7+O/44/hn+NP4T/kT+Lv4J/gv+7v0l/hf+Hv4S/k7+gv5w/lb+X/6T/pf+kv6N/oL+r/6g/o3+nf6S/sb+4v7n/tD+Cf8G/xf/Gf8D/x3/+f4E/w7/KP8M//j+Hv8t/xX/Dv/2/hL/JP8H/xv/Kf9N/0z/e/9n/3H/av95/6P/kP/N/9f/8P/t/+b/BgATAO3/6v8OAPf/4P/K/7///v8yAC4AOgBFAGsAmQB6AHYAYABbAHcAZAAkAFUAsACeAM4AzAAgAWIBfQFxAWcBmwGFAYgBbwF0AX4BeAGOAaUB1gH7AfMBEQIXAi0CRAIlAjAC+wEVAhQCgQK1As0CIwPdAuIC0QJiAoYCmALUAi8DGQNBA90CvgIZAkACKwL5Ab0CewLQAgIClwHFAd0BQgKRAZkB3AF3AtAC5gEXAeoATAFtAZcAXwDIAIUBZwFIAUAB/wAuAboAngBFAB8AFADp/6z/bv8y/yf/Yf85/2v/aP8k//T+qv5r/mL+AP4U/lj+MP4y/kf+A/7g/Rj+vv33/d39zf3u/Zn97v3y/fz9Uv5P/of+/P48/yv/4f7x/vb+nP51/p3+r/7l/hb/Av95/6j/fP8I/33+If5P/Vf99f1H/g7/Rf8T/3j+Wf5T/if+Tf7s/e79CP7e/sL/6f+z/5v/ov8AAGcAcQAzAEf/Iv99/wEAPgCeAP8AagEiAdgAhAAKACYAcP///uX+pf+JAPIAmwAaAPr/kP+I/2z/Lv8m/xr/7P6T/lv+bv5e/n7+0/4Z/7v+av7p/Wn9f/1w/Sr+xP6H/vT+lf/n/zkAc/8F/zr/b/+UACIBDQELAQoBSAGuAbIBYgF9ATUBZgG6AXMB/QB0AJAAygAFARwBpAD4/zv/wP6o/qT+5/72/ij/V/8H/6r+Av5H/m7+GP/6/wAAQABNAIsAcgDkABgBawCWAPkA/gAKAWABcAH8AUECZALSAhwDhwNeAyADgwKbAWkBtAKPA+wD9QOoA64DYAOzAk8B8//Q/wkAMABJACYASQBIAP3/Df+r/j/+uv2I/Rb9Qf1C/Ub9R/3w/Wz+1P42/0z/X/9j/iv+J/4O/wkA2QAqAvECVQMgA4ICPwJEAgsCUQKdAgYDcAPDA88DeQNMAy4DpgJ7AjkCpQEpAWwAUwANANH/uv/H/xwAmgAfASIAqf6q/a/9pv4T/2f/Nf/h/lj/0v82AFoACADc//7/r/+c/2z/dP5r/ub+5P9UARICXAK4AXkAfP/L/p3+9/5n/9f/wQBmAQQBYwB3/wD/nv7e/ff9+v0k/jz+hf1N/Sv9V/22/cb9sf0s/ez8HfyU+3D7sPto/OP8sP08/pr+Tv4V/vD9rP3m/Uz+FP+2/1wAIwGPAZMBGQGtAJsADwGhAakBcAGCAesBRwK0ArUCQALFASoBewDF/8b+rP1t/Tf9rf0G/sr9eP0U/ez8Cvyk+0T7l/tl/Bf9l/1p/fP9O/7E/iP/lP+XAGUBDwIkAuEB9wEXAsgCiQMYBMYE6AQhBWMFYQU+BSAFhwSOBDYE3AO/A7kDVQOoAjoCiwGOAmYCcgLEAYAAiAAT/3L+zv20/Xb/cACNAbkBSgA+/x797ftu++77w/zW/DH+O/6YAFYBEQMLBeAEKQZcBYMFhAa5BnsGCAd1B0ULKhD4E2oYKhiEFrcRBg0dCkkJLwoqC9gLXwv5CgoIUQQF/x766fWM8ybyFfFD8JXuq+2s7J3s4OyO7E7sXusp6vPoU+gD6WbqdO0S8Qf1g/gi+238Bvx4++j6w/uy/YgAwQOzBnsJcQvVDB4N6ww7DDALOAoqCY0ItQdnBp4FqwRyBPwDLQOnAe7+D/x1+I31evO98hXzBPQt9cz1rvUJ9T302/Pb81r0ZPWh9lb4Tfpf/F7+XgBFAhQEhwWtBn4HCgiCCLwIXgmmCk0Mtg14Dk4OPw2yC8gJ8wecBsgFWQXzBDQEZANZAhABef/g/TL8xfqL+Yv4hvfH9qj2Zfaw9vD2Pfdt91L3Xvdy98/3TvgK+cP5pvq7+//8KP7y/oz/2v8pAKAARwHCATkCugItA6EDEAR1BMsEDwXgBJ8E8ANEA7UCQwIwAiMCaQKsAswCaQLiAfUA7v9M/7L+xP44/7r/aQDxAAMByQA/AKz/R/+9/pL+cf7u/fT+L/9ZAIcCNgSnBWkFZwIb/c/4g/VV91L8EQRSDcMRExQ3EmsPJg5SDX8NJg4cD7IQUhLIEqkTrhTjFRMXLhfOFSAT9w7KCVwFUwKFAdoCbwQKBZ4DFQDv+un0tu4/6abkKeIA4QXiAuQG5snoFOoP62zq+Ok/6efoXuk0647utvMh+rH/hATcBlAIbQjICAcJNgmwCRoK9wrdCzYNNQ67DiAOSgwJCfQEmAC7/B/51vZu9VH1Z/Wo9V/1v/Pg8V3vq+0z7BfsdeyH7fnu6vBV86n1QPiX+rn8L/42/wgAGAGrAvkE3gf6CgUOlBArEnASihEVEHgOEg1QDJILBAtvCm8J6gcQBtADeAFO//38IPtF+b73RPYT9Sf0BPRF9Mr07PT49OT08vSN9Qb2/fZ1+PD6KP0m/1cA+QBMAccBkwJOA4cEgAXFBvwG9gbBBpYGFAaIBY4EZgNZAjMBeQBg/zT/r/6Y/jz+9P1w/aj8Dfxa+9b6qvp2+1n8tf2o/p3/HgCEAF0BkgEVAm4C4wI8A5EDSwQCBZsFtwWhBQIFLgQWBLcD5wOSBLQFYgf2B0QItQZ/BC8CBgBU/nP9b/0a/pP/JAFTA2wEygVuB+AIigpyC1MMXwywDe0PiRRcGWkeGyJSIjUhgh2rGUwVsREXDuML8QkJCWUJGwh1BzgEEwBn+ZHxi+kF4kjcP9nR2bvcO+Lg5rbpWOlm5+nkG+QB5ZDnAOuS7vfy6vfD/ZcDJglqDRsQ3RAIEG8OpQw0C18LbgwED3gReBPcE3gRfw1CCIID+f6S+5f4VvZD9J/ymvF38PHvCO9J7rvsfup36MLmN+Yp5+np4u1W8pP2Cfon/CP9xP1r/oX/JgHkAgQFeAffCUEMNQ6GDzYQ4Q+yDvcM3ArpCNkGiQXqBCQFkAWJBbIEJwMpAQr/Jf1J++/5Gfn1+L35A/sc/Dv9Y/4a/2b/v/6F/er7uvoe+hL6ufq+++L8dv1l/bn8B/x7+2/78fvl/Kf9QP6s/tr+HP+C/wAAigAoAWkBVQHDALL/sv5X/of+0v76/qn+M/6y/Xj9Q/05/YT94P1d/pr+vf7l/m3/EQA2AUwCgQNuBNsE5wRDBLwDLQMkA2UD/AOkBAUFQQVPBVMFhAUPBtYGpgc1CD8Ipgd9BkwFcQQGBIUEIwW3BYAF3gSYA2oBtv8F/qr9zfwk/cr9LP94A4YIBxH1GFogxCP8IvoelBj/EroPvRGJFykhiyqWMVczki+QJvoZ3gto/RjxpOaa32Hb6thg11vW3NU91qPXAtow3ATdSNxX2hvZV9rK38zoGvQy/00ICA4eEDkQdA/9Dp4P0RAVEvYSZxLUEKYO2wxxC6wKbAlrB1gDov3Z9iLw3+rr583nVOk27GTubO/27gDuxOwk7PXs9u7s8RP1Jvjd+on9lQAlBBMI2QvTDk4QRRDrDvoM6wpTCYUIZQixCKIImgctBeUBPv4M+7T4R/ek9m32efZl9of2/PYZ+AL6Xfya/lAAdwHvATwC4gLpA5YFmgekCVwLQQw1DA4LZAk6Bx8FDwNAAVP/hv3F+036XPmY+DH4S/gS+c/5XPr4+YL5Dfko+Xn57vmC+gX7zvsU/FX8Sfye/IP8XvzS+y/70fpT+kv6Cvpc+pj6KPvn+9b8Hf5u/woBJAIDA2YD8wPTBAcGawfaCG0KsQuGDEEMewsXCsgI0wfWBn0GJQZRBr8FHAU3BJIDLgOpAkYChwEQAScAN//R/cD8NfxW/Pr82v1A/28A6wFfA4MFHgjtChcOIxF7E+QUPxXZFnQZ9B4DJ3QvtDYpO7A6IzaZLvsjYhkuD9MGx/4Z+BjxeuvQ5wHlGeVL5EbjRd/A2KvQcMnWxX3IbdFR393u//rxAloFfwU+BcoGSwo+Di4SnxQeFUcUmBJKEcUQphDDD6gMBwf+/iP2xu2p5/bj9+Jx4wflYebU5qrmgeWm5FHkUOUp5xHqiu2d8Tn2KfueAOgFGgt3D7MSpRQqFRMUEhJJD1kMxAm1B2YGVQV+BC8DfwGD/0/9Hvsb+Wz39PWs9J7zx/KB8hjzifQj9076tf2nAAIDcwRWBdoF7wUcBoQGKAfHB2cIdwhXCD8ISggBCEMH6gX/A6ABLf+6/L36ZPmq+Nv4cPmc+sf72PxS/ZT9QP3G/Cv8iftc+2z7Pvz+/Pb9qf43/4//Pv+a/kX9wvv7+Wb44vZi9SX0OvMJ83fznvS/9df2RPcs96f2fPYy9xP5O/zG/6cDJwefChoOQRHGFMMXZxp4G9Qa9Rh5FSsS7w1DCsEG1gPCAbMAtQAgAf0BvQGRAEv9qfgA8yTuz+s27P7vpPS++v//WQV1Cp4PZxXWGbMd2x87IbkiZyUsKVgtpC/uLgAqCSJQGaUR+gwlCm8HrAKh+knwdOVz3KTWDtSO1NzV09ea2cnbvt9c5dvtm/dgAXYJrA7dEDAQMg7qC3cK6AqXDVUSMBh8HUggvR94G2IUmAt5Ajf6KPNB7crnu+LG3fXZLthF2TvdZuIX5+DpROqJ6GHmB+Xi5enptPAf+UwBWQhbDd0Q2xLpE2UU2RNwEtUPiQzpCKcF8QIoAUEAq/8T/7L9nvsl+db2kvTB8lfxgPCb8MvxRvT/95T8cQESBtYJSgwnDbEMAQyeC8cLiQybDV0Olg4dDicNzAsoClkIKQakA6QAM/1R+SL1NvF27hztQe2b7r3wDPMr9Qz3xPje+oH9gQBcA9oFtwchCU8KIguVC5sLKwsCCjwI2gUWAzAAdv26+g74aPWo8v7vlu3V6wDr8eoi64/rYOwD7uHwr/TV+H38YP+CARoDqQTlBgAKjg0KEVoT+xP/Ej4Rqg/HDmwO6Q3MDDsKkwa3Aof/Hv6N/rUAPQMWBSkFxALn/eT3TfIn7u/sKu478k35cgOaEOgedyxTNkE7ljsJN0MviyUKHJIUKhCkD0oR+BOIFd4URRCjB1n8N/AA5ibfSdvM2O3WN9b+1zreM+nj9vsDbQ1oEYsQng3mC5sNGxLSF6kbuhyEGyAZMReaFYgTgw9OCFf+YfOj6cfie99v327gMOHJ4Mrf0d733YrdR90p3eXdhuCl5VbtwvZzANUIPQ9jE7MV9BZlFysX9RVsE5sPBAu4BpsDsgEzAFL+e/s09xHyrOzB5wLkl+GM4O3geOIH5cPo2O3t82r6lQCaBXwJdAz6DmgR0xNQFo4YYRp4G1Qb6BlfF9wTjw/BCsIFGwFE/SL6mPeD9cXzO/L88AHwVO/87sLuqu7g7r7vhfFX9O734/sIACoErgc0CpUL+AvQC34L3wq8CQkI9gXNA5cBgf+K/an7v/mp91b17vLb8F3vku5n7ubu0O8h8cTyvfTx9lH5tPvq/bf/FwFZAooDtgTNBccGhQcYCE4ICQhcB2MGUQVXBIEDqALuASsBZgC2/yr/1/7x/j7/3P82ASoD/AXOCOEKdQtgCvsHNwU9A1YDHwY3CwASShlIIP4ltippLtQwNTEULjQnlxuZDjwBdfdX8Vvulu0l7aLtpO7K78DwEPAs6ufgONVHzVXL/9EN4L3wegL/D1saTSGoJkIrEi8QMWwwoysVIl0WtglVAEb6BfjH90z3CfYp8hbtsObn4PLcGduq2/Lcv95Q4H7iVuXh6OjtevMQ+nsAIAYFCtgLKAwrC+IJlwhpB6QF4QP1AYoACP+o/av8a/tl+o74dfZI9DLyrvA+79/t9exs7EHtOO+N8pb21vr6/m4CagUdBzgIEAkiCrULmw13D0oR+RKPFEcW1RfvGNcYhhd9FM8Pygm8AnX8v/f79I/zuvLv8afw7u+v74Dw9fGG83P1OPda+UT7Zf2v/2QCvQXOCKYLqg3NDiMOrgzHCXcGCwOv/wr9Y/rk+Br35vX19Kb05PTY9OP0YvTC81jzifMx9DX1ivZD+E36Qvxj/gwAsgFQA/QEOAbTBvYGygZqBikG/wX5BRwGNAbwBQwFqANDAusBYAK7A9sETwXxA0IBUP2X+fP2PvZi+P/7JQHQBFwH+giWCuANeRLiGfggpSnsMC43izoFO0U4ujGaKFobOA68AAf4cPGk7nLsLOpY6fLn9ugl6IXmneEL3DzX4tUn2Wzik++Y/r0MeRVnGqoaHhqBGdwZsRlMF+QS+gy6B30E3wI3A4EDkwNWAin/5fpQ9RPwD+uK58rk/eJm4gnjMuUc6Lnr1u9A9Lv4Xvwv/iL+uPx2+8365/r9+2j9YP9iASID1gTzBcoGDgdbBr8E0AFD/gb7gPg79+b2ZPeM+Mj59PqT+8r7rPuE+xv7Sfo1+Q34p/eJ+Fj7VP/jA2EIGQzxDq8QbhEvEZQQlQ/rDgUO/QyVC+gJZQiwBQED+P8l/db6JPkU+D734PbR9mr32fhB+13+TQECA8wDjQPFAiICtgEFArcCpQO9A6kCzABK/tH7rPnr95b2bvWe9I/0EPUY9u72qfd7+Dz56/nP+Rn5wfeq9uH1D/Yj9/P4cPut/a//XAF4Ax8FdAYIB9IGewYzBb0DyAGP/4X9j/uF+pf6k/vj/Y4AAwO/BM8ErwN7AT7/kf1W/DD8F/wE/Lz8M/0xAFkFhw46HE4r4TlpQ8hFU0HkNxUtsSTnH2Me8ByGF80OwwJQ9mzszua95Xnm3eQA4STcFtgc2KvaXd934zfmI+rc70r5oQW6EakbRyHKI+IjRiKMHzYbWBUYDbwDMPvp9BHyOPIT9Cn2c/dJ+Br4Xvcs9mn0VvLl79vtYOzJ6xTsTe2K70ry1fXS+bv9WwGwA+YEQAX7BHkEggNcAhMBv//k/tv+s/9TAWADRwUfBmkFygNpAcb+XPw6+n741PaA9SX0XvMN9P71+/iB/Pz/0QIgBBUEbQMfA9ADeAWLB1gJZwouC6wLUAzDDMAM9QvgCRcHSwOq/3f8Dfq1+BH4gvil+fr6Uvx4/XP+a/8IAHEAiQBSADcAiv/e/l3+Jv5z/nX+pf6r/q3+j/5b/sr9C/30+/D64/ma+F736PUu9QL1+PVO9+H4Tfov+8b72fvI+7b7w/vN+8/70Psf/Jv8Kv0y/jX/IADBACUBeQH8AZICXwP6AzUE7AP6AvwB1ACT/4/+Af5a/lz/kwAVAZ/+8vm68tXr/+ZV5lvrN/QH/+4J0RKjGxEmVjTGRkdW/mC1YDFUwj9YJywTVwTr+/P3QPaA9Q31dfQo81fx6e5q67DmSOGq28HXPtWT1YPY5d0Y5hPwV/sVBg0P4RRYF3cXqhXUEqEPZQxlCc8GRgRMAcb9XPrc9/b2pvc7+Z76s/re+B/1HPCx6m3mReSa5MjmoOm77NbvWPO69oL60P5RA0II4QzsEI8STBJ9D5ULvQfUBGADmwKSAvkBSgHf/4T+Uv1l/FH8hPxT/HD62vZT8m3uTuxd7G3uF/IS9/n84wI/CDsMbg9SEqIUZhafFh4VFRLiDgEMpQmxB7QF2QMQAt0AAABi/07+z/yy+jf41PW282ny7/G08rPzBvWO9mj4ufr9/HT/hAGWA1MF6ga9B7gHtgbdBK4CTACd/gb99/vZ+uv55vgq+P/37ff595z3Avcm9lz1X/SA87fyt/LY86z1C/hW+sn8NP/OAVEEswbSCAkKiQrdCU0IYwZTBPcCPgLxAYsB2wBIAA4AlgGVAx8GmAYNBa0Bvvwz+Sn3fPa49yH5yvh4+Pn4NP8+DNYeuDOzQldIRkJINTwldxfXDQ0JBgjPCHcLYgzJC1oI/wNvAAP/Av+N/gH84fUJ7mLlQN7K2irc3+LJ7Wj6nAXpDbkSFRUNF0QZ0xstHdkbrBaoDOH//fJe6bLkYuVO6TvtOO/t7o3tz+uu6k3qI+pY6f7nwuZt5oTnO+pS7gDzbvj//sIGIg+fFqMbWB2jG6oXpBKwDXkJAAb5Avn/pfzG+Oz0tvEE8EPwEfJ49Hz2S/fx9pr1z/Md8lTx/vFX9Ar4VfyRAGcEJwgxDH8QlhTMF3QZaBmDFxAUjA9+CsYF7gE3/6n9zPz++wf7xfm4+AX42fcd+G748PgH+eT4u/jA+H35lPo3/I79v/5y/wwAdgC+AOkAzACjAH0AegDB/9P+Pv22+yb69vgo+Ef3mPas9RD12/SO9c328/eh+MH4tfgt+Jn35fZe9k32wPbQ9x/5wfqv/N/++gDtAksEJwUGBuUG7QfsCLkJGgp4CdgHiAWJAvz/rP78/rsA4gL7BMkFmgVGBCgC6v5q/K/6NvrD+y7+tgHIBFQIOA7wF5wm+jnLTa1c5WBTVuZAwiVmDjX+rvRA7p7mlt0s1d/SL9eX4UDu//gM/2P/avvV9JjuKOsi63PuLfQb+0YCkQmUELsWchtWHuIe6hyBGS4UrQ3YBXn9VPWN7ZbnRuOR4fjhp+NV5vnoF+w+7/vxJ/RH9Wj17fSv9Gv1A/ct+SH7xPxU/lUAigM4CNENJhOfFtMWdRMtDd8FKP85+tD2C/RX8bPuJe1r7dDvwvN++Cb9zgD+AlgD9QFr/4X8Nvr7+Pb4+PnP+2L+pwFfBVMJ1QyJDxARQRFzEK8O5guZCCoFGgLj/9j+4f4e/6v/qv/d/rH9m/zv+/r6AvqP+MX2QfXJ9Fn11vbs+OH6jvzF/Tf/dgC9AesC5gNuBGAEtANBAhoAgf2Q+uf3svXl8xHyKPAL7wXvffD68sL1s/d4+Fn4nPfl9oT29/ZJ+C76EPxd/QL+uv6TAMsDFQhuDJUPzhAYEOwNNgsPCFgFqgLj/zT9EfvL+b35jvvX/T0AcwHxAdcB5QERA9QDmwPSADb9HvmH92b6ZwRxFPYnBTszSPtNL0v6Q386xzCQJgwagAvO+wLvfucl5Vrn4uqt7tfxZvSK9ub2KvbL88PwRO0c69zqXezo7w310vs+A/YKGxIbGLUbxhyMGnkVpg68BiX/Fvhp8tjtXOqJ6Jjoaeoc7e7vn/KS9P71FffK9wT4dfd+9vL0y/Nb8xr0aPYW+sj+3gN/CM0LrQ0+DjgOng1uDDQKagZrAdz7Rvc69AzzgPMC9S/3P/lM+638s/1F/j7+hv3b+6b5j/eN9gn3HPk3/Jb/uAKnBasICgznD34T+RWQFv0UfhH0DKwIXwVvAyUCvwDD/hf8JPlk9kL0LvMf88vz5/Th9Zz2G/fk90L5R/v7/asA+gKxBOYFrQYNBxYHwgYMBtUEPwONAev/Uf6e/MD67/g699H1z/QO9HTzxPIX8qDxqfEO8rfysPP49Eb2nPcx+fz6//wq/zABrgKaA9wDbAOUAsUB0wAYAGX/X/6b/a78O/xq/K39HP+4AOAB/wFAAtgBjgLYAncCO/8C+bvvHuYg3zTeUOUJ86YF8xfkJwIzQTtqQlZJyE8yUwRR90bZNnQkVRLuA6z59/Iy76DsDuzK7PDu/vHg9HD2iPbD9HnxHu6z60nrXexA7gnx5PQH+ngBagqvExAcXyGaI+oiaB/DGYcRawfj+9zvDeWR3DzXjtQz1KXVfdgQ3fHiMur78Tj56P5BAvIDiwQ5BZAG/wc5CXIJxgj+B70HegibCSIKJgl7BgsDgv83/Kz5mfe39Xfzq/Dx7djrWOuR7E7v+vKR9kv6lP3sAFwE5Ac5C9QN0g/OECkRLxE+EYERkBHREBMPnwxmCtcIHwipB5UGlQRgAZz94/nT9qP0XvP08oDziPT99Zn3r/mB/Gn/eQLPBFUG4gazBr0F/gMwAm8AN/+x/q/+K//y/4UAJAFqAYUBRwGWAI3/zf2h+634cfVp8tbvDO4B7QTt8e0m74bwEfKt82v1G/fT+Hj6G/0WALgC6wSmBpEH8wcqCOoHbAfABX8D5gCM/jj91f20/2EC2AWZCDoK4wmJB8ECQPzK9MPtfucn5LjkDOmh8F35PQK/CRsSah13LEo+mE+iW5NejViDTOk9zy/QIxsYigrC+WLop9lC0WzSAtqB5fHvyPYt+i/7Kv3q/0kDjQTFAof9Wfbu76nsFe5o9PH9AQigEIUVfRfxFo4V9ROoEXANQQYd/OXvWOP32B3Sgc/b0AfV3Nqf4CrmA+v07y716fq0AGwFhQgJCZoHQAUsA6MCwwOnBakH2ggUCV0I3gaXBWwEdAP+AXf/3fu+93fz5e9l7VrsZuxZ7dru0vAH9H34R/51BB8KNQ55EFYRaBFBETUR7xAIEFEOJQwjCvIIAQnrCUkLgwwkDYYMgApjB80DKgDK/EH5XvVU8W7tO+qA6HTo4+ma7DfwP/RX+Iv8iAD/A9YGyAiZCX8J5gjSB+EG+QVABUsE6QJeAX//4P1N/PL64fnn+C34V/de9jb1g/Ov8fvvZ+5u7UTtM+5f8Hfzd/ey+woAxQRtCREONBLnFA4W/RRbEukNoAgKA2j+C/vb+Or4bfkJ+8D8T/60/4UA9wC4AJT/f/5L/R38LvuR+RX3KPTu8hj2hP75C5wcuiw4OdlAQkUDRxtHNkUAP4cz2SF9DB33ROUm2g3VStWi2ODc2uFm53DuZPZ4/j0FXwmsChUJswVFAbn87fgw9uf0ffWV9wL7N//PA2sIcQyJDw0RbRBnDfAH2ADT+M/weenr4mvd0tiZ1TnUVtUn2UvftuZh7kv1wvr7/ngCgAV/CCMLyQxbDRwMswlwBuoCFQAP/in97/zc/H38Afxu+z77YvuI+1f7gfoC+e720/QM8wHy1PGT8mD0Kffy+j3/kwN1B4wK2Ax7DvkPqxFjE0QU5hOGEs4Qjw/3DnsOZw3AC34J2AbkA8kAf/0N+sv2B/Ta8XTwCvCh8BTy+fMM9v73z/m/+/r9oACWA3AGkwiZCXUJnwhTB/QFrARVA80BsP8k/Xj6KPh59lz1oPTo89/yo/Gh8CvwdPC88ejzkPYT+V/7eP2e/0ICYwW5CLgLxQ2ZDhoOtwzkCgQJPAfKBY0EfAPnAtoC4QOTBZoH+wgBCUkHDwTf/1z80/r5+6//NQS6B/wH1wXzA/sEkAqgEyEd6iL7I34hqh+oIYIoTTHlNiQ1KioNGToG8fbg7HLn/ON132rZHNMB0LvSw9sG6cf2igECCN8KIQyIDfYPSRKnEhsQQwrYAvr75/fF97j6zv5MAlMERAUDBnoHcwmyCmUJPwSR+yjwaeQI2gvShcyiyEPGQ8YzyaDPcNnP5Rzzr/+8Cm8TMRpWHucfBh+EGyYWjA+fCFYC/Pzh+C32oPQB9EP0ZfW39s33YPhm+Av4nPcu98T2NfaN9ef0lfQl9fD2/fn8/aICeAdWDGURbBYLG6sexyA7If8fUh0sGccTsw1xB40Bcvxu+I31yPMc83TzffTo9V33//jg+vP8Jv8OAX0CSgOwA/gDZAQpBToGlAfDCGgJOwlUCCUH4QWQBNsCkgCi/QX6D/Yy8vbuf+zK6pHpt+hl6LTo7+lv7FbwSvWg+lf/HQO3BX0H7gjiCZ4KuQpkCgcJ/AZEBKEBIv95/XT8G/ya/FX9kf6w/0MBsgJOBPMFuwdsCY0KAguiCsQJzgiQCPsIVQoJDKENxw55ECkTwBd7HgUmRS2VMjw1SDV8MusrUSMwGJAMyAAq9m/s5OM03tHZxdlC3OzhYuhG7sTya/V89qz3qPmH/P3/qwHuAVn/i/x0+sv61v0cAmMG6wixCZgJ2AhtCPUH3gbZAy3+qvZo7dHkZd1f2DjV2NNl0+rTw9UJ2VLeMuVE7Vz16fwXA1EIaAzeD7wShhQDFaMTuxCrDEUIRAQxAbf+bPzS+Rv3oPTT8inyn/L785r1CfcZ+Mf4ZPlM+rz7of2Y/14BqQKpA8UEhwYnCYMMMBB1E+YVUhcCGCcYjxdQFmUU5RHiDj0LTgdGA7X/+/xb+1/6t/k2+e34//iA+Yj61/tW/bP+8f/3AOkBygJ9AyIEZgSNBGgECQSUAwADegKlAacAYv/3/X/88/pU+ab3yfXw803y/PAi8MTvEPDh8OPxNPPj9Pb2oPmd/K3/fQKmBEgG9AYnB9MGIAYwBRcEEAO9AakAcf/h/kT+0v0G/b773fn/91/2A/Za9036e/77AY8ELQUNBV8FVgebC2sRjBdlHIUgpSTVKWAw5DeTPiFCU0HgOnIwCCP6FOAHnPst8eDmut0r1irRk9Cb043a/eLP67nz5Pmh/vABpgReBj8HHQe2BRcDs/+K/HH6rvk6+o/79/xC/jH/EwDpAJgBjwGJAF3+6fpq9jPxwutP5jbhr9w/2RHXQ9b51hXZbNwe4RHnJO4b9jj+3gVQDCwRVhQ1FiUXWxeTFpkUWRH9DCsIcANj/yr8rPmj9+P1YPRq8x/z0vNR9Yf36/kp/BD+of8zAcoCsgSfBp8IZgr1C1INjQ7kD2sRLBPeFAsWRxaFFfITBhLVD6ENMwtkCGIF9AGZ/rn7f/kl+Ib3Y/dt95b3y/c8+Cr5jfpr/FX+3/8FAdEBmwJcAwkEjAS/BMIEQgRVA/8BXQCS/oP8Qvqp97X0tvHa7kXsBOo66B3n7eav55TpSOxp7/Hy3PZN++7/LgTDB3IKKAyZDNsLNwoTCKwFBgNzAEb+sfy0+9D6z/nK+Aj4Avjh+Lr6Qv06ADUDngUnBwEIfAhVCYQKFQzpDZIPQRGBE/cWIhyzIoUqcDI4OZQ9Pj6KO1M28y8lKS4ifxq1EDUEn/W75yTcCNSgz7PO78+W0kPWsNuz46TubvtTB+kQchayGMsYMBgrFwwVchEiDLEFHP9f+VT1KPOE8rTyt/Im8h7xE/BI78Xu2O2/64bo4+Rt4YLec9xb2yvb+dsJ3mHhDObY65ny9fkkAYsH1QwTEX0UJRfdGGgZURiRFVYREgxqBusAB/wQ+Pn0kPKe8E7v5u6776DxSfRB9wr6iPyx/rgAuQLrBEIHognpC78NKA+CEBgS6RNVFRcWOxbpFW0VrhSXE9ARgw+rDEYJhAV/Aaz9TfqV93f1CvQ98wDzZ/Na9Nr17fdj+tj8E//IACkCFwOwAw4ENwQhBGQDQgK5AB3/i/3x+0H6RvgY9tvzvPHc71juMu2O7F3sjuwE7Z/tku7T73nxSfMr9cT2LfiI+eb6U/yu/QD/TAChAdsCRATsBb0HhwkfC0EMlgwoDDEL7wmyCHsHdAZUBaUDBwHA/VD61vfH9tP3/Pq6/8wFrgxlFBsdzSYDMjM9iUdcTuFPCkxEQ9g3tSu1IP0Wiw25AmL2y+lR33fYSdbm127bad+W4vTlLOrN71X2tPzWAcMEcQUDBV4EHwQ2BBUEfgMUApcAb/8//6z/EwAVAHz/Zf4x/f77t/oE+Yj23PIY7gbpxuMy34bbCdmv19TWZ9bt1tjY5txx4zbsA/YX/3sGtQuYD+cSShZcGeEaBhojFvkPOwl4A5P/af0+/N36wfhh9oj0OvTL9f740Pzy/4oBlgGvAPX/YQD+AS8E4AVSBqsF4gRjBeYHGQwEEY4VuBieGgQcmh2MH0ch6yFUIDocFBa1DjQHQgAw+tL0++9e6y/nFOS74qHjW+Yg6v3tiPHE9Mr3rPqM/WkA5gJ/BAMFVASvApUAav6X/Pv6R/lP9//0hPJc8Pnuau6F7gvvuO8u8H3ww/BL8UrytvP59Mj1IfYm9jn2nvaK9/v43/rk/Av/RAFiA1gFQAcgCfEKZQwtDQYNBwyHCiMJCgglB7cFGgM4/w/7y/e29n74lPwHAtgHvA0uFPgb+CWiMbg96ke+TctNAkhvPqAzACq5IncczxQRCp78pO5M41Pd+Nw94LLk++dQ6sTsS/Hn+KMCegxdE44V/xIhDUYGdACf/IX69fgi98z0yvI48s/zs/cC/RICWQXWBW8D7v5d+YDzt+1W6LvitdyS1gDRU82dzGnPINV/3DPkcesy8tX4hf9OBpYMgRFBFMMUjhMaETIOaAvsCKQGRASRAZL+wPvY+VD5NvoA/PL9Q//D/7X/V//v/rr+c/7E/X/8g/oO+P31OfVv9tX5Jf9oBY8LFxEmFi8btSCoJgQsTy+GL48s5SakHw4YmhAeCU4BM/n/8MjpS+Q24avghOLu5RrqPe5Q8lz2UPpH/usB7gSTBrwGXAXlAu//Iv3R+s34+vbp9LrywPCN7z7v2e8G8Wnyy/Ni9JH0XfQt9BP0KPQ09P7zg/Pf8pny1vK/8yj1y/ZO+KX5uPrk+yv9a/6i/7AAzwG9Am8DCgTJBOEFHQcnCL8I9QirCAEI6gZ4BdEDVAJwAcwAtAAoARIC4AOqBv8KBxHXGGUhASl1LuwwHDGjMOwwxTJuNNAzYS9ZJpga5g2OAsz5GPOV7kbrOene6P7p++w/8ZP2ePxvAQcFNwbSBLUBcv3O+XX3qPbu9pz3RvjS+BD6lvxvADcFwAkkDakOHQ5lC5MGLQBI+B/wTeg24fTay9S/znDJ+sUrxrjK/dIE3X/mgu4H9S775wFtCekQchZwGCAWcBB1CUADBf/W/JX7Xfqj+Nr29/Xi9t75cv55A3oHnAnlCdEIFgdWBdYDlQI5AW//KP3m+qb5B/oK/GT/jgMNCJYMExF5FY0Z/RxbH1Qgqh9kHe4ZxRU1EW4MlQfTAk3+dPqw91L2dfZs94P4UPmj+dT5Lvrb+rz7Yvyt/Eb8bPt8+uj5I/r7+gL8m/yk/Fj8IfwE/PP7vPtI+5L6V/m896j1avNF8X7vLe5W7c3sb+xg7JTsQe2b7nTwfvJd9Nr1KPeI+Ob5PvuX/Nz99f7g/7MArAHqAn0EIgZZBxYIDQi0B08HLgeRB9IHlQfYBkwFZQN5AXwAdgCqAWEEtwdDCz4OqRBFE74W5Rs/I/4r/zTTO9A+oD2yONIx1SlYIu4ZlQ9hAuLzquYb3rvcQuEb6abvlvIE8m7wyfAu9an8XgQNCbUIcARQ/qv5ePg4+pH97v9zACj/Vf3v/O/+QgOvCE8NZQ/ODcsIpAEU+gnz1Ozt5gfgr9c6zuLFJMEAwY3F8szp1BjcTeKo6BDwlfi7AZwJ4g77EGMQmQ6DDFQLCgviCkAKkQj+BXsDDAI6AuUDRgY2CLwIhgf+BB0C1P+O/hX+o/2e/KH6SPib9sr2Tvm5/fwC7wcCDEYPWBL1FQYaxR1OIAQhwx8bHfQZABc3FGgRTg7LClEHFwRbAUL/lf0t/CL7ivpp+qH68fr8+rf6Nvqs+Vn5Lvn7+Ij4v/fp9lD2GPZi9g738Pe7+EH5cfkz+cH4I/h797r2wvV09NzyJPGQ74juTO7O7tbvJPFl8onzkvR/9Wz2R/cZ+Kr4/vgr+V/5tfk1+vf64/sA/Uf+uv9GAboC9QPmBJsFiQZ7B2EI1whwCOsGkATJATf/OP0Q/Gz7FPvb+uv6m/wWAbwJBRbDJBozMj6wRK5GKUY2RclEN0Q7QY05qCzyG1ILAf7l9RfyAfCy7ODm79/c2sTaaODL6YPzI/pS/Dj7vPk9+gz9vgC3AkYBq/zo9i7zUvMO96T8RQG0AwIEhgO2Ay0FEQejB1YF2/8t+Pjvj+io4ljemdpm1/XUG9Sr1UzZTN6J41zoyuwY8dj15vpv/70CJAS2Az0C3wC/AAoCMQQlBvMGSwblBPkDcgRpBs4IKQpqCYcGjQLw/s/8UvzE/Pn8cvxb+6/6d/sr/oUCfgfNC68OPxA+EYASQRQsFmIXGRckFegRVA5rC6UJ5QjVCLoIhQguCOoHRQhACdIKWQyRDT4ODg4MDRwLTgj0BGwBIf5L+9D4kfZ49KLyc/E28Qfyg/M29Xb2Ivcs9872Nvaf9Rn1hvTb8/ry7PG68LvvC+8F78TvJ/HK8j/0WvXd9Qb2OPa/9p/3r/ii+Sv6KPrG+Zn52vm3+v37VP1j/pD/rwDRAScD2ASfBv8HqQg8CG0GOwOF/wT8hvn/9633z/co+Ib5tftx/ykEVQnFDf4QBxTwFyYexyYoMbw6O0GZQ+RBcD1ROLgzKy+NKa4hNxf+Coj/9PYB8u7vle4w7CLozONb4RHieeYN7UzzNPdL+JD3jfbu9kH5B/25ALECyQJsAfD/vv9sAaMEYQgQC3sLFQkcBJ/9ofZA8BbrC+fe4/PgCd6e22nadNsU38rkceug8U/2EPkZ+jb6UPrZ+sT7ovwc/dH89PtA+2/7Kf2QAPcEUAm3DMoOsA+9D30PQA/ZDtoNpAsYCJYD5P7d+nL4c/d19/n32fgH+sX7XP69AXUF1wiDCwkNsA2eDS0NwAxxDEcMIQzyC/ALMQzkDNoN7g72D5oQ0RASEEQOkgtQCBUFCgIf/0L8R/lQ9rzzCvJw8bbxvfIt9M/1Xve4+Mn5pPo8+5z70fvT+5b7CPsx+i75QviD9/z2uvaK9i/2fPV49GTzh/L+8a/xOfGD8Gbv6+2X7MzrvOt87Ojt0O/v8SP0k/Zw+b38aQAcBEwHZwkxCnIJxwd6BXUDdwHx/1L+nfzy++P7iP0IAAkD6gRtBEwB+fu/9sjzSvUo+9wD8QwcFJQY2RuRIF0oMjPQPnxH20kFRcg6XC7wIiQaMxMlDJEDS/km78rnYuVK6Dvvb/cZ/p0BswGT/+b8w/pF+Q74fvYL9PnwAO5C7PvsffBZ9mj9/AOmCNUK5Qr8CdoI4QfVBsoE+gAw+y70UO0u6MnlKuZD6KvqP+yp7MHsbu1g71/yffWK96P37vUx86fwV++Q7w/xW/MM9uf4BPx1/18DqQcxDJcQbhRGF74YyxjoFpETUg/ECowG/wJSAFb+A/33+z77Kvvz+6f9OQATA2UFwQYEB3cGmQUWBUoFLgZcB1QIywjGCJQIkQjICDUJ+gnlCqMLtAvECr8I7AXeAi0ADf6D/Ef7MPo2+T/4Y/fW9qX24/Z99yv4ofin+Eb4n/f09nj2SfZQ9n/2yvYo93D3u/cC+Dn4TPgf+Hr3Uvbh9HTzYvLL8ZTxqfEH8sryofO69An2nPd6+ZT7rf1//80AYgFIAZQAhv9g/oX9KP1P/fn9E/+oAJsCrgSYBvkHyAjACOAHbQavBAMD4AF5AZIB+QGMAgMDggMlBE0FKwdGCuAN/hDnEqMTchNgE1YUTRZWGS4cSh6YH0IgdyEHJMwnKCzoLjgu4yjKHsARuwOw98juaulI507n8+h665LulPFU9Hz2rfcH+Fr3rPUc8/7v1+xc6iHpo+k87HHwa/Ue+pT9gf8PAAIAEADmADACVgOrA7QCdQBM/Qb6Qfde9Vz07fOb8x/zPvJR8avwhvAG8RTyhvP+9Cz2/PZ499P3QPjN+G75Ffq0+mj7a/zf/eb/bAIQBUkHsQgpCekIUwjGB4kHugcxCKYICgliCdAJYQoEC4MLngsiCwIKUQhRBnoEDAMqAqUBNAG3AGIAcQDxAOIB9QLzA68EGwUXBZcEtgOlApMBlQC8//b+SP6t/TT9yfxz/D/8MfxM/Hv8p/yq/IL8KPye+/v6PvqC+cr4JfiE9+72dvYU9tL11/Uh9p/2LPeM99L3AfhL+Lj4bflM+i37/Pt+/Lf83PwI/Uf9xf1D/t7+Xv+R/4T/If/M/pX+ev6c/uT+O/+L/8L/9v9NALoAVAHlAW0CwQLnAhADYwPqA5MERAXqBUgGeAakBvMGtAeoCGgJzgmhCQQJsghPCZ4Lmw+SFHsZLR0fHwYfiB1sG1YZzBeQFpEVjxRXE0wSDRF6D54NQwvDCJIGOwXjBI4FlQbnBpMFFwKm/Hz2cPGe7pjunvBq86/1i/bu9az0vPO/8+n01Pa6+K/5PPls95f0fPH87rHtEu7Z72ny+PS89n33Ufe99lv2ofaN94n4Mfko+Uv4+vaf9af0RfRp9OD0hfVB9gj31fed+Dn5jvmp+Z35gPl2+ab5HvrL+qL7gfxK/QH+uP6l/84AGwKCA7oEsQUsBiwG0AVABccEigR/BIkElASjBKoEugTuBFwF/wXBBqEHfAg4CbEJ2gnACXsJIwnPCJYIjgiyCAkJWQmiCdoJ4AnLCYEJ/ghCCFQHRgYLBZwD+AElAFb+vfx++6n6IfrX+Zb5OfnA+Ev45/ew96332/cz+I/40/jp+M/4mPhr+F/4afij+O/4LflB+RP5vvhI+Mr3TvfW9mr2AfaQ9SX1zfSj9Kz0//S/9bP2AviL+Uz7Lv33/o4AsgFXAlkC2gEeAXEAEwAWAIgAHwG1AUMCpQIpA8kDmQRPBZ4FXAVdBPUChgGIAHUAKQF/AhoEsQU5B8sImAqoDN8OHREdE7EU7BXcFm4XjxfxFpoVixMsESIP/A0gDj0P1BAlEmESLxHBDskLSQngB8cHbQghCRIJtAchBfYB/f77/Fz86fwl/iP/RP87/iP8ifkI9x718fNb8xjzqPLI8Wvwxe5E7TPs7etm7HHtwu7o77Hw5PCM8OjvIO927iruSe6/7lTv5e9u8OTwZ/Ej8g/zIPQ79UT2NfcL+Lr4UPng+WH62fpb+/H7u/yt/dr+IABkAXgCWQMiBOoE0AXwBicIYgmECoULWQwVDeYN2Q7eD8sQexHNEZ8R/hD2D6YOWA1BDHULCwvCClQKqwnoCFAIGwhNCLcIOQmcCdoJ7wnLCXUJ+whrCLEH3gbwBdwEswOHAm0BXQBn/5T+7f14/T39B/3U/Ij86fvz+pz5//dv9if1PfSt80nz+vKu8oTyfvKu8jfz8PPV9LT1cPb/9mH3m/ew97L3ofeS95D3m/ew98T3yPfE96/3d/cl97r2SvbV9YP1dPWv9TX2//b89yj5ZPqp+xj9qf5iAB0CtAMKBUAGJQe6B+cHxAcNB+kFgwQ8A5YCwAK+A3MFdAdTCS0L8QxVD4YSRxYYGuQcJh52HX4bARn9FjUW1hZ2GEMalxv+G2AbGBqUGDcXFxbuFHsTnxE3D4kM4glUBxsFAgMQATv/Sf1A+yv5Kfd29fvzrvKj8c/wEPBR75Lu2O0T7WPs9uvt61TsBO3V7ZXu/+7O7v3ttexb6yzqTunV6L3o7egY6S3pGOnz6OroMOkH6ljrCu3w7sbwX/J68zT0x/Rk9Tn2Qfdu+Jn5kvpm+z38Rf2L/hQAxAFlA7IEhAXVBccFtQXIBUkGIgc+CHIJqQreCxUNVA6DD5oQnxGeEogTRxTAFM8UehTmE0ITsBJSEh4S+hGlEQ0RPBBVD58OKQ7mDYINyQyvCzEKmQgLB5AFNQTTAnkBRgBc/8r+mf64/g//X/+1/+n/8v/d/6H/K/9j/lf9H/z4+t75Afk9+Gb3dvZ59YL0rfMf89zy2fLx8ijzRvNt87bzPfTv9J/1MPZ/9ov2TPbx9Y31P/UY9Rn1SvWW9U/2avfJ+E/6s/vU/JP9+f0X/gb+zv16/QH9SfxY+1L6evkq+aD5APv6/FP/fwEoA04EGgUMBmYHRgm9C28O4xDLEg0UzxQ2FXYVvxUyFh8XcBjuGXIbnBz3HIMcThulGfYXhxaXFRUV1RR3FL4TxRJuEd4PQQ6lDEUL9gmmCP8GrASkAQP+Pfr09pr0W/Po8sfyfvKm8Vzw6e7M7VDtWe2f7dLtn+3s7MnrbOoh6UPoGeio6MXpOuuy7M/tSe4M7m7tvuxU7F3s3eyx7Z7uZu/c7w3w/u/f7+7vTPAe8UTyj/Pm9Cz2S/dd+IP51vpf/A7+0/+LASQDigTCBbYGZgfTByUIcAjCCDUJugkgCm0KgApSChQK7AkMCnUKIgvSC1wMxgzrDOgMxgyWDIMMpQzxDFsNuQ35DQsO9g3aDdcN7w0FDhEO6Q15DcwM8gsCCwsKJwlzCOkHiAcrB6oG6QXlBJ8DSwIPARIAWf/V/kr+sf0O/Vb8rPsR+4L6/vln+bv49/cM9xL2CvUK9C7zcvIR8gHySvLW8nfzBPQz9AH0gPO98s7xvfC77+PuUu4Y7kbu9u498ATyK/SC9rT4dvqZ+wT8/Puh+1X7c/v7+9n8x/2T/u3+s/4d/oT9Y/03/uD/RQLrBDkHegi3CEsIwQe7B6AIpApkDV0QFxNCFdAW6he+GJMZqhrHGwMdMh4xH54fJR+5Ha8bVhklF4IVjxQTFKATrRIQEbsO/AtPCfEGDwWhA4ICWQH3/xP+wfs8+eD2//Tr85Lzz/M/9E/0xfOf8vDwJu+Z7Xzs3uue63TrQOvl6mbq6emz6enpX+r96o/r/Ost7CfsC+wU7FHsMu1/7v7vlPH38hn05PRa9br1BvZY9r/2UfcU+AX5EPoC+8b7SfyZ/NH8Lv3L/aL+if8+AKcAzwDsADAB1AHPAhkEawW4BtgHqQhTCeUJZgrBCgULFgsTCyoLXAuhC+MLBQwBDPIL9QsoDHcMpQyJDBAMTAtsCr0JbwmTCQAKewqZCk8KzQkyCbkIVgj5B6YHVgcWBxcHRQePB74HqgcuBzsGIwUGBAQDEgITAdT/Sf6b/A772/kr+fv4Dfkk+RP5xPhW+Nb3Z/cP97r2WfbS9RL1M/Rw8+Lyk/J78pDy2fI085jzCPRx9MD09fQZ9Uf1svVh9j33Mfgi+Qf6wPpU+/j7ufyg/Y3+aP8MAIUA7QBqAQYC0wLKA9cE5gXhBrgHggj6CCMJ/QioCHYItQh4CcsKUAyODTsOfg6NDtkO4Q+fEfgTexaUGOgZVRoeGlwZcBhiF+8VEBQYEmoQHw9jDuwNcw3DDOELBQsuCkQJ3geOBfMBOP3x9zfzHPAa7xzwGvL/8+n0j/Rh80ry0fEv8hjz6PM39MjzxPKa8a7wRvBc8LHwHvGC8cXxAfJK8nXySvLg8XDxOfFw8SDyCfPP8xf01fNS8/ryIvPu80X1wvb397j4E/kk+RP5Cvkn+VD5UflH+UL5Wfmj+Q36oPpR+yj8Lf1p/r7/9QDWAVECcgJ3AqICKwMKBB8FQwZRB0oIMAkaCgsL4wuDDM8MzAyGDCIM1gu6C7gLnQtCC5wK1AksCd0IzAjPCLIIWQjEBxoHlQZBBjcGWwZ+BoAGSAbcBWkF/gSjBFUE/wOnAz4D2AJeAtMBJwFMAHH/rf4q/vH99v0L/gr+0/1o/c78Nfy2+yn7vvpq+iP64/mf+Vr5Fvn2+OH45Pj5+DH5lvkC+nX67PpE+4/7z/sH/FP8rfwa/aX9JP6M/tf+/v4I/xz/Tf+l/wIAYgCzAOsAEgE/AXoB6wF7AvgCQwMyA9gCfgJeAqECWQNEBB8FqwXBBXQFPgVdBTIG+AdsCh4NfQ/7EDgRYBDKDtsM9wphCckIRAnlCkkN3g+xEQYSwhApDvoK+AfDBacE7QSyBWQG0wVlA1n/Z/pA9obznPID84bz6/Ie8WrubOxX7G3uVvL+9Rr4S/fo84rvvOtf6uHrte+q9AX5nPsQ/NP6EPkC+DT4f/kt+4X8+PyY/Lr7A/vx+oP7avwa/Qb9FfyB+qf4EvdJ9mj2Yffh+Hv6v/tM/DH8ofsR+/n6pvsS/e3+zABOAiYDZQNgA2MDmAP5A4cEHQWOBcQF6QUdBpUGdAeaCMQJxApmC2UL4QoUCkYJpQhNCFAIlwjrCPcIjQikB1gG6wSqA88CVwIkAgUC2AGDAQsBhQARALL/V//x/nb+7P15/WX9zf2c/q7/mgAlATYB6QBxAAgAwf+q/8L/7f8KAAYA4/+l/23/Pf8p/zL/Q/9Q/1L/Pf8S/+f+t/6K/n/+h/6E/lb++v1q/dn8efxf/J78Rv0s/gn/nv/A/47/RP81/2X/tv8OAD4ATwA7ACEAJgBXAKcAAQFIAWUBSwEGAakAUwApAC4AZACvAPMAHQEbAecAmQBQABQA/v8IADkAjgALAaABPwK2At8CyQKCAkgCJQIrAmECmwLPAukC3gLFAqUCfwKIApUCuwLbAtUCsgJbAh8C9AH3AR0CRQJcAi8CzgFcAfgAvACfAH8ASADQ/xr/R/7D/X79b/2L/db9Qf7M/pT/yQBpAhgEewV1BtwG9gY9BwcImAnQCyAO5A+OEPMPLA7dC2QJNAeFBWQE0AOQA2cDFANeAhUBUv8x/RD7HPmY95j2Evby9fX14PWU9Rb1iPQQ9LDzdPNY83rz0vOI9Hz1gvZy9xz4d/ia+LL42/gw+ZD5C/qg+jb7wPs4/H78jPxk/BP8y/uk+7H77/tU/L38Av0d/Sb9QP1y/b39E/5N/kz+CP6n/Ur9Fv0r/YH99v1z/tr+N/+Z/wAAcADdAE8B1QGJAoMDrgTsBf8GtAf5B+cHqQeSB64HDwiRCA0JbQmCCW0JNQnjCIgIHwiIB8cG/QU9BaIEOgTyA6oDVAPjAkYClwHpAF0A5/+H/yz/yf5O/rn9If2O/C/8Afz++yD8VPyO/Mn86vzt/ND8nvxo/Eb8Q/xR/Gj8dvx7/HL8Wfwz/PL7wPuw++H7avwr/fD9h/6//pD+CP5R/aj8P/w5/IX8Iv3q/bv+dv/6/0QAWABfAGIAjQDgAHoBSQItAw8EzwRcBakFvAW0BbEF0AUXBnQG2wY8B4UHpwenB4IHPAfbBmYG8QWCBSAF1ASWBFkEFQS+A0cDuwIlApoBHQHEAHAALwDx/7H/dv80//D+o/5T/gr+z/2l/Zv9o/27/d39B/4v/kL+OP4S/sX9Vf3p/JL8aPxv/KH85vwX/Sv9Av2j/Af8UPuk+iP68vkd+q36Zfsa/Lj8K/1q/YD9gf1z/Vj9Pf07/V79pP0E/nH+2v4p/0r/Qv8Z/+X+vv7E/u3+Nf+A/7j/1P/K/6P/bf80/wn/+v4M/0D/mf8CAG8AyAAUAU8BkAHQASICfALXAh0DHAP+As4CowKIAogCnQKyArkCkQJOAg0C2gHCAboBuAG2AZsBYAEbAcoAhgBdAE8AUwBuAI4AqgDDAMMAtACJAEMA9v+u/4b/jf/I/xwAeACqAMIAswCDAFMALgAfABUAAQDX/4j/Iv+//oX+bv51/nL+Vv4w/vn95v30/TD+ff7Q/g//FP/x/rL+iv6V/tH+Iv9a/2//W/8s//z+2v7H/sT+zP7X/sz+rv57/kb+If4A/vL96f3k/dz92f3r/QX+Mv5p/qn+8P40/2n/nv/M/+v/EgA3AGoAkgC5AOsAAgENAQAB5QC7AI0AdQBvAIoAuwD4ACYBPgE5ARsB/AD4ABQBTgGwARMCdQLIAhQDSQNhA04DBwOjAjUC9gHuASsCiALVAvoC3QKWAkEC9wHFAaoBlAF9AVwBKAHlAJ8AZAApAAgAAwAMACAAMwA9ADgAMQAkABIADAAQABoAGgAMAPf/4//L/7z/sP+f/5b/df84/+D+i/5I/iP+NP5o/rj+3P7a/rP+av4h/v79F/5W/qT+9v4+/2//fP9//4L/hP+N/5L/nv+s/7T/tv+6/7D/kP9Y/yL/7/7H/sD+0P4A/zD/aP+S/7D/y//T/+H/3P/f/+f//P8UACIAKAAsADUAUgCMAMsACwEwAScB7ACZAEYAEQAKACgAbgCvANwA3gC9AIwASAAlABoAMgBYAHoAngCoAJ8AgQBrAGgAYwBdAFoAWgBbAGsAdgCBAIkAhABsAFEARQAxAAYAzf+F/0L/C//q/uz+Cf82/1r/af9a/zz/Hf8M/w7/Fv8g/yD/Ff/8/uL+zf69/rX+wP7I/tf+5P7q/ur+4P7c/tL+zv7O/rD+pv6k/pr+fP5V/hX+6P3c/ef9Dv43/lv+Tf4w/vr95P3x/Sn+j/4D/3L/v//n/87/mP9d/y7/IP8t/0z/d/+w/9v/+f8NABEAHAAVACMAUACoAAIBSgGCAY8BhwGGAaABxwENAlYCoQLYAgADHQNQA48DvgPtA+UD1gOeA1YDFwPSAqYCbAI3AgkCygGhAYUBgAGKAZgBmAF8AVMBMQEUARUBKwEvAR4B6gCpAGQAJAAGAAAAFwAzAFMAXgBRADMABwDT/6H/e/9S/z//Jf8Q///+5/7L/p7+bf4p/uT9tP2X/Zf9nv2q/ab9lv2X/an9yv3u/fz96/3Z/bf9t/3a/ff9FP4S/gr+DP4Y/j7+bv6f/tf+DP89/2z/mv/N////LwBXAHQAlQC2ANIA9AANAR0BKwExATgBQAFKAWUBegGSAbMBxQHaAfEB/wEXAioCJgIyAj4CUAKDArACzQLVApsCdAIDAqwBgQFYAaABygERAjMCDAK7AScBmQA1AAgAAgALAA4AAADY/6D/a/89/y//J/80/0b/Xv9y/3b/a/86//j+r/5s/lL+S/5T/nD+gv6G/nf+XP5D/jn+Q/5I/lf+Sf40/hb+8P3Q/bD9kf2M/Y/9nP24/dP9+P0N/jj+Vf55/r3+/v5O/6n/4/8GABYAAAD+////DgBBAIAAwgD/ADUBVAFiAVMBPQEzAR8BFwEGAfEA1gDBAMUAuQC3AKIAjACZALYA7AAdATYBQwFRAWIBiAGeAcYB6AH6AQMC8gHzAeUB7gHzAdcBrQFkARkBxwClAK8AzQDuAOAA1QCZAFUAHgDy//P/7f/5//L/3v+x/3z/Qv8a/wH/4v7k/uf+Av8p/1//k/+p/7L/xP/K/9z/9f8ZADwAWwBoAG0AZgBSAD4ALAApADwAXAB2AJAAmQCLAHQAUgAxABcAEgAMAPn/2/+j/2P/NP8W/wL/+P7v/uP+2/7S/tX+6v4Q/zD/R/9P/z7/JP8E/+T+2/7f/vz+Hv83/0H/N/8y/zL/RP9y/8H/KAB5AKkAqgB0ACEAz/+h/6f/0P8PAE8AfwCvANoA8AAHAQIB4wCxAFsALAAsAEcAuAAsAWgBlQHmAO7/0/4J/qr+dgCpA9kG7gj+CLYGEgNA/2L9Wf4jAsQGqQrTC84JswU1ATn+ev0U/6oBJASMBUwFmAMcAV3+XPym+9f7Af0w/rD+fv6H/WH8gfvD+l/6SPod+jD6bfqZ+t767Pqn+ln6GPpD+vP63fuY/Pn80vyc/NL8hP20/tz/kwCqADQAjv8W/xf/ev8XAK4A2gCoADMAlv8l/wT/OP+z/1EA0wALAeMAawD2/6v/xP8oAJwA0wCvADIAif8Z//j+Tf/a/28A7AAuATYBHwEGAfgAAQETATcBWwGJAaMBsQGtAZMBgwFtAWIBWAFTAWMBjgH7AYAC9QI3AwkDdAKzAQ4BwQDYAEoBzQEhAh8CsQH/AFIA6v/e/y4ArgAPASEBzAAhAFD/oP5E/kf+m/76/j//Tf8r//X+3f7q/iD/Yv+S/53/hP9M/w3/8P7s/hL/Q/9W/0n/Hf/k/sj+1P4O/2H/tP/y//3/5f+9/6T/of+o/7n/xP/K/87/1f/l//r/FwAxAFIAcgCcALoA7AAgAVQBiwGxAcYBuAGpAYoBjwG5Af4BUAKDAo8CbQIyAvEBxAG5AcoB5QH9AQICsAFQAecAgwA4AAYA6//U/8L/pv99/0z/Ff/b/q7+jf6G/pH+qv7M/vf+D/8S//7+4/69/pn+nf7A/vT+Pf90/3z/U/8B/7L+jf6s/v3+ZP/G/xEALQAfAAAA1v++/7f/w//Q/9n/zv+1/6b/pP+o/7b/uv+r/47/av9X/1n/av+H/57/mv+A/1j/Nv8l/yr/O/9N/2j/hv+q/9T/BAAoADYAMgAcAAIA6//k//j/GQA+AGIAbwBfADIAAADW/8D/yv/j/w8ASAB6AJsApwCkAJIAegBiAFUAVABiAHMAgwCQAI4AgABaACUA7P++/7L/zf8YAGwAqgC0AH0AHQDD/4//jP+//wcAUACCAJ4AngCUAHEAMADm/6n/of/W/zgAjQCyAJQAPwDl/6r/n/+4/+7/JwBVAGkAWQAcALr/SP/X/o3+g/62/gz/a/+c/5j/cP81/xn/IP9S/5L/zv/6/xUAGQD+/+j/y/+8/8D/0v/i/+b/7v/1////FAAzAEgARgBCADcALAAhABQAFQArAFkAkgDAANoA3wD3ACEBUQGUAcQBzgGyAXYBOQEeARcBJAEnAS4BIAHzANEAqgCxAL8AyQDBAKAAnQCOAJkAmQCPAHUAQgAWAPX/z/+m/6T/qv/t/0AAjwDPALAAJABf/5n+Tf6k/lv/dQBoAbQBcwGBAKP/3/6E/gP/yP/NAGQBfgH1AAsA+f4D/rL9Gf40/0QAIQFcAeMAHQBH/8f+kv59/nT+ov4M/0n/Of/d/j/+gP3c/If8mPz2/GT9r/2s/YX9Lv3c/MD81PwR/W39wP3r/fn98f39/Tn+sv5K/+b/cgDmAFYBwQEqApAC1QLlAqwCagKhAhsDqwMOBKcDtgJEAf//pf8bALgBywNKBXkFKgR4AYT+0/xF/fX/pwP0BlwIPwdQBBMB4/6h/j8AuwIJBX0G+waqBqQFZwT4ApgBvgDFAAkCEgQXBk4H+QYtBbwCiQBk/4H/kADjAcICCgO+Av4B6gCl/yv+vfzE+537KfwS/cT9fP0j/Af65/ei9qT2sPc2+Uz6Y/pk+c/3bPbG9S32avfy+Br6m/pP+ov5w/h3+Bb5Wvog/Oj9Cf9Y//r+LP5//YP9O/6t/0UBeAL/AsECLgKOATMBXwG5ASkCnQLYAikDYwN6A0QDnQLhASYB1wACAXEB2wH2AaEB8AA4AMP/oP+3//T/LAA1ABQA7P/M/8j/4/8SAFUAsAALAV8BmAGgAYgBcAFoAYsB7AFjAsIC3AKkAi4CvAGMAagB+AFOAm8CVQIRAs8BmwGEAXIBMQHIAEoA4P/F/9z/DQAvAPT/bv+c/tb9Sf0I/Uj9m/3//Tn+Jv7c/UP9tvxZ/E78rfw8/eT9bv60/sT+iP48/g7+GP58/hf/2f+RABwBawFUAQUBpQB0AK4ASQEfAuYCbgOUA2IDBwPBAr0C+wJdA84DJwRWBGcEbgRXBBwEvgNWAxEDBgNGA6cD2gOxAygDOgI2AYQAVQCiACYBkQF+AewA9/8G/1L+9P38/T7+aP5l/jv+7P2s/Xf9cP1u/VH9EP2//IT8gfzK/GD9C/56/m/++P1a/er87vxn/Tj+Df+y//f/4P+S/0H/JP89/6L/OADmAIAB6QEIAuoBpwFxAXcBsQEbAogC0gLoAuECyAKoAo0CgQJ7AnUCaAJOAiAC3AGEARsBtwBcAB0A9f8MABsADQDg/6j/fP9l/5f//P+bAEcB3QFaApgCrwLFAr8C9gKJA2oEnAW5BqkH5geJB68GmwXuBN4EogW7BrQHCgh0BxcGZwTpAgYCowGKAVcB6QBVALH/AP9D/lj9HfzA+l35Yvji99j36vfC90v3ivau9dj0UfQ99JX0LfXG9UH2dvaR9sD2Rvc3+Fz5Wvre+tL6l/qk+jv7l/xf/gsA4QDEABYAQv/p/lT/cgDMAeYCaQNAA6IC6wFyAWgBpQEdAm8CjgJ6AjsCCwLwAQcCMQJPAjMC2AFhAQ0B6gATAYIBDAJ7ApMCVQLrAaMBsAEUArQCUQPKAwoEMARMBHoEvQTmBBkFLQUvBUEFcgW6BQIGGgbsBW0FvAQaBIUDUgM6AzoDHgOxAg8CMgE/AFz/s/5F/gr+yv1y/eH8NPyI++b6bfoT+tH5lPlo+Tb5//jM+Iz4YvhM+Fz4jPjD+O/4HPk/+X/56PlX+s76I/tz+6b77ftl/Aj90v2E/gr/U/9c/13/iP/x/5oASQHjATMCLQLwAaUBgwG1AS0CzAJWA5sDpwNiA/UCYQL4AWgBPgH9AMkAMAFdAUgCDgP5A2kE8gP8AoIBsgAhAZkDaAeYC8QO2w/3DgANiQujC84NHRFrFFQWOxaWFEwSXRBJD+sOzQ5EDj8N+AttCvIIawe9BQwEQQJTAEf+Hfwp+ob4m/c19xH3ePb19I3yuO9T7fPr6uv47G3uRe8I7+LtY+w66/rqz+to7VHvG/GE8ozzT/QJ9e719PYq+Fr5gfq3+wP9cf7Q/wYBzQEgAiACBQIBAjMCpgIdA4sDygPsA/ADqQM7A5ICGgLaAfIBTwKaArwCRgKaAecAggCOAOIAOgFKAQsBdwD3/7j/7f+EAFMBEwKOAqoCigJqAm8C0QKnA9IEDQYxB+8HPAgtCAcIIQipCJQJnwqAC+wL3guACwcLlQoyCqEJvQiRB0sGPgWLBDkE4AMAA1MB7f49/Oz5WviV9133Q/fs9hr21fR682zy6fH48ZDyavNM9Bb1n/Xs9Sr2fvYR9+j3+fgK+gL7tvsi/F/8ffye/NP8FP1a/X79eP1U/SP9A/31/AP9J/1M/VP9MP3k/Kj8rPzz/HL9/v2B/sX+2f7s/hX/bf/b/1YAugD7ACQBXQGmAfYBLAJWAoQC2wJyAygE3gRsBcAFAAZbBvAGzQfLCJkJGwpYCo0KKAsuDHMNog5xD+0PSBANEUMSrBOiFE0UsBJIEI0OLA6VDysSgxQ5FZoT2A8IC2YGBgNRATIB6QG6AoICVwDT+3T1Ee/N6jLq9exU8Xv0afT28Lnrfucw5k3oo+zS8DrzT/Mp8m3x1/Gw8z72afjD+Vv6x/pU+yT8+vy9/XL+Pf8yAB4BdAHrAI3/AP4G/Uf9yf6XAIgB3wC7/tL7aPli+Nj4JvpP+8v7QfsQ+vL4SfhU+Mz4WvnX+UD6x/qH+378gv1n/h7/wf+CAHMBmALhAyQFaga4Bw0JYQpsCxkMdAyxDBgN1A3TDtIPkRDCEHwQ0g8TD2AOlA29DMELqgqECV0IQgfxBSME2gFK/+H8CvsC+nr57PgF+JT21fRD81DyQfLW8qrzQ/R/9GL0SfSb9I31FPfg+Jv65fuG/Ln82PwR/bH9rP7U/88AUAFAAbkAEgCJ/1H/Vf9w/4D/bP8g/6P+Gf6R/Sn94Pyv/JP8oPzA/DP9l/2n/fv9yP0F/u/9Df5p/n/+Ov/O/8UAewFDAh0CCgKwAXoBVgL+AnYEGAV1BZ4FUAXcBZAGbgdTCIsIKAj4B+oHEgkrC08NIg9uD5YOTw1ZDIwMNQ5CELwSaBSfFKsUuBNzEnYQ7w3xCo4INAe4Bt4HEQdLBhQDCP9F/LH4JvcL9Pbwau6L7FDtjPDo89L1TvTE77vq2uYv5x/rr/Hb9yT88/xU+074BPaf9Xj2U/nM+zr+s/8VABQAaP9u/sT9xvxZ/PX7dvta+8769voY+9X7R/ww/Cr7S/kb9y31vvRl9VH3V/l8+pD6NvkX93n1WvSI9JP16PaC+LT59fre+7r8l/0n/o7+6P5z/3sATQKKBOcGyQjcCSUKwgltCVMJ1wnwCi4MWw0FDhcOpA3uDPwL7Qq/CY0IdQecBhcGpAUXBSIE3AIuAaf/Gf7z/PT79Ppu+vL5/vkm+jn69Plf+Y741fen9wj4Ivk2+nP7/vtH/LH80PyW/SL+t/4Q/xz/K/9M/7j/SQDFAAIB0gAnAEv/Of6P/e/85Pz5/Bz9RP3W/EP8R/uL+s75r/kr+sn67Pvn/D7+G/+P/+z/nv+m/8j/PADXAa8DwAWhBxYIjge/Bn0FvwWvBn8Inwq1Cs0K7Ah2CMYHeAn9CZYKewqgCOAJgQtLELoU7Rd+FsoTcg4xDHIOWBKdG7YfiSLbH20aIxbfEbIQrQ+MDyYO1A3rDJYMWgvLCDoE9v4p+tz2O/bx9bf2zPUT9M7x2e9s73Lvne827vPrNulI59/nFOr97VTxbfN084LxLO8Q7XzsPu2T72/ynPVF+Lf5QPr++AD3kfTN8pPyhvOo9ef3KPlU+YX4PvdD9ob1R/Xz9DP0T/Ny8kfyGPPh9Ov2o/hB+T34e/aI9MjzqvQC97/6hP5tAf0CHQM/AlsBKwFXAsYE3ge7ClkMvQwJDA4LuwqLCw8NVw6pDr8N9QtbCq4JCAoKC7QLugtzCn0ILAYoBMYCUwJvAqACbgK3AYAA0/6U/V/8B/wd/Gn8evzU+5z6V/mM+Ib4M/no+YP6evpA+rf5PPkY+fn4VvnD+af6RPvM+xv89/vX+4v7evvO+8b8o/2B/qX+aP4J/jj9/PzJ/Ef9Dv6+/pX/VwAdAX4BZQHDANb/T/+c/+wAJAMdBV0GSwYBBY0D3gKVA9UFdAeNCKYHTAULBIAEfQcrDBgQcxBODjYI9gLqAN4Cxwp+E4Qb1h6cHOkVSQ2rBRUCxAS4C4QWmB/cI0wiFxtzEpYMWgsZD88UIRiSF4MSKwtdBa4DdQZOCxEOWgvIArP25+uS5qPnZ+5N9rH7Cvzl9rPu6OXW3/Hdz+C25tLtufO59tD2LvSr8Ojtfe2m78Xzbvj3+1b9u/xD+wP6Kvq9+xv+wv+K/3b9NvpU9zz2dfc9+k79Av82/jL78fb38pLwH/DU8bT0bfcu+Vb5vPdt9S7z+PGc8pH0Z/cH+sv7b/w+/Dz86vyw/vQAzwL1A0EEfgRZBf8GYQmkC1gN+Q18DWUMYwvNCg4LwQtoDOQMsQwrDB8L4wl6CBEH9QUHBY4EJwTHAwcDKAL3AOL/0f7Z/dX8y/sU+3r6ePpJ+l/66PmQ+e34Q/ga+M/3MPhP+HH4ZviA+In49fiM+R366Po0+5D7bPuG+6L73Pt7/Cj91v0j/l/+//2w/Zn95/2B/hf/Qf/t/j/+U/3+/Lf8ZP3y/YX+DP8s/2f/VP95/xv/iv6I/mP+qQARAi8EygWJBXAG7AUUB28HjAcaBlIDFQCv/cv+VgPCCtcQBxSjEP4KggQ7ApoEugkhEFQTRBb8FfEWIBYdFq0VYRUHF3QXaBmyGLgWxRJODvYLJA1+EYQWjhj9FNUMKwPF+/D4vflz/OL91fzg+Rv2cPPX8TDx6O+07QDrxugZ6AnpCevg7PHtqu6v71rxA/Oh86jygPDw7jXvufHg9SH6RP23/tP+0v1x/DT7ZPoX+jn6tfpt+zb8wPwj/Qn9UvxU+9T5GfhJ9lb0/fKE8i7zrPQp9lL3hPfi9un18PR49HH02vTs9XD3efm++wv+GQDSAUEDPQT2BGYFxAU7BhAHaghaCvoMvQ8AEs4S9xHqD8UNUAzGC/ILOww+DOALLguTCigKlgnOCIgH/wUmBIUCQQFbAOn/sv+8/8f/q//z/tL9LfyI+k75nviY+ND4WfmJ+bX5E/pT+un6Mvsi+9X6bfo8+kb6qPo3+9v7zfyw/U3+lP4q/sn9D/3X/LP8+Pyb/RH+qf51/lH+3P0V/if+gf53/if+Pf4s/tH+Iv+N/4v/Yf+R/ykAQgGvAroD3QOVA/MCQQP/A24FewaABhwGmAQZBEUEwAWpB9gIiglxCA8IqgfsB8AHJQe4Be0EoQbBChsSDhgiHMgatBQqDdEFnwILAwsHZw2EE8sYrxsjG5UXnxFjC78GFAUuBioIUwlTCMEF5gJaATEB/wETAS39QPao7RfnReQq5g/rOvAV837yXe9h6wfo6OVi5fTlTucS6RLrZe2y7/7xE/S/9aH2/Pak9hT29fUn9l73LvmJ+8r9T/8TAIH/NP6P/Av7FPql+cj5PfrD+hH77fpn+rT5HvnV+K34d/gE+HX3N/ey99n4Xvqz+2j8mPyX/Oz82P07/7YA4wHKAoUDjQQUBvMHvAnuCmMLQAsgC4ELhgzgDRAPfQ8iD0cOVQ2rDF8MWQxWDPgLMAsPCsAIjgeHBtoFPwWpBBUEhwP8AmQClAGXAKP/+/6//tD+6v7E/jz+Z/1r/NT7y/tc/DT93f3s/V39kfz2+9r7HfyP/O78Cv0I/eD81PzY/Mf8tPxo/Cf83vug+4H7Zfs0++X6rvq1+gz7kPv++yn8FPz/+xz8pPya/db+xP8OAOP/c////jH//v9xAQoDaAQjBSgF5wSSBLkEBAWzBYkGLQenB70HqQd3BxcHLQduBw8IDwkaCjQLvQvnC0ILOApWCRsJyAkgC7oM9g2QDooOQQ4XDkEOog7TDoEOcw0BDIMKbwkkCYEJJgqNClEKDQnNBtcDxgAf/if85vpD+sD5GfkI+Kr2MPXb8+LyIPKC8Zvwlu+k7gnuG+7F7sfvsfA88Tnx7fCV8F/wd/C98Ejx7PGu8onzXfQC9UT1OPUH9fj0UfX69dz2rfc5+In4tPjj+BP5V/lz+WX5H/nV+Ob4dPle+lf7Fvxr/GP8FfzB+6H7q/sJ/NX8EP6v/2cBBwMhBKwEoAR4BJcEMwVaBqoH+gjmCX0K5wpgC/wLnwwVDTMNzAwYDEYLogpvCqoKTwvkCzsM5gvnCnkJGQggB4wGhgapBtwGrQYXBkYFVAR4A7cCDQJaAZkA4f8v/7H+Vf4r/ij+G/76/aP9F/1f/JX70fpA+vT56fkQ+kH6XPpZ+iL60vlq+Qf5xvhJ+Nz3YPfx9pz2cvbW9pP3ofid+S76EPo++Tn4XfdP9wX4g/mA+1/9Af/D/+7/j//Y/kr+7f01/vz+PQD0AbIDVgVOBooGNAZyBcIEigQaBUwG/AfICTAL7AvyC7sLmAsKDOgMGg5ZD1cQBBF4EegRmxKpE8MUqhUdFgsWixXqFGsULhRKFKIUAxUYFZIUUROHEXcPdg3EC4YKqgmxCGMHlQWOA4cBw/9H/vz8cfuG+Ub3DfVh82XyLPI18hfyYfEl8KTuH+0X7Jvrnuvn6zzsb+xj7Dbs8+un64Prhuuk6+frQuyX7N3sAe3+7ArtU+207UnuAu+y70bwvfAz8anxR/IJ89jzp/Rl9Rj2zvab91f4H/nk+bP6uPvW/CL+Rf8KAGEAaQCJAAwBMgLvA+0FwAf+CJgJrgmZCZ8J4glvCigL/gvuDPYN4g56D7APaw/ZDikOrQ2ODcUNRA64DtAOtQ5BDp4N1QzqCxYLQwrICWQJGAm/CDUIewdsBlkFWwSpAz8D5AJmApMBegBG/1P+s/18/X/9e/04/Zj8q/uc+o75kvjB9x/3pfZk9lX2RvYK9nr1qvSn85zy1/Fh8UjxZPG58TLyvfJS88/zJ/RC9EX0U/Sb9Ef1U/aV9+H4H/ow+yb8//zM/Xz+EP+U/yAA1gC9AeQCEgRRBWYGTgcWCLoIUwn0CZgKMQvDC18MDA3XDcoOzA/CEHURxhHrEQ8SdhIpEx8URRVaFiIXhhd6Fy4XtRZBFiYWTRblFqQXFRj/F9kWuhTrET0PZA2rDNsMVQ1MDQUMcgnjBUACFv/t/Kv79vpG+lP59PdG9n/0t/IV8abviO6c7fLsZuze61Lr6Oqu6p/qtOrB6p/qMup/6cPoUOhA6JvoPOnv6W/qqOqr6nvqOOoO6iDqY+oA6+HrxOyl7XPuMu/H70zw0vBq8SnyDPMX9E31n/b/92H5wfoU/B799/2n/lf/KQBIAbcCVgTgBTEHKgjICB0JZQnICUQK1gprC/ILfQwGDX8N/w11DtkOEw/6DqwOSg7pDcINxQ0FDmYOuw7ZDpkOCA42DVkMkgvrCmoKDArCCWUJ7ghcCJ4HvwbSBeoEGQRVA54C6AE8AYIA0/88/7v+Ov6v/f/8PPxn+4j6vPkP+YD4E/ic9yn3ufYz9pH1zPQL9FvzxPJp8j7yRPJH8i/y+/HI8bzx8vFv8hzz5fO09G71L/b09tL32Pjx+SX7O/xa/Wv+YP9HABAB9gEJA0YErgUNB0IIGAmKCcQJ6AkfCo8KIgvgC5wMNg2bDbkNfw1kDZENPg63D58RmhMAFUIVcRQgEwAS8REdEzwVvReHGSsaPhlGF8MUVRK4EAgQWhD+EJMRnBGjEJ8O9gswCfYGegXDBFIEsgOYAgwBa////e/8KvyA+5f6P/mh9/v1nfSY8/fyovJZ8ibyl/GJ8CnvgO3t65/q1OmR6aPpsOl/6QDpOuha55LmGObJ5ZPlmeXD5TDmvOZg5xnoruhF6drpb+oA66freOx97cLuHPCO8QnzZfSI9Yr2gfeO+Mz5IvuW/Pb9H/8wAD4BdwLeA0YFqQbJB6wIXgkDCsEKngufDLMNxA7JD4gQ8hATEQQR8hDyECwRnxElEoASiRI3EpkR6RBFEMMPSQ/KDkcOpA33DC4MeAvNCisKignRCBYIPwddBpAF0wQyBJ4DFwOMAucBLQFfAG7/lf7Z/Tn9m/wQ/HP7vfr1+Rj5N/hX96r2JPay9S71mPTr8zHzk/IX8s7xqfGd8YXxc/Fk8Xzxv/EU8ofyA/OM8xP0i/QZ9a/1b/Zd95f49fl7++f8C/7b/n//IgD1ACoCfgPkBPYFuwYqB3IH0AdfCAcJogkiCkYKQAo0CkMKjwr8CowLHAyWDPEMMA2IDd0NWg4cDwUQGhEMEtESQhNRE1cTVxOLE+kTUBSoFKgUYhTTEyMTcxLlEYoRARFUEDoPsA3TC+8JkQjNB70HrwcwB6sF/ALC/6r8yPoz+v/6PPzv/GT8Qfor9/nzhfFD8Drw6vDC8R3yoPE68Cfu7esv6kLpVOka6uLqOuu36oLpHOhI54TnpehT6tvrmuxs7Krr5eq76oDrEO0O7/nwafJD84PzXvM6823zPPSv9ar3svln+4n8AP0m/Ur98v0w/8YAUAKAAzsEmATeBFkFHQYoBzwIMwnmCUMKagp4Cp4K1QpMCwcM2wywDSkOOA7dDU8N1QyZDKgM3gwnDUkNJw3kDHQM2wsoC3IK0QksCZ8IHwiXB/QGNwZyBbwEEgR0A94CNAJjAZAAu/8R/4r+NP7k/Zb9V/30/Ij89vtF+5L60fk4+dL4j/hm+Bb4nvf59hv2QfWI9Bz07vP08wH08fPb88LzxfPx80X0r/Qi9a71Kva59l73Kvgu+Uj6Y/tL/Af9lv3//Xr+D//a/+MAGAJCAzIE4gQ4BWUFeQW3BUYGKwc/CDMJ7wkyCvcJtwlyCaQJWgpXC1AMwwy9DB4MkQtIC74L4QxRDuoPyBAXEZ0Qww8cD8oOLg8qEHgRlRIdExQTcxJ1EYsQ8w+3D48PNw+mDtoNEg1HDIYLpApiCeQHPQa8BIIDoQLYAdgAVf9O/eL6vfgd9yb23vXM9Y31i/S98knwg+0o65rpPOny6T3rguwH7X/s4uqV6HnmROVW5Z7mjOif6hfso+xL7HHrk+pZ6u7qP+wM7s3vHvHF8fLx6fER8tDyLvT39dX3U/lC+p76r/rD+k/7b/wC/uj/swEQA8oD8QPFA5kDwANuBJwFEQdiCGUJ/AkiCgAK7wkgCooKFAu6C1kM0gw2DYINsw3UDdENsw1/DScN1QxuDA8MzAujC44LZQsTC30KjQluCGkHrQY+BvwFvwVcBcwEIgRZA6IC7AFZAecAlAA5AMD/CP8U/gr9CfxG+8f6iPpR+vf5SvlJ+CL37PX29Fb0GvQf9D/0X/RX9DH09/O284nzjPPL80n08/Ss9Vz26/Zj99b3Vvjn+Kb5dfpM+xf8w/xg/eb9e/4b/+P/xQC9AbwCrgNxBAoFdwXTBTEGrQZgBzYIDAnCCTsKdwqDCoYKqgoIC5gLRwzhDFUNbQ1DDegMnAyQDNIMeQ1ODhkPpw/bD8YPmA9lD2gPkg/2D10QtRAEEQ0R+xCmEEsQ3g+GDw0PbA6IDTUMqgoHCb4HzQZpBj0GBAZABbcDggH0/or8nvpq+ef4zfit+E74RPeX9YDzgvEN8DvvLO+H79/vuO/p7nft6uvE6mzq6Orh6yLtCe497rrtsuyb69nq2eq5603tLO/k8AfyVvL48Vrx8PAb8QHyXvP19Fj2V/fn9yP4Xfi7+Gf5Vfpu+4D8WP32/Vb+i/7J/l3/VgCmARQDXgRCBbcF6AURBmkGEAf1B/0I9gnHCk8LjwuSC3QLSQs2C1wLvgsrDIAMpQyJDEQM4At6CysL7QqtCnoKUQo6CiIK8wm0CVUJyAglCHsH5AZbBuwFeAX/BHgE2wMkA1YCcAGDAJn/wf4B/k39ofzu+y37bfqZ+d34Pfi190D31vZ19hf2vfVx9TL18PTG9LX0xvT19Dn1ffW19eH1APYw9n724vZg9/D3dfgB+Yv5J/rS+ob7S/wS/dz9oP5r/x4AzgBrAf8BlAIqA+EDvASYBWoGFweXB94H+QcGCBsISAigCDIJ4wmcCkkLwAv7C/kL5gvYC+YLGQxcDL0MDA1PDYINoQ3LDdoN1A25DXkNLQ3SDHEMFQzMC5QLcQtoC2ULNwvKCiwKbAmdCOcHVAfnBpAGSAbvBXcFxQTFA4UCGwG2/4X+p/0Y/aH8Jvx8+436Wvn394j2GfW5843yoPH28InwOvDo72/v2u4n7oDt+Oya7HzsfOyj7OnsRO2f7eLtGO5e7rDuNe/r77fwdvHs8VDyh/K98hzzp/N/9Hb1jfac95j4aPkE+nD6yPo7+9370/wA/kf/dQB0AUAC4AJbA98DcQQTBbcFYAb+BoUH8gdOCJEIvQjhCAkJQAl4Cb0J/wk7ClgKXgpnCmoKegqcCs0KBAsxC0ULNgsHC7UKXgoACrYJgQlkCWEJVQkqCb0ICgguB0QGYgWSBPMDdQMTA64CNQKWAccA0P/C/rj90vwT/If7DPuQ+gr6cfnP+C74m/cX96H2OPbY9Xz1OPUE9ez07/T89Bn1O/Vu9Zn1wvXs9R72Z/bZ9m/3GvjH+Gj59Pl2+vz6mftT/Bv99v3B/pb/SQDuAIQBAgKGAhcDwwOEBFcFMgb+BrEHSwjaCFMJvwkfCowK/gpcC88LPgyrDBINYQ2nDdEN7w0CDv8N4A2wDXYNVQ0wDQkNBg3xDN4MvQxxDBwMnQsNC4oKCQrCCZwJiAmRCYQJVQn4CGcIzQcoB5gGQwYfBg4G+AXABUoFhQSRA44CpAHxAGYAAACg/xD/Vv5j/Vf8QPs2+lr5tPg0+Nj3bPfR9hf2O/Vj9LDzNPPr8s3ytPKN8j7y1/FL8cbwdPBD8Enwd/C08Njw2PCn8G7wQ/BZ8LfwVPEj8u7ypPM39JT07PRI9dT1ofaK96H4pvmG+j77vPs0/K38Q/0L/u3+4/+0AGEB4gEzAnACuQIbA68DYQQXBcYFVAaqBtwG/AYZB1EHtwdECM4IQQmLCZ4JigloCUkJOAkvCTgJNgkhCfIIkwgNCGYHrQYIBngFAAWjBDsExAMxA3wCxQESAY4AHwDS/5H/TP/6/qH+P/7a/Xz9KP3p/Lf8ofyQ/Hn8SvwB/Jz7KPu1+k/6Efrj+dj5y/m3+aX5fPlI+Q352/i4+LT4z/gH+Vf5r/kD+kz6j/rW+iv7kPsQ/KH8Pv3c/Wv+7f5a/8X/LwCqADIB0QFyAhMDkgP2A0sEjgTWBC4FnQUPBowG+QZUB5IHtwfPB+EH/AcoCGcIrAjuCBQJFAn6CN4IxgixCLwI1QjvCP0I8Qi9CHAIDAi1B2gHNwcjBx8HIwcFB8sGbQbzBXQFBwW/BJQEewRUBB0EwwNNA7sCJgKfAS4B1QCFADkA4v9u/+D+UP7I/Uz96fyk/HP8PPwD/MH7evs3++/6v/qQ+mj6YfpQ+k76UPpM+kz6Nvom+hj6EPoh+i/6QPpQ+l36Yvpi+lH6N/oa+vr55PnU+dr57Pny+ff58fnb+cj5rvmo+bf53fkP+kD6bvqF+pD6hfqI+pT6wvoK+1X7sfvk+xf8J/wh/CT8Lfxf/J/89fxS/aP94P30/fz9+v33/RP+T/6i/ur+Jf9P/1b/S/87/zn/TP9x/6j/4v8WADAAMQAjAP//8P/x/wkANwBgAIgAlQCTAH4AbwBqAGsAfgCTALEAwQDBALsApQCXAIgAjwCkAL0AygDKAM0AvwCrAJoAjgCSAJgAngCeAJ8AmwCTAIgAcgBpAFwATABHAEQATABVAGAAbABwAHUAdwB+AI4AoQC9ANcA9QANASABMwE8AU0BYAF4AaUB0wECAicCOgJCAj8CSQJZAnkCsQLuAigDRwNZA1gDVQNTA10DhQO0A/MDKARLBFYESwQ9BC0EMwRLBHwEsgTbBO4E6ATMBKQEgARkBGgEawRqBHAEaQRJBCME8wO+A5YDdQNvA18DUQMtA/4CzgKZAnECVwJJAjcCIgICAs8BkwFWASgBAAHoANkA0gDJALAAigBUABMA2/+t/5P/kf+R/4b/bP9C/xP/3v68/pz+if6E/nv+av5V/jj+Hf73/c39u/2t/a/9rv2v/aX9i/1z/V/9XP1a/WP9Yv1d/U79Mv0a/fv87fzh/OH86fzj/Nf8v/yf/Hv8X/xQ/FD8Yfxs/Hf8cPxi/FP8Q/w//Ej8VPxl/HP8ePx7/HX8evyB/Jf8tPzM/N786fzp/On87/wC/Sv9W/2U/cH94/3w/en94/3o/f79Jf5d/pf+0v72/v7+/P7u/un++P4g/0//kP/F/+X//P/7//z//f8RADIAXACNALYA1wDoAPMA+wAJASABPgFgAYMBoAG1Ab8BtwG0AbQB5AHkAQcCIQLtAfAB1QGuAcgBnAGoAcoBvwHVAcEBngGQAVwBLwEzAS4BTAFIAT0BNgEFAc8AzgCzAIoAZQAnACEAMABDADwANgAnAPH/yv+c/6j/oP+1/9r/xf/v//f//f/j/8//t//3/wYA//8kABIAfgCvALsAowC2AOkA+AAXAd4A+QA+AZoBEwIsAicCEAIMAhICHwJFAp4CxwLeAt4C0AK4ApgCiAJvArYCvQLBAsICnAKdAoQCYgI3AjYCIQIoAjgCKwIMAuQB+QHpAccBsQGkAaEBlwFkAUMBLwHNALEAlQBuAGMAWQBnAEIAJQDm/7f/cP9S/zj/9v4a/zH/Hf8L/xv/9/63/pT+af5c/gb+5f0N/lL+i/6b/n/+Lf4y/hv+GP4f/hD+Fv4c/ij+NP5H/jv+K/4l/vz91/3a/fH9SP5d/kH+T/45/jb+Tv4x/i7+Kf4r/l3+wP66/tv+DP/8/u7+sv6e/qX+2f7s/tf+/P6F/9v/Uf8S/yv/Lf87/y7/rf+f/8T/0P+m/5X/VP/Q/xgASQCMAIgAMQD8/+f/5v8LAAYABAALAP//JQAiAPX/4v/l/w8ADQDJ/5L/hP+h/xYAGQDE/yr/JP+s/xwAwP9q/1P/Ef8w/w7/sv/+/+z/sf8o/6n+rv53/97/WQAiAAwArv86/6f/Hv/A/1oA2wBVAXsASwAqAJD/jf7b/vT/VQH0AbYBwQF/APj/5f/e/1UApQCrAKQAZwHVAX4BOQGkAGMAUgAHAFgAswD1AIgBtAFEARIBygDVABUB0ADxAEYB/wANAcMA0gDdALkA9gACAUkBKwEoASkBEQGWAFkASACJAPoAtgB0AawBvgFHAngAZ/8r/wAANAFMAXwBhwBYANr/VQBS/6v/w//X/0YBtwE9A5gBLQDN/lD/HwCwAFoAAf8mAbYBAQI8AYn/tv8D/5b+nf49/3L/MP9P/9D+OP/q/zEAIv61/TH/JAA8/3T9Rfx//YQA2gF3AQ7+zf7m/tX/RgDb/UL9HfwI/xABKgF//4b9Kv94AB8CMwAU/hD+Kv/gAAsAJwDb/7gAsQDaACoAxP7x/ib+6/5Q/mUAowAL/5X/GP+//6wAj/+n/kH/if3K/pb/9v59/77+zwBNAT8Buf/q/Of9mgBnAgcAUf+F//H/5QIQBHABJv+j/0v/lQKcAp8Ahv+h/Y4A0AIZAigA/v4TAGYByAE2AOn9fv7r/44BJgBu/iD/lAHIAVcBEACr/U7/6//C/oD9Wv3Q/mMBOABZ/1j+MP+7AOf+Sf55/tT+gP4p/j7+Nf90/3EARAGg/6EApAA2/Yb9sPsU/7cBN/9+AIoBQAPYAXAACf2F/c0A2gGZAHL/jQDJAM4BfgBVAu0Bqv+SAAoA3QDjAHMALwE7AJgAPgDlAXQCp/9+/pD/AgLhAD8B4//z/rkBuwIqAjUD6P9o/pQBhwGUAVwA9P4vAHIAVgGqA/EAjP/R/o8AZQAhAR4AuvvRAAYD7gFLAvX/7P6xAN//Rv8uAcUAKP+Y/7T/TAH2A/QAeP/Y/lr+GgMXAmAA0/5V/UoAzQEjBDr/p/yV/zkBEwRPAl/9RPue/goAVgGu/mL+G/8EAIgBEf9L/y/+C/91/in+HgHwAY/+LfoB/CcAlgImADf8Iv9Z/i3+tP8T/oj95P4+ALoALQFg/zT/EP06/2oAaf6M/87+Tv5p/2sBsgKZAUz+rP1B/mEAzgBL//H+Gv7DAWUA3QBMAXABOgFH/kb9P/24/pgA0wPo/z/+6P4r/6sAQgHlAG7+A//K/53/xP5u/3oB2ADZAXD+Bv/x/6ADnwPs/7b+tPka/wMApgNLBMcA6gBX/qn+pAG//yr/eP44/Vf/WwDn/7YArQI/AKP+Zvzh/aIABgMXAtb8Q/zo/P79CgE1AF4DegKe/20ABPx0//X+5f5+/vz9xf8TAGMBTP9lAcP9l//V/sT+oADG/HEBTQB5/kD9PQA7AicBoAS2AMr9Sf0NAFUBOAAXATb/RwFXAT4DYgCo/ZP/UQDxACECKwB//Z8CrAGyAX0Byv7Q/ngAiAKQATf/DgHsAY4B+QHXAE4AMwBRAOkAVACB/iP91f+YAmQEIQRZAMwA7P4BAXkBmv4y/QP9BACTAZcEcASAAbYBaP6Q+3X+TACVAvcEGgDZ+5D7Xf+zBEgEBwLV/jT9Jf3v/4cBXgAeAOb9Q/y8//cDBwS0A2T/pPtP+3n9TgABAhIEOAKlAOr95v0QAR4BMAKP/1z8I/y7/l8B1QEJAkr/LP43/1YClQGCAeL94PpJ/Ub+hwGQAk8BWgG0ATv/oACf/hv9ov8SATwAiP6x/zEASQLVASAACP9l/toBzAFs/w7+yP69/y//lABq/+8AOALxA7EDOwBf/WD7S/zFAPcDegAdAAn/SQFxAOz/LgEq/pj+Mf9lAM/+4/83Arj+UQDY/uj9EgCcAEMDuwDY/lP8Fv1l/D0AZgKQAcAAwf5K/o794gBA/ysAp/1w/br/ogGfAuEAuwC+/vP+CQC9/sb/egD0/+v/5/82AO3/NAGw/0cAGv9k/XT+7v+C/3QBzAFa/+MBLgBk/xf+uvzU/zcC8gH8/2wAu/++AGQDYAC9/b79Qf/dAb8B2P6l/W3+JwAVA24BAQC6AQwBN//r/vP8gvx0/xwBrwLzAVYBxwC5/87+AP5E/v79BgDDAUUCewNZACD/tv0I/FP+tP8+ArYCOQFDAML/rv/f/3H/Sf8i/3D/aQBiAKwAPQAjAdAAZ//b/6//mwCQAKD+h/27/WL+xv/zAqoDmAEFAP3+kP5a/ej8TP2W/6gBDwKNAu0AnABiAFH/If9r/+f+aP7P/0YAqv/F/y0BDAJcA0ADWgEy/lH8ov5D//b+fgAMAWYA9AEaA+cBTQAq/8T8hfyV/kT/1gASAVEB4gGdAVgBGQEn/7v+8/8x/un+/P75/nIB/AC8ARkDEwIlAEv/WwAc/vT9Of5A/tcCFgIVAckBGQFbAuYBHwAi/4b9V/1F/s/+pP8ZAG8C3wLEA+sCiv8DAFn+pPyC/Pb8XP65ABcDPwS8AnwAKgAw/0z/Kf49/vz9O/7Z/8n/jwElAtIBSQGgAJYAcv+J/qX9gP3q/qL/rgBQAd0BawLgAogB5P5g/Uf8w/yN/qcAhACxANIArAAsAX4Anf8D/m7+9/78/pf/y/9BAKn/yv+lAPAAFgFAAWcAlf9o/rD9wP3B/ooAmQF0ASkAKgGsATYAvv9P/0P+fv4/AIoAdf8sAE4ANAAEAfoAUwHIAJcAAwB1/wb+FP3P/pUAAAJcAaYA9v9CABoAFQBq/9z9Jf/g/pz/nACb/xoAWwDf/+MAiwAa/7D/SwBGAF0A4f98/sb+3f+3AE4BlQCbAKkAQAB2ABwA3v73/sr/yf8UAO0ATgFKAa0AKgCW/9v+jP8xAMP/ef75/koAfgFRAu4ADgDP/w0Aw/9u/47/lv6//h0AAAHrAb0BiwHPAIP/AP/J/lf/4f80ACP/W/+l/1EA3ABZANYA7P+Y/0z/w/4v/qD+zP/VAB4B6ADVAK8AlwB6/3T/+/4F/1T/mwAJAuYBKgEvALT/G/8v/yz/sgBKATQBzgCg/0n/k/4e/wEAngC6AGYAUQCbAEEAJv+X/pT+nv/xAFgC2gEpAT8Axf5+/lX+w//WALUBOAIsATEAPP9N/gT+2P50//3/MQEkAkQC+wC5/iP9Df46ADUBfAHNACwADgCd/57/6v9ZANcA3AAkAZ4A4v9P/3f+gv6l/nn/fABBAf4BSALlAGT+H/3V/Ez+jv/5AEAC7wHEAdQAnP/9/nn/ef8+/2P/vv8GAT8BQAFdAEX/m/+W/73/MgAQAG3/Iv8b/8v+7/4+AHQBDAKVAU8AYf+7/pz+A/+h/4v/6v8QAY8B1wGKAcwAOQB9/4D+uf27/a7+UwB6AY0BTgEyAeMAmQC9/wv+uv0n/mn/JAHsAP0A7QCLACMAef9c/6v+8P73/wQAuP8w/zf/vf+MACEBcAF/AfgAuwDD/4H+3P27/dv+egC7AeMBGgJaAQYAaP+//rn++f6r/+v/KgDAAO8AHgH3ACkApf+1/woAOAAqAMT/Wv/b/pj+T/+WAF0B1AHaAawAn/8c/sv9yf5e/+3/OQC+ANYAcQDg/4b/pv93/zT/hP8lAH4AkwBrAAAAmP+S/6X/5/9fAHoAVwCy/5L/JABsAHQAVwAFAJf/t/9AACIAqf+K/5v//P/0/9L/zP/5/28AbQBNAL3/cf+N/8f/1P/D/ywAigBPAYsBcwGJALn/cf/8/nr/AABmACEAFADs/1cAUgAUAMAARwASACT/4/5s/4v/i/8h/0v/rf/zAMEBrAFuAWoAif/A/qf+9f4q/83/WgDlAGUBfQF8AdcA0v/k/mf+YP66/p//5v9UAJoAhwCwAKIA4wDmAKsAo/+s/hL+B/46/yYAlgCaAMkAAQE9ARoBjwC9/63+Xf5M/uj+zf+lAGIBjQFXATMB3gCsABwA4v6T/l7+e/4o/0sANgHsAeAB5gCmADoA4v/L/7f/V/8H/1T/0/9bAPQAJwHKALwArABXAKj/M/8d/yT/YP/l/2oA1wB8ASEBMwBy/27/q//6/wkAjf9f/3D/+/9HADwA+P+5/7P/2v/3/8P/3v+8/6b/e/9I/1H/lf9oANAA5gCOACsA/P/o/z0AQwBQACcA7P/R/57/zv8AAAUALgBhAE8AEADv/7//Vf8L/xX/g/+V/7v/LAA2AA8Apv9z/7T/5f/T/7r/yP8GAM7/dP8Y/9j+eP9DAOQAUQFRAd0A+/9y/2//kP+p/7L/sf/X/ycAVwByAIQAlgBRANT/iP9R/6P/zf+r/2b/Kv+O/wUAsgAGAf8AngAKALb/h//K/+//1P9Y/wr/ZP8iAP4AcgFbAcwAKQCy/2P/TP8H/wD//v4n/9r/lABbAYMBKwHHAEgA7P/M/7P/Zf9u/7T/QQCTAN4A9AC2AJkATAASALj/TP8Q/97+9v5r/9//aADkABYBwQAgAH//LP83/yr/Rv+S/wUAVQDFACoB/ACFAPb/kv95/5z/4P8AAL3/m//E//v/RgCtAOcAmQAvALP/ev+H/6L/v//B/8n/vP85AKwAiACCADwAsf9s/zH/JP8y/w//Zf+e/5b/uv+u/wEAKgA4ADMAmf+I/+z/JQCdAJgAQgAWAOP/HwAnABoAYQC4ADEBvwEeAhcCBwIJAtkBHgF3ABMA+v8lAFsAugADAf8AiAAeANH/vv/D/woAWgAUANP/if9P/zz/X/9h/0H/C/9C/6b/IACxANIA8QDmAMgAsQCAAFkAUABdALYA9wAaAUcBegG8AdMByAFZATUBYQHxAWcCxAIVA+wCvQJAAtYBeAE9AVcBfAG7AdsB5AHRAXwBNQHVADYAkv/3/mX+zf0X/WX8FfzX+/v7TfyV/LD8TPyv+9X6C/p0+UH5cPnU+VX6yPoZ+yb7HPtK+5b7Cfyk/Cn9qv3x/S7+Wv5y/r7+Ov+q/9j/BgA1AIQA6wBWAX8BowHSARoCbQKTApMCVQIcAhACMwJvAhADhAPrA2oEnASiBIsEZwQnBKwDQwPNAmECRAIAArIBOwH5AMQAlQBpAP3/ev/J/lL+7P2r/XP9O/0J/ZT8D/xk++b6rvrS+i37k/sB/G782/wn/Tv9Dv3f/MD80/wl/cL9Y/7a/lX/wf8yAKIAPwHwAYICAgNuA8UD/wNJBKkE+wQLBf4E5gTzBCQFjwX7BUMGXQZtBnsGhgaMBncGUga7BaAESAMtAjMBtQBmABUAoP9I/77/ZwDwALsAXACP/6T+uv0m/en88fy5/dj+XQBzAUACqQKmAogCZgLjAr0DyAROBs8Hxgi3CVUKPgr9CT4JdwgtCCEIkAi1COMHtgZUBcUD7AJXAr8BzQCm/w3+Dvyy+Wz3ifXb86vyo/Er8F7uo+z06vjpf+mI6YLpmukX6qXqeusU7LjsE+1W7bftgu7Q71rxwfLo89j0rvXL9jT4/vm6+3H9Qf8aAdACfATaBSgHRAjjCGQJcAmiCYkKawshDL0MCQ1qDc4N4w2qDQkNTQzMC1IL1QpmCrkJ+ghTCF0HQAZABTcEZgPFAjUCywFXAUYBNAG0AAoATP+z/ln+Ff6c/fz8cvw+/GX8xfwR/R/9Mf2M/RL+oP4d/1H/ef+3/ywAlAD7AFYBegG8Ac0B1QHWAb0BxQHuAfsBCALwAdABnAEYAXMAY/9p/m39zfxQ/NL7ivuK+xL8o/w4/SP9x/x7/GX8f/xs/JD8p/z6/FX9fv1f/Tb9Tf2W/RD+hP4Z/97/wACeASsCigKuArYC4ALUArgCkQJzAp8C0wIkA5UD9gMHBAYErwNyA08DNAMgA9sCmAJsAk8CJAIBArsBlAF6AYUBogHYAUUCsgIHA0EDXANyA7YDGwSjBCIFkQUmBtwGvgfhCOAJ7QoBDOgMyw3HDs8PuxAaEdQQGBA6D9MOyg7TDoQOvw2oDIkLYQr0COIGbwSfAYj+l/vy+Kv2evR+8lDwBu7V60TqTuml6E3o/ufr5zHo4eiR6RHqSuom6tfpgulb6Xnp8umQ6jfr5Ovy7IjuvfA684L1ffc8+Q77r/wo/lD/9f+MACkByAGMAkIDIgT0BLwFYwYEB+EH4AgCCokKxwqYCl4KWgo4CgwKeAkACagITgj8B3oH2AZaBgQGqwUiBZQERgQlBNADNwNVAlkBmQALAKH/IP+I/gr+0/3A/aj9I/2d/CT8qPuZ+4z7mfu6+977Q/ys/CT91/2M/jP/uf8gAIYA+wCjAVEC/AJpA+IDOQQfBPcDpQNIA+4CuAKuArUCzwKvAnsCRQL9Ac8BrAGOAVwBHwHpAK4AZwANAJX/A/9y/vD9Xf3Q/GX88fuA+xf73/q7+tD6Nfus+yD8l/wq/df9kv5I//D/YgDeAFcBwQE4AoMC0ALpAhgDbAPrA1wE2QRDBXwFygX4BVUGrwYWB2gHegdcBzYHBwe4BlUGjwXzBDkEugNzAyAD3wKNAlwCHwJGArICVQPxA4UE8QT9BBUFJAV+BQcGvgayB7IIrQncCgEMtwxPDYINvA3/DUEOwQ7lDt8Oog4RDmcNgwx0Cx8Kegi1BpAEMwK4/yr9tPpj+Gj2uvRY8yPy/PDQ75juje277Dbs1eun64nrWOs66/fqqOpE6tHpW+kD6fboMOmd6TvqD+vz6xDtbe4N8OPxtvNn9dz2NPhx+bv63vvN/Jj9Lv7J/mP/BACwAGwBGgLYApoDewR/BZwGpweGCDgJtAkuCpgK9AolCyIL9wqyClUK6QlwCeYIRAh7B7MG9AVDBaUEGgSHA+MCPAKdAR0BowArAJn/6v4x/oP96vxq/PT7g/sk++D6vPqw+q/6k/qB+mv6Z/qR+tj6Xfv7+7T8iv1p/nP/hwCtAbwCqANoBBMFogUQBm0GswbqBhEHNwdDB0UHKwfqBn4G8wVgBc4ESATcA3wDJgPHAmwCBwKSAQIBYQCz//v+T/6Z/eP8LPx9+9X6O/q6+V35E/nq+Nn42fjk+BD5ZfnM+Un65vqm+2X8I/3K/Uv+qf4O/3v/5f96AAQBowFDAvYCtANwBCMF2wWKBjcH2AdaCOAIOwmFCboJ2QnxCQ8KNQpUCnIKcwpvCmcKWgo3CgsKzgmBCSYJQQhXB3IGiQWZBKQDrAKzAfQAXwDy/5T/a/9e/4f/7/+YAHwBfwKhA8YE6QX8BvwHAwnsCbkKWgvWCyIMKAzvC4sL8ApECpQJzgj2BwUHEgbyBLEDXwLkAC//aP2i+875+fct9o706PJ58Rnw1+6Z7YLsieuH6qnp2OhD6NPntefZ5zHoveht6TLqD+sO7ArtJ+5a77HwIPKq80j18faU+A/6f/vG/Oj95v61/2cA6ABRAZ0B1wEMAkICewK2AuACDAMxA2kDnAPOAwYESASmBBoFlgUUBocG5QYoB0kHQAcLB7sGWgbmBVcFuwQKBFUDnALeARYBTgCI/8v+Iv6J/f38gfwX/M37mPt6+2j7Vfte+3D7hvui+8L78/s5/Jn8AP1j/dX9Tv7Y/mX/7/90AP0AiQEUApYCCgNwA9QDLgRwBKsE4wQjBV0FiwWsBbYFswW9Ba4FhQVMBRAF0gSEBCkEvQNRA/QCmAIvAssBfgExAfEAsQB1AEgAKgAYAA8AAAD4//z////3/9z/v/+j/4//b/85//3+0f6y/pX+c/5d/lj+Yv59/p7+wf78/l//1v9KAMgAUgHtAYQCEAOFA+EDQQSYBNcE7gTwBPIE8wToBNAEoARlBCUE0gOFAzMDEwP5AvcC/wIqA1YDjgPLA/MDGAQYBBYE/QPdA5gDVgMlAxMDFwMFAxcDGwMqAy0DXwPHA2AEQQVXBqwHBglyCvgLUg1ODvEOXw+MD30PHA91DnANOAzLCjwJgwexBdwD6AHf/9H95Pv++Tz4hfbv9HTzIPIS8RbwRe9h7nfti+yV66jq2uk26avoOujl58Hnu+f454PoMOnp6bfqv+v17Gfu9O+O8RjznfQy9sT3PPmv+hD8Tv1s/mf/OgD6AKABOwLPAloD2gNXBM4EOQWRBeUFNwaMBuEGMQd9B8YHCgg8CF8IfAiLCH8IVAgTCLsHOgejBvkFOQV3BLUD9QI/An8BtQDw/zb/iP7v/WX94Px7/Cr85Pu1+5f7hvuM+6T7wvvs+yb8Zvyq/PL8PP2N/e/9Vf7N/kz/0P9JAL8ALAGHAeUBTQK5AikDnAMLBG0EtgTpBAQFDAX7BNgEoQRLBOQDdQPlAlICswEBAU8An//u/kP+rf0i/a38Q/zu+7D7hvto+2j7fvui+9L7DvxS/Kn89/w8/Y790/0e/lv+jv7A/u7+Hf9I/3n/o//N/+f/DAAvAF0AogDlADcBkQH8AWQCygIzA5gD/QNWBKIE3gQMBTMFVAVxBYUFhgWIBXgFWwU5BQUF3gSxBIAEXARIBDAEOwRCBEkEVgRdBFoEawR8BKIE0wTrBBYFAQXjBH4E8wN2A+MCeQIqAhQCMgJ8AskCJwM+A1wDhwPHA2QEAQX5BfkGJAgJCeMJYArSCjkLoQtlDMwMZw25DeYNxQ1JDXcMcQtnCi8J8AdVBo4EgAJQAPb9Zfvq+Hb2T/Rp8snwb+8w7h/tHexD65bqHerd6dfpAepQ6q7qAOs9633ryesd7IjsH+3r7dTu3+8M8UTykvP49Ij2Q/gd+gP8Af73/9EBjQMgBYAGpgecCGUJ/wl1CrsK4grkCr8KcAoDCocJBgl9CP8HiAcOB5YGIga3BTkFvgQyBJ0DBANfArMB+wA+AH7/uv78/UT9l/z0+2b76/p5+iP63fm0+aX5tPnb+Rf6Zfq9+iz7ovsi/KX8K/2w/Tz+zv5d//D/eQAHAYAB8QFUArECFwOCA+UDQgSOBMwE+QQZBTAFOAU/BUEFRgU5BRUF3gSQBCsEvwNDA8UCRgLIAUIBsQAYAHP/yv4j/ob97Pxd/N77bvsU+8f6j/po+k/6T/pd+nn6mfrM+g77bPva+1X83fxn/fT9ef7w/mD/yP8zAKMAHAGLAfoBYQLFAiADbAOuA+oDJQRfBJwE0QQQBUQFiQXGBQMGOAZqBqMG0Ab3BgQHAQfoBtAGqQZ7BjQG1QWABQQFiQQIBI4DIgO1Ak0C6QGXAVMBLwEjATABXgGZAdoBMAJ6AsgCEANGA4sDxwMGBEoEeQSdBI8EdQRLBPQDjgMKA40CHQLoAdYBCgKWAkQDOAQhBSkGFAcMCCcJVQq7CzwN0A4zEDsR3xEGEp8RphA0D3MNRgvGCA0GGgMHAOz8qfl79kzzQ/CT7THrbekB6B3neeYq5gzm+uUe5k/mqub/5nLn6+dr6PboiOks6tPqj+tO7DjtRu5+79LwWfIg9Af2Jvhh+rb8Dv9fAacDxAW7B20JAgtWDGQNNQ67DgEPBw/iDpYOHQ6CDcAM7Qv6CgIKDAkkCGAHqQYDBmQFywQiBGIDhgKYAZcAh/96/m39b/xm+1P6OPkO+PH29PUy9Z30PfQZ9D30nvQ+9Q/2CPcg+Ev5jvrX+zD9hv7W/xQBNgI5AxcEywRiBccFDwY3BkkGUgZRBlsGZgZwBnQGdQZsBl0GSwYyBhcG9gW7BW0F/ARqBK4DzwLKAaIAdf89/hD94vu4+p35nvi49/n2bfYG9tH1uvXm9Tb2s/ZR9wT42/iv+ZT6bPtG/B797P2x/mT/AACUABIBkQEGAm8CzwI2A5QD8wNHBIwEygT+BDAFWQWBBZkFoQWeBYIFVgUVBcIEZAQABJcDIAOsAkEC4wGSAUYBAwHNAK4AoACiAMQA/ABCAZYB9wFtAtcCNQN+A7QD4AP6AwcEBwT/A/QD1wOtA3kDQAMBA7wCfwJgAmMCdQKXAsoCAQNDA30DpwPEA9gD3gPaA8QDngNZA+gCRQKIAboA+P9O/8P+df5x/rj+Ov/g/9gAHgLsAx0GggjuCkkNbg8aEVUSFBNdEyMTRhLgEM0O4AsHCIwDuv7D+S31EvGx7RbrD+mQ50nmE+Xq4/HiYOJy4jTjguQA5mDncejz6PDooehZ6HroJOlc6u3rnO1I7/zw3PIH9ZX3m/rw/Y4BMAWRCH0L4w20Dw0RJRLtEmATaRMFEzcSIxHhD3gOAw2PC04KOwlOCG8HnAbQBRMFZQS3A/8CEwL0AKb/M/6p/AX7Rfl697H1BfSH8lrxcfDl783vKPD88Djyy/Os9dn3OPq+/Dj/jQG5A8gFqQdQCaoKpAs+DJ8M0gzbDL0MdwwJDH4L4gopCmUJogj/B3EH6AZSBpkFrAShA4wChAGPAKv/0/79/Sr9XPyW++b6Vvrv+br5rPm3+c757Pkm+nT6yvol+4D7y/sN/Fn8vPxB/df9ff41/wYA3wC4AYcCUgMdBO8ExwWZBl8H/AdaCHAIPgi9BwEHIgY5BUoEYAN1AngBXwAw/wP+1vzG+9P6FPqF+TH5JPlH+Y751Pkd+kj6VfpZ+mv6pPoI+6P7UvwR/b79V/7r/pz/egCdAfACYgTUBRoHOwhBCTIKAgu4C2UM7gw8DU8NJA26DBAMKwsvChsJCggFB+AFowRZA/8BlQAb/8j9rfwK/NX76Psh/E/8Rfzr+1n7qvo0+kf64Pr5+x79//0p/pj9mPzG+7r7Df3g/+UDhggbDQ0R+BMdFq0XARkxGi8boxtCG9wZKxcpE+8N2Ad0AYn7dval8g3wQO7U7EDrZOl+5/rlOOV05XPm5ecD6ULpg+gR53TlUeQO5KbkGOb75/LpyeuQ7XvvtvF39Lv3avsi/5MCgQWVB90IXwllCTIJKQlsCQ4K4Qq1C2gM6Aw8DYINxQ0jDpMOBA89D/0OKQ69DJ4K1QdkBHoAb/xm+Kb0P/FS7uTr7OmD6J3niudx6Cnqwezo717z6/Zf+o79XwDTAuwEvwZHCJwJxArPC70Mmw04DpMOwQ7cDgQPQw+bD/AP+Q+bD8EOeQ3+C2MK1AhoBxQG0gSUA0kC2wBw/yD+7vwK/Gf7B/vM+o36HPpt+Zj40/dR9zX3lvdf+Hn5t/r3+yf9bf7T/3ABHgPNBHQG6gcqCQAKVQo4CrYJ1QihB0AG3gSVA2QCPgETAP7+D/4k/VX8tftt+3b7uPsO/Eb8XPxj/FX8M/wI/OD7wvuR+0v74/qN+lX6R/pc+oT65PqA+1z8aP2h/vT/OwFvAm0DHASABL8E3gTiBMMEgAQfBKwDIgN4AtABNQHFAIEAXgBWAGwAlwDTAAgBKgFAAUkBMgH/AM0AqwC1ANcA8gDeALAAWwABAM//6v9qAGEBqwIGBDIF+AVVBmMGPgYVBvUFHQaABhEHZgdmB9kGrgUPBDcCSwBS/kb8//lm95v0B/Jl8GLwivK59ln8eAJRCAwN4xAHFJwWARn5Gk0cZRzUGlgXABIgC20DrPt69Kfuiupw6SzqCOzY7dHutu6H7UjsNOv36qfrnewB7SfsoOn05c7hxd6c3fDeouKQ5x/tAfLC9an4N/tK/gMCZAY2C4YPwhKrFDkVTBUeFQkVDxXGFHoU5hM/E4wSihEzEDsOxAu8CFsF/AG8/vf7a/n89k70c/GY7irspeoj6tDqYOyL7snwEvNH9Wz3gPly+zv9sv7q/+AAyQG7AuUDPQWtBicImAkLC6UMdQ6mEOcS7hRdFtYWXRYPFUgTIBHcDowMHQqdB+oEFAJq/xr9QPsA+jP5r/hZ+Pz3hPcJ95P2Nvbr9dX1/vV59mD3r/hM+ij8S/6dAA0DcQXEBwIKQQxHDt4P1xANEcUQ7Q+7Dn8NWQxJC0wKIAnKBykGiAQAA6MBmACI/5P+ZP3r+0b6ePiw9hn1sPOQ8qzxEvHG8L3wM/ER8kzzyfRT9gj4r/lj+wf9e/7T/+YAtgEvAmsCnwLRAv4CLQNWA4kDpwOsA4gDPQP4ApkCRgLpAZABOQHFADEAgf/F/gr+dv0D/cr8svzD/N/8Gv1d/Yf9sv25/bj9nv1v/Tn9B/3j/Nz87fwJ/Ub91f28/iQA4wHWA+wFtAcYCasJvwkkCTUI6AZmBe4DsgIJArcB9AHrAcsBVQG1AFkAPwA+AYkCCQSWBC4ELgKa/xT9P/sv+z78j/4qAcMDLAZ5COIK7A3LEGATJxVzFfoUCBNwEPoM0QgrBCf/sPpG94v1X/VY9kv3ZvcR9obzmPAn7tfspuwW7UTtWuxv6rvnPuUn5Pvk3+cd7AnxtPXu+VT9TQAOA5YFGAgiCskL0gwkDRINdwx1C0MKvAhOBwgGFQXUBMQEEgUmBaYEnAPzASQAFP4p/I36DPmE98711fPC8e7vsO5b7v/uifCr8hv1h/fC+b77bf3m/i8AbgGPArADBQVRBpIHvwinCV0K/AqsC5kMpA27DnoPmA/9DpsNuwvLCRkIzwbJBdgEyANOAoEAhv6J/Nf6g/mS+Ov3bPcJ97r2lPaY9sj2Pffz9+/4Rvrt+7/9j/8vAaQC3QP/BBcGbAcDCcIKgAzpDe4Oeg+DDzcPsg4XDnANrgzKC5wKAQkFB8gEgwJoALH+X/1f/Jf70/oC+hX5Jvg49zz2SvVP9EzzbPLC8WTxf/EH8vHyPfS89V33DPnJ+nr8EP55/7IAvQGDAvYCJwMeAwQD2AKYAoEClQLXAi0DhQPTA+0DzgNxA94CPwKbAQEBXgCx/w7/X/7G/VD9EP0N/Sj9bP3Z/U/+t/4T/2P/pv/c/xkASQCTAOUAOgGeAfgBVwLOAlMD5AN4BAEFcgXOBQIGIAY7Bl4GlgbnBjwHegeOB1YHmAZeBbcDxAHQ/yX+QP1d/Wb++f+yAbsCpgKZARAA6f6w/u3/LgJsBIwF3QTXAZT9Ffkp9vX1Lvia/NQBuwbxCv8NKhAxEtkTkRXiFigXVBaEE/EO/ggDAkr7dPVa8W/vVO908MXxq/J18hjxCO/p7GfrxOr96s/roOwf7S/t4Oyy7Eft/O7m8eD1Vfqh/j8CpwTXBQwGwwVoBVsFwAWABksH8gczCAEIiQfqBoAGLAbpBacF+gTwA14CWQAd/uH7/vl4+HL3CPcR9173tvcB+C34S/hs+Kr4H/nD+Xn6LfvI+0L8uPw4/en96v5BAOsBvAOQBS0HgghlCdAJ2QmOCRIJfAjmB10H5wZvBvEFeAX7BBQEOgOAAu0BgwE2AdwAYACx/8H+0/0S/ZH8XPx7/Mb8Qf24/S7+nv7z/k//tv87ALMABAEkAfwAoAAlAJr/Hf/d/rD+of6l/qv+uP7T/gv/YP/Q/x8AVwBsAIoAnQClAKYAdgBbACQA+f/k/+r//P///+P/q/9j/x3/1P6H/mz+PP4u/i3+Jv4y/in+HP4m/lP+pP4h/7T/ZQAOAbABIQJ2AqwCtQLSAtsC/gIaAxkDEQPaAqMCjwKJArkCBgNMA7MD8AMoBGcEYARIBAoEtQOAA0wDVgOlA/oDVQSDBFsEEgSbAzYD/wLYAr0CggIUAoIB9gB9AC0AFAAWACAADADT/57/Tf/7/tz+k/5R/iP+4/0S/l7+8v7D/1oACAFpAboBGQJIApwCwQLHArcCUQLdAVoB1wB6ACYA+f/O/6L/mv+j/87/+P/w/6P/9v4Z/kH9dvwA/Mz72Psa/Iz8F/20/U/+3v5t/+f/dQD9AH8B7AEQAuoBXwGBAJn/v/4b/tz9wP3G/Zz9OP2z/Cb82PvL+wv8dPzj/En9jf3F/fH9Dv4v/lb+j/7L/hf/fv/c/zwAfwCXAJoAawBJAD8AUgB+AJ4AwADMANUA3QDdANEAugCfAIsAigCaAKwArQCVAHkAVwA0ACIAJQAyAD0AIwDS/1P/vP4c/o39CP2L/CX8svtu+1r7gvv4+3v8If2t/Qz+V/6L/sv+D/9U/6X/0//K/4X/IP/O/p/+pv7r/lr/xv8oAHwAwQDZANIAxQChAI8AbQBUAEIAHAAEAOP/tP+e/5T/p//c/wsAOgBTAEQADgC8/3P/PP8g/yL/P/9d/2P/WP87/x3/G/8s/2n/tv85AKkAxwDdAB4BDQEqATkBHAFlAVoBJwFOAe0AKwETAuMBfAK6AvwCLQRKBJAESwR8A2cD0QIUAlcBhgDUADcBnwGpAfEAPQHiAf4CoQPPA34E6ARvBckFuQS7A2ID3QIzA7ACOAKhApYCSQOGA7oCFANGA1cDIgQJA4IC+AEvAYABVQBW/4f+4P1x/iT/T//I/7v/4/9ZAC4AOQB7/9f+Hv/l/gD/iP7H/QD+Hf68/jb/Wf/H/ykAsAAXAQIBrwCLABoA9/90/8r+iv77/YD+l/5U/n3+p/5D/yIAWAAtAAsAxv8AANr/Zf/w/of+Y/7r/tf+lv6E/mv+ff+//wMAIgDJ/zEAMADr/4r/DP9g/oT+MP7A/VH9jPwH/Rr9zv08/gv+S/6M/l//1/83ADAAMwBcAPz/WAAiABMA/P82/wr/yv5P/67/Mf+W/zwAGQDtAAQAaP+m/1z+vf6b/jj+zv0H/aH8e/4//wX/4v4u/fj+cf+G/+b/df2q/Rr/Fv90/639+vvN/Iv98f4e/9H9Tv0O/hn/oQAu/1f+ov5O/tD/Fv+1/S/9tvyy/Yv+h/1u/RD91f3G/3T/SQCH/0P/AgFpAAMB6QDH/44AswBFAZYBWwAtAKMA1QHnAQMCegGYAb8B3gEqA+4AQgEAABH/7gDI/9kA0gApAHwB+AFOAQICSAEaAqUE6gIYAz4BLwBgAgABMwAO/8L9zP92ATEBFAGf/xUAgwJ6AtICdAG2AIMBnQFUAgQB1/9cALUAEgLLAn0BagHtAcQC1wMEAyoCVgIQAmwDhALtAI0A4//LAK0AkQC1AGEBgQEzApgB2ABnARIBHwIWAkgB7wAsAM//2gDT/1MAQgA2/xkDhwAWAFIAQf85Al8AKACf/3f+mP+WANr/AwDk/of+ZwAU/4sALQCV/74A4P81/1f/AP8l/tn+8PxS/a79F/6y/ov9g/9s/Yj+7/2x/koBWP9JAAL9J/5KAIcAXwD5/L39MP6IAs8AU/+Q/jH/gAQlAnQAr/zW/lsCPgL/AUb79/xg/t7/DQLp/fH+O/4dAFgBGP7s/ln/DQDOAdH/rQAFAMj/qP80/d0AHABKAFP/n/6HALwB8QDp/nj/h/1kAm0CDAHp/+T8/AERAfwBc/+H/boAggDiAWr/tP/w/EMAzwGn/wAAnvyLAPEADwLJ/qP8Yv7D/nkBV/2F/S3+zv9jATsBr/3Z/ML/p/9pAxr9Qv3v/ZH+5gOG/57+Ef57/toAnAKwAScCfQD3/9UCBAExAmz/uv5tAXH/bP+7/TT9ywBgAED/3f79/TT/ZQB3/4T+hf+QAFwAIAEM+7r+9gFpAMcBh/u+/mIBPALNArP8qv2uAaAEmgKX/639f/4aA28C6AKe/Er/vQFVAlIDp/1PAdgACgMSBCYAJACh/yUAewMZAhYBrP+1/qABugCJAJb+LP4gAdEBXwMFAAr+gP+GAegDRgBb/fz8KAACAqgCWP6A/dAAKgE9AjH+M/9tACwCYgI0/3D+M/62Avb/kgEY/p0ARQN3/7IE5vtcAKoChwEyBBH9QP4VAZkC7wD9/4T8Hf83Aur/LgSy+0T90wBtAKkE7/64/fv7nwAABGf/lP9C+9X+wQHb/5gArfwJ/q0BfwIOAY3/8fzr/oMBrP8MAPb+4P1cAHr+u/+O/8b9rQD7/lf/nP7E/pUAZAFh/2z+of4EAZ8C+P2rADn+ggDKAzf+aP+A/eP/KwI9ABICof0c/zYAkgBP/+7+ZP71/L0Bcv8KAs/9tf7MAH3/JAKK//b+Mf40AWIBvf8G/0n+uP5pASYB4Px4/73/1QHMAub9B/+n/jYDEgBZ/mP/9AI8AW7/rv8O/S8FqwB8A1n90f/VAB3/ZgXs/FoAdftp/8gCeP5A//j4iwCT/z8BaQA5+2kBpP7+AnT/nf8E/1n/IwGg/70ACv78AO3+HwL7/gICkgHg/8sCAgCuASv/CgKj/6wB6v6v/Y4B4f/LArX9M/83/+L/AAG1/Nb9ov7lAT7+X/6y/mj8oQE+AXwAcv13/438CAEQBE7+Y/9x/LD/zAL0ALr/Hf5i/yADZgHsARn+Rv+yAR4DywLg/pj/NQLCAzIBBwI2/ZH/6AMpADAAD/5U/ZACqwBWAFf95/yHASr/MwD8/f/+PP+d/sYA1v5d/9v/QABpAVEAUwPq/dn/VwBa/3cGLf/eACUABgQWBF8Bjf8J/qkCiAP1Aiz+WwFW/xIB9P9aAF0B3P2aAav/g/+7/4T+oQBt/2r/iftV/iICifx8/pz8owCN/6T/jf+L/C4AAALu/9YCx/80/fgA/wAQAj8B7f4PAFUAH/+JBS//dv/A/ucAlgIzAdQBFfvgApED4/+oAdj+y/62AfP+4P5AAK4A2v+t/qb+Gv/GA1YAh//W/bf78gNgAEIBGv6v+eoA5f/wBbD9AftOAL7/tAWIAdP9+vtBAcoAIgKs/kn+QQH1/gMDs/2JAQEAlv+O/+L8LgQBAR7/vfk5/EACjgE3AUj57f/9/TIB+wEx+3X+Vf+gAlwBnwB9/LEAr/5TA3oAX/weA0r+WwBeAHL/GgMSAAL/x/4AACUD/AA2/wr///8XBIoADf/A/hP/6AEBARn7Z/21/3b/ewTj+bX+5v7WAC4EYv3I/i7+CQNOAtMAj/1s/KcDhwHPBNX7hf80/pwEcgU1/WoCz/gxCEcANAIPAXP7rgQFAaj+WwGR+jv+ggLF+5sC0vyJ/LwCFP6FAPn8/fufAij9ngCH/WH8/gPe/hH9BgB1+wYGFwJR/lMDp/oKBnQBxAGbAF7+sQEuAlMDdvxWAwb7TwYPAE79WQJq+tAHXP/q/yz9sgCFAuf/bQR4+lwAx/4GAUkBtv19/mf7lgNn/qsCof0y/FQCPQD4/2ECcfx2/LYFE/0/BNX+//yCAcgBFQJD/i39DgESAL0BHgJM/dX/I/45AH4BRwDm/S387gEmAZYCHQEV/AQCN/2rA4H/q/68/vf9RQRzAAkCnP7s/FAFIQEs/qIBa/oXA4YHfPvb/7387f8iBu7+dgAE/YwBt/7YAgsBuvxs/v38bgB3AjIAJfsdABL8eANOAYL+u/6r/ZMDJgBdAiX87ftQAq79UQIP/oj8kQBb/4QAzACOABUATQGm/9EEfv6NBCL96f0YBf79vgXE/vz8cP+vATIBQAJI+4z9nABsA4MC0vzNAKr8tgTWAbv8gf4M+94CJADw/eP8z/xeAaEAPAIQ/IQBlv9TA4gEw/0zANT8mQJZAzAAK/3b/57/QQS0AAf+6ACo/RoDOwDZADL+/P1KAQb90gJo/K3+8QGV/WYCfv2v/4j9OwEx/ZcBo/5l/9f/z/3eADn96QNv/RwCrv2tAHECZgI/Ahn+1wKWAJMCaALc/FcBNQAQAfMBuv4wAcf+aQOF/koBff+n/I8CAQFa/sYDE/q2/pEFYfpaBML3f/8ZBFUAKQJ7+LgCp/rbBekCO/fVAJz7AQZNAtz84/q+AMYBMAJ/ACL4mwMRAl0A0/1PAGX92wLM/xUBzQGv/2kDofwYA8H+4/9qA877EQM4/t78RgX2+i8FPPq6/i8Dc/+wBDb5Fv+B/90Cy/+J//j6UwILAJn/nwGa+mEF9fvEA/b8L/9uAqz9cAX7+2EBEwD5/17/QADAA+D9Wf2U/oIDMwL8/JH+kf3ZBjoCZv2v/qz8OQjK/Lr/IP73/VEDYP3nAuv7fwDE/yAAr/8dA0n/rv7i/4n9eAXL+8MCrP7h/AAAOQK3Afn84P/J/xUAKgFTAMf/QAIV/8sBOP5PAbwAEgIb/FYA9wN2+8IGB/p1AZkCiP3VBqP6zP+mARcAkQSz90QCIwEx/rsHgfZUAw4AuPwKBwj8Ov/9AB/8bgMMANv8+QEu+ykG4/wYA4n/gfp5CcH3wQVm+6v8QAYT/qEFK/vH/KwCewILA6T9C/o3BPD+ngM2/c76zQTK/nsC2/yr/vAChP8PAAD9BP+6A9j/QgEJ/TIAfAEPAS0B3f3q/sr9gwMjAg7/M/wvAP7+awR+/yv7PAEj/ZgGBP24/54A9P+rA8r6mAF1/6AA6AGF/O3+1wC3ANv/N/41//EB3wCg/ggAaAHRAE3/Rf2n/gUALgOKAFD9bv5HAYUA+wDqAtH79gTe/REDkwL/+7H+6P7lBbf/5AFT+VABOgGmBLT83f/e/pr9qAi99sEG3vue/NoEDPsyAoUDxvz6/pQAy/5zBJb9KADA+r8C6gBxAGcCLfnEA//9fwFzAUT9jf6AAowAfv+2AIP+RABMAZoBswCD++7/gwNGAFoAkfnMAnIBggOlAnr5IgGL/hsE9gBl/lb/3PvmA5QBt/4tAJj91gQyAMf+5/5RAKsC/P87/uj5PwTc/SsE2/xP/asDX/trBUz8mf7i/pcBwQK2/yn9mf9lAGgBfAF//E4D0fxvArH+GgEcAcD9CgML/wwBOf6tAcD97QKa/j8BRwEH/YUCmfqIBdD/kwBu/Cf9pwObAA0BVPxA/9P+AwISAU4AQPydA7v+LAA6ARP8cwVK/EUDDv8T/YYCX/0RAbMApgAo/fL+RgJ4AU8Dmfs8/ZD+HgXSA5H7iABB/HABuwAd/6QAw/+U/lsBmf+rAbn/w/1BA7b7eQM5/yn+tQCy/G0EEwH0+5D/c/+bAkID+/nYAh391AMrAiz6SQLM+xMIhfzKAKz9Nf2RB/r7MAMP++z/NgN6/qEBB/+e/FgBwwEfAg798vziATz/oAX7/Pv+Rv0b/t4E/QDEAXT63gF3AvcAnQBp/ef91gMtAfb9gv7z+84D4gJ5AWL8bv0zAskAGAbD/NX3ewPy/dQIff7F99MCP/xLBosAzfy3/1H57AVoA6n9DgGC+aYCrwLHApj+4P3X/q8AUwVV/IAAWv7jAFAFr/3d/xD7DAYqAJX+LgET+JEFIP/bBD38W/5J/9f+zQcn/n3+5P23/mkDXgB+/4L/cv4TAO/9NAC//yMAXwNsAm38EABo+WIFrwJe/KICZfxZBIr+k/4+/pgBCANZ/UYAEv6hA/L+eAFZAO39zwFZ/l39LALbArX+pwI79VQGIwKwAI4E5Pji/6L83QSUAxz7zPzBACAC8gX9+bz+nv48Ad4EvPskAov6pQQSAGIABAD5/HADo/32BcL76QIZ/ecBcgHh+UMHIvzSAu/8fQHB/sMC/PrS/r0HdvpIBMj3MgJBBKr+9gHd+NQB/P1BBCoAhP3TAkX66QX5/vj/GP/d/d0CRAAzAI8AMP6UAgr/nf4LAJoAAADa/rQC0/qxBcP/4P4WAfz6rgMsALQDEf6M+2T+sf/5Bw//sv0M+qsCqwFPA5b/o/w8/3P9zAR8/K4Ct/tWASsA7/3bAUUAgQD4Aq/9q/yWBln6/gGP/4P+WwKg/+YA0PxWA5z7vwGrA5H9eQEF/XUBIABiAAAAPv7z/mIDAQC3/sD84P42BEr/UwBf/UX/ZwNqBDP60v3zAIYA1QWz/uT7XPwCAb0D+gFhAP351P3hAgMC+QJN+lX+nAIJ/mQGqPvr/J0AjP8lBzH7WgGU/EwBUwOo/jgC6vu9BA39z//tAmz75gWY/G/9VASE/QkCQv2jAlf9fAD//+f9yAQX+BAIhP60/g4Be/jnBk//AQK3+0z+KgF5Ap7/l/8w/rf7bQjL+0oDGP8u/XECef6bAiwBzfxhAPv9TAP/Ao79BP8N+4sFqwDMAFr9vPxCADAF+v+l/pj+N/11A3P+jgOB/QQBTP4m/xcBqv4cBsn9MQDs+mgAIwLpAOUCq/s5AFr/MAIRAPv+sP8d/q4CZ/5t/RYBrf4jB/n6a/7HAtD8NAbH/4P97/5JABUACwRy/MQBYv06AKkEDv0qBCv8Sv+aAXEBKAA+/y78PQEoBLb+iADc/ND+wwJKAWT98wB7/scBrv5TA/4AEPy8Azn7sQNv/h0BBQJg/XH/T/++AVf9aQEcAof/5v4qAnb7BASuAHf/dAKi+xgAff2ABtn/aPx+A1D89ADzBcv8+ALI/XH58ggMAFT/+wCw9xAH0QHNAsz+8/ivArwBgAOSAaL6E/2NAkL/oQar+Xn74v9RA2gCUAAt/kX4Bwgj/8oDDvvD/CYBIwBgART6NACS/80DUPwrAcD6jv/A/7QCWwPv+ooCgPoFAbH/HAbK/Oz/Xvvz/50E//wWBCX4qwMb/64AMwET/0H90AGQAfYCWf+U+egBeABJBZT+3/5c+GYHgv7HAl4Ar/nLCPr80AWR+cABuABh/3QGsPe0A5MAvv96Bib8UgYk/Sr9Tgij+xgJ5Pfw/vQELP5EAyX7eAHFABUEtP2c/y39oADb/9MBYv7a+qMCVADQAPwBRfmL/68BlgE/AmL4vQJC/hEHev2k97ABTwKMBQ3/6/7D+AwCqAEuBDD/Ov38/rn+QQQN/wUAQ/60ADYApQA++6MCfv60AUMEXftb/4D/ggCxA2UAB/zg/SX88wZJ//b+OP2C/xD+dwK9A9/3QwaJ+OEFIf+l+3sDTPjoCS780gKW/QD3hgZq/acFCf+u+wsCD/6ZAo7/6QK0/TX+k/5d/7gCjf6RAu/8PgSM+58AKgG1/ZQCtf2CBcf2Zf93AJACqgOK/LP9IP3OAEADZ/+wAev7If6OBOD+bgPB+D4C3gCKBGv+twDL+bv9TgqE/rcBg/hk/zYDbAbx/SD+zv/0Af4CLf4DBO37AwMGAqn8GQJa/iEDBgE3ALcB+Po+BJkAtwExAaD8DwI9/PwFov1fAZX++v17Alb7vgZVAIn++f8A/i3+IgZD/iH9/P8hALQC1P0j/6EA2v2JAD0DTf5dAan+1/1//8EDP/2kAXb/lf1BAu79HwQ6+w4D9wCRAfv78PyHBa//RATC/Ur+o/8y/eoGXAN9+dr+mP5NCH0BYv7V+zn/xQVSA9EAM/Vb/5MEewQb/T79+fqcAvsDO/36ArH5FwID/9P/fACO/gEA3wLUAMz8hP7/AbH94QYHADn8TgMM99YO/Pzc/koADfinBg8A0APU/JD58v9G/lgFngE2+wv96fkoBVH+lgKn/4L22gSJ/D8FpQDs/Hn/yvv0BOUBmv+9/VH/JgQE/MsAu/+mADIFD/rzANf6sQQfBHX+CP9m+yb9QgTjA4X/nv+e/Zz/VwAMBuT+Fv4I/tv/uQGgA4j+Vf/u+8H+7Aer/DwA+PogA9X/c/7eADH/YgGU/AAAaQE9AK4D1Png+/sEhfwUBdv9D//z/AgCLwEWA7/+qfteBIb7vgRi/7f9yQG4/fMDqPxw/28BM/zAB0/+P/vpAWn/QAJ3/iEEXv70/SH/DAESCPX6KQId/sAAYwLSA+YD1vwO/RcAMgZeBL7/bvye/KkBKwQDAHcEdPpA/cYB1P6hBN79KgIA/GD8+v8xBZsBUf2sALf5LwP9A4gDLP67/rEAef5hAkkCx/4WAAf+pf+IAEQBzQJR+3AAPvtNA2YCa/+j/7z2+QWp/ysEoP28/JsBM/3/B6r67/zkBJD7yQRB+yYBpwa9/AwCYvZ+AyX+qwUYA9j4cP+l9s8H1gKLAmb9zvaNAnMBaQUyAU74Zvx7AQ0HxAPr9u39cP88B8n+cQA1/wn7igaO/AkGLPu3/wL/hAJQAyD8rP5u/iMFc/4TAyv8vv/uAAUBswDn/2j/HwKp/jj/3wOkAVb+8fuLBIb7RAjB/Yf+LgEt+jkIYP3LAh/+5PzHAPUAwQXD+jIARAI2/NoDMPqFBSr+rP2YBLz16wl9/e3/gAFS+kkGK/1FAlgBtvp3A5oApgJ6/iD/vgBl+l0Inv3X/5wAIP38AgUBHgIV/5D+Qv5uAZMC/QBr/DD/df9tAcL+3gFH/2wB3f7W/LUBiP1rB1z+Y/xj+40BtwIEA3P/5PqTAu79oQO9ARP//P3dAQz+CQL4AGf+vP+0/toBSwB9AOn8dgL8+qwCEQCW/9YFqfT5ApIBRwHiBjr4K/4kAlz8RQeFAQL63gHp/U4BkwBMAvL8NwL8+6b+IAfq+9YBUvye/w4CQADwAcb+mv1x/gYCbQExAKUBmfwu/joFtfyHAvv8qgEeAVP+/wQc+1EC4gAf/vz+UASh/5b8iALu/QX8YwO4AMX8PAUV+tr/+QAmAAkC4gGkADL8YP4h/DYLgfxJATT9xPsnBQkALgRL+Sf/HwNA/V8BwgD2+8QDD//s/yb9MwOP/7T9PQPS+R8F9v2qAP7+uf8nAOv+GgPTABIBgvlLBEr+ugNo/j/9JwIgAfL/Rf+e/ln/5QT3+oMFovueAIkBa/8dADn9swLW/gz93QQP+4X+ygD5/IkHNftpArz5ff7mACMFqQRJ9+f/vfhmBsUD2P9QAED4Of+5Ae8E8P57AFD8Uv1qBJn8lAlh+2n3+wfS+14EnwGs/WYAzP7//tcD2f+l/ZgCSPqQBKUCqQGu+8L+iAIsAFYBcvqkA0793gMK/bj5vgfQ+roDBwCR/b4FWvu5A7T8gwPm/vD/ugGF+kYFmPy3Aij6SQXq/t/9rwS5+48EEfr4AVACKQE5AbT7+f/o/eQDkAR9+5oCePzeAtkBHwE2AKL5oQU8/aQD/f8L/f/7QAWi/uMDRv8P9vYF3v1WB0n65v8Z+7H8gwgmAbr/wPqU/78A7ACZAC8BPP8qAQ78iACeAGwAwP8PAUwAov2p/2n+3QOX/KACz/3GAD3+WQBlAe7/xwKE/cr/Gf8EART9hAma+aEAO/1g/BcJKfo9B9v7MvwlAU7+UgOXAvcC1/a5ART95/0uC7H8gAEx/LP6PwPr/rwC0AGV/9n9WP5W+8QDBAUE/WoGFfbSADz/SwFRBtv7xwK89WAEHv+eBSsAD/50AKX6ZwTd/DwHkP7E/Mj/6P0oAKsA+QTe+xwC+v2y/5f9tP5fCB3+zwAI/Ef/M/60A6IBZQBz/Jv60AZ5/8oBy/4X/NUFzvt9AT8BbgBkBBD8fAGv+a4DygVCAMsBUfhVA27+9AA/B035KwSn/Z/+XQHC/+cB1gCdAXz6tgGY/V4BJQEnA8X9kQAU/x77LgdC+30K5Php/Yn/B/waCij+nAA/+A0Dm/zxAqIC6PkrBxf4kgL7AEv/3wAs/03/6P/aArv8mwFH/ukCDf5oAUj/iwKX/HUCrQAg/PUExfl7BSb/lP1EAYL9Uv49BTn8gwJs+g4ALAQx/DgGJvgZBfX7hgGu/5j9MQRg+AIG7P7r/AIFIv0x/VwCsftnBAICWP9a/w36d/7oBNcBOwFfAIH3iAHt/6AHSf/h/RH86f/5AqH+6QXH97IEFPyX/+0C4/xgAoL+jwK++t4COP9Q/mkDfv7I/y8Ag/3wAdj9cQE7AR7+CwT1+6EB1fvxBDMBY/tMBGD7zwTW/QL9QQJlAeYB4wGi+6T8GgXr/SsFQ/xLANv9tAABAg/9HwU0+64EZ/tWAp8DbvnHBXf9F/5XAOsEHgD6+ZED1ftOBKgDaf/R/QX9m/1bAg4HRAGj+mz8bACJAm0Ej/+I/dT7xAIiAIEB6f/Q/6f+Uv72/wv+IQMfAXYARP3d/CkBvP5wA7P/+QO4+nP+2/5+/fIHHv+VAt327/8j/0ICfgll++D+nvq//cwFkwEDBeX80fl6/tH/cQf1AfL+dP1v+GwDW/96B7ICdvty/Sj5gwb1/wYFxP4C+VYBHAAwAlr8PgLqANn8fgV0+kUBHQAm/SwGUf+hAu73GfsSCan+GwXx+n37XgHU/f0Fiv0GBsn5Q/tOA5QCAgEkA2v9OvglBwH9fAU4AET7IgH8/QYEkvx+AaABn/wwBQv9VP0fAt//2AGj/tsBBP5QARb9VgB9AmEA5wFQ+XUCSvzTAT0FCQHU/bL5bfspAw8JwgYG9Z34dAHU/cEKmQJw/cb4KP7QANMDPgTmAaz50v5SAjf74wlp/Yr/Iv8h/oIFCfrBBin9lfyvBGX83gQ2ACP+MP8B/s0BuP7gAzEDFftQ/TP/TgTVAdACDPvr+mEAigOGBF/9SALX9ZIASwcvApP+RvyYAaj+xwGm/50Bz/7oBAz9hvvPA7f9CAUrAsf6JAAY/qgC6gN9/wX+V/lBCGYAnv/sATL3FwMCA1cECP8m/N38CP68Ao0IJAIy9l7+PPnLCTsGYgC2/Ej1fACv/ncM/gNU+3H5ePixAPQIowS8/9n67ve3Bfb+iQM7AGf/DAAI/SMBcPs7CMwBWfqv/5H8OgXlAvT9iv4I/boHMfsAAuX/+/p6BtP91AQd+s/+2gBUAH4Gu/qTA036LwBtATD+RgZO/CcDr/jCAwcAXf6cBrr5eQMzAAf/O/6v/nQGsfxeBt355PdWCFkAZQX3/hP8Bfs3AGkCiAfX/Fj/k/9g92sD3gCuBLP+WQHO++b8zQB9/u8Ilv+SAor3E/96/j0EDQjZ+5MARPZ2Ayn/AgUmApf8kP3m/YP8wAUTBJX7SQP/9k0D6QLc++YEz/3CAHgBfPx6ABD88QR3Ajb96QH8/JL+aACn/S8FYwCfACQCBvdnBEP+OwF/Ak8A5f1m/rkCr/u3BVH79ATd+z///QK9+okME/jg/Ir/7wNcA/j9BgTW9vsBpAGkAdUBN//HAF77TwOF/ekE9v2E/tACR/3vAO4BQ/0B//MF8fkuA2H+WP39A3cBwADJ+tn+FwMj/1wCWQBE/Nv/t/4GAFADLwCa/bX78AFWA5oAtv7U/UkBAftFB4b/cf58AfD6AQDw/9QD+ABn/l8DIvnI+x8FSABVBh0FVPd7+Ev/GgWaB0D/ev5Z+WX9nQBYBCkDggFo/ij52P20A0MDVgGhAx75VP2y/2cAzQNwAUUCJvy0/Rr/Wv+YBwT/JgAt/aT7DwTWA0/+ZwDU/eP9kwLq/qMIgPmuAhL5ZfxhCq7+GAaz+vL5/v4DAUMD6gcV+QT93f8O/tMDxP9ZAuT8vwCl/Tb9rwSvACMBMP0Y+REBKAQDA44AWf01+SoBrwBnBUIEK/5//GX5TAHmBSUDzP5r/m76dQMY/dcDdgPL/Sb/lP7U/0X9zARuBT77UgCl/M383QPjAB0Hxvkv/2D+Cv4I/4cJff3k/jj/qfkqAvH+7Qfg/HYBQflBAN0CGQLXAOD8fQHX/IsC9wK+/agBZ/6f/rsAXAC/BJf8qAE0/b8A2AAn/6cDnfzD/94DtPrOAU4EHPplBVj6DQGYBIT+rAHZ/BwCCvvtBYYCwvlGAkL84gEfArr/iv5xABH+2AD3AJ37tQSXAM/+ff4VAYX8GgHpAEABUwHs/fkArPuxApwABwFFAQT7mwKA/toB2APX+bcDR/qnAZcCq/9rBKD62P7Q/ToCrgCbA4z+HP8w/Wn+HwKM/r8EwPz1Af37U/8/AQT9rAVt/tL9YgAv/9P9gAAgAvX9df93ANEAlf+X/RwB9P1uAlIA5v55AWr+PwM++3kAhgHo/i0Cqv9GAi79KP6w/8MBbAHBBHz+lv3P/en/oQVT/WYESP4w++z/fQOO/wz/JAEh/nX/SwCjAK7/2ACT/8EA4P9pAML/owHH+zoDR/9L/VoHt/kSBED/UftSBm/9XQCnAPL/FAFp+kQFVv9oADcE8fZnBdL+Nf8UBXr8j/+eAHb8CgTp/x/+MANi+4cDufqeBZr+Kv+pCuXzuAM1+r8A8AUqANcE1/nj/cf+5QLzANAANv5tAiX9pwKw/YX9fwQe/YYDVf5dAM3/Sf4EAKj/GgLQAfv+ygDY/TMB7AJ5AIf+DP8dAHL98QXuAUP9efxt/9r9GATAAg7+qgBP+pICSfy9A8oD2QBDANX3HAGi/WkCcAQu/pH+Hf66/fMBAABIAbkBTf7k/FoBjQNR/R4A7v4d/Rf/iQQTARL92gE3/5L8mv/gAmj+VQWO/uEBB/6P+3b/OAEdBlL/7AAK+pEA1P2aAur9SQXW/HL+JgZl9aIIffos/yoFQPwHAwUDTPpv/nECfv+qBGD/fABc+VQDGADlAJsCRPuxAzv8sAEgAlT9Vv+YARn/of5RArT/y/+Z/2P+WwIC/TMBvQJ6/sb/ifobBE3/IwOCAgT61AHh/BUDfwB6APYA+fqDAToAEgAEAyX+rgKb/nj/AAHbAFoBi//c/3j7YQSo+/YCrP78/noENfo7BK38+/4wAPkASAIRABv+IQCU/kX/NgH//a8ET/3JADr+k/8eATb+bQKdAOX/Hf8vAbz9dwM3/oEBsP8K/g4DCf0YBFb+1wDq/V3/IgIwAf4BcP6YAFX9UQA8AX0BRP+LA8r92P8GANX8QwUY/UoCN//o/YsC8f32/nj/OP8W/64BBgGsAJsA7PtA/0b/hQMvA8n+bQDW/LT/DwC8/zUCPgFL//QAAf51AkL/iv89A5H80AMB/sAApQA9/aECkwBF/2wA6v/J/yUB+PwXA2v+YQEzAW39sQD3/VMDNP3mAbn+Hv89AjP9TAJZ/X4AEQFc/pj/JwHv/kwA8P+K/yv/vP6+Afv+9QFD/on/wv+V/mkBpQCnAUT+CAFaABf/8ABJADD/fAEm/w3/XABs/h4B+f9hAIz+yQBTAcb+rAFC/ir9pgFM/s0CTgC7/DsCM/3/APb/tv6nAfP8nQHfAPf9jQGD/RQAewC1AL4AAADN/yL+RgHL/n0B6wB2/xsBuf49AO/9uwJv/zH/fgLR/OgBzP6pAF//8P8EAlz/cAL0/+f+f/8p/6YBowATAUoAvf7Z/vb9eAAzAYwAUgEJAKz+QQCR/L8B0wCn/8EBTv6zAJ7+IP9t/z4AlgGO//T/Af/ZAIf/wwCvAAb/HwDe/9z/yQC+ANr+VAGv/JoBYAGA//AB2v4LAOH9EQCKAVb/0f9CAHH/QAEe/uf/b/9D/xQBxf6kATv+jwCg/8b/xwCU//IAXv6aAZz/YwFA/5z/sQCe/cEBugCJAB7/3f8A/woBDf+4/zUC6P4aAX/9Xf+wASMArACT/ij/Gv/dAKUAev/kAP7+HQA3AO7/MgAp/4kAdQAx/2UACP+AAIgAa/8MAIL/zv/S/9QAh/9aAGsAW/+v/1r/VQC8ACgB0f/n/v7+Q/+pAYMB0/8u/mD/2//PALMASQBz/9X+UgAy/y4B9/9RACIAsP7m/6AANwDMAc//xf0fARj/PADGAMv/8/8AACkAG/+tAfb/dP8CAcr/XwD2/5YAGQCA/3EA0f9a/80A0gCkADL/Qv9QAGcAzQCRAGr/h/8wAmz/LP/R/8//GwGwADEAgP5j/4kAawAiAWz/7f7o/57/NwFi/+D+1wAq/1ABIgBg/1z/Dv+/AcT/ugCy/9r/VQB2/8oAR/8VATgAm//4/9b+wwCJADr/JwDF/2z/gP+xAN//6/+4/xD/4ACa/t4AlQDU/2UAQf5r/3kAzQDm/8r/Rv9+AFz/VgBBAIv+SQGG/+v/NwAoALwAaf/8/zIAXP+BADEAJwCxAKn/pv/V/oAA8gDs/6j/Df8e/wMBvABHAJ3/5f4pAIn/pgASAGcAlf9O/6H/Gv9EAQMBlwCm/pj+jv9QAEYBngC0/wX/xf+3/00AtQCL/xsAXP9m/0wAuf/MAbb/Tf+LAGj/0AAPAQAAd//W//v//wDc/9wAp/9r/+YAnP/JAFcArv/7/+r/wf+BAEz/EwDHAOb/ZACL/0H/WQDJALf/AgD1/3wAbP+eABIBQf9nAEj/CAAZAAsAkgA+AFn/bf8zAJz/CwCLAFoAiP9JAEb/AABuAOn/eACU/3z/u/5vALIASf6QALn/0f6sAMj+5v8jAF/+4/+w/wP/5P+f/r7/uf+3/9z/uP0Y/9z/YP8+AAr/vP41/53+ngDZ/6P+Kv///97/egDyANP+FwB4AJQA+v+3/wAAJAB3AKH/LwBCAW0B5P9JAEcAjQBKAC0BIgJNAJIAmgAlAEYAowHpAJsAi/8XANEAmQAkAXL/MACYAHUApwCnACoAFAD7/+4AtgDn/+P/8f9RAAQBzQAB/48A9v/rACEBSwDiAEQAVgECAIQAHQFdADUBdgDuADcBMAGJAXgAEQILAYQAUwHYAJQCNAFuAPwAewGUAPwAHgGHAMcBngCsAOMAKgD5/3sAzwCNAAcBlQCIAKEAlP+WAGEAjwACAUUAFQFaAPoAdgAi/24A+AGUAVUAKQCz/4kA7AAfAToARgBhAMT/VgAtAFwARADE/+j/mv8A/4gAbf9t//b/3P4p/wv/9P7k/vL9HP6r/fT8Rv6n/a38Evzo/Kb7jPzt/EP7afyT+tD7gvu3+qr7dvol/OT6CvsQ+1b5/Pp7+jv78Poz+k374PqD+0r7i/uT+237VvuJ+8H8tPyB/DD88vzc/MX8yv0N/ov9hf3L/jj+9v07/4//pf+e/1v/vP9XANMAmwABAd0A9AB4AYUB9QEuATQBMAKMAqsBWgKoATsBcALWAlcCQQF+AdsBLAN8AtABCQJiAp4CvwGYAnkCdgJpApQB/AE7AtwCjgIHApMC6QG3AucC5QISA84CIwOBAg0EpAPPA1YDDwNeBEwD+QRnBSUExATKBG0EvwXwBbYFeQXEBX0GDAanBQ8GOgbqBXoGuAZ7BmMGFQaSBaQGIwYcBgIG5QS6BAUEmwSgA74CFgJoAWYAUv9o/xP/pP5P/dD7EvsR+rz5gPlv+GH3uvaK9z33gva/9VP1cfXa9Of0qvO38j/07PSG9Of0RfSP9JT1QvUo9eb0NvUj9iT25vbz92b3Gvin+PT3LfjA+KP4ovl0+tP6N/zL++/89v1a/Qv+9P0v/or/qQA6AW4BowE7AvACggPHA0AD/wJFBLYEUwVqBjQFTwX3BZEFuwVJBYcEvwTxBGoFbQW4BGIESgSAA3IDCgP6AbQCXALfAdcBqAG3AWsBZgBL/zX+nP1a/tT+r/7I/vf9Kf1B/fz88vvq+tb6T/oK+5H7G/ub+h36ZfoF+kP60vkV+kH7gPtz+9X7pPx4/cf98f07/rD+Lv9O/8X//v/sABIC9AK9AskDTQTVBAAGlQWrBfEFfgZoBwcJnAmwCcgKmAuGC7cLyQscDCYOcQ9nELcRFBPEE9gUxhQ5Fc4VWxUZF5sXwxeCGKwYURg5GEYXZxXsExcTCxNqEh0RcQ9tDXQM0AvACR8HegRnAjQBfADB/839gfyM+935Dvht92L2gPRl9CvzrPF58YjxofDc72/vVe6K7VztAe3Y62Trfesl6yvrVeuE6iDqQepB6vLpUekJ6Q/p+OlA6+Trxet87FztFu2D7bftZe2t7hzwmvGc8mTzt/Ri9fj1q/Wi9pL3JPnG+3j8i/1j/lb/ygDlAVkCzQGLAkYE2gUrB5EHrwdcCGoJCwptCQMJ5QlyCw0MnAxMDUwNyw0ODmMOfg5dDq8OCg86D6cPTA9uD+EPOg/uDhoOKg3kDHEMGwzYC8IKHQrHCZQIowe8Br8EdQPaArkBigFqAJn/Cv9Z/fP8Kfz6+kD6l/lu+Cb41fg2+Av4+vdw94T3Mffw97/3Efh9+QL5i/ql+/H7kfyc/In9t/1R/oj/nv/CAEgBlwJyArkCTgSLA4YE1AW7BssG3QdkCiUMOAxEDMsN6Q0QDy0Q+BDxEe0SqBQmFl4V7hRzFYkU/xXjFW8WbBanFVgX4BWmEysS8hCvEFoQAhAlD+kLkgrkCicJgAaIAwgCHAAU/xr/nP35+kf58PhG9pjzQfIh8TTw2u5B79rukeyb6wPrQeoP6a/nu+dy51rnTehA6GzneebD5eLlh+UH5XTlq+Uw5s7mTud+5+3mBee151zoVOnW6gLsBO337W/vXPCh8PLxKPN69K/1Uvch+cz55PoB/H383fyJ/a3+AABQARQDZgS/BE4FQwapB8cH4wgOCgQL6AzLDYcO9A6bDzYQlxBQEQ8SAxK2EtMT+BPcExoTBRO8EoYSsxLZESARExHXENgPgQ5nDa4MXAuiCu8JrgihB7YGAAadBIsDIALcAAAAiv/e/uj9O/3S/Iv8dvvs+mL6Nfrb+az5Svkw+Sv5tfjD+ID4a/gZ+Fb4IPhC+Gb4pvgE+S35+/kC+nf6BPtd+8D7pvzQ/Yz+n/+OAGEByAEyAg4DrgOrA2wEzwUEB7cI9gk3CwEMLgxDDZsN4g4XEe0StxS+FggY3RggGTMYJhkgGVYZsBqwGrAaPhn8F6IW7xMBES4PEQ4tDZQNHg3SCscHmwWLBM4C2QA1AOD+2f2p/b/8CfvE+JD2AvWG8ybyM/Eu8GnvyO7i7Z3s8eoV6XToLuhs5yPnKecp5+fmtuZV5rHl++Qf5WjldOXc5dXlheZa56Pn9ecW6Gjo4ei/6RLrZuw+7QLvd/Az8UTyMfOD9OH1Z/c1+R77NPxU/vv/EQEPAjICngO5BB0HLAnFCZsKawvuDOAN3Q2wDYEOaw8NEQwSTxKhEk8SkhKwEoMSXhLrEdkRiRJwEjQShxGgENgP7g41Dr8N1QwTDMELygrzCZEIPAcyBrkEoQTXA7cC+AHlAKQAzv/C/nH9T/xU/Pj7YPu9+sj5X/nm+Or3Q/df9in2D/bM9V/19vTj9HL0ZfQN9Ej0SfSb9LL1HvXv9f71aPYm9yP3lfiL+E75zPlu+mT7ePvq+7X88f3n/pwAkQCZAfsCvgMVBawF4wf9COIKOwy1DigPmhChEloTbBY6F1AZfxojG0IbKBzTGxwcwBxgG4kcLhz+G0Ma5xesFm0VcRTkEsYRxg83D2IPOA5UC8wIrQbTBU8EeAKQARn/hP6Z/e37k/l79kn0t/KU8SrxTPAC72HuOO117CPqyeip523mwubI5p3nnuZc5fXkP+Tw4yLj8eI642PkUOWl5bflGeWH5fTlc+Yf6CHp9+qs7OvtbO9j7+TwIPKP81P1Jve9+Rf7IfzB/Gz9rv2a/gIA6ACJArQD4ASVBZEFcAaQBuQGHwggCSsLTQxbDRoO8g36DnoPQhCREAERKxLUEiMTSxNwEiES3BEyEVwRPxDhD7AP/Q61DqQNjAzpCxQLQQpPCQoIeAd1BscFUwUYBBQDzAEOAff/2v4F/jf9Yvz/+237QfuQ+pn5avlI+E/4Jvjt93D3Z/dm98r2hfYD9k322PVC9VT1tPXm9df1y/X79Z72LvfH99X3dfia+Yf6evuP/N399P7OANgB/wL3A9wElgaAB30I6QkEC70Mbw5uD/4Q6BH5ErEULRWoFm4XOhfZFtcVsxVhFb0UPhQ+FEgTyBLlEawQ5A8EDxkPbA4nDWsMaAwoDLgL4gqfCccHeAYFBvYETAOpAfn/lf0e+0T55fYg9FbyPfDS7S7rMOkB6MLm1eXv5Pbj2eKo4pbiruKP42/kPuU45VDlpeW35R7m/+YB6APpnemp6WPqvuqM62bsDe2q7ijw5vE989j0hPbL94j56Pvk/SkATgLpA6EFwQYnCAcJKwpWCz4MawyWDIwM8AuRCyALvgtGC58KIgqOCTkJegjvBxEHUwcKCI4IyAjPCNcIKgmUCQsKGgr9CSsKRAqqCkYK4glBCVAIygfYBrwFIAWoBFIEIgS+A54DpAOMA6IDTAPCA8MDmwOkA1wDJwOEAjsCUQEuAMH/JP9I/kz98fvn+nT5y/dw9oj1ZfQE9IDz+vL38rrybfOb8470aPUY9qj1sPZm99b30vmD+ej7Wf17/+gAagB+AdYC/gRdB9sKTw2EEXUWbRqcHEQe7CCaI80mEymwKsoo5iXWI4sg6hwBGVkUsA9LCtcEU/+Q+YL1bPIg76zsvuoq6bTobekc69rs0e4q8Rr0+vbe+sz+BgJgBTYHmggGCkILcQxrDEEMmAtZCQ0HSgQ5ASb+OPvN+PX1UvOM8HftperA6HLnYeax5ePkV+T847njieOh4/bjP+Rj5PXkseUS5uDmu+ex6ObpCets7Lftsu+B8hv1ofcO+u/86f94Aw0HEgoJDaEPWBJfFL4WdhgsGckZBxkOGJwWzBRUEy8RIg/JDFkJJgY4A1gBCABy/vn8Q/uz+qz6O/vC+5H8Lv7W/+sBZgRSBiQI0AlhCj8Lows4DN4MDw12DQ8NUwwqCw8KIwkBCOsGsQV5BA0DgQHK//T9FPxH+l342fZC9c/zwfKX8Zvwx++W76Dv+++38JTxjfKk8/70iPZa+Bz62/tL/aX+1f+hABsBYwFvASQBywBHALT/GP/I/n7+9v16/VT9yf2N/m//ZADyAIEBMgIgA6AENwbgB8AJSAvVDAgOCg/vEOES9BTEFqYYhhqRGxUddR4RIFMhRSOfJHMlQSbOJWgkNCLhHy0djBpAFw0UQw+hCeADaP1H91rxS+yK5xbjgt7u2l/Yu9dH2KfZz9vl3cngsuRn6YvuYvTU+e7+RAPHBjgJKgulDEMNJw3mC9cJIgcNBJcAEP1X+eP1hPLr75DtT+s56VrnSeaB5Z/lw+Vn5jXnIujM6AzpsOlW6urrou2E74LxFfO19A/29/f4+Sv8wv7YAUwFxggPDAQP6xGuFAMXBxmqGs0buhzeHE0cwhp2GKQVfRJ6DxIMyQhBBZkBGP5V+uv2FPSQ8ovxOfEV8fPwFfHF8evye/Si9n74dvoW/K/9pf6X/10A+ADVATMCjwKqApACPgIHApEBHAGvAFAADACR/5j/Cv+s/mn+/v2y/fz8dPyn++n6QPrL+S75kvjt92f3/Pao9pj2ZPa29j73NPg++YH6//uZ/Vj/CgG9AnAERgYNCMUJJQtZDH8NUQ73DlUPjw/GD9UPug90D+4ORw5tDYwMrAvwCj0KjQkgCd0I2AhBCTIKlwvjDRIQKRPvFaYYxxviHt0iHSbdKNQqwSvaKrEpmye9JAQhKRtYFfkNngXu+zjyjOgN4PLXANFtzEHIQsdCx6LIY8pgzG7QddVh2wXi1urc8u/5TABfBZMJAw2hDzsRtBGCEIEOTguuB9cDXP/M+kn2PvKt7onr6ujO5qvlH+U45R7mu+e56errdu7M8CLzsfVX+Nb6+/zp/oMAuQGZAl8D6gNXBOsEvAWtBqAHvQjfCQELRAxtDV0ONA/zD6kQKRFBEdQQ9g+vDhUNQAv4CFoGfwOLAJz9wvrn90j1NPO58fPwp/DS8Evxb/IL9DD2rfg0+8f9ZAAqA54FxwdnCZkKVgt+CzQLXQpbCbUHzwVWA58A3f0M+2j4yfWh83Dxiu/Y7abs4et066HrJOzp7PftZu8b8ffy//Qr91D5SvtF/fT+WwDQARMDEQSrBMcEogRFBAgExAN+AyADEQPxAsICyQLrApwDYgRpBREGlgYLB5EH8wc7CKwI5ghqCSMKHAtlC9gL1QzaDVkPJhGxFEsYDx0nIswnZSzgMLc0/Ta+OOQ3FzZwMiwurCj3IcMZJxBpBbT55u7j5BHciNQgz6zKl8dQxVDFu8f/y9/Sk9pG43Tr7vOB/BQFlw0hFSMbaB/lIdEiFSKdIBQeMRonFWwOigZL/sT2iu/q6OviWd3410XUI9JP0QXSDtRU1+Laad9v5OPpiu+c9Zn7dgDgBKMI4AuHDp0QGBK5Ej0SLxG3D84N5wsbCnYI1QZrBR4ECQNjAkgCpwJGAyYECQXfBYoG9wYtBwgHmAbKBbAESwOrAfD/Ff5D/I/64/hX9zz2l/Ws9Tb2KPcu+Hf5F/ve/Bf/VgGjA6QFfQfVCMUJFwrLCSQJ1gcaBsADMgHb/Y/66fZb8/jvtezm6R3nH+U64wvic+GX4WDiv+MY5ozoYeth7q/xNfW6+Dz8gf+mAjIGzQneDJgP4hFgE58U5BTDFNwTGBK0D6sMvwlnBmwD8P+F/E75X/ae9L/zs/P78930UvZi+Dr7HgBkBkwNyRRfHCwjGSmYL6g2ZD11Q2NI/0rmSulIEEZGQtE9pjjrMW8ouhxFEOcDnvib7qvlEN1w1DDMdcUAwZS/DMGmxFjJg84t1LjaiuLh60f2AgEmCooRUhfHG4wfZCJcJIwkdiLjHZ4XBRAxCF4AsvjD8JLoeuDM2LvSUs7/yyXLnssKzSzPhNJa137doOQw7GTzEPoIAHsFjQpZD4gTDRcyGdwZShnPF+8V1hN+EZwOXwvTB4AEegEA//38o/vB+ir69PkE+nD6Vvui/BP+iv/PALYBbwIAA2wDtwPZA+ADtAN0A/ICUQLJAW4BXwGAAZ0BvQEEAn8CPgMJBNsEdQUBBksGNAbsBUAFRgQSA8IBDwAp/gf8svlD99X0h/Jo8K3uHO3J64HqjukD6QDptunu6oLs9+2K707xg/Mh9gX5MvxK/+oBRARkBmoIUgr2C1UNBQ6QDocO0Q2uDMQLfgrlCA0HpAT5AYX+efvP+P32ZPXm9Of0evSj9Rj3dvoN/9UEmQqjEIwXAh4GJagsPTQFOxZBf0WJR6JGyUQVQp8+pTmhMrcpxR0KEQIF2vld743lz9u80X3IMMGLvFC7Tb23wILExshSzuLVyt827EH5cgVfD7AX7h42JYQrozDQM240AzKoLIslXh0eFUcMrgL+92/sGOHn1gjPicinwxnA371mvaG+F8J+x7POKdcT4A/p2vHW+hIEMA2kFYkc/SHIJS0obimBKV0oRyb2IrIemRn1E0QOtAifA9X+pPqk9pvzv/Fx8L7vXe8p71fvDfAY8VDynvPa9Bf2Y/d6+Jf5tPqZ+8X8Bf4p/y4ALwFcAqoDKAVpBjoHtAfzBwII3QeAB98G8QXMBGcDxAH5/+z9Hfxv+hv53/ec9m31mPR79KP0H/WI9ez1bfYa9w74J/lY+lf7NvzU/I39T/4E/9D/nACGAR4CqAI3A+gDpgR1BVQG7QYKB78GTgbpBZkFLgV2BJIDYgJhAYEAuv+3/7H/FADlAMoCSQVWCI8LrQ9EFL4YSh7iIz0q7S8YNRM54DpOO4A5szc8NdQw6ClaICQV6QiV/V7zPOmV3vbTe8pswvm7/bhTuOO5KL5exDDMdtQV3rroo/REAYINPhmCIlYppS6IMs41RjecNqwzgi28JfccUBQmC30B9Pdk7hPlQtz71DnPDcuuyFnIrsityfPLvs+m1ETajOCq5m/sI/JZ+Fj+aAMECA0MZQ9qEvcU9BZFGN0YMhkgGbIYGxgrF7wVEBQxEsMPxgyhCZUGwgPaAHL9lPmc9RrykO/b7YvsLuvj6QbpP+ml6vXs3O8x8+72lvo6/vEBsAWfCSENBRADEgUT2xIrEgERTw8MDRoKvAbgAlT/Vvt+9zH0gvGZ7wDu4+wO7KTr9utr7Wbv2vFD9NH2G/mM+0z+oQCZAh8EsgWBBsQGeAbwBUYFigSxA5ECZQEoAPT+pf1v/Jv7Kfsq+2778PuC/CD9Av5R/xwBEQMaBXoHKApGDdsPpxIRFjIZ9xy7ICol3SiVLHovxTIwNQk3yjgtOP02DjNeLbwlyh7cFtAOyQXB+hzwEOMJ2RLRPspqxHy/r7z5ux68rb7Aw93JOtNe3jLq0vOU/KsFxg+wGp8kpi1MMgE0kjSsM64x1i6SKuIjWhtTESMH1fxA8+XqFuOG2xXUFc5YyYzGBsbhxvfIz8umz3bUjdp54QDpPPH2+FIAEQcVDcUSpBf+G88fZCINJHQkXSOKIQ0fOhzXGLEUlQ+3CcEDB/6++Lbz8+6T6oXmRuMe4cTfgd8H4EjhWONP5inqs+6A81f4RP0BApIGGQs9D7YSbRUWF+oX/xduFwUWvhO4ECQNGgkaBUUBq/08+vn2E/R28Z3vee4P7iTuue6v7+rwkPKV9OL2U/mp+5T9Of+aAPEB9AK+A1cEsgSWBAwEbwOnAgcCVwGwAOz/Mv/E/lf+M/4Q/sz9zv0Q/m3+9/4y/0//ef94AJkB1wMjBjMIegvyDUwSbxbhGlUfYyOUKIksozBvM7Y18TYuNxU3ejQLMKoqdSORG3kSRwjR/QryNec03pLWrM/FycvEtsEAwWvDiciaz0LXLN8X5zrwDPslBsAR+BtDJJgqsS6uMcQzbjQxNGUxCiyrJOUbPBOMCnQCvfkc8BLml9zL1PzOMcuiyLzGvcUGxqPH0MqBz2jV29u04qDpm/DV9yX/WgbxDLMSaxcpG0oe/iDwIugjlCMDIpgfWRzLGNUUbRCGCwkGdwDi+q/1w/Bj7JXogeUu45Hht+Dn4CPiG+Sk5qPpFu3w8Cf1hfnq/QYCsQUDCekLYA5REKsRkhLUEnASRxF0Dz8NwgoJCP4EowEp/pv6WPeA9Ary++8G7oXsfesA6zrr1evg7DDu++/R8c/zyPXL9wP6Afzc/VT/xQCzAaACCAM7A2kDTANSAxQDFAO6AkYC9QHaARQCZwLlApkDVAQ1BVQGfQcYCbsKgwxUDmgRJBWsGKgc+CAeJekoIixbLzMyJjMmM7oxJS9aK9MmxyDcGaURXwfK/JPycOk34CLYW9HDy2jFhcFiwEnBLMXEyuDR+Ne/3lTnnfGn/GEI1hNHHPwiUCkZL6AzLjc4Ob44bTXVLxIqbyPHG5EThAryAI32L+2s5M7c4tW+z+jKmMYJxHfDasRnxpTJ2c2i0sDYQ+Ch6OrwnvgpAKEHcg4bFWAbqSCAJJYmsyfYJ/0mcyXwImgf5xqhFQwQpwq6BeoAPfy/94/zPfBW7WrrOOqR6XPp3enE6kjsVe508NDyd/VS+C379/1rAKgCvASJBgkIVQlDCrwKyAq4CmEK6QkBCboHXQaZBLQCyAD3/gv9Nfsz+Vv3r/VP9D3zVvIH8p3xc/GL8RTy9PIq9NH1gfcJ+ar6pfx+/lEAJgLwA1wFjwbKB04IkAi5CJoIGAiIB/YG7AVYBO0ClgFlAE3/Zf+r/6z/+AD4AU8Esgb2CVsNexF3F+wbuyCwJZ4qny4bMoU1UzbDNGMz0jFpLiwpTCI3GkwP0gPE+tTxaOgI3zjVGMy0wxy+mLs2vLm+GMEVxInIB9D72UPmOvSnAC4M2hVDH1ApcDJaO/5A/EKaQts/HTuRNR8vQCeDHP8PHgNh9q7qPeBI16fOyMZWwOG747nLuXS7ub53w4jJq9Dq2M7h5eoU9D/9FQYgDmcVrxupILEkrSeTKWcq9Cl8KLwlCSIIHpkZwxR9DwwKmAR9/8369vZt8z3wce1S6/7pVOlI6ZHpbOqV6yXtF+9e8cjzLPas+Cj7lP31/0ECjQSfBlkIpAlzCv8KOQsrC7UK4AmlCOsG7gTXArYAj/5a/FH6ZvhH9lP0ePLY8ITvvO5D7vHtse3Y7YLuMu9i8B3yr/Sh9rv4BvvC/dkAkQPFBtcJSgx2DYgNcA0mDu8NNg3MDMoLZwlcBV8CZwGNAD3/Mf/5/3UAwwAHAx8Iyw02E5MZPR/VJBgqYy57M0Y3HzmZOS04eTUnMusr0CO2GqkQeAY9++TweOe03RbTSspRxMPAM7+gv5DC7sWIyaDPg9gW42TuoPlaBPkNchYIHrwlOS2tMqk1RzbzNGQyRC7JKU4lTx9DF+kNvASv+6XyY+pe4y/d1NbD0AzMfcjuxdfEgcWXx1fKCc7f0o/Yod5Q5YXsF/QE/MYDJgv6ERsYlB2PItkm2iqCLbcuty45LW0quya/Ij4e+xjUEvML6wS0/d32+fC26xHnA+N73+bcPduH2gDb5tzv37/j4ueO7KDx/fZl/NABawc1DAwQ8BJbFQ0XBRg5GHQXthXhEiUPVwuvB6MDTv8K+yL3JfNg72PsaeoP6fvniufH55Xoqelq6+jtkvBD8xr2H/kB/J7+HgFvAyIFswYSCJoI/QgDCSII2QZOBV4ECQPmACb/v/3X+9v5mvnA+o785/60AkcIIQ2MEqAYpB/NJncsVzOAOYg9I0D+QEhAujxqN2Mz4y1tJdMbmhCYA8L15um34BbY9c+iyCPC7Lzwucq60r4sxZ3MXdT527LkRe8N+9IHNxSSH6Aovi6sMwg4TjtwPTM9BTtHNtwueCYCHhEWlw0QBFH6sfAR50zeQtds0lLOrMplyHLHcsdlyA3LRc8z1GrZJt9i5WTrTvF394z9YgOOCFIN9BHUFSYZVBvSHOMdJh4aHr8dlRxJGj0X3BPgEOMNZgrZBjADXP9n+6z3nvQR8sfvuu3C6wvq8+ie6BXpPuq260Tt9u4n8bzzzvYu+o79xACvA0wGgwhSCqALegy3DFkMVwvTCdIHmAU/A6oA+/0R+z/4uvXF84HyavGS8HfwCfE18tLztfXZ9yX6b/y6/kgB4wMRBnUH4weeB/wG/AXSBCQDvQDA/Uz63PYK9FPyHvGe8OHwgvGZ8u/0BPng/mcFgwyJFN4cEiUDLfM0NDzkQQNHqkqPTFFNhEuhRxZBmjhhL+YlqRtjEIADkfSN5RDY5sxRxN+9zLhwtDiwg65EsJ+1KL5ByCLTHN0F56Xy4f9nDeca0ybtL1M2+TpWPs1A/UHNQLo8qTW6LEUjGBr1ELcH0f0981zo/N481zDRzsyIyTbHRMWmxMrFrsj+zITSKNhT3cfi2+iE73b2Xf3RA1MJrQ2BEf0UNhgLGz8dkx7oHnseoB2PHEIbkxlDF3cUZREgDtUKiQcWBHYA9vxT+c/1kPJy76DsR+pZ6Nrm7uVu5XrlEuYv5x7pietY7mfxz/RP+Oj7vv9sA8cGmAkfDBoOpA+7ECMRwhCkD8INUgvpCGcGmwNUAA39nflv9sXzv/GM8LjvZu8+74TvE/BR8YbzJ/ah+Mr6bvzN/VL/+wCWAo8DZwRbBCkDoAGoAPr/nP/f/sj9/fzC+y775fyUANEDhQfTC5EQfhYDHZwmwi/lNik7ZD1UQHZC7UQpRjdEVj7aNTQs5SEhGH4OLwRx+IHqc9wl0B/GrL8fu523cLTUse2xDrVDuwnEXs4n2aHjVe4S+WoEORDZGwknki/CNRI6KDzePIk8+To5OLkyzio1IY0W2QuvAcf40O8M5s/bhNIBy/rFX8PNwgrDm8MsxUHI5swQ06XaouKK6ubx2/j9/x0HOA4PFaoa+h4JIvsjcyWcJgknliYMJUwiyh7/GuIWlRIsDqsJBgVwAAX8evd98xnwkO1966npEOhO53Lnx+eD6ILpAOvj7CnvoPFU9Ov2K/lk+1X9Wf9yAXUDYgX2BiEIdAhrCDsI4AdRB4AGoQWKBNcC6wA5/7b9Zvwf++P5x/jl92D37Pab9rb2AveW9xT4X/jj+Cv5tfk2+qb62fpp+8j7ift3+4H6uPoY++z72/zJ/fb+EAEGBAoIMA1MEhMZWiBAJy0tuTK+OPQ+vUQZSVNLhUqhR+5Dwz6OOBAx9ideHb8QVwMJ9jzphN210uvIhsDAuMeywK4vrdiuo7J3uBq/sMZ1z3zZvuRu8Ff8Lgc7EYYaXiJEKZMuxTKRNSM22zTeMXYtMyghIoQbPhREDLIDJvtP80jsEual4DDcd9iZ1brTItOV0wHVF9fd2SPdpeCm5PboWe2v8Tn2gvpH/t0BEAUYCAQLcw1uD/UQWBLjE0UVQRavFq8WgRYsFpEVwxSgE0ASghBKDscLLwmqBh0EpAEX/3j8/vmv99T1gPRk84ry0fFL8RjxKvFa8aPxU/IP8wv0yvSI9SP29vbi95L4S/mQ+cj5DPqo+ib7vPsw/IX8JP2t/Sr++v4ZAC4BVAIBA6sDVASjBPoE5wScBCUETgMoAq4A5P4f/Vf7mvmJ94j1HPTc8m/yKfKW8gv0VvYF+lr+SgN/Ce0PFhelHpAmPS8iN1Y+1URWSRZME06xTjhOeEuuRs4/eDbfK1QgxhQJCWn9G/Hj5AnZFc4Gxqy/B7tTuFW2Sbbmt4G6S7/KxRfN79Rf3Wjlce2v9Yj9YgVrDFsS5xcoHCsfayGnIiAjpyLAIQUgJx2HGUwVvxD4C0sH5QKm/uj5DfW38LXsS+m85uPkIuNO4Qfgpt/v39vgWeIt5CTmX+j36v3tIfF39A34gPvt/jYCGgWpBz0KxgwxDzgRsxIKFPEUPBVJFQ8VfRTZEx0TOhLjEMcOWQzdCX4HXAVcA04BEv+e/BP6BPhK9uP0y/P98p/yNfLv8c7x4PFZ8vfytvO79PH1D/f+99D4rvmb+nb7a/x7/Wr+Kf+t/xQAegDIAA8BjwH/ATkCVQI4AvoBrAFIAfwAfwAPAK//7/4i/g79v/un+n/5lPjY90b30fbc9vP2FPcc+M75Uvxc/+4CSwd4C8YPbhQeGkgg2iW1K0ExwjUrOd87xT0mPhs93zsTObc0DC+PJ7AflhbXDa4F7Pyk9CfsLeTB3D3WNtEjzdDKxcnFyUrKYsuozefQJtWT2pLgvOZd7L/xO/dS/E8B1QXxCb8NlxCkEqkTrxP8ErERRRCNDmUMvAmcBlkDIgAP/Tz6zfd/9W3zv/FQ8FHvdu6o7TjtPu237U/uF+/l757wWvEv8knze/TL9TL3pPgC+l37tvzq/V7/+gC9AoYEJgaVB9cIDwpyC7QMpA1pDhAPlQ/MD60PMQ9dDlgNOAziCn8J6gf/BSIEJQIlACH+Mvym+ij51veE9j/1KPQ085/yQfIv8jjyPvKc8hzzufOd9JP1vfYg+IX5GfuO/PT9cf/mAHECxwMWBWEGYwdECMgI8ggGCfIIsggYCFMHagZ2BTsE4wKfAVUAKf8m/mH94PyE/Ij8BP23/c7+LQDeARgEdAb0CJUL5g0wEKQSdhXjGC4cPR/lITEkUyYCKLcpOys0LLosiSyQK6UpzSbdIggeoBjqEoYMzwUB/7D3cu8R513fg9iW0hXOY8pCx7/Ea8ODw/vENcgvzSLTfNnc30PmJe2I9PH7XAM1CuEPdxT2F4waTRwhHT8dTRxVGpUXEBT2D7ULewcUA8X+uvoI9+LzSPE474ftJ+xk61jryeup7NXtMu+D8JfxjfKA85v0xfXz9rD39vcN+P/3IPhy+OH4X/n9+cD6kPt7/Kr9Iv/UAIkCWgROBjYI7gmSC/oMMg5GD+QP1Q89D4EOgg0xDHgKMQh1BYACg/9+/Jn5//aa9GXyYvCz7mvttezK7FbtLe5d78/wgfKJ9NP2RPnI+0H+nAC5ArYEfQbvBx0JDAqyCvEK5QqiChoKdQnFCOoH/gYYBkoFhgTgA2UD8QKOAlkCMAIjAk4CpALoAgED/wLpAswC0wIwA4sD0gMJBBkEYQQEBR0GhQeICeoLVw7CEIQTpRbQGTMdlyCUI8glpyc+KRIqHipEKSgnxCN6H6oaMBUoD7oIlgHp+fvxh+qJ43fdj9hL1JnQkM1Vy5/KesvNzSrRMtWO2TreleNw6bXvBPY2/PsBywbYCikOzhDwEncURRUkFR8UdhI2EJQN1QryB/sEDAIT/yj8ffk091b12/O68v7xnfGp8QTymfJP8wv01fS19aj2ifdZ+Pz4ZPmG+Yn5dvlI+SH5Avn++Pb45vjY+Or4Ofnu+fH6H/xY/Z7++f9jAeECZATRBSMHRAgNCYgJtgmTCTMJiQiDBykGiwTLAv0AKP9J/WP7lPn+95v2d/W19E/0PPR69BX1A/ZL99v4uPrA/F/+2f89AXICfQNXBAgFZQVmBQ0FhATeAyEDUwKHAboA6v8k/5L+M/4U/jf+lf4s/9b/gABLAS0CCgPrA80ErgV3BhMHhQfbBxkIPghRCFkIVwhhCIAIvQgzCdwJwQryC7MNxg/lERMUZhbLGAsbJx10H1khmyIsIwIjTCLmIMoe3xtLGPIT4g4+CU0DTP1k91Hxfesw5jDhztwh2XPWuNTw0yHUUNVC18vZ8tyr4O/kpumS7ljzAfgz/O7/UwNMBhAJVAvxDOMNCw6hDfcMGQwwCxIKuQgXBzoFXAOLAeH/Vf71/L/7qvq0+cb4+fdM96L2Efaj9Vn1JfUB9db0pvR09FT0YvSh9Bb1pvVb9hv39Pfj+AP6TPu7/Dj+vf8+Aa0C9gMVBQcG3gaPB/8HLQgwCAEIlwf+BjIGQQU5BCUDHAIbARkAIP86/oD97vx//Db8E/wR/Cf8P/xj/JX80/wb/Vv9nP3c/Qr+I/4r/i7+H/4H/vH91f23/ZL9ZP09/Rr9Cf0V/SX9QP1g/Zn94P0u/ov+8P5e/87/OgCtACgBpAEaAo0C8wJMA4kDwwPxAxcEIgQSBAAE7APTA90D9gMhBGoE2wSFBXcGnQcQCbsKrgzWDhoRdRMCFpoYHRuCHbAfhCHqIu8jmCThJHQkLCP4IO8dJBrXFVwRogybB0cCnvzd9kLx2Os1533jhuBM3qncvdto273b/twm3yPimeVb6SjtxvBC9Kz3PPvU/vgBlgR4BpQHDQjyB28HrQapBVcEuwL3ACL/Of1K+4j5FvgO92H2F/YM9hj2OPZ+9gn34ff1+Cj6V/tH/Pr8g/3l/Tr+i/7Z/gX/+P6y/lH+3v1R/cL8Sfzd+3z7KPvh+rH6mPqe+sr6HvuW+yn86Pyv/Y7+dv9ZAEEBKgIbAwkE5QSrBTUGlgbFBr4GlQZABsUFKQVnBH4DdAJOARUA3P6t/Z38qvvN+gj6XPnn+Jf4bvhd+G/4nfjZ+CL5ffnX+S76lvr5+l37wfsg/ID86/xf/b/9EP5q/sr+Mv+i/yAAoQAWAX8B4wE+ApgC6QI0A2wDgQN4A0gDDgPdAqMCcAI+AgkC7wHMAdMBOgLiArUDAQWSBjwIWgpuDPcOdRE3FPcWtxm6HDEfcSFRI/okESaiJtkmUybJJLMiHiAPHZMZlxUpEekLhgZEAUn8ufde8y/vKOuW57jkweKq4TDhTuHC4ajiV+SM5j/pWuxy75byXvUE+KT68fwZ/8sA9gHIAhsDFwPMAjQCXAE5AAP/6/3v/CP8dvvY+kf6+/n7+WX6Evvz+978uP2P/mX/QAAvAQwCqwIAAwcDwQIvAmwBgQBn/yb+wPxF+8n5RfjO9nn1X/Sh8zHzFfNA86TzPfQq9Wj2Gfj7+fH74P24/4gBQAPYBDsGVgcuCKsIzwixCEgIlQeyBqEFaAQUA60BSwDy/qj9Wvwl+xf6Mfl3+OH3b/cg9+722fbj9hT3VPef9/73bPjY+Ev5xflC+r76Pvu1+yn8jvzt/Fv9wv04/qn+J/+i/xsAewDSADEBhwHpAU4CuQImA3cDpwPWA+gD8QP/AwcEFQQRBA8EBgT8A/sDEQRZBLoEVwUxBjYHXAiZCSsL3gwiD9MRlhRPFxIacRy4HhAhgSMpJggogSkeKs8pvij3JvokZCLcHqoaxRU8EGMKPwRK/oD4A/PA7fnooOTD4K7dSdvj2UzZZNlK2tXbot2y3xfipuRs52/qdO1A8OXyOfU79w/5wfpW/Mb9Gv9iAIEBoQKwA7ME0gX/BjEIdgm+CuAL0gyeDUcOjQ5+Di8OiA1xDPwKMgnZBu0DuwBb/c/5J/af8kjv/Ov56EnmAuRH4kjhNuEj4t7jN+YA6S3syu/t83H4Qv0vAvQGRgv0Du4RUxQ4FqEXiBjFGC0Y1hbMFEkSaA9rDJEJ0gYyBJ4BIP/H/NP6VPlM+ML3jPeT96333/cj+Hr4B/mo+Vb66vpT+3D7TvsJ+7L6VPr0+ZT5K/mx+DH4xPd191r3gPfW90745/iI+Rf6qvpt+0n8QP00/uz+ff/N/x0AYQCIALAA5AD+AMoAngBKAA0A+P8lAFUAfgDjADkBuAFkAkIDVQSCBaQGuAeDCGUJiQrSC2EN/Q6mEAwSeBPnFOsWyxg2GwIeeSDqIpIk+CUQJyEoASmTKTIp2CdnJYohDx0SGOcSHg0LB4sAjvnp8SbqKOPO3LvXwNO30EbOMMwxy4bLO81i0OnUINq+34HlH+uu8C32uPtkAa8GMAu7DgcRNxLnEksTqRO1E1oTdhLREK8OawxgCpwIKwfmBbsEQAOQAef/OP6q/Gz7Yvoo+Zj3xfW8853xme/f7V3sD+v46TPpoehf6JjoSOmW6m/swu5R8Sv0O/eD+v/9iwENBUIIIAuzDecPvREgEwcUVhQBFDMT4hEqEE4OUwxAChgIwAU8A7IAYv6F/PH6svm3+NL3IPeI9iP25fXj9SD2e/bx9l73u/fz90j4ofgZ+b/5Xfr8+nL79PtY/MP8Sv3T/Wb+1/5K/47/pf+u/7L/sP+i/3z/R//3/q/+a/4r/un9xv2i/XP9Of3T/HD8EPzt++X73vvk+/j76/u/+8L78/ti/Bv9EP7v/oj/CACnAGQBlwJCBCYGBAi9CTQLaAzdDdsPOhIAFfkXIxv1HYsgGiPCJXwobCs+LrswcDKhMk0xvi5yK30nFCMaHnYYnBFvCX0ANfcV7sPlXt7y103S/sxxyCDFX8NTw+PE4McYzCrR59ZT3S3kQ+uZ8sb5dgCGBqoLBRBpE8sVQBehFwMXvxX7E8oRfQ8VDY8K8gd7BUcDcAH5//z+aP4p/gf+s/0i/VL8bPtn+lP5EfiQ9tj00PKA8Cfu/+sd6onocue85jDm9OVJ5mDnM+mq65Lu3fFZ9ef4gfw3ABsEKwgcDMwP/xJqFRAXHhjXGDIZGRl8GEMXfBUjE0UQFQ3gCesGPQS3AUb/vfxH+v/3Nfbt9A30m/N084zzrfPi8zn0yvSG9WL2Zvd1+HH5Pvr1+pf7P/zq/JX9PP7i/o//DABvAOUAgAEkAqUCDQNaA4cDpAPIA+kDAQT9A8cDSQN6ApUBhwBj/0H+Ef27+1D6yvhd9zD2cfVC9Vb1xvWT9pv30viH+qn8Df+qAVMEgwYHCCoJCwqnCjwL/wu9DFINvA2/DXMNPA2nDbUOrBBjEwoX5xq+HtEiLieWKxcwSTSbN705pTnLNz00hi/VKfwiyBo+EYoGx/oU7zPke9oj0knLysWqweq+670avy/CHccvzerTuNp/4UboQe819qr8JwJkBi0JrAo8CzQLAgusCloKxAnSCKYHYAYsBXcEaQQABecF3AaYB9MHngcnB4QGuwXSBIoDqwHy/p372ffY89zvIezY6OLlQOMA4VffUt6t3uLf2uGU5LXnLuvX7rTypfaW+mL+KgK7BQAJ6gs7DhsQhxFnEuoS8BKqElsSDBIPEr0R4BCMD60NsQutCaYHkwVpAygByv42/GX5nvYT9EryPPG08GLwGfAu8JXwefH98u/0Mfdz+az72P3G/3QB/AJIBG0FTgbkBkYHPQcQB3QGnwXMBAgEZAOlAsEBvgCX/6L+Cv6y/WL9Av2X/Bb8ZfvR+kD6xfl6+Uv5UPl3+Yb5rPn1+Wj6efvI/CP+4/98AQUDvASqBgYJIAseDUQOpg7oDuIOuA67DugORg8eEOwQfhHmEL0PgQ6CDXwNiA1ODlEOcg5vDpUPVhGuFBMZ5BxBIRQj6CMZJBkksSROJe0kASTfIdcdshg4EcYIMgAF+AzxR+oD46rb3dRpz53Mt8vPy9rM5c2Uz1rSpdXR2QnecuLt5hbree5R8XTzxvQ49n334fiH+jr8Vf4dAUIEdAdSCgYNtA+GEjwV5xfcGdsayBpWGUwXBxQbEL0Lywa+AYH8nPcG85vufuoL53zkKOMJ47/jrOSl5fnm8Oib68LuL/J89X74DPsg/cL+GACeAZQD3AUnCAgKYgtTDCcNVw6bDzIR2BITFLcUUBQFE00RZQ+ODacLPAkpBoICp/4s+xr4mfWh8xTyD/FZ8AfwJfCn8L/xSfMM9eX2qvg5+o/7rfx2/fL9O/6E/sj+Kv9X/2r/f/90/5//1P8jAGIAnQDbAAoBRQFnAX4BmQGmAWoB8QAiAEf/bf7E/S79qvxB/ML7nPuy+/77m/x9/VL+af9GAHUB3AJEBNEF5wYCCMsIZwndCXMKQwsrDDYN4w1vDqkOxw4oD5gPFRB/EMgQURA0DzsOwAzJC9wKIgp/CWcImwemBnUF4gS/BIUFpgdZC+AQIhfdHegjoCgQLPstbS/hL6suuyvrJpEgOBkKEUsI2v699Kjqz+Cj14HPD8njxCLDwMO9xU3IMcvxzQDRjtSD2K/ckuC/4wDm1udI6RbrYu3o73LynvSt9gr5LvxOACUFZAq3D58U3RgiHBoexB5KHg8dHRuOGFgVQREeDGMGFgDd+QH0zu5y6rDmzOOq4aXg8+Bs4tfk3+dS687uOPKp9fb4Lfwa/64BzgN+BaEGSQeqB7IHsQeVB3EHSQdXB5sHDQiyCFIJCArTCpQL2Au0C0gLqgr0CRQJ5AeMBgYFVwPHARIAmf6C/ZP83vsz+5f6Kvrs+Rj6dfoF++H7ivxN/fL9j/5Q//T/fQDCAL0ArwCmAJoAiABRACcA7/+N//n+Ff4v/UT8g/vQ+jf6vPlq+Vr5efm3+SP60/qw+5j8Zv1C/kb/YAB/AWwCDgNeA2UDMAPNAm8CDALTAcEBoQGkAbwBAwKEAv0ClQNXBCAFLgZ4B7IIAwoXC/YLRwzyCx0LtwnhB9wFvgPaAZYAZwBUAUUDCAaTCTAN9RC3FCAZRB6HIzIpey7FMm01LzZINXwy3S0hKEchVhm7EIkHtP5V9izvP+kn5A3gbNxk2cLWJtUN1dbVr9cm2k7c8d2C3tfe/N783kXfgd/E39zfaOBC4cfi4+TB56rrt/DT9mT9FwQlCsYP6hSZGaAdZiCWIf4gBh8QHGoYDRQKD0QJAQOl/KX2cPFE7Rfq3OeF5gbmKuYp58Dox+oc7YHv9fEz9GT2S/jU+Rv7I/wW/bv9X/4F/53/bABxAcACSATzBfAH4AmyC3ANWQ8sEeQSPhTGFHQUMBNfET0P+gyqCm4ITwYuBFYCtwB8/9j+m/6e/rH+qf5//hr+iv0B/YX8Jvzy+7z7R/uc+vH5a/kq+UX52/nq+kv8wv0n/2wAnwHDAsEDgAQCBTMFCgWeBO0DCgMcAioBXAC4/x//jf4L/rL9XP0o/RH9CP3//O382fzI/LT8p/y0/Mf8x/yn/Hv8R/z2+577Wfsz+3b76PvT/Bv+af8lAd0CcQQ4BsYHMgmzCg0MGA2hDUwNaAycCvIHkQSxAKH86vjh9YL0pvR49u75UP5nA9sIcg5KFE8aCyAeJQ0pkCvGLBstgyydK0MqGihOJV8hdxwiF4cRQQxjB2ACWf3q9zjyrOxg59ni3d5625zYANbG0+bRsdBE0LHQ2tGb0wDW8Nha3DHgguRL6TPu3PJg96T7vf+9A6cHmgsxD5IScxW6F3QZYRqMGisaOBmtF4IVuRJSD2wLOgcPAzD/3fsC+Zb2afQ+8hnwye106zzpI+c+5Xfj1OFo4Fff6t5R35LgqOJW5YzoV+yr8HD1kPrD/94ElgmbDe8QqRPjFbMXARnQGfoZmRnLGNIX/RZ1Fg4WvBVSFcYUEBQXE98RYxCyDrEMUgqDB0gE4ACP/Z76+fe19fzzx/I18ibyk/Jk84b07vVt9+r4TPp/+3n8OP3N/V3+9/6c/1AA/gC1AWYCJgP/A9AEoQVPBr8G6AbBBkQGhAV7BC0DiQGr/8H94vst+s342/cy9+v24/Ym96b3Ufha+Zn65Psz/Wv+i/+aAGUBEgKXAsoCpgIgAm4BvgA4APH//f9AAKIAKgGcAQgCbALHAh4DfwPjA04EzQRMBfcF1QbPB4sJOguUDWAQCBM7FlYZtBxsIEMkOShfLB0wYzORNQo2zzQ1MbsrQyS7G60SUwkjAOX3+fBh63jnPuVv5FfkrOQH5Znlw+Wl5fvkj+Od4Szff9zj2ZHXw9W+1F3U6dRb1qLYydsB4AHlourS8GD33v3BA+MIKg1nEJsSshOvE8gSChHKDkEMpwlgB5kFcATQA7YD2gMkBFEELwSbA2gCoQBK/nr7MPij9Abxk+2N6groEua+5CfkS+QH5VvmMeiK6jvtLvA080D2Svkr/OD+VgGqA9AF1getCZULiw2tDw8SkhQZF8MZXxzcHtogQCL8IvAiCSIwIJQdGBr/FX4RugzvBz4D4P7T+mn3sfS98prxLfFq8SDyRvN39M/1Hfdf+HH5OPrE+vj6Bvvm+sf6rPq5+gH7gPs7/Oz8wP2X/oz/bAA2AdkBRQKCAoYCZAIgAtoBlAFWASgBCAHgAMUAtwCsAKEAlgCnALAAxADgAAIBIQE0AT4BOgEgAdwAYwCs/8n+s/2P/HT7a/qr+UT5KPmD+Rr6/voM/Gb95P5QAGkBFwJUAiYC3QFzARgB1ADfAIgBmwKpBKAHMQxDEmgZtCE3Kicy4ziUPec/2z/ePJs3FzDNJokcxhECCBr/vvcB8pztyurG6H7nVeYy5fDjhOLt4Evfut0q3KXacNmJ2P7X7NdH2PDY0dkN24vcj94q4Wnkfehc7dPykfhw/i4Etwm1DvASLxY2GBMZoBgfF8wUCRIEDxYMWQnlBrgE5AJwAVsAlf8S/5r+Bf4x/QX8fvqR+F72/POR8SnvyuyH6ozo+eb65Znl3OXU5mvonOpN7VzwrfMo97H6sP1rANgC/wTuBrEIcgoZDLwNSQ8KEQITDxU6F3sZwRvjHaofFiHfIf0hayERIA4eSBvYF9ATQA9dClAFSQCQ+5j3TvS/8d/vue427kbuzu5+71zwKvHd8VbynPK68rTysfLQ8iLzsPOj9An2x/eu+cv7B/5CAHICggRYBt0HDAnWCSwKLAoACq4JMAmlCB4Iggf3BpYGPgbdBXYFCAVzBN8DTgO5AjUCxAFMAbsAIwB1/7D+0/3V/LX7afoQ+cf3k/aA9cn0e/Sm9ET1X/bc98D5Avxa/pkAogJWBJ4FcgbwBisHQwdlB+kH7AicCgwNZxC0FKUZ+h6SJHoppi2vMDMyoTJBMdYuTisJJ0AiRR12GKMTBw8GCv0Ej//1+U70Xu7J6MzjlN9U3DLaOdlS2SDaVdtz3PLcqdx623DZ7dYz1IvRss8Iz9bPwdKX1zrebeaW7/74DwICCmcQLRXzFw0ZjhjNFkQUYhGfDoYMNgu1CvcK3QtVDdwOIRDCEIgQNw/0DMoJtQUCAcv7Z/Yh8WzsX+gB5WbigOBX39HeFN/i307hTOOx5VPoKOsw7lrxlfTF99j6tP1AAI8CvgTKBt4ICAt/DSEQ/BIgFnQZ6hw2ID8joyVeJ0UoOSgiJ/MkzCG5He8YshNHDt0IqwPt/qb60faJ87rwcO6v7H3rx+p46qvqRusz7Fbtv+498K/xEvND9DL13vVy9vb2jPc9+Fn53/rW/EH/+wHsBAkIJgu8DdUPUBExEmES9xENEacP4w3yC+4J6Qf9BTsEoAIlAdz/nP6D/Y/8s/vq+ib6hfnY+DT4kvfw9jv2dvWp9NvzMfOf8k3yO/KH8jrzU/TD9YT3gPmG+3v9L/95AHEB6AH1AbgBcAFqASgC4gPfBiML2hALGBgg3SiKMWg55z9DRMZGxkYHRIY/1jivMMYnXR6UFb8NXQerAqr/2f1T/S/9kP3p/X79G/wx+Rz1Re8r6PXfYNcsz8fHC8JYvuC8ir1uwFDFw8tf02jbUuPT6hjxOPYZ+uD8y/7q/6YAOQHKAcgCTwQyBrIIeAtXDh0RdROOFQoX2xf5F18XDhYoFMAREA9HDIoJ1QZNBOsBrP9v/WX7VPk09//0jfIK8FDtwepQ6DDmjuR34/HiEOPk4zLlTufa6dDs7u8G8w/24fiR++z9MABcAnsErwYACZILVw5WEWgUjBeeGnAd1R+oIdEiRSPLImUhGR/yGzwYLhQCEM8LzQcrBOQACv6n+675DvjE9qD1bvQJ82HxY+8l7crqnui25gHls+Pl4sHiOuNd5D3myejn62zvEvPE9mn61/39ANMDRAZKCNYJ9AqvCwIM9Qt1C5kKdQkTCIwGBAWHAxwC5QDw/zr/1f7D/vz+av8UANgAhQETAmQCVwLlAQ4Buf8g/lP8kPoE+dj3IvcG93v3e/gP+uP7Bv4gACgC1gMxBQ8GMQa+BegExgPNAgACiwHVARIDoQV8CbsOLRVrHA0keCv3MV43NTsbPQI9izojNgUwgiijIMsYyhH7C4gHrwQkA+sCmwPFBAYG2wacBusE3QEp/R/3E/Bl6Jjg/dgF0hjM08cUxWrEvcWuyEfNzdJM2UrgNef37Rb0efnn/VABCQSXBW8Gkwb4BT4FMARfA74CVgJ+AuQCkgPgBFoGIgg0CiUMKQ6PD2cQfBCSDxcO5gsJCbAF9wEA/in6fvYc8z3wA+5s7Grr+uoA63frVOx07b/u6+/k8JTx7/Hs8ZTxCfFo8MTvbO947xnwWvFw82T2Pvro/h8EpwlGD7QUmRm5HdQgyyKaI1EjCSL5H1gdYRpoF7EUahKOECUPJg5PDYwMvQu4ClgJhQcfBTEC1v4u+2D3j/MB8PLsdeqY6Gzn4Obn5mbnPehk6avq9utB7Xnuje+G8GfxRPI982D0jvXj9mz4I/r5+9v9w/+HAScDgASKBTQGiQaKBloGAwaKBewEQwSVA/ICcgIlAgoCAAIEAgcCCQL2Ab8BdAEeAbYAPQC0/yL/s/5x/nD+tv43/+3/zgDSAdwC0AOjBEAFvgX7Bd0FcQW9BNsD6QIGAocBPQFPAe4BKQPZBEUHQQrsDW0Sqhe/HXQkcitYMso4bz6/QipFo0XiQ8I/KzlsMCMm8xrDDwoFXvsl883seuj05VzlMObr5xfqDuxE7Tjt0usV6R/lE+Bd2nbU5M4yypjGmsSOxIDGSsoB0CPXOd+15x/wBPgO/+sEhAmxDGMO3A5RDgANOQtyCdUHzwZ4Bu0GGQjoCT4M1g5oEccTthXZFh8XWhZ3FIERqg0bCQMEw/58+Wz0yu/n6+3o8+YA5gbmyOYu6Onpyeui7UXvnvBz8e/xCvLv8cXxpvHX8V/yd/Mn9XL3V/qs/UsBBwWiCBMMHA+xEdATYRV1FiIXdxeGF4kXnhfAFwUYVxiaGLgYmhgkGDcXwhXKEz4RKQ6+ChQHTwOW/xr85vga9rnz3fFr8F3voe4h7rftR+2y7O3rDOsX6iHpOuhy59TmbeZP5qTmbOe06Hjqpuw17w7yIvU/+GD7d/5jASgEqgbjCLkK5gu3DFUNxQ0mDngO3A5MD8YPPBCsEP4QIBH+EI4QwA+NDuQM1QpdCKsF3QIaAJf9bfvI+aH4Avjb9w34gvgN+bH5Q/qe+qz6cfr1+UH5hvjF9yL3vfZ59ub24fe9+YT8UQA4BdkKKREFGAYfKSb2LFczODmsPdlAIUJ3QfQ+fzq3NNct/iXXHacV5g3wBhkBf/wV+en2ffWy9Cf0g/Or8nDxje/X7CfpsuTW377a4tVb0YTN6MpkyYjJMctGzpzSo9dl3VjjLemL7vfyp/Yc+aT6tfs1/KL8Lf38/W7/XgEmBKkHrAskEJwUvhhHHNYebCDgICQgMh5UG70XuBOVD3ILjAf5A9AAN/4O/DH6hvgC94L18/M78lnwZO5d7GPqm+gj5wbmSuX75CXl1eX55p7opeoE7bLvh/KI9aH4wPvq/hYCTAV3CI8LhA5NEdAT9RWkF+8Y3BlJGlsaDBpuGaAYqhevFqQViRR1E1USFxGPD7YNjwv+CA8G2AJe/9f7WvgQ9Q7yVO8Q7Trr2unq6EroAejT56/niud450LnBefz5hfnhOdZ6JTpMes47YHvHfL19Or36fq+/WkA1ALwBKEG8wcACcoJZwr2CnIL/AucDD8N8g2mDmUP8w9aEHkQPBChD5MOKg1pC2QJMAcHBe4C/wBD/739iPyf+wX7tPqP+oj6Zfoy+uv5lPkw+cf4cvgx+Cv4P/ih+DH5IPo1+3r84P1r/1QBqwOzBoYKEA+fFBcbCSJiKdQw/DdiPkRDKUaWRgdEVT85OIAvtiUvGwERKgey/qz3bPI777Ttuu2C7p3vj/Cx8Lvvse1H6rHlH+AI2i3Us85vyovHQ8bhxuvIecxP0eHW1Nyi4hno2uzD8OvzLfbL99v4nflT+j37lfx8/uMA2gNJB8IKXQ6xEbcUPRcHGTcafxoGGukYMRcMFaoSBRBMDaYKEgiVBUwDWwGe/yD+x/xz+yr6yvhU97/1E/RZ8obwue4c7bnrlurd6aPp6emf6tLrce1m75rx+fNn9rv42vrD/Hn+CwByAcgCKQStBV8HNQk8C3ANyQ80EoMUqBaIGAwaIxuvG6kb5xqHGaoXWxXCEgUQMA1dCp0H6wRYAu//pf2G+4L5qffI9ejzBPL+7wbuGuxE6qXoO+cM5izloOR25KzkMuUM5innq+hp6mPsi+7A8APzSvWJ98L5/vsl/jQAHALpA4sFNge0CC4KmwvuDDsOdA+dEHIRDxJ5EqcSjxIxEp8R2hDwD+sOyw2MDE4L/wmrCF8HDAavBC8DnwH4/zb+c/zC+kT5Efgy97H2xPZa93j4KPpM/Ob+owFGBK8GhgjACT0K4gkPCe8H0AYrBigGGQfsCA0MSxA2FbYaZiAFJhcrGS/GMQIzMzLJL98r2SYvIe0anBR4Dv0IQQRdAHX9QPuQ+TD43fZn9ZjzP/Ft7gnrL+fx4q3epdrz1hXUC9Lb0JnQYdEE03vVg9jJ2w7fWeJu5RnohOqL7Dru0O9a8eLyffRk9pX4DvvR/bsArQOvBosJLgxvDkgQqxGPEvkSERPkEnYS6BFWEakQ2w/6DvYNxgyGCxQKawiHBnMELQK9/0f97Pqq+KH25vR382XyoPEz8S3xc/H48avyffNg9Er1JvYC9+v36fj++Tf7m/wt/uL/pwF/A3EFYAc8Cf4KqwwsDnQPeRAyEasR7hH0Eb0RUBF2EEYP4A1BDHUKgwiKBpsE0QIlAZr/Q/4o/Un8kfv8+nP62Pkk+T/4L/fr9XX06PJO8dDvhe597cTsZuxm7MTsgO157oHvmPCg8ZPydPM59M/0aPUR9tz22/cN+Zb6V/xl/pkA+AJlBacHngk/C3EMGw0zDcwMAgzVCnwJIQjZBtYFIwXIBMkEHwW+BY0GaAc1CMMIAAnPCCcIBQeKBdID6wEOAF/+/vwJ/IP7dvvf+7n84v03/58AIwKaAwQFXQaGB7wI4gkdC2sMvw1GD68QPRLZEzAVbxZGF70X5xeYF/0WFxYJFQcUFBNnEhUSEhKGElETTRRbFS8WwRaWFosVkROgENsMTghJAxf+3fgQ9OLviOxN6v3orugz6Vnq8OuQ7SbvQ/DG8KHwyu927qnse+o66DfmjuSh40zj0uMT5dTmLenY65XuRfGq88X1ZPd4+Dz5iPmG+V/5IfkS+Sf5mvlZ+mn7uPwV/nf/vgDKAZkCDgMrA/wCgALiATQBkgAjAOH/8P81AKsAQwHtAZcCSwPPAxgEJQT3A6kDTAP+ArECjwKhAtgCNwO1AzsErQQGBR0F3gRIBFIDHgLJAHf/Mf4Z/Vz8APwX/KL8l/3i/lcA5wF4A+MEDAbbBkMHPAetBsgFlgQwA8YBcgBI/1z+xv17/Yn94P1r/h3/3v+dAEIB0QE4AoACngKdAn4CSwL8AZkBKgGqACMAj//n/i3+af2R/Lj75vor+pD5Ivn1+Pz4SPnR+Y36cftm/F39PP75/oL/x//R/5X/F/9z/qr95/wq/Jb7Pfsl+1f7z/uP/IL9pf7Y/wIBEwL3AqQDDwREBDQE8AN9AwYDjAIeAs4B0gEXApUCTwNBBFMFegajB6wIhAkuCpsKwQqwCnIKCQqNCQkJiwgYCL4HhQdrB3QHlAesB68HmwdlBwgHhwbmBT0FhgTdA1AD9QLiAgwDigNIBEQFZwadB90IGgpMC1YMLQ2/DREOHQ7yDaENKg2cDAQMTwuWCtcJBwk5CGwHnwbHBd8E9QMAAwUCDwEjAEL/X/6U/dj8Gvxc+576z/n5+DP4YfeO9qb1rvSh84HyRfET8Onu2+317Evs2+uJ64DrsOsz7P7sFe5g78PwI/Jn83/0V/UB9nj2tPa29nn2+vV59Qr1uvSe9L70G/Wl9U32Gvfl96b4YvkY+sD6Xvvx+3j8Cv3D/Z7+ov/CAPsBNQNwBJMFlQZlB/YHUAhuCGgIPwgTCOoHwQekB5cHlwekB8QH2gfhB8wHiAcNB2cGowXiBCgEfAP4ApsCbAJxArACGwOnA0oE8gSOBQkGYQaPBpYGfgZPBgYGqgVHBe8ErARsBDgEAATEA3YDFQOUAvMBMAE6ACX/6/2n/Fz7IfoK+SD4evcO9/D2A/c695X3+vdl+Mf4EvlI+V/5U/kz+Qr58vjw+Ar5R/mf+Rv6qfo++9T7Zfzq/F39vP38/S/+Uv5y/pL+xP4M/3H/7/9/AA0BkwH2AS0CPQIrAu8BlgElAasAOQDg/6//sf/3/3gAMgH/AccCjgM7BNEEOQV0BXYFQgXrBIEEGQTBA5kDnAPOAykElAQDBWgFwAUJBkAGWAZbBjcG6wV/BSAF5QTXBAoFkQVYBlcHfQjACR8LkwwODmgPkRB4EQwSWBJkEiUSnxHmEPMP0w6FDRgMjwr3CGAHxwUwBJ8CCQF5/+79bvwM+8j5qviv98j25fUG9Rr0HPMH8vPwxO+S7mjtSOxA62Pquelh6ULpZOnd6YTqWOtL7DjtHu4O7+7vvfBz8SPytPI988LzTvTh9Hz1G/az9lX3+feU+Bj5bvmm+a/5nfl5+UX5Kvkh+Uf5pfk3+gL7+Psm/Xv+5v9bAbEC5gP+BN0FiQYIB2IHoAfHB+wHEghHCIsI0ggpCYEJ0AkUCkMKVwpnCl0KMQroCYIJGgmxCFYI/we6B4YHaQdoB4AHoQfPBwQISAiNCMUI3gjgCLwIdwgHCGAHowbHBeEEAAQrA3sC2wFcAQkBzwCtAJoAgABYACQAvf8h/0D+M/3w+4P6B/mQ90H2IfVP9NjztvPi81n0BvXe9cT2pPd0+Bz5qPkE+jz6bPqO+rb6+fpU+877Y/wP/cH9bv4L/4H/zv/y/+H/t/9q/w7/rf5l/jv+O/5y/s7+Uf/5/7EAbwEXAq8CGQNlA48DkwORA4IDewOCA6cD7QNVBOIEhQU4Bu4GmwczCKwIAQk5CUwJRAkpCQcJ5QjXCNoI4Qj9CCMJVgmECaoJxAnKCbYJlglhCScJ5girCI0IiwioCO8ITwnICVQK1gpCC4kLmwt7CxQLgwrECdUI1ge4BrQFugTJAwsDZALoAYIBKgHOAEYAn//H/qv9X/zd+kH5nvf+9ZL0UvM+8oLxDPHP8MDwz/Dw8AbxCfHn8I/wGfCQ7/zuZ+7x7Z/tgO2c7f3tle5I7xnw8/DF8YHyH/Oe8/PzIPQ89Ej0YPSA9LX0GPWX9Tj2Bffl99b4xvnF+r/7p/yK/WP+IP/v/74AlgGTAqEDuQTuBSIHXwiNCZ4KjgtKDNUMMA1SDU8NHg3VDGsM7At6C/oKgQofCroJUwn7CJYIOAjqB6MHegddBzcHPAcrBxkHDgffBr4GcgYUBr0FWAX6BKMEYQQ5BCYEFwQMBO0DtANxAyADpwIqAoQBvwD2/xn/Vf6K/cH8Jvxx+9H6X/rh+Xz5JPnK+LX4bvgl+O33Xvfl9k/2ufUe9Xr0DfTF857zwvMo9M/0rvWb9s/34Pjo+fn6yfuR/Dz9rv0l/nL+q/4N/zX/k/8IAGUAFAG0AWYCRAPpA74EhAUOBqcG9wY9B2sHUwdfBzEHEQccBwcHJwdaB4wH7QdECKYIHglVCY0JsAmuCbcJoQmRCYgJdgltCV4JOQkUCd4Iiwg2CL4HNAewBjQGwQV2BUUFRgVeBZwFCQZhBvMGQgebB/sHEwhoCIgIsQjhCPUIQQmNCeYJUgqnCgILJgsZC7sK7gnlCIwHzQUIBDcCaQDX/mD9X/yG++H6ivos+uj5lPkf+Yv4wvfX9tf1pPR080Hy5/Cy72ruO+027DfrZurX6YLpkenI6Tvq6+qt65fsX+067ubuWu/N7yLwhvDe8Ffx+PGr8qfzr/S99fn2CPgb+fH5n/pD+5/7H/yB/PH8jv0X/sX+b//9/4UA5gAYAUgBWQFaAWgBgwGuAQgCdQIIA8IDeARDBe8FrAZdB94HeQjgCDUJmAnKCSIKXQp1CsEK0goHC1YLXwvKC/kLSgylDLEM5AzSDJ8MSgysC/8KIgoPCQkI9AbdBdIE2AMKAzQCcwHSABIAU/+i/sv99PwZ/EP7lfrM+Sr5ofgT+Jv3Mvfl9of2OPb69cD1lPWF9Zb1wPUR9l/20fY796b3CvhP+K/44/gq+Yb5z/lD+rj6P/v0+4H8LP3d/Uf+4/45/4j/z//u/yIARwBdAJYA2AASAXEB1AE6AqcC/gJYA6sD4gMkBD4ETgRoBFoEaARcBFwEiQSrBAEFUwXQBWMGEAfTB6kIkwlmCkIL/AulDBsNcA2ODYUNcA02DfcMqwxZDBYMugtyC0UL/wrWCqIKYwoxCusJdQnsCEIIkgftBj0GtwVcBRQF5gTgBOQE/QQYBTYFcgWdBeAFNQZ1BrIGzwa/BqMGOwaxBQcFWQSVA/gCOwJ3Ad8A3P/7/sn9ivwo+6L5Zfgv9yr2S/W+9CX0ufND85zy6fHw8P7v6e7Y7ePs/OtJ66jqLOr76anpl+mj6Yvp0ekU6mbq9OqG6y3sJe3V7afume9W8E7x8vHB8oDzNPQK9d31y/bL9+b4+/lB+238rf3Q/uL/1wCgAVMC5gKCA/kDowRgBVEGUQdlCJkJkwqGCygMqAz0DAkNHg0YDQMN1QyiDGUM/gt9C/MKQwqWCQEJgwgzCPAH2gfAB6QHgwdMB/MGbAbqBXcFIQX0BO8EDwU7BWkFkAWeBZAFbQU3BfMErwRcBAEEqQMyA6cCCwJFAYQAxP8M/4v+IP7p/cL9n/2G/Un9BP2U/BL8dvvV+kL6t/lE+dj4e/gd+NX3evcu9xH3+vYf91T3svc/+Lj4NvmT+ev5MvpW+o76vfoF+2f7u/sm/JH87/xO/Xj9tf33/Sr+fv6//hr/i//n/10A4ABpAQQCwQJ1A1cESAVGBkgHEwjyCIEJIgqSCtkKWQujCzEMqwxJDeYNgQ7uDkwPYg9JDzcPvg51DuwNiw0nDasMTQzhC24L8QqECvkJkwkkCa4IQQjGB1EHygY6BsQFRgXDBF0EDQTpA9oD1AP0AwEE5AO2A00D6gJ4AvwBzAHKAdsBGwJfAogCowJlAvMBXwGZAMf/2P7p/QP9+PvP+pz5Rvjw9o31afR089PykPKc8vHyNPNb81LzCfN18q/x2PAr8JDvL+/27t3u2u7U7svunu5z7jbuM+5D7nbutu4C72PvrO/H79Pvze++79nvIvC98Ijxh/Kh88P0y/W/9oz3Ovj1+Kj5fPp2+3f8hf2f/p//lABuASkC8QKmA3METwUlBggH5weaCEQJswn6CSwKSQpyCpsKywogC18LtwvzCwoMIQwEDN0LlwtjCysLCwvwCuIKxwqyCoAKJgrLCT4J3ghcCAIIuAdxByAH6waPBiMGvwUeBcIEKwThA5oDVwMxA+QCoAI6AsUBMQGoAA8Agf8J/6H+Pf7U/Wv97Pxv/NT7O/ut+jr64Pmm+Yb5iPma+az5xfnF+cL5q/mU+Z35k/mp+cD5z/ns+fj5C/ob+kH6evrd+ln7E/zc/JH9af4E/5j/GAB0AN8ANQGuATkCxAJjAzcE1gSgBToGlQbzBuQG+wb2BgQHVwfTB2sIKgn2CYcKKAtpC6QL0gv4C0oMgAzVDBsNHg30DIMM8AtGC40KFArfCe8JCAo+CqIKmwpBCqIJ0gjHB8oG6QUlBaMEJgTjA5cDXwP1Ap0CMgLzAfwBBwKYAu0CTgNJA+gCKgISAfP/5P5D/r/90v0D/jP+Uf4u/tH9Ov2B/NX7PPuk+kn6Efrx+b35WfnN+PD37vbo9fv0T/TP85XzjPNq8xzzovIO8lHxg/Df73vvMu8172PvrO/o7/jv/u/i75PvSO8L7+3uGu9v7wHwt/BL8ebxXPKl8vryK/On80X0CfUh9i/3Rvg8+f75qPpN++L7sfyv/c3+HwBKAWwCPQPAAxoEOwRqBLoEKAXjBb8GpAeJCDgJuQkGCjgKWgqDCtYKNAuOC+kLBAzdC4AL8QpbCtEJfAlqCYUJ0QkgCkcKTgoFCogJAAlhCPkHqQd0B2AHNgf8BqQGJgacBRIFoARqBE0ETgRgBE0EIAS5AyIDTgJyAasA9P9t/xj/zP6U/kf+5v2F/QP9lPw0/Ob7t/uM+3P7W/sl+9/6ePr/+ZT5Mfn2+O/4CvlU+aj5+vk7+lX6X/pA+i36M/pI+o367fpk+9/7MPxw/Kz8y/wV/W395P2g/l7/LAD+AJ4BNgKrAgUDfgP4A5YESQXtBZYGCwddB4kHkgevB9YHHwimCD4J4wl6CtwKHAscC/8K3wrECusKMAt7C80L5wvHC2kLvgoaCmUJ2wiXCG0IbQhiCCgI1gdTB60GNwbEBZgFnwWuBdYFxAV7BQkFVASbA/YCaQIeAvAB7QHiAckBpgFXARcB4QDGAL8AugC/AKQAUQDI//z+D/4X/Sz8Y/vd+nL6SfoJ+sj5oPku+dn4afgE+Kz3Pfff9n72KfbI9V/16vR79AX0hvMl88fyjfJp8k3yU/JE8izyCvLF8XDxBvG98J7wj/DM8DbxrPE18pPy7vJG85Xz/vN19Cj1+/XL9rX3gPgW+Yj5yfkN+mD60PqK+278Z/1j/kn/EgCiAAcBaQHTAWsCIQP8A+kEuQVkBtgGBQcXBxwHMQdxB8wHQgjJCCMJXglYCSoJ9wiiCIkIhgioCOEICQkQCfEIpQgzCMEHQAfrBq0GgAZdBikG5gWIBR0FnwQfBLEDYAMfA+kCtwJxAhUCnQEPAYIA//+h/1v/N/8n/yX/Kf8Q/+v+tv51/kf+E/73/ev94P3W/aT9Xv35/IX8HPy1+277Vfte+4P7t/vn+wX8Cvz9+/P76/sE/Db8ePzP/Br9TP1i/V39Sv1J/WH9ov0a/qT+Tf/K/zAAWQBZAEwALAA4AF8AqwAjAZ8BDwJwAq0C4gIfA3QD+wOZBFsFOgbnBmMHsQeuB5EHaAddB4MHxAc1CKMI7ggBCe4IoAhQCBUIJQhzCNoIaAmrCcoJpQkYCZYIAgiqB5oHpwf2BzYIEAiYB54GSwX2A7AC4wF0AWoBpgHhAe4BrwE/AcUAdwB3AMsAcQE+AtkCOQMMA3MCkwGMAL7/Mf8G/wz/Kf8l//v+oP4H/nr98/yW/EP89/uT++L66/m9+Fv37/We9HfzrvIB8oLx//CA8B/wvu+17+LvOvC68EXxyPE78k3ySvJK8lDyhPKl8uvyH/Mx8yvzFfMo81vz1fOn9Mv18/YT+Ar5wPlW+tP6bfs6/E79oP4NAHsBrgKFAywEmgQNBZEFRAYuBysIGwnjCUkKUgoOCsQJpAmlCf8JgQocC50L4QvWC4kLDQuPCi4K4gnWCcgJvAmCCfgIQghUB3UGrAUVBboEkQSHBHMEQgTwA4cDEgOnAlgCMwJEAlwCcgJuAkcC9AGCAQEBlAA1APz/zv+i/4X/R////qb+Pf7Y/Xn9KP3n/Kn8ePwv/M77XfvD+iz6ifn2+Hj4E/jC94z3VPci9wD32fbE9rr2yPbz9jL3jfft91L4vvge+YD53vlO+tf6avsd/PT8zv2w/nr/LADNAEcBvAEvApkCEQOCA/wDagS2BPgEKQVeBZ4F7AVYBsgGTAfDBxsIZAiXCLcI9QgtCWcJxAn9CTUKTgo0Cg4KvAlPCekIdwgKCKkHKAfLBmQG8AWWBTkF8QS1BJ8ExgQEBTAFZAWPBbkF6QXvBRIGLwY6BmAGhgbFBhAHZgfsB4YI/giFCdQJ/AkbCuUJpwlGCboIQgiFB74G2QWwBG8DCAJ4ANX+E/06+035UfdH9SvzJ/EO7/vsH+t26RboI+ew5sLmKecc6EjprupL7NXtiu8/8QbzxPRT9uX3Qvl7+o37e/xH/eT9ev76/lb/tv8NAFgAmwDJANgAwwCXAGUAJgDj/5b/S/8E/9L+jP4q/rX9LP2r/Cv8vPtq+yP7CvsD+xv7Rft1+8L7GvyU/DH99/3Z/s3/2wDmAfgC7QPXBKsFcgZCB/IHjggXCYQJywnuCd8Jogk4CcAILQiAB8gG+wUtBV0EmwPnAkYCrgE+AfQAxQC4ALgA3wAHAVEBigG+AfQBEQIjAiICEQL2Ac0BkAFJAfAAjAAaAKX/K/+a/hX+mP0g/bb8Ufzu+5D7KPvN+nL6Ivra+Zb5avlH+Tj5Mfkq+SL5Jfkl+S35R/lh+ZT51/kq+ov67vpq++H7X/z7/JD9Mf7q/qb/bAAgAdkBfALhAk8DqQPJAwIEEgQHBBEE7QPdA8kDrwOhA6QDsAPFA+8DGgRyBJ0E7gQpBVMFqgWyBeoF/wX2BRgGEQYNBhgG7AXfBb8FiAVoBRoF5gSyBG0EMgQVBN0DxwOwA4cDhQNcA0YDQwMtAx0DQgNWA4sDtAP8A28EsAQ9BZAF9wWTBu0GiwcBCGUI1QgBCS8JNQnjCJAIBghaB6kGvAV0BegEPwSrA+8CLgJ4AckAIQCn//3+T/6J/aX8o/uJ+i757veo9iv16/Of8mHxNPD87hjudO0N7RntTe3A7ZLueO+n8PLxVfP19Jz2Zfg5+t/7cf3T/iIANgHWAW8CxQLvAgcD1wKuAjwClwEKAUwAr//V/g/+cf25/Cn8nPst+8X6bfoe+vr56fnY+QP6I/pq+sj6K/vF+0380Px1/RP+0v6h/2sAPgEcAggDDAT+BNYFsgZvBzEI1whfCeAJDAo4CjQK/AnACSEJjQjeB/8GPQY6BTcEQwMyAlgBcQCi//3+bP4E/p/9hP1k/Vz9i/2l/QT+Vf6t/hn/jv8XAIoA8QBKAZYB8AEuAlACZgI7AhUC2QFxAQ0BZwDK/yb/U/6W/az81/sg+0D6jPnk+Ez41vd99zj3//b69v/2KfeD9773Ovi9+Fr5FPq4+pn7UvwU/er9nf5f/w8AmQBIAbQBHAKAAqQC8AIAAwcDJQMBA/wC7wKyArYChgJbAlsCLwIsAjgCNgJOAm0CiwLIAu8CJANlA2sDngPEA8oD8QP4A/wDHAQcBB8EPQRdBHoEzwT6BEYFsAX9BYkG0wZPB5QHxAcwCCoIaAhiCEoIRwj5B80HcQfWBlEGsgUUBX0E2wNKA6kCKALKAXYBIgH9AAsBYgH0AaMCjgOnBMgFDgdlCJEJuAq1C5wMTw2tDdoNdg3JDL4LQAqGCD4G1wNHAZH+4PsK+V/2yPNC8fDuwezi6lHpBOg155jmN+Y35mfm5+aj55vo5ulk6yLt+e4S8RzzIvU+90T5Xfsm/cb+WgCjAd0CygNkBNoE6wTeBKwEKwSrA/sCPQKCAakAvf/l/gL+VP26/A78jfsM+8T6nfp9+nj6ffqb+tn6Nfub+xr8ivwX/bL9Q/73/pL/SgAOAcQBlQJQAwQEtgRTBeAFdwbqBlwHxgcHCFkIdwiACHcIUAgbCMYHXAfkBlQGvQUgBWsErAPdAgcCOAFuAL//Ff95/gH+mv1S/ST9DP0d/Tv9gf3c/Ub+xP5L/9P/VQDaAEkBrQEEAjACUAJMAiEC2gFeAc8AGgBF/2X+b/1v/HL7aPpt+ZT4xfcb96L2Ofb49ev16/Uv9oT26/aT9yL46vio+WH6RPsE/OP8tP1r/kj/9f+aAEsBxAFRAr0CGwOJA8oDIARsBKcE4wQiBVMFgAWjBbMFwwW9BboFqQWGBWYFMAX/BLgEbQQ0BO8DtwOJA2kDVANTA1wDdQObA74D6QMRBD0EeASuBOQEIwVdBZcFzAX7BSUGOwZSBmoGcgaKBpYGjQacBoQGYAYpBuIFjgUrBcQEWgTuA2kDIAOpAmQCFQLLAbQBkgGvAd8BQQK4Al4DCgTCBG8FAAZ9BuUGMwdOB2sHTgf5BmcGbwU1BKMCwAC0/mn8DPqq9yX1yvKG8FjubOyi6kvpSujB56nn/ufD6L/pHOuy7JLusfDK8h71bfe3+Q38Lf4xAAICggPQBL0FjAYgB2MHdwdMB/AGcAa7BekE/APyAu8B4QDn//b+DP40/Vn8mvvv+l766/ma+XH5ZPl6+av5/vll+t76d/sm/PD8yP2k/ov/bwBRASoC7gK9A3wEKQXGBV0G3wZZB68H4AcKCP4H8AesB1cH9wZvBusFSAWXBOADGwNUApABzgAcAG7/wv4t/pz9Jv3D/HX8Rfwk/CD8Lvxb/Jv84/xR/ez9nf5G//f/qwBEAewBbALeAjoDZQOFA3UDRQP0Am0C1AEOAVEAfv+B/q39t/zw+zX7a/rY+Vz5Afnb+Mr4z/gF+UX5q/kt+rv6Tvvs+478LP3W/WL+/f6A/wIAgADbAD8BiQHQAQcCPQJqApMCpgLBAt8C6QIIAxoDMwNEA1wDZgNwA3kDhQOOA4sDkAOCA3kDbANTAz0DGwP4AtUCpgJ/AlcCKQIDAt4BwQGjAZMBhAGIAZoBrgHaAQsCTQKhAgEDZQPAAy4EngT+BHIFvQUJBlgGdwaqBrAGrAapBn0GTgYdBswFiAVOBQUF5ATPBNoEDwVRBY8FEAZhBugGiQcMCPsIpwk4CrwK3AqZCgwK6AiDB+kFvQNqAbT+r/td+AL1oPFS7kzrruiS5t3k2OM04xDjieNd5MPlqecg6gTtHPBV84r2tfmk/GD/7QEOBPoFiwe6CJkJ7gnKCVkJbghyBygGzwSAAwkCvQBT//v9nvxL+xj6KvlZ+Kr3Ufcd9yb3SfeP9/T3bPjw+JD5NfoC++774PzV/cn+tv+ZAG4BOwIPA9oDmARGBewFjwYXB4IH2wcfCFcIfAiZCKgImQh3CDgI3gdxB+gGTwaiBe4EMQRtA6ECzQHyABIAL/9X/n/9ufwO/Hj7//qh+lv6LPoW+hv6SfqX+gn7jPss/NP8kv1k/i7//f+5AG4BDQKWAgEDSQNlA1kDIAPIAk4CtAERAUYAd/+h/s799vwo/Hj76Ppv+hH63vnI+df58fkn+nf60PpG+777TPzQ/Fj9y/0+/qn+B/91/9D/LwB4AL8ABAE9AXcBoQHQAfcBHQI/AlwCdwKNAqMCvgLRAuYC9AJVA7AD9QNJBI8E1wQOBUUFagWCBZQFmAV7BVUFKgXjBI8EIwSxA0MD0AJiAgMCugF6AWABVQFmAZUB1AE7AqwCKAO9AzwE1ARjBe0FcgbbBlEHkQeyB64Hjwc8B/sGmQY0BggGvwWLBXsFYwViBb4FBAbFBqEHdwirCWcKWQvpC0QMlgxuDAwMLQv9CVkIXQYJBF8BWP4T+3P35fNJ8P7sLOp+55Pl9uPf4kfiI+Ku4tjjt+VK6CXrgu7a8Xb1EvmG/AUAMwMdBnMIRgqUCz4MkAxoDLgLuAoQCSgH3gRWAub/XP0U++T49/Yn9ZjzUPJt8fbwxvAJ8ZfxfvKe8+f0TfbT92H59vpz/Nr9Kf88ADcBAQKhAhcDWgOKA5sDlQOIA2sDYgNZA14DbQOFA6cD2wMiBHIE4QRMBbUFFwZtBsIG9AYCB/sGywaPBigGngXnBAkEFwMeAh8BKQA4/0P+b/2y/BD8ovtR+zn7O/tv+7v7H/yz/EL9+P2e/lP/5/9vAPIAQgGWAboBzQGyAYoBLwHCAEsAw/83/6n+K/6p/Tz9zvyG/Eb8KfwP/BT8Ofxi/Lf8Ev15/eP9TP64/hj/bv+9//X/LQBKAEYARAAOAOf/of9U/w//wf6M/kr+Lv4d/iv+TP54/tf+Qf/P/2cAAgG3AVgCCAOnAzQExgQtBY0FwAXZBe4F0gWvBXEFFQW8BFEE4AN+AxEDtgJmAjACAwL5AQcCEwJdApkC9gJcA8YDUQSYBO4EMAVCBWgFPQURBc0EWQTfAzMDpgLbAUQBmQDr/5z/Nf9f/2j/8P+FADcBhAKQAxAFmQYbCNkJZgvrDJwOmA+pEEQRbhGEEbgQ8A8RDiUMtAmzBmQDsf8I/B/4e/TV8Iftderf56vlIeQW47TiCePY427lTufC6X/sUe9+8pf10vj2+8r+mAHtA+QFegdwCPsICQnACCcILQc4BvkElAMRAmkAxP4l/ab7Sfok+S34evf29pn2bfZc9mL2efar9vb2Qfef9/n3RfiR+Nb4Fvla+ZT50vkl+oX6BPuM+y384Pyl/Xb+V/9CAEMBTgJfA2YEawVgBkYHEAiuCEAJmAndCegJ0wmqCUMJxggYCEYHaQZsBXIEgAORArYB5gAqAKL/OP8C//n+D/9o/+b/hQBKASUCAQPnA8kEbgUCBm0GtQa1BpAGOAaeBeME8wPtAtUBswCb/4z+jP26/P37bfsE+7H6jvqC+pz60/oX+3D7x/sZ/GD8lfy3/Mv8xvyy/JP8Zvwv/Ov7rPtl+zL7Hfse+0X7ivvz+338I/3e/af+ef9MABIB3QF/AhoDmAPnAzgEUQRXBEAEBgTBA1wD5gJyAvMBdwEOAbIAdABRAE0AZQCdAPEAZwH7Aa8CcQMsBP0EwAV4BiAHrAcfCGUIfAhtCC0IzQdRB58G9AUoBU8EdwOWAr0B9wBAAKn/Qv/p/r/+xf7k/jz/tv9FABwBDQIeA3IE0gVsBxQJtgqGDCkOrQ8sEUMSWhMfFIAU6hSrFAoU7RI+EfoOKwzbCBUFVwEL/er4zfS08OPsSOke5oPjZ+EH4GPfV98r4IXha+Pc5ZXoieun7unxFvUi+P36jf3Q/40B3QK6AwUEGATXA2kD6QJGApsB+wBXAOz/j/9P/0H/TP92/7v/AwBRAJcAnQCXADIAkv/E/qH9evwZ+6j5OvjE9lH1AvTZ8iny2vHX8Tjy+vIg9J/1UfdL+Yz74v1NAKcC6QQTB+MIagqvC4YMDw02DR4NugwEDBoL6QmXCDoHzgVyBDADDgIgAVkAwf9U/wz/4v7Q/uP+9/4c/0L/Xf91/5n/p/+b/4H/Vf8s/wn/+f79/hD/Nv+N/wEAjQAyAd8BlgJOAwcEqAQsBYYFsAWdBVMF1QQfBDIDDQLQAG3/Av6L/CX72Pmx+Lv3BfeU9m32kPbp9n33TvhB+VX6d/ug/L/9xv6w/3oAKAGvARcCWwKDAowCfQJRAhcC3QGiAXUBTgExASYBJAE2AVABdQGmAdgBDgI+An8CqQK7AtQC1wLQAssCxAKuAq0CsgLHAu4CJANvA9YDSgTCBEkF7wWcBjEH3gdlCOUITQleCXYJUgkQCc4IQgi+BygHTgZwBWkEUQM8AgYB4/+8/rP9sfzr+zD7tvpy+mr60fqT+6T8VP5MAKYCdgV0CNsLJQ9zEpcVSxiYGv4buhy0HIQbnxmoFhcT0A7iCbIE/P5L+Z7zPe5w6UTl7OF738zdKd1N3VLeB+BH4g3lJeiq60jv5fJe9n/5RPx9/hgAQgH1AToCJALbAWsB1wBUAMX/Yf8a/+/+AP9B/7z/bQAzAe0BkwIDAzYDIAOmAhcCHwHC/zD+UvxQ+ij4+/Xl8/jxX/Av73nuNu6S7mnvzPCx8gn1vPef+qz9xQDMA6MGLQlWCxINUQ4fD30PVQ/cDg4O6wypCzIKqQgqB8kFmgSHA7ACBwKVAVkBOwFBAU0BVwFcAWQBUgE9AQQBpwBBAMD/Rf/I/kf+6P2D/UD9G/3//CP9T/2v/S/+xf5t/yAA1wB2ARACiQLjAhEDHAOhA+kD2AOaAxQDXAJsAU4AEf+8/V/8C/u9+Yv4fvei9uj1dPVN9W71y/Vv9kT3X/hu+YX6r/uq/I79Qf7X/if/X/9z/03/Mf/5/rT+aP44/jj+Rf58/s/+Ov/L/4AAOwHyAaECRwPiA2oE3AQvBVkFagVlBU4FMwURBfQE1ATFBLYErASnBLgE4wQQBUUFigXHBQcGTwZ7BpsGqgazBp8GgQZbBh0G7wXHBaEFdgVdBVIFbAV1BYYFmwXCBewFGAZDBkYGIgbGBYcF4gQvBE0DOgIEAQEAF/9E/qT9Wv2w/Xv+AwDYATUE+wbxCRsNPBD/EhgVuxa2F7MXkxZfFEERYQ3GCJsDE/5P+PryBu6a6UnmfePI4R7hZ+Fs4vDjKubJ6LPriO4z8ZLzsvWK9974vflC+pv6z/rZ+s76zfrc+jX71/uw/KX9y/4fAK8BPgOsBNoFpAYgByAHoQaZBRIELgLf/1z9jvqV96z0B/LW7x7u5uwt7AXseOyW7Rrv7fAD80H1sPc2+qj82f7CAG4CAgRhBWQGDgdiB5UHxAfbB9oHuweXB48HgweDB3EHWQdIBzYHFwfTBmAG1QU7BZ4E0gPrAv8BDwEvAGf/tP4Z/rn9eP1l/Xf9s/0M/mj+3P5L/87/PgCsABoBdQG9AfoBMAJRAmwCiQK2AvACMwN4A8ADCgRbBLYE/QQ4BWIFagVfBUAF9ARtBKsD2QLVAaIAZP/k/Vr80/pw+RH4wva59db0T/QT9DH0hvQh9RH2OveC+O/5d/vh/Fz+nP/QALIBbwIaA2IDsQOnA4cDSQP4ArECPgLXAYcBNQH4ANkA2QDuACoBggHSAToCnwIWA38D/ANnBKQE4gQNBRIF/wTXBI4ESgQGBOYDwwPCA/EDTgTEBEQF5AV9BhMHjwcBCDwIRQgrCMcHNgd6BrYF6AQPBFEDuAIUApsBSwEmAQ8BBQFIAWABlAGBAXgBJwGwAEIAz/+D/yv/J/90/ycARQHuAhAFvQfIChcObhFuFOsWoBhiGRkZsxdPFbERNg3tBzgCgPyi9lTxnezP6ADmReS547/jaeTc5cHn4Ont6+Ltze9R8aXyvPOC9O/0D/U89Wr1f/WR9eH1dvYa9+H3CflZ+tT7ff11/54BmQN7BUUHrgioCSwKPQrLCb0IKgc5BdoCaQDS/U/7BPnz9mj1ZfTf87/zDfS99MD18fYx+Gf5b/pW+yT8zfxJ/ZP9xP35/UH+qv47/wAA6wADAj4DnQT7BUAHcAh/CXIKEwtxC3cLNwvICikKYQlzCHEHbQZ/BaEExgP5AisCfAHoAGoA9v94/wP/kf4X/p/9I/2i/Br8oPtC+/v64PrQ+gL7ZPvy+7v8nP2c/q7/5gAgAkYDWwRXBQ0GkgbeBvAGrAY0BpoFvAS4A3QCNgHs/6n+e/1l/HT7zfpZ+ib6J/pM+p/6+vqE+/H7YfzH/A39Q/1I/Tb9EP3Z/KT8iPxy/IP8t/wc/ar9T/4h/+L/wACiAX8CTAPwA3MEzAT5BBQF+AS5BGUE7QN2A+ACSQKvASABngAsANr/o/+b/7b/6f89AKwAKwG3AU8C8wKGAxUEoQQgBY4F3QUmBmAGgAakBrgGwQbCBrwGsAaTBm0GOgb7BcEFhwVIBRkF6ASxBIYETgQQBL0DWAPqAmkC1AEnAWgAq//1/k3+uv1R/Rj96/wF/TP9g/35/W//hgGxA8kFHghsCpAMYA6SDzwQPxDbDwcP+Q2ADL8K3QgfB5sFFgS3AlwB2//j/ZL7wPhl9Y7xje1/6avlWeK+3/HdEN0Q3Q/e9d+i4vrlsOmi7ZfxavXv+O77g/6KADQCjAN+BDMFpgXgBSUGZAbcBmAH5AdhCKgIyAi3CGQIlQdsBvwESANgAWX/Wv1W+4j53vd49ln1b/TL823zWPOY8yf0+fQX9nL3CfnR+q38jf56AGwCTAT9BYgH5QgDCtUKaQvGC+YL0gubC0sL7gpzCuIJVgm/CCEIjgftBkEGiwW8BOED9AL4AfMA8v8E/yb+VP2M/M77Kfuk+kD6Avrg+fH5Ofq++n/7a/x2/Yj+qP/OAO0B8wLHA2oE2gQXBRwF9wS3BFgE8gORAzMD5QKYAkAC8AGYATkBxQBCAKn/5f4E/hT9JPw7+1/6qPkV+bX4ffhv+I741fgx+Z/5DfqX+jT72PuH/DX97/2j/mT/HQDWAJABOwLjAnID6wNIBIEEngSkBI0EWgQeBNsDkQNeAyID4wK1AoYCWAInAvgBzQGwAY4BYQE6ARsBBAH9AAUBEQE3AXsBzAEgAnQCzQIYA0wDbQN8A3cDXAM/AyAD/wLyAvkCFgNGA4MD2QM1BKIE+QQzBVkFWwUqBdIEOQSDA7kCwgHDANT/D/9Y/tP9mf2M/Zz9l/2f/XD9GP2e/P37XPvy+vb6kPvK/K/+QQFzBBkI4AuJD6oS6hQRFtoVRxRZEUMNXAgoA+j9Avns9Nfx0+8O72/vpPBK8iv0DfZ99y74C/gM90j12fIc8Eftq+qe6GznL+ff55TpMOxp7wzzx/Ze+pf9IwADAlkDFQSLBMIE6gQABTQFnAUuBs8GhgceCGcIXAjQB80GawWpA6EBeP9G/Tz7efki+Dj3wPa09gP3m/dc+Bb5vPlC+pH6wfrF+sD6wfrh+jj72Pvh/Ev+IQBCAowE1gb1CNYKSgwzDZsNeQ3rDO0LrApVCfgHtgafBdkEWgQPBP0DDwQyBDgEDQSrAwsDJwINAc7/hP5P/Sz8SPus+ln6XPqi+ij7tftS/Pn8k/0M/lX+hf6Q/oD+Zf5a/mr+nP7x/m7/CgCrAE0B8AGJAggDYgOdA70DuAOhA4UDWAMbA94CnwJfAg8CmAEKAVkAe/9v/lD9JfwG+/r5G/l6+B/4E/hO+Nj4nfmK+pn7s/zD/bv+kP89ANEASQG4AR8CiAL8An0DFQSsBD0FxAVABqwG7QYEB+QGmwY0BrQFIAWDBOsDaAP+Aq8CdQJNAjoCJwIWAgQC4QGsAWkBGwHGAHQALAAAAPv/FQBGAJwAJAHKAYUCUwMqBAYFyAVmBuIGLgdGBz8HFAfCBlQG4AVxBQoFrgRsBCgEyQN4AwoDZQKRAWMA6v4q/T/7PPld97n1r/RF9LL0D/ZS+HT7Rf+EA+wHFQzJD6QSehRSFQYVrxOKEbsOmAtiCGAFrgJqAJf+If3++/z6/fnq+I335fXf84vx/O5R7MjpkOfJ5aDkIeQ/5BPlkuaY6AbrqO108Drz0fUz+Gj6Wvwh/sT/VwHJAigEhgXeBiIIWAlUChwLlQu1C24LxAq0CWQI0AYHBSQDNAFT/5D99/t6+i75Cvgf91j2ufU/9ef0uvS+9Pn0c/Ud9vH29vcb+Vn6qfsM/XH+z/8mAW0CkQOsBKcFjwZjBxMIrAgzCaoJKAqGCrIKtQp4CvoJRAlICAgHlwUABHkCDQHS/9D+Df6U/U79Jf0N/dX8gvwA/E77X/pK+UD4TPew9nb2tPZy96/4Yvpz/MX+IQFkA3UFPAeXCJgJNApwClQK7wlkCawIxAevBpMFegRcA0wCUAFoAJf/0f4k/nj9yvwd/Gb7p/rX+f/4M/h99+72ofaO9sT2YPdO+JP5B/uS/CP+m//gAOYBuQJYA8oDIgRsBK8E9gRDBZoF/gVgBrgGBAcqByAH5AZ6BtkFCQUVBAMD7gHkAOz/Gv9z/vn9tv2e/bH96v1M/sT+Tv/o/44AMwHYAXUCBAN9A9wDLQRtBJsEywT9BDMFdwXNBSgGhgbfBigHVAdaBygH3wZ4BuoFRwWmBAkEdwMEA6kCYgIsAggC6gHGAakBhQFEAeEAYwDE/xH/UP6I/db8Nvy6+4r7hPvX+3/8mv0r/xoBTQPzBeEI6QvoDtkRdBRjFmIXUhc1FvgTuxDxDAEJOwXYAST/IP2w+8f6Kvpt+S74KvZh8/vv/Ovc5/zjq+Be3lndxt2U33LiHuY16lLuQfLX9dP4NPse/Z3+0//6ACoCYAORBK4FxQakB2oI7whNCZkJvQnZCQIKFwoGCrkJAAnBB+MFXwNKAM38Lvmg9Wzy3O8M7iztQe097vTvJvKP9PP2AfmW+qH7GPwY/Nj7jPtb+4b7Hvwo/ZD+XgBjAnYEdQYuCJYJpApSC6ELoQtfC9IKDgoXCfsHyAaCBSEExQKAAVMAWv+Z/hn+xf2d/Y39if10/UX94/xD/H/7ovrL+RP5nfhv+KD4Nfkl+nH7//y7/ngAHAKIA5wESAWKBXIFCwVvBLUD9gJIAtQBggFMATYBNwFJAVkBXAFEAR0B6gChAEIA0f9U/8L+Mf6h/ST9yvyS/IL8ovzs/Gf9Cf68/nX/HgC0ACUBcgGhAaMBkQF3AV0BSwFKAVMBegGsAdoBEwJMAnsCmAKgAoUCUAISArwBYAH9AJMALADO/4L/Xf9f/3f/p//z/1oA2wBtAfoBgwIAA18DrgPuAwkEDQQYBCgEPARVBI4EyAQUBWwFvAUUBk8GbQZqBkMG8AVwBc8EDAQ4A2YCpQECAZsAZwBHAD8APAAfAOP/ff8l/7r+PP63/UL95/zC/OH8Ff11/Qr+xv7d/1YBawP5BfcImQymELcUoBjfGxQexB6tHfkalhYmESYLRgUAAMb77fhs9173NPiA+an6P/vH+ir5fvbK8mHunenp5LHgU9302o7ZOdn72aTbcN4d4mHm+urT79r0wPkj/tMBtgSEBlQHIwc9Bu4EjwN1Ag4CiwLdA+YFnAidC2MOixC9EcYRfxAdDrgKqQYrAqj9fPng9RzzBvHQ71TvbO/x79vwIPK285b1hPdn+Q/7ZPxb/eP9//3N/Xb9Ov1G/d79I/8ZAbUD1QZJCr8N6RB+EzwV7BV8FR8U9xE0DyEMAAkDBmQDPgGR/1P+a/3N/Fj8CvzS+6L7fPtK+w/7tvo5+pb50/gE+Dj3m/Y89lb2/fZJ+D/6u/ye/6EClwUrCCUKaAvEC08LDwpECA8GuAOLAav/Vv6N/Uf9av3u/Zn+Uv/0/2AAlwB5AAsAaf+L/pH9lPym++T6P/rg+br53vk5+uD6ufvI/Oj9Av8cAPsApAH3AREC5wGTAR8BmQAqANv/xf/c/yoAmAAtAcwBbwL8AnQDxgPaA8MDeQMQA4IC5AFKAcUAeQBmAJIA9QCHAUECFAPmA7kEXQXfBTUGVQZIBhUGygVvBR8F6wTVBOoEKAWMBQ8GoQYgB4kHwwe4B2wH5AYUBgMFxAN6AkQBKQA9/4P+Df7u/RX+Xf7A/j3/xv9SAMoAZAHEAasB+wDa/zb+SvxV+rv44vdx+Jn6pf5UBD0LjxKBGZgfxCPaJYslDiNpHhgYyxBJCW4C8vwW+cL2lPXm9Ij04vPx8pTxkO8H7QTqheYQ4/XfNd1b21Da0dnp2Xva+duz3q7iB+hb7u/0v/vwATcHgAs7DmgP7g7SDNYJTAYzAxwBTQC4AEoCpgRWBxEKUwzsDYcO9g0iDC0JUwXfAE383/f0867wBu4/7EnrVetm7Ezuz/Cb81D2zfjn+nv8pP02/kb+8/1q/Qj9Cf2y/RL/KwHxA/4GLgo5DfMPJRKIEyUU6RP5EmgRdw9SDRAL1wiqBrEE8wKBAX4A8P/o/y4AtgBSAdIBBgLHAfcAiP+d/Tv7oPgR9sXz+PHt8MPwiPEi81D15Pee+kL9rv+xAR0DDQSLBK8EjwRJBPwDnANTAxUD3QK6ApYCggJ5AoICegJRAgMCfgHEANf/vf6A/Tz89vrR+e/4Vvga+Eb4z/iu+b361vsF/Tn+af9/AGQBGQKMAtkC/AIEA+sCxQKNAmoCagKiAhQDrANxBEYFJgb2BpgH8gf8B7QHEQcjBgcFywOaAqcB/wC5ANcAZQFQAooD1QQJBiIH4wdLCEIIxAfwBtoFrQR9A4AC2QF+AXwB3QFuAi0D/wOyBDYFZQVKBdgEOARpA30CkgG6AAAAcf8T/+r+5v7q/hT/Ov9v/6X/SgAnAfMBxAJ1A8kD0wN1A88C6wHNAJH/dv6r/R39L/2O/YD+qv+9AM8BUAJ0AgoCMQECALT+V/1C/GT70PrE+vv6jPs5/EH9Xv6M/8AA7gEQA7EDAAT/A44DnwJtASEAsv4z/e77/fpO+vv5Gvqk+nP7Pvwd/fT9eP6t/pr+Tv7G/Rn9gPwE/KX7avtn+5H70Pss/MX8gv07/u3+nv8oAIwAtwCwAG4A7f9T/6/+F/58/Qn92fzj/Bn9ev0N/qn+P/+1/woAPwAeANL/bf/o/mX+3P17/TL93vy0/J78m/yt/Mn8Iv2S/RH+pP5C/+L/ZwDWAAoB/wCvADMAqf8O/4T+GP7v/fr9Lv6V/iT/t/89AJsAvACZACAAeP+o/tb9CP1N/Mv7c/tk+5T7/vuQ/DL95P2k/mX/CwCTAPUALwE/AToBHAHnAKIAXQAkAPP/zf+8/8r/AgBTALYAJAF5AakBpgFyARsBmwAMAH///P6j/nj+i/7H/if/q/89ANYAYQHfAUIClQLTAgEDHwMrAzMDMwMyAzwDSQNUA2cDdwOCA44DpgPDA9wD8QMIBPwD5wPAA5QDXwMkAwMD4QLqAvkCFgM6A0wDXQNJAycD4QKZAkUCAALJAZ8BkAGSAbUB5gEeAj4CSgIzAvkBsgFjARQB0QCjAJYApQDLAP4AOQFnAZcBuAHOAc0BsgGHAT0B7gCGACAAwf9n/yz/CP8N/yT/R/95/7n/7v8kAFoAhwCmAK0AqQCYAHcASgAfAPv/4f/R/9X/4f/v//n/CAAUABUAAwDj/7n/df8p/8v+cP4O/r39jv10/Xb9j/26/en9FP4r/jv+Mf4i/gT+7P3a/Rj+bv6p/kf/p/9OAMMACAFAATsBCgGfACwAcf8S/1f+7f3j/W793P2u/QX+Vv5Y/u3+1f5M/1//if9//4n/Pv/1/sv+P/44/tn91P27/TT+Pv6r/mf/UP/k/7X/7v+h/1b/Ov/J/rT+t/6i/uj+9/5n/+f/8P/lALQAIAEdARwBTQGUANwAYQAAAOn/lv9y/yT/Mv9R/0r/Wv9m/0r/J/8V/9b+v/5b/h7+2/1n/VT96/zR/Jn8lPyt/HL8y/zg/Mb8mv1Q/R7+k/5f/sT/Bv///0MAAwDzACAA4QCvABQAuwBFAHoAKAEUAUMBgAHQAfwBzgEFAsIB4wBoAVkAHQDt/0r/nP8G/4P/cf+Z/8n/1P/7/y0A4P8cAAgA9v9QAG0AyQBDAdIBQgK8Au0CYwNQAycD+gLsAl4CIwLkAc0BPgGAAYwB5wB2AYMBeQHNAVECDQLbAnIC1AIBA3kCtwIBAiYBUwE8AF8AWACy/yUBAAA5ARMB9QATAbIAEAFtALYAWgBPANr/NwAMABoAnv/v/48A7f+7AG4AEAEkAbwAbQGlAEEBogB3AKwAgQBQABUANAGz/1MBkQAlAcQBOQHBASwBBgLDAHYBzABWAGEAYf/C/xr/vf5B//T9cv7G/rj+uv5f/5sA/v4YAe8Asv9HAd3/0v91AB7/ff8CAAAArf9HAQEBlQGiAgkBUANbASwB8wFT/x0Abf98/oL+zP16/aT8pP3Z/E79VP3u/Cv+s/zY/qH9kv5V/gL+E/99/fv+yv2d/qb+Gv8t/+H+d/8k/yT/4P5g/6P+Cf9D/tX+7f7P/YT/Bf+w/jv/df8n/0f/Zf9S/2L/qv5O/53+ef69/m7+wf7s/qX+7f4j//3+0v4L/wv/4f2p/xP+u/78/239twBu/hAA3f8T/zABS/+5AKn/vQA0/wwA/f8T/1z/PP+S//b+VgD5/+UAKgD8AeYA3AEVAsYARgKJ//oBYf5KAFb/Zf1eAcH81ABD/x7/3AEL/3oAOQE3/mgBKP9S/+sAxf7vAM//SQFxAIYBGQGKAlwBAgKTAjgA3gIbADUBawFf/+YBbv9EALsAPP5hAWL+BwDb/xT/vwAZ/+UAQf8ZAcj+nQCJ/9b+ngDS/H4BiP6+/5IBxACnAdkBygJhARcDWwFYAhABYwBUAQ7/xwBh/6MAEgBjAFYBBAEAAT4C3QDUAIECZP+hAbz/hADF/3z/bgCB/sv/P/8b/+b+//7I/r3+Df+E/mn/7/74/8//HwD4AGUAqgBxAFoB1/4BAdr/bf9YAc3/uAFmAOgBhQEXAKYCpP94ADkBsv6e/5oAzv1WAFv/X/+0AWb+hwFaANcARgCuAAMBxP8zARgAJwAxAUMA8v+XAU//ggHY/+4AWQHF/3oCJADaAakAmQCsAZn+LwH4/s7+mP8s/j/+Ev+a/fr+w/7S/SQBgvx5AeH9CP+rACP9twCG/f3+sP6c/uD92v+y/Tv/UgC9/iIALwCSAAAAtwB2AHX/CwAG/w3/sf/0/VP/Lf9P/6D/yQDD/9cCVwDbAX4CUf+EAs7+AACR/3v+BP4k/2n99/5K/qn9YgBr/cL/O/91/gb/o/5K/3f91f8N/rz+Y/8V/v//2v14AAH/AwCE/xcBmv+XAAQBcgAXASQAggHC/o4Bk/5QANP/rP+EAFf/kwE1//UAngC7/xYBe/9SAK3/Xf+U/5j+u/8I/pP/BP9z/iYAv/4t//kATP47AOwAB/74AYP+BQEsAFAADwHJ/iIDBv7YAlkA/P8PAxz/MAMNAPQBiwA/Aa4ArwAmAQz/iADe/2f/Lf9KAIX+HQHV/nABkP+hAHYAX/8AAeP+CQCk/3z+CQDR/x7+tAEG/QYCjv4vAGEBw/6aAsn+VQK4/+0BrP+UAcj/6v8OARz+cQKL/TsCz/7KADoBeP+nAmX/EgL2/3gAgf/m//H+J/8y/+/9dv9G/c//KP6+/nAALv6WAf3+DAANAfL9bAJ1/cIAeP98/h8Bqv2VAYP+JAERAEYBUACkASUBVgBBAu7+BANQ/ucAMgDG/hAA/f7L/+T+Bv9r/2v/l//S/xgAJQAlAEwA6v+KAMj+bgEq/o0A0QAZ/l8Cu/5zAX8BAAC+AjcB/wC2AWoAzAGg/0IBCAEQ/5YC2f2vAVwArP7AAWX+FwBXAGX+RwCh/87+KwH5/RsCNP6RAHIAF/0RA+n7PgEg/9b+8QAP/5kAGQAXAFgAogFF/5UBNP8gAaT/ZwBsAKP/1wCa/5IAff8pAO//0P8VACsAyv+pAI//CwFt/3QA1v92/8j/Yf4JAAT+uv+d/qD/UP77/xn/Ff+XAOn9wQHZ/ZMBVf/M/1ABUP6oAaL93QDL/kv/AAC7/hoA4/5XAC7/GQDa/7b/hgAm/yYAx/9R/5H/1v4sANv+2/9AAO//MQA+AZYA8ADzAe7/9wJh/+0BLwC3AHsAd//CAVr+tgFl/uoA5P5zANj+lP8DAHj9zwFE/LQAn/4G/jQAdf4n/w8AT/9N/94AWf/KANH/+QC2/zABDQCVADUBRP/BAYb/+QB0AKUAMwDZACMBFgDNABEB4P9gAPr/yf+N/8z+8f93/lcA5/2vAEz/oP9HATD+3wGw/rYAVf87/7kA9/15AAIATv9WAaj/aAESAaMALAGQAFcA6P9TABn+IgHn/ff/o/88/ikBYv3FACv/CwD9/+z/iQAyANn/ZAAGAJH/owB9/iMBef6OAHH/BwDdAKf/XgFnAD0BPgB4AZ//kwE7/zgAxv+o/lgAsf0yAFn+5//g/vr/DQCe/ygBS/9WAa7/dgAbAGwARv+vALH/of8ZAYz+NQIG/zABoAC8/50Btf/sAN3/3AC1/4oA0//3/2oADf+8ACH/VAAMACT/OQA3/6r/GgBi/8v/PQAt/70AHf8lABsA3P4EAYr+dgA5/3D/PwBF/+z/sQCI/4wAIgGh/3YCEf8wAl8AQQBSAW7/WAEK/1kB0/6XAIv/7/4wAU3+4gAN/8z/QAD9/s//nf9O/yL/IP9d/9f+FP9h/8b+3//K/iwA4P/3//wAHgDuAVsAhwGZAY4AcQE8ADgARgCE/7L/v/+Z//r/GgA/AAQANgDRAF3/MQD3/0f+1gAC/sj/mf+c/e0A6/3T/8b/jv4+AY3+9QBpAHn/dAFs/x4BTwDiAEoAygB0AAAA6QDK/70AMwBDAJIA+v+7AHn//ADV/2v/+QCu/p0AIf8FAIr/oP85AFz/XgC5/xUAHwDD/20Aq/8hAJX/+P/w/5L/iwAaAEwAZACSAPP/JwFg/x4BQADR/9QAYf+yAF//RwCN/zIA6f/N/1AAcf/wAIX/YwD//6r/sv/9/zr/t//a/7X+2QBz/rkA3P+g/68ARf+jAHf/BQAfALD/1//z/2L/QgAp/w4AsP+y/5wAaP8GAWr/0QAKAF0AeAC5/wABM/9kAQz/3wBu/0MApgAM/6YBCf+kAdX+mAEH/9gAsv9H/4EBuv0lAmH9ugDQ/rL+CQC+/b0A2v27AAH/kf/4AGb+YQEV/x0AbwBw/8YAFwAyACUBhv9XAdj/rwC0ABcAPAHR/8kBWf9cAeD/zf96ALv+lwCh/uj/s/5V/zH/v/4gAFn+ZABI/pEAEP/h/+3/L/+tAHT+IwGo/sYAi/8ZAPIA/v8KAfgAhgAWAekAlv/TARj//QDb/87/WQAE/6YAmP7nAGb/jf+6AEj/hwC8/8v/fAAp/2YAKgBM/xYBO/+5AJT/GwCFAKP/1gDG/7wAef8UAVj/3P+z/5b/1//8/sP/p/5u/0j/Mf+I/1z/Bv9WAE3/PgCFAEr/tAHZ/jEB9P/5/3QBA/9PAj7/rAEvAF4AdwE+/yYC7f4YAQQAFf82Adr98AB8/t7+AwDG/coAbf2RAKz+tv4GAYz9fALu/WMBUwDM/l0CB/6eAXb/AgB/ANv//P/KAPP+nQDi/9z+uQGP/hUB+v+V/8sA4v7i/0kAt/7OANH+UQDq/3D/8wCv/ocBRv/TADIASQCRAH0AuwA1AIgAyP/FAGX/vADN/mEABP+A/wAAa/6+ACb+awAy/sX/iP8a/7oAvv7FAEz/LABYAGX/2QB1/xsAqQAl/zICWf/PAf8ALQAVAuL/JgGsAAgALwDnAMb+WAEo/psATf91/7QAff7NAOX+6P9q//3/Fv+TAF7/AgAuAFL/PACL/ysAj/+jADb/5gC0/8IAHwA2ADwBKf/9AE//LACf/+D/rf/b/2j/iv8zABb/hwCI/8EAcf+aANz/KQCiAIH/vQCf/4cAhP/RAF8AI/9BAXP/rf86Aef+IgATAdf9xwDW/zX+rgGd/ScBEv9r/6AAKf7tAFf/wf8EAIT/ov84ALv+1gBI/9X/0v+1AO//LQDNAbv+JAK2/wQBlP8iAAwAPf9yALb+XwDH/qgAGv5JAJr/XP+IAPr+awGZ/icBvf8BADgAlQCI/1oAr//w/4IAyv5TAaP+wAAAAA8ALAA+AP7/egDi/1IAKQBW/8MABP+BAFT/KgEa/ocBT/+X/+ABf/5DAvL+YwFe/0EAqwBl//UAg/9lAEAAr//HADX/ygABAG3/PQGT/nMBAf++/9b/Vf/F/0n/PgDV/rIA4/41AGj/zf/o/4//9QCY/+MAqQB+/50BiP9mANoAff9jARr/YwFA/0sAkwDv/qkA7P9iAED/qgBM/wQAzP8QAH3/+//5/3v/SgBo/4wAcv+XAH3/3wCi/54AwACb/1oB1P+BAJcA6f+qAIL/QgAVAN3+9ACT/ncA+P40AID/Yv/oABn+YAGX/lgA2f8D/z8BTP51ARn/NwCpAGz+dAEe/58AZwDo/9MA9f8RAUv/RQFX/w0AMwAh/+0AFf+5AA//WABr/57/CABZ/wsAm/7UAI3+9P/p/2f/QwBD/yoA4P/I/5AAd/+yAEIA6//nAKH/+gBz/4oA4P+FAAL/RgCa/8P+lAD8/tD/B//l//v+VgBl/9n/8f/N/1oA9P68AD//6f/v/z3/MwB0/y8A1P+J/7kAZf+PADIA+f9pAIz/7QDc/vsAOP8TAKP/Mv+XAIv+bwADAEn/CQBwAPr+HwHE/wgA///W/0oAY/8GALj/EQCO/0cAs/8VAAAAFwCw/+AAkf9NAGIAbP/KAOL+HAFI/xwA/v+y/34AW//DAOf/PwBXAIn/lQCh/8T/fQB1/zEAwv9bAND/fQAaAOP/9ACJ/7UACACB/44AEwCZ/40Agf8eAGYAUf9wAMP/zf8KALz/7P9lAHT/RwBMAEz/IgBkADL/qwD+/1j/YgHe/rgAogBR/xIBxP8hAJIA4f8+AEsA+f8bADIA0//7/1YAI/+eAOf/V/8bAfj+cQAsAIf/hwCX/ycAIQDX/0IAHwDe/xAAVwCk/3sA6/8AAKEAcP/CALL/HQBMANX/8f/p/+L/mv8pANz/tP+PAOf/2v95AOT/BgATAEsAnf+BAK7///86AGX/igCO/4EAzv80AHYAAAAwABYAaQDc/08AJQDM/4kApv+//3YASP8rAMj/zv/R/wgAtP8eABAAhP+iAKj/MwAQAAIAbACZ/1UADwBz/4kAbP/w/2gAav8tAPv/CgBu/3UAbP/s/1gADP/AAIr/8P9HANr/EwAmAPT/HwAEAAMALgD6/9X/PADp/8b/tQB7/1IADwCn/2MAj/8pALT/zP/e/wMAS/8fAA0AJ/9fANj/sP/h/1EArP/x/z4Avf/Y/ycA1P/8/wkAHgAHACIAVgC0/28Auf8dAAIA1v8mANL/MACd/3UAb/8/AFUAJf9/AND/ef9aAMz//P8yANX/FADs/0cAJf+cAMz/qf94AHf/jQCl/zcAFQD6/2YAsv90APz/9v9UAOb/GAD4/+7/JgDI/+7/0v9WAKL/6P9gAKX/dQDR/zwAHAACAPb/CwDo//L/9f/o/1cAkf9YANf/AAA1ANv/JgAvAM7/MAALAO3/7P8uALv/wv+VACv/nAC5/7X/pwBK/3QA7f/L/zIAJgAOAB0AmQAAAD4AQwCh/6AAPv9lAPP/WP8fAdH+sAA6AJP/mwBL/24A+v+m/7gAjP9EAN7/GADU/3f/WQAD/2MAkv/x/zYA6v9/AEUAHwA0ADYA8/+AAK7/TQDE/8j/5//4/5f/XgCK/xcAWwCD/8EASv92ALr/GwCv/yEAJAAeAHUAk/+YAPn/+P8vACQAuP+ZAHn/VAD6/7j/bQBi/x8A6/8DAE3/fgA5/wAA8v8A/9oA6/4TADgAcv9lAAIAef+vALj/IACpAJD/bwA9AAgANQB7AJD/1gAJAOP/lwCp/1MA1P8tAEcA/P8rAE8A9P8RADYA4f8AAD0A7/+V/0UAZ/8iAH//CQAsAFT/nQCv/w0ALQBSANT/IgBWAHD/EQD5/4z/k/9CADr/VwDF/9b/SQDt/4IA4/8yAAsAVQDx/ikBa/8HAGkAVP+YAH3/VgAPAIb/WwBCAKj/dQDC/2AA9P9BAIH/WQAYAIP/xwAO/8AAqf/W/0UAoP9XANv/AADZ/3sAO/9MAMT/9f82AMH/SwBGANT/ngDQ/zEA7QCF//IAsv+TAML/GgABAKT/8P/m/3f//f/W/3b/VwB5/24Ai/8bALD/RwCZ/93/UgAK/0sANf8NAAwAiP8PANf/zv/R/6sAkv+aAGQAuf9uATr/ugAJAaP++gAFALr/qwCK/yIAUgBz/xsALwBm/5MABwC6/0oAXgCA/yMAuf/a/2MAJf+XAF7/EwA2AOr+nwCz/wMAPwDK/74AsP+VAHL/VQDt/4z/cwAQ/zQAYP86AC//IADv/6z/iACV/7UA1v/w/0IA+v/4//j/9f+y/w0ASwDG/zQAp/9RAL//JgAvACj/bQCj/+3/kf9nAHD+XgGO/k8AfABe/uIBPP5RAYn+WQDt/+H+zgBy/y8Al//B/20Aq//0/zcA0f+LAIn/bwDl/0EAjf8tAOr/s/9CABn/ywBD/2IAqv92AL3/QwAAAP7/TQDC/0sA4P+PALP+tAGT/ssAj/9Q/2MBLv52AS7/MwAVAO3/FQC+/20AFv9RADMACf8GARz/FwAzAOr+BwE3/zAA0v/M/9//TgBM/1wAdQDF/n0BV/4EAYD/jf/8AKD+hgF4/jgBVP9tAP7/b/+wABL/DQHP/vIAXf/P/yYAtP9aAGP/rgA1/2EAUP95AMv/NP8uAR7/kgDT//3/EQDu/8T/iwAAAHr/MAEi/7QAJgBe/4gBIf/VACoA7v8cAWz/FAHd/ykAygCa/8UAav8LAeL/vv9XAe/+DwHj/1AA0P9LAPn/wP+qACr/yQCN/3IAsP+3AJ//gwCbAOT+AAIP/gACzv4uAGsA7v5YAav+JwGY/jkBDv/TABQAcf80ASD/4AC//6kANP81AQ//4QAAAFr/HQH1/j8BWf+gAHv/+gA0/7EADQB6/60A9P6yALP/mP8xAA4A3P6QAUD+NwEk/9z//QBn/u4BQP5jAcz+WwDP/z3/hwFg/lEB8f+c/2oA3f9w/+EARv9GAFQARP9uAI7/V/+oAEv/qf+iAOv+2wAp/3sAZv8wAIP/TwArACD/JQEp/kcB8/7t/0gAD/++AB3/4AAF/3cA1v+x/2MAuP8QAAAAjP9gAJL/EwApAE7/iwC4/vgAsP5sAFYAt/4LAav+qACn/7f/EwAQAMH/4P/t/wP/vwDy/jkAQP8VAET/OwDs/07/MQGl/s0BZ/7ZALIAS/50AYT+kACU/jUAVQAv/lwCAf7xATf/tv/CAPH+xQD+/vwANv+VAMj/EQCyAGn/wgB4/2YALgDq/0kADf/mAIz+6gCA/7X/6wDU/roAhf8F/zQBWv5zAdj+NQEN/7oAtAB4/tgCqvxRA1n9NAFVAJr9eQM0/JsC0P4B//kBqv0CAtX+9ABJAJ7/LgH//kj/iwD6/TMBm/7RABIAU/95Abv+rQGB/9AADwDn/+X/x/9fALT+vQCdAHj+GgOf/ZYC0v97/7EC7/37AZP+fP9MAW79NQE3/oz/VwHY/fgBlP6PAXL/2QBq/zsBPf/h/yEBjf1pAlL97gHI/nD/0gAB/8gBEv6tAdX/Pv6rAc79GQDw/6D+ZgF1/jUBmf/jAIL/qwAKAGj/ywBd/o0BK/7MAJr//f8nAMIA7v/yALD/fAAm/3r/JQHS/fIAqP6+/5oAUv+jAJwAFP9mAoX9mwFj/zH+pgLh/AICP//e/gECI/0gAo3/2v/fAaj+vAFR/1z/NACQ/ub/AP9b/4QA3P4WAcv/xAA7AFQA3v8KAHT/aP8qAJ392gF3/cIAogA6/24B6v7lAfT/eQC+/44BhP7oAEUAMP6/AeD9IwEp//r+bQHR/vsA6v/0/3kBDv6FAq39NQDOAA39fgK0/Q4BJv9LAJP/7QA0AM7/PALU/cwCi/0zAbX+3P47ADH+zAEQ/igCXv8AANQA+v8wABcBW//O/9QAHf4KAl3+6QBHAAcA3wAs/1wBLP42AVT/Kf/mAO/+ygAIAC4AggDu/2gBrP5jAWz/jv/kAOP9GwLf/SEBMAD7/gECIf41AhH/4gBmACP/4gEV/kwCCf62AUkAff/yAQD+3wEc/8oAsf+g/8EBv/14Atj+bv8kAer+tQA//goBYP8aAUQAwACY/kH/uABs/vwAhP/NAI3+IwBj/3j+1//X/2ABxP9ZAi4ANwFbAJUA/P0A/1UAqf6wAjD/TQJF/38BiAAMAHv/EwBL/9H+fwBq/jAAzP8K//D/ZgA+/v8AM/69AW8A6AD4ATj9xACt/JD+jADY/nMD+AA/AXMCSv3JAXr9aP/h/2X9OwGz/XwBWv6ZAhz/QgDnADP+AQLH/KECff0n/8gAqP/RAD3/vQFt/iMC1QBbAsoA7v/uAKf9kAAe/f0A7/3ZAIYCwwCBAwgAMwEN/a8AX/zX/gr/Pv3kAoj+KwI3/t7+tgE6/rwDWv/1AQkAvP9u/kX9Df66/UQAmwEpBIwB2QMlAAMC/fwd/8/70Pv//53+NQQqAroEowFl/38BM/wQ/0j/9/97AegB5wEbAIoA4gDmAHz+hgAd/1MAlwBgAKn+XP5M/Sj+1/7r/7sBt//IASL/Wf8B/i3+Jv95/zQCowHoAcMBawGYAZr/hwCF/gj+1/5m/tP+WQAkAcMBawFjAAcBr/1g/wr8Cf2u/j7+MwGw/1YAmAGrANAApAEs/uP/tf5X/1b+nP0DAKf+8QAzAHgAogAhANAAfgAb/y3/bv6r/gH+s/57/wgBFALxAgEDPgD5/yX+bf45/gYAWf7cADEA2wCHAUn+2wHQ/qEALAGPAKsAz/7wAOz8SP/s/Yv/hwHGAIoFhv+UAiL/YwA3/sMAZf6G/nf/VP2uAjr91AOc/8oBQABY/zsBgQDpAboANQET/yf/+f6j/ef/zwCCAasEggIzA3z/Rv+0/LX85v2L/XUAcwBaAVUBCAAJ/pP+R/wd/c38mf0C/xD/y/8P/oT/lP1E/nH/g/3y/4//cP/v/yf+q/3D/dj9rf83AX0B0ALaAooB3f8R/9z8Xv19/qv/IgLpAlkEYwPWAsAA/v4x/ub8ZP6J/rj//gCH/2MA0/7K/ez9JP1t/nv+1P5Z/2z/5v6w/1T+Nv+7/ywAFgJPAXYC5QG8AdQANABHADUA9gAXAUwC9gFWAsQC0QFMAjwBeQCU/yz/af8S////dgAbAv0B4AGjAbz/bACA/0P/of/q/6sAIwBsAHH/B//0/rD/v/8xAJcAhgBsADT/mf8Y/gD+UP4O/uv+1v+NAGQA9v+f/4j/Gf/G/yIANgAOAdwAxgD3/yr/of8V/qT+aP/P/kwAKQBuALcAIwBqAFr/4v6L/pv+DP/T/iYAwP/h/3QAS//R/7f/8P+LAH8A0gDIAOv/BwDT/7P/CAEzAYoDPwQNBX8FXAMoAxIBeACvAJ4BtAM4BcUGIgekBuMFaQXZBJYE8QQXBsQGIghqCKIIcAhRCCMJzwgoCqkKyArrCikKBQqNCYUJ+QmTCVAJdAgHB98EIAOBAUoAOwBJ/87+P/x1+vT3TvUg9KLypPOt81H1uvXk9Cf0zvHS8DjvWu868Mvx9vN59Y32m/ZV9gr2A/ZS9nj3IfmU+q/7kPyq/Hj85PsQ/D78t/z//fb+df/0/0EAMQBqACgAXgDL/wkA1f+M/wv/pf4U/8L+Of+l/nv+Dv4+/sv9aP1S/b78PP3z/CD9G/0L/Vb91/2b/W7+Gv8l/w8A4//7/1P/T//p/iX/4P++AOMBSwI8Aw0D9QLPAmwCFwIyAqsDNAYVClcOtBFpE4YUZRS6FGkWjhj4G+IeISJQJEIl+iTQI9ciDiP+Jb0psy11Lkgr5CL8FzANBQVnAXkBKARaBmsHVAXJAPX51PG86aLiWN673EDekuBg4tPiHuGz3hbdft2y3/Hi9OVI5xfnJOaN5T3muuiy7GHxfPa3+sH9qv9nAGgASgBUAHcBcQMiBvoIIgtlDIwMUAzhCwcMIQwoDG8LygmLB9IEWQIEAHH+LP1D/Ef75vkT+In1rvJO78zrd+iH5XfjYOIv4nLiA+N346fj0uPY4znk0eTJ5Rfnlehp6sTsde9E8gH1nvcJ+gD89P27/6MBewMnBccGOAjaCZ0Lcw2PD24R3hIBFN4UZxVzFSQV0hQAFW0VRBbrFqoX8BfeFyQYiBjWGU0cbh+bIs4llSdvKBMpOCl0KUQpnykYKrsrMi5ZMSYzPjOkL2Moeh8OFpIPTQweDVEOCg/1C0YFw/xw80vsKecN5WPk6uNy4oLeBNjKz7vH/8EYwVzFF80G1mbcp97+3FnY/NMp0l3UUNpg4krqgPCs9P/2xPj3+hv+FQJwBq8KCA4qEAoRcxBcD4EO2Q77EIMUlBh+G0EcNxqEFtYRiA0oChEHbQRpAZD+IPxd+g351ff49bHyre6X6TPkxd712dzVNNN+0oPTmNYg2rTdyt964CXgUd/E30jhReSK56vq2O3b8Kb0M/mJ/ucDvQhlDFoO3A7CDfkLJgqnCWUL5Q5iFCsahx5CIAAf0xtbF6kTShG7EMYRPBMnFa8WrBhhGpwcpR7OIOoiHyS9JBMkfCL5H4IdHBzSHFUfuCMtKPMqyCo1Jvoe9RXjDckHpgSWA8ADCATZAgEBXP0t+TD0b+++6iTmF+Iu3jHb6tjT18fXzNji2hzdh9/h4OfgoN9N3ZjbQ9s13SThsOYH7f3yePiX/AP/JwB7ANwAUwKaBSYKYg9BFBIYkhrTG9Ic0R3EHjcfdR5HHNEY3hRWEb4O/QyMC80JNAd0A9T+v/mk9BnwPOwn6W3m/OPm4dzf69083JnaLdlB2BzYwNjF2aXaMdt628/bf9w63gbhmuRK6LPrmO7P8K7yhvSF9sb49vpt/bX/vAK3BXkIYgvxDOsOvQ/IEHsRYhGXEC8OTQzqCmgM7xAYGFQg6yZ4K/YsDy3ALGss6iwPLcUtPS+IMps3iTwwQJI/HTvFMhMpiiHwHCIcdxzsG/UYURMkDSIINwW3A2kB9fwM9YbrO+Jb2xbYFtg42vnbEN2L3Nbandc003bOGso1yCfJkM1L1PTa1t+24VXheuBV4TLlmOv68lP5Sv0M//f/7gHhBeELDhOlGUoeziBNIewgPCCkH2EfMR8rH/QeUB4tHQsb0hesE8cOmAl2BPP/Fvyd+Gj1BPJA7p/qbOfv5MHigOA03nTba9jo1VHU5NMV1LjUw9V51mDXqNhX2mzcZN4f4LDhfeOx5Rjpve3Z8nr38/pp/cr+ewCfAvQEgAeHCW8LFQ1fD0MSxhRJF0sYNhihF08X4xgKHMcgHiUZKRYsaS5ZMQE0jzfJOU47ojsdO+w6gDmDN1cz3S0OKI0jRiJ1IzUmmycYJekdMRLdBM/4cPGZ7xHyR/bd+Af4tPLc6nLintvH1x7WT9bW1XDUf9E6zsLM5swx0I7UOdm13APekN2Y23bZBNgn2f3dPeZo8A36JAGPBOkEKwQRBEMGuwp2EAUWbRqOHTcfTiAQId8hiSKnIjQiCiErH64cvRm+FukTdRFSD1sNDQv+ByAEif/M+k/2YvIm73zs9elm57jkF+Ky32XdMdtk2QrYNtfn1ufWHdc812zXTdg42lPd4eB85IrntukZ61Ts6+1c8GHzuvZZ+v/9wQEaBdsHWQl5CSEILAZUBYoGtgo+EaYY7h6zIhkk+yN0JGAmmSlqLTYwKDFgMKovuzAlNL05kz47QSNAijvbNCEtRyb/H4obfBjnF2IZxxvvHZUc8RaTDAcAbvQh7B/oO+ep5+fmY+Tt4JzdW9uC2VrXIdRdz5PKKsewxhvJ/szJ0EbTlNSH1TzXb9r23vzjoehR7CPvwvEQ9Wv55/7LBCYKaQ6lES4UtRZQGbUblB11HnseLB4aHsQe2x/UIBYhQiAyHi8bwxeAFLQRWQ82DfMKUwj8BBkBzPxF+Mjzpu8U7APp+uWi4qHeRNpn1sDTr9JG0+/UqtZ41zbXPdZu1b3Vr9fu2tHeiuKx5TroZuqX7AjvlPEl9IH2yfg1+wz+4gAbA+oEGgbkB04LExHvGAsgsST1I2EfnxnHFtQafyX/NLNCF0t4Sx5F9zv2Mu8tCS1sMAo2fjslPwA/+TrEM2YrnyR/IFsfeh9dHskZwBHPB6D+x/gf9334JfqC+WX1Ru7o5Q/e2dcO1H7SwdLS0+nUVtUt1JHR8c0By93JScsUz0XUP9mF3NndtN1f3VLel+FI59fu4va//ZAC/QSxBc0FjAb3CAkNNBIcF8Ia0hxFHa4c8ht4G6Mb3xu7G9Qa0RggFjATjhCsDmoNqAzkC3UKBwgtBCP/aPnV81Hv/Ovs6YPoKedo5ZvjheEy3/7cK9tQ2nva4dsb3qvgx+JR5DLl1eVO58XpDe0n8X/10vmA/RQABAKxAhsD5gPyBCIHKArODYQRzRMnFdoVOBa6Fx4afRyBHkMfvh6UHWscDx1oH0Uj1yjRLd4xSTTcM68wzio/Iygc5BfdGIwfRSj/LzIzAC/JJMAXLgz+BEcC7gKPBOsE8gP+ATv/xvyR+lf3IvNt7t3pSeaP4/LhDOH7343feuAF4hvkmeUT5XjiZN6H2kfYidhP21HfxuPy5yvrlu1g75vw1fCn8Kfwl/FF9J74J/5OA6YGrAetBvwEdASjBTwIJQvPDLcM1QpICEAGIwUpBWIFLAU1BG4CcgB9/sD8QvsG+vv4M/ip9zT3TPa69LTykvD87mfu3e4W8Ejx8vHU8f/wNPDB7zfwjvFJ81H1Gvea+NT5HPtk/Fb9S/6H/x4BbgNbBm8JDAxwDb8NbQ2rDLQMBQ7eD+URVBPyE/UTmhMHFIwUMxWaFb0UThOBEbUQexGRE6UWnxlgG6kbHRsSGiYZoBgbGGUXIxZnFU8VxRWPF9cYShlCGG0V3xHmDYEKMwcABJgAZf4X/un/2gMzB8cHjgMv+4Xxbel65Qzmuenr7XHw0vAO73zs4OmW55PlTON/4W7gseB44tHk+eZo6FHpC+pP643tIvA+8kbzK/OQ8pbyRfTN96z8jAG5BIgFVwT5Aaj/jP7Q/icA9gHPAw0FYQUUBdwDAQLn/+X9i/wf/KP8V/2U/UL9Kfyl+kX5QPiS9832tPVM9N/y+/H+8eXyKvR69Tj2G/Zw9ZL0EfQc9PX0e/ZC+Ez6dvyc/pAAKgJMA/oDaQTiBLAF9AZ3CBEKVwv4C3QMdAybDXsO6g+NEUERDRGPD/8NVQ0qDYsNwQ5aEBsQORDqD4AP4BC1EFARkRDCDQQMXQiWBjkHqAikDe8QOBEND98JdwQMAqQBLgLzBAsHJQhkCEsHTgTCAlYCugKHBYcGwgYFBX8B6f6X/Lf8n/6tACMDJwQyA28BO//w/Dv8rvve+s/50Pis+OP4qPpB+4z7hfu9+Qn5Nvhc+CX5t/kX+tj5Qvnk+P/4XPkD+vj57PkW+bv3bPd+93T4G/pv+on68vlI+GT3VfZk9kT3Avgu+SL5EPkY+Tb5w/oO+wP61vgq9ln09fRQ9a/3xPqr/Jn+uP4h/mn8Pvt7+lz6v/tc/OX9wv4i/4sAaQE1Ao4DWQM6A00ClABIAEsAuwGEAxYFGAa2BvQGGAZfBeQDrgJ1Aj4CGgNuA0oDZgNDA3ADIwMZA3oCGQJ+ApYBZAIeA/8CFwWMBP4CXAOjArkCugSgBE8EaAXPA1wEqwRiBOoElwOfAicB5AB7ApIEIwWKBUwGKgVhBA4DQgJEAw8ENwUEAy0B3P5m/vMAwAG/BAcFbwOHAaL9Xfs6+/b6VfsG/IP7HPuX+ur6dPsY/ET97/tO+077IPuy+5D76Ptf+rz6qvyv/d4BTgP8AowCmf+7/Zn8rP2rAJUDkwbtBngGTgVMA3ADOQN1BEEEJgU9BM4BMgP6/3gDowbzBiUKcAh7B7oDwv7g+Uz4A/q5/H4AYQGeBPMDDwI5A1H/6vwi+2T3YPfy+WD7Y/v8/UP9Z/wx/e/66Pvh+2r6cPqW9wH2MPYm94z6lP3r/7YA5/+H/Z371Pn4+WH6fvr7+1j8NP4kAKQBPwM2AycCkwCj/lL+RP5W/rMBzALnA0AF9ADU/z8AsAEPAykDdQN1ARUAb/3A+wT5O/s5/WQB/gZpBtAFzP+x+/T5cvpa/Hb/Lv/g/XD+qfso/pYA2wKmBIAB5vyI+TP6ifuc/2sCVQE8AHX+ZADZAIoE6Qe4BbwBwf17+7H+2AO3CZ4NzQt6DLcFKgOLAT0BKweIB4kMfQo7Bs0D+ACPBHoHjwtzCu8HsQTaAsMCmAHTBRoFcAZLBOYB+gA3/vP/D/6s/nb+mwEJAlgBAAHh/LL7dvus+in9Yv7O+fP6E/h3+Pf7g/0UA+b/xf1f+H7yBvUi+ej9Pfy9/FL66vjE/iwDawI//2H9P/VG+GD7o/seAZ3+IP/p/m38pf5D/yYAJAJfAOP9F/wK/av+ygFpASwByQBWAUYCvwIpBXICdQFF/wb7Uvoj/P//JwTkA18DKf/Q/DX9A/vs+hn7gfwP/MP8Ifwu+6/7lvyq/k39qv5+//f5EvuR9S7zbPh8+WkC5ge0Cc4EUf+8+X746v1cARME5wPQA54AcQHqAEwFKgmJB9QJpQWRA4AD2AKBBR0HAQnBBvgFJwWWA60F4QYdCS4GMwU8AowALgSmBusGQQhDA+X/UAKdAVMDHQPi/9f/mPz7+XT+OP4qAd8AAP9X+WH3SfjX9Vf/YgLRALoAt/rc9+b5rvoH+xD+7/2n/HH+j/0h/xcDLQDqAAoBBf6VAwkBXwEjArj+pwLQAt4GsgQ0AXgDKAMpBhgJCAYUA1cD1f69AAIAkgO5BgcHKQnyAQcAJ/0o/XEB0AEWBMAC9/sC9wH2d/hN/kYBBP/aACL6fPWb9pr0o/lm/dP9Tf1m+5f4i/ly+Mn7W/yT+bX5WPc/+J/7iP/BAJ4B/v1l+v37E/53/0cAvv4s/0oENwWNBnYILAaqA58AjvzQ/3EC9wShCzkI8wbnBR8DKAIWATAC3ALoBJEFtwXoAsYAOgNfApIDiQEMAT4CgQSgBCgCQQBs+qH9a/1A/wgD1wNaBtwEPwCG/tf5p/Sv9HH1V/snAsMCtAKxA77+Z/nC9U71b/iD/uMAB/82/r/6V/lU+bL6RgJGA1cEAwTc/8gBLf+I/jL++/5RApcEMAX5BWIHVwTGBYEC3QHSALP98wH8ANoB4gRFCMYFWAODBJgAugAcAnsCPQH2/1n9svtl/SX9sv97/jL/YAKwAJv+m/6/+dz3NvtN+dz68fwX/i7/WABa/mr5EPjd+on72/uz/Tn8YvwB/Lj6b/zJ+gf5C/rP/ekA4wMkBEIDdwQLAar/9v3G/Bn9kAHABRIIiQzdCQwEEwKX/I/69AHmArkGPQtZBQoD8QEGAuMDgQIhAUID+wRXAz8DOQBB/u39Gv19/2kFygf7BhgGjv+o/MD7l/pY+6X+OAOiBTUI8AXwApkB7/zp+kH52fah+NT7Tv0TAFYDxAO8Ah0DHAGz+sL5SfYZ+O/+IwBtA8cBzfwP/v7+kQGtBugDOgOBA4cACPsS+QL7Ev0DBBEHIgf3BhQFMwTHAQL92vtl/Mj63PpO+zz+WAWHCSENsApLBVn+k/cb+WX+XP8u/k//Lf6iAFr+3v3b/5j/kgKUBLsEZP9V/ZP5HPMk9aL1aPsqBOYHxQo6B0YAnflQ9dzyl/hw+8P9BwBMAEMATf+IAdz+FAB1/iD/BQPHBMcDmgBUARL+CP5T/wf+pwL9Bc0H9gfCBScDIf8L/i/7Ivzb/W79pwJKBXwEmwmgBFkBPQLS+dP6iPaT+aUBpgcVCn0FEgb7/Hn8df3u96D9GP8RAy4HbwFw+2r6svmz/OADEQIYBY0GJwAN/aL6Pffs+Mv7vAAqBZMG+QYcBBsCav19+5f6RvrcAIsDwQbBB7wAgwAu+eb6sv8qAmMHWwOSAMn+lv4y/nj/q/5SAWAAaQEhA1UCLAZPAoECxPwZ+ZH6l/qDAQYEhwPXAn//V/nf+tP+BQAXAWAADQCo+xH32Pcs+78DuwWXA84BpP3M/a75sfoq/9sAaQFI/5v/Jf42/Sz/qADwAuwFMgJZADL9Rf/1Awr/UQDg/479Ev9cA7oD7wLsA4cAff3P/E770f27AaICvwX/BBAB5P4l/nL7uAD6AKf+mgQiAJIBVwHK/UMDwAFT/xT+QgCN/1L6qAAV/3YCpgTC+1MBFAAl/zACtP3R/l4Aj/0h/3D9Nvwc/dj9ogLUAZQHTgQOBH4EIPgJ+cb4OP4OBmgICgjZAxb/s/1w/wAB7AGvARQFuwG5AXv+mf3UAbD/tgEwAu4CEAMlAVsAKv+uAIoBcABtAf4AiAJdAlgBvv39/Eb9IfylAFQCegAs/6gAPv92/wX86fij+Xr7AgFIACAD7AP3Auv+i/gO+i/7vf46AxADhAIOAiv9Rvy2+hz8XwATAoIE6wUKB8UAD/vV+G74v/pfAWUFWgRnBKwCJ/xc/Db+w/7fBVwDlgPnAJv6KPgf/DYChgORAwr+wf0s/1X/8P7PALH8wP5K/+f47v6H/fr+LQRCAQQAwwAB+xX7hv7T/7kBowCr/n35+Pt5+5n+lAFp/yIDngESAEEAj/3o++D+Qv/v/vkB2ATTA9wDKASVAnb+dvwE/t7+X/8A/5AE0gQjBYoEfP0L/nEAUwN4A3cD8gCM+0v9Pf3K/AcA+wFOBpIGPAQKBFcB5P3I+rn1c/Uz/HH/uQVhBUAFEAal/fX7dPhO+FX8tACDAhkCngCT/xf+jf2A/77/WAThAVIAzf97AK8AZ/7S/9AA8QC1Ae4BMgCTBMoCLQM/Abj+iP5b/DMArABIAnQBfQDeADMD5gHN/j7+FP12/eT/lQFc/hoDRwKW/03/Rf4gAggA3QF4ATn9BP3B+/v40Py4ASMCiASGBjsEqwD4+XT1cPc4AJgFhwOPAwwA2f/C//b8M/6KAKIBFwK1/x0BBQGb/xX/uvr2/Qb/XAE9A4MCngWGBgUAsvgt9uz2c/4MAMIGRwhMBp0FJv0x+Ur69//e/qoBAAEQAM8CTP8TAP/9Wv9/A1MA3//5Aj4A9P4p/xj93vll/RgCOQKtBhEFEQKh/gr8T/sw/QYBXP/mAbsEOwR+BCoD2P8uAJL+bPp3+RX5a/x6Ag0FoQNmBfwGrgPWAiT8dPQ397j31/+gBC0DYgjWBQUDI/8d+038Gvs7AFwEawCPAQL+lfzG/2IDXgVaBZMEYgECAov97fvF/Mv8FgBLAV4CHAH2BvEEAwKgAtb6tfny+TX8Jv6wAqQGrQRaAxP/6/nk+v/9ZgMABiwGdQIe/b74qPWv+XL/8wMECcUI+QLMAB75DPmh/CX8v/8WAeACXgJ3AH3+Q/61/+/9Vf1O/tsBCAM6AxUDXv+5/RP9afvr/Jb/aQCaA6X/9AHxBBcC0AEs/8f9Zfuu/Nb//P84AMkBhQIWA28AUf97/ib/pgHlAAgCKAB//1/+h/2e/ID98gLIBIUImAZ9BZf9evqX+KD1Nv/yAVcG8ATEBAYACQGp/Kj6zwH5/VEDVf9K/gICrQB3/vL6OfvP+u0BaQR4BYMITQU0A3z8HPgg9Ev1gvzgAnkJvA2WCV8FHf7O9n30vPYx+5b/2AVgAnMDLAG3/NT/av5/AKwEcAQRAJv9Sfrk+JX+S/5I/7H/5wLCBYMGpQROAen94ftQ/T770/72/NL+kAChACoDRgWoBQ4HRAQe/tX/RfkR+Kj7eP3UAWkHEQbBAbwE3/9W/+sBXAEMAij/Yv23+3P7RP9vAYYCHgjHBp8DTP3F+Vr7yvsCAJkCxwOQBOAFxv0G+9z8qv2YAWcEvgJEAe0BeP+s/rz7x/iF+SP8NQGsBtQFSAUvBDX90vuV9632APoZ/uUF2AVsBZYB9/5J/L/9J/9mAIoF/gOKBJwCSvvp+UD4/ven/20Fqwn+C5sJaACi+WfzkPIS+dD8+gV5CXMIgwV3/8j7h/vO+5n8/AAKA5MFd//j/J35mPfd/iwAlgTsB+MHNwb5AWj+AvwQ+Oz4EfqB/qUDCwVjBuICwQNNAA39Pfz4+rD7CP9a/Z79M/7Q/hMDzAIFBQABjv8K/Fr7ff4CAH0EXgMoAtP8W/r9+UT8EAJIBjUInwgBBywBiP0e+mH5ifqd+4X/hAJOBL0JEQeuBJMEg/6a/d/7j/s+/b0BZQWYBt0EBAMh/nL8Y/+k/wME4wO1AYv/c/yF+GX5v/l9/vkGJwg4CYYGlv7M+Uf2jfIJ9UP65AHGBQ8K7gh8A1AANfm3+PT5p/w1/zsBFv/p/bn+4P2qAGMD8wSqArMCR/6L/Xj+9vxw/un+wP4H/0cFIwX+A20G5QEU/5cArP3E/d3/zfwT/3r/Df6+AN//XQM2B3YIDAYt/+T5S/ik9jz6lv5uAC8G0wW3BdMCO/1B+5H9p/uP/bYA1vyrAXoE6gR/AvH/uvrr+dv6p/prASYF2wd6BFsAWfoL+Pf2M/v+AvAD+Af8BioCQP7R/Rb8N/7i/zACwQM+AnICYf/HAEcBCgGBADL/Y/zI/AL+NAHxA3EEswa6A1ABWPy598z0QvgI/QYD2Af5B08GzwE6/5j4Ivhf+sz7mP/7AT4CxwBpAc7/8/0TAXz/Zf91AjIBNQSWA8r+3v2s/Jj49Psh/14BwAlSCXoGkAPW+pT0F/ac95j9HwYzCGIIuQUG/nj7hful/LwBCgP0AwoCeQFB/nP75f6tA+cEEQNgAlL/tv9CACsBZP9//87+Jv0o/oD9DgB5AiIE2ATxAUb8y/tx+dP7UQFtAqAEbQSDAff+XPzl/AP/ff+9A5sDPQCH/b79VPvK/U0BGQBPA68A7ADO//L9qP/X/j8CKQLSAhoC//1e/qL9Fv9JANMA3AKKA7gEIAO9AUsAC//J/Er9zf6j/gQB7wBkA88EZQNqAfP/avzS+Vn8Wfvb/HQBDwOLAw4DV/97/EX8pvzV/WoAXQBDABYB6f6E/8j94fw//3MBNAG0ApcBx/7l/4r+T/z++kj62fspASUC+wLEA2MCEgEK/tD8U/xN/U3/ZQBIAO0AuwEYAQYBgQHK/+n/0v5w/cP96P03AVwCsAQoA04Bkf0//Of9Gf25ApsF/QN3A4IAbfuB/Lj9Vf+uApEEvgRAA6D/r/19/TD8IP74/+//MgFAAQAA2AJ3AeMAjAC6/R39Ev2y/qr+lgD3/3gBvv+b/rUAQQGqAmwBu/+J/bj7T/rA+wr8ef2LAMUE5QURBboCwgBQAH7+Af7a+rv6FP7KALUBxwNqA9AEfwUtA6IB2f4C/oP9YP0+/tcANgBOA7ED8gKdAkQD3QADAQwB0f8iAjv+VQLNAe0B5gPQA3wD4wNlAsT/P//V/jEAJwFPAlMBuQA5/d7+bP1X/vcAvP7rAJkAQQBV/yP+P/1M/kP+zv+r/9f9fv5Q/7D+0P8yAH//wQBX/18AEP9oANgAmP9L/ef73/o0+73/dAIyBdUGTAY6A0r/UPz/+Tj6pPy9/1oDaQN2BKwC2gBtARIADwCS//cAwQAXAEr+j/4HAK4AagJ+A30DjwRFAlz/Qf5s+/n72foa/Wn+kwEoAxsECgPN/zD/0vst/HH75Psf/dD9NwDY/7f/2f+G/tL+Qf8i/Rz9O/4Q/33/AADc/3AA8f8m/xIBWv+YAGQBAgFxAO3/eP8GAEoBpgIHBIQDRQI8AGT95vwp/XL9DAAlARgDDwRdBIsDEQHW/wL+v/yD+wb9zf0X/vAA/QAyAhoDEARqAkEB/P/1/F37xfnJ+e75RPyj/qIAuQJDA3kCBQG6/8X9Qvww+8n6Bvqi+zb9bgAxA/cFUQdiBdMDZv/x+0b7/PpO/a7/zAFrBLAEBgXMAhUDBwHpADUB8P7q/pX8y/0q/pEAPgL2AooE3QSYBNIC4gA4/gD+1vx1/Ub8b/0DAMYCswP3AyIE5AEPAR3+2f05/C79Df5r/4UAPQFiAcQB3AJyARMCYwBU/wj+Kf1v/F/9nP6VAEcDCAPgAx0DhgDd/mH+If3F/sj+ff/rAG8AegHeAMf/Gv8G/0X+k/5b/3j+Hv0t/fX8bfxr/OD8Kf2t/Xz+Iv2p/Tf+M/0M/ev7tfvr+xn8Xf70/wEBQAI3AiYAR/+n/hT9Tv6t/9oATQH+AS0DOwM+AjUCKQN7A1gDLQLdAXUA9/8HAdQChANHBMgEHwUjBfgDngMvAoEBggCV/6v+DP+YAGoCewP3AisDVQK+AIT/N/+4/xcA+P8gAVACMAO9Ax8EXAXcBiUH6AbBBpEFiAWJBNcDQwWBBqYH4AiUCSMJPAfUAw0CtAD5/40AaQBb/zb+L/2L+/z6Hvo5+jX6uvh999j1N/Q387PzQ/Tj9Jz1UfVl9OLzV/R99c32Tvj1+Ij4a/i899z3j/h++sL8g/5/AN0ANQEiAg0DKwMyBDcFyQMlAx0DSAJxAYEBtgG+AtgCLAIwAgoCGQGS/yP+i/wo++P4OPkK+nb6Efuv+/X7Hfy4+2H6yfjh9zH4jviJ+cv63/zj/VH+bP0C/QL9rfxD/Sf92/0I/pz9Jf3j/cv+Kf/c/yMAQgDj/mn9fvyw/DH9Av5M/wQAbgBOAE7/o/47/sb95/3Z/RD/dgBoAywG7gicCgIL5QmFCFcIqQiSC/YPkRU9Gh8fJiMRJrkndClxLFks0ysGKksoYCafJAwl/iWcJoombSVZIQQcmhXoDgMJ3wOo//r7QPdS8z/xRvBJ8Nzvi+7V66rmVuC42ivWAdXn1kTam97x4u/kpuSh48HiFuM647LkheaG6FXrgO3G8C30IPjY+zX/vQF0ArsCZwGeAHsAPgHXAmQE3AZsCSsMtwyrDJILUwmjBgUESQIIAeoAxAF7A54EVgQgAwkCwAAQAMv+ev1m/HT7efrL+br5ifl5+kH7+/sp/G/7KfqW+XP53fme+hv7yftD/PD8Ef3T/dH+OgD5ARgDJwNuArMBigHTAfEBRQLQAn0DWAOrAkYBFABy/if9P/x2+zb72/oD+476d/mM9/L1gvQW9I/0d/W89mf3Uvcd9xj3j/fx+Xf8Qv8gAEb/P/1e+ir5M/t7AHEIOxHGF6kbQhvpGOsWLBZLGKIc0iFZJj4psCpfLFkscSxIK/so5iVBITkdZxr7GIAXyhYgE14NzgWm/Tf4iPUn9nv3B/hu9Sjwo+cs31LZl9fE2rLffORV5lDlqOKG4DnfSuCD42znPeuN7YLuxe7R7kzwZ/Pg9sf6g/5BAggF7QaVB3sHAgZ/BLUDuwJwA+YF6AmCDeQPORByDtAKjAZJA5sA3f9ZAHIBvwEgAQEAxP6Z/dP8zfz7/Dj9m/xl+2j5VPcb9kz2rff7+c/8GP92AG4A/v5r/dL79fo5+zb8av2I/kL/U/8v/0H/3P+0AH0BLgL7AeEAhv8E/if9UvzZ++77jfyl/Rv+2/3w/J/7w/m59yn2KvXS9B71vPVn9jT31vfr98f3wff391L4Avm3+RH6TPoJ+ob55vi3+EX5Mfvz/RYBGAQsBcMEgQI8/7X8b/yG/+UEvgspEYkUaRMoEkkS0RWlHvAnKjAlNJYxgSlHIR0bbBv4ID4pDjPwNwg40TJ6KbIesRSdC50EY/9G/Zn+aADeATYBxf2p9yXw6+fO4eTedd/s4VHkxOSn43rgcd1m3F/dEuFi5aPpC+wH7WPs/+ty7IXuGvI59aH4/PpH/Ar9zv0h/z4BFAPYBKQFuAQABMUCPwLIARgBkgCu/+f9rfrH9/v1cPVI9cn1Afbz9B/z++9x7Tnsu+z/7k3yEva8+Y78Nf1D/aX8Nvz7/Db/qwLnBg4LOA7dEHASThN7EysUvBUDFxsYGxiTFg0UohFxD7wNbQ3jDSkO/w2WDJYJTwWnAPf8OfrN+Dz46Pco9yn27/Rt8xTyPPEt8Tbx0fFl8q7y6PJM89jzSPQ89Tv2TPdl+OH5V/tw/Fz9If6b/qH+JP+J/5r/4P/K/zH/3/22/Pr7Lvvr+5n9aP+qAAMCcgHi/0r/8v0//9oB0QV3CM8IVwb+AT39X/or/b0DOg+XG38lwylrJ8cguBgeEhUQsRTIGg4jvCpELqgsfCiPIkUdhhrjGPsYSRdQFKIOewZk/mL42vQe9eH32fpK/Dv6LvVM7gvnvOFj3yDfQuH845PlAObJ5enkoOTi5VnoVeuZ7RTv8+6Q7Rrskusw7HnuUPKI9kT6If1q/vT91/yw+/n6xvol+4z7ZPum+pr5jviY91733Pek+Gf5CfrS+b34Q/eC9U700vM/9HH1L/cl+Uf7S/0i/9IAYgL8A1MFpwZrBwQIywixCYoKgAvGDK0NYA7iDg0PSQ+PD4YPSQ/TDvINegznCooJzgi6CB4JlAkVCvkJRwk/COQGdAWSBIQEegRrBIgDNALBABAA4////30A+wC6AYsBDgH4//P+E/52/SD9AP10/fn9iv6n/gH/+f7i/sf+n/4r/oD9w/yd+4D6n/lQ+SL5EPnq+DX5PPnj+KT44vdR9xj2RfWU9IPzQPP68hLzZPMW9ND04/Wf9oT35Pnc+5L+lQGzA6UE/wNZA9UChQPWBoMM8xJuGXse1CAcIWgf1x2uHAQctBxqHcQeKx+YH7AfHx8mHokcsRngFYoRRAwzCNkEkAJxAAn+0/rt9x32ufVM91b51fp9+Wr1OO/n6EXk/OPK58ztvPMJ91L2YfE6673lLuMU5Fnot+0v8uP0HPVP88zwTu9F78nwEvNX9dn2NffI9jP2rvWu9TL2Z/eU+AT57fgr+Cn3Kfao9b31m/Yo+Gv65vzD/igAvgAEARwBaAFMApsDiAWJB1gJXQq1CqwKmwrYCl8LGwyxDDANlA2/DZQNPw3eDFYMsQv+ClgKuQlQCS8JOAkNCaYI5geeBiMFtQOOAtgBwgEoAqACvQJPAlcBWwDG/4b/oP+9/6D//v4E/pn8O/sw+qL50vkK+l/6gfpK+qD57/gw+J/3W/dj98H3Ivjm+JP5Sfrp+or7/vsF/Ov7rvtc+xv7LPs8+z/7Mfse++b6ofqn+pz6jfqO+sX61vrC+sL6tPqp+uP6VfvN+3n8YP3Z/dj9vf2F/ZH9Gf48/w4ALAAp/1L9BfvJ+UT7c/8YBo4NjxRXGL4YkBYFE3YQ2A92EssVwxnwHIce+x1rHFsazBcLFtATwxH9Dn0MTApHCD8HNwfKB70IkwmTCXAINwZYA1AAu/0s/Kz7w/tr/Av9Sv0U/cD89/u8+nH5/Pdf9sH02/O280z0n/VL92j4mvjn9yr26PMB8vDwsfBh8bHy9POS9Hj0kvPg8QrwsO4S7g/uv+7K77TwSPHC8R3yYvLl8r/zzfSs9Ub2cvY+9hf2cPZk9w35Mfte/SX/NQCjAHsANABwADEBdQIHBLEFHAc1CPUITAmFCcsJJQqTCjcL3gtlDNIM+gwJDdgMogxxDF8MWQxQDDEM4AtIC3cKmQnLCCQIjwcoB7wGNwZFBewDQwJ4APD+5P05/cr8fvz6+zD7QPpn+d34rfjY+CH5X/kz+ZL4mfdi9mT19fTw9Db1t/UA9gP2wPX+9Bb0dPNA823zF/Qe9UT2N/cO+Kb4/PgH+fj4FflI+cL5evor+7L7Wfzb/Bf9Cv3L/JL8ZPyr/FL9R/6b/wIBIAKyAtUCrAKYAr4CUQMeBAQFygU4BkQGIAYyBngGFwczCI4J9wolDGoNhA59D78QABJIE4kU1xUNF1EYaBlhGmAb5RtrHF8cFhxOG70ZyRc/FecS6RDeD5gPsA+YD3UO8wtKCDEEiQAW/s38b/yF/HD7K/mR9Q/xU+2o6prpyOmB6jHrFutW6jnpdOh96G3p+uqX7Abu7e5I71HvhO8o8EXxrvJf9Kj1VfZi9g/2pvU49UX1z/XH9tD34fi/+SD6Kvob+gv6G/pv+tX6fftg/Hz9mv6n/4oAKgF9AaEBowGTAeABdQJ4A5kEpgVjBq0GuQaPBmwGTAZ0BsQGTgfjB1EInQixCJYIPwj1B7EHpAf5B50IQAmuCZsJ+ggTCA0HFQZvBfwElgQ3BJEDzwL8AS0BhwDT/3f/BP+i/nn+Rv5U/kr+Nv79/aD9bv1W/Wf9tv36/RX+8v1+/en8QfzO+5P7dPs+++z6cvr/+bL5pfne+TD6qPoh+1b7ffuG+477ovus+7z7m/tH+8L6PPrF+Vr5H/kl+Vr5g/mf+Xr5Fvm0+Gv4gvgY+fX5EPsY/O/8fv2B/bT96f1W/in/+f+5ADsBXAFHAUIBQAG8AXwCagO7BLYFhAbHBvsGnQeDCA4KMQx+DrUQeRKyE6UUGxXOFbsWgxc/GFcYNhgrF78VrhQiFOMTBxQuFH4TSRJCEAgOxguYCaoHLAYlBF4CUgFAAO3/wP93//P9EPu59wX0m/Cz7rPufu/z8GnymfKL8YfvnO2j7Ffslu2j7yfxU/L98gnznPJl8pPy7vJw8wr0vfQq9Yn1G/aC9qr2kPZ89mT2Uva09mr3NvjT+EL5avmF+b35J/oY+x/8Dv3K/Sn+Yf6c/gH/z//BAIcBJQJpAmQCXgJ5AsoCOAO5AxkEVQSQBNEENQW+BU8G9gZcB48HoAeIB6wH8Ad6CDAJvAkmCmYKTwr8CXYJ4wh9CPwHsQdGB5UG0AUVBYYE+AOOAxcDnAIsAvIBnAF+ASwBwQCCAA0Avv9y/1v/Vv9D///+iv7//VX92fxf/Ar8u/tp+wb7bfr0+Yb5Kvn5+EH5XPl/+Yn5LvnT+IX4hviY+Pn4cfnF+dj5H/od+g769Pmy+bT5ffmp+fr5TPqe+iX7k/u5+877uPus+637X/xJ/Tn+cP+NAOgAvgBfAIH/2v5u/n3+t/7G/gf/H/8G/yD/s/9lADYBBgLSAqkDcQT9BVEHdAilCY8KBwvgC0YNLg/iEf4T/xXiFoEW1xXDFAQUqRPpEz4UZRQ7FHgTdhIgEc8PSg5iDIAKjQiYBioFIgR1A+gCKwICAWb/Sf0u+3/5LfhX9/b2tvZD9o71l/Rn81/ytvGp8Szy1vKk89jzZPN18irx/u97753vdPDX8RjzAvSC9Lv0mvR19IP0AfWN9R729va491L4JfkG+qH6I/tv+6z7svvV+zT8jfzv/IH95/1t/gj/af/i/0EApgDeACoBqwFFAuACeQPhA/0DKgQYBE4EewTPBEAFkgXeBSMGfgbIBi4HewfeB7sHlQcrB7MG6gYQB6MHkQg8Cc4JIwrjCYcJBwmdCHAIJAgzCAoI4Ae6B1EH4QY3BooFqATiAxcDVALQAWABHAHFAHEADwDG/4v/dP+F/6//sv+G/yf/gf7V/R79qvx0/E38IfzT+2r77Ppr+hX61fmR+Wv5JfnY+Iz4aPhu+H74p/ig+Gb4Kvj59+X3/vcl+GL4nvik+L34w/j4+In5HPq1+iP7JfsW+6T6M/rb+YP5fPkk+sT6ofvq/Kr92f6O/1wAxAC1AKwAUgDa/4f/wf+XAPEBTwO1BDkFLAX+BOsETwVOBkgIFwqXC+sMSg4iD5cQjxJTFDIW3xbuFk0WahX0FLQUZRS+E2ESQhDyDcQLVwpqCd0IZwhfB5UFiAPYAagAfgDMAPwAugCQ/+j9SfzN+t35fPkr+dv4VPiK98j2D/aF9TP16fR/9Cr0+/ML9Hr0BvU89WT1VPUo9UL1avX69Wr2cvY89sD1BvVu9Fz0rPRx9fT1CvbY9VT1CvUK9Xb1PvYU99/3kfg5+a75GPrl+uz7Ff1B/ib/3v9xALwA5AD7AP8A+wApAYoB4AFNAtACaQP+A5MEDQVBBZcF2QU3Bm0GqQbSBvkGNgdWB4AHpwfyBy0IZAhhCDAIvgdCB8EGbQZEBjQGiQbfBj8HmwfVB+MH9gfeB48HQwfYBpkGQwYRBvEFygWfBTMFwgQsBIwD5AJfAuABMAFhAJH/zf4c/qb9O/0H/fL8vvxi/N77RPu5+kb63fm/+bH5tPml+ZD5U/kH+bv4dfhM+Bz47fek9233Hffi9sv20fb69jT3b/eQ98L36/ct+IL42fgw+YD52vkX+nT60fpm+7j7Q/yh/K78/fwB/VT9if36/Ub+vv76/o7/awAtAaMCnQPIBIsF8gU+BgwGEgZaBrkGggepCHkJfgowC68L/As5C3UKrgkjCf0IMgnpCaoKPwvdC1MMDAwMDJ0LJQu1CjsKSQpaCucK8AsJDacN1w0PDSgM3wrHCScJUQi1B8gGvgWmBI4DvAIqAvYBxwEkAfD/O/4c/D/62fgf+BH4JvhA+CX4lveQ9mf1UfS287zzEPR99I/0HfQP893xwPAx8D3wuvDC8YHyq/JZ8pHxpPDW76zvJfDY8KPxTfL08nfzBfS09Kv15fYa+EH5+Plo+mX6rfoe+7778vxa/tX/AwHnAWECjQKfAs4COgP8A9IEpAV7BicHwAdHCKwIDwmLCfYJOwpLCvkJiAndCFEI/gfTB+AHDAhdCFcIWggECHQHEAe1BmoGWwZXBjoGcgaTBusGPAd4B5oHpgdCB68GxAXcBEwEvwP6A+ID9gPDA0UDsQLEAeAA/P9j/+3+dv7q/Y39Gv3O/Hj8JfwZ/PP79vvC+6/7XfsS+9T6hPqL+p366PpY+9P7EfxB/Gb8SPxI/Dr8XPyX/P/8Ov1k/an9o/2m/Yv9hP1s/SL9Cv3V/Jn8mvx1/HH8e/yD/JH8lPzC/PP8Gf1e/Wv9W/1r/S79VP2B/bP9R/73/nr/5/85AEUAgAByAIwAswCyAO8AQgF5AcMB2AEVAlMCXwKCAmMCUgI/AjwCRgJiAqgC/QJJA64D4APjA+gDoQOuA7QDywMDBDkEgwSrBLwE4QQ5BX8FHAbNBm4H8AccCGgIkwjFCDYJswk9CsgKFwtUC2wLOQvzClUKnwnICKcH0Aa/BfwEZQTVA0YDdAK8AdkAIgBV/4/+5P0k/XX8zPsL+336Kvr1+Qn6D/rr+Vn5X/hU90b2YvXs9OD0+PRC9Vr1DPWO9O3zavMx8yjzbfPb8x/0U/Ru9DP00vOJ81vzZ/O280/0JPX79bH2QfeW9/D3Yvj4+Mz5z/oN/FL9jP6j/5YAfQFNAhcDwgNhBN8EbQX8BY8GHweMB+kHJwhKCD8IMAgzCCsIPAhZCGgIcAhRCCQI6QejB2wHOQcFB9MGtgZ9BiUGvQVDBdMEaAQoBPgD2wPAA6EDfQNFA+4CngJUAhcC9gHRAa0BdwFPASUB5QC6AHwAQQARAOz/s/9t/xH/n/5H/vv9yv2k/ZL9c/1O/RH9x/yJ/Fj8Mfwe/C78O/xQ/G/8jPy9/PL8Mv1t/bz9C/5O/p/+4v4k/1j/fv+J/4v/kP+e/7T/2P8EAC4AVABgAFQAQwAwACUAIQAQAPz/8v/w/wMAEAAKAPr/3/+0/3j/Vf9S/2r/if+3/9T/y/+//6T/m//E////PwByAI0AjABlAEcAOAARAOD/m/83/9P+Yv7v/aH9Zf1M/WD9Yf1//bn99f1C/oL+xP7S/vr+Rv+3/00AAAG3AXUCKgO8AzUEaASJBM8ELQWuBU4GEAfhB6MINQmrCb0Jzgn0CTsK8wqyC2UM6wwbDdsMdAzeC04L9Aq2CrgKsApeCnYJGQhLBk4EVAKkAJD/3/7N/s3+kP7n/ar8O/v6+dn4P/gI+Mf3tfeB9/P2T/ap9S71/vTw9OD0pvQ/9M/zd/M98y7zMfNV85LzifNn80zzN/M682fzpPPt8yL0U/Ry9HL0bvRW9Fz0dfS49Cj16PXf9ij4bvl7+oD7Tvwq/Qz+7v76/xUBOwJdA3cEfwWQBnsHTgj7CHIJ0An5CSwKWwqSCuQKJQtSC2gLXAstC9wKZwrpCXgJGwnaCJMITgjwB4sHNAfZBnoGIAbMBYoFQAXpBIAE/wOAAxcDzwKgAnoCTAIRAsYBZAEFAa0AcABNAEkAQwA2ABsA5P+d/2j/Rf82/zv/RP9Q/1T/Qv8c/+n+u/6u/rH+xf7X/tz+zf6m/oH+aP5U/k3+X/6C/p/+rv6k/ob+bf5Q/jL+IP4M/gT+Bf7x/dj9wP2Z/Wj9Nf0L/eb8y/yx/Jb8fvxo/Fj8UvxZ/HL8kvyu/Mj82Pze/OH88/wa/VP9nP3n/TT+df6j/rn+vf60/rL+xv7f/v/+OP9t/6z/9f85AIMAwwD4AC8BXQGeAeABCAIuAkwCWgJsAngClgLUAhgDZAO8A/YDSgSsBCoF9QWsBlwHHgi1CEAJ5glsCiML5At9DFsNyw0UDukNTw2WDNULHwuSCo8KlgoIC18LVAsCC/8JqQhvByUGFwVjBIoD2wIgAiMBIADt/sL9xvzG+9D6y/me+I/3b/aN9fP0dfRg9HH0nvSq9HT07vMP80TysvF88ZHx2vFT8qXyt/KN8i/yvPFF8eTwt/C38NXwG/F58dfxMvKK8v3yd/Po82b07/Sa9Vj2G/f399b4uvmq+pr7kPxr/Sv+2/53/xkA0gCnAYcCdwNnBFYFDwaeBhAHYwe3BwcIZwjLCCkJhQngCTgKagqJCpAKfgpdCh8K0Al+CUQJFQn9COEItQiDCEII7QeXBzkH0wZwBgoGqgVABdUEZwQJBMQDiQNcAyYD7QKtAmICEwK/AW8BMAGxADwA1/9m/wD/lv4a/n79w/z4+zf7j/oW+qz5ZPkz+Rv5D/kW+S35PvlC+UH5R/kn+Qz5AfkM+Tb5bfnA+f/5TPp8+qr66fr2+gz7OfuL++H7WPzZ/Dv9m/0e/qD+//5P/6D/DAB4AOYAVwGxAesBQAKVAtcC/wIbAz0DTgOCA9oDQASvBCEFdgWeBZIFUQUbBekEvgStBMQE+wREBZAF+wVsBrUG6wYXB10HrgcECH8IFwm9CYQKWgsVDMAMJw1MDTMNtAwJDDYLWwqkCfgIgwgfCOQH2AfVB+8H8AfsB7oHcgcWB58GSQb7BZIFIAWDBK0DyALWAb8Ap/+U/nb9X/xG+yn6G/lA+Jb3DPer9kT23vWA9Rz1nvT381XzivKs8fPwRvDT73jvNe8a7/Duhe707WXt7Oyv7NfsTe397b/uje9A8LTwBvE28WHxhfHF8Sny0/K889L0BPY790n4OPkC+rH6T/vT+278HP0C/iX/ZgDJAScDZQRkBSsGkAbKBu0GIAd4B/YHnwhlCSsK3gp+C9YL9QsBDP8L5gvjC94L2Av4CyIMTQxxDGsMUAwrDA0M+wvpC80LugugC4sLaQsoC68K+QkPCfwH0gaVBWQEXwNxAqkB6wAOACf/Pv4s/S78aPux+iD6uPld+Rb5zPh++Db47fev92z3IPfR9pP2VfYw9iD2EfYn9k/2pPYO9573Rvjn+Hz5//mI+uz6QfuM+9H7JvyD/PL8f/0R/pb+Jv+Z////SQB5AMIA/wBRAdcBVwLkAo4DAwR1BM0E8QQjBTsFSQV5BYAFjAV1BW0FjgW9BRQGmQZTBx4I9AjOCcoKdAsVDLQMEg1nDW0NEQ57DscONw/PDzkQrBAgEWgRyhGcEUoRlBDPD8QOzg29DCUMOwxZDA8NbQ1/DZMMtQqdCCsG3QMwAlQBzgChAEcATf+l/UL7oPhN9jb05fI+8s7xufGC8fnwQ/Ba74Xu3+1f7SLtDe0B7fvsE+0W7QHtwex/7Dbs2+ut64Prd+uV69LrS+zp7HHtDO6h7invr+808NjwkfFc8kPzQPQw9f31jvb/9mH3yvdW+AT55vn8+in8cf28/vX/FAExAkADUAReBYAGowfGCNQJzgqaCysMmQzxDCoNVQ2LDb8N/w1ODo0OzQ73DhAPCg/lDrsOcg4sDukNjg0zDb0MKwySC+EKIgpkCawI+QdJB58G4QUkBXUEtwMLA2MCwQElAZMA5v80/5D+2f0V/UT8ZfuE+p35vfjq9zr3ofYP9qX1QvXp9J30WvQx9BH0/PP28xD0PPRi9JX00/QT9VP1l/Xg9Tn2lvb29mb33/ds+O34c/kK+qT6SPv6+7L8cf05/hD/6P+yAGgBBgKiAioDtAMrBJoEBwVxBQYG2wbMB/UIOgpZC5AMXg3dDSMOWg5UDpkO/Q56D3kQBBH3EUASWBK9Ed0QHhBVDygPhg+jEMYRPBNQFP0U6hRfFJ0TBROeElUSgBIPEpwRiBAfD08NOgs4CX0HUgYuBW4EewODAjMBzP9p/h79VPzO+3D77vr/+Vz4J/aw8y3xHe+c7crso+y77Ljsaezh6wbrOOqz6bDpNerx6tXrl+zj7J3s/+si6zjqcOne6K7ozOgt6azpOOqW6sTq4uoJ61Xr2Oud7LTtEe+S8DXywvMz9V/2T/ci+Ob4rPmN+pj73/xY/sz/PAGNAsUD6wT/Bf4GEwgvCWQKmgu9DLYNew4oD4MPug/YD9gP5w8VEDwQahCmENcQ7BDyEOkQxRCvEJ0QcxBnEEIQAhDAD18P0A4jDl4Nhgy4C+cK9wn6CPUH5wbDBacEjAN/AowBnQC9/+L+EP5J/X78qvvW+g/6Wvm0+BH4cPfL9iz2gPXb9Ev0wvNP8/fyqPJv8jvyCvL48fjx/vEX8lbypfLu8kzzvPM89MP0VvXd9XX2IvfL9374LfnP+Wv6C/uf+z/85Pye/W7+PP8GAMUAhQFNAiID7QPjBAQGRgelCAAKRgtxDA8NWw1kDTkNJw3hDB4NUg3aDf8NVw4RDrwNvw08DRQOEA/MD2URbRK5EoETQhP4E9gUlxWYF6AYYhkHGbAXixXLEjMQSg5SDQkN4A1RDscO2Q62DXQM3wr0CJgHqQbMBWEFvASeAzQCAABw/eX6cfhy9qz0QPPv8Unwku617KXqGOnu5xfnF+dm58rnK+gx6OLncuek5gzmyeWf5bHl7uUG5gbmBubV5c/lBuZP5uDmu+eJ6IXpfupS6yfsDe0n7lfv1fBf8tXzVPWt9sT3zfjO+cL62/v9/CT+X/+RAKMBrgK1A7UEyQUBBzgIigneCh8MWw1gDkAPDBC/EJARUhILE68THxRrFGgUShQQFMcTlBNsE1cTSBMsEwITthJAEroRIBGCEPwPdw8ED34O2g0kDT4MPQsoCvoI0AeeBmcFKwT5Ar0BcgBK/zD+/Pz0+/X6Avoi+Un4YPeC9qn1zfT/8z3zn/Ia8q/xS/EJ8c/wofCJ8Ibwj/Ch8N7wFfFU8abxB/KN8hLzm/Mj9LH0M/Wm9Rj2gvbx9m/38PeC+CH5rvlf+iH75Puj/FT9KP7//uT/wgCpAZQCiAN0BHkFdQZoB1MIIwnXCW8KEAvGC3cMLQ38DcEOYg/zD10QuBD4EBoRPhFfEYQRqxHGEeIRDBIxEmcSnhK/EvkSOROUE/4TRxSAFKIUkhRWFBwU0BOOE1oTGhPqEqES+hHREHQP1A0fDI0KXgm8CGEIegh/CEEIgwfwBeEDqwFH/1P98fuo+qD5i/iK9tLznvA77XvqYug1587mwuaw5k/mt+Xd5C3k0uMI5L7kveXz5gToq+jk6MDod+j4553ntefZ5xzocejY6B7pP+lq6dTpiupk66nsQO7Z76DxZ/MG9XL2sPfq+Dv6uPtI/cf+TgC3AeQC3AO0BHcFRAYjBxsIGAkdCggLzwuADBsNvw1pDhkP2w+OEEQR2RFJEqcS5xIFE+oSwhKJEh4SsRE7Ea8QIRBuD6IO2g0hDXQMzQs8C7UKKQqrCSEJiQj2B2gH3wZnBt0FSQWvBPoDIgMsAgsB0v+k/nH9Rvwz+yb6Gfkm+ED3UPaR9eH0UfTw87nzm/Ok88LzxfPY8+3zBfQa9Dr0VPR49KH00PQC9Sv1VvV59a/15fUv9pb2Gveq9zD4qvgr+a/5Lvqu+jj7yvtg/Ab9rf1X/vr+e//o/0wArwAOAXoBBAKnAlkDFATWBIgFOwbxBrIHcQgsCfYJswpLC70L/gsrDCgMCQz4C+YL6QsZDFMMhgy9DMYMtAyrDM8MHg2tDZkOkg92ED4RCRKYEjkT7xPGFLkVNRZXFhQWVRUxFCMTYRLZEWURChGOEKQPWg6ZDLgK3Qg9B/EFAgVPBKED1AKdASAAWP5a/Iz6+Pie97b2wvWx9Ibz2vHx7+vt8+tv6kLpfegW6LXnYOe85gDmeuX75FDlPeZy5xvpbOp66+3r8OvV64Prp+sq7NDstO1Y7ojuUu6x7RPtr+yp7DLtOu6170jxx/Iq9Gr1wvZ3+IT64/xu//UBVQRLBs8HDAkOCgUL9QvhDK0NLw5gDkQO7w1zDQ8NzwzMDOQMHg1MDUkNLQ0ADfQMDw1JDa0NBQ5ODl0OFA6qDQkNWQy0C/wKRgp5CX0IaAdDBh4FBgT/AgwCOQGCAMn/GP90/sz9Of3H/Fn8+/up+0P72vpa+rz5Evl3+OH3Yff09nL23vVH9an0CPSP8yjz5fLT8uXy+vIc8zrzWPOP89/zVvTV9Gj13fVh9tb2Pvey9yL4oPgZ+cP5YvoP+8v7hfw//ez9jv4h/73/TgDnAHkBAgJ6AvQCZgPOAzYEnAQEBWsF0wUxBpAG+wZsB+MHcQgJCagJVAr+Cq0LLgyMDOgMHg1SDXYNiA2kDbANfw0qDboMUwwQDPgLEwx6DLQM6wwkDTMNeQ3IDbgO3g91EfYS3hQOFhwX6hfzF10YCBiGF34WZBVLE00RuA7eC90JdwfmBV4E+QJHAWX/oP3U+3X6oPmC+dT5qPov+1f7wvpa+Y/3wPX281DyDPGs70zulOxj6vXnbuV34y/io+Hy4a7ireOs5Lfl1OYB6I7plevx7XHwwfK39Ab2xfYs9zj3V/dG9zj3NPff9lj2i/W69PzzhvOD8/fz8PQs9of3/vh1+hv83P3m/zgClwT5BiwJCwt9DHwNKQ6ZDugOEw8fDwoPrw4aDlUNaAx9C6kKAAp2CR4J0QiCCDAI3QeXB18HQAdDB08HZQdrB24HUQcLB58GGgaDBdgEFQQiAwoC0gCg/3/+cP1u/GH7XPpn+YL4yPc99+b2xPbK9t327Pb39vP27vbx9vT2AvcD99P2dfb79V/1uvQ09L/zVfMA86vyZfJH8lPykPIS89LzxPTU9fT2Lvht+a76+vtH/Xj+ov+kAGsB8wFBAncCggJ9AmUCTAIiAtwBlgFZASoBKQFhAcYBVALxArEDhgSKBZAGkQe6COYJ9wrTC1YMmQyQDCgMowv6CkYKhAnUCCQIgAc6B1YHAgg2CfwKMw0eEIsTYhepGwsgjCT1KC0tQTHbNFI3XTheN1Y0Ny98KMcgahgwEKkHvf7z9L7q1eB92JzSps9RzzbRUdTH18/bYuBJ5oft9/Xc/gEHng2lEaATBBRFEy4SlxBXDgILTAZmANr5RvNr7avoPuUW4wvi1OEp4gnjS+QY5pXov+tv70nzvPYi+Xv6ofr0+dX4fvcb9qn0FfMJ8YvuC+wX6ifpo+lJ6+LtBvFG9Jn3Cfu5/qcCuQabCvINcxDrEV4SDBJWERUQRw4PDGgJhAaLA7QAVP5p/BH7Uvoz+qP6v/tz/bX/ZgJLBVMIQgv/DVQQOhKUE2gUrhRfFH4TBhL8D3ANhgprB1EEWAGe/iL8+vkt+PT2Ofbg9f31gvZn93H4gvlm+jL73vtt/M/88fzH/DD8RPsf+tj4hvdG9if1J/Re88HyWfJB8n7yDPPb8+n0JvZq96r42/kC+w388/yy/VP+p/62/mv+5v01/Wj8lvvK+gz6bfkB+an4gPiG+OD4kPmL+r/7Mf3I/moA9AFIA4gEqgW/BsAHqQhtCeYJKQo3ChUK8QnLCbAJtAmuCbEJrQm2CcUJAApyCl8LUwxJDTgO3A5oD8kPJxB2EKwQuBDaEOAQ4xA4EYcRsRHAEb0RsRGDEjQUXRbpGJEb0R1hH5cg5SFjI7cklyUeJcsiFB5SF+IO0gVv/Sr2cu/+52/fw9VtzFzFzcLXxKzKKdJw2cTfbuVp7JD1dAG+DuEa+yNXKLgoZibFIh8fIxuzFRoOaATt+BntNeJF2ZbS/c1uy7jKksuczfrQGdUa2kPgVOcC75z2Wf1RAosFLgfNBxYIRQhKCM8HvAa6BNkB8/7D/Lf7XPwn/oEAygJ3BMIF9gZnCCIKEAyODRQOOQ0UC+oHSQQRASf+bPuY+KP1q/Lu78ztvuzj7B7uMfDQ8q71zPhF/EMAsQRDCacNfhGSFMcWMxjpGAEZcBgiF/EU0xHmDYoJEAW3AKr84Phe9SDyVO8c7b/rN+tx62Ps4u3T7/XxMfR19tD4NvuQ/bH/dAGeAg0D7AJqAsIBBAEvADP/FP7N/Er72vmj+Lb3EveK9hL2wPWd9bf1G/bO9rj3wPjs+SP7WfyA/Yn+i/+UAJ4BhgJJA+0DdATiBEIFowXyBSUGNwYvBvkFsQV8BV4FUwVJBUMFDAXJBKIEtAQHBXIF8gV4BuUGPwemBygIyAh4CSIKlgr/ChELzgp9CnsKmQqzCpUK8Qn3CG4HAQYLBc0EIAVMBqAHgwiWCWAKAgy7DtQSRhevG7YfOiKgI4wk8iXkJzAqLiyPLOgpaCTqHLoUBg01BtX/kvgi8Jjm1NzM04XM7MdDxkLHDsqozU/RAdVe2Sbf4OZc8G768gMTC1wPeBEoEp4SNhOOEz8TrxDMC1cFPf6+95DyV+8+7WHrSOkv54HlIeSt42PkseVO5wnpk+qz63LsIu3i7f/uvfAo80H2cPmx/KP/IgKJBCoHOwqnDeYQYBOSFFAUAhP1EKwOXAwfCqAHkQT8AAP9Rfkb9gX0EvNk80X0O/UD9s72C/js+Yv8nv+wAjgF6AajB9UH+wdkCCAJ7gmKCq8KLwpVCXkICgglCK4IVgnTCewJkQmyCKAHkAa6BfQE6QOGApIAOP6n+xb58fZh9Wv0xfNq81XzcPPS86H09PXc9w36MPwF/l//UAD2AFMBZgFNAfUANgD2/k39efvD+UX4APfx9TD1uPR/9Jf0H/U19qT3Tfkh+yv9Kf/wAFwCiQOGBGkFDAZnBqEGngZyBgQGeAUBBagEawRWBE8EbASGBMgEPQXFBYkGPQfvB6AIMgmeCZwJbQkyCeAIkwhCCN4HaAfuBooGSwZdBq0GBwd9BwoInwgvCbkJUgqzCsIKiQoVClwJaAiIB4AGdAWeBN4DaQNEA6QDagRwBr8J+Q3qEvkXFR3AIeAltyknLWEv8y/RLYgoGCBVFb8JGf7F89nqhOJw2YjPpcWuvY+5mrrQv07Hy87L1ALalN+Q59rxu/0nCfoRWxcNGZQYOhe/FYwUhhITD6IJRQIK+svxOut55lLjZ+EZ4CbfRt4J3g7fSOHE5BLpkO3I8Vb1Lvhm+lj8+v1a/6gA5AFMA4QEYgW0BXsFQAWLBaoG6QijC+kNSQ9lD7IOiw2GDKQLuQpeCQIHkQMx/4f6NfYG8xvxQPAE8C7wkvBe8eLyn/WT+V/+cwPzB54LTg5XECsS4xNCFQIWvxVxFCUSTw84DD4JngYkBOABgP8//T77v/ns+OD4c/lV+j77B/yz/Lf8uPzF/PD8R/2//Rj+F/7h/Wz9Ff0F/T79m/33/QX+qv3e/M/7qvqZ+ar4zffx9ub1z/S588ryO/Ij8qjywvN59Xf3fPmQ+6L9z/9FAtkEJQfxCPcJJQqRCbIIpgd9BkwF4gNWApQAyv4s/dv7Afuf+rX6Sfs5/Hj96f52ADoCCQTkBbIHYgnNCsYLUwycDKsMogx6DDEMvgsXC1sKjQn3CJMIPAgTCO0Hvgd1BxcHmAbxBSkFMgQeAwQC9wASACX/Y/4//q3+t/8XAcUCrARRB+cKvQ/mFZUcPyO+KI8sQy9NMQ4zqzQ8NYczMi5bJY0Zrgw/AbP3ne9I50fdf9HKxey8drkru23BG8myzxnVFdkg34TnnPI3/6sJIxGpE+oSIxGDDzEPQA9EDowLZwbt/4n5C/RW8MDtJ+zZ6trpGOlZ6OjnfudU55bnhuhj6p3stu4Z8J7wWfAH8Mbw+vLW9nD75P9YA0wFlgYwCNkKBw/TE/wXeRpzGqAYuRXkEoUQew5TDP0IRgRi/j349/Kj7zbuTO4X7wTwrvCF8TfzKfaF+sT/JgWxCTMNng9BEXMShBNcFMkUdBRjE3gR0A7KC64I/AWhA7IBEgBy/tT8Jvui+aT4PfiP+DX5zPkj+v75q/lk+Yb5OfpQ+2P8Iv1p/WH9Wv2Q/R7+6f7X/40AAAEfAfwAsgBDAMT/JP90/pf9gfw6+7f5F/iE9iL1EPRA86vyMvLX8a/x4PG08kD0W/bK+CL7ZP1X/zoBKQMdBS0H6AhbCi0LSQsCC2cKhQmsCI8HhAZNBfwDwQJLAVIAbP/w/s3+4f5R/63/LwDOAIIBYgJfA2gEbQU0BrwGEAcqBzQHGQf+BhMHHwfzBmkGugXCBKQD+AK3AtwCDAOWA2IDTQJvAXkARQBPAMMAtwDe/wL/1v5WAGgEqQr6EUQZ/x+2JYUqvC/DNCs50zt+O2o32y/HJhQezhVVDZUDbffV6EzZSMxTwxq/9r5iwPPBYMIKwzfGU80D2Zbnt/YSA4YLfxCaE1sXIhyKIVkmDijgJSQgEhj5D/QI1QNGAP38J/kI9A/uNOjY48LhBeIO5DDmfuev5x3nf+a85oPonutm7xLzLPZR+J356vrV/Kf/8APgCG0N3RBGEk8SUBH5DwoPOA5hDY4L5AeyAlX8+vXe8DXtMevF6YPoEeex5SXlN+Zk6VLuNvQn+nv/AAT+B80Lpw9pE6gWuBhuGYgYYBZpExsQDA0+CtAHkQU3A8wAiP6h/Gj76/o1++775fzc/Wr+m/5q/in+Cf4u/l3+Xf4n/qr9Ov0I/Sr9yP24/pn/cwASAasBHwKLAvYCIgNBA+YCIwIFAXv/yP3H+4j5V/c59ZXzbPKs8VHxOfHF8e7yrPTs9k752vtR/rMA0wKjBCMGXwd5CEQJjglZCaMIaAfgBQcEUALFAH//dP5y/Zr8ifu0+nb63vrq+zv9sf4oADoBMQJQA6QELgayB/0IvQnRCWcJvQgoCPUHGAhKCAkIEwfMBV8EUwM5AxUEcQUQBzUItwiDCNsH1gdQCHMJVAqKChUJSwalAkgAPQBDAwkJsA/8FegZIhygHTwg5yR+K2Qy2TYiNz4ziivrIRIYFg+bBlP9afKr5bXXY8pXvyK4e7Vhtqa6AMGJyNvQs9nx4v7sVvhvBCkRiRwqJVsqHSsHKXklzCETHzocSxg9EnwJ0v4U9Hfr4uVM47TieOK24Q3gat7l3QLfO+IF55Hsr/HF9bj46/oQ/bz/KwMaB8sKzg2PD/8Ptw/lDmkOYw6ZDnUOSQ0LC5sHSAPN/sL6svef9Rn0sfLM8KfuoOx668nrn+2n8Bn0UffX+cz7uv1UAPMDSgiuDA8QtBHAEYsQEA/aDRsNwAw7DBwLMwlyBl8DtwAG/4X+2v6J/+H/q/8O/1P+6v0H/rb+uv+pAOAAJgCH/oP81/rs+dT5LfqX+qT6RvrF+Yv5AfpF+yL9QP8aATcClwKAAh8C0gGKAR4BbwBQ/8795PvL+az30fWP9PbzKvS99Fb1A/bZ9jT4MPrI/Mn/1QKIBYYHxghWCaEJwAngCasJKQkiCKMG4gT3AlUB1v/c/kf+BP7L/XL9IP0L/TX90f30/mQA4QEpAzIE5gQyBXUF5gWNBkgHBAiFCFcIlAebBpoF7ATOBDoF2wWVBq8G7QWTBOkCJQJFAjYDKwQyBG4CAP+P+jH3VfYJ+cb+cgWYC0MPEBG8El0W0R2mKJ40Vj6yQzdE8z++OE4wfSeHHhkUfgfD+NbnI9eLxwe7+LLwriywiLRQuzrDDctY08/b+uW/8dX+9gsNFxMfvyIgI5YhMR9eHbUbqxlvFh0RQQpEAm36wvMU75Hsxesn7Gzs7ets6jfoGObj5GLlbOdT6hzt/O5s787uRu4C7+DxHfez/VME9AmkDRgQ5RG4E3IWgRk6HKAddxzdGPAS+AszBT3/nfpy9lPywO3D6A7kaODq3g3gceOb6CruffNl+Mn8nAHSBoMMKBINF5IaLhxBHPMaARnfFrcUpBI8EFUNtgmEBU4Bgv3A+gX5Pfgu+KH3sfZK9bbzt/KQ8lXznvTF9Yf28/Zp93L4RvoD/SEAXAMYBh4IYgkVCokK0goHC8UK5gkxCHgF+gEY/jP6pPbS86Pxsu/i7R3slurm6Yfq9eyD8Fr0CPgJ+4b9sf/SAQ4EPQYYCDMJTQmWCFoH7AWOBGIDbwKgAcsA6f/w/vr9Ev1//Gv81/xz/e79L/5J/jD+Of6Y/jf/AADMAHcB4gEzAngC4gKgA6MExgXiBrgHFggQCKEH6gYpBosFLQUhBesENQTWAt8ALv/4/bP9//2H/pn+MP5U/Tb93f4tAyMKyxIKHKYjqykOLtIx2jUeOho+MEC2PzQ8nTUuLMEg4xM7Bt34VOwM4WfWwsx3wyu7Y7VNs5K2ib7dyTfWwuFA61vzq/sQBTAQhBs2JaMrai2QK48noSImHuIZZBUzEL8JewK3+kzzuOyE5+rjtuHP4CvgV98J3kjcRNqJ2MfXd9i+2gne4OGB5avo2+vK7x71afwhBTIOfhaoHMEg8CLWI1AkViS4I6ghOR04FhUNEwPV+QfyFOxa54Pj9d8E3Xrb59vd3gjkh+qR8Xj45f4dBREL6RBdFvMaDh7JHx4gVR8OHkEcGBp9F2UUARFnDdYJbQZGA3IA3v2a+3b5c/ed9bDz5vE08NHuA+7P7Rjuv+7B7yfxBvOD9a34TvxNAC4ErweZCtgMcg5lD9IPmw+4DuEMNAqtBogCGv6x+Zb10fGb7u3ry+lA6H7nfudx6HjqO+1x8K3zy/aA+fD7Ev4JAMoBTAOYBEYFQAWcBIgDLgLzAN//M/+9/lX+9f1p/Rf94/wK/Zv9bf5O/9T//v/o/5r/X/9n/47/zv/x/wQA8//I/6n/mv/N/2gAQwE0AhkDrwMVBFwEMQXZBpAJdAxlD4IQpA+/DTwLSQoxCrYK3AmWBo4AjPmS88Xxf/Ql+7gD1gqeD+URjxRcGZAhDy10OadC1EUUQ608YjSuLGwmQiCwF60Kvvq/6WPas87IxlTCfL9yveu9hcHSyH3Tyt+861X28v9NCaMT9R1AJ78tni+mLdEoGiP7HUQZsRQKD8AHC//j9dXtkOd34xjhxN8a37Perd5d34DgBeL24zDm2Og57CvwU/Qw+FH79/0vAI0C5AXICa0NshAhElsSVhEIEK8OcA0oDMgJWAa0AZH80/cC9FTxme8D7qnsTOuN6hLr1Ozu75jzY/fN+tv99ABgBBgIvgvfDgER1hGxEQ0RWhDeD3EP3w68DfsLvwlCB/4EEgNXAZ3/tP2W+1f5L/c49ZLzX/Jz8eHwxvA/8U3y2PPs9Uj45vq2/bAAxAPhBoUJoAvDDD8N4QwPDN8KGAknB1wEHwGX/RD6wPa88zPxL+/D7Q3tLO397X7vc/EE9N326PkQ/c//PgIuBL8FngbZBo8G4QX8BPMD0AK2AZEATf8X/s386Pt3+3H72/tq/DH9uf0Q/o3+J/8HAN0AjQETAgMCiAH+AI8ASgArAEoAbgBhAGMAjgDrAAYCywPyBSUI0Qk3Cz8LvgooCjEKLwo6Cn4JuQbrAtD8Qvhh9XP1LPfT+Pn4cvYc86DxP/Xb/q0N+x3YLLQ2HDwyPno/OUIERmJJb0iPQTA1aCRWEeT+Ju9G463ZpNFvysDDNL51ugi6lr3vxKbPndwd6lv2DQD7BkEMjRFSF2ke2yTpKG4pYSXoHoMXfhF/DZkKBggrBKn+Wvh18kzuEeyA6+Hr8Otn67npcucT5S7jEeKq4fLhhOI04yfkseU96CHsc/E5+FX/+QZEDqsU2xpoHzgjsCU7JnMluSK4HmIZsBL+CmwC/fl48u3rF+c644zgod6o3UbedOCy5BHqx+8k9Yz5O/20AF8EfAhoDJUPNRF1EdcQ4Q/VD1QQRBEbEg8SihFaECIPCw7hDMAL/Al6B/kDov8l+8T21vKH74LsJup66J3no+eJ6JDqaO028an1Sfr0/hgDlgZ/CaEL+gxkDTMNMQxyCvIHwgSEAUb+d/sl+TH3vPWM9NXzvPNL9H/1C/f5+Aj71fxe/kD/2f8EACEAGwDd/5n/GP+v/jz+8f39/Uj+vf5z//3/sQBfAR0CGgPUA6wEIgVyBZwFcAVPBdUEIASHA5wC4wFNAbgAbgAmAD8AiAD2AK0BQQIQAzUEoQVvB1wJIgtQDIMM9gvHCoUJVAi7B/cGWQVBA3gAH/73+wn7pvoN+xv9QQCdBfEMthUZH1InLC7cM783Wju6PCk75zTjKOgZHgmb+lDwoegR4izaac9cxbm+P79bxs7R69095p7reu3Y8Mv2+P65COsOZRGEDhAJMQTMACwB+AIgBZYG8wU9BfUEOgZ+Cb0MGxD0EToSNRF4DlcKXgR4/Tv2eO+R6RTkTN5T2PHSFM/ZzdzPgtQA203i7+my8dr5mAKmCysUZhupIKYjDCViJNci8x+dG5MWoxD/CrEF9AAC/XT5x/ZL9cT0XPU29mn3Pfh4+HX4Hfjr95b3KPcA9jr0IPIf8IfvbvAf8wP3MvuL/9wDawi5DV0TOBlpHswhMiMDIhkf7RosFi8RXwv2BJr98fWF7n/pkual5WfmYugl6yfunfEG9bL4Nvyo/18COwQgBfQE6AMyAvz/iP0o+zH57fc69+n25vYl94r3S/iI+Uf7bv2j/4QByAJpA1ED3gJfAvkBtgFTAYgAX//h/Yb8fvv3+g/7avvx+2n84/yI/U7+Sv9dAGkBdwJfAwgElQTXBP8E/wToBMQEjARNBOQDawMXA8gCqQK9AusCNgNrA68D8gM+BJwE+wSCBSkG+wbnB9sIqwk6ClUKGwq5CWUJHgkYCSMJ1QgbCJwG4ATkAkUBCACM/+L/5QDVApkFRglBDl8UYBssIwAqbS/rMU0xcC06J04gdhijEC0IZ/708gzmg9gvzWjFeMKDw2bHbcyT0CDVCdkI3zXnpPAC+0MDPAluC68K1wjTBjEGUQatBp4GAgX0AscAZf/O/6MB0wQSCNIKcQyiDMwL7wmIB54EIQFB/eH4+/PC7o7pyuTD4BveFt3S3fXfKOPI5nXqUu5y8jr30fzmAtoI4w01EQ4TxxPWE+kT+BPQEwITJhE+DpYK5QbzA80BbwBy/47+iP1z/Kn7mPtb/ND9rP9tAdgCxgNLBHgEigR3BDEEsQPxAs8BWAC2/gj9ofum+jP6X/rz+sn72fwH/oP/TAFiA4YFdQcBCaoJtAksCT4IHQfNBUIEbwJuAFf+a/zW+q/5/vi4+L749fg7+Yz57/lJ+qj66voY+xv77PqP+u75Ivkz+ED3ava89Tz17PTd9Bb1k/WE9uT3gPlv+1f9NP/WAEgCmwPmBEMGfgeTCGEJtgm0CW8J5QiACPkHhQcEB0kGgwVYBEgDQQJqAeMAdgBHACUAIQBvAO0AqAGiAp4DvwTABaQGiAddCDkJ7AlgCp8KigoaCm8JnwiyB7YGoAWHBHcDnAIgAvABKQKsAlYDCASeBEEF/gX5BlAI6AmIC8YMoQ3/DdENdg3GDOMLogrsCNMGNgRdAXD+kfsn+RH3Z/UH9NzyBPJ/8YvxLPJw81T1jPfY+fr7k/2r/lL/qf/m/wAA1/8o//f9Xfy6+n/5Cvl5+cr6ovyw/q0AigJdBEwGZwh+CjEM/QzDDGALAAnQBTsCYv5f+oL2t/I17yTsv+kl6H7nu+fJ6JnqNe1i8MvzMvdO+gz9Vf9zAVUD8QQ3BgEHGgd9BmkFCAS6Ao0BkgCz/83+2v3Y/O77RPvp+tr6AftN+7f7L/y9/FP97P12/u/+af/Z/1sA1wAyAU0BGgHMAGUAGQACAA0ARQBqAHkAhQCSANYAXgEUAuYCrANiBOIEQAWFBasFvgWrBXsFHQWeBPMDJgM+AkwBcADI/2L/Nf9F/3z/qv/d/w8AVQC7ADoBzwFNAq0C1wLjAu0CAAM6A5ADAwRqBLsE7AT0BPEE4QS/BJUEVwT2A3IDzwIFAigBNwBA/1H+bf2k/P37fPsP+876wPr2+lr7+/u1/GL9A/5x/sf+8f4Y/zf/RP8v/+n+e/73/YL9Fv3n/Mv81vzy/CP9hf0K/sb+lv98AGABGAKqAv4CHgMeA/YCxAJ9AiUCuQEzAYgAxf8e/4X+M/4O/iP+Xf6z/in/sv9jACsBIwI4A2AEdAVqBigHmwfVB9oHsQddB/MGWgaVBakEigNjAjwBKwBV/63+Qf7u/bP9hv1r/YD9x/1J/gf/5P/CAIcBGgKDAswCDQM5A1gDcgN7A3EDTAMwAxEDCQP6AvEC2AKaAk8CHALGAVEBvgAOAD//Q/4w/fr7u/p6+U74T/dz9sz1cfVX9b/1mfbn95D5OPvB/OT9pv43/7b/XgAxARgCAQOyAyQEVwRXBEMEHwThA2IDlAKtAYsAXf82/jH9X/ym+xP7bfrS+UX52fip+KD4yvgW+Xn57vll+ub6Yfvg+1380vwr/Wf9ff1d/Qz9m/wA/GD70/po+jz6MfpV+nj6rPrv+jr7o/so/Mz8fv00/uD+hP8RAIgA4QAgASQB9gCeABwAp/8z//v++f4R/1v/qf8SAI8ACQGYAQoCdALLAhEDbAPPA0QExgQ8BcUFLAZtBoYGcgZYBj4GVQa7BjoH7wepCDAJqwmkCTYJiwjBB/QGdwYVBtEFvgV0BVsF9ARMBBADWgF7/3P91fvS+rv6ifsf/e/+fwCSAdoBpwFmAUEBXwHCAU4CEAP8AwcFPQZ6B4AI+AimCGMHWAWyAgIAn/2p+3z6n/kr+dL4evhI+Bf4TvjZ+N35O/vA/FD+pv/bANgBvAJ6A/wDHQTDAw8DFwIQAUsA0P+e/6z/0//8/wwAFgAPAAUA9v/Y/53/R//t/pX+Zv5a/mr+ff52/kb+8/2n/Zf96f2//gAAkwExA6IEsQVeBrkG7QYXBzwHdAe1B/8HXQiuCMMIYQhxB+MFtgM1AZL+E/wW+pv4v/dg9173m/cZ+L74hvl5+of7u/wF/mr/6wCMAkwE/wV+B6IIIwn+CFAIOQcPBuQE1wPrAg0CPgFcAGv/a/5L/S38KPtS+sL5Z/k5+TX5R/l3+aX53vn++SH6GPrC+Sf5Tvhj93j21PVr9Tn1OfU/9UT1JPXT9Fr01fNP8+jyrvK68gnzmPNg9Db1Hfbf9n739PdJ+JH42Pgw+ZT5HPq9+mD7EvzK/H/9P/7s/n//8/9UAKUA+gBZAbMBDQJiAp4CygLuAhoDagPwA6AEgwWHBpoHqwi0CaoKeAshDIwMwAzMDK4MbgwcDJEL2QoAChQJGwgWBwwG+gTgA9ICzQH0AEoA2/+s/6z/wP/Y/+H/2v/T/9b/6v8fAH0A5gBQAaIBwQG1AZgBeAE4AeUAdADp/1H/sv4L/mL92fxy/DD8E/wc/DX8T/xb/Fn8U/x9/PH8rf2X/pX/iQBJAdABMgJ5ArYC2gLtAvMC4ALFAqsCgAJDAuIBbQH2AJoAYwBcAIkA1QAcAU8BXAFgAWwBcQF3AXcBXAH6AGcAjv+j/h/+Ff7w/j8AyAH7AgUELQXIBkwJAA0JEsYXuR1vIz8ofiteLcst6izIKlgnICM4HhkZ4xNODhMIOwEd+oDzzO1L6Rjm5ONT4gzhDeBj39zf7OF65Qfqm+578iH13PYO+Pn4CPpK+6n85f2f/rX+GP4X/f77AftL+gj6Q/oA+xf8Wv14/nz/iwADAuMD4wWPB2oIYghiB68FpgOVAXT/NP3O+gX42/Sm8dHudeyu6nPpwOiS6ADpQeoq7GHuhvBy8hT0hvUX9934u/p6/Lf9Z/50/gH+dv0F/fD8Lv25/Wn+NP8jAE8BugJcBBQG0gd4CfwKLgwDDYINpw1wDc8M1gt+CtcI7QbVBIYCFQCX/Sn7/vgr9731rvT584/zbfOG87nzJfSp9Ff1I/YU9yP4SPmF+sD72fy2/Vz+0/5R/9b/ggBDAfwBsgJZAwsExgSJBUwG8AZuB6YHkgdDB74GIwZ9BcUEDARNA6MCAwJvAekAaQABALH/gv90/4f/u//6/0IAiQDcADQBhwHBAe8BAAIJAhoCPAJ3AscCMQOjAxIEhgQJBYgF/AVyBuoGVwexB/8HQghrCHoIgAhwCEoIIQjzB8EHhgc3B+cGdAb4BW8F1QQ3BKcDJwOxAmQCNAIcAiMCQQKzAkwDBgSoBFkFDgYTB64IKguHDoASwRb5GtAeDyIAJbMnMCoiLBUtAy3+KwwqoSfPJF8hwBylFjEP7QZM/q/1H+2a5P/bX9Niy5rElL9zvPu67rq9u4q9esC/xMTKC9Ig2oTiseoy8tj41/4rBOgI5AwSEEMSMBNUE6cSUxHDDzsOyQyqC9UKMgqnCSkJvAhCCKkHFAeZBiIGmwXYBJQDmQHz/sH7XPgb9RfyO+9m7GrpZ+ab407hyt8y343ft+CE4uPkzec96xHvMfN+98v7GwBZBGUIDQwfD2UR5BLQE0QUWRQfFIQThhIEERMPyQxtCjkIYAboBMEDtwK1AccA8v8//6H+D/5z/c38I/xm+3f6SPnf91b2BPX38x/zgfLm8Vrx9vDV8BXxv/Hf8mn0UvZi+Hz6iPyE/n4AmALRBAEHAwmzCvILpQzYDLQMTQyvC9IKtwlQCH4GaAQwAv//5f3V+9H57fc19sP0mPPB8jjyCvI18sryufPq9F/2BfjM+an7of3Q/yICZgSMBmsIzgmzCkgLtwv8CzUMawxuDBwMXAtjCjUJ/gfcBr4FkQRLA+0BqgCX/7X+HP64/X79df2L/cr9Mf7E/m7/DgCTABoBrAFaAj8DIgT8BP8FJwfCCKkKvQzQDiwRzRPiFpgaEx8fJD4pPi7pMuU2yTnrOxs9Mz3fOwc5GTRwLbwlJx0QFEcKjv/L80jnK9u30BzIwsEpvY+5qrYbtCizubTYuBq/yMaPzkTVDduM4DfmY+wG8535K/9AAxQGugdrCP4IxAmcCoYLZQxVDdQNCA4yDlEOgQ4WDxgQBxF4EQoRpA8tDQMK0AbKA3gAwvxy+EPzdO2p537iQN4A27TYQtdt1jfW89bM2KTbad/G46Xo6+1n8x752v44BFUJ0Q2NEc8UuhdPGn0c9R2ZHm8edh0oHLwaShnhF1cWohSJEgUQRg1nCpgHAwW0AooAaP44/Pv50/fj9TD0vfKs8e3wjPBZ8EDwQ/B38BXxRPLb8471OPfB+EP6tvsl/Yf+2/9MAb0CIgRdBU8G/AaVByIIsQghCWUJbwkkCasI6QcTBzsGbAWNBFkDogFu/wf9sfqV+Jz2p/Sc8n3wbe6R7CLrEep86ULpc+kH6h/ruOzU7nPxXPSE9736Ev6KASAFlAjVC9kOdRGLE/0U1xUXFsgVJxVEFAITOBETD64MJgqqB3EFdQPEAWUAef/0/qr+yf5N/yoAXAHbApkEjQaoCJ8KAgyoDKgMbgxZDKUMOQ25DfINkQ0DDXoMLgyJDD4O+BBfFBgYChzzH4cjCSeeKhou4DA+M880/zQyMz0vdClMIn8avxItCxkD4Pkv70zjhNd4zQbGhcECvx29E7vxuOa3RrnHvSzFIs4F16HeGeUD6wPxcvcN/iwEEAlcDDUOxw5ODmoNSgz/CsAJowi+B9sGAQZABaAEMwRXBEAFxwaNCPMJogpMCicJsgc7BtsEWANJAUP+JfpU9WXw/+to6LHlp+Pm4THgy94b3mTe6N+c4iTmLOpn7qvyDPd/+8//EwQ8CDgMCBCpE+UWjRm7G0wdSh70HmEfdB9VH+4ePh7qHMIa6heSFCYR7A3nCsoHZASYAIv8gvja9ODxr+9S7nTtneyw6+vqtOoo60jsFe468F/yYPQy9uf3mflH+xH90v5ZAJYBdwIOA0YDJAP6AiADyAOvBGUFpAWEBVAFIAULBScFhgXrBfQFQQXlAzoC4gAAAD3/QP7X/DH7Yfme9+v1cvSP8zHzLvMi8xXzW/Mj9Gr15faM+G/6tvw0/2wBLwOmBBIGjgf9CDEKFwu0Cw0MFQzJC04L3wqZCmAK7glJCboIUQgYCN0HrgenB8cHBghECFYITghICFwIcQiNCLcI9AgGCbUIBggiB4AGIwbZBWgFiARwAz4CHgFFAFAAWwFCA60FbghRC2YOCRJvFlQbMCAGJasp0S34MK0yWDJIMOQsyigxJNAeJBiAD48EBPgf61HfvdUiztPHwsFDu7m07686rkSw0LXUvOTDb8pu0KrW0t0q5nLvuvj4AJsHXAxPD0QR1BJKFKEVVxZQFkUVRROLEHkNeApFCBMHkAY9BpgFgwQtA/8BUwFLAdIBqgJZA0YDGgIPALj9jfu/+TP4lPaX9BfyVO+m7FnqzOgT6AHoLuhu6PDoC+rn647usvHp9A74RPua/ioCBQYLCsUN9RCIE4IVFheCGL0ZzhpUGwsb1hneF3wVCxO/EI0ORwy/Cd4GtAN4AGX9qvp1+M32iPV69HDzafKL8f/w9vBq8TXyVfOP9MP10/a/9634yfko+638KP5v/18A/wBpAbwBPAIDA/ADywRrBckF5gXvBRAGTgajBugGDQfrBl0GngXTBAUEKwM2AisBBQCm/iH9c/vO+Vf4Jfcw9nD10PRA9M/zm/Pb85L00vV+9075A/un/Ef+8v+7AZkDbAX2Bi0IHQm3CRgKRwpUCjgK7glzCdEI/wcOB/YF0gTGA+MCSwLjAYcBGAGFAPH/kP90/5z/CQCTACEBnwEFAn8CHQPtAwUFVwbPBzIJVwofC6kLHgzMDOMNpA/GEeMTmhX3FvYX7xiYGkUdiyCUI6MlOyaLJSUk9iJYIt8hoyDFHbgYwBGoCW4BvPnK8kXs3OVF31PYi9F6ywXHpsSOxGfGD8nPy3bOKtGm1KDZUODi5zvvd/UH+mT9VQC3A7EHiQuNDg8Q5w+WDugMWgs1Cj4JIQi1BuAE4QIOAZP/qf5P/mn+0P5N/5v/n/9o/yj/Cv8j/0//Nv+H/gf95/qC+Er2gPQJ86zx9O/D7W7riOmG6L3o5umS603tBe/w8G3zv/b5+q//XwSjCC4MKA/TEVkU1hb7GGca2xo9GsUY2RaxFHMSGBCIDZkKRQe3Ax4AzvwE+uL3WfY89Uz0W/OE8v7xQfIu86H0avYm+LX5DftK/J39G/+zADsCaQMnBHQEZgREBCgEHwQiBB4ECQTbA5oDRgMEA+QC6QIIAyADCwO6AjECmgEPAaQARADI/xv/Of4d/er7uPq3+er4S/jH90z30fZw9lL2kfZE91L4rvku+7T8MP6t/zABvAJEBMIFJwdZCD4JzQn6CdoJjQkVCXQIqQe2BngF/QNfArwATP8o/mL92fxi/PH7gPsq+yT7iftN/EX9Sv4e/6//HACVACoBxAFhAgsDqANEBLkEEgV3BRoGFgeDCFsKnAziDgoRBRMGFSsXkxk6HO4eHCFqIr8iyyKhIjoixiH+IHQf3hwZGWgUFg92Cc4DPv7p+N/z9u7O6XzkGt/F2ZnVWNPB0hbTs9MO1NLTp9P71EHY/tyE4uvn6uuF7h7xd/TA+O39GAMjB28JWgq+CkkLLgx5DYEOmQ68DU0MsAotCfAH8QbzBdMEvgPVAgYCNQFVAH7/zP5d/jP+RP45/sH9xvxR+7f5SPg692f2X/XF86nxRe8E7XTrseqW6rHqt+q76gDr5+vS7aHwF/TN93D74v5LAvMF5gnmDc0RTxUYGBgabBtBHLQcuhxHHCkbUBnfFvgTvxBMDeUJhAYrA9b/fPxX+YH2J/RT8vbwJfDH79/vOvDe8NfxLvPS9K32rPiq+oX8Lf6j/94A9wHlAo4D9gMdBPUDdQOzAtIB3wD2/wj//v3Z/KL7i/q0+Rj5qfhc+CX4+ffl9wj4Vvi++Dz5vPk8+rn6Lvux+zn8p/zu/A/9Lv1V/Y39sP3F/c796f0n/o3+BP98//n/cgD3AKcBkAKcA6wEoQVVBscGHweeBzgIvAgSCQYJVAg0BxEGTwXVBGwEvwOFAtsAO/8j/tP9Mf7L/hz/+P7U/hb/wP/rAIcC4AN8BL8ELQXRBZgGrgfRCKEJewoBDKcN9w5CEPcR7BNBFmIZDx0LIOshJiNDJHMl/SaaKEQpAijJJDYgPBuTFnASCA5cCGwBRPmM8HTo7OHy3I/YoNQM0ajNxMpMyaHJhsuPzlTSbdZ72qfeKOM36KXtH/Ng+CH9GQFOBNMGuQg7CmgLhgxnDeMN/w2XDYkMRQs1CqIJiwnHCfYJsQnoCOkHGQe7BscGBQcRB3cGNAV8A5UBxf9O/g/9s/v1+b73P/XN8nHwpO5o7X/skuur6t3pUelk6Szqp+uc7dzvRPLG9Hj3i/rY/XABNgXxCGgMjw9AEnoUQRatF9EYmRniGYcZfBjKFpwUQBLSD2ENuwrEB4cERAEo/m77MPld9+n1qfSt8xLz9/I689Lzo/SW9ZT2pvfk+EP6o/vg/N/9rf5h/wgAowAVAVUBWQE5AQUBugBZAPH/iP8p/8/+dv4b/r79YP0D/aT8V/ws/Ar86Pu1+3D7HPvd+sf62PoC+y77SvtR+1b7X/uc+xb8vfx1/Sv+0P5Z/8j/OwDJAHIBIQLDAjUDYgNcA0kDRgN8A9gDNwR7BIoEbwQ4BCgEcAToBH8F+QUiBgcG2wXJBfYFQwaEBqoGkAYjBnsFjQSPA7cC/wFZAb4A7//p/r/9zvx1/PH8Qv4UAMkBLQNMBLUF7wcWCwoPSxMAF6sZlxtkHYYfISLVJAMn8CcuJxglOiIlHzQcOBm5FT4RgQuuBG79c/YW8LfqJOYF4gne19nQ1WDSK9B1z0rQWtLL1BHXG9lh23DehOKK5/LsHfKC9v759PzK/7UC5wXjCDYLrgxbDWoNPw0SDQMNFQ02DS0N2AwrDEwLfQr0CbQJtgnFCYQJwwiVBzUG2AS0A8YCsgEVANP9+vrb9wr1sfLP8BrvQe0r6w/pQucG5p/l9OXC5tnnMOni6u/sfu+T8iz2Evoi/igCAAaZCfoMKhAsE/wViBiMGtMbRxwQHGAbWxosGcwX6RWEE6YQeQ01ChkHWATXAYX/Nv0E+xD5ifd+9un1sfW/9e71M/af9jX35Pep+H/5TfoI+6/7MvyI/L780PzT/Mr8uPyK/DD8tfs7+8n6cPo0+hL6A/oj+kP6XPqU+vr6i/s8/PL8of00/rv+Uv8CAMQAlQFiAgEDaQO9AwsEVASpBA8FXAWDBXsFTwUSBdoEpgR4BDgExQM/A7QCIQKgATkB5wCTAFkAPgA+AEoAbgCvAPwAVwG0ASUCoQIQA2sDsgPpAwYEGAQPBPEDnAMmA6YCGgJxAckAIwBk/5P+5f1n/R39Ef0w/WX9qf0F/sr+6f9tAXsD9wWdCCALsw1tECMTCBYsGZUczx9MIvsjtySMJNwjUSPdIvchzx/TGy8Weg/XCDAD0f7v+jL2DfAz6ZbiR90y2jnZD9lB2KrWGdVw1DjV09ee20vfHeJR5Hnm7ej563vv4vKD9Wz3IvnP+nD8Hf6t/+UAuQGmAgQEswU9B3oIXwkPCsEK+wvaDcwPDRFuESMRYxDDD5UPmw86D/YNugvLCKEFxAJqADT+vfvz+NL1lvKZ7zLtUuvR6aXo5eeQ55bn++e66MLpIusf7bjvuvLM9cf4nvte/jkBWwSUB6oKRg1JD8UQ0BG/EqATPhR0FB8UWhM6EvsQtw9mDv0MdwvfCWUIJwcUBjMFZgSgA/ECeAJIAlUCdgKIAncCRgL/AcMBnQFiAf0AVQBx/1D+D/3A+3L6H/nQ93n2IvXr89by+PFR8QPx9vAq8Z3xSvIr81b0xfVp9xv5zPpv/Pf9iP8QAYYCtwOmBEMFlAXMBQgGKAYiBuAFVwWOBLQD+AJhAuYBfQEMAXwA9v+W/2z/jf/i/1YAuAD2ADMBdwHcAWsCDwOeAxIEagSZBLsE1QTuBPwE/QTfBLkEfgQzBNYDbgMNA6kCVAIPAtABhwEbAaIALADI/5T/nf+z/8b/wP+y/7L/y/9NACEBDgL5Ar4DbgQ6BWcG/AfCCY4LPA24DjMQ0BGsE5cVNxdqGEQZwxkkGlUaVRriGY4YlhYEFC8REQ6hCqwGHAIN/fz3KPOn7lPq+uWj4XHdJtqv1zfWpdWB1XvVh9UG1njX79k13dXgReQ75/LpxOzl71vzzfb4+bH87f74ANoCuQR6BvkHSQmPCu0LZw3NDu0PphAjEZMRVRJ1E88UnRVzFVkUthIjEeoPAQ+2DZ0LdAiNBGkAofx6+cL2GfQM8cPtb+qE54flduQ/5DPkUeR25OnkJOYu6O7q2+2e8DfztfVx+I37+P5sApoFUQiVCpMMZg5CEBISvhPnFLYVNRaQFuIWDRcNF7sWFBZqFagU0xO/ElkRpA+5Dd0LAgo+CHIGbQQiAp7/F/3K+sn4Jve39U701vJa8RDwDu9V7gnuAO4w7nnu7e6Q71PwLfEp8jTzVvSc9eX2Mfho+Xj6Yvst/Pn87P35/iIAHwHTATUChALlAnUDNATuBIEFugWwBY8FegWXBb4F3gXTBaUFUQXeBIMENgQJBNgDngNqAzoDNgNGA1kDagNkA3cDuwMcBLkETAW2BdYFsQWrBasFAgZ9BtMGyAYyBmAFfATfA5QDjANVA+YCIgItAU8AsP99/3z/nv+i/2f/FP/r/hH/hP8SAIYADAGsAZUC/wN1BdUG2we5CPMJgAvCDRUQQBLyE+EUhRU4FlsX0RgYGrwaMRpqGOkVRRPpELgOPgzuCJEEVf8E+hn18PBH7cLpAOb44VjeSdtS2XHYNNg02ATY39dl2OnZc9yU38HidOXB5w7qwew08BD02/cm+6v9s/+MAbgDOgbYCBcLqwybDX4OcQ+OEMoR1BJUEzwT0RJbEgYSnBHmEK0P6Q3bC9QJ4QcPBh8ErQHE/sf7Bfm09tD0MfOI8Z3vtO0t7EPr8eoW63Tr2Os/7Nfs0u077wnxHPNT9XD3S/kQ++n8wv6ZAIkCbQQoBqEH5QjoCbAKWQsoDBUN7A2QDuIO6A67DpYOew5dDj4OBQ6XDegM6Qu5CnMJQQgzBykGAAV9A5wBgv9p/ZH7APqn+FT39fV79Azz4PEe8czw0vAM8UvxoPEU8r3ysPPY9Cf2jPfs+Ej6i/uw/MD94f72//QAvAFJApMCtgLKAtQC1QLIAqwCbQIaAsUBfwFLATMBLQExAT8BcAG9AS8CxgJbA94DUQTPBGcFGga/BkAHkQegB4YHXwc5BwoHwgZhBtwFLgVeBKQDBgN4AgQCqgFQAQwB8wAXAWYB0AFUAuECfAMlBMAESwXFBUAGmAakBlcG6AV6BQ0FtQQhBEYDKgIDAVUAQQDYANoBLwN0BJYF/gYpCSEMlQ8pE10WoBj6GREbZRzFHcQe4h6/HUgbzxciFLIQZA3ZCbgFugBT+x72hfG37Yrqnee45AXist8b3iPdwdzU3BDdhN1G3nXf8+CQ4hTkaOW25ivozumY63Ht9u4l8EXxkPI29Db2aPiM+l/8DP67/8UBKATTBmUJmgtqDfEOVBC9ESATaBRhFekV3RVMFVMUKRPWEWAQuw7JDJAKFQhyBcICKACv/Wf7XPl397L1CvSK8j/xSfCy74Hvqe/472jw3vBz8SnyIvNg9MX1OPeU+NT5/Por/Gn9r/73/zUBbAKVA6EEnAV3BksHEAjACFgJ3AlDCn0KmQqQCmcKNQrsCaIJNgmTCMcHxwbABbIEnwORAn0BXwAx//r9wvyX+4j6mvnM+Cr4lfcM95v2O/YK9gP2M/aL9gD3jfcU+Kb4TfkZ+gn7CfwK/fD9tv5q/xkA0gB/ASgCsQIMA0EDZwN/A5oDtwPIA8wDwQOyA6kDpwOnA6oDsQOvA7IDwAPQA9oD3gPhA9cDxAOsA48DbAM0A+wCmgI+AuMBkQFIAQUByACcAH4AcwB1AIoAvwAOAWsB5QF0Ag8DsQNOBN8EbAXfBUQGowblBvsG1gZnBtQFMQWnBD4E6QOOAx8DpwJMAj4CsgKnA/cEcAbgB1IJ+gruDCIPhxG+E4IVvhZoF8YX8BfVF0kXLxZ0FCUSkg/0DHAK8AdkBasC0v8K/XT6Nvhh9sH0NPOg8Rzwtu5x7VfsTOtN6lTpa+id5+3mVea35TLl1+S45AflseWe5qnnseiz6e7qf+yC7t7wSfOG9XL3FvnN+rf8zf7bALkCLgQyBfQFwgaqB6YIhQksCpIKvArFCsIKuwqiCmkKDgqECdcI/Af7BucFtgR7AzYC5gB2//b9cPwE+9X56fg6+LX3Qffp9rz2vPYL95j3T/gT+dr5nvpl+zb8DP3j/bv+ff8iAKQAFQF5Ad4BQgKhAvsCTAOTA9QDFARfBL0EJwWRBeoFNQZyBqQGywbtBusG0AaDBg8GhQXqBFAEpwPWAvEB8QDw//3+If5d/Zr87vs++6H6KPrV+a75nfmc+aL5w/n0+Tz6lfr7+m371Ps5/J78/vxe/cD9Hf58/tj+Qf+d//j/QgCJAM0AJgGIAe0BSwKPAscC6gIbA0wDfQOgA64DpgOFA1wDMAMKA98CtgJ+Aj8C/AHKAaQB8wFDAmkCmQLEAvoCKgN7A88DHwRxBLwEBQVTBacF9gU6BnQGrQbVBvkGJwdXB2AHYwdgBzkHFAfqBrUGXQbjBWAFygQ/BNEDcwMUA7ACUQIJAt8B3gH+ATkCgALUAjgDrQM3BMoEVQXaBVoGxAYqB4IHxgfnB9sHwwehB4sHcQdIB/sGiQb8BW8F+ASTBDwExwMxA4UCwwH5ADQAXv9w/k39Cfy7+nD5Lvjo9pr1MfTK8mfxU/Bv78vuUu7r7ZbtUO1H7YrtIe727t/vuvCL8UfyDPPr8+z05vXA9nj3Avhp+L74JfmU+QT6bfrI+hj7ZvvO+0X8wPw//bX9NP6q/iP/lv///1IAhwCgAL4A1gDpAOwA0ACZAEsADwDt/+f/7v/y//T/9P8JADsAkQDtAEoBmAHXASACcgLPAicDbgOXA7EDvQPNA+gDDAQsBEUETgRYBGsEigS8BPUEIwU9BU8FXAVcBVMFQQUdBeEEgwQPBI0D+AJaAqUB8gAzAH7/y/4i/pT9Ef2h/EX8+/vT+7j7u/vW+/z7I/w//Gn8nvzW/AT9Lf1F/T79Hf0I/f/8+/zd/Nb8yfyl/Jz8lPy9/Nz8D/1g/an9AP4//pH+2P4a/1v/pf/x/ykASgBZAFEAQAA2ADUASgBhAHYAfACFAJ4A2wA+AbQBVgL8Ap4DPQTOBIYFKQbPBoAHEwicCPEITwmTCb8J1wnRCdMJtAmiCZAJdQk1CfEIsgh0CDsIGwgQCOoHtAdvByMH1QaPBlsGIgbMBVoF2wROBMgDWQPxAoIC6QFaAecAigBcADYAJgAEAN7/0P/h/yoAiQDZABUBMwE4AVUBgwHKAfYB8wHBAWAB9wCdAFIAAACe/xT/af63/RL9jvwW/Lj7WPvp+nH6//mv+WT5Kvn8+NP4o/h3+Eb4Dvji98X3sPeb94/3jPeM94f3j/en97j32Pf+9zr4dPi++Bn5Xfma+cj59/kz+nv6xvr/+jH7R/tN+1L7Xft8+5P7pPur+5j7hvuA+4b7l/un+7772/vs+wH8IfxJ/IP8w/wO/Vz9pP3s/Tn+hP7d/kX/sP8iAIkA/AB/AfgBegL/AoMDFQSbBBsFnAUPBn4G3wYaB1QHcQeGB6EHmgeRB2YHIwfoBpAGUgYMBsMFgwUoBdsEkARMBA0EvQNzAxwDxwJ3AiQCzwFxAQcBmgAzAM7/ef8t/+P+oP5c/ib+/v3i/dv92/3j/e/9Af4X/i7+P/5R/mP+aP5k/ln+Rv4x/gX+4P22/X/9Uf0m/QD90fym/Iv8a/xT/Ef8UPxg/Hj8l/zK/Pr8MP1m/bD99f1D/pf+6P5E/5L/7P9EAKMAEAF5AeEBTQK5AikDoAMSBJIEEQWRBQkGgAbrBkwHmwfhByUISwhqCHEIeQhqCE4IIQjgB5QHQAfZBoEGKAbJBXgFGAW0BEwE7wOjA1sDGAPUAo4CQALwAakBZgEoAfUAwQCTAGUAPQAqABUAAAD4//P/8//v//j/CAAJAAoAEAAWABUADgAUABIADQALAA8ABwD8//D/1v+9/5f/j/+E/2j/Sf8b//D+sv59/lP+Lv4C/sL9jP1S/RX93vyz/JP8avw8/Bj89vvR+677k/t5+1n7O/su+yf7G/sD++n61/qx+pD6gfp4+mX6PPoZ+vT5wvmd+Yj5c/lN+Sf5Avnk+MP4p/iY+JH4l/ig+Lv43vj5+Cr5aPmx+QH6R/qf+v/6YfvT+0X8sPwf/YH97P1c/rv+M/+U/+z/RQCFAOYALQF7AcUB+gE6AmACigKvAtgC/AIKAwMD+ALoAt4C0QKvAokCRgL+AcMBigFYASoB9ADFAJsAdABwAHYAigCqAMAA9wBDAZQBAgJvAt8CVgO8AywEnwQGBXMFzAUIBjIGPgZJBkMGJgYPBs4FiQUoBa8ELgSoAyoDmAL/AWkBxAAnAI///P59/vv9jP0g/cP8b/wz/AP84PvQ+9P78fsX/FP8m/zs/EX9of0K/m/+5f5W/8v/SAC1ACwBlwH2AVcCpQL0AkQDhQPFA/gDGgRBBFIEXgRlBFoEVQRBBCgEBgTdA6cDcgM4A/ACuAJ4Ak4CJwL/AeIBuwGhAYsBjgGbAa4BygHiAfEBBAIZAjUCUgJrAosCmQKcAp4CmwKVApQCiwJ7AmYCSgI1AhYC+gHbAawBgAFKAQ8B2ACOAEMA8P+a/0b/7/6h/ln+B/68/Wr9Iv3m/K38lvx0/Gj8W/xU/GX8dPyd/M38AP0//Xb9tP33/Tv+jv7Z/iX/cf+0//r/PgB5AL8A7wAXAUEBTQF5AX0BfwF4AU8BQgEDAeMAnQBLAAIAlP9D/9D+av73/XP99vxp/O/7gPsW+7T6Vfr4+aX5bvlI+Ur5Vvlt+Yb5pvnY+Rn6dPrR+jH7hfvL+xz8Zfy2/Aj9Tf2U/cL97v0a/kD+av6H/qf+wP7J/tH+2f7a/tX+yP6x/pv+cv5O/i7+Cf7o/bv9lf1m/Ub9Lv0q/SX9Mf1G/V39i/28/Qb+Wv60/hn/hP/z/2YA4wBUAcsBMAKNAvMCSQOxAw4EZwSxBOEE6ATvBPwEBAUBBfEE4wSzBIwEVgQaBPADrAN7A0QDBwPVApwCYAInAuoBrQGBAVQBLgEQAeAAtwCTAGQAVABHAEEASgBOAF8AeACaAMMA8QAoAWcBpgHhAR0CSQJ1ApwCuwLXAtwC3ALQAsECqgKVAnUCTgIrAvUBxwGTAWwBRgElAQcB3QC1AIUAawBZAFsAYQBiAFwATgBFAEMAVQBiAH0AjwCcAK8AxwDZAPQAGQE0AWMBhgG9AfABGwJCAmUCggKlAtAC7AISAw4DDgMLA/QC6QLLAqwCcgIzAu0BoQFiAR0B2gCGACYA0/99/zj/Ff/o/rr+jv5r/lL+O/5A/k3+YP55/pT+t/7O/vD+Gv85/13/hP+u/9r/AgA4AGMAjwCzANUA/AASASYBMwE3ATQBJgESAfQAygCbAGAAHQDW/47/Tv8M/9H+mP5S/hP+0f2g/Xv9Wf1C/S79FP3+/Nv8x/yz/J78lPxv/Fz8N/wc/P/74fvH+6P7j/t/+5P7m/ux+8v71Pvq+wP8Lfxh/JH8vfzc/Pz8DP0e/Tf9TP1S/Uf9M/0k/Qj99Pzz/On84/zK/Mj8xfzV/PT8Jf1j/ZP90/0J/lb+rP76/lX/pv/8/1cArQAHAVgBlwHTAQQCMwJnApICygLvAgsDHQMnAyoDKgMlAxwDEAMAA+kCvQKNAmICJALlAaoBewFPAREB5gCvAIIAUgAtABgA/v/u/9b/0v/J/8L/zv/a/+b/9f8PACkATQBsAJQAswDPAPMAFwFFAXABqAHPAfwBKAJGAmUCgAKRAqkCvQLMAuMC6ALoAtwC0QLIArQCsAKeApACgwJoAlgCQgIqAhIC7gHNAbMBkgFUAW8BNAEtARQB4gDiALoA+wCUABABqgDtAAsBEwGZATsBRQL+AZ8C2gLKAmgDAQM7A2oDOANsA28DFAMqA/AC6gLuApYCdwJMAu8BugFSAUwBHwHxAOkAuABVAEgALwARAA0AEAAaAL//+/+B/xQAmv8PADMAp/+RALL/fgDc/zUAbwAhAO0AlgBFAf0AnQGkAdABZAJLAosCUwJnAvUBwwGmASAB/QCDABYA0f9e/zn/Cf/u/rL+SP4z/pf9hv33/NL8rPwU/Az8kPtZ+wr7D/u++u/6n/rI+rf6kvqx+nr6svoP+zb7Jfvb+5v7Nvxe/L/8Df3T/Gr97Pz1/Nf8mfym/DP8Evz0+wT87fs0/Cn8S/y3/I38Rv07/Yn9//3p/VH+YP6Y/gv/uP4r/wj/0v42/+z+T//1/lz/KP9O/7b/e/+S/6P/FgD9/8YA6ABeAYABmgHHAccB0gEzAqsBtwHAAQ4BkgGRAFMBDQHIABABxACrADwABQBr/1P/0v4B/yv+KP4E/uP99v2m/R7+zv0C/sr9+v25/aX9AP7M/UL+T/6R/h3/lP+//1cApADhAKABiAFmAmMCvAL0AtgCRAPLAhEDpgK/AmoC3wEIAl4BTgFDAfYAFwH+ADQBeAFeAd8B9AEBAkgC0gHkAZAB/wA6AZwAUgBFAFgAKQBSAJIAQwAmAZkAGQEVAXwADQE/AJ0AdgBxAO0AdAAIAXgAdQDbAJoAuQBeAEkAlf+G/xD/K/+J/j3+pv58/UX+5/2u/jL/uP+vAAcBSAJWA0wFDAZdCKsJswpEDKsMdQ6mDmgPjhAtEFcQ/A8iDzUO6wzEC3gKjghUB7gF+AMDA5kBIwEEAH3/iv77/CH8PPrz+CL3bvUR9GnyefGJ8GbvGu/F7sLuS+9a7+Xv1u+T72bvy+6O7rnuOO+D8K/x6/K69DL2X/i9+vH8Dv/GADACWAMTBGEEYQRsBM8EAAWDBcEF8wVBBlIGQwboBVgFEQV9BMcD0gIhAcT/OP5G/U/8gPs++936FPv9+hD76PoF+yj7hfvj+7v71/u7++b7Cvxd/PT8pv2r/ggAKgFDAkQDrwN2BLoEvgQBBdgEbQQ1BLoDewMtAyEDiAOhA5EExQTsBP0E2gSJBIUDngIrAT8AHv9J/kL9OvxJ+8n6x/pF+pf6ffrV+sD6Zfoi+if5sfhr+FT4X/hD+BD4jPgY+Z/5x/pW+2/8Yv3e/Wr+/f17/ar8K/zS+8770fvK/J/9Z/7w/4QAzQEiA2EECQYWB74H3QdiB+0GNwZvBRgFHAVoBckF8wXdBeoFzQUpBikGAQahBZYE0AMlAo4A+v6Q/eP8vfwp/fL9F//u/8IA/wDiAM0AKQCv/+j+CP6G/WT90f1C/1oCCgavCyAR3BZNHFogXCQFJt8mYCbhJCwjxiE8IJkeDh4VHZodxR3pHV4dERuSF64RFwreAD/4o++V6PHiZd2O2UPW9dTu1bvXaNvk3v7hduS35Z/l4+RF5D/kjeUp5wTqHO3q8DD1y/mj/rEDzAh2DQkSExRcFHgTKREHD8MMswpqCRAIEwcvBpYE8wLxAGH/VP75/GT7qPlb9470wvEp70HtwuuV6z/sbu257hDw6fGS8+b1+fd6+pn8dv5lAF4BbwLFAjAD8wMZBRYHWwnVC+kNjA+dEBARyxAYEEYPBQ6xDAEL/gjuBr4EZQNMAq8BYwE0AdcAMAAZ/1T9MvvM+Lr23fSJ8/TyA/Nw8xf0tPRK9Qr24vYC+Dj5J/qx+vz6yPqP+uP6AvzZ/VMAJgNQBdYG+QejCOEI3gh0CG8HKAaoBMsC5wBa/yH+HP1i/MD7GvuA+t75DfnL93P2KvUl9IPzSfN98+7z4PT69Tr3w/i++vv89/62AAAC4QKnA70E5QX+BgQI9QinCSsKjAqKCmYKcAqSCmoKFQqrCTwJ4wivCIMIBghaB2MG9AQUAzkBx//r/sr+LP/a/6kAnQGUAl8DHwT9BNEFhwY0B8MHzQdcBzYHsgdPCb0MAxILGKseqySYKlUvMzKsM30xJy3HJsoeqhdMEoQO6AxcCyYJMgaXAaD+pfyw+oD3t/D/5jHbXc+MxgrDv8SGy+rTq9q/3vvfkuBm4ujlIOol7Zbtueux6OjlpeU56XrwlPodBfkN7BM3F7gYjRmZGXQZcBjdFVIS8g3TCccGdQXfBToHeQg5CVcI4wVlAt/9wPh388vuzeps5w3lDuQ55A3lkuZo6FDqf+zz7k7xFfMZ9GX0lfRT9db2KvmB/JEA1wQYCb0Mng8MEvITpBXWFpsXiRelFkIVxxO8EuURTRG1EAIQ6w5kDWkLBgltBroDDAEu/kX7dPj09SL0A/ON8jvy6fGR8VrxUfFq8bnxEfJy8gzzCvRr9QP3Ffmm+1n+8QA4AwYFGgYHB/IHzwh/CQ8KPQoPCusJoQkeCcwI6QjrCHYIRgeFBRcD2wDg/hT9avvP+Y/4Cfe99YL0z/PZ8mXyzvFh8Tbx5PDk8I/w7fBF8UTym/N59bv3+Pli/H/+ZAATAr8DOAWjBsoH6AjHCWcK/go6C4ML3gs+DJAMpQxlDMALswpTCbUHFwbEBMQDBwNGAoIBwQDx/yz/lf5J/lz+zf5a//H/YgC0ACABagG3ARYCaQLRAjEDuAN4BJ8FXwfLCasMEA8EEdMR9xG6EfERbBNeFa0X+hlUGxAcuhy/Hf8fmyLtJKklpiPQHq0Xww/JB/8A+vuv+LT2l/Wx9B/zhvDH7P7nweLr3aDZYdbS0xfSYdF50WzSfNTN1zbcSOE35mzqce0g79DvKPDP8K7yGvYR+/YA2AYfDHAQxBOEFoIY0BmMGiQa1xhXFrMSkw59CoAHlQWqBE4E1wPPAt8ABP6D+pv2zfKE79fs8eqI6avoX+iu6KzpUuux7WXwMfOG9e72d/c49/z2Nfc9+Bz6tfzK/+MC9gXICEYLTw0ED1oQOBGWEVARkRB6D0QOUg2fDD4MCQzBCwsLpAmCB6oEiAGK/v37GvrW+OH39vby9f/0SfQT9Fz07/Sl9T72YfYj9tH1rvUy9oD3nfkx/OD+RwEpA44EXwXEBeYFDQZhBtUGVge7BwIIMAhnCKgI5ggXCfgIdghoB+MFGwRBApcAF/8N/k39qvwm/Kf7UfvQ+mj6EPqg+en42/eq9mL1Q/R08wzz2fLf8i7zxfO09PH1hPcQ+ZT6+/sl/Q3+1v7p/zgB3gLHBOgGFAk9C0YN3w7/D5QQshBaEJUPqQ5VDdkLQQrRCKMHvAZpBmYGnAa7BoAGogUfBHIC4QC+/y//HP9h/6H/q/+7/73/0v9TADsBbQJgA78DgQOgApwB+ADWAGMBrwKABIAGFQgECSYJowj2By0HhwYrBukFxAWiBbUF/wWnBsAHLAlvCiYLHAvTCkAKtAmHCdcJbwoaC7sLEgxxDL0M6wwPDegMDQxRCogHJQSmAEX9hPpv+NH2HvVV82Txb+9x7fzrEuuE6gfqyei25q3jaODZ3dTcrt2G4HbkwOjj7CXwn/KJ9Ir2tPjq+u38W/5B/8r/fwAQAoUE8wfjC30POhKLE1QT8RG0DyoNpgpUCIwG8wStA50CqQHTAPD/Jv8+/hn9oPuv+U/3kvTO8ZbvLe7i7a3uN/AR8p7zx/R59dr1Q/bO9r731vj0+Rv7TvzC/Xv/jgEABHIG2wj6CqgM3Q2WDvcOCg/rDrsOig6WDsEO7g73DqkO6Q3ADCoLUAk5B9kEXgLH/0n97vrp+Gr3XPai9Qb1XfSJ87Hy2vES8XTwBPDW7+XvbvBh8dDynvSW9qr4mPpj/O/9Sv97AIkBfgJNAxcE8ATNBcEGsQeICEMJxAkFCgkKzglWCbkI/gdAB40G7AVfBdcEVwTHAx8DbAKoAd4AGgBu/83+Rv7Y/Yv9cv2I/dr9W/75/p7/QQDkAJYBSgIMA80DggQZBXwFyQUGBkgGoQYKB3UHxwf7BwwI8wfMB5oHRQfcBkYGlgXGBNoD/wIuArUBYQFHAUgBNQESAbkAMgCK/9b+K/6Z/Qz9o/xJ/Ab86Pv6+0L8nvwi/ab9CP49/jj+E/7w/ef9Ev6B/hX/vf9eAO0AbQHLARcCXQKJAqcCjgJVAhQCyAGUAYsBugH5AUECeQKSAn8CSwL2AYUBCAGDAAoAgf/6/nP+Af6q/Wv9Wf1i/Xv9lP2L/VL97Px4/Az8xPum+7X72/sB/BL8E/wa/Cn8V/yU/Mz8+/wM/Qj99vzs/Pn8KP10/dD9Kf57/rn+IP+a/yEArAALAR8B9AB+APr/dv8J/+r+FP9g/6v/rf9R//j+x/4Q/xkAnwFlA2sESwTxAokA7/39+4z7Ev3f/xEDvQXeBjUG7wMDAaX+0P3v/pIBEwWdCFQLzwxJDeEMGQwqC1EKywmKCbQJTwpUC88Mfg72D6wQThCfDpILZgf8Aq/+JvvH+Ir3mPc9+C35o/lE+ev3fPV78kvvV+ws6tvolehk6dzqi+z97fDuZu9475bvEPDS8O/xDPMT9Or0TvUB9lv3xvkF/XkA6QMlBugGZgYNBbEDsAKxAusD1gUKCOYJKgukCy4LCwpwCKQGFAXUAwgDmQJiAl4CagJ5AkoC9gF0AbUAv/+o/qn9v/wV/Lb7qfvr+2X8BP2j/Sv+j/7j/hz/S/+U//D/ZgDkAG0B5QFTArQCGgOeA0QECgXUBZAGMwegB9UH0ge0B4sHXwc9B0gHaQeLB70HwAePBysHigbCBekEIgR/A/sCpwJZAgEChwHkAC8Adf/Q/kD+yP1b/en8afzp+3P7LPsX+yj7aPu9+x38bvyq/N38Av0i/UL9cf3H/TH+qP4m/5j//f9OAJkA4wAgAVABdwGAAXABUAEuARYBAgH8APoA9wDeAKwAcAAqAOP/mv9g/yz/Ef/t/rT+Z/4F/p79Kv3A/HD8Ovw5/GX8rvwJ/WL9mf2v/aj9n/2o/dz9Pv7I/nn/NQDuAI0BBwJyAsQCBQNHA4sDywMcBHAExAQVBVYFeQWOBYQFYwU2BfMEtgRiBAUEpAM/A+oCjQIuAsgBOgGgAPr/WP/W/m3+H/7R/YT9SP0O/fP88vwK/Uf9hP3H/Qj+NP5a/nr+ov7g/iP/bP+n/8v/7P8CACwAaAC4ABEBXAGoAeIB/wEJAvsB3gG7AZMBiAGZAbEB1QHnAeUBxgGJAUAB5wCIACIArP80/7X+Q/7h/Yj9VP0r/Q/9//zq/NX8uvyX/HT8UPxJ/Fn8jfze/Dz9nP35/U7+nf7n/jf/ef/J/w8ARQB3AKYA1AAAAToBaQGbAc4B8QEBAv8B4wG8AY8BXwFAASIBEwHxANQApQBqADQAAADc/77/sv+e/57/lv+O/5P/p//G/+j/EAAkADUAPAA+AEAAQgBHAFIAfACfAMMA4wDtAOIAxQCQAFEAFgDV/5j/Xf8r//7+4v7X/sz+2P7e/un+5/7i/tD+uf64/qj+sf7L/vb+Lv99/8j/EgBXAIsAwwDnAAcBBgEDAQMB6wDTAK0AmgCfAL8A5AAsAXMBrAHQAcABkQFBAeIAcwAeAPn/8//5/wYAHQAkACcALwAoACIADgDb/4j/Gf+r/lX+CP70/f79GP5G/mn+hP6C/n/+cv5k/lP+Vv5l/mP+cP5l/mj+gf64/h7/q/9ZACgB6QGFAggDIAMYA+ICkQJpAjkCRQJfApUCzwIZAzYDQwNHAx4DAgOgAjECdQGsANb/M/+5/oL+sP7r/mv/tP/K/5D/Ef9l/qX95Pxi/CL8Cfw2/Hr8y/wP/Wr93f1m/gD/lf8uAJQAugDHAKcArgDKAAsBowE7Au0CjgP5AzUEKATzA6EDGgORAgUCeQH7AHgAIADA/2T/OP8a/wz/DP/v/sH+bf7s/WH9tfwj/Kb7V/tT+3z76Ptn/Af9lv0Z/oj+x/4K/yH/OP9J/1T/iv/K/zIAsQBFAegBfwLsAjYDQwMwA/gCnwJOAvQBtQGnAa4BwAHVAdgB6AHMAZMBQQHRAH0AKgDn/8v/tP+t/7D/lv9v/zf//P7T/rP+wf7Z/gz/Rf9r/47/kP+O/3//bP9x/3b/hP+i/73/2v/6/xYARgB8ALoA+wAnATcBDAG2AD4Av/9T/xH/Dv81/4P/yv/q/+T/n/8+/8b+XP75/ab9av02/ST9KP1l/c39VP7o/mv/t//L/7r/lv9//4L/xP8bAI4ABwGCAd4BJAJYAlYCXwJAAhoC4wGWAV4BEgHRAIkAZABFADUANwAtADAACwDr/7T/b/8j/9f+n/5p/kf+Lv4s/jH+Sv6B/rv+Cv9o/7v/7f8BAP//2P+w/6b/vP/2/18A6ABzAeABNAJiAlcCKQLcAY0BMAHjAMMArgCxALoAzADZAOUA+QAHAf8A4QCgADYAtv8y/8r+hf51/pP+zP4f/2r/of+9/7D/h/9X/yX/7/7T/tP+6/4f/2P/tf8UAGwAuADwAPYA8QDCAH4AOgD8/+L/1v/m//r/HAAlACcAJQATAP3/3P/L/67/mP96/1j/QP8f/xr/Iv8z/0//dP+m/+P/IQBZAI8AowCaAF8AGQDX/6f/pv/P/zEAogAZAXUBqQGwAYIBNwHPAGoADgDP/6X/jP+B/4T/k/+y/+L/CAAWAAEAu/8+/77+Of7i/cn97P1e/uT+eP/t/yMARgAvABQA9v/f//D/9/8aAEEAdQCrAOYAJwFhAY8BnQGRAVEB9gCLACEA0/+e/5P/kf+c/6L/hf9O//j+kv4u/ub9v/3A/dX99P0a/i/+R/5h/nX+l/64/s7+6v77/gz/Kf9Z/6D/AAB0AOIAPwGHAbIBxwHEAb0BugG3AcIB2AHrAQwCGgIcAhgC8wHNAZIBPwHqAI0AOgDk/5P/Rf8B/8z+qP6g/qX+s/69/sL+n/5w/jL+7/3L/cD93/0a/mj+t/74/i7/VP96/5z/x//9/0EAhQC8AOkA+gD/AAsBIQFIAXsBsQHXAeYB3gHAAZkBdQFUATMBCAHTAJgAZQA7ACcAGgADAN3/n/9S/w7/2/6//rr+w/7I/sL+uf6v/rr+2/4G/zX/Vf9g/1v/R/8v/yz/Sv+V/wEAgADyAEIBaQFxAWYBUAFIAUMBSQFSAVgBXgFfAWIBYgFtAYABlAGpAaYBfgEpAbAALwC7/3T/dv+c/8f/4P/V/6D/Uf8H/9L+vP68/r/+rf6L/lr+MP4d/jD+bv7F/hv/Zv+c/7P/vv/A/8f/1P/1/yAAUAB4AIoAiwCLAI8ApgDWABQBTgFmAVEBFgHHAHIAPwAwAEQAZQB+AIsAgABmAFAASQBFAEsARQAnAOz/l/9C//v+6P7//j7/i//H/97/0v+n/23/Of8V/wn/Ef8j/zL/P/9D/0b/W/+B/7//BgBGAG4AeABdACYA6v+9/7T/3f8tAI0A5gAYAR0B+ADBAJIAeQB5AIMAjACIAHUATQArABkAHQAzAE8AYwBeADsAAAC6/3j/UP8//0z/d/+w/+b/EQAgABUA9P/E/57/i/+J/5b/qf/F/9z/7//5/wMAHAA+AGAAfACHAH0AXQAuAP7/3f/Y//D/HgBdAJgAtQC1AJ0AdABQADUAKAAnACUAHgAOAPj/1P++/7//0v/3/xYAHQANAOD/pv9q/0P/Qf9V/4D/o/+8/8L/uv+0/7f/0//7/ykATwBdAE4ALQAGAOr/5P/t/xMAPgBmAIUAlACQAH0AawBWAFAARAA+ADMAHgAOAAcA/f/4//7/BgAWACMALQA1ACUADwDn/7f/iv91/3f/jv+9/+z/GwA1AEMATgBDADsAQQA4ACQAEAAAAPz//P8OACsATgBxAJkAsQC3ALIAiwBpADUABgDu/9T/2P/d/+3/AgAjAEsAZwB3AHAAWgAmAPD/tf+G/3X/cv+N/63/yv/f/+P/5v/d/9D/z/+8/7X/mP90/1P/J/8X/yD/Wf+a/+7/LwBCADYA9/+3/3r/YP9v/5n/z/8GACYANgAzACcAIQApAEAATgBVADoAFQDm/7//tv/E//b/KgBbAHkAbABDAP3/t/98/2P/av+G/7b/2f/3////7v/e/9L/2P/f/93/z/+x/4z/bf9v/5H/0v8mAHoAswDLAL0AngBvAEUAMgApADYATQBtAH0AnAC0ALoAyADJAMsAvQCcAGYALwDv/7b/nf+i/9H//P8rAEcARwAoAPb/z/+v/5//l/+d/6H/m/+S/47/kf+m/8r/9f8hAEAATABEACwAAgDZ/8T/r/+4/9z/AQAsAD4APwA+ABoABwD///7/FwAZACcAFgD0/9H/uv+5/8T/8P8PADYAQwA4AB0A8v/S/77/tf/B/9r/4v/o/97/zv/A/7T/xP/q/xMANgBLAD8AHwAAAOL/5P/0/xYARABWAF0AUwBDADgANgA6AEcASgBFADQAFQD4/+H/4v/v/wYAIwA8AEQAPgAsABMAAwD4//7/+P/+/wIA/v/8/+3/8P8AACIAOQBTAGEATAAsAPX/z/+5/73/3P8BACwASABPAEgALwAWAAAA8//r/9v/z/+6/6v/oP+e/7H/0f/7/woAEAAQAO7/0P+m/4b/jP+S/67/2f8AACcARgBXAFkAUAA3ADUAKQAfACcAJwAyADkAOgBRAF0AYwBmAFIAOAAXAPb/2v+7/6z/p/+n/63/vP/L/9X/0//D/7P/mf9+/3T/df90/4f/mv+z/9X/5v8DABYAJAAkABgADAD///j/9/8IACoAVAB5AI0AkACHAHQAXgBLAD8AQgA7AC4AIQAbABYAEwAXABcAIAAcAA0A+v/h/8j/uv+t/6z/v//P/+//AAAIABYADgAWABoAGgAdABkAFQARABMAFgAgACEAJgA0AD0ARwBXAFkASQA3ACIADAD2//D/7//q/+r/9P///wEADAAYABoAEwAIAPz/5P/Q/8z/y//S/9//8v8LACAANQBFAEsASgBFADMAHAAFAPT/7f/r//b/CgAfACoANQA/ADoAJwARAP//4//M/8L/w//H/9T/4//3/wMABQAJAP7/+v/p/9r/1P/H/8b/x//N/9X/7P/z////CQAIAAwADQASABUAGAAXABUAFgAXACMANwBJAFsAYwBiAFkARQA0AC0AJAAjABEACAD5/+b/3v/V/+P/6//6/wAA/f/z/93/xv+u/5//l/+f/6//y//j//7/EgAcACgAKAApACUAHgASAAsAAgABAAwAEAAsAEQAWwBnAFkATwAzABcA///r/+j/4P/j/+n/9P/2//7/BgAEAAUA9f/m/8//u/+x/6j/rP+2/8n/3f/t//z/BQAEAP7/8//k/9n/1f/f/+3/+v8OABwAKgA4ADkAOwA4ACgAHgARAAIA9//1//j/AAARABsAIgAfABQACQD4/+b/1//J/8b/yf/f/9//MAAUAE8AHgDv/yIA3P+CACoA3ACCAIAAawD5/1UAd/9NAOb/3QA1AT0BtwGJAFEAaP9L/6f/DQB8AKAA3wDKALcA4/+//+f+A//D/iT/WgAiAOcALAAFAM3+A/8l/5L/NgBSAK0A0/8bAI3/jQAxAEABiwCQAKsAv/9wADn/GwCL////YQAvAK0Azf9IAMD/w/+x/0b/LP/N/k//ev9QAC4AZAC1/07//P6r/rr+7f5u/67/HwBEAPgAIwC7AIX/zv9u/zn/oQDL//oAUAB8AEUAEQCQAAIAGQDW/8v/SgB9AN4ASwCK/6//zv7V/9j/LgCD/y7/IP9c/nv/Uf9yAOn/e/8a/17+Wv4Z/pj+C//A/z8AKAB1AOL/TP90/93+rv/a/7QA9ADaAEkBSgBQAND/iv/Z/+f/KgECAdQBxAE9Ae8AWwA/AOb/wwBhAI4AFAAKADoAswBNAcEBIAHJAMP/0v7m/g/+V/8X/3UAmgA5AVMBQwCi/zv+Z/4E/lz/S/9rAJsAjABJAFD/tf/Q/iL/Fv+h/xwA8P+TANn/KgC0/5b/AAB//3AAHQCrAeUATAHtAF0ARgGtAJsBVQGRAWAB4QBtAcgAJwGJAMgABgE+AJoBxgD9ADMAxP/y/pD+TP8Z/yMA4gCjAFQA7f8g/6b/xf4n/+b+E/80/1P/lQBvAFcBMwAVAA8AMf8rALT/BABSAPr/2AB2AOkAEADh/yEAAQDqAEQA3wC4/zoA8P8cAHwAEgAPAfv/eACQ/4P/o/93/1MA0f+QAEMAMQCM/wP/Mf/0/lv/Dv+y/1D/K/84/zT/lP/Y/yQArf9p/+j+9f7E/hP/av+W/8P/vf/S/7b/LACn/9//tf/V/wgAz/9tAL//YADI/+UASwDg/2cAaP9lAGv/QQD5/xcAgQAiAAUA2P48//P+iv/3/1cAdADB//3/4P99/2H/KQAqAKEARgDAAHUApQCOAOD/NgBB/9kAUgB2AUYBKQFzAcIAgwDb//D/pf82AJUA8wBjAbsAtQCZAPn/TACc/y4AGQAUAK8Adf99/wX/iv6I/yH/eAA4AHv/nP8D/r3+RP5B/3D/if/u/y7/tP/s/uH/Sv+3/9v/yf+JAMz/vAA3ABYA1/86ALoAjQCBAfIACQGIAM8ApgA7AHcAQwD9AJEAMQGQAKAAdwCGAG0AFQAAAC3/JwBT//b/3v/1/4UA8P8WAED/9f7g/jT/fv+i/9r/v//i/27/df8q/wP/H/+s/yIAVACbAHEAvQAYAEsAwP+a/6X/4P+pAOMAdAFNAbkAaADC/6H/hwCuAP8ASAFMAHEA0f90ANsADACxAC8AlwAfADEA+P+W/8v/jP8kAB8AigDj/8r/Qf8Y/zD/VP+u/1X/BQDF/9D/Z/8t/4H/+P6N/3X/QP9x/4T/Vv+m/2v/xf/D/47/hwAh//3/F/95/zcAmv/JAKr/NQA1AIkAggCnAPz/6/8iADYAUgAgAM4ApgDLALQAawAhAJr/n//p/8L/bQCfAJAA8f+l/2r/GgAqAH4AlQDB/wEAiv+2/9r/GwAx//v/v/9WABAAbv9HABX/NwAuAIcASwDr/10AFv8BAFz/PQCQAMcAfgEYAJgAav8OAHT/YgBKAGAAhgAgAMcA8P/MALb/ZgCl/wMARgBJALAARgATAV0AXAABAF3/xv+1/0QAtgB0AIMAwv8DAIH/yP/9/7r/IgAhAOz/bgDu/43/BwDm/pT/8/4k/x0AOABOALf/GAD4/gr/av+K/lf/sP8mAFgA+/+3/2D/Qf+Y/ygAvv8TAI8AHADz/wgAYf+G/0wA0wAgAS8BQgGwAHoAMQDY/8n/y/+HACYBdQHGAX8A+f8I/9f+hP/s/7MAZQBGAMf/rP+B/6T/Sf99/3b/Y//L/3f/9P9x/6//dv8T/6v/dP/Q/+H/wf96/5P/4P/K/4EAkQCTAEgAFgAOAIn/IABhAC0BawEyAScBCQBNACoALQBxAJUAnQBJAHwABQC2/2L/0f/+/3EAcQAsAKT/7f6W/0r/bv+j/3L/R/+g//r/zf+X/5b/T/8u/4r/xP8yAFsAiACyADUA/f9oAOn/SwDPAE0A0QCbAKwA8wCCAOkA4ACVAFAAIABSAJP/NgBgAAAA2QDh/8v/5f+a/wwArf96/7T/K/8x/xv/tP4e//b+CQDH/yAATgA1/9f/Cv/K/q3+H//4/5QASwH2AGMAkv/R/8P/CABfAIUAdABdAJ4AUwBqAHsAjABxAHoAmABHABcABgAIADEARQB6AD4AOQAZACQAn/88/0T/6P53/7P/GwCl/6D/Zf8c/0D/9f5R/+r+pv/i/xYAngAoAB8AUP9S/3L/wv9YAKEAwgCHABUABwDz/wQAQQCMAKwAYQDLALUADQDY/7//sP/u/3QAngAOACsA4v+x/+z/yv9JABMAJwACALP/Q/8w/9L/9P9MAN7/l/87/3b/kf/Q/wAAiP8MAJP/yP/q/4D/2f/r/8H/IwAfAOH/JwBAAE8AEgAbAKL/gf/P//X/YwA8AGYASgD0/wAA3v+X/7b/4f/D//H/TwBbAD4AEAD4/47/XP+a/8T/5v/M/zAAPgA1ADYAwf/l/wAAZACwAMwA3gAzAPH/+/8TAHwAtAAlAUgBLQHyAHYA5v98/2L/Jv/O/xQAsAD3AKoAkgCk/zT/yf7J/v/+gP8wAJgApQBuABcApf9T//H+G/8w/6H/AABsAL0AoQBCANj/h/8Z/0f/TP/w/zYAcwCIAC0AJwCy/7L/p/+p/8f/8/8yAG0AgwBJACQA9P8AACgAcgBaAE8ACwC6/8b/s/8hADwAOwAyAML/gv9i/z7/Xv+4//b/PABdAB0Avv9E///+Iv+2/3EAuQCvAEgAxP+B/1T/ef/J/xkAiACmANgAmwAsAN3/Zv9r/3r/5f98ALYA2gDSAEoAzf+Y/37//P8wALoA9wC7AJcAHADm/7j/AQAZAFgAaABEAGYA+//W/4r/bv+k/7r/4P8AAP//w/+M/2//Zf95/9z/LABpAF8AIgDk/5n/ef+S/9r/+P9RALMA4gD1AMIAZwD//6n/Vf9T/5b//f+FANEA4gDhANAAUwDd/2j/3v4m/1v/4v+jAGgAqgBdAAQAwv9M/27/Jf97/+X/8v8vAA8AUgB6AJ8AggA+APP/hP+d/5v/CQByAKsA6ADKAI4A9P/U/2//H/97/6f/MAB+AOoA6ACbAIcA5/+w/2f/a//1/5sAaAFuASEBWQCO/wr/AP/I/8UAZQGKARgBCQBN/3b+k/5K//f/pADfANwASgCx/wz/1f7d/gv/Uv/O/3sAtwDFAGcA4P9U/xj/9/4V/3L/mv8RABcAbwCvAHQAKgCj/0X//f4q/7H//v8oAGUAWgBPAOf/qf9o/27/zf/0/1oAMAAqAOr/y//D/5z/4P/w/1oAQQAXAKb/M/9J/yz/q/8BAD8AFADY/3X/MP8F/8j+Xv+o/zIAWgBaAKAAGwCY/xH/+/5Z//v/lgDtAFoBLQHjAGkA6P/H/7T/EACHANYAEwHjAK0ASQDF/6P/rv/4/xQAHwDa/6f/mv+T/8n/8/8xAGMAhgArAK//GP/f/i7/bv+0/+v/KQBvAKkAZAAtALH/MP8o//L+Mf9X/57/JAB4AJYA1QC/AJgAGAAi/9n+s/7G/jr/KgDnAKsBqwHeAJEAxP9a/zj/Vf+z/8P/GwB3AJsA3QDXAJQAggA0ALr/Cv/U/j//KgAHAZkBvgGIAU0BRABP/6P+j/7g/ln/1v/u/zMAaQBcAPr/Sf+I/nH+ov4s/27/Sv+I/2j/pf/H//3/UQCHANoAigAIAFn/MP+M/zwASgG7AR4C5gE4AZcApP9N/1H/5P8AAeEBUAITApsBngDC/1L/Y/9JALMATQGIAQcBYAA2/8L++v5c/+P/QQBdAEwAnP8M/6H+b/4d/8v/fADXANYAmAAFAKr/cv9n/5z/DQCMAPEAFwHeAIAAEADc/7j/sv/s/xoAewCbAJIAfABPAFcASgBBACwAKQArAFkAjwCyANoAtQB1APv/oP+B/4j/vP/t/w4AIQAkAAUAxv+J/0H/NP8d/w7/T/96/+H/IgAwAFUAPgAtAAkA6f/c/9v/8f8lADkAYABtAJAAzACvAJoAMwDL/3j/NP82/0z/gP/B/wAAFADJ/0j/qP4m/tb9nP3B/Qz+cf6z/qz+g/4I/nv9E/3d/AD9Pv2k/ez9+v0b/jP+Wv5z/qb+3/7s/gf/Hv9P/5X/1//v/wAAEwARADgASQBDAFAAVABSAGQAbgB2AIUAigB6AHgAaQBOACYAIQAoADQAMgAdACsANwAuADEAEAD6/wIAAwAzAGgAngDiABsBZwG3AQQCPAJpApwCzgLiAhcDXwOhA/0DPQSABIcEVgT9A70DhANPAy0D1QLqAuoCBAPcAm8CDQKjAW4BKAEeAZkBeAKdA88EVAVqBTwF2gRnBOkDswPcA0wE3gRfBeIEVwROA2ICvQHhAP7/Uf/P/mv+nP51/hr/2P8EAcMC4APNBAcFFwV/BUgGrwewCekLMg4IECwRShFdEB8PlA0xDMoKJwnMBxUGowQaA/gAuP7C+/D4GPaD80vxbO867mjtCu3X7NTs9exZ7Qbuy+6E7xbwtPCa8cHyKvSu9Vv3EPmI+lX7e/sk+6f6PfrR+ZP5QvkQ+ef4pvg8+G33kPaR9cr0N/S883fzm/Ml9On02vXE9qb3j/h/+X76g/uI/Jz90/4oAHEBvwIGBEgFWgYqB4wHfQc0B78GjAZ7BooGswbIBsUGowYrBlsFcgSpAxoDtQKHAnICewKGAoECcgJGAiAC+wHmAcsBwAHKAc8B6gEKAksCgwLFAv8CLQNWA2UDbAN5A5EDxwMPBFUEoATiBC4FdAW0BeAF8AX/BQ8GHwYoBhcG8AXUBaMFXAX0BGAEpAPQAvMB+wDx//f+K/6G/f38d/zo+1/73fpn+gH6w/nd+Vb6Efv2+/H84v3E/o3/dwB5AbkCNgSYBeIGHwjACBoJDwmCCBYIWgd+BqAFYQSNAocACP6W+/f5xvjv+Hn5QPpn+sD5i/hv9/r2p/fD+fr8QAGNBWcJRAxBDowPrBDWERcTohQRFm4XiBhEGW4ZUBlFGP0W9xQGEsEOegruBVcAp/ph9ZXweu0R7Orri+wB7VTs++mw5hDjq+Cm35LgfeOk5mbqdO138OLyfPVi+PD6Lv0N/lj+m/3h/An9HP4YADMC8AO/BC8EdALb/x39lfpJ+Mf2jfWx9PfzcPNG8zHzZPNq83fzT/NP82rz7fO09ML1Jvek+IX6mvzj/j4BgwNJBZwGKwdXBzkHIwdcB7QHSgi0CMIIbQi6B8UGvgXFBM4DtQJ9ATUAF/9S/h/+kv6T/7cAvQGVAhcDkQMhBMoEmQWbBrsH2gjoCcEKZQvjC0EMJQy4C+0KvwlXCAIHmgVLBBYD3gHrAMn/xP7I/cX8rfux+p35r/jk92T3NPcv97v3MPj2+L35m/qA+y/83Pxr/dz9T/71/pr/WQAXAeQBkAIZA4YDogOgA38DZAM7A/0C0AKFAicC3QGvAZMBngHEAfEBFAI4AmsCtAIZA4MD+QN0BPoEjwVjBmsHsQhBCtYLTA3uDggQ7xCTEaURtBHyEDYQpg5kDeQL7Qr5CcgIMweJBGYC3f+v/W77k/lJ9ijz9O9h7mjw0/Rf/VYF7wuGD2UPMg5ZDP4LyA2LEKYTFxY9F6cXqhfbF/YXjxfCFRISMA0tB0cBLPyB9yP00vBJ7kLscuo86d/n2uZQ5XHj+uBe3k7cdNt/3Kfe7OGf5QnpGuyn7uHw9/Km9IH2OvhN+Tr61vr1+2z9L/9uATADFgQXBNQClgCN/Wj6kvci9afz6PL08nrzMfSe9G702PPf8hTynfGR8TvyZ/MT9Tj3yPmU/Iv/iwJ4BecHmwmyCgsLMQtGC8kLrgy2Db4Ojw/tD4MPnA48DcALYwohCd0HlQZWBSUEdQNcA6YDOgT8BKQF7gW8BTkFpgQ7BEsE2QTKBc8GsQcwCCQIxgdOB8gGagaBBqEGxAayBk8GoQXeBFoEygNwAygD5wKVAk4C4gFDAX4Axf9P/+r+yv6x/nb+z/3//Cj8TvvE+rT6x/rz+lT7P/sG+8T6ePoj+s75vPkA+oX6JfvR+178xvwd/YD9xP0W/lb+dv60/gX/Z/+f/8f/FABzAN0AZgETAuICwAM+BF4EHwToA8ADiAOVA9ADfgQ5BewFhgYIB4wHAQiOCAMJsAlRCpkKdQrFCaAITwcVBisFAAWMBU8G7QZ6BvcENAIM/7r8kfuo++T8Cf42/hH+FP0t/Wr+FgHsBXgKog7XECYRMBCTDlINFQ28DUwPchHkEpoT2BKvED8NWAl2BWwCtgAHADYAOgBa/379rPq493T1B/SJ85LzqvNn867yoPGr8BPwE/Ce8FrxTfIf86HzpPMS8wTy1fC+713v8e8k8Zzyz/Np9CP0W/OQ8iPyUPLW8ozzI/R69In0dfR/9LL0O/UB9uL23ve0+GH5+PmY+jj70fuD/Ez9J/4V/xgAGgEDAsYCVQOdA7kD3AMjBIMEIQXHBVIGsAatBmEG7AWEBVYFcwXFBTIGrwYfB3QHzQcPCDUIUAhtCH8IgwiOCHoIUQgPCMcHmwd6B5UH3Qc/CIAIdggTCEUHYwaTBesEgwReBD4EDwS5Az0DoAIMAsEBdwFOAfUAZgCL/6f+t/3a/CP8iPtO+wj70Pp4+h36f/n++Fr4zfdv9zf3IvfU9sv2ivZ59m/2cvao9t32QPeG97/30vfc9833y/fk9z34zfio+br6gPtR/AL9o/0n/nv+DP+j/z0A7wCSASMCuwJHA80DQQTDBF4FzQUMBh8GDQYMBiMGhwZOB2IIignZCukLxgx5DdENRA7KDkkPyQ9dEAoR0BHUEqwTJRS7E78SQRHMDwQP1g7xDmIPiQ9XDsAMAgokCFcHjAfECY8L6AyiDNAK/gfUBJoCJwKkA0AGoQlEDF4NqAyMCv8H6QWBBDMEqQQTBWsFIwX/Ax8Cs/9c/Xj7//nT+ND3rfZt9f/zXPK68PzuqO2y7PPrd+vW6hrqBun752DnYOcB6Cfpperb65rssuxX7Nvrm+sd7IPtXe8z8ZnyVfNJ87HyEfK88fXx3PI/9N71gPfS+Mb5fvr8+pX7S/w2/Vr+f//IACYCiAPPBM4FngY/B9YHfQgdCaUJHwp6CuoKSwuIC5ILcgtfC0MLLQsBC8QKgQpJCg8K1AleCa8ICQhlB/wGpwZgBgwGtAVHBa8EJgSJAxIDwwKLAjwCwgFHAcQAcABvAJoA0gAOASgBIwEJAdYAjABOADgAIwArABEAy/9O/83+Nf5+/dP8AvxO+636K/q1+UX50Phl+Pf3jfca97r2ZPYy9kz2U/al9gP3YPev98T3tveZ95j3qvfW9y34kvj2+G75yPkv+pT64PpB+6L7KPyg/BP9i/0T/rj+cf8zAPgAxQFxAkID+AOgBEoF5gWNBhcHtQdXCAEJwglsCggLbwu4C+MLBQwbDD4MdAyrDOgMEg0qDRsN9wycDDEMpAsxC8IKYQo1CusJlgkSCWsIvQf/Bj0GvQVABeUEmQQnBLkDGAOyAlsCKAIoAioCPwJJAlUCZAJ4ApYCvALaAgEDBgPzAsMCJAOLA7MD4gO9A5IDTwPaAn0CFgKBAbkAuf+K/lj9PPxl+0r7Yfu1+wr8sPvj+i359vbM9KjyefHh8Lfw6vC38AHwp+7p7DHrzukG6QDpo+l+6oDrbOwW7Y3t7u187ibvKPBL8YryAfRe9cD2Efgu+Uz6UftQ/Dn9Cv7q/sb/swDSAeMC9wPYBGMFuwW3BYoFcAVfBaEF/wVpBtgG8wbrBqkGPgb/BcwFzAX5BSMGbAZ3BmQGXgZJBkwGVwZ1Bo8GnAaNBmAGJQbIBYUFPQUJBeIEnwRpBAEEiAMEA2gCBgK4AZkBtwHTAfcB7wHdAcABWQEfAe4AyADQAPcAAQH6AMwAVQD7/5T/Of/0/rT+dP4X/rT9Of2h/DD8uPtW+zj76fqw+nj6L/oF+sb5evkq+fz4w/iY+Ib4ifib+Kz4w/jY+Pz4G/k7+Ur5bvmL+av54fka+on6BfuM+yf8pvwG/Xj9zf08/rT+PP/n/4EAUAEWAt8CsQNhBCAFqwUmBowG3wZDB6YHCQhwCMYIEglHCWEJcAlzCXwJfwmHCYgJhwmOCZAJZQk1Ce4ImQhRCB8IGAgWCCIIIggJCLgHSAemBvkFXAXcBLwEwwQRBYEF9QU4BnoGLwa4BUsFzASzBGsEpwSNBJsEDgSSA5cCqwEpAaoAWQHIAYkCCgNAA90CmQJBApwC6wOTBVcITwrPCysMNgu/CZcHngU0BEYD6wL5At8CTwL+APL+SvyG+cL2lPQx81byKfLs8ZrxBvEQ8EHvi+4z7jPuf+7t7kjvo+/W7/vvB/BT8OrwqfGT8oPzVvT29Jf1MPbu9qn3dfhf+Rn6uvoS+0f7fPu1+xr8ufx0/fj9V/6S/pL+hP5p/mf+i/7N/jz/v/8/AMYAOAGjAfQBMAJ/AsoCOAO4A0QE3gRcBccF/AUGBgIG6wXWBdsF8AUUBj0GYAZqBk8GIwbfBbEFkQWOBacFwAXIBbQFewUkBb0EPgTWA4cDRwMaA/oCzgKiAmMCHgL0AdIB6gESAlcCkwKsArQCnAJ9AmUCSAI3Ai8CFALdAXwB7ABOAJz/+P5p/gf+0f2o/X79Rf0B/bH8VfwC/Nv72vsE/B78PPxC/Cz8CvzJ+5z7dPtk+1L7Svs6+x37FPv/+gX7H/tH+377x/sB/DX8Yfx+/KT83Pw2/bv9S/7G/kD/lv/i/xoARgCSAN4ATgHHATMCngL3AjYDfQOwA/YDUwSRBOgEFwVDBX0FpAXrBSgGYAaMBpkGqQaqBpYGiQZqBl4GWwZbBmoGeAaPBokGjwaVBpYGrAbNBusGBQf5BssGkwYvBtUFfwUwBfsEgwQcBIcDxwIcAi4BfgDZ/2b/aP+d/y8A4ACUATICtgIwA6cDRQQfBSsGSQc+CBUJjgmwCVYJyAjmB7sGjgUbBNoCjgFjAHv/l/7a/Sv9X/yD+4X6bvl1+Iz37PZv9h724fWQ9S71o/Tz8yXzcvLR8XPxRfE88TzxPPEz8SHxJ/E58XDxyPFN8t/yYfPV8yX0X/Sk9Pn0gPUt9vH2vvdP+Mn4Cvki+VH5hvkA+q36g/tp/Df92f1J/pr+2f5G/8//mACFAWACLAO4AxEEVwSWBO8EYgXYBWEGvwbuBu4GqQZsBjQGDAYcBjgGbQapBrsGsgaMBlIGLAYCBgYGEgYRBg4G4QWkBVUFCgXbBLwEsgSkBIoEXgQYBM4DhwNBAx8DJAM9A3cDoQPKA9cDwwObA1kDHwPZAp0CTwLrAX0B9QBoANj/Sf/K/mH+Dv67/Xb9PP3y/K38aPwm/PX70Pup+5D7hfty+2X7YPtk+4D7pfvS+wX8Ovx1/K385Pwj/V/9mv3R/Qf+O/5r/pD+w/76/kX/oP8HAHsA7ABSAbABAQJHAoYCxAL1AiQDVgOFA7YD+AMzBHIErATrBBoFQwVmBYIFmgWfBZ8FogWkBaEFpgWsBbwFzQXYBd4F6AXtBecF5QX1Bf4F/AX7BfYF6QXKBaMFfQVLBSkFJwU2BV4FlgWkBY8FZwUpBesEmwS9BNoEFwXABEcERQPVAXsA9P46/gD+PP5Q/88AagKuBNIGlglrDO4OihHzEnUTWBLkD30MNgjMA9j/ofwj+qz49Pe49433d/dS9yz36PaZ9lz2vPXH9FjzjvGm76vtMOx364nrkewz7hDwyPFP82L0EPVw9Zf1pvWI9VH1EPW09En0+/P08270QvWB9iL4yflJ+3v8T/3N/er9y/2h/Vz9F/3B/Fr86vtx+xD72/rW+gr7bfv1+4L89PxQ/af95P0l/nf+3f5d/+v/hQAkAboBUwL1ArEDfAREBQcGsgYzB3oHlAeRB34HVwdABzAHPAdOB2wHlwe3B9MH6Qf1B/AHzAd3B/4GYQahBdMEAwQ0A4MC6AFsARYB0gCyAJMAhwBnAEAAGADV/5H/Qv/r/p/+V/4B/sD9jv15/X79p/3w/SP+V/5u/nX+VP4l/un9oP1b/RP9+PzV/M/8w/zA/Kf8qvyk/LL80fzv/A/9Dv0y/TT9W/2E/bX9Bv5h/tD+Qv+y/wQAUACEALYAzgDlAOYA0gC+AI0AdgBXAEYAPABGAG0AlADPABcBcQHdAWkC/QKWAxkEmQQJBVIFgAWKBYkFiQWHBXsFcQVhBUYFLQUOBQYFBwUJBSAFOQVeBYMFpAXQBQkGRAZ4BqYGmAZ9BjUG0wWNBTEFAwXoBOME8QQXBUEFngX6BUwGowavBqMGCwZPBTwEAQO3AaYA2f9V/zf/K/92/9j/eAAwATwCgAPiBCMGNAcPCI0Ivwi1CIkILgjEBzEHmQbZBf4EFwT/AtcBqwBv/zv+H/34+wL77/nn+PP3/fYY9jP1ZfSb89zyEfJR8Xrwqe/z7nnuRu5q7gjv7u8h8Xjy3/NL9Z726vcP+f35sPoU+yX73vpV+rT5Ffme+E74Mfg6+Fz4m/jk+Dz5ovke+qP6K/um+w/8XfyO/LH8yvzv/B79VP2N/br92v36/Qn+C/4L/hv+R/6a/hD/oP89APwAtQF9Aj0DAgStBD0FnQW6BakFTQXYBD4EqwMcA6YCUwIbAgkCGwJVArECGQOOAxMElgQUBXcFwAXeBc4FqgVeBQgFnQQ4BMQDZQMOA7oCegJIAi0CFgIWAhsCIQIlAhMC+wHNAZYBWAEdAdMAhQA5ANb/dv8A/4L+9/1e/cb8MPyt+zf73fqe+oj6i/q3+v36UPu8+x38jfzp/Dr9ef2h/cz97f0P/jT+YP6l/vb+Wv/E/zIAnwAOAXYBzQEdAlACbwJzAlsCNgL7AcIBiAFaATkBLgE5AVQBggHAAQkCQAJ1AqMCxALlAgEDGgMuA0ADTQNUA1IDVANcA28DewOIA6oDxwPgA/wDFQQ4BHEEsgT5BEUFmwXsBSsGZgaQBpUGgQZeBhcGyAVcBa0E+QNqA8ECVwL3AZ0BegFgAXIBbQEpAdUAYACM/9r+8P1Y/SP92fxc/eX9yf70/wcBngIJBJMFNAeZCN8JvAotC04LzgoaCjUJOAhAB1EGkQV/BIcDVAL+AIj/2v1N/KT6Evmt93D2VvVU9Hfz3PJs8kfyYvKc8tby3/LH8mXyy/Eb8Unwiu/t7mruQO5t7t3uwe8G8ZPyZfRb9m/4dfoh/JT9q/5U/6b/r/+a/1D/+f6M/gn+jP0R/a78h/x0/LP8E/2o/Wv+Jf/y/68AWAHwAWQCwQLtAtEClAIkAp4BGQGNACkA0/+i/5T/nv/M/woAZgDJACwBlgH5AVkCpALXAgIDHgM+A1gDdQOYA6MDtgOrA3sDQAPrApMCNgLvAbgBmAGtAdoBOQLHAmQDHATXBIwFJQajBvAGBAfZBnoG1QUVBT0EXAN6ArEB/QBvAAgAtv+S/4D/j/+T/6n/n/+M/2//Of8L/8T+i/5E/iH+6/23/aL9ef1p/VT9Sv1J/U/9Sv1N/VX9Yv12/Zf9z/0H/l3+qv4a/4f///9vAMgAKAFeAYcBpQGlAaYBrQGbAa8BpQG5AesB/gFTAooC5QJTA7UDNQSTBN4EFgUSBQEF1QSGBDUErgNQA+MCgQI+AvkB+gHiAfIBHwJGApYC5wI5A5oD5QM5BIAEtwToBBkFPwVsBYMFjgWOBV4FNgW9BFAExQMhA6gCEQKsAUsB9ADAAJMAeABwAGgAbQBsAG0AcABWACcA5f+T/zf/3v6T/nL+Xf56/rD+GP+g/1IAIAEMAhcD+gPoBI0FDAZOBjQG+QV7BcQE9APgAtQBqQBv/1n+MP1D/E77ivre+Tz5vvhJ+Or3hvcY9632RPbJ9UL1yfRZ9OXzd/MJ85/yQfL48cjxv/HO8fjxUPKx8jrz0vN99FP1OPY690b4U/l5+o37mfyu/aj+r/+cAG8BPQLfAoUDCgRiBKwE0gTlBPYE5ATABI0EQgT7A6gDXgMiA+YCvAKKAlYCIALcAZYBQQHvAIYAFACW/w//h/4H/pj9Q/0R/Qr9Mf13/en9dP4R/7P/UADxAH8BAgJzArwC+QIUAxEDDgPwAtsCzgLKAsgC0gLaAuAC6QLjAuYC2wLVAsUCrwKdApYClAKHApQCmAKrArsCxgK1ApcCYQISAq4BLgGmAAAAYf+3/hj+hP0B/an8Xvw8/ET8U/yH/Ln8+fxI/Yj91f0a/mL+p/7d/hz/SP93/7H/2f8HACoASABuAHwAmwC2AMEA1wDtAAQBJAFHAXMBtQH8AVMCugIlA6gDNwS2BDYFjQXjBSAGOAZSBkQGLwb/BbcFfAUxBdoEkwQ4BPMDtgN7A2gDTANLA1IDVQNhA3ADbwN4A3sDegN/A3IDewN0A00DIwPbAoYCLQK9AVcB8gCZAEMABQDb/7L/r/+i/73/3P/5/ygAQQBeAFEALwD3/4H//f5j/sv9O/23/Fn8Dfz6+/b7M/yW/CP97v3G/tb/3QDiAd0CoQNOBLwEAgUeBQMF0gRxBAgEdgPDAhACLQFdAHb/k/7K/fj8RvyU++/6WfrC+Tb5tPg9+M33b/cr9/H2tvaN9lX2GPbd9Zf1SPXv9I/0LvTL83TzMfP98vHyDPNM88jzafRC9UT2Wvek+AT6bfvj/D/+nP/KANUBvQJqA/8DWASQBLYEtgS2BKwEmQSOBH0EdARwBGkEswTxBB4FTAVqBYIFgQV5BVAFEwXPBIMEJQTHA2ID9QKYAjYC3QGXAU0BIQHzAM8AvQCiAJcAiwCLAJ8AvgDnACIBXgGiAfYBQAKXAt0CJANaA38DmwOlA5oDhQNiAy8D9wK/ApoCcQJfAl8CawKBApwCvgLgAg8DMgNeA3IDiAOIA3IDTwMTA8QCcQIMAqMBOgG4AD4Asv8o/5b+Af5u/d78WPzY+2j7DfvA+ob6a/pm+ov6zvod+5D7B/yS/Bv9iv0B/lL+oP7d/vr+H/8i/y7/Of9A/1r/ev+u//v/TQC2ADABpwEtAqsCJAOUA+4DTQSjBOcEJwVYBXsFmgWrBbAFpQWaBYsFYgU0BQEFwgSCBEQEDwTnA70DqwObA5UDnwOnA6cDowOJA24DOgPuAqECMAK9ATwBtAAwAKv/NP/X/oz+Uv4p/hf+Ff4c/jP+Tv6A/q7+1f78/hz/MP83/y3/FP/k/qP+Wv4C/q39Sf35/K/8ePxc/GH8kvzg/Fz98/2p/nD/PQASAd0BngJDA80DPQR8BJAEcwQmBKcD9AIeAhYBBADY/pz9ePxH+0f6ZfmX+AT4ivc99wv3/PYJ9xX3Rvd697D35PcE+Bz4I/gc+AX44ve494P3UfcY9+P2xPak9p72pPbL9gn3cvcC+Lr4lPmK+pH7q/zT/f3+IQA2AUwCPwMfBN0EewUGBmAGmwa7Br4GuwaWBm0GPQb+BcAFeQUyBfEEqgRrBC0E9gPTA68DiANtA0kDKwMOA/QC2QK7ApwCfAJSAiIC8QGwAYABTgEeAf0A3gDTAM0AygDaAO4ABgEgAT0BXwGGAZ8BtQHHAckBzQHNAcYBvwG1AdQB8gELAisCUQJwApwCyALqAhgDPANiA4ADmgOnA6sDmAN6A08DCQO2Ak0C1QFOAbgAGQB9/9b+PP6z/TD9yfxs/CD88vvV+9P75/sM/Ez8nvz4/FH9pf30/Tj+eP6r/tb++P4O/yT/Mv81/zj/Nv84/zn/QP9G/1r/eP+g/8v//f89AIMA1gAxAZQB/gFmAs0CMAOHA9UDDAQ1BEwESwRYBEYEIwT8A7oDeQMwA+YClwJLAg8C3QG3AZ4BlgGQAY0BlQGiAb4B1QH4ARsCOAJZAnECfQKEAngCZwJMAiUC/wHEAYUBOgHnAI8ALADJ/3L/Jf/h/qL+bv5D/hv+Af70/QL+Gv42/mf+nf7S/g3/Sv+R/9f/HgBwALoADAFKAYcBwAHuASACRgJwAocCmwKuAqkCmQJyAjAC3gF5AQQBiQD2/1b/mv7R/Q/9Q/yK+9b6MPqp+TD5zfh3+Df4CPjW97b3nveA92z3VPc99xj39/bT9rH2k/Z89mj2XPZl9oX2rvbu9kH3rfct+MH4Z/ke+un6vPuS/GX9Nf7+/sD/bwAfAboBUALTAkgDtAMEBDgEXQRxBHwEcwRhBEcEGwTmA6gDZgMvA+4CvgKOAmcCTgIyAhwCAwLwAeEB0gHHAbgBpgGQAXcBXQE6ARwB/wDjANEAyQDLANgA7QAIAScBSgF5AaIBzwH8ASgCUAJqAoICkAKQAo8CigKCAnsCeAJ6AnkCgAKKApACnwKoArQCuQK4ArUCpQKJAmoCOwICAsMBfQE8Ae8AoQBVAAIAs/9o/x7/3v6k/m3+Q/4X/vz96/3j/e/9+v0P/jD+Vf6D/rT+5f4U/0P/cP+V/7L/wv/Q/9n/z//F/7j/qf+l/5//pv+u/8H/1//5/yIAWgCWAM0ACwFHAYcBuQHjAQkCIQI0Aj4CMwIqAhUC+AHeAbgBmgF7AWMBVAFDAT4BNwE4AUkBXgF0AYsBoQG8AdUB6wH1AQICDgIXAhsCIgInAiACFAIBAucBwgGdAW4BQAELAdgApABpADUAAwDf/7//r/+k/6H/qf+2/8//6f8QADQAUgB7AKAAxADiAPgAEQEmATkBUAFfAXwBmAGzAccB4AHjAecB8QHkAdcBrwGMAV4BHgHTAIIALQDG/2X/7f6J/hj+qP1H/eD8dfwK/Kb7Tvv2+qT6YvoU+tT5iflW+SL58vjK+Kr4mviP+H74ePiO+Jf4qvjV+AT5RPmC+dT5MPqO+vL6W/vL+zz8p/wc/ZD9+v1w/tX+Rf+g//j/UgCgAO4ANwF4AakBzAHkAf8BFAIgAjACMgI/AkMCTAJXAmECaAJuAnECcgJ1AnECdAJlAlQCQwIkAg8C8QHTAbcBpwGUAYgBggF8AXYBdQF7AYIBjAGQAZcBnAGfAZ0BmAGRAYMBdQFnAVwBTQFBATgBMQEtASgBMQE3AUEBUgFgAWwBaQFcAUIBHwHrAKwAZQATAL//Xv8D/6b+R/7r/ZH9R/0E/dH8sfyS/IX8g/yQ/K380/wI/Uj9kf3m/Tr+mP71/kz/q/8AAFYApwDlACYBTgFwAYYBjgGVAYoBfgFuAV8BUQFHAT0BOQE3ATkBPwFJAWgBhAGjAcQB3gH+ARgCLQI6AkMCSwJQAksCQwJAAjICIQIPAgAC9wHqAewB6QHqAfQB/QEKAhcCIwIyAkACTgJeAmcCbQJuAmkCYQJUAkECRQI+Ai0CFwL6Ad4BtwGIAVsBKgH9AM0AoQB+AFAAHQDx/87/pv+J/3b/eP9+/4r/pf/F/+P/CQA7AHUAtgACAVYBoQHmASwCZAKWArYCzwLdAtsC1QK0An0CNwLXAWgB7ABmAOv/Xv/P/kP+pP0a/YL8+/uD+wn7ovpD+vr5uPl8+UX5LfkV+QH5+/j7+AH5D/ke+TP5RflQ+VD5VPlT+Uj5Qvk++Tz5O/k++VH5cfmi+ej5RPqk+h37mfsi/LP8M/3E/Uf+zP5H/67/IQB8AMQABwExAWUBeQGHAZcBmwGgAZgBjgGPAYkBhgGIAZABnwGqAbYBwwHTAeQB/AEWAjMCUQJsAo4CpwK4AsMCyALRAtICygK/AqcCjgJwAkgCIgL3AcYBmgFsAUgBIgH6ANsAvQCjAI4AewB1AHEAcwBuAG8AdABsAF8AUQBDAC0ACwDm/8D/i/9K/wL/tP5f/gn+sf1n/Rr90PyV/GL8PPwe/Ar8DvwX/C38VfyO/NL8GP1n/b39GP55/tr+P/+f/wAAXwC4AAcBTgGKAcYB8wESAi8CPQJLAlACUAJMAkYCPgI6AjsCOwJDAlICYwJzAooCqQLHAukCEgM9A18DggOpA9AD7gMJBCAEOAQ/BEMEVQRQBDwEJwQOBPMDzwOuA5MDbQNMAzMDHAMPA/8C8wLwAu4C6ALjAt4C2QLRAscCuQKmAoMCXAIlAvABsQFgARYBwgBvABoAwf9y/yX/3v6l/nf+Wf5D/kL+V/5x/p7+2v4l/3b/xv8aAGcAuQADAUIBewGjAb0BxQHBAbEBkAFlAS8B8ACpAFMAAgCr/1T/Af+n/lv+CP7A/Xv9QP0R/Zf8Pfzy+6b7Zfse++r6ufqR+nr6cPpq+mv6b/p7+pL6r/rV+v36IvtS+277nPu7+937/fsZ/D78WPxv/Iv8p/zG/Or8FP1E/Xv9uf3+/UT+iP7T/hr/Y/+l/+b/NAB5ALgA8gAeAUMBWQFgAWgBXAFWAUYBLAEYAfgA3gDHALAApACkAKsAvQDQAO0AFgE7AWUBlQHAAfsBJwJUAnsCkAKNAoYCdwJYAjECBQLQAYYBNgHdAH8AKwDR/4H/M//n/q3+ev5d/j/+LP4o/i3+OP5E/lf+aP57/oL+gP6C/n3+dv5i/kn+Mv4P/uX9wf2X/XH9UP0x/RD9/fzn/On87fz8/CH9Sf2C/cf9Ev5l/rz+F/+D/+v/TAC1AA4BdAHJARQCZQKhAuYCHQNLA3YDlgO0A8sD2gPsA/MD/QP/A/oD/wPzA+ID0wPBA7IDpAOYA4kDgQN5A3gDdQNuA2kDYgNcA1YDSwNGAzUDIwMQA/kC4gLBApkCcgJAAhMC4QGuAX4BSAEYAegAvgCYAHkAXwBPAEsAUgBeAHAAgwCeAL8A1wD+ACABPgFbAXEBgQGMAZABkgGMAX8BdQFqAWQBVwFNAUEBMwEsASEBJgEsAUABVAFmAYUBmQGvAb8BygHOAc0BwQGnAXoBQQH6AKYASADd/23/+f59/vH9b/3e/GL83/ta++/6hPot+tv5q/mA+WX5U/lR+Vr5c/mL+bL56Pka+lP6j/rQ+gn7Qvt4+6n72/sK/DD8T/xw/Ij8pvy9/Nj89vwW/Tr9ZP2X/dL9Gf5d/q/+Bv9i/8P/HwCOAOwAQgGbAdsBHwJMAmwCiAKRApkClQKEAnICUQIrAgQC2AHbAdIBuQGpAZcBiwGCAXgBdAGAAYcBlQGdAakBsgGyAbQBuQG2Aa8BngGNAXwBWwE1AQoB1QCiAGMALgD3/7z/if9T/yX/+v7V/rX+mv6M/oj+jP6Z/qP+tf7H/tn+6f70/gP/D/8d/yb/Lf8w/yz/KP8h/x7/E/8N/wX/Af/3/uv+5P7X/tP+y/7N/tj+5f75/hf/N/9a/4z/vv/7/zcAfgDTAB4BbgHBAQ4CZAK1AvQCOgNyA7AD4wMLBCsEPwRFBEQEQgQ0BCUEDgT9A+IDxAOnA4UDcQNQAzoDHQMJA/YC4gLMAroCoAKGAm0CUwI7AhQC7gHBAZYBagE/ARQB5AC3AIwAYgA2AAoA4v+8/5j/cf9Z/zv/H/8Q/wH/+/73/gD/DP8Y/yn/Pf9a/3f/mP+7/9v/AgAtAFAAdQCSALYA2wD+AB4BQQFrAZABuQHgAQ8CMgJRAmoCgAKMApAChAJnAkMCBwLDAW0BEwGmAC8ArP8j/5n+9v1r/dD8Sfy9+zr70Ppf+gr6t/l5+Ur5H/n8+On42PjZ+OH49fgN+Sf5Svlt+Zn5wvny+SP6XfqR+sj6EPtO+5X71fsf/F38m/ze/Bv9Zv2l/e39NP54/r/+Bf9I/5D/1f8WAGAAoADeACQBYwGkAeABHgJiAqAC3AIXA0YDewOoA84D8AMABAYEBgT8A+8D0gO4A5oDdQNOAx8D7gK8AoICUwIiAvUBzgGnAYQBYAE/ASIBAgHjAMYAqACSAHMAWgA+AB4AAQDe/8P/pf+I/2f/SP8o/wv/8P7W/sf+sv6l/pr+j/6G/nz+dv5y/nL+cv51/nz+h/6O/pj+o/60/sL+0P7i/u/+Nf9u/5D/vP/n/xkAUQCFAMAABAFGAYgByAEDAkoCiQK4AvACIQNZA3wDpQPJA84D3QPXA8QDwQOjA5MDfANTAzwDEQPnAs4CngKDAmgCSwJIAjQCJwIdAgwCAQLzAeIB0gG7AaQBiwFyAV4BTAE2ASoBGQELAQAB8QDyAOoA9AADAREBJQE0AUEBSwFZAWABbgF2AXkBfAF6AXgBaQFOAUMBOAEoARgBBAH+AOcA2gDSANMA6QD8AB8BSgF1AbUB6gE0An8CyAIgA2cDtwPwAxMEKAQYBPwDswNfA+ECUgKvAesAJABF/1H+Zf1l/Ij7sfro+T75hvgE+Ib3JffU9pT2cPZT9kz2VvZc9mr2h/af9sX25vYI9y/3S/dy95j3wffw9yr4b/i6+BX5dPnY+Un6wfo4+7X7OfzC/Ef9xv0+/q/+Fv95/9L/IwCEAM0AFwFXAY0BvAHiAQcCLwJNAmkCiQKZArICvgLSAt4C6gL2AgEDAwMDA/YC5QLUAroCogKDAlwCOwITAvEBzAGmAXsBVQE9ASQBEgECAfgA+gDyAPcA9QD2APAA6QDgANMAwQCrAJQAawBHABcA6/+y/33/RP8O/9z+qf6H/lr+QP4h/g/+Av78/f39//0M/hv+Jv40/kH+S/5g/mr+i/6d/rL+zP7j/gX/KP9O/4L/sv/r/zIAbwC2AP4AQwGaAeUBMAKFArwCBwM5A2UDkwOkA8QD1gPXA+MD2APRA8IDpQOZA4MDaANRAzoDHQMOA/kC4gLRArwCswKeApMChgJvAmACSQIzAhwC/gHoAccBpwGMAXUBVgE4ARoBAwHvANgAywDBAL0AuwDEAMwA1gDcACIBXAGKAbcB4AEJAisCTwJtApYCugLeAu8CGQM5A2QDggOqA90D/AMnBD0EZARiBEwEKATaA4ID/AJxArcB5gD+///+EP4P/QL8Evsg+mH5rPgC+JP3H/fR9o72X/ZB9hf2+vXh9dH1tPWQ9WX1OfUW9fP02vTE9MH0yvTs9Cj1g/X19Y72L/fr9734ovmO+n37c/xZ/Ub+G//d/5kAMAGtARECXQKhArwC1gLmAucC6wLeAt4C1wLbAuMC+wIOAykDSwNfA3wDiQObA54DlgOHA2IDMgP7ArwCeAI7AvkBxgGZAXIBXgFKAVcBYgF8AZABqgHIAdoB5wHlAdgBvwGYAWABIQHYAIQAMADX/3X/Lv/f/qX+cf48/iH+9/3h/cz9uP26/bT9rv2r/an9pP2h/ZT9hv14/Wv9Z/1i/WP9bP2D/aH9y/0B/kb+nf7+/mX/0/9KALgALwGYAQ4CagK8AhIDRgOEA6IDvwPEA7cDmwNnAzMD8AKvAm0CJwLqAakBegFWATsBKwEkASsBPAFhAYQBngHEAeAB/gEPAh8CFwIHAvABxwGdAW4BQAERAekAvACaAH0AbQBdAGQAZABtAJgAmQC2AMUAzwDpAO8AAgEpAUsBbwGyAfEBTwK/AlUDIAQGBfwFQgd0COwJbgvhDLgOKhDAEQsTIhTqFHAVahX6FEQUyBIyEegOtwzpCToHVwRuAeP+CvwS+sf3Sfbt9NLzKPNl8grypvFq8TPx/PDD8IbwPfDf737v/O5k7v3tYu0Q7d3s0Oz77E3t2O2S7m/vifC58ffyTPSO9eL2Fvhl+Xv6i/ti/P78lv3f/TT+Yv55/or+hv54/nT+Z/7h/mb/5/+BADMB9AG3AnsDGwTCBEgFtAUHBjgGWwZUBiIG1AVyBQIFiQQSBJ0DKAO4AlMC+wGtAWwBQAEcAQgB8QDmANMAyACzAJ0AgABfACsA7v+v/2X/HP/R/ob+OP7l/aD9Zv02/Q396fzN/K38nvyX/JX8lvyU/JX8lfyV/Jb8nPyu/MP86vwi/XH9zP02/qv+Kf+1/0AAzwBWAdkBVwK5Ag8DSQNvA3sDcgNXAysD+gLEAoUCUQIaAu8BxwGpAZ8BoQHAAdwBBwItAlgCbgKBAn0CYgI0AvUBpwFXAfgAiwAoAMT/dv8p//L+zv68/sn+5f4k/3z/2/9TANkASQHQATYCiALKAvYC/gL3At0CpAJfAuMBnAEuARIBBwE3AeYBzAIyBO0FFgh7CgMNmw9nEqsU3xaOGKUZbRpJGgYaxRhJFzkV2xJLEKcN9go7CO4FlQPpAWwAkf/+/sP+nP6v/sb+jf5r/sj9DP1++7X5gffe9A7yFO8n7E7p4ObE5DrjNeLy4VPiZOMZ5U7nuela7AXvmvEC9Br29vdc+Zj6W/vm+wX8+vvF+4z7VPs1+0T7fPsN/K/8pv3F/h0AjQEUA5EEDAZFB0sIDwliCYQJPAmoCMMHqgZiBQMElQJRATYAV//B/mz+Zf6W/gX/mP9KAAMBqQEvApkC2wLpAsICeQIKAn8B9wByAPv/k/9K/xn/G/85/23/yf8iAJUA9QBQAYoBpgGfAW0BDgGDANf/Av8g/ir9NPw8+1X6hfnT+Fb4//fl9/f3M/ie+CT5yPmH+kf7EPzM/G/9+v1b/qH+yv7e/tH+wf6p/pn+l/6l/s3+/v5V/7v/QADZAHgBGgK0AlYD4gN0BOsEZQXSBSAGagawBvYGLgdgB4kHoQfAB70HrweYB2sHNwf7BsgGjAZEBvkFtwVvBTMFDAXjBNEEtgSGBFEEGQTQA3YDAQOFAgACVAF1AKv/n/6w/d38IvwE/Eb8Af2l/rgAjwMqBwcLlQ8lFGMYdxxhH2shQCKiIRggcB36GSMW/RGkDaQJBgYIA9IAEv/T/Sj9rPxf/N37AfvU+UD4QPYa9Jrx7e5a7KbpVOc+5XfjKeJt4SrhkeFg4qHjVuU750XpQ+sv7RTvCfHT8n302vXj9q/3IviL+Pv4Z/n/+av6cvuB/KT9D/+mAEYC3gN7BfYGTQhfCR0KhAqJCjIKkAmxCLIHkAZrBUMEIwMdAjwBhADv/37/J//s/rj+gv5B/vn9mf0h/aj8Ffx6++n6a/oL+tf50vkZ+qT6evuX/PT9fP8jAcUCVQTQBSsHWQhDCfQJXgqDCmAKBgqBCcsI8AcEBwMGCgX9A/YC8QHmAOH/2f7i/ff8CfwZ+yj6MflL+GP3fvao9e/0V/TY85XzevOM89LzUfT19MX1ufbB9+b4Efox+zD8Lv0L/tf+kP82AMwAYgEFApoCMwPKA2QEEQW9BW8GKAfPB5cIJgm3CSwKZwqvCqkKvwp9CkYKyglfCaYI/AdrB3gG9gUaBZ4ETQQoBD8ErgRJBTEGPQf1B8gI5QjYCCoI7gaOBdsDNwLtAAcAq//1//EA4gJQBWcI0wtuDzYTjRaxGTocAh4AHzcfxB7LHS4cHhqeF64U8RHfDhUMeAm/BlkE7AGg/3P9Cfu4+Eb2tvNC8d3uXezm6WDnrOQp4rjfnN3/29zaGtrp2Q7a4tpI3P3dN+Co4j7lB+jc6t/tofBG88P1vvdz+br6u/uT/Ev9Jf42/4sAFwLbA44FGgdcCGEJHwqJCsoKpgpBCqsJ2AjMB2QGowR4Au3/KP1Z+rn3bfWq843yAfL+8WzyQ/Ni9MX1QffJ+Gf6/vue/TH/uwA4Ap8D4ATMBW8G0gYTB2MH1QeDCIIJtQr2CycNJg7QDh8PJQ/TDjUOWw1HDAQLnAn/B0EGXgRsAm8AbP5//NH6kfnA+Fb4PPhR+H74sfjM+LT4cvgZ+Mv3k/eB94D3j/ep97P3wfe+99L3Cvh9+Bz57Png+u77Fv05/kH/CQCZAPwAEwHnAKgAaQBCAE0AhwDpAGIB3gFZAtoCaAMvBEMFnwb+B00Jdwo8C6MLvQuDCxoLtQo+CvwJugmiCfYJTgrOCnILvgvwC90LcQvzCgIKOwkkCMcG9wQUA6QAcP5h/KD65PmT+e75OPsN/aT/lANuCBAPexYsHrYlhCuYL1kxKDFnL/4rWCf3IbsbGxUTD7MJrwQfAJj7ovbO8SjtYel/5rjkIeT84wjkDuRr4/jhrN/U3Bra/tcX19/Xadp23onjP+km76r0TfnF/Cz/eAAgAcMBkwLMA/oEAwatBmYGdgX+A0QC0ADm/8D/hwDeAWcDlgTeBAoEAwIg/5z72/dJ9PzwPe4R7HvqWOl36K/nC+ee5vPmTeix6iruhPKA96D8jgHZBScJYAuJDMAMRAyjC+0KOwqwCd0I2gefBlwFQwRJA6YCPgI3AooCOgMXBPcEngXmBaoF2gTBA3gCQwFqAOH/yP8QAJ0AZgE7AjMDAQTLBJ0FYQYnB8wHRwhzCD8InQeHBgAFQwNhAYD/xP3c+y36pPhL9zP2X/Ws9Bn02PPw81b0FfU19pP3H/mk+s77kPzp/P388vzv/AL9If00/UH9Uf1d/bT9TP70/qH/UgDXACsBnQEsAqYCGgOxAzIEcgTBBAQFMAVeBZgFuwWuBdAFWgYgB/YHtQgUCeYIcQj8B94HTQg1CU4KEwtdC0MLsArFCZYINwfBBWsEawPpAsgCpwIgAlcBMABZ/3b/IAEkBX0LuxOgHTMorTI0PIFDuUdwR/xCETvsMBEm0xvZER8HT/vM7THgM9RJy0PGgsQUxe3GA8kkzJ/QedZB3VLjDejf6qPswu778V72Lvtr/2gCdwR9BtQItAvuDl8RcBIYEhARDxATD+wNvQunB78B5vp39M7u9eml5X/hwN3o2pTZAtq92yfeveBk44zmxOpo8Cv3BP7JA+MHNQpfC6IMRw4nEOIRCxOXE6wTkRM2EysSKhBkDT4KTwctBboDVQJKADX9GPmR9F/wPu1e66XqxOpx65Tsee7w8LDzefY/+Uz80v8OBNcIsA03Eu8VfBjoGWEaSRq9GekYpBe2FUITLRCTDIIIGgSv/337xPeg9PXxqe/J7W/sletM64zrPOxi7c7uhvBv8nv0lPaJ+DH6kPuh/Hj9Ov79/tX/qgBnAd8B/wH3AfMBFAJWApYCmwI3Am0BSgDp/nL9HfwF+w36LvmM+C34JviF+Dn5Dvr/+lX8FP47AOICyAWdCEkLjg09D10QExFcEf4QCBCiDswMtgrJCDYHzAW5BDsEyAM7A6YC7gG9AHf/bf6d/Q79Lf1I/hUAkQKjBVoIgAoxDNAOIxNuGUYiUyz+NaA9LUKNQy1CYj4TOQMy3SgaHm0SHQbJ+Tbu5eI02CLOjsR/vMK2rbR6tge7VMJ7yqjS6NrH4uHr4fXWANkL6hT4G4wfnSCvINUfaB/iHr8duxuOGJwUEhD5CpEF8v9A+tD0/u/e69bns+MC3xrapdVs0h7RkdFA06XVNNju2jreeOLi523upvUP/SAEdwr8D6gURRjCGjQciRz4G2ca0hdKFNUPxApoBV8ACfyq+DP2ffRS80ryc/HP8HHwdPDb8H/xU/JD8zn0TfWC9vb3vfnd+1f+aQHlBKsIdAwMEEsTBRYzGNAZzhrzGh4aPBhCFW4RGw2dCDUE6/+i+2f3UvO17/jsbusc67brBO2k7obwdfJx9IL2yfgq+4P9nP9VAXwCCQMpAwEDvwJsAiAC1wGHASUBgADH/w7/Vf6g/dD82PvI+p/5evh696X29PVw9Sj1H/V39Qz27vYc+JT5X/tf/V3/LgHCAh8EUwVdBicHoAfGB4YH8QY7BpQFMAUaBUAFpgVDBvwGBAhhCf4KwwyQDiQQXBHrEcARyBAHD70MLAq9B5UFAgSJAxoEBQa5CFYMIBEDF2keliZpLkg1ZzonPdE93zvYN5YxDSmfHm0SdQRw9fTlMdb5xl65dq9jqg2r+rDjuXfDz8vH0vXZKOO77+P+/A2eGr8iHSbCJRMk8CKJIuoiDiOiIaseMRr3FOEPMQv8Bg8DIP9x+tP0J+6e5uTeftcA0VTMZMlByK7IPsoKzQbRqtYb3i/niPFj/O0GGxCMF1IdZSExJLwl5iWSJKIhOR2zF4QRKwsJBUj/H/qx9Tjyne/V7a/sKuwL7D/s2uzo7XLvbfG58yb2hvjH+vT8KP9+ARoE6gbNCbEMdA/DEQEUBRaeF/UY+hmGGnkaqxm9F7QUfBB+CzEG3QDx+233EvOk7lnqjOa/43ji6+LK5Irn9OqS7hryoPVL+Qz9qAD/A6EGRwjXCFQIDQdvBcoDUAIDAcb/lv5g/XL87vvI++X7FPxH/Ef8EPzS+3b7Hvum+hn6efmh+L/3//aU9qL2Jfcg+J/5g/uU/ab/twHOA7cFiAc5CZUKgAvqC9ILVgvhClsK0AlcCSkJRAmkCWEKHQt7CzcLjwrLCT4JRAkXCvEKLQuYCsgIfQYpBJYCAgJfAv8D1QbcCgwQkxYyHoQmZy+OOLVAiUd4S6hLZEerPq0yXCSqFcgGM/gb6f3YTciQuLasKqdlqL6vsrrWxaDPQtfk3m7oFfV0BKwTwx9nJYYkaB84GW0V4RS7FmMYQBcmE7cMzQWrADH+PP5//38ACABg/bj4qPJC7DDmq+D528HXp9MT0CPNPcvoyoXME9Cx1YrdbOeB8sb9KwjaEJ4X8BzSIZYm/yr1LSYusCrEI7AaQREQCa8C+v3m+Zr12PBR7LTowuak5g3oROqL7Lnug/AU8pvzKPW99mX4OfpD/OD+7wFPBeAITQy0DzwT5RbnGugeRiJQJGgkgiK4HskZKBQsDgYIUAES+inyO+oJ43fd79l32MbYmdqi3YXheeY/7LTyZ/kJAAYGMAslD80RBRPzErQRbg9ZDNIIFgU3AX39y/lP9hjza/Bz7jvt4OwH7YDtG+7U7qzvxvBB8hT07/W49075s/r++3H9S/+lAXMEWQcjCoMMeA4FEHIRfRKEE/sT6RMIE1MRFg81DFsJdAbcA2oBUv+M/RP8Mvsn+977R/1l/8wBdgQFB3wJ3QtzDZwOSQ+6D0IQvxBcEQMSgBIgExMUoRUYGDYbgB+xJFsqxzC0Noo7AT4nPR85DzLdKFgdjA+X/hTsTNnGyKO8GrWMsY6vta08rDutl7JkvgfQY+Sy9+0GyBBQFjcaaR5jI4IozSvrK9gnlyBLGIgQygotB+IEzwIfAGv8xPe68lPtLuj243TghN2+2q/XRdSM0GvNbcxGzo/TqtuT5dPvE/klAU4ISQ+HFukddCTXKCoqLShvIwMd1BV1Dm4HwgC4+kH1t/As7a7qRekt6bTqye0s8vz2Ofs6/q//zP9U/9/+2v4u/1//DP8e/u/8EPyk/LP+IQKJBksL9g8xFLoXVRr4G18clxt0GRoWmREYDMIF1P6n95vwXOpo5f7hN+D13/PgCeMA5trpZ+5t88T4C/75AkMHrQoVDY0OEw/KDq0N3QuKCd4G4APLAM/9Avtv+EH2e/Tl8mfx9O9n7s3sPevp6S3pIem86eLqfOyI7vzwGvQ5+FH9BwO0CMIN3BEAFV8XJhmGGmYbbBttGjkYEhUgEbEMZQi6BOoBDgBh/3r/6f+KAHUB+QIwBXwI3gzmEKwTUxRPEj4OEAn0Az//K/up9730X/LX8b/zPPj7/kYHQhBQGdEi6ixqN0dBSklFTbNMrUcXQC43pi1vIyUX5we09Y/jOdQ+ynPGQsdXysLM8c0Uz+DRKNjU4ePsvPYx/RwAbwD+/0cA7AF+BJYG3QcECIsHgwdRCCkKkAy1DrQPDQ+3DMAISAOh/DP1ou2M5hngq9oS1nLSB9BFz6XQmtQG2yjjGuzb9M/8sgONCXsOrRLLFZIXaxdSFXsRUwzeBsIBx/3++kH5OviW92D3GPcj97D3nfjd+Sn7IPyZ/Gj8rfuY+mH5bvjZ98H3/PfB+Mv5Lvv5/FD/XAIXBkYKkA52EqoVFRh0GfQZqxmyGD0XKhVVEn4OlgmuAzj9wvY28dTslOlm5xjmk+XJ5fnmNumI7KvwNvXF+fz9oAGjBP8G0QgxCg4LVAsOCzUKxgj0BgEFIwNyAev/df4D/ZX7GvrE+J/3pPam9aP0hvNi8j/xRvCv72nvb+/u7wPxqPLp9Jv3t/oj/sUBmAWrCe8NDxKnFV0Y9BlPGo0ZCBgdFu8TXBFjDvoKPweuA78A7v4y/oP+Jf/U/yQAAQDG/2T/fP99/+z/qP9j/yn+QPxV+rf4bvnD/NICSQrNEWMYnx4pJhAx9D6BTq5bsmIhYh5aIE4uQds0CChKGT4G5e9w2VvG5bjisPKsDavEqiOtA7Qnvy/Nqtsf6OzxN/qvAvwLRRWJHMMfnx5hGrMV8BJPEuES3hLLEMkMAggoBCkCfQF4ABD+F/rP9D7v++k45ZLgdNtb1mDSetBh0e/UJtrQ3z7lu+rw8Hf4UQGvCu0SshipGwQcsBq4GIcW/hO/EFAM1gbgAGr7NPeY9GTzUvPb88P0+vWV93H5NfuO/Cz9Ev1f/F77T/o7+TT4Sfel9nn2VfdL+V78QACPBBUJqg06EqIWkhqOHUkfeh8gHoobFRguFNIPzQolBRn/D/mY8xrv7evp6bHoAejN5zToXul961vunfHa9Mr3WPqx/Bb/iwHlA9gFNAfvB/kHugdXB9AGFQYdBfUDhQLdAAX/Ef3u+pX4Hva886Dx5e+F7n3t4OyO7LvsnO1d7+zx9fQ9+Iz7u/7SAfMECQgCC4gNgA/REJwR1hGlEUERrxDnD80OZA1+Cz4J8AYYBS0ENAQBBVIGegc+CK8I3gj1CM8ICQgxBvYC7/47+6D4Bfgz+aD7jf7NAakF3woYEpEbriYPMig8REM0RxpIKEc2RVJCVz3DNEAnDBWJAB/tDt/Z19DV9NWn0/HN+cZgwjnEncwD2cTk6+oJ6zvn0uPX5DHrO/W//ksFyQc/B8oGdwhMDVYU8xqrHiAenxnwErQLDQUW/yH5WfIR6u3g09fpzzLKHcewxkHIksvD0FrXid4G5qXtXPWA/QwGfg7FFZgalRz4G7EZIhckFaATBhJfD48LKgcoA84AHQC+AIMBnAGrAOb+Hf2h+5D6fPmh98n0BvHy7E7p2ubc5UPmu+cj6lDtZ/G/9pP9rgWZDn0XWx95JVYpLytsK5gq6SgdJvch+BscFPcKEwJO+kP0DfAv7RLrIel+54zm5+a36L/rRe+H8tv0Gva89kv3M/iW+VX7L/3L/hsAJQEbAi0DWgSEBWoG1QaqBtoFqQRKA68ByP+A/f76Y/gR9gL0O/Lw8C7wK/D58JPyo/TA9uP4A/sa/Vf/xgFSBKMGWgh2CfMJ+gnZCbQJsQmYCVUJ/gi6CJoIowjyCHkJBgqECgQLbAvNCw8M+QtLC/EJbwdtBB0BmP7I/KT73vrk+WH5/fl7/BcCLgrNE+8dHCfbL+U2Aj39Qb1EEkW0QeA6HDFhJaYYhgz7AMT2nu6Y6FHkt+Ap3aDZF9eY1mTZld7K5CbqKO0G7hLu6e658RT2rfoQ/pH/XP+y/kr/cAFJBbQJfA0MECcQYA4/C0MHUwOh/0v8mPg08+3rCePL2f/R8syqy8LM/M4Y0ZzSlNTm1/fdmOZ38MD5HwFJBqUJ1QyCEFAUrReTGZkZ8xc5FVgSyQ+2DeALzQlfB1QE6gCf/cf6/Pjz93r31vaA9ZjzZ/Gv7wLvOO838E7xGvK98qHzlPXT+Gj9lQKbB/8LwA+OE5sXlxsAH7UgZiBdHjwbORhwFaQSzQ48CRMCWfqe8wXv1+xU7EXs8+sf62/q/eoT7bTwBPXZ+Hr79vwb/pP/twFFBKwGcQhSCagJnglfCTAJ6QhQCCsHagVzA4IBpv/H/Yb7B/mz9uf06POA83fzXvNA81LzkvMx9EH1q/Zd+O75Zvsh/RX/LwEcA6MEywXCBqwHcQjpCCMJUgmHCbQJugmHCeYI3QeWBnIFkARwBFAEJwP8AGv9Ivqb9wf2M/UQ9MHy+/FS89j41QKdEAUgIC4rOUhAKkX1SC5MXE6OTZVHojudK84a5guyAMT4I/JM61jjTtwE2CjYqdz34m7oFutG67TqLuvi7UHycvad+PX40Pi9+Sn9XAJQCEMNFRC9ESwTSRXwF3QZuBjJFHIOZQfpANH7L/fy8R/rCeMf2ybVTdKv0vvUkdea2THbcd084f/m/e3B9Af6iP3E/4YBtQNnBusIngr2CmoKpAn6CK4IQQiUB0AGQQQUAgQAa/4T/Y/7qfk19570TfKx8Nzvje9y71fvY+/W7+HwivKu9Cn35Pna/AkAQAN6BmEJ6gtmDtcQdRPsFZgXDhjfFncUohErD3ANIQyTCtUHzQMY/9v63vdb9vr1yfUW9YDzgvEE8Jbvg/Bs8rj01vZ0+PX5yPsW/u8A+QOsBsgIDwqmCr4KfgoDCg0JkQe3BaMDowGy/9n9KPx1+sP4NfcA9kf1CfXs9Mz0svTe9JH1zfZj+Lz5o/oY+1H7u/u2/H3+vQDaAlUEDQVPBXUFyAVXBsUGuAY0BlYFbwTDA58D+gNvBKwEGwSxAp0AQf7h+w36Tfl6+br60fzD/ggBdQNIB+QMXhUYICkrhjRzOok8uztDOo05Hjq9OUY3CzCfJOIWqgkfADT6r/fp9Zvz+O8L7ELpieid6QbrK+tk6QbmZuIl4L7fi+G45L3oaO0P80b6yQLvC2sUvBqfHskfBh9FHXkamRYvEdQJ0gAU9zruiueV4wXizuER4jXiWeLr4iHkAObr56zpu+oA66LqBOr46avqjuxa79by7PYw+53/GAQ8CBwMcQ/rEQsTbRIYEHcMRQgbBG8AKP0D+ub25fNq8evvte+k8EryDvRl9QH2FfYa9mX2L/c9+GL5hvq++y792/4ZAdYDCAfBCt8OFxPHFlAZPRqlGcwXGBUhEjoPUwwNCVAFBAGh/OT4XvYn9Rj10vVz9sL2zva59vD2pPeO+IX5TPoO++j7x/ys/XH+R/9JAJIB9AIRBOgETwV7BWkFCgVwBJUDcQLDAHz+6PuI+Z/3QfYQ9RH0NPN78h3y+/FK8v3yQ/T49dv3kfkc+4v8Av6P/xUB1QJpBMMFgAZ+BgoGYgX5BBQFggUCBikGkgU9BHcC0wD2/9b/jgBbARcBJAAQ/nP8ePyr/tcDYgl4Dl8RxRKPFHYYyR/DKTE0xjzkQRRDnEENPls6RzZNMVUqeSAMFQkJhf5s9rHwDe146gPplejw6NHpZups6svp2OgE6PjnxugO6hLrPesi66frw+1K8rr4CwAOByIMaw/pEBcR5hBUEJUP1w0sCukEOP4l99TxG+5R7Inr9Oo76h7pU+iv55bn5ecc6PvnWueq5k/mW+Yj53ToXOoo7RjxU/ZY/HMCyQfPC3gOAhDmEIoRsRG4EGYOxwpgBtcB/P0y+1n5Gvjl9pT1Y/QO9N301PYq+T37Dfyt+376SvnG+Bb5I/o++zT81PyR/bj+4wAlBBYI3QvHDpcQQRH4ECEQyg4kDW8L0AldCOEGWwV2A3QBZf/D/Zj8/fvn+/v7GfzQ+1P7rfo++iX6a/rO+ij7O/v9+p36cfrS+sn7H/2C/rD/fgDJALUAgwAsALT/4/6V/c/7sfmh9w/2H/Wp9Gv0SPRW9Iv0EPXs9Tf3/Pgi+3H9rP+dARYDJwTGBAUF/gT+BB8FewXLBQAG8gWIBfQESAS9A2IDFwPFAmcC4QEmAXwA5v9C/5D+9P2Z/Ur+WQDtA+kIxw6lFJMZfB0KIZgkASkBLlgyGDXDNFkxHCzfJkUjTCJdI58kEyRmIBgaWBJIC+wFJAJX/sf4cfAS5vPblNTI0UzTQtfK2mzcNtwk3DreleOn65L0M/wvAZsDowRvBXUGiwfYB6YG6wOEAIT93/ul+4784P3m/kP/8P4r/l/9z/wg/C37jPkI93rzL+/Q6vPmXeRG46fjMuUv53/pM+xv70DzhPeb++z+8QC1Aa4BTQEoAVIBrgHVAY4BDAHQAG4BMQPfBdEINwtoDFMMRgvxCcYI2AfeBmsFHAMAAG78G/kP95T20vcN+pX8n/4XAEYBvwK8BAIHNQmECrkKkQmPB2QFngOOAg8C1QGFAQgBbAAPAAsAeQA9AfwBagI1AncBGQB1/sX8H/vR+bL49/eN94f32/ej+K75u/qW+xP8SPx//L787vwy/VL9SP3s/ET8XvtJ+iL5AfgS93b2OPZG9m32qvb/9pD3e/jF+VL73/wv/ib/yv8yAJ0ALgEFAvgCugMlBBUEpAMOA6kCrgIwAyIEUwV0BisHLgeEBnIFTAR2AwoDHQNmA6QDmANgA1ID6QNvBfUHHQtsDmIRuxOaFTEX3RiqGncc3R1dHtEdaxzIGm4Z1xgZGdYZfxqeGgAa4xiwF8oWXRYIFjYVSBMIEK8L9gaSAg//tfxV+0j6LvnV91v2LfXA9Ij1KPcV+YH6uvqo+Xj3x/Ri8tvwZfCb8CHxP/Gb8I3vju5V7ibv4fDr8qb0ifVf9VT04vJq8SvwJu8e7ubseuv76cboGegB6JLolOnN6iHsZe2C7o3vlfCC8XvyZ/NW9Fb1aPas9wX5WvqR+7783/30/vn//wD1AekCqQMKBOsDRQNLAl0BwgCtACkBHQJHA18ETAUjBhMHVwjXCUkLXAyoDDUMMwsgCjUJtAidCKYInAhnCCsIJwiQCGUJkwq1C30MqAw7DFkLJgrPCEkHmAWZA2AB9/6k/JH6EvlD+Bz4iPhI+Rr6w/oP+zL7Rvtw+877Ivwj/Gb7wPlX97f0mfKC8YXxXPKG82j0tfSG9Fn0uvTo9dj3E/rR+6r8W/xR+/v54/hr+HL4yvgM+SH5DfkE+Ur5CPot+5v8Ff5n/2oABwFsAbcBFwKnAm0DZQRlBVIGDgeeByUIywiLCZMKsgu0DHANyw3jDd0N8g01DpAO9w5fD9sPqRD0EZcTZBUQF1EYARlWGZ8ZEhqkGh0bCxsxGpoYgRaZFEIToRKtEtgSsxIDEtEQcQ81DkYNfQygC3MKrwhOBpQD5gDC/jj9HfxK+2/6LfmD96X1ufP+8afwu+/27t/tOeym6cLmUeT94hbjXeQA5v/mquYB5cfiDOGY4KPhp+OT5WHmq+UO5ITi2uGc4o7kEeeL6YPr+OxJ7r7vbfFM8yH1nPay93H4w/jS+L74l/iG+N742PmO+579k/8OAeUBYwLZAqMD6wSDBgoIDQllCScJvQiJCMUIZwkrCuoKlAsiDPcMDg4fDw8Q0RBcEboRGBJeEmcSKBKcEdoQDxBxDxwP/Q7WDmwOlw10DDoLMQp8CfIIUwhWB+MFJwRtAvEA0f8N/33+7/1B/YT8z/tM+xT7/vr5+tP6a/rC+eP43ve09n/1ZvRq86jyLPLU8Y7xM/HM8GvwNPAx8G7w8PCL8SbyuvI987nzPfSu9BX1XvWj9Qr2m/Zw94j4w/kP+0/8av1r/kr/MAAkAQ4C4gKkA0YE0gRYBeMFfgYnB8AHRAjPCIsJVwpOC2gMiw2ZDncPGxBzEIUQYxAbEMwP5A95EKsRbBOaFYkXDRn6GXMa5xpOGyIc3hyOHXYdtBwvG24Z/xcxF48X9hc8GKcXVxZiFIASOxHsEHsROhKPElYRbw78CbwE0P/L+9j47Pau9af0ZPPp8e7viu0u6zzpEOip59Pn8uds5wbm5OOR4dzfDt/23iDfAt9M3lPdo9zB3OvdrN9z4fHiDuTX5GLl6OWS5kLn1ueJ6JHp7up87CHulu+Y8Dzx1PHB8kj0avbk+ET7PP2b/n7/KwDgALoBlQJ4A0gEGQX8BREHaAjzCXsL+gxdDqEPyxDcEdgSphM7FJkUyRTSFMAUgxQlFKwT/BI3EpMRIBHjEM4QvxCsEG0Q7Q8xD04ORg0oDA0L9wkBCSQIWgeWBuAFJwWDBAMEogNSA+YCWwK6AfQAGgA//2j+mf3f/B38UPth+k35NPg193L27/W59Zz1ffU59bj0//NJ87ryVvIj8unxpvFU8STxJPFa8dHxXPID87zzevQ89Qz24/bL96r4ffk5+s36S/uu+/n7P/yI/On8fv1G/h//DgAMARQCMwOABOkFcgfoCDgKRgtEDN4MDw0hDQAN2wzPDPcMag0mDgcP5w/7EEwStRNtFRMXdhhQGZ8Znxk+GfsYURhYFwIWOxS/EsoRTBLfE5YWgRkKHHYdpx0bHRAcIxvuGekYWBd8FfASHhDkDFkJmwUOAmv/Zf2B/Pj7lvt4+tL49PaI9Qf1IvVw9er09/J47y7r7eZk4wDhrN/R3ifeit3+3J3ci9zB3BbdwN3F3gHgKuH+4S/isOHn4CXg6N9W4EjhcuJ944jkseUj5zDps+tV7uTwQPMc9W/2T/fk91/41vh9+Uz6N/v8+6T8Qf3g/cL+2P9TARgD+QTiBswIwQrDDIoO8A/aEFkRnBHKERUScxKwEr8SmBI9EvQR5REhEpgSBRNCEx0TuRI6ErERMhGXEMkPrw5bDfgLoQpbCVQIfQfkBpwGmAbQBhwHege9B7EHeAfwBikGMwUeBNACUAG//yb+pPxH+yX6KvlM+IH3y/Yt9rX1dvVf9XP1jfWc9Yj1QfXV9Ej0p/P98mLy6fGR8XDxfPHC8U3yD/MH9DD1gfbY9/z4DfrF+lP7ofu6+977+vtF/H782fwz/ab9d/58/w4B5gLvBBEHvQgPCrYK/AoFC/EKBAs6C4sL0gsVDGUMugw5DeMN0w7qD/4Q9BH5EpcTvhNvE84S0xFqEI0OCgycCY8HRAZnBoAHYQntC6YOOhKTFvIbxiH9JgsrfSwjK4MnNCKuHIkXbBNCEJQNwQu0CfsGoANV/+P6zvbI81Dyy/Fe8a/v3usq5nvfRdkm1bPT3dRy113a1Nyh3lzgQOMT6L/uYvZ2/d8CzQVSBokFZASbA1AD2gLAAUP/U/vE9kfy3e647KrrTOvo6kHqgul36ITnmOaB5Uvk6+K84b3gXODP4C/iaeRC567qdu6c8mP3mvwfAnIHKAwVENESehQDFYkUjhMSEqMQLg+LDQkMVQrGCFEHCgYYBW4EPgRtBIoESgSCA2cCPQE+AH7/3v4z/rf9rf1m/g8AiAKgBRQJdAx6DwMSHBQLFt4XgRl5GowahxlSF3cUPhH2DfYKiAihBgoFbANwASn/7Pz7+nP5Uvhv95n2hfUj9GXygPDz7gbuBu7j7oDwn/LN9Pf2EPkb+yH9BP+iAN0BigLFAn0C9QFVAZQA2/8H/xT+Jf1m/AH8Dvxm/Mv8DP0W/eT8vfyP/G38avx1/JP8w/wG/WD94v2M/nT/lgDnAWQD/QSkBiEIVQkrCoEKbAroCR4JMQhZB6oGOwYVBigGdwb/Bs8Hqwh5CSIKogrhCuIKrAoXCgYJoAcIBvAEjASZBTMIwAtjEGcVDBrEHocjFCiPLOcvujEoMfUtuChTIZoYpg6EA8H32+vz4AnZgdXO1kLcTONz6ensE+3F68fqautD7p3xE/Rd9Pjx7u0B6nToSurH77z3HACVB+sMORBzEsETdBQZFOgRcA1vBr79OfTl6rTiC9wj12vTBtEZ0LHQNNMX19XbseDR5BDoiuqs7OPu9vAS87j0tfUs9p72k/ck+Zb7fP5SAe4DKQYNCOIJdwuGDAANqAyMC80JnQclBa4CewCa/ib9Jfy8++X7tPwm/iUAfAIABXIHqgl6C6IMVQ2/DdQNiw0JDVMMlAvxCnAKQQopChcKCAobCpMKhgvDDOYNfg4XDp8MdQoZCPsFUwT9AqkBFgA2/kH8lfqO+V35APpR+wn9vv4JAMcAAAHHAEkA2P+M/1r/Ef+v/hj+Wv25/E/8Nfxh/Mn8VP3H/SD+Vf5G/vr9Y/2M/ID7T/oh+Qf4Ivee9pD2yvYr96P3PPjn+Lr5zvrw++H8h/3O/bP9k/1//aT94/07/pz+DP+z/5oAyQE3A8cEYwbnB2UJCAvADGAOww+IEHAQjw8jDpAMPQs9CkMJDwiDBgMFCAQEBH8FqgdcCWcJOQdGA9X+wfsT+778ef9iAV0Brf+8/uYAvgc8E04gHSvgMH0x1i7BK0kq+SryK54qGCULGzsOSQGc9rPujOg045XeBtsI2oXcbeFJ5rHofucU5DbhneFD5lnt3/Nk9zL3+fSz8xX2WvyxBGUMExHZEVwPEAywCUIIuAbiA7b+/PbY7RnlId5Y2XnW6dRL1CHUAdVa1yXbGeAT5XPpmuzj7iHxB/TE9+v75v/5ApEEOAXxBaYHrwpRDtkRMRSJFBQTbRCODbsKsgcsBNb/vvpX9Z7wH+3u6jjq5epm7JXuc/E+9bT5df5iA9YHdws1Dl0QKBKaE7EUZxW/Fb8VsxW2FYsVlxW8FZ0VfxUAFTEUgxLADz4M4weCA4n/SPzd+dv3KvZv9PfyZfIP8zb1nfie/JgA4QMyBpsHaAgHCasJQwqwCrAK9AmaCKkGoQTVAoUBrQAvAJn/pP5o/a/7+Pl4+G330/Y79nz1aPQD88Lx+fAG8eDxYfM49ez2b/jL+Tj75Py8/qQAOQIfA0cDDQPDAsMCFQN7A6gDjgMqA6UCPAIcAkwCnwLcAowCnwEzAKf+g/0B/Rn9jP33/VT+A/9HAF4CCwW9B/kJRQvGC9YL7AtcDCoNAg57DjsOWw0xDDYLsAq5ChELfgv4C2gMzwyxDP4LQQqAB08EdwHk/7v/tQCxAiMFyQffCvEOYhSkGpYhPyhkLWAwxzCHLnQpBCE/FW8HMfnH7JXjft2c2HjSk8qpwrq99r5yx7LUhOIi7Zby8PPw8w322/tKBNgMdhKIE1oQcgvWBxEHIwkZDF4NnQuqBggAsfnB9P/w2O1v6tXlSuCB2sPV99JB0jTTB9VO10TaXt4C5CXr7vJF+gsAJgQzBw8KbQ3+ECUUBRbyFSIUXxGfDq4MjwvqCvEJGQhABakBFv4q+z/5PfiP99r27/Ul9eP0gvUa94z5e/yR/7gC2gUECUQMmA/UEqcVsxfRGA0ZxRgIGNwWQhUwE7UQ/A08C5QI/QWJAy0BEP9U/SP8cvsP+7/6XPr1+cv5Jvof+7L8ev4RAEABIgLoAtgDFwWcBioIZAn9CcQJ4AiPBxwGnAQRA14BWP8U/av6Rvgm9nL0K/NH8q/xavFh8ZrxOPIr83L06PV19/z4ivoi/Lj9Of+AAIABPgLbAl8D4ANPBKIExQS8BJQEhARxBEYECQSgAw8DYgK1AQ0BhAAWAML/hf9N/xr/7P7Q/tj+Of/n/70AjAE5AsYCOwPEA5EEngXeBgII4Ah1Cc0JDgqHCjALBwzADCENAw2oDCUM9gsxDOgMyA04DsINDwxWCRgGJgMSAfL/BP+U/Vb6dPWk8LHtf+6K8mb4OP3c/xsB3gL2B0oRDh7nKno0aDmZOZA2GzLALNoliRxwEAkCevP/5nHdmNYG0cPLTse9xd7IZ9FH3VHpgfKH93T5tPrU/WIDFQpMDwoRnw45CfQDzgDAANkCHQX6BSUEMwBs+wj3/POO8Qvvz+u154njuN/O3Pra9dm/2WPabNxW4Ojlyuwr9Az7wQBGBQwJqwx5EEEUOheCGIYXwxQKEWcNxwr7CK8H8AWEA4EAZf3z+jD5Jfh396j2y/Xd9Ej0UfQT9TX2Sfc/+Ff55/ot/SMAZQNaBo4I+QnbCtMLQw0lDwoRWBKtEgASkRAED6ENdAxvCwwKDAgnBa8B2v0U+tH2DfTm8QTwWO7d7LPrausw7CfuCfEq9F33dfqB/aAAugOMBs4INAqpCmMK2glGCZMIowcdBgkErAFm/5/9a/zL+3b7CPtV+nP5o/gH+KT3Zvcr9yv3c/f894z4Dfm/+bv69/tD/W3+j/+hAKYBhwI7A+sDiAQNBWYFmwXTBQwGLgYjBr8FLwWRBPcDhQMkA9YCjAIzAvIBzwHtAT0CdQKWAnUCQAI/AoUCGgOuAxMEIgTsA70DBQTqBFoGDwiTCXsKZgqFCXcIvgeuBxYIfQiXCP4HEwclBokFmAVSBm4HKAhUCI4H3QUqA+T/vvzU+tD6FPyE/X/9Wvsa+A/23Pex/j0KwxfvI6gsTTHcM0c2dDkQPN87wDYuLAMdOgs/+Y/oZNnPy9vA8biftQu3dLtVwWfGbssR0vPb++na+U4INxK7FrAXmxcmGYMccyB2IpcghBsMFYwPawwZC+wJJwcVAp37EPXl70vskemk5hDjFN+22w7agdrB3O/fXuPC5izq/e1p8kP3/fv0/xoDkgWbB6QJnQtMDW8O6w73Dv0OVQ8bEMIQoxBfD+QMjgkUBgoDYgDD/c36K/cJ8wXv2Osj6izqpOv97ZjwH/O/9br4VfyUAPQEzAiYCxsNiA08DZkM7AtMC6wK2Qm6CFwHCAboBN4D/AISAiQBFAD3/sL9afzY+jH5nvdl9rX1lPX19Z72jPe0+BT6xvvS/R4AYgI3BEgFrAWVBTgF2gRwBNsD9QK9AWMAHv8u/pX9Lv3t/Kf8U/z1+4D7LvsM+yD7Tft5+6372vsV/HL8Bf3K/bT+r/+zAL0B0gLjA/EEBgYIB/UHvQhKCZMJkwlACYAIawclBs8EtAPaAiICeQHJACoAqf92/5P//f+hAEQB0wFPAtQCUgPSA3QEKwXoBZYGQgf/B8wIsAmsCpsLWQzJDAMNJA1hDYINfA0GDfsLSQoZCLUFegO5AWkAaf8h/mL8A/pk9031WfR39Qv4DPvD/LL7Kvhk8+jvrO/08qn48v2PAJsAn//wAewJYxi9KZo4wUCGP4M3rixjI8Yc/BcgESMGKfe25jTYU81CxyDFK8Zkyb/OaNW13L/jQumi7fXxAfgjACEJ4BDkFLQUaxHCDUcMwg1uEecU5hV7E+ANFgdXAez9ifzY+4f6W/dW8jPsMOaF4cveOt6U3+zhpuRC5+bp4+zD8AP2fvy1A7YKlBBxFBcWOBazFSQVqBR7Ey8RZw15CEwDnv7k+hn4CfZa9BXzQfIH8oTytvNT9fT2SPhQ+Rr6yvqG+2j8lf0J/8MAnAJABJsF9AaLCKwKng0jEboUbhfpGNEYWBfuFBgSEA/WCzAItwNh/nT42fJV7qrrD+sh7ADu6+988Zzyv/NF9XD3EPrN/A3/YwDuAPQA7gBNAWUCPARmBl0IzQmNCtgK9AruCrgK+gmNCDsGJwN3/4f7svdy9CDykvDT743vx+9r8J3xOvNX9er3yfqN/c3/WAE9AtUCZQMXBM0EhAUrBsEGMwfABzUIdAiyCMkIuQhNCJIHfgb7BCMD+wDP/r387/p9+Vr4nvem94X4Evoa/Ff+ngDQAikFvgeJCjkNNA8kEPkP9w7CDfQMmQyQDHEM+wvtCnkJPwi7Bz4ImAkRC+cLjgvuCW4HWAQ8ATn+p/tf+cf39/bX9pz31vju+p79MAEUBcgIdws7DBMLlAgyBkgFYAaQCLIKPws0CrIItAgFDLwSThvdIuUmZiYVIqMbUxSTDFwDBPil6qPcmdCWyAfFFMWAxhzIActK0FLZYuUg8ov8WQLxA4IDzQN1Bi4L2w9GEs0RQA+ZDMcLTw1LEN4SVBNTESoNGAjTAnb9x/eC8f3qB+V04NLdu9xs3Ejcl9wu3lniJ+m58WL6PgGsBc8H7wgvCl8MSQ/uEQsTDxIiD1ILRwgKB94HxQlmC34LqglnBgcDTQBV/rz8i/o999PyXu7x6lTpl+lD67TtVvBq8zv3/Pt1AQUH1gv6DnYQvxBjEPMPtA9DDyMONQzICWUHvQU3BZEFMQZaBmUFLQM6AD/9nfp3+Hb2TPSj8fPuhez36tPqJOzU7jLyFfbP+aX9MwHRBCoI5wrhDKcNmw20DIALqwlmB50EmQGz/g38/vkm+MD2VvUN9LHyi/Hz8Bjx7/Ec8zr0o/T79Hf1kPZX+Iz6DP1Y/2cBMQPZBKcGiwg4Cm4LAgz7C2ULZgoVCXoHvgUKBJcCmwFOAaMBPgLuAnsD3gMjBH0E8QRhBZAFYQXlBAUE8wLUAekASQAKAA4AUQAHATgC2QOyBaYHnAl6CxgNew6DD4UQYhHlEdAR8hB9D6cN6QubCvEJxQm5CZMJHQmDCOwHegcqB5wGbQU8Ay8AYvy9+Cn2sfS79Fr1/vW/9nL3mvkD/mMERwzBE6sZ6R1UIOshQCIEIfsdOBk2EwEMPgQB/OXyRemM4KXaDtpF36/nRe9c8mPvB+is38TavduR4eHo7u1z7gPr8+Zt5qfrcPYNBJEQdBl8HeMduhw8G9YZ8BdTFIoOkgaY/TX1Hu7M6OnkbOJ/4RfiJ+SW57/ro++E8v/z2/Pc8hHy8vGH8pXzqfRc9c710PZU+en9VgTGC8ISAhjtGqkb+Rq3GSoYBRaeEmoNkgby/sH3JvKz7nTtiu0q7gLvLvAK8tj0evht/Pn/dQK+AyUEPgR6BAEF7wUIBxkIJgk3CoYL7gwjDgEPaw9MD6wOiA26CwoJUgWHAB774fWC8Xbutezt67nr5+ty7JPtvu8f81L3rfuF/1cCIAQ9BQgGyAZ1B+AH9QeOB9wGIwaTBTAF8wSeBO0D4AKmAXMAQP8I/o780PrV+Mr25vRM81Dy5vH78YfymPMt9Uz3y/lh/Mz+2AB4ArQDnAQ1BYMFgAU8Bc8EZgQ3BIwEIgW7BUYGhAaZBoQGdQaSBp8GjwYSBioFGgTaAq0BsgALANf/3P8UAEoAfwAQAeIBCQNsBNMFVAd8CFUJ/wl1CtIKHQtDC0kLHQvWCnMKeAqTCpwKpAq8Cu4KBAuzCsQJHgh6BV8CPf/E/Cz7j/rR+fD4lfgW+cL7IADfBWkLzw/tEuQUGRcMGjgerSKjJf4lRSPLHegWEA/3BuX+QPcz8W7tSOwW7WTup+4i7Ufqqee85jro9Or47H/sOeld5J/gSuA55Izr/POh+9sA+AN+BpMJ/w0IExYXyxj0FigSiAuGBFv+zfjP8//uX+ph5mvjzuGL4fLhu+J942nkDOYi6KvqLO1B757wc/F18i30evc2/McBaAcMDMMPiRLqFH0X4hmpG80b0BnFFQgQ0AmFA9n9CvnH9H/x+e7V7RXuZu928bnzEfaC+AH7hf3i/5ABZwJCAoABuwCnAJsBVAOsBfkH9gmsCxINlg4nEH4RJRLcEbIQcg6RCzgIngQiAbX9nPrh96v1LfRA8/TyGPOD8130ifUs9/D4hvqm+yz8QPxA/Hr8G/01/pj/CgEtAvQCfQMGBJcEFAVxBZgFmwU5BXQETgOjAa7/c/0R++D4Kfch9qv1ovXX9TD26/Ya+K/5cfsL/Yz+xv/CAH8BFAKrAkkD7gNjBK0E7wQ8BXAFtwW9BcYFwwWhBXUF/wSXBBwEwQNyAxoD2QJ4AgECoAE5ARUBWQHrAcMCggNLBAcF0AWkBlkH+QdfCJYIvQi9CJ8IqQjDCAQJagnzCacKnQvGDM4NYw4vDpQNZQzfCpAIgwVQAU38Q/eb837ycvTy+GH+fgMaB3AJOgvpDToSzxd2HXchvyIWIacd7hn9FvoU/xI8EDgMjwcYA+n/+P23/FT7Ofmh9gX07PEZ8KjtwulR5C7eM9nn1vjXvduA4MrkH+gG64juSfMz+ZT/RgVJCbYKcwo8CaMH0AW/Ax8B9v0N+6/4Mfde9qD1cfSi8nHwWO7U7CfsBezn60br9elc6CPn2ubW5/jpx+zZ7+jyt/VA+KT6+fxY/54BugN8BbsGYAd3BzAHpgYdBrUFhQWIBaEFiAUnBXQEdANeAmkBvABVAAAAmP/w/gj+GP1q/FH89Pwq/pn/6ADnAaUCTwMlBD4FeAagB30I7wgKCe4IwghoCAIIjwcLB4QGFAbUBbIFmgVCBZYEsAOoAr0B+wBtAPf/ef/g/kT+yv2I/ZH91f0v/pr+CP+F/ycA5wC0AWsC5QIWAx0DGgMcAygDKwP/AokC3AH8ABMALv9e/p396PxU/OH7v/vm+z78p/z8/C79Tv17/eT9h/5h/0QAGAHaAYkCMgPeA4UEIAV8BZEFbgUiBdEElgRwBFQEMgT8A6ADMwOtAhsClgEfAcgAiQB9AJMAsQDJANIA3wD/AE8ByQFsAhsDugNEBJUEsgSpBHIEPgQHBPwDLASHBAcFhwX+BU4GigbLBv4GMwc6Bw0HqQYpBqsFPQXmBJ4ENgSbA+sCQAIUAnICIANOBFMFLAbqBjAHuAdCCAYJAAq4CoELuAuvC2wLpArCCaYIygdRB0YHrgcBCOEH0Aa2BPQB9f5f/Iv6kfla+Xf5r/m/+WT5r/jT9wj3k/ak9lT3V/go+Wr50vhn9671P/R083fz3/Mo9Bb0d/PH8lnyMvKK8sTyovId8iHxbvDu77Xvne8v75Xu/e297R7u4+7H7z3wMfDl76/vQ/CX8YDzZfXL9qP3+vdO+Pj4Hvqh+//8Bv58/nH+SP4S/gz+EP4E/vr92/3O/f/9Wf7f/mP/7f90AAYBtgFEAsUCKgN7A9ADKQSlBCYFogUJBmcGywYxB6YHMwjFCEQJwAlGCsQKQAvYC3QMGA2hDQgOKQ7mDVsNfQx9C5IK5QlkCf4IiQjjBwgHIAZhBcYEfgRkBFEEHQTGA0gDmwLTARgBdwAFAMf/pf+J/3D/cv+F/4//kP98/2P/TP9F/yz/Bf/M/lv+yP33/Ar8O/uh+lL6S/pv+qT6uvq9+qT6ePpO+hz6Afru+en54PnM+cL5wPnX+RP6dfr++pz7NvzF/Dz9sv0s/pD+0v75/g7/F/8q/3D/7/+YAEoB6QF2AvkCbAPgA1EEwwQNBSYF+wS7BFUE2wODA3EDewO9Az4E5gQCBkgHlwjdCQEL7AuxDEYN3Q2cDlIPNhDOEPgQJBCWDlkM3Am6B1sGYAaYB58JiwuZDDUMfgpKCLYGmwYQCIkK5AxXDlcOQw3WC+cK/Ar/C1sNOA4mDhgNmgsbCvgIHAgZB5oFhQMfAeP+MP1B/AD8APyj+5363vjH9sz0SfOT8lbyO/LI8fPw0++t7u7t1e1h7jXvAfB38JLwjPCG8LHwKvHL8V/yqPKf8jjycPF98JDv/O7X7gvvYO977xrvIe617EbrX+pW6j3r4+yb7rvvJfAN8PTvWfCO8Ybz6/Uf+Mv5wPoX+yL7Sfvt+/38V/6F/0sAjgBhAAAAuP+0/yoA/QAIAgcDvAMrBIAE/wTGBeUGLQhiCWAK8QoaCwQL6ArtCi0LlQsBDFAMiQy3DNsMGA1MDXkNjg2hDaENmw2IDVUNAw2JDPULVguyChUKkwkDCVkIggeKBoUFgAScA7sC5gEDARMANf9l/rb9Kf20/E386vuX+2/7bfud+9v7n/tH+9X6YvoV+vv5Dfoo+jz6I/ru+aX5d/lt+Xz5iPmW+YL5Xfkl+eH4pvhv+Ej4MPgr+ED4iPjy+H35FPqx+lT73vtZ/Nj8aP0I/sD+bP8CAIMA3AA2AZgBDwKtAmIDOQQLBdkFnAZaB/sHhgjhCPoI5gjMCNgIIAmNCfcJGwrmCWIJ3Qi/CEcJpAqJDJYOcxCZEe4RchGXELAPBA++DrIO6w5DD1wP5Q7XDTgMWAq6CNsH+wfdCOsJbAqkCW4HbgSbAdT/qf/2AOkCjgROBUcFAQUtBVQGdAjrCvQMFw5EDt0NMw1lDDELMwkYBgYC5P2Z+sP4QPhu+HX4jfed9VvziPG98CrxZfKe8xD0XvPL8eXvKu4c7dDsMu307dfuoO8r8HrwhvBx8Inw8PCU8UfyqPKH8s7xnvBs77Dus+5m72XwNvF58TPxrvB98O3w9fFV84P0LfVH9RP17/Qh9c/1yPbe9+f41PnY+g78gf0k/54AsgFQApkC1QJDA/MDwgRuBdIF3QWnBWwFeAX4BfcGOQhkCT0KrAq5CpgKgAqACpMKoQqeCnUKJgrCCW8JMgkdCTgJcwnNCUEKrwrxCuIKfgrfCRcJUAinBxwHrQY4BqQF8wQ1BJUDIgPYArUCYALxAVIBsQAqAKb/D/9B/jT9+vun+n35rfhJ+Db4S/hL+DD4+vev94D3hPew97j3hPcJ91n2lvX19Kf0rvTh9B/1LfUK9fD0CvWJ9Xb2wfcr+Vz6CPtF+zH7Ffsu+4n7KvwE/en9lv4E/0P/h//n/44AhAG/AgMEKgUCBnsGtQbTBv4GSAfEB20I/ghzCbwJ9wk0Co8KEwvMC3oMGw2XDSYOhw67DgEPTA+PD7QPvQ+SD0MP4g6vDo0Ofg6HDnUOQQ75DacNcA1qDYgNpA2CDQYN+Qt9Cr8IAgeuBfUE5QQ5BZIFhQXhBL0DngL8AVsCwQP1BTAIpwkJCioJhgfKBZwEUQSpBCAFQwW8BIEDBgK+AOb/nf+2//H/8/+N/7X+Z/3L+wr6RfiY9g31ofNQ8iHx+O/a7ujtPu3y7PvsWe3V7Unule6w7rbuy+4U75nvTPDz8D/x//BD8G/v6e7m7orvkvCp8V/yePId8qDxZPG88ZPyrfO19Fb1nfWU9Wv1SvU79Vf1mvUN9rP2kveh+MX53fq7+2j89/yf/Z7+7/94AfACHgTVBBcFHwU3BX8FFwbKBnEH6gcSCBYIHghUCMAIUAnsCWwKrwq1CpMKcAppCn4KmQqsCpsKRwrACSEJdAjpB4sHZQdoB3UHdAdTBwUHoQZJBg8G/AX8BQQG5QWUBQ0FRgR1A64CFAKgAUUB2QBSALL/+P48/pX9E/2n/En81vtM+6r69/k5+Y/4CPiG9yP3zvaO9mj2X/Z79qL21Pb09gz3I/c390v3Yfd+97D39PdJ+KH47PhH+an5RvoO+wv8OP1d/mv/JwCjAN4AAwEpAVsBoQHrASsCWQJtApUC2QItA6MDKwSvBCYFkQUNBpgGNAfnB6UIWAn6CXAKxAoECzwLiQvvC18MzAwnDV4NXg1GDSQNCQ0MDRgNJw0wDRUNzAxHDKAL+QppCvQJugmQCVgJBAl/CN4HPAe+BoEGfQaGBocGVAbgBUIFtgRhBG8E3wSYBUgGuQbQBpMGPgb6BeUF8AX7BeEFXwV/BGYDPQIwATMAXf+M/qv9wfz7+2z7C/ux+j36lvmY+Gn3SvZe9br0WvQw9OXzPfNE8iTxSfDu7yvwA/EO8uvyUvP98inyMPGA8DTwU/C38Pzw5/BG8DjvBu7y7D/sKuys7IPtee4j71TvMu/g7tfuO+8K8Anx7/Gu8hzzTPNk86fzT/Ri9dT2Zfi0+cP6k/tS/C/9P/6Y/x0BoQLtA+QEewXsBWkGIwcqCFYJdQpvCxsMgAyrDLEMtwzJDPQMHg08DRgNwwxiDBIM3gvMC9gL2wvZC7cLdwswC9UKpwqGCnUKYwopCuAJcAn0CI4IOQgcCCQINghKCDAI+wehBy0HxQZeBv4FlQUQBVIEaQNcAkABHwAJ/xj+QP1+/NT7G/tb+pz5//iI+CX45Pes93D3LPfW9oH2Kvbp9cb1q/Wf9ZT1ifVw9Vf1WvVz9Zz11PUg9nn23/Y795n3BfiG+Bj5w/lz+ij76fu3/Jb9Y/41/+n/ogBPAeUBcwLlAkwDvwNFBN0EdAX+BWwGvwb3BjEHgAf8B50ISgnmCWwKygoZC3IL2AtKDLcMKg2RDdQN8g3aDacNbQ0tDQAN2AzDDKgMdAwrDLsLOQu8CmkKJgr9Cc4JeAneCOwH3AbNBfQEbQQ5BCwEGgTbA2gD4wJ9AlgCiwILA6sDKARoBHYESAQUBOgD1QPnA/AD8QPaA7oDhANIAwADigLuAToBgQDG/wP/NP4+/SD81vpr+fz3wPbM9Sr1xPRx9BP0hvPo8lDy4PG88dHx+/Ej8jLyCvK88V7xBvG08J7wvfD88DzxV/FO8Rvx1fCb8InwrvDw8DzxfPGX8Y7xgvGU8dHxRPLW8oPzMfTJ9Er1ufU29s32h/dm+EX5Kvr5+qj7Svz0/J/9cf5a/1oAWQE1AvACmAMpBMMEaAUgBt4GjgcbCHQIrAjXCAwJYQnWCVUK0gogCzcLQAtPC3gLxgsrDJAM1QzhDMAMiQw1DOwLrwt+C04LIwvqCo8KDApkCagI4AcnB5IGFAaeBSIFgASpA7wCxAH4AFMA3v99/x7/tv4//sb9U/3r/Jn8UPwE/MX7gPs6++H6efoU+p35MfnN+Hj4Nvjx96T3Rvff9oL2Q/Yn9jL2T/Zw9pH2rfbR9g73ZPfc92z4BPmd+S36x/pw+y38CP3o/cn+lv9bAAwBugFqAh4DwANUBNAEUwXKBSkGgwbVBh0HYwesB/wHTQimCP4ISQmBCbAJ1An/CS8KZAqQCp8KmAqACmkKWgpeCnsKlgqfCpAKcgpPCjgKKQoJCuAJoglBCcYIQQjQB2gH9AaGBhUGngUdBZ0EHQSrAzsD2QKKAkgCCQLCAWcB/wCCABMAwv+S/4P/dv9g/yn/0/52/i7+Gv49/oT+0v7+/vr+yf6N/mH+Xf6K/tb+MP93/5r/pf+Y/4P/a/9H/xv/5P6Y/j/+0v1R/b38D/xd+7L6F/qX+SX5u/hM+MH3Mfek9jP27/XJ9cP1wvWj9W31NvUS9Qf1JPVh9ab13fUG9hj2J/Yv9jn2VvZv9nD2avZh9mH2bPaC9p72v/bc9vb2HfdH93r3tvcB+FT4pPgF+Wv5yfkg+mv6t/oW+477HfzU/JP9Tv7s/nL/4v9YAN4AgAEyAuMCfAP1A0QEdASkBNgEHwV4BdYFNwaNBuEGJwdsB7QHAghcCLoIGwl7CcgJBgo7CmEKgQqnCtMK/wofCzcLOgsgC/QKuwqHCjsK9AmuCWEJAQmZCBkIgAfrBkgGpgUIBWsE3QNFA6wCEQJ7AegAWgDY/2X//f6g/jX+vP04/aj8HfyT+xL7lPoS+o75DfmR+Cv43vek94r3h/eY9633xPfk9wL4KPhR+Hr4pvjN+P/4Nfl0+b35DPpu+uH6bfsL/Ln8av0j/sr+Zv/6/4AABwGPARECkQIKA4ED+wN8BAQFogVMBvcGmAdICO8IeQn/CXoK2QolC10LdwuAC3gLawtaC1ILSQtFCzcLHAv/Ct8KtQqDCksK/wmwCVsJ7AhtCOEHUQe7BjUGvwVPBdsEVwS9AxsDeQLtAWEB4QBfAMr/MP+V/vz9cP30/IX8Ify2+0f74fp6+iL6xfli+Qz5rfhc+Bb45/fI97n3u/fC99D35fcH+Dn4ePjE+BD5Wvmc+dX5DfpD+n/6wvoC+0D7evus+937EfxD/Hj8sfzs/Cv9af2p/eb9HP5E/ln+YP5l/m3+cf6B/oT+ff5w/l/+Wf5b/m7+hv6f/qv+pv6c/o3+f/50/mr+V/4s/v390v2s/Z/9ov25/dL93f3d/cz9sf2N/Wf9R/0k/QX92/y0/Ir8XfxA/DD8QPxb/If8vfzk/AP9Cf0D/fn87Pzg/Nz81vzI/LL8nPyM/JT8tPzt/DT9gf3H/Qv+Rv5z/q7+7f41/4v/3v8yAHkAvgANAVkBtAEaAn8C8AJWA7IDBQRLBIwEyQQABTMFYwWJBaUFvAXUBegFAwYcBjEGSQZXBlQGTgY6BiIGBgbkBb0FmwV7BWAFRAUnBQUF4gTABJ4EfgRlBEQEHwTvA7UDawMaA8oCfgI2AvoBuwGEAVcBKAEFAeYA1gDLALgAowBgAB0A4P+d/17/If/f/pv+Wf4Y/uz9yP28/bf9tP26/cP90/3y/SX+Yf6X/sr+7/4N/yj/Sv9v/53/yP/1/xoATQB3AKQA1wD+ACcBPgFOAXcBngG9AdgB8AEBAgcCEQIZAi4CTwJ0ApUCrwLKAt0C+QIYAzYDWQNpA3gDcwNlA1UDQgMzAx0D+gLYAqUCdgJOAikCEwL2AdoBuAGKAVYBHQHvAL8AiQBMAAwAxP+A/zj/9/7G/pr+eP5Y/jL+FP7p/cT9nf1t/UP9Df3d/Kf8Zvwr/On7rPt1+0P7Fvvy+tX6vfq1+qr6pvqe+p36qfq6+tH66voD+x77MvtP+3r7tfv2+z/8hvzD/AL9Qf2B/cn9GP5o/rn++f4w/17/iv+v/9//CgAyAFAAZQB3AIMAlACjALEAugC+AMYA0QDgAPUACwEgAS0BMQFCAVsBfgGfAbUBwAHAAbIBowGaAYkBgwFxAVgBOgEOAfQA1gDRAM8AxAC0AJIAZgA8ABMA9P/T/6//j/9o/0//PP80/zb/Lv8w/zH/Mf8z/zL/L/8i/wr/8P7R/rL+lP58/mr+WP5G/jP+Iv4P/gj+Af4L/hL+Ev4R/gr+CP4I/g/+JP5D/l/+gf6o/s3+Af8//4n/0/8mAHIArADmAB0BUwGYAdMB+AEXAioCQAJWAnECmQLBAusCBwMjAz0DVgNvA4gDnAOuA70DygPUA+ED7QP3AwAECQQQBCMEOgRNBGEEaARnBGkEXgRUBEsEOgQoBAUE2QOjA2kDMgP8AsICkAJQAg4CzgGJAUgBBwHXAKkAegBJABwA8//P/6n/h/9u/0b/Kf8F/9/+wP6e/oP+Z/5L/jb+Kv4j/ib+Jf4j/h/+GP4L/gr+Bf4F/gj+Bf4A/vL95P3c/db92/3u/QX+Gf4x/kP+UP5i/nn+kf6p/rv+1f7v/gb/Fv8e/yP/IP8j/y3/Mv9S/3H/i/+e/6r/rv+q/6n/s/+0/57/b/8n/9r+nv6I/pb+s/7R/ub+9/4T/zv/cv+x/+n/JABlAK4A7AARARYB9AC/AI0AZQBQAEMANAAiAAsA9v/i/8H/mv9c/xX/z/6P/lr+Cf6w/V/9Jv3//Ar9Nv2Z/UL+Jv8gAN4ARgEbAYEAeP8r/t383vvJ+6D8Fv5+/08AYQACALn/w/8OAFgAXAAZAMr/iv9c/0b/L/8H/wz/XP///8MAYwGkAZEBbgGPAQACggLXAtACpAKIApoCyQLaApwCFQJmAcIAVQAeABkAQAB2AI4AdAA9AAQA8/8KADkAaAByAF4AXAB0AKcA3gDpAM0AjgBPACEAEwAhAEUAYgBvAG4ASQAeAPb/2v+4/4//cf9l/4f/yv8JABoA+v+2/4b/f/+l/+T/LgCEAO0AawHjAUoChwK0AtQC3gLXAq8CbAIjAuIBrwGOAWwBNgH6AL8AvQDlAA4BOgEtAfoAnAAeAHr/7v7E/tz+M/9P/yv/+/4i/8r/igAlAWcBWwEdAewA0ACqAJUAbABGAE8AegC/AN4AuABPANv/l/+k/7n/1P/4/wcAEADu/6j/TP/8/sT+nf53/j/+8v3Q/fP9SP6t/ub+2f6n/nz+Rv4s/iz+Q/5f/nL+pf6+/tf+3f69/pb+Uf4e/vn95f3k/Rv+bf7K/h//VP+B/3D/Wf9N/23/1v9dAOMANgE5AQUBzwC0ANkA+gAHAe0ApABOAA8ABwAQACoASwB/AKQAtwCzAJQAfgBrAGAAUAA5ABsADgAJAAMA///+/xIAOgBrAKAAwwDCAKYAfABNACIABQDx/97/5P/1/wkAHwA8AGoAnwDVAPMA6ADJAJ8AdQBVAEQALgAZAAoABwAIAAsACAAKAAwAAwDq/77/hf9N/yL///7l/tT+wP6x/qn+rv7K/vH+EP8u/z//Of8k/xD/Cv8P/yH/Kf8m/yb/MP9M/2j/hf+W/5z/pP+r/6H/hv9b/zD/EP/1/ub+5f7y/gn/HP8l/yP/Jf80/0n/Uv9M/0n/S/9V/3v/rP/W//j/GwA8AGgAkACtAL8AyADTANkA2wDxABEBMgFgAZEBtAHEAcgBxgG2AakBpQGcAYQBaAFQAT4BMwE9AVMBYAFYAUABHQH1AMoAowB+AFMAJAD3/8X/pf+T/6f/7f9LAJ4A1QDlAPQACgEtAVoBuwFkAkADNQQsBRoG9gbDB8YI2QmWCqYKLAqBCeUIUAjAB6AHRAjmCTUMEQ6KDlUNJgsGCZ4H9gYuBnsE1QHW/jz8Uvrt+BD4p/em97X3ZPc79jH0v/GH7wDuPu0f7VDtse0Y7nDu4O6m78DwO/IC9L31Dve597z3S/cV95L3uvhN+vD7fv3Y/h0AQAEvAuQChAM2BAoFvwULBt8FdAU8BXwFKwYUB9IHPghKCPgHVAdmBmkFhgTeA1cD0gIoAmMBmQD//5v/Vf8P/6X+E/5d/X78ffuC+rr5Xflu+bf5B/o6+mL6rvoi+7z7UvzJ/Cf9ff3O/SX+gv74/pr/awBOASoC9gKxA1sE/ASFBeQFHwZOBnoGsgbzBj8HjwfhBzMIeQiiCKsIjQj2ByUHKwYaBQsEAwMOAigBOABK/3D+yP1a/f78ifzC+6/6Zfkd+AL3LPal9X/1mfW89dL14PXm9RH2cPb29p73S/jM+Ar5K/k7+Wj58fnz+l/87f1N/0wA9gB9AQYCegLAAsECfwIEAoUBGgHBAIMAdwCoAAgBeQHVAfkBzQFQAYcApP/0/qX+r/7G/sT+x/75/pD/sgA5AusDagV9BvkGGgfYBloG9gXZBQYGSQaEBpwGmQasBg0H3gfjCN0JTgrTCUoIJQbcA+kBtQBkALkAOAG/AScCXgJ1Aq4C/wJfA+gDXgR/BAkE4gI7AZT/wP53/3ICmgeXDZgS9xQfFOYQWw0uCyYL2AwZD38QJxBmDncM2QtSDawQpRQxF9wWSxMYDXgFkP0w9gHwauu96LvnhOcF51DlbOIy39TcPNyE3azfNuEG4a3eq9rz1rfVItjf3T7lAuyG8GnyvfIx8wH1oPiD/YQCTgZQCKgIOAgHCMwIoQoYDa0PxhEIEzwTcBLXEPoOgg3MDOEMMw0hDR4M+gnhBl0DSgBO/o79qf3x/cT98vyi+0b6VvkE+V35Ifrb+ib74PoQ+vX4I/gR+Or4jfqX/KP+YwC/AdICpwNLBOsEkgVABtYGPAdsB34Hrwc7CDMJYAqkC9gM3Q2ZDuIOpg7/DR4NNQxpC7gKFQp8CfIIYgi+B/wGFQYcBRYEAwO1ASoAYP5r/HH6kvjx9p/1mvS/8wbzVvKU8dXwTPAr8Hrw9vBt8cLxy/HU8R3y6/I/9PX11vea+RX7Rvw2/RD+GP8vAFIBUQIMA2YDewN+A3kDlAPZAz4EpgTVBLMEPwSTA9cCKAKJAfsAbADa/zT/Gv7j/L773vpc+jn6SPpv+r76JvvE+3r8RP0P/tj+k/9MAP4AzwGpAosDWQQUBdAFlgaMB8UIGwpMCygMsQzVDL0MfQw1DPgL4QvtC/kL2AuYC0sLBwvuCvYK4gqACq0JkAgoB5cFMgQ5A6ACWAJKAj0CBQL2AVACQAPLBJwGOAhvCUEKnArBChkLHwz2DbIQQRTwFwUb8BxqHVMc3Bm+FsQTihEqEEYPsA1hCgYFdf4U+HfzgvGj8aLyyvLD8J3sHefg4Vje4Nwj3dndlt2921/Y49Tl0q3Tl9fl3Szlieuv74Lxy/H48VXzUvaC+p3+cQFxAr8BUABw/yYADgO0B9UMAREwExoTUBHWDtIM3QvyC24MqAz/CzQKsQcUBSMDXwK5ApgDIgShA9oBFP/x+x/5LPdH9iP2M/YN9mv1ZfR08+vy+vKz8+n0RvZt9yb4XPhD+DH4jPiU+Tn7P/1F/wkBawJ3A04EFAUKBmsHIQnoCmsMcw3/DUcOkw76DokPIRCLELUQeRDAD5YOQw0TDCgLewrUCe8IhQeYBUwDxwA1/sj7hfmN98v1HfRf8pvwBe/f7Vntd+0G7sLuae/Q7/vvIvB68D/xdfL785z1H/dg+H35lfrb+3D9MP8IAbsCGAT1BFwFZgVIBT0FVQWDBbIFvgWiBV8FDwXYBLUEpgSsBJ0EVATEA/MCBAIeAYEAGwD5////AADg/5L/Jf/E/pH+gv6T/qb+pP6M/oP+l/7+/o//LADpALwBqgKbA4AETwX6BYEG6wZDB4kHxAfpBxIIJQgqCCgIHggPCPAH0AekB18H9AZdBqEFyAQDBFsD2gJyAgwClQEBAU4Aof8V/xn/fv8cALoADgHGAOr/qf5q/af8j/wg/T7+f/+SAJsB5QIVBaMIOQ06Eo0WPhmlGTAYrRUzE4QR8hAXEQcRRRCmDj4MiwkaBwkFQANaARz/Z/xC+eH1ZfLL7ivrlueO5GziheH44VLjxOT65bbmF+eK527o+Onk68/tY+9W8MPwGPHd8YDz/vUW+T/88/7fAP4BZwKKAp4C4AJMA+EDaQS2BL8EmQR8BJkECAXdBeQGrwcHCMYHzwZPBZ4DGQL8AEUA4v+n/1r/4/52/jH+SP6//mv/AAA8APb/OP8//k/9nPxC/ED8afyk/Nz8Jv2O/TH++f7I/48AOwHKASQCQgIqAvABqgF4AXsBuAE0AtcCigMrBKoE+wQXBR0FFQUEBd4ErQRnBA0ErwNRA/ACoAJZAh4C6wG1AV8B0wAeAEn/Z/6W/ej8Xfz0+4/7Hvuk+h36tPmD+ab5Bvp7+vX6Sft6+4r7jfuU+6L7uvvi+xD8QPx4/LX8+fxB/Yn9yP0H/kj+gf6v/tD+5v7z/vz+Cf81/3b/xf8nAJIA/QB0AfIBdALvAlMDmAPNA+oDFARLBJwE+wRkBbYF7AUEBhQGLwZYBpgG2QYRBzwHOgcZB+4GzwbLBuIGEwdZB5QHzwfyBwYI9gfGB4sHMQfBBkwG0wVbBfIElgRRBCoEJgQuBDUEIgTVA14D0gJEAsIBQQGyAAoANP82/kT9nfx7/Nz8nP2P/lD/rv+g/1v/GP8R/1f/+P+sADABfwG2AfUBUwL1AtADtgRkBasFfwXuBCQEaQPtArgCtgK8AqQCRwKWAaIAjP+B/pn9zfwN/DD7CvqS+PH2S/XY88HyF/LF8abxmvF88Xzxf/GR8bLx1PH48RHyFPIR8izyX/K98ivzp/M69Ob0tfWx9uL3Ffkv+hn7z/tZ/M78M/2J/dv9GP5H/mr+jf62/v/+YP/g/3AAFQG6AUUCrgLcAtYCrwKDAmkCagJuAm0CWwI9AiICIgJPAqACDgN5A8oD9gPpA8EDmQN+A2MDTwM9AycDDQP8Av8CIANVA5wD+wNmBMoEHQVdBXgFcAVZBTYFEwXvBMkEnwRyBDIE9AO1A4QDYgNKAzMDBwPIAnEC/QGFAQQBiQAgAMv/ev82//n+w/6a/nj+Zv5e/lT+Pf4Y/uD9nv1Z/R/9/vzy/PX8/fwJ/RX9If00/U79c/2U/bL9zf3c/eH95v3v/RH+T/6o/hX/kP8KAIUA9gBnAdYBQwKwAhQDZwOfA8QD2gPmA/kDFQQ/BHQEtQTxBC8FYwWNBa4FzQXsBQ8GNAZVBmMGYQZaBkkGOAYxBiwGJgYfBhIG/wXkBc4FvgXJBdsF8AUDBvwF1AWQBUMF9QSmBFkEDwS+A2wDDwO0AmICHQLsAbwBjwFTAQgBngAUAHX/xv4R/lr9tvwd/JT7H/uy+lb6Efrm+d358fkk+lv6g/qZ+pr6lvqK+n/6f/qC+on6jPqS+qb6x/r8+kH7lvsA/Gv80Pwl/Wb9kf2n/aX9nP2Q/YX9hv2Y/b/98P0s/nT+xf4W/2n/t//3/ysASQBGAC8AAQDB/3v/Nf/1/r/+mP58/nH+bf5q/mb+XP5H/i7+Df7n/b/9kv1Y/Rr93fyk/Ij8hPyR/LH8yPzX/Nf8zPy6/Kj8mvyH/G38Uvwv/AX86PvX+9P73vv9+yL8SPxm/Hf8iPyX/Kz8xPzm/A39Jv1D/Wf9lv3b/S3+kv78/ln/rP/x/zIAewC6AAMBRQGHAdoBLAKTAv0CcgPpA1QEsgT0BCAFOwVGBUwFTwVcBW0FeAWJBZUFkAWIBXAFXgVMBTEFDgXeBIkEGgSOA/cCUQK0ASwBrgBDAOX/i/8v/9v+jf5G/g/+5v3S/b39rP2O/Wj9Uv1E/VT9c/2l/dv9FP49/m3+of7Y/hr/V/+S/7//5P/8/wsAGgAmADQAPQBCAEcAXgCBALgA8gAxAWQBmwHBAdcB7wHxAfYB7gH0AQYCIwJUAoYCwQL+AjsDbgOqA9oDCwQ0BEoETgRFBDsEOgREBFUEdASVBLwE2ATvBPsEBAUKBQ8FFAUUBREFAQXqBM4EqAR6BEQEEgTkA7cDhwNTAxIDygJ+AkICCQLQAZ4BYAEZAcQAYwADAKL/UP8N/9n+r/6E/mD+Of4W/gD+7P3U/b39ov2H/W79Wf1N/Ur9R/1M/VX9Vv1W/Vr9X/1b/VX9Uf1G/TL9G/0M/QD99vzy/Pb87fzr/Oz88vz9/BX9L/1G/Vb9Yv1j/V79VP0x/Rb9/Pzr/Oz8Av0m/V/9iP22/ej9EP5F/mT+lf6y/sj+5/4G/0H/iP/n/1AAwAAfAWsBnwG/AdUB4QHkAdgBxQGmAYIBXgE9AREB4gCyAH0ARwATAOf/r/9w/zH/Av/f/sf+uv66/rv+sf6X/mz+N/79/cr9ov2K/X79ff2M/aD9tf3T/fj9G/4//mL+fP6Q/pX+mf6Z/p3+rv7O/gH/Nf9r/5v/uf/L/9H/3P/Z/9//2f/E/7D/jP94/2f/Yf9k/27/gv+W/57/pf+d/3//Y/82/xD/6f7J/rX+rv61/hf/Z/+M//j/HACQAPYAJQGRAbgB8wE7AkMCgALgAtUCRgNpA3kD/gPXAzAEMAQlBFwEMwQ7BDMEFwTwA+ADkQNaAxQDwAKcAl4CLwL8AcoBmQF2AUgBMgEgAQ0BDgHnAMoAuQCJAHYAWwBxAF8AjwCDAI8AtgBxALUAjwCsAMIAxgDqAN8A8gDWAO0A/QAhAToBUwFdAWABZQFjAWwBbQGTAYcBjQGHAZMBhAFlAWEBIgE4AQIB4QDTALAAmwCQAGYAQABnACoAYwBcAFcAdQA3AFsAOgAtACQADQABAOT/0f+8/8z/ov+y/8f/sP/K/8b/vP+f/4z/iv9o/1L/af9h/2D/fP9+/5L/e/+G/6//kP+Q/3f/Yf8g//j+9P7X/vL+3v7w/uP+5/75/vH+Dv8I/xD//P7p/uD+2P7V/tH+4P7g/vD+AP8X/yv/RP9J/17/ff9p/4P/lv+h/7n/zv+q/+f/zv+5//r/k//W/53/ef95/0f/W/8e/zr/D/8///3+7f4F/7j+1P6X/rn+vP6q/rj+nP7G/q7+rf7e/uH+9v4J//3+Ff/1/uH+7f7R/t/+r/6w/p/+kv6e/ob+wP6o/r7+zf7C/uD+v/7A/rv+sf6o/rP+sv7R/sj+0f7j/uP+Cv8D/yD/K/80/xz/Jv8X/wv/Mv8O/1f/Ov9t/3v/Qv+w/1P/i/+S/4X/8P+o/97/8f8GAPj/JQBDAE8AnQBoAMEAqQC5AOgA3AAHARABNgEdATUBVAFGAVABTwExAVUBPAE9AXgBXQF6AacBcQGWAZgBcwGxAZQBgQGbAWkBZwFgAU0BXQFDAVYBRQFHAVUBQAFDAUABKwEtARIBFAE1AQEBFAFiAcwAYgH3AAgBOAHcAGEBqgBeAc8AGwHSACoB5wDdALEBnwD5AesAdAGCAQUBiwEvAUwBIwGIAd0AWAEPAfAAUQG/ADgB7QAVAcYA9gD8AJkA7gBfALkAFgB0AEMALABbADcAbgASAFkA9/+PAO7/mQD8/zEAWgCP/2kASP8yALj/jf8hACr/CgBE/+3/1/+N/0UAff8lAIP/+P+P/8D/u/+E/8X/RP/w/yr/yv9K/6b/kf+D/9n/ff+c/4j/mP9x/+f/Gv/i/3P/Rv/b/xD/xv9G/2P/kf8l/33/JP9V/x//g/8h/wz/gf8I/1r/E/+Z/6f+Xv8m/47+d/+C/gX/3P5u/uD+v/51/u3+bv6z/p/+hv6W/pj+lf6f/rH+c/62/lT+xP5Q/mj+lP4F/oj+Vv4j/rD+B/6w/k/+Wf6C/iD+fP5f/n3+Q/74/mr+xv6z/oP+8P6M/s3+LP9i/qH/0/7u/rn/Gv4zAMz+2v+9/43/AwAt/+H/K//Z/6H//f9C/+v/ef/O/5r/QP9hAIP/IgDn////LACE//3/oP/L/6H/b/8KAJ7/CwB2/4wAy/8dAIcAEwAAAXsAqADiAPUAnQBAAeAA6wBmAVUAlQEuAbwADwLzAPABbwHMAZ0BbAGjAgwBWgJVAoYBZwKWAZgBPAJmAdsB3gH8AZUBFALoAaUBlQJeAVECAQJKAVECGAGWAbcBAwH4Ab8ArAH5ALgApwG5AG8BIwHjALkALgGEAB8BuAD5ACEBnwBRAToA/ACXAPgAKwGnADQBjgAPAS8AlwDMAHMATAHy/6cB/P9sAPAAEgAJAX8AKAFqAEEBPQAUASYArgDyAPD/FgGa/6EA5P8sADgAj/8jAMj/8P/k/+D/8f/s/9P/5P/T/8r/6v/W/+7/AADJ/y0ABgD5/20ACQBhAGYAbgCjAH8AyQC2AL8AvgDMAMEAnADGAIAAfgBiAEcATQAWABgA/v/r/67/s/92/y7/MP/F/s7+ff49/lP+7v39/cf9of2o/Xf9h/1w/Wf9XP1m/Tz9Wf1N/Sj9T/0e/T/9O/03/Uz9Of1T/UL9RP1f/Vf9ZP12/X79eP2G/XL9hP2S/W39r/2Q/cT93f3W/Qz+7f1B/lf+bv6Z/rf+2/7g/g//+f4m/zH/Uf9l/3D/gP+f/87/t//j/9v//v8aADIARwBIAG0AaACGAKAAuADQAPoA8AAOARcBDwE3ASwBVAE2ATMBNwErATgBEgEdAQ0BJwESATkBUQE6AVABUwFhAVkBVQEvATYBJwErAR4BAgENAfoA9wD8AOkA6wD5AOsA5QDRAL0AtwCmALMApACdAI8AfwBsAEMANwAdABcABAADAPf/9P8AAA0ADgApADwAWgCPAKMA5QD6ACYBUAFQAV0BSQEtAR4B8ADtAN4A4QD2AAsBPAFeAZABuwHpAQMCKwIPAgUCAQLUAdcBsQGlAZoBfAF3AYIBbAFdAXEBYQFaAVQBYQFaATsBtQBuAHf/Lf+q/mv+A/9t/2QAcQFXAjgDwgTWBRAIuQl1C4IN9g2yDiYOVQ2uDPALlQtgC30LfgtsCyALqgrdCTsJnAikBwkGHASnAff+fPwU+or3g/U08zbxo+/f7Qrt7eu/657rv+sh7Lvsye2S7ivwTvGf8vPzFvWc9gX4f/n2+jz8Wf2G/k3/DgCxAEgB2AEqAnsC2gL2AnoC8QFVAcMALgDN/5v/Qf/f/kb+jP3y/E78zPt2+zv7I/v8+ub6zvrZ+gz7evtH/C/9Sv5Y/0gAFAHPAaMCVQMxBBQFuwU1BnAGewZVBhcG8wXfBcMFrgWxBcQF4wUBBgIG1AWCBRcFmQQKBGIDfgJYAQAAhv4y/R38Wvve+rH6kfqD+qb66/qV+2/8cP2E/n3/WQAsAeQBZAKtAssCvgKFAj8C5gGbAUcB6gBxAOn/Zf8B/8T+nP6g/qb+mP5a/v39gf3+/I38K/zq+8L7tvui+4j7jPvN+zL8vvx1/Vr+Q/85AEIBHALYAnAD9wNMBMIEXwUMBqYGKwdCB/QGdQaqBRAFjQRKBDIELgTnA6QD/AJIAgECmwEkAsMC1APABD0FcAXGBH0DIwIeASMBQQK3AzkFSAWRA9UAV/5L/QH/KQTlCs4S1hmkH9Yjmyc1K9wuQDJXM6EyUC7MJ4AfAhaGDDkC9vfS7V3kI93+1wfVBNMq0YHPIs5SzrfQh9XD24XhAOZf6B7pfOlp6rjs2e9e87D2VvmW++/94wDsBKQJ5Q4xFL4YWRxjHr4eXh1tGmkWdRExDJkGrQC0+q704O6d6T7lI+Jo4GLgEeLX5C7oT+vx7SjwIPI09LH2bfnw+yv+5P/1AKcBkAIDBBcGxggrDJ4P2BKnFdsXYhk3Gk8agRm6F6gUcBA9C34Fk//S+bH04u/569Xo+eaF5orn/uks7fDwyvTQ+CT9pgEpBlsK0Q1zEC4SMBOBE4sTORNkElYR5w94DgwNvguKClkJ8AdBBkEEDQLg/+79KfxI+m/4R/YL9O/xQ/BL7/buY+9J8GfxmfL+81b16fag+I/6d/yO/uIA4wKrBO4FpAbCBl0GvwXxBBMEIQMdAu4Alf8d/pz8Kvvx+Rb5ifgt+N/3ofds91T3ifcd+A35Jfpo+7/8Cf5K/5YA+wFrA9YESwa7BycJjAq0C3EM1QzhDLEMQQyLC5kKRwmpB+sFKgSVApMBDgHMAPMAZAFZAp0D8gS9BZEFqQRiA1wCvQIBBfoIKQ7fE1AZVh5RI1corC3dMjo3sTkGOvA30DM/Le8jbhe1B9b2pOY52XXPA8nLxEnB671ou3S7Y79CxzXS691Z6EPwlPVc+a38ZQCIBIIIFgzoDngRChR1FrgYWxqRG6Icgh31Ha0d5RvhF4cRSQk5AG/36O+O6S3kUd/E2pjWa9PO0dTRfdOq1tbaY9/q4xzowusR73jyMPYu+nX+8gIWB20KJA0uD9EQTBLTEzkVGhYXFtIUTBK+DpUKIwapAXr9tPls9oDzBvEI74rtr+yU7FntC++C8ZX03PcD+879LgBjAsIEegeJCr8NxRBCEwMV/xVmFn4WYBb1FSEVmhNoEZkOGgs3BwIDyP7F+iD38PNU8W/vCe4W7YjsY+zN7NXtcu928cLzMPaj+P76L/0l/8wAHAJEA08EQwUfBsQGKAcEBy4GqASdAjUAuP0u+734UPbb81rxwu5v7Jbqeekt6aDpn+r566vtr+8H8tv0N/j/+/n/EwQwCBMMmA+PEs8UeBahF2oY9RhWGWIZxRhoF0UVhhJ6D3QMuQlCB+YEmAJhAG7+9PxI/Hz8Xf2X/u3/6QBsAVIBmwAu/1r9Rfsb+VX3FPci+ff9wgWYDyQaoCMjK4oxXjdLPeJDkkmDTMJK1kNROB4qeBsnDYn/4PGs5KLYkM2NxW3BGcDbwFTC/MOwxtvLXdSm34/rtPUm/ET+Wv0A/DH8z/70A28KqRBkFeoX7xgyGT4ZTxocHEoezx+AH18c5hViDGgAHPPc5T7aQtFiy8fH4sWOxEbDnMKPw4vHlM8Z26joDfZCAUoJQQ5WEc0TjRaxGZwcJh52HW0aZBWPDxQKuAW3AtsAov95/hD9U/s/+QP31vQG89rxVPFn8YjxUfGG8Cnvxu0Q7ajtwe8x81H3qfvc/8QDmwegC9sPKxQqGGwboB1WHqcdxxv1GKEV6BHRDUwJiwSq/6765vW28WTu4etB6mHpGOmI6Y3q8Ovf7S7w9PJH9gr63v1WASsEQwa1B6sIUwnWCR8K7gkYCX0HPAWLAtn/Y/0/+3n54fd89lD1WfSS8wnz0/L98nrzPPQ59Wj2nPfb+CP6dvv0/Jj+WwAnAuoDkwUaB20IdglJCvMKjwsVDGsMdwweDF0LNArdCIwHbwanBR8FyARsBPYDjgM/AyADTQPWA8EE3wXPBlQHGgf2BUgEbwLXAPz/BADrACICdQOcBNsFBAjyC1gSPBs2JQAvFTe6PHhAakIgQ15CST8rOdUvpiMkFRsF9vMp4u7QhMKcuBq1U7j1v+vIYtC+1AXXy9mm38jp+vZSBJ8O2RPZE+MQ3Q2ADBoOKxL3Fn4bVh5DH0QeYBsfFxgSOQ2/CJQEvP+++BrvOuMr1pPKVMK5vt2/RcRKymLQYdaX3LnjeOzW9iMCIQ1QFicdLyFeIjUhXR68GtkWjhO/EAUO+Qo6B8gCUf6z+sD4X/gb+Qr6WPpo+Un3tfSN8nDxgvF78uvzVPVw9k73VPjX+SD8Nv/SAqYGNwoMDVwPFxExEuESLBMwE9sSEhKXECYO2QofB1cD+f9u/YT73fne9zb1FPIp7yjtqezP7RbwwfIr9Qb3dfgQ+jT87v4eAi8FkQfOCJEI5AYaBL8Adf2e+jP4LfaM9Hfz0/J78l/ydfL08u7zQfXc9mz42Pnr+ob77/sz/MD8tP35/pEAIgKvAzMFpgYnCIoJ1gr1C7oMVQ3FDe8Nvw0SDQEMngpBCewHuAbRBSQFuwR9BGcEOQQSBBUEkATABZUHxwnnC14N1w1bDSUMxwpyCUoIHAeBBX0DhQE+AMYA3QPgCV4SlRytJ/cx1DprQU5FTUb6QyU/8DeeL3gmwBxKEe4Cc/Gb3lPNk8DKusm7kcFNyKjNYtAX0jLVVds+5erwTPzHBFAJ/AqtCkQKrAo+DFkP1BJsFskZ8hu0HGYbBRjkEroMqQbFAEX7FvVQ7X3jENiRzM3Cf7y+uim9eMKIyR7R0tir4Pno8vFU+8QEoQ0kFaQa0R3EHukd+BtEGYQWARTKESQQrA5GDW4LvwggBcMAbfyF+Ev12fKJ8OjtjerO5ljjAOF64ObhAeV26cLumvTH+jMBgAdbDZ4SEBfOGssd4R+vIPkfrR3cGfoUug+kCi8GqgLI/0j9yPo/+KD1SfOX8YnwQ/Bi8KfwA/GF8Sby4vL+83T1R/el+Wj8aP9UAtoEpwabB7IHCgfiBV4EjwJeAJ/9Vfq99jTzRvA67jXtGe237ebulfDE8k31Kvhm+9v+LQL3BOoGBghKCAIIPAcyBiAFGQRCA4IC7wGsAaABqwHaAQUCagLtAogDLwR5BIoEIgReA3UCmQE5AS8BeAENArYCewNaBFQFoQYbCO8J9gtwDaQNJQzvCDkFCgGi/ab7xPry+4D/CAUlDOkTdxxBJlkx9T08SsNUsFoqWqBSQ0QPMjMdOQcG8UfdL83awQa8RbqYu5a9Y78wwY7E3MoN1bbhs+76+eEB8wUQBzwHQggSDFsSpRnUIC8mASluKb8nbiQ9H+EXhA6fA+f3Wuy24RDYrM/3yGrEYMJfw/nG5swh1HPcmeU47wL5KwLgCTcPuhElEn4R+BBfEcgStBQXFmwWORWJEsQOewopBl8CCv/e+4z4+fQD8drsoegH5cfiouLE5P3ooe789ET7ugBNBSAJjAytD2QSUBQPFWsUcxJuD7cLqgeuAyYAZP2H+3L64/l8+Qr5fvjx97L36/en+Jn5ePo+++L7fvwm/en95P4KAFIBowL5Az0FWgYXBzkHmAZbBeADSAKoAPr+Pf2D+9X5Wvj29sX15vSg9Az1DPZU98r4Svqw++T83/3F/q//XAB9AAkALf9R/oX9z/zx+9L6dPkH+L32Q/Yl98j5DP4UA2EIfQwZD9UPzQ6uDOAJEAg/B5MI6gpRDqgRUBSaFeoU2BLPDzYNvwqFCOoERP8O993sfuLd2dbVTtc03i3pn/YnBYgTKSGsLY44XkJVSoxP3lFmUM1LREPANkAnNRZLBi75mPBp7DrrGeuw6T3m+uBV23jXDNZ41+jaCN+u4pPl+OdN6oftb/LA+WcDZg6xGQckcisfL28uTyqsI7UbjhNICxQDFfoE8DjlmdqX0ZLLD8k+ygnOodO/2crfk+Xx6iLwAvXo+av+TgO+B3ILaQ5XEAQRxRC6D5kOiw2QDF0LDwmbBdkATPu/9erwUO3c6nzpG+mF6eXqFu098BP08/eD+0H+NwCWAbECoANPBO4EeQUfBkgHIAmUC2kOEBEXExYU+xMLE6sRDBAXDqwLUAgCBFf/tvrw9mD06/Ij8rzxavHh8BnwIO8k7n3tw+0U70Lxz/Mw9iv48vnZ+yD+DAFwBPYH9ArhDJsNAw1WC+MIFAZFA6kAaf6L/On6c/kH+Mf25fWJ9YD1kfW19Qn2SfaL9iP38Pfv+DT6uftA/cT+hACOArgE2wbyCOIKbgyeDSkOlw3YC+kIMQXyAO78c/m39iH11vRZ9mL5if2RARIEBwQOART8A/eJ9Hn2ef2GCGcV3yHwLC82lD3KQ9BIj0yCTc5KaES9OZIqmBeAAnzuRt6C1JDSNtey38/oPfAl9Wf34fd79/324vZj9//3MPlr+0f+XQItB5YM0RJWGQsgLyZJKi8r9idsIH8Vggje+2rxJur05QjkceNY48zjjuTu5QHoY+pj7DjtDe0a7H7qiejC5m7l1+TP5QDpf+4A9n/+igbuDOAQpxKVEiARHA+GDHsJtAU/Ab/8uvjY9SD0vPOG9K71wvY49yP3hPaG9T/00/J28Tfwiu/B7wPxifMC9yP77/82BcEKHhCrFMMX3RjnFwwVrxCmC2QGSQG5/Pz4efYP9Zr0e/SJ9Mr09fQk9VP1zvXU9nT4T/r7+0T9Ov4w/1UA2AG2A7gFdQd2CFAI/AaiBJEB+P30+c/12vF/7iTs7uoD6zbsOu638A/zJPXf9nf40vn3+gP8Gf1A/kT/IgDlAIoBWwJMA30E4wUuBzgIiwgWCBkHsQUGBGcC6ADo/x3/YP7G/SP99/xA/Qj+Tv+3ACUCJAOeA8EDkwNyA4UDrQMABE4EngT2BLUH/gu0ES0YJh7XIn8l+CXbJNIhLhx0FBoKJv/j9GHuR+258YX64gOgCywOugstBQr9FfbO8SbybPb2/W4HcBAIGLMdNSEgIwIjIyFMHZIXdhCgCMcAS/mW8g3t5OhD5lzlDOZx6O3rH/DY8yr2fPb+9LHy7fC98P3yy/cT/qsEKAoIDh4Q7xAKEfsQwhAeEJwOCgy5CLgEtwDg/Iz58/bb9HDzzfKW8rfyivIK8jzxOvBm793uHe868DLyiPTK9rT4Vvrz+8z9FgDYAv0FAwkwCysMBAzlCkEJTgcNBc0C3ABh/z/+Bf18+6v5FvjX9hr2jvUV9b70bvRg9IP0DfX19TT3nfgO+lH7kfyj/YT+Uv/X/14ApwC3AIYAGQDU/3z/CP+C/uT9Uv20/BX8dPuy+vT5Nvmb+PH3dfc39yD3cPfn9774cPkj+rr6O/tV/OH9+v8OAqADiwTVBGYERASaBEMGFwqYD4oW6hzUIEggqhrtD5QB1PEO5FXbTNkI3+XqB/pACUcWQiD3JtoqQCyjK4EpqCbQI/ggIB62GsEWfRKNDtkLBQsYDO8N3A6cDM4F3fmf6r7awM2wxgbGbst21DLfKer785v8gwMHCcAMmQ79DvkNcQzlCkAK9wqrDEAPTxI/FfkXBhq8Gj4ZABW2DeQDPvk170LnQeJ04HPhM+TT563rNe+N8qD1a/j6+k79Ev/2/yMA2v/H/0QAmQFXBHQIhQ2wErsWoBjVF30UEw+6CIwCPv0Z+Qr2AfTi8o3yxPKY88/0ZPYq+OH5Tvs2/ID8PfyS+9D6cPrm+p/8Y//aApgG/AnVDMcOgA/rDiENtgoqCMgF1AMjArcAav84/vb8evvp+U74tPYW9XDz1PFA8AXvdu7U7jrwOPJX9DL2qffd+N75u/qD+x/84fyy/Wf+Cf+V/x8AbABGAIj/Jv6x/Mz7vPtl/Hf9vf7W/zEBNwLFAv8CaANbBJUF9AbEB94H9AZRBYUDUAL5AUsDdwWdCIMM/w/OEr8Shw6QBYv5kO1J5m3mK/CuAf0WwiqDNwU7nTWjK4sgthcrEtIPug9QEc8UEhqYH4EjByTKHvQUtQYv9/bout3/1nHTtdKh09zVGtoT4Mrn2/CJ+XQAYQQeBVgDfwCB/Yj7/fr4+7b+PwP3CaURExmTHrUgRB69F/wNNgO0+XrzJ/Ey8sb1i/lm/FP9P/yD+cz1+/GF7vPrZupB6nfr7u1q8W31a/kU/VUA9gIEBV4GGQeqBogFGwQXAyQDAQSuBUAHhQi1CJsH9AR1Ae39Avtc+b34V/lV+l37DPwp/O77g/vJ+qD5Qvjg9in2avbb9yr6rfwa/38AogCD/6j93vtV+g/51vfC9hr2YfZR97r4+vkU++j79/t2+0L6G/lF+Gb4d/lW+6H9tv8xAZwB/wC2/3X+g/0C/br8rPy4/JH8MPyG+7D68flo+Uv5mvmF+hj8J/4zAKUBvQItA7cD3QSHBpkIDgrfCj0KmwmdCOkIbArVDKcPGxJTFN4UZRRZERsNgwXW/HfzoetE6ibv+P1iEa4mzTY/PUQ5zSuwGrMKcQHy/woHQhMQITQsuTJLMzguqyRxF0oJ+/pU73jna+M046zkC+dx6KXoEul26bfquet662LoLuP43PLXhtan2f7hxu38+i0HlxAFFggYVxbrERgMbgUAALD8nfyh/8EEnAqnD/oR4BA+DKkExfs6877stOhO5+7nBOoE7UDw/fJy9KP0hvMq8bnuAe217B7uOfGO9an5Uf2D/30AhADcAEkCaATzBmEJXQsrDFwM8wtFC0YKdgliCbQJWwrECqQKpQkKCLwFLgN+AC7+TPzn+tf5w/gp91D1LvMJ8YTvs+757s3vNvFZ8jTz1fPq9GL2NPgd+sL77fy3/aL+O/+0//P/OQAyAF4AFAEIAiUD3QMPBGcDdgJiAT0AE/8b/nj9Tf20/Xf+If/D/zMAWwBXAPr/s//9/hv+z/zh+5f7dPyF/q8BRgWJCCoLwwuwClEH+gIu/rn6LvrQ/IYDDQzeFJkZ0BmlFKIMfwWeAtAFrA5nGmYmWTHjOBo+fD2COB8vGiMNGWATWRSHGR8fNSGOHfsTsQic/ij4aPWJ9Efynez244LZKtFHzazPPNfz4AvqVvDN8pTxiu3f5zviy95j3xPlxO8a/dMJmxJ/FToS4QqYAiX8Tvks+kL+6wPKCcoOUhK4E0kSlg4mCS8D2v0N+gX4GPec9hf2ffUe9Rv1sfVf9kz2nfTM8LbryOaD48fi6eRR6afugPPR9iD4pPf39dvzUPIy8hD0Jvhi/rkFBg3REv8VMhYuFCMRRw6fDBAMTQzPDEwNTw3JDNILYQp3CPwFwgLf/nf6L/bZ8qTwze/+7xXxNfI6857zUvON8mrxdPDu72XwoPH+80D3KPsC/woC7ANcBOoD0wLTAScB9QBgAXgCMgQvBucHqQh5CC4HhgW+A1ECbAHPAHIAvf///lX+Sf6A/nf/fgCTAYgC6QLKAs0B1wCz//j+6v7K/3kBjwPeBaQH1AhTCWIJFwnXCMYI+gh8CYgNJRQuHHokVCtJL00x0jHrMdQwwSsTJCAZBw/2B2sITA3YFJcbZhtjFo8K/v2P8Dnk19nV0AHLfMkf0JHcVOwr+AL71vLf4sLR4cbjxKjNu9yA7UT+WwqJEiQV+xNiD7EIJQKF/OD6Z/1UBLwNyxXyG0UdVBvfFnMQ9AnXAhH9BPgh9ef0Oveo+1UA7QNfBFwBOfuS8znsc+a542Pkqecs7d/ywvdP+hf6mffK8mvtQ+g+5Vzlg+jr7Sj0sfka/ev9sfz/+S73f/Uu9aj2Wvkt/Y0BwQbeCzMQ9hJIE6gRuw7eC5EJZAi+B54H8AdcCNsIiQh+BzEFsgGQ/fz4GfUd8p7wq/Cj8SvzjPRc9Uf1dfQ08w7ysvFW8jD0x/be+e/8m//+AQEEnwXlBqAH5gfjBxUI6wgXCqYLzAxMDdsMeguqCYIHZwVGAxwBxP6l/BX7XPoh+2v8Uf52AJUBtAOEBdsI7w3tEh4YqxnXGFgVqxGLEN8R1xWMGpIfASQtKGUsMS9hL4ks4CXSHN4SCAtdBv4E8AaTChoOCBA2EG0NMwc//Wjw5eIE2FjTJNZe3rDpWfLv9aTz2OvB4rnZP9Ty0VjTcdj133PpFfNo/CUC6QOBARf9i/i39WT2GPrm/wUGugsFEPMS5xTLFV4VvxIyDv4ILQQAAn8CcQWuCU8Nkg/fDvwL8AatAFX6IfWp8SXwzPDT8qP16Pft+JX33/MR7yDqtuZE5WjlzuZr6FDqAuzG7XXvq/CL8cjxefGb8HrwQvHt89z3Tfx1AH0DhwWMBuQGbQYJBmsFggVnBlwIKwvIDT8QLxFwECkOeAqPBiQD5wDn/5H/vv+c/3D/Hv85/iH9g/vF+eX3ePb39Vn2wfdk+XX7XP05/+UAdAJMA24D9wIKArcB/QGRA4QFgwfbCOgI6QdjBsIF8AVIB7EI9gnlCZEIqQbUA6QB+ADpAigGTgv1ECYWhhqtHf4gzCFXI3AiliGwH7gepR4gHvoeaR5VH2EfdyECI4wkaSPoHugWSwsbAYj5TPj4+nYAqAPpA6gA0/or8yTpXd/c1enPLs5H0nXaV+Tb6wjvwexE5S/dYdbd1PLX9t685lvuAfXo+bf9GgBpAdsAoACTAAACjwQYCNsLEw/iEWMT7BM/E14SGhG6D+wN3Qv6CZAIHggzCJwIqQj+B6cGpwT8Adz+PPu+9w31d/MG83fzd/QY9bX0wfJa74/rEOhb5nnmJehf6n/s6O1h7j3ud+0B7dfsq+3m7onwGvKz84n1rPf3+cX7Rf06/jj/RwAFAtoDrQULB7UHEwjvBwoIQgjJCOUI1QgMCOIGqQWOBCAE0AMyBD8ENATjA6MDVgPbAnkCKgLlAdYBUAKZAgcDAQOYAnoBov8H/rf8avw5/cz+LgAgAZABoAGSAMv/bP48/l/+5//pARkDXgUlBmcJsgvSDwASqRPNE4kSqxGCEBET3xaTHkcmdS5XM4U1njRsMB4qcSHWGdgSchE8FacdbSXVKf0mlB1zEBIDtPls9Hf0PvaB9xj2YvLU7H7nA+MT4FndQ9ut2XfYu9eq1uLV+9SB1c7Wp9lH3Qzh8OPp5A3lAeW25lPqofA0+B//2gSlCBMLFgyWDJ8MaAwSDX4OzhDfE2IXbRryG4obDRn0FKwQag3mC3QLYwuiCp8I5QW/AhUAkf2s+5f5iff+9EHyoO9B7b/rMevM63/sEO0l7cHsz+sm6lnof+ZK5WjlyOZI6RHsVe5v74HvvO4D7uLt8O5q8dj0WfhL+4X9AP8FAO8A4gHcAgoETwWkBgcIlgkrC8AMDg6NDhoOAw2nC0AKLQm9CAAJkAnrCb8JzwhdB+IFqQSVA68CugHzAFcAAQATACcAXAB+AH4AXwAtAPP/nP9T/xP/yv6l/tz+i/+6AB0CUAP/A+YDWAO5AlwCHAPuBKwHZguPDxwUNBfLGGMY2RbSFD4U2hXRGIce+yNbKgwvDzJwMvQuEylOIA0X8g3RCOwIkA5rFxoe+h4hGPcK//sO7zvn0eQG5mTppuyb7gbub+r241TcB9Wgz3jNLs4S0ePUHNhX2pjbi9y03bjf8eJt5vXpAe0H8Grzfvcg/JsApASbB40JFgu9DKkOvxC5EowUiBW2FTAVVhR+EzYTZhOXE44TmxKpEOAN5AoMCJ0F6QPjAj4CoAHgAJv/wP0z+0n4LfVc8lzwcu9j77Xvvu8L77Ht6utj6jPpiegc6Afokui56RbrVOxN7eXtUu7j7uvvl/HY83/2Qfnn+07+hwCaAmUE+wUiBxII4wi3CaIKjguJDD8Niw2IDVgNDA2QDOwLFgsuCkwJlgjvB2wH0AZdBvcFmAUCBd8DiAICAdT//P65/vT+Y/+w/6b/hf9a/3D/jf+M/2v/YP+q/30AzQEHA5YDHwO2Aer/1P6X/7sCBghdDlwUShl3HA4eAh79HC8bRBlrF1AWbBaJF+4ZXxyqH6ghEyR5JfMkDyIXG2sRAQdOAKIA7ghoFBMfjyI5HdgP4/1H7efgSdsq3Ejhcuda7Pvsduk74nbZn9CUybHFaMXSyFLOvtQg2sDdV9+g3z/fRd9D4DXiMuUe6WvtsvEP9mP6wf7uApIG/QjHCcgJognmCRQL3gw0D5YRwROLFR0WlxVQFLMSKRG9D6IOtg3uDG4M2QsLC+YJUQieBqkErwKSAF/+Kfwd+pj4mPcF93/2ufWG9NDyvfCq7g3tQuxp7FPtXu5d7yjw1fBw8ebxLPJl8ujyC/Ts9Wb4IvvQ/VsAhgIyBFYFAgZmBsgGawdXCH4JxwrnC6sMEg0ADZMM+wtFC5wK8wlkCfQIdAgTCKYHKwd6Bm8FYQRdA30C4gGDAXMBXwFDAf8AhAAqAKz/Iv+T/tX9M/0I/Sj9wP1y/in//v+2AJcBcwLIAiwDkgNfA6sDjgNzBM8GagrhD9IU1xgSGtcYpxVKEWQNCwv1CxIQGRfuHmElmijwJxMkSh4nGMgS9A7oDCENaw+JEvcUKhUoEk0MYwQl/Fb17fCQ73TwIPJe843yeO+K6vvkN+CX3I3afNmU2WPasNs13YLelN/13xPgAeAH4A3geuD44aDkUOj563vvb/KX9F72x/di+cr6G/yC/ez+twCTAlcE5AUZBwEIdwjPCA0JUgmUCeAJHwopCtQJDQkSCAsHTgagBfEEPQSFA/UCcgLOAboATP+6/VP8IPsS+iX5OviJ9wP3x/ar9o32qPYA96b3S/i0+K34lfiV+Pj4LfrY+/n9FADiATYD5ANgBMAEYgVgBnIHbggyCb8JUQr2CmsLVwu5CuUJDQmFCE4IWghECHYIiQhhCNYHmwY0BVMD1QGgACQA8/84AJAA8ABYAVMB+gDb/7j+WP1Z/ND78Pu9/NP9Cf+0/xQAFgA1AIQAMgEOAugCxAMIBEUEAAQjBGcEFwVUBh0HBwgwCN4HDgf0BTMFWwWHBtIH8QmJC4wM2wxCC/QJPgg3B/sGFwegBwkJjQorDJQLFwk9BU0BJv/c/cT9sP3I/sL/xwDmABYAof4S/bX7XPpU+cT45vgK+aD5P/oV+1/7PvuI+sn5Tvk1+f74HPmp+Xr6MPta+1H79fqd+rX5LvlS+M/3mPd799D3V/is+bf6y/sj/G38Uvz/+8L7K/tI+yr76/pn+lf6uvqw+1/8Svxc/Ib8UPy8+x/7sfp7+sv6Ovsn+8X6ovoA+zP8Lf2Z/Pz7x/sC/J78n/wY/Fr8OP2Z/k3/jP/7/zEABwHxAMUAEAEOAaQBNgEJAYMBVAJlArQBzQCr/7z+nv0A/vn+owGmA7wElgSyA5gDvQKiAjoC+gEcAj4DzATGBZYFigQnA/cBBwFFAIMAuwAqAr0ERgbKBl0GwwTaA7wCZAKdAA8A9v9GAr0CpAPzB4gHXQehA7wCRAIaA7ACIf8BAD0DkwiTCDAHaQVmBCIFMwRuAyABiwHdAjYDowSGAyYEnQO5ApwCOQImAeX/EP95/7wA/v/L/XP9TP6f/8z/2/7H/4sA6AAiAYwAGP9w/1v/ZwC4/yP/jf7q/goAj//V/ef7N/0b/QH+8v2C/Wf9Of2X/mX+T/1F/gMBrgHJAJT9Wf07/or+Iv+P/I0AoALbAvQCJwEvA4cBuf2L+YD7Rf79/mr9j/st/bb9JwAQ/8399f2x/LL8cv4Q/6j8tfuk/Of89/1C/B78nPwm/Vb/pf4T/vb8Qf1q/on+5/2L/Rr9l/01/Wn9I/7u/b/8Tfx0/B39f/7j/a39pP3Q/db9Jf6R/gD/6/6PAKoA+f/P/xv+qftp/9T/tP/m/RP/bwLD/38Btfz2/v78MP8i/U/9TAE5/qoBbf4/Aeb/pf/F/oT+qP67/gP/aP0x/i394/7B/+/+Jv7P/tQB5f8LAAT+7Ppt/eH93gHx+6wAKgGNAv8BrwAnAlgAygUbAe0Dv/6LA6sCjQF9BHQAEQWKApQIVQXpAcwBbAEmBsQB1QHJ/80CdQUvBBwElQGBBswEiwXCAG8AOgB8/nMCFf67ACX/SAQABEcBegINAIcBpv+C/+/9+P3z/F4AnAFbASIC2wGKBK4C+QIlAFv+yQKBAbL/jv4oAqwDEQO4BaoCiwKVAzAFigCVAjMAbQDO/8z9uwIhAGcC1wA9AloBXQFSAWH/wf1u/iz/S/+9/f3/AQLKAikD1QJbAmf/DwOkAIX+jv2l/4sA9gFeAC4A4v7nAX0C1f0x/jz///3N/HH9cPst/iD+ngFj/8n+JAAMACn8j/tz+ef8Wv8E+6v/Mf4BAij+HP/P/Gv+CQET/ab7SfoPAfP8YP3e+8L/sf4Y/f8A+/2X/jT99/11/8j8QP13+w/+FwAe/Hj9Vf3JAPj+iv7v/HX+ef+Q/lT+AAD5++D9kgHa/uX/Sv5uAMgAawAv/0ABF/1G/9v+gv7W/rv/6f6h/qQG2AF9/rj/CQGhAZMBp/vM/XEAOgGFAjsAUgBMAycFVwIdAhX/BwHmA/P/qf9M/6r+swMPAQQDqP4XAQ0G1gH2A/L8cv3j/gMCyP2F/WL+0QDlA8j/SwG+/JYCPQLu/1/+Cv24A8r+PPy6+i8BDQOT/1YAWf/OA4X9YQIKALb9gQEkAvkBUgDYAnEBrwRzAFAEyv+5ADYDRf/5AOkA+wIPAoIArf+qAUQBUwLD/mz/hP98AZAEsP14AJ0AVAGh/k7+Hv21/6L/kP5jAX76KAHG/8D/Qf+3/Rb/Pf6/ATD/Z/4+/eL+wgOrAPcByvxCAg0CoAMZAkX9dgHI/B4I2/4IAYEBCgGtBs8AhQB6AvT97f9uAGD+JANr/oD9yAH+AQ0BG/5E/nUCnP/GAt79hP0AAyj+R//V/3n+bQbR/3MAcgGC+38Ebf1zANL9V/2pAFD+l/90/C8AYPsNA7j99fyV/aj5jwRx+kf70v2cAK//bf1EAmj8jf8oAOYA7P7a/BL/Q/1+ASD/AgHx/J3/kQKzAOYAPQAF/pb/8QQA/UkCIAA6/5sC7AK+AUb/OQEKBfwBPAGTAqMAlABW/gIA2QC3/w7+p/3IAnsBNgFUAKn9dgF1/PUA/fuU/Cf/d/6TAeL/6AAD/yH/FQKL/er77//x+7MAqgL7+Qb9L/9FBH8BnvovAVz/IgKw/mj+GP6p/8cB1/80ArQDeQNKAWgF3wCxA2QD1gIMAtoBrQYKA7oD3QHBAqYEzP9lA6f/Ef/4/+n+Bv1j/20BWf2g/iD8ywH3+o8AFflG+pn/K/sNAg36Hvtr/s4AiQAqAr34mP1fAVsC0v+j+6wAEP8HBeQBH/7x/swAGwUfAVz9LP8dALUAOgAIAFj+RQIBAQ8E8QIbAJb/d/04Ak0DTf/q+rsAogFtBAT//P80ApD+OARdAZP/fP1H/2kBR/xOART+bP8oArT/IgFl/FQAjv1r/0T7xv/U/L/9z/4e/YP/KfzBAov9GQBz+43/oQCy/+L+dfxYASD/KQFWAPT80QGIAOQAnwA3//8Bl/3SASP+LwE0ADz+tALfAa8BewWT/an+TwZ3/DsEyPpBAasFIgIzBF/9hAVi/XsGhgI5+ecAl/1oBTUASfzm+3UBMAKjAGAAc/mxAxsBRP2y+5T+p/zW/4z+/v+jAVwADgNp/iUCzP7xAP8BUf6nA9QArv/5BBv+vgZS/YIBmgUDAVgFMfuMAXIB1wJZ/sr+Jf0TAloAD//KAWr7ZAOy+7oAKPts+0j/L/sFAZP5j/1//t79kftR/gEBo/tu+5D7FQAb/Wv6EP1J/gAFYP98/HH/0P6OBfL7A/+u/7r/KAId/lAC9v04AhIC4QEKAcsDKgBoAFsAo/+DA8X7dgMlADb+EwFqBH8BOv72/xcBnADr/00A3/4kA9z+9ALg/3cCsAFwAFT+1gE2Axr8RgUz+mMCgQG5/rMFy/vn/qH/GAMSAb34BAL6/p0AiwNn99wDQv9Y/ycDI/xP/5n/Nf7r/w7/RfuDAFL9VAW3/soB//+w/EQIPvlIBGL8/f6OBIYAVARM/AsAEgIOBmQAVP76/XwF7QA8AXL+2v3KBFEA8gAn/uz/MAO0ALf+lf7pAAYEUQDKAPf9AgHoAI4Abf61/R7/KP4gBNwA7P62/fUByQCrAjf9rvrXAMr+ewZ4/OD/OAHjAq4Dw/whA73+1wItAc/+QgD0ABYBewBD/rABfgMhAWwB0//TAun++f4h/iD9NgAUAlD//vtH/y8C5P/KAIYAB/2bA8n7jgGu/ff62v06/4sEv/0PAbr5xQG4ARkBovwm/xT9tf/kAzb4zwTW+6kAZwPQ/UADzwMC/r4AlgFJAM4CZ/7fAcL7SQUrAYoBxgKJ/SkFIv9OAisAgf2r/tABJwB6/TMCowCB//EAiQE3AUL73f0kAY7/If7E+gIBsgBIAtoA/vqkAJsAFAEs//b9P/5e/dsByAHf/Xj/OwA6BG8Aav6c//EAsgBl/ar7WfyuA/r9EAHA/CMAhgPf+zcAlfta/mn/XAB1/7L+8v/gAlsB6f/TAPj/pgTy/T0BoQAaBIsCx/7oARgBogPn/1MBe/4mBMT/IQDY/7X+ZwH8+hgCIf7RADb8lv73/2QA6v9f+6P/7fxyAtf+qv3o+7gDRABL/o7/g/09BbH9IgES/rj+kwEQ/kv+MwBhAhj9Qv8UAZMBBwNH+1H+VAAFBLUB7PrQ/1P/VwR7/w3+TABuAh8B/P+p/roBfQEw/9r/vPvzA+0ApgDK/P/9DgSYA9z8JPunAOH/FwWO+pYANADHATgDR/pPAX8AOQWV+7b/+v2tATkF5vovAar89QMlAaz8+f5PAIwAr/5yAFj/ff8CArcBpf5/AYIAygLs/t39XAHlAvECTf1yAggDtgOgAST/P/6cArYBuv0A/qD9MQIbAz4Bzfw/AHUB6gC8Afj6lvoXArb/jgK3/KH7YgRL/1EAVP+G/rQAc/s2AVMBav10AXP9FgCVArMCUv9bAE7+GgC+Aqr+OP+C/on/IQR3ACv+tv23Az0AWv5PAf/6zQP9/1MBw/wBAEcChv8CA2v+1v/nANAA4QD9/jf/DwAb//X/1P8gAsj/MP/XAScCTv6m/4L7WQNYAkn8BACJ/jwFgf/3/A39jQGXAif9A/7//QkDH/8bABn/Fv8qAQn/R/0o/zMC8v5VAXz6PgRYAqT/YgGd/ZsApf4GA1gBcv1v/tMCHQJCAqz8AQETAQ0BwgHF/YUClP3vAcf/b/+HAQQA+QAy/skDFv77Ayv9l//n/y774AVQ/t//tPnWAnIAxAI1+Tn9hwaD/HIDHPWrAL8D3P+QAIr3FAHP/2UFb/6w/9kAuvzxBvb8igB7/dj+GARLAQ//EAFxAFEEZ/6P/h8A6P8nAET9hAIB/NkFHv4sAdQBN/sdBeb+FQSR/Yj82v0qAcYIOvz5/l/6lQPJA1IC4P7w/NP+2P3jA7f69AFi/AIC8gAd/U4BvQL8AIMAO/z4/LUFZfx7/4z91gENAzkAdv/o/rQDQvzMAUYBUP9BAZX8twDcADkBkQJ//Dv/YgURACUAmvu9/1EEjgC0AB79PQCFA8MDcfsK/swAEQI9BKf9Mf43/DoBoAMNAAz/dPqT/sIBYQA0AbX6iv70AVf+SgNU+zb+QQBXAFgEMvtd/0f+GQMKASD/dgE6/mUESf6L/1L/D/7sA8f+av5qAcb/PAEXAVABjv7n/jz+8QHMAV/71gL9/84A7v8c/B0E6wBg/8v9s/6FARMCBf75/k/+h/+pBFT9CgFcAGsAPAFL/i4BFwEB/oj/g/0VAukCef+2/lr94APCAIH/I/y8/V0AgQOR/+D9T/+RACcDdf0UAZj+GAI8/8X/KADX/rcEpv/AAMb7OP87ARYCBwLp/tb/+P6OA/D/0/9A/rv+vAKN/SH+XAGFAKAEnP1s/wYC+f46BNP/p/2Q/1sBHQBWAkL9MAIW/0oAbQP5/hgDQv1I/sb/YgBk/4D/avs3AaACBgAn/2X8mP85AL3/5Psq/3H/TgHu/fEBlQGE/t8AFvxIAVD+9gDw/5r9+v4/APsAZf6OABgCLgAd/vYADP0RA1T/ewDAAGb8bAHA/tUErP7c/cEBwv7UAO0AU/9TAfn+VPsQBFMCUQLf/4D7BAQfAjIEt/zh+c4B9gI2Ah3/Gf6b/v8BHgFzA2j9p/zf/tEBogPOAmX9M/pqBewDWQMj+rX8YQGDA+0CGvqu/nMAfQSK/Qf/iv+7/5EARP+/AUP/aQHH/bP8FwBDBan+hP62+2UB3gPY/7D/FfkBAVcBAwGq/in/Kf7c/24A8QKjAKz8GwAl/rMDCgHx/lb53wEDAdMCHwFS+i0Drv8MBML7CP3+/63+pwEj/dUAagBy/6QB7f6OA1j/u/ywAej/HgUC/Fr9pwD7ASsClPzmAAwBQgQU/3T+hf7y/z7/BP5aAL/+5wDk/+YAUAPf+4r/VQGrAuIC3fgX/5j/+gV/AXf4LP6QAsoGsQC//Kj7KAHoAgMCCfy9/LoAawA1AuD+bv+i/6YBIgCbAND++QAJ/xv/GwPB/5UAlv9e/+gC9QHFAMf9H/1MA3YAZADe+yr/h/7MAacCXfswAZD7DgN5/8P9oQHh+SgEaf94ASAA5vrxAsj+QQMkAH7/EAIaAMwDjf/3ARIAxP+YAHz//gM/AfkBYP+BAh0BjgFZAeT8mgD2/pkD9/zj/XUArQBeA1/+oP5j/kUAiAK8/oAA8v1M/hMBvQAvAtL8yf5K/9cCCQGpAHL8kfs/A7QC8f8f+zX9fwH0A27/If25/WQBrQLX/lb/bf22AKgBIf96ALL+MwBKAK4ABgKd/dn/z/8QARsBGP7GAIT+xQJ//qv/mwBf/wgBcvy8AUMC4v89/2D+Tv4rA2sBOv7Y/bH/1QGP/6z+0f9//0//RQBa/wQBywAg///9/wEYAF0B3f9l/lUB+f/2AoD+0ADZALwBaf+F/hkCJgFpA2cAN/9Z/4n/7QEqAhf/Yf3r/dADOgJlAND8EP/CAtICNQES+xb+GQE2A5T+Bv/H/YQAHQN4AB8AZf2pAJT+GgBAAP7+Qf63/wUAqP8C/nMA7Py7AIABVf3mAfL6mwPtAH//tgCb/BQBMwKGAaD/sv5FAVgAuQCJAWr+LQHV/eQA8v6FAKACDP2WAGb+8QGIAdr+gP66/S4B6AKM/pX+/f4VAr4Bpv4U/7n9jwMiAMn/Nf0DAN0Ck/91/4X9O/1uAKIANwCv/7QARgBG/0gBcv96/1n+r/8J/mkC6/+6/2D+Tv8JBHP/X/90/M0CMAJQAE38Av4KA8cCHv+l/QsBLQTFAaT8gf4w/tADY/74/gz94gC/AcEAtgA9/KkBf/75AGz/iP38/0f/8wI5/zv91f/d/y8DZgBr/Cb/ZP8pBCb/Af7Y/jf/bwTm/WoCPP4kAuwC4P7I/0EAeAMaAPr9pv4yAUQENQL3/ZD9/AAkBdv+gv8v/tH/jQKi/sH/ef1QA7IA9P3N/dkAbwG5/80Bqfxn/74BnQJI/yMAjQFa/6f/ggD5/skAjQBtAB3/3f/fAoD+MwGd/fH/BQCi/+UA3/p2AaMBMAIRAPb+FQEKAC0Dev6K/JkB2f5sAhMA6P4dAvH+UAMl/WIAzP1BAGMC4/60ALL6agBTABoD/wBt+2n+4wBpA/oA6vtr/CUBJwObATX6UP2UAFYEsf+m/bL+ov6GA4P+dwDd/FQAEwACAaUA4P17/2T/+wJq/7P/nv1JAEwBzQBU/2X+SgCWAoEAcf9tAPoA7gCP/pABlv0WA2cAXwBAAX793gKh/88BTv/z/UEAHQBJAyn+Y/4YAaz+SgKh+/f/0f+p/ysCOfrTAVIAnwE9ANj7ZACf/toBXAFo/Jn/TgCXAzcAHf13/339oAPu/zz/1v2T/xQDUAGOAaD+r//N/38CcwHw/xj9m/6JAVMDmP+i/sz+/AHQAxv/E/8j/MQBHQHo/4v8Bf41AeYCvAGn/v7/if6IAqz/yP+t/s3/4/9bAOEAOADS/3b/tgGvADQAIv68Acb92P/R/s7/LQOy/KwAdP+iAjUDbP6O/nf/3f+DArQAEv6P/7L/owJFAFMBfP7tABgAv//lAZr+0v+D/rEAYgBDAOMAtv9m/zT/vP+BAOr/bQC3/nv+FQL7/q0AIf43AHgALf+GAQD+hgCLAO//QP+lAJIA7P7z/wAAEf+G/3EAMP4eAQkAdwD//8T/UgAwADICY//J/bf84ALMAM8BcP/l/CMBgwFiArv9g/yT/6AANwDW/yL+mQAyAVMBiP6z/zEA8/7hANr9IwDY/gQAGQA5AKMAZP+1AM4A1wEo/Q7/Av/uAAYA4/7I/9QAwAGjACL/Av9mASX/+wDL/jEAsv8/AJ4A7P8GAO8A8v4MAAYARf+kAIb9FQEE/1YBcv+1/m//PwBcA67+qv5H/QoAFwL//woArf2F/zYBVgEWALn/0P8dABMBcP7mACoAjv6UAO7//wABAboAIQFlALb+KgDi/47/nQBi/jwA4wAwAgH/vf6aAP0AcQFb/V//Wv9lAdsAAv0kANf/SwEzAQ7/BAE0/0ABD/9tAF3/d//NAET+IgHD/ssAD/9nAFoAWv7+/4X/wAH6/q/+BgB0AOcBtf+i/mz+XQCHAtH/BgC//h4AgAGMARQB8/2k/wIAQwDAAEf/i/0AAIoAVgKVAaz+Nv9//0sCJgBs/wf+iv3lAHgC3ADU/YX/FgH9AS0BBf88/xcASAAeAJT/4P8I/ykAuQAKAOb/Uv/vACcAjf8X/33/4f4dACYAn/95ACsARADNACIALf7vANT/EABX/xX+8gCI/6cANwBC/1gAxQD1/xwArQBO/kz/tf8g/34BjwDh/3v/6f5PAbQATv/G/u3+HAAPARL/v/6DAKj/rAH6/8L+Ef/5/o0APwAKAK7+Z//w/1oBvADZ/8//Sv+BAMH/iAAjAAP/SP8JAOYAXQB4AGD/mP92AO4A5v/j/UEATwFaAQsAPf/0/6sA5QBSAGn/sv4VAVQBWgAn/93+ggHDAVwADf9p/3UBfwGFAOD+tv7QAIUBCwH4/m//iABjAGsBaP/A/s//pQBiADkAtP/P/9cA9v9OANT/if+E/1sAKgC7ALEA5P4RAFT/WgHYAC3/pf66/gcB3gA1AM/9iP9jAOcA0QAS/9f/k/8rAEEAhQBH/4r/OADuAEMBCgANAML/0gCWAEAAgP9gALX/5P/AAN7/IgB8/8P/xwBkAOT/uP8g/uj/5/8HAOb+iP55AFEAfgFI/1f/Ef/9/xgA6/7e/5b+XwD0AMv/if96/9b/VwDL/xX/lf8QAGYArv+D/qr/UQDGANsAQP8j/9//TgGUAJ3/f/6Q/10B5ACWAJ/+u/9cAIgALQAs/23/1//UAO7/vv8PAPH/TgAuAMD/CAB8/y4Arf9x/xIA5v8RAQIA2P8G/wgAmwGv/+H+gP7w/wsB6v8E/4n/hwB+AX4A9f6j/yIA5QCy/1r/Ev87AOEA3/+yAMH/5ABYAD8AwQCT/xEATQApAJ//GwDRALMAFAG3ALgA/AACATAB9QArAMcAZAG8AY0BawBBAXAB6wG9AfIAVwFCAfQBMwHnADkBzACgARkBIAHxAIIA1wCTAJkAeQA5AFcAkADWAJf/xf/d//v/MAAg/7L/Iv+w/8f/N/8DAGD/hv+i/zf/x/94/1H/L/+e/8T/pf89AE3/mv+5/0n/xf8g/8b/0P9F/1b/wv4Z/2T/U/+A/xX/lf76/lX/nf6J/o3+Tf6x/1X/+P79/nf+H/+V/0L/F/8m/kD/2/9L/6z+Ev5r/4b/wv8i/0P/y/+r/1H/5P61/hT/Tv8D/xv/Bf+E/1L/yP6d/hb/sf9W/6P++/4p/8/+hf4B/rT+Kf9F/+T+z/4Q/2v/Hf98/l/+jP70/nj+x/4m/lL+c/60/jP/2f4e/9b+rv4l/5/+w/3I/Q/+XP6D/kX+oP48/6v/igAiAJYAegA+AI4AkP/m/+b/NwCuAKwATAGeAQMDvQQlBuEH8gixCQIK6QlVCr4KNwuuDHUOrxAuEogT9RMGFT4WFheqFxYX4BXDFBwUmBLlEfMPXA9LEJcQLRC6DOMJqgeuBfUChf9f/AT6M/mO9nfzkvDt7h3vCO+37errMuoV6ajofudE5Zrk3uNd5L3lbuWS5kLnLelb66/sq+2z7s3v7/F69AT1JPbi9g35Z/tQ/YX/xQEFBcMHWgr2CrUKigoCC2IMFA5cDw8QlBAgEboRkBGmEI8PPQ9gDgANvAoBCHQGWgVLBCADKwKbAe8Atf+D/Sr7a/lX95r1BfTQ8lnyxfGa8TPxSPGy8c7x2vFq8azxpvFN8q7yjfKq82b0W/aE97L4rfqf+2H9w/3a/Rf+cf4R/7//4QDdAd8DwARDBYMFhQXFBWEFZAUUBegEnwQUBF0DgAKFAiQD5wNxBPQDKQPoASgBewCh/6//rP9OAKAA5wDtAMkAkgFoAd0BDwLBApYDPgTlBA8FfwVpBs4IHwwQERUVqhdjGJsXRhfQFkkXOBn+G6UeQiBuH6AdiRyuHFYe7h71He0aexbcESoNiwl7BtwEigRrA8UB1f6Q+z34nvTY8CXtJupU5wflhOLi35bdsNs92zfbf9zl3UDeJ94W3WzcZty63erepeCo4tfkwedN6n3tJ/E89bj4RPt7/Cj9N/61AAYECAdbCvQMQA+IEPgQShFnElMULBbHFggWnBTIEkQR/w/GD+oPAhAlD5ENygukCY4HSwWaA5sCxAHIAIT/6P2D/Pn6iPm0+Kb38/Yt9j/1K/T38kfyM/HM8O3wyPFD8zD0QvTb88/zMPRE9TD2Ovcl+Mb5Qvvu+8X83v3I/ygBOAJIAsABpwEYAiQD5QPHA7MD5QMMBGMEDwSTAwED1QJqAo4BbgBE/5H+Df6B/dr83fyP/QL+TP4Q/qX9Jv3t/EL9Mf2H/QH+rv74/mX/2/+0AJ4CSAT7Bb8GGQeXB40IfgoCDMQO4xD8ElYUZRfcGZwcESDsIJsiRiKtIqciUSPlIRAhTSFUIN8hsB/uHo0eSh5SHfsYqxSVD+wLzwYqAYP7Gvj695v37PXt8PvpmeVH4hLhW+Hw3p3cFdk+1QXSH9Ae0T/Ua9gT20nbe9oC2pnajNsc3cveQuET5c/oYOxp71byGfXn+IP83gABBc8HZwnxCDEIBwjvCXYNnBGWFMcWZRc3F2wWLRWGFMETrBMLEzcSphDWDusM7AuLC5wK1wmTCL4GRQT8ADT9k/kY9/712/X+9Xb2vPZF9YzzBPK68B/w1u+s74rvhO+p75DvMu9D8JPy+/TL9mr3V/dE97D3X/h9+Q/7aP2z/6cBqgOJBdwGSgiZCZUKaAsCDHQMDQzbC6ELkguMC8ELSgxQDDsMQwtlCSsHngU5BOkCsgF1ADP/eP1C/OD6//mf+Xr58PhO+N73Qfdh9gn29PUU9lX21fea+Ub7aP1U/dT9Df5R/8v/PQB4AO0A9AEXAxYHXwtJEhIaZSGGJO8jNCIWId8hMiM7JrwlqSVyJhQomigYKiIsQCzyKzkoJSQ+HrgYMRL/CmIERv9Q/eL7g/sI+iP3VvKy7DHoY+Sw4a3eStqr1WDSdNBc0AXSP9RD1grYG9np2QLa+9m/2WXY8tdw2ZfcTuG85hHsDfCV8x/3pfl4/GH/PAJPAwAE7gSxBakHbAqeDW0QMxOdFV8XVRdUFoYUbhGTDkQMTwusC24MWQymC48Kogn+CP4HcgbJA/0A6f3/+vP4xPfK9zn4kvi++CH5JPn/+ND4mPfM9fPzYvJq8ZHxNfLl8ujzj/Sl9Yv2jPcu+LL4SvnJ+Xj61/oT+z37Gvz//VcA/wE8A5sE4QUHB9gHFQjeB/MHKAhKCKUIMAloCZgJBgkkCPkGhQWCBCIDDwK9AL3/8f5U/uT9V/12/U79uvwv/NL7k/sW+wD62fib90/27vUq9s32MPjK+Av6Q/pq+nL78PyD/tEAngKNAR4B9/8hAoYGRAxNFpMepiPzJKklnSX3Jr4oOCm9KdwpoyvyK+srLyuQK44tky7FLW0qBSYGHyAZlxM+DtQJNAVrAef9kPt2+Z/3evXT8vDu8umO5L7fMNxe2YbWX9Pvz4TNwM1c0A7U+dYK2GbXttZz1mfWPNdZ2L/Zttt23hfivOb56zbxwvXy+GT7mv1sAJUDsAayCF8JRAqhC7wN0RAfFOsWyxjDGdAZIBnGFx0WgxQzE+gRXRC7DgMNvQuiClIJwAcGBpEEaQMqAlYAu/3k+rT4L/cm9hL1CPS58+3zIPT08wbzAfJk8Qzx+fAb8f/wzPDG8MnwPPFv8ir0Vvbd+Af7RfxX/Ur+fv+uAGwBkwHCAUICOwPcBFIGNgccCOgIFwkGCSgIMQdaBuAFLgVoBJgD0wKbAi0CzQGIAewB5gG3AbcAJ/9L/c368/h392T2evXE9Fb0t/Re9eb1uvYd9333vPfI97L3QPeH9qL1KPVt9Yf3Afsu/14DJQZzCHgJ3wogDnMSaBdlHGEfhSDAITgj5SbyK3Ex/Ta9OYA55TYlNAMyxzAdMJMuoysUKOEkdyGZHoob7RfvE8MPEAsQBugAfvsm9nfwjeoy5eHgld663eDcANuj1w7UDNGBz3XPMdCr0M/QdNBpzxTP9c8X0kTVLdk73aXgWOMS5h7pNuwp77zxF/S/9vr5p/2NASkFXwgXC5ENAhBnEu4UGRdFGDMYxBYJFfgTmhPvE8MUWBUbFRwUZBJ8EL4O6wwdC1wJWQfMBAQCSP8u/cv7pvo7+ar3RvYq9Yn0y/N+8rTwHe8h7tjt1e3b7Qzutu6v72vwJ/G/8bryxfOe9GL1J/YJ91345vl6+xj9kf5aAOcBvwMnBRgGDgfgB7cICQlsCZYJpQmLCZ4JqwnfCa4JSgm3CL0H+wbOBekEAQTnAi8BUf9G/ZP7aPry+OH39vZk9p/2pfZh9sv19fQK9IPzm/PH8kTyzvEP8czw/PDy8W/0HffZ+ID5PvlH+fH5qfsL/lIBgAUCCgcP4xOOGBYcvR8bIrckrScwKgMtby5pLi0tjyz1LRsywDawOqI7aDnDNBIvmCpyJoIiYx5oGYYUThD4C7QH0QNvAFT93vmQ9TrwTepj5N3es9mZ1RDT2tEq0YbQlM9ezoTNkM0VzpvOIM+az1zQBdLL1BbYntsI3xHieuWR6c/tGvLo9Q35C/z8/s0B7gRwCP8Ldw8bEgcUiBVAF+kYBhqkGjEajRlKGYEZHhqeGnkabhl0F6UUihHZDn0MTwoHCB4F7QHz/mn81fod+lD57ffo9a3z2vEu8EbuAuws6iHp7eiC6VnqTOuO7L3toe4s71rvze/Y8GLyj/Od9KX1n/ZC+ED6yPwGAEcDzQWDB38IPAm0CQ4KlQoRCxkM1Qz6DPQM6AwhDSoN6wxZDIMLnwq0CW0IvAaVBJcC3gAq/+39wPyO+xb6XfhP9l30rvIw8f7vqu5o7WPs7etg7ATtzO1t7sXuzu4R79zvNPDn8IvxF/Ko8tvzGPbx+X7/rQQVCZELrgy5DUIQOxRLGHAdziCNIykmwylNLLwvkzPONYI4BzmaOF43qTWIMoYvuiwRK0IrciujKz4pdCSIHVcWnRDMCxYH5gBF+XnxT+vt5lfktOIk4SzfyNyg2YbW3tOk0bjPa83cyg/Jusi4ylLOYNKf1anXjtnz2yDfouKZ5X7nDOkA6+jtL/Jh91j8/gADBWQI1gscD30SXhXQFjQXwRaQFokXPhlgGxsd0R0tHXgbsRkOGLUWRRWjE+gR0g9wDQILpgg6Bm8DcACZ/SX7BPm29v7zJPHL7jXtiOy77ETtX+2R7DHrwulu6Irniud36PXpgOud7IPt2u7Y8Ebz1fUU+MP53vry+zr9e/6f/48AnAEAA+UEFwcGCX0KmwsoDBAMbgvTCmoKHQroCWwJrwjkBz0H3AacBl0G4AXPBHYDSQInAZz/rP2g+6P5ifed9Rz0FfOB8hTyhfEP8bTwPfCQ7/Pum+527qTuGu+Z71DwcPHl8s30fvfB+p39HABHApsD9wMuBGQF1gdACxkPQBIrFHwVKxdiGZwc/iCFJfsoLyvMLKwt3ixUK8kpEynoKZ0rai17LvUt0yv7KJwmYCaDJxQonCa6IZ8ZDxDeB7ICFwCX/qf8PvkZ9anxLO9x7fnrAeoL54PjE+AW3Y3aOtge1mrUs9Nj1GfWrdkj3YHfK+Cg3wLfad9n4V3kQudL6bfqMOw97nzxl/Wa+TD9ZQA9A6sFlQcYCRUKXQqMCv8K+wt2DS4PvxDKEVgSoRIFE6AT8hNsE8YRgw88DRAL/ggiB4IF8AM9AosAI//r/cf8lPsg+oD41vYl9YPz9fF08PzuzO1N7ZntW+4179PvLvCJ8DzxVvKb89X0vfVG9o32m/a09lX34Pgx+7X98v+3ASYDUgRfBXoGkgdoCOgI4wiWCAwIdAf7BrkG/AY/B0UH6wY6BkcF7QNFAoUA3P50/T386/pN+ZD3JPYq9Yn0VPRL9Bb0dPOf8tfxMPGk8DrwFvBQ8PnwBPJM88b0Z/YQ+LT5kPvL/TMALgI4A7oD9QNlBIoFxwc0C0MPERMFFt4XExlVGvIbrR1DH0ggLyGcIQMiJiPzJKImCCglKUkqfivrK2YrkylTJkwixB40HNQaBhqIGOkVXhJjDoYKdQdOBTQD7v9j+6T2yvIu8Enu/Ou06Pvk2uFK4FzgwuEJ4yLjquFd36LdX93k3kjhLuOn49PineEk4RfiY+Qp553pg+si7R3v0fH+9Ln3k/nZ+vX7Yf09/ykBwgK0AxIEWQQ6BSAHxQmrDPcONhBCEJUPmQ6FDVwM5wpDCY4HCwbNBKkDkAKbAcEADAC8/5P/Cf+a/UP7fvjA9YDzL/L78YTyKPOD86fzKvQb9Tj2+vZ797j3tfeH9/b2ZfZH9v/2ePhW+iL8p/0O/2wAlgFZArwCrgJ/AicCtgF+AYsB4gF6AlQDbARvBR0GWgZEBi8GsgXLBM8DAgNWAoMBVADb/mP9Zfz7+8L7afu6+sz5kfgX97H1gPTL823zRvNY8xf0jfWK94b5B/s//Dn9R/5r/5IAdwHqAc0BLAHkAJMBOgOuBUEIQQqGC2sMdg36DuYQuRLQE+wTMxO2Ej8TQhWUGGsc5x+PIqUkLyYWJ30nKCcdJlYk6yF6H78drhwcHBYcZRzeHP0cRxzCGjAYcRSDDw4KmQR5/836xPbY81Dy0fGR8brw+e6a7Brq5efu5RvkC+JR3//brth51m3Wfdjz27jftOJL5KzklOSa5AHlaOWl5dzlZ+Zy5+3oA+uK7YDw1fNg9/b6TP7YACAC+wHYAJj/3v5n/z0BDwTtBl4JMwtlDFsNKQ6cDooOCA7SDNMKOQhtBf0CSwFjAC8AsAB1AewBoQFyAJz+iPyJ+sz4kvfN9iP2oPVc9aj1jvbl93H50/re+2H8e/w6/L77Lvuq+lX6dPr5+rP7gPx4/a/+3v/VAE0BOAHNAEUA2P+j/3//df9w/3H/k//s/5sAkwG3AowD5AOrA9QChQEsAC3/a/6f/QD98PxG/Zf9mf2V/bL91f2v/Rf9Zfyi++z6GvqO+Wv5efmg+bj5YPqu+6r9of/2AKMB0wHwAegBGgKaAgUDmAMyBMwE/AXVB5IK2g3aEHUTKhXgFaoVpRRpE/QRBBHyEAkSJxUBGeQcEx9zIIohsyLbJJYmQCf4JfEhEBwAF58U7BUNGf4bsx3YHBgaUBatEnQPBAxgB0oBPvvL9m70KPM+8v/wge9S7tjtzO1l7aTrr+cF4jbcqddE1dfU4tWK1xXZY9rJ27rdN+AJ40rlYeZV5tXleuWB5T3mhOdk6TPsSfCA9f/6qv/IAi8EVQRVBLwEtwUQB0gIOQn5CcIKJQwaDpEQ9hK6FJEVSRUQFP0RSQ93DCIKaghLB+IGyAZ3BqcFKQRmAtcAgf9S/uT83Pom+Er1vfIz8d7wZ/Eg8tnyd/Pz83H0X/TP80bzUvOt8w30B/Ti8+LzlPTG9VH3VPl9+4z9sv4F//H+Cf8A/0b/mP9iADsB8AGSAvcCGATxBMQFcAblBv4GTgY/BdoDfgJaAbIAHADW/43/ff91/1n/hP9P/y//0v5m/uL9qv2d/UP9xPxw/Mf8qP0F/5QAGgJpAzcElgTFBDIFvQV/BRAFgwQKBPUDogS/BhUKiA0nEHURuhHGEZARZRGQESgSeRJkEsUSzROdFRMXvhgeGmscWx+cISAjDiP+IFgdyRnzF9cY4RrqHIgdXxzoGSgXLRUHFOcSphA1DCAGkP9B+S70w/AI79/tlOzN6t7oF+d65dLjheG53rDbxthV1svUJ9QC1EvUUNWK143aA95h4fDjjeVP5rbm+ead58noVuqp7J3v1vJH9vf5NP6qAl0Gowh7CYcJagmnCUwKQgt0DMsNHA9aEIcRsxL4EzwV9RV/Fc0TaxHfDl8M9gnyB5AGzQVpBTEFzwTKA/4Bp/9e/Yb7CvqJ+O72XvXl84HyYfHn8FHxUPJ080n0pPSv9Ij0FPS/85XzlfMX9EX13fZD+Db5y/lU+gX7tft7/Ej9tP2m/Tr9Af0y/c/9of6v/1IBxQKdA/cD8wMDBPcDowPsAicCxAHTAfIB5wHEAd0BJAJpArACswJ+At4B8ADW/9/+L/7F/bT92f0K/lT+/v7f/8kAaQHBAc0BeQHgAAAA/v4X/kT9i/xS/BP98P5TAZEDbQW5Bo8H4wf1BzUIrwgwCVAJYQkJCkAL0gy4DkQRaxT8F04bLB6jIP0hayFbH2odDx1vHosguSITJOgjISKwH1Yeex4GH3seHBwVGN4S6AzwBjYCX//J/WT8iPo5+Kz19PIo8DLtVuqE55rk1OGH367dvduU2cfXI9e715rZNtwU35fhIuOh43Hja+MC5B/l1Obh6BLrEO3p7mfxlPQE+B37o/3X/+gB8wOKBY0GBQccB/QG1gb2BqQH+AiSCsQLKwwKDKALKgvECl4K6QlACScIoQYbBdIDxALoAVwBVwGiAfEBHAIjAv8BbQFUANr+Vv0t/JL7c/tr+xb7ZPqc+Sv5XPnb+UH6c/qT+ob6AvoM+ev3BfeK9mX2p/ZY90X4OPn9+W36sPr2+kr7rPsd/Hn8lfyF/Dz8APw6/Dn9l/7S/6sASAGuAdUBsgGKAZEBIwKbAnYCSwIDAs8BXwEHAf4AcgEfAjYCWwJnAggDzgPqA+kDwgMDBPwDyAO3A0MD/wJTApQBGwHsACEBBwKIAqACVQKeAUsB7wANAW8BPwLpAgMEHAYoCIIJngmqChkMMg58EMsS2hWGF+gWmhWFFckXERt2HVQgGyInIlQgSh4+Hjgeah2pGxIa1hnXGLkVXxHvDXcMHQswCZgGfgNoADT9Gvo799X0rvLA8Obu7+zB6hnoyeUU5KLi+uD83hbdvdsZ2xPbaNs83PLcWd3r3YLeP9/Q36XgHeLe43rlvOb154jpauuf7QfwPfO09iH60fx+/qj/cgCyAZsD9AVrCJ4KRAxnDeMNNQ61DnoPKhB2EJEQYxC0D28OzAzPC48LSwsUC6oKNAqYCQoIsAV7A+YBuQCo/4H+VP08/Fj7VfqA+fL4dfgQ+MH3e/fF9uD1+fQW9Krzs/NU9Kv1CPcz+Cr55vnJ+nf7C/y3/Gr9yP7B/ykAogBSAcICbwQBBl8HVgghCd0JRApACpgJ5QhOCHQHvAYEBmcF2wREBIIDzgJUAu0BUgGJAJX/av6j/TD9cPxn+8b63voa+5H7afxf/VH+E/+0/yYAMwDf/+T/RwCSAJ8ASABWAI4AvQBJAc8CHQUgBhwHJAgpCugKugknCLwGdQZ1BdsECwcuCx0Otw+aEMUSYRVDF1Uasx1OIGgfuxtwGHoX+Rd8GKwYexlsG7QcXxxVGpIXpRQDEpUPjg2MC24IwwT8AJj9uvoC+E32xfWX9UX0MPHX7CXo9uOY4PHdvdvv2YnYtdej16PXYNcj13jXqNiH2lrcG95F31ffOd+N3/PgUuNJ5mbq4+698qn0jvUv94D5Svtp/aP/MQFqAvMCjgSyBgkIxQiZCoMLPg4cD1oOuA4aDsQOGw0eDZcNJw0kDSUM/wvwC8MLfAnvBy4HVgf2BvkDwAHxAHUBIgCf/qT9of0J/pL8//rb+fv5svgs9yz2dvYv9nn1GfVU9d/2Rvb593L4Z/m8+eD5b/zn+7H7b/q2+5T+W//j/tj+igEfBIUF4gRZBWIHhQiOCDAHZgcBCP8HdQemBpwGrAdxCOcH2wcGCBoJLwoEB8QFjwVRBYIF+gHzAckCxwKCAlIB+QG8A3gDuQIGA8sCCwQpATcAoQHJAaQCmQEmAkwDLQUyBksGzAShBdQF/AUCByMF2QVqBeoFQAfNBy0HkAiOCGoJlQr6CEsIngd9CIUJYgi1BwwJ3AlyC/kKDwp/CXsJ6AlTCRII8Aa5Bf4F7QRkBKcDPAGFAlEDcQJKAez/zf/xADz+Ofxq+7z7Kfwb+QL3dfgw+PP28/RI9b34Pvcq9i311Pb99if1tvGp8QH0evMO8uXvjfIr8/ryNvG98jn02PPS83fzqfXg9BT0mPPl80b2nPUJ9fr2Pvng+Wv6ifl6+t37/frL+0f7jf4F/o39b/10/4ECigElAcsAlgPuBEMDQwPgAkIDrQLwAL0BRgGuA1sAoQBDBPMDgALZ/4f/dwI7BBb9gPwT/vH/CABx/kv5tP9hBEwA+AK1+s4EygXTAEr/fvoTAiQDxP+T/mD9OQMfBnoBJQPuAyUDngKiBUwEuQMw/0kDYQMBAwEGVwCxBesCVAacBq8DawTpAfcCxQQfBO8C6AE2ANMDXALyAHUDQQFBAYkFYAT3AR0CgQFJA00DIgEEAqYAAwIJBAMCngKbBJEDEQWBA+YDKgUxB1oEDQKZBOADDQlsAwn/rAdQBVgEDAQCAXcEFQOWA/4CUQFw/sgCIQEgAHIBPP4jACQAvwIgALD9+v64AS8Bdv6e/zX+5gBl/+4BD/47/gMBiAAwBBP8KAJWAIkC5gG9/Ir/OAJ+ADT+9f6uAdIDYf7v/QYC8AFP/3z9d/5qAWD/w/7x+iH+0f8X/L38pvvL/RH/jvnS/Qr6jPnV/QT4Mv1O99P6M/yO+e/8+veL+jD6GP5F+XX46/s/+73/Cvg0+zj/Rfw1/UL+Xf37+9L+wP5e/4r8Yf0M/7P+uACj/cD/P/6dAAoBAADf/87/FP94AJYDifziASgAbAExAmwB4gBi/9ADTgHMAML+twJYArT+iv66AMICH/9B/37+YgJ0AnD/mP+k/1wBZwCtAEL8VwBXAKb/R/94/sIBO/6M/jYBDf5aAGEBWPqQBEsDd/miAWn+TAVFAd74XgQUAu4Dyv1yAMgDEwIdA4wBPAK0BYsCaQHwBdj//AXMA4wFvAIlAgoJvQVPBvMAbQU4CLgBqQatAXkDHAb6AYICVQUSA4wDUwFrAOkFYP19Bmr74/0SAoX/rALj+Ub7T/+LAvX7tfuJ9xwA6f7G/Fz6jvt5/4z8kQH3+9X6u/2n/hsB0vwg+gsBlgHp/xT+1v6LAjsFzP1NAukCVAHrATb8EwVAAzz+tf5pAzcDcgQU/skADgUEAEkFev9NAHMBPgHYAfz87QIN/m0BWgG0/VUBm/y+ABH9Vv7y/PsAVvod/eD+dfyt/C/7dwAu+v78d/llAB7+FPxz+8P7HgEI+8L9QPqh/CIBnvo//Tb9uP0m/3v8dv/K/aMBZf0S/WYCFv46Ad4ClfhFAq0Elv06Bd762AV+A/oABgOcAKsDXv3HCpj9Wv3EBYcBwAhr/ecB4gHpA0QEoABN/63+HQdU/kv9mQD2Aa38YQCY/xwBz/8p/xT/ufzmATv8Vf2j/ZT8YwBb/S79mP9s+uQCwPuN/hwA3P6KALf6+//wABACrP1uATv+KgWjAYUAiwK2/QsH1/2RAnb+3AF7BcP++AOA/qIE2APIAC//5gOyBgT9nv56AjUENP8r/RkBGgKgBDz9wv1bAWIC4wJx+H4AdQEI/wT8a/oEAtz8y/w2/UH+/P3hAXv8nPyv/ZEAbABj+I8CT/wu+5z//QC1/I76CQFhAK7+Jf4IAUACHf7R/6sBo/+wALX/9v8E/t4Exv5q/fMFW/6UAzL/SwG0B4X9gv6FAzYDUAFF+4kDKwPFAKkCmvi1B9MC9v3VAe39XQTFAE38+ALn/gT+QQSp/REDxv33BKn+Q/1sBl34vwSx/L/+xAFX/toDCvpA/rcDsgJ6/9f6IgElBcD8IgG6+5gA3QOm/ZD/J/7/AhUC3v24/zAAmwLbAt39MwFVAFEEZgAP/4cBlwJMABb+HAUiAnz+Yv2IA9IAqwFC/Cv9ZwP+/90DOfiiAgYD8f/K/z363QMN/wYAb/z1/Lj/zf/d/i39r/0H/zsDIf0h/V0Czf+R/Db+YP52/Sb/tAEd/vf5BQLcBK37gv+WAqABQwMM+00ErwAY/97/+f9mBC0AKgJN++oEmASV/8L9rQPT/xACgwLz+GUHGP5kAWoANPxiBaYDT/ux/w4DkP8YAer9CgB1+88Dm/60/vr96fwSA5z7BQE7/br8GwD3AMv7tfv5Ao3/Ofzq/fgAJwB/+vz9nQBd/+H+cfkdA+P+EgACACf5xwNX/lQAzf6U/zQAyPzuApkABv7g/9X/pgOv/47//f/hAccBK/6b/vP9KAYl/QQC1v1JAPEFbPqkA6H9igF4AQABQQA5/wwBJQG3Aar98gDG/hIEev08/5L/zQJdAGL8/AEj/9YBQf66/0X9EgSD/WD/EQD6/WsDffkHBAv+IAEy/Yj+QgLd/hsB0PrcAdn+TwK4//78U/9FBR3+F//f/7X+uAZT+9YA5f+R/zkDYv22/g4DvwDC/bIAbwGZAbYBfPtaAVcBFgR5/077YwMN/ycD2/0A/koBJQLH/5T/k/4yA8gAl/4vAaH6OgYU/0f/nf7j/NsGHQDa/C/+NAFlA18Cnvr2AgP/QwN7Adf5BwNlAIIF6PmRApz/5wD1BGL6wQM5/ZcDdQHC+3YBpQLr/kwAswAdAFT/MAK+ABT9rgKC/lACK/67/XYB6wGTAQv7cAKWAO0AIAAG/Q7+nwIsAEn8+P76/JgBwAEl/ib8+P9TATj/fwGW+n375wT9/JMCr/qA+w0GIvtm/wn+Cf+qATX5pAI/AZf8YAI7+/kA2QE2ANj+mv/l/xMBNwN5/YsBlf/xAMwDDACs/yH/Ggb0/XMANgL+/OcFT/89AmP/DgI5A7D+4QRv/m4AvwK0/88DWf6hAb3/hP/cAGn+TQJ3/sT/vgHJAJP9IQDs+soDRQCO+hcB0f0DA0v+V/zN/UgBhAGv/OD+CP8dAy7/G//q/j7/JgL2/vD9kAFHAan/ngIR+wsHxQBd/nwDx/1rApH+4gKEAZD9ZgEaAo0AxgGT/bQCVACQ/4YCJf8cA4T8/wGqANb/XAF7/kQBMP/NAwL+pgAM/zcCgwD1++IEIAD3/2/8VALLASsByPsb/1oFcv7tACv7/wE6A7D+4P7E/CUCjQA6AZf9WP8wA6n9/gAcAA0AJf+5/iMCtwDn/dUAXf/cASL+gP7SAHn/TwCk/p8B4vzvATUAc/7eAb39DgHQ/0cByf/z/Wn/NQDbA5r+aP3u/q4D7//l/8H+JgDS/6D/zAEj/W0BCP1aAhL/Mv5wASkAMwAJAWT9WP4oBLj7uf/A/4X/wgB2/uX+z/5fA137Nv84A33+FgBJ/VYAnf8gACAAVv0h/u8CdAAe/mn9sf+VApv/pAAB/nn+JAOFAwP7Sv8iApAAEgJC/5X+pf4TAq8BVQASAJr9QwDTAQQB+AEX/GsAqgKW/SQEk/0t/3oAfwBcBDT8EwHt/mgCewDh/pgAg/3SA+f9v/+Y//f9DwPW/TT9uwEn/0D/zP6hAYP9if3D/3MAyAI8+S8C8gCA/9D/OvtXAt4As/9a/FYA/AB5AaP9pv6T/+L+UwU6/HIAbwFIANIAO/7aAXUCT/9hAHz+swKZA2D/bv8O/rIEXQH//wcAdv+JATMELf9D/3YAWwILA7v9QgEnAPgCcP+3ABgAO//6Azr//wDs/GUBOwHm/+wB//3t/xEANAHfABT+iP7T/jkC2v+y+9H/TgDnA3f73f4oAqT9EQITAH39Xv+UAVf/dgB4/SYCI/7l/5oBRf5CAgz+WP+0/yUB2AB4/zb8FwEmAy7/hv8s/nj/rwJ6AOT7DwGnASkBc/3hATsB1v2sAbz9eAEv/8EAtwAZ/o3+CQHGALL8cQCsAb3/PP5xAbn9mgH8/7P+aQHe/bf/mf+oA1j+9PydAxP/Y//6AEf+zAIkAB38/QARAW0BjQC++8AB/gJrAer+VfyGAgECh/+8/9D98gDzAGj+mQH9/vP+SgA1ATYAJAHv/xD9zAKWAW8AjPyX/hICTgHY/nz7gwAoAwEARfvU/mUB3AFJ/h7+LwDR/7EBcP81/eP+SgPf/4D/Av1/AG4CSv9//6f8gAGCAaf+ff6/AJcALQCu/gUA4gGI/5b/0/4BAIYBWACh/UEBm/+RAXsBl/4wATIA7AEg/lIAJwAc/0UBff7kAPUA0v/S/y7/1wOVAE/+cwAxAD4E4v47/Z7/qwEuAa3/nP9G/0MCGwDnAKf/sP5c/6MBCQJV/hX/sf8VAoMClv1S/qwAogM/Ar788f5JAG8EUgFA+2f/ugPFAj3/cf7R/rwC7gHc/2L9z/9hAp0AJAA9/uf/nwGcAAf/d/7n/g8DuP9H/r//a//hAW0APf4d/8b/ZwHp/r/8hQC1/0L/Jf7G/3394AAlAXD9lwAs/RICJgDM/nIATP06Asr/gQDU/8P82wGZAKAAoP+H/jICbgFlALL+wQBxAeP/Wv+D/3wBtABgAJr/IAHx/0sAagEqABr/G/8NAmX+9f5XAOX/mwAi/4X/SQBCAAsA4v7TACIAjv4/ALP/QgAY/wD/5v/r/x3/GgFJ/uP8ZgBOAWz/g/z5/U4ADwJW/gr9Rf9UAZcAs/1z/yb/9P8DAEH+8/5Q/yIAZ/9F/0oAf/4MAHMASADG/2P+OACz/6kBT/4L/xQAgwArATP98wCpAVv/HwCF/+v+/wHMAOn+Ef/ZAH8BR/+f/qsA2gCa/3MAtf9RADYBCwAA/1EBKQDUAOgA3/5SAJ4A9AFK/0X/ygD6AZgAJf9MAVoBOQGcAA8ATgB1/xgAewE1AGf/Hv98AQ0C6wDb/lL/AgJyAX0ASf7C/ngBiwH9/jn/xf9uAWgBDP/h/9r/qwAmAHr/iP/7/////f/j/8j+pf8MAQf/1f/S/ykAogEx/jAA6AD8/2IA8/7y/9wASgCq/2r/bgBWAOz/uf/Y/50A+f4tAH//tf9GAbP+xf9o/0UA9gAq/0f/Uv8xACgB1f9o/jD/VQF3AGD/4v6P/4IB7f+l/y//NQD2APr/Rf9V//L/2v9rAB4AvP+5AJQAVwBdAPn/UwCHAI4AK/9PAAABrgCN/7H+CwEFASoAvf5NAOUBiADw/iv/TQEcAZf/KP/9/8YBLQCD/tv/JgByADD/Mv/S/3MAtf+C/7z/kP9cACz/jv8QAP7/nv+//goAGwBY/z7/0f5zAMUA4v4C/z0ABAFu/0r/j/9zAEwAsv4YANz/TgAzAOz/OQBzAI8AWgDU/+7/kQBtAAoA0v9h/w4AQQH+/0AAx//9/9MAMAAgAG//HACbAEEABv8DALQAGgBvAIH/8//LAPkA2P+//8cAXgDE/+T/HwCSACAA//8yAF4AmACd/zcA+v8mAPf/1/+6ANH/KAATANcAXgAcAIgA1/+NAB8AZf9jAEEAZgBGANv/kQA5ADgAGP8nAPX/h/+7/5H/kgBD/x3/gf8mAKwAPP8E/5b/bQCaABL/mP50/78AiQCa/rn+5f8ZAbf/1P7S/w4AhwCO/5//+/8fAA8A4//Y/yoA///3/1wA9/9rAPv/DQB2AD0AFgAHAA4AaAByAAAAAQC2AC4A1f+SAO3/6QAqAPj/qQDM/2EAHAAGADUA7P/Y/woA2QBEAE7/xf8XAK4AKf9a/yEA/v+tAOD+e/+NAC4ABgAG/9b/OQAEADkAkv/j//j/QADK/17/3v9e//v////E/9T/+v9XADUA8v8SAA8A///7/xEAXAC3/4//7P+nADgAxf+S/1gA2wBOAO3/Pf8UAGQA+/8Z/2j/UQCtACYAd/8QAIcAKQCs/6j/IQCAAKb/oP/r/14A+v+E/9f/UQBqAGD/9/8NAEQAr/9F/3IAIADz/7v/9f+dAD8Alf8IAC4AZQBmANH/8P9sAGkA3v8AAN//gQBXAKL/OwBNABsA5v/k/zYAFgAfABsA/v/p//3/IQDd//X/0/+9/ygAyP+y/6f/HgAfAI7/9P/z/xUADADr/7r/CgAyAH3/uf8zAPn/bv/P//v/CgDT/7D/LgBUABEAqv/4/4AAPgAV/7r/TQBrAPz/Pv/W/z8AegCx/xr/+P9yABAAfP90/ysAVAAFAFD/1f9cAOD/6/+K/xEAHgC4/7T/6f9JAAYA1f8OAIgACgC2/9H/JgBUAOP/v/8bADsATQDi/97/ZAA1AC8A+P8NADEAJgATAOj/AgBKAAUADwDs/+f/MADq//P/sv/3/x4AAQDJ/7T/PQASAMP/lP/d/0MA/v/J/+n/9P8OABMAzf/y/w8ADQA4ANP/DQBfANf/3f8NAD4AVQDy//3/YgA8APH/zv/+/14AGgCj/+//cAAUALP/pv8TAFcA2//J/+L/OQAJAGz/y/8QAB0A9v/M/xwAMQBJAOb/4v8YABEAHQC+//L/AQD6/9z/4P8WAOr/7v/5/z0AIADH/+T/DQA4APb/0P/o/ygAVQAKAPr//f8aABgA7v8QAOb/yv/o/9P/FQDx/8v/HADR/1YAXwDs/+b/u/9HAAMACADl/2//HQCdAEUAd/+x/3gAUAC9/5z/GABVAPz/wv/T/ywAFQDL/63/+P8gAOT/wv/Y/wEA2P/m/8//4f8MAAMADQDf/9z/XAAZAGL/0/82ADwAkv9e/yIACwD5/9j/n/8vAJEAFwC6//f/EgAXAMr/pv9JAFYAEADR/6L/bACCANr/v//+/3MASAB+/7X/QAD9/w8A/f8DAAgA7f85ADIATQAlABMANgCAAG4A/v8QAEEAVQAOAFoAcAAWAP7/DgBUAEoAOwD2/+j/LQCbACoAev8LAIgAWwD6/93/AAASAAAAEADk/7z/NAAoAPj/uP+6/04ASADs/77/EQB0AD4AHwDn//H/agBgABkAz/8KADUA9v8dAN//s//a/zcAFADH/+v//v8wAAAA7v8BAN7/CwAoAL3/7v82AO7/qP93/zgAPQCl/33/uf8tABoA1v9n/9v/GgDn/8j/y/8ZALb/jv8NAEkA3v+T/7L/cACMAO3/sv/7/6IAVACQ/6L/ZABTANv/zv8mAHUA9f/A/+L/EABIANf/Wf+9/wMA8P+C/3z/CQAxAAoAuf8ZABUAuP99/8P/QQDJ/7n/6//a/+7/+v+0/6P/8/8XAPb/sf/o/wAAqP/c//3/EAA/ABIAx//S/0EAVQDs/3z///+ZAE8A3v+M/+f/JgD8/+//yP/k/yMAHgDc/+z/PwAVAL7/7P8+ACAAxf/E//3/IgAUANP/8f8nABcAa/92/3AAXQCx/07/tP9+ACwAkP+m//b/fABDAJT/of8SAFcA4v95/7n/iQBWALf/5/8vAI8AAADc/yUADAAeAB4Aw/93/xUAbgAIAOj/LQB4AEAAuf/B/0MAEgCp/8n/ZACGAN//tv8OAH0AbQDh/63/JQCRABgAkP+T//L/SwARAM7/EgBcAE4A1f+s/wUAFwD4/+z/EAD8/wAACgD///j/3P8eAB4AHQADAOn/KAACAAcAFwAjADkABgAPACMAPAAPAAEAZgBOAPv/9f8OAP3/z/8UAGwAMQDl/9v/9f8BAAMAAwABAOr/LwBXALL/wP8JAB8AMADl/0MATwDQ/7H/+f9FANn/Zv/F/1sAXgCj/1H/0f8mAAEAq//3/18AMgDN/+v/DQD1/wkAAgDr/+n/IwBJANP/e//1/3sAHwDW/zkAKgANAOr/sP/L/wIASgAkAPD/LQBsABIA0v/y/ykAHQDT/wIAEwD/////EwAsAFYAOQDB/xIArwAzAG//mf82AFkA9v+//x0APwBEACsA+v8nAPr/KAA4ANX/5v8PAEkAIgAPADIA6P/Z//v/CwA5ADIAMAAPALP/vv/9//P/rf/L/1MAYgD6/97/9v/3//D/5v/y/+b/CwDv/8n/IgDl/43//P+1AIUAuf+7/0oAMAC9/9b/x/8oALgAUwC3/7X/ZQBcAKr/t/8qAFQAHwAGAP7/2/89ACwADAAWAAMALwABAN//8/8jABIABQDh/wwAeAAqAOv/jP/t/zIAyf91/6H/SwAXAA4AGgDp/9b/s//Y/xUAOwAqANv/o//q/0QAHQDC/wAAWABVAOr/Zv/F/ysA8//C/93/RwBjAB0A1/8AAFwAEwABABAACwD8/+n/OADr/7//CQBIAEsA0f/F/+P/NwAaALv/3P8AAFQAz/+c/xMAHQA0AA4ACAAyAFgAHgDJ/6X/pf9OAC8AZP+E/xoAWwAdAAYAQQAsAP7/EACd/0X/fv9+/4b/uP80ADkA//8OADUAJAD3/0sARgAUAN7/tP+j/7P/8f/S/5D/vv+IANEAPwC6/8//VQBeALH/d//U//b/uf+H//b/rQBpAMb/2/8mAFkALwC5/53/DgBeAPj/t//I/9//AgDw/1UAgAB/AH0Ayf+S/6z/8P8KAN7/wf/N/yUALwAuAO7/IwBzAFAAFwCr/xsAPwCE/zX/EQDLAIoAeABfAGYAZABtAC8A5P/V/+T/HADi/xIAHwAVAB8A9f8tALQAmADv/6X/hP+1/87/o/+z/wAAXQAfAOb/QwCLAFkA/v/0//j/0f9d/2D/rv+q/4r/BwCkAMUAiQA9ABsAuP/R/8z/kf+e/8r/4P+v/wgAbQBuAF8AEwAaAIUAYwD8/w8A+v+V/0//zf9iAAQAov/p/4IAowBjAAgA6//d/6r/mv+5/9r/sf+y/8b/5v8yAGgAQQD7/zQAagBGANj/pf/M/7//wf/j/+j/GQAzABAAKAAyAGMANAC3/5r/Zv+r/6z/dP+r/xQAhwBvAB0AAgA3AGkAegDr/1v/bP+0/6n/i/8GAFwAZgBhAFcASwATAPf/y/9w/3n/5f8JAKj/eP/N/30A3ADtAOYAuABxAPf/u//p/w4Aov9o/7b/MwBAAP7/IwBUAHoAtwCfABQAzf+z/1r/Sf+e/xcAPQA/ADEAEQAWACIAAAC3//T/AAC2/1r/Zv+e/4z/xP8JAF8ARAAPACYAOAABAMb/AAAwADAABQDA/87/AAAXACwAUABkADUA8f+u/73/0v/D/+3/NAB1AJgAJQCb/5v/r//K/6P/sf9NAL8AoQA3ABgA7f8hAHQAFQCt/6v/CwBRAAYAoP/I/z0AvQDJAD4A5/8LAP3/nv9s/27/nP/r/zcAWwBvAGwAYwBAABkAGwAJAL3/iP93/3D/nP/L/xkAKQApAD0AVABLANH/ZP9E/6L/0f/K/7L/zP8eAGsAkABRADwADAAGANL/dv91/37/vf/1/xQAIAAjAPf/2P8XAAsAqv9o/4T/1v+0/1T/XP88APwA1QA3AM3/KgB1ACwAmP9V/63/KABFAOX/lv+z/xkAQAA5AB8ARQB5AG0AUQDy/+P/PgBSAOz/s//R/9L/jv9R/1j/n/8cAJ4A6AC8AJEAfgAtAMz/ef8//1r/sv/7/y8APgBpAPAAQAFWASMBkgDu/4L/Xf/Y/pT+0/6K/74AFAEoAWcBSAEnAb4AQADD//n+hv6K/q7+1f7r/rn/CAEcAk4CdgHgAHcAFABe/1/+/f2K/qf/KQDl/63/bgCZAfgBYgGxAFwAKgCw/8D+HP5X/hn/xf8/AMQAOwF6AWIB7QByAB4ACwDL/2X/D/8P/3T/AQB7AJkA4ABOAYoB4gABAFD/DP/5/rv+uP7e/qX/ZADaAAUBCAEmAd8AbwDy/4f/P/8U//n+AP9M/7P/EABfANMAIAH2AJkASwADAHb/B//X/tH+Jf+o/wEABgAyAH4AtADMALAAgQAWAMP/lP9j/wT/7f5z/x0AjwCNAHMAZgB/AFIA/f+p/23/kP+B/3j/kP+z/w0AZACSANMA8gDFAH4AIgDP/5v/m/94/3f/rf8BAFwAZQBnAFYANwAhAPn/zv/A/7r/m/+l//v/IgAdAE0AmQBhANb/v//y/+H/Yf90/+T/RwBxACYAGwBQAH8ATQAoAEYA9v+f/5j/v//g//P/ZwDbAP8A4wCPABkAtv89/8/+Dv+T/wsAGAASADYAFQDk/9D/7v///zcAeQBqAP//s/+t/6v/of+m/yIAgACSAHUAfwCRAFQAEwAWACEA5f/A/7P/8P8MABgAKQBBAF8AJgABAAUADgDs/83/zP/U/9//1P+y/5//4f9nAJYAVgBRAEoABwCo/4b/3v8QABYAAQDh/9r/xP+A/3T/zf8PACUAHwAiACMA8f+o/5//HQCoAKkAPgDX/7b/o/9o/2H/xv88AG4AawB1AGUAMgDy/5v/ef+a/97/0/97/4z/FABIAA0AFAB+ANAAeQAJAMj/tv+o/3n/XP+P/xkAZQCDAGsAbACNAHUAKwC0/5L/mP9z/1b/kf/m//3/KwB0AIgAZABjAF4AGgDE/5b/f/9N/03/xv9SAIEAmQDYAPIAugA/AMX/iv9//3b/a/90/7r/QACMAHYAYgBqAHMAYgAIAI//Zf+Q/+H/7v+z/+T/SgBiADQAGAAQAMf/qv/b/+3/3v/B/+j/MABdAHUAbwBSADcARwAwAPv/yf+x/9T/7v/i//r/XQB+AEAAEADa/73/xP/a/8v/zv8DAAoA+v8BAAsAJwBfALgAuABJAOX/lv9L/xn/TP++/xUAYwCMAG0AJADR/+T/GQARAOj/3//s/6X/PP8n/5f/GgBPAEoAagCfAIkAMQDO/5H/iP+C/17/XP+U/9f/CwAZAGwAxgCyAGgABgCi/0j/Pf99/4b/e//A/ygAXwArABUANQBWAFcAKwAMAL3/f/9f/2r/oP/+/3EAoQDHAMsAzACFACEAvf9i/4n/xv/c/4z/cv+3/zUAVAAxAIgAwgC5ADQA1f/a/83/f/8B///+gf89AKEAoQC1ALgAuQB1APX/e/8n/0//x/8wAG4AeQBwAFYAKAAAAPH/1P+5/8v/1v8DACoAJQACAO//LgCFALMAYQDL/0T/Of+g//b/8f+8/8T/AwBVAGIATQD8/5j/ef9i/3v/ev96/6b/6f9eAPgAQwEbAXQAs/+E/2L/M/8i/1//1v9XAJsAoADSAJQAPgBEAG0AfAA0ANH/ef9h/63/5//9/zEAYABmADEAHAAoAE4AaABlAFoAYQB6ACkApP9j/57/8v8hAC0AFgAuAHEAmQBqAPD/eP9f/5H/1//b/8D/1f/o/wwA/v/u/9j/5f9GAGYAXAA3ADEAFwDd/7X/mP+7/9//9P/X/9j/MABqAFcAPABEAC4A/P/L/3D//v7b/lr/IgBtAJkA5AAIAb0ABgCc/5n/mv9+/4L/vP/p/73/l/+Z/9z/cQDQAOUA3QDDAHgA3f9l/y7/Gv9C/5T/IgCnAOQAwgCBAHAAZQAgAKP/P/8Z/1X/k/+v/77/6/9IAHoAiABqAFEAHwD3/8n/qf/J/8z/k/8g/xP/hf8gAJMAxgDCAKUAmAB9ADAAsv8w/xL/GP9E/6D/BQBgAHcApgDzAP4AzwBpAAAAwf+3/87/1v/E/+n/AwA6AH8AjwCeAFwAHgDv/8f/v/+1/7H/1/8zAIQAhQA7AOT/r/+O/2X/gP/w/2oAoQDBANMAmwAsAMH/if96/4z/tP+9/6H/q//x/x4AJwBEAF0ASQAeAPf/1P+n/4D/fv+O/6z/1v81AGAAPgBYAG0AZgBDAAYA8P/D/5r/wv/O/+X/HAAxAGMAjgCuAHIA7P+5/9j/DwApABcA5P/C/8z/8v/r/8j/xP/u/zsAkAC3AI0AUwAcAO3/nv+B/47/kP9+/4n/8P93AKAAOwDo/8D/wf+9/9T/8f/M/7D/zP/4/zEAZQBOADYAFwA+AF4AMgDp/33/WP9p/6T/4v8EABgAJAAyAF0AYgA6ANr/m/+G/5H/uf+d/7j/0/8vAIIArwDFAJcAXADk/5P/ZP9a/3j/o//3/1EAngC0AJYAeQBPACkAHQApAC0A4P+P/3z/r//7/0cAhgC3AOcA0QB5APP/Y/8V/zD/j//y/zgAXABgAEgAKQAwAD8ARQAtAOL/rP+e/87/5P/N/wIAkgD+AM4ASgDS/53/mf+o/53/rf/H/83/2v/5/zMAYgByAEIA+f+4/6//kv9m/3H/r/8VAHQAsACwAHcAVAApAO//zv+a/2L/F/9G/4T/4v8wAC0ATQA/AGoAaAAdAPf/0f///xMABQDI/03/Lf9S/9j/iQDyADsBIAHdAEgAuv9B/+T+uf7r/rb/YwDeAPcA9gDBAHIAQwDm/2H/7/7t/hH/TP/c/0kAiQCAAFEAKQDq/8z/lv94/3P/if/X/xwAMQASACkAhwDQALoAVwC0/zD/FP9B/1H/Q/9+//b/hQC2AKUAegBRABIAwf+q/7D/wf+z/4//qP8OAIoAvwCYAEgA5v+w/5T/jf+O/6//BABkANoA0ABmANf/XP9L/3D/4f8zAA0A0f/C//X/ZwDJAN8ApgB5AEgA4/9k/wf/4f7u/k3/7/+RAOkA5wClAHIALwD9/9v/l/9V/zb/d/+l//7/ZQDhACYBJAFAAUgB7gAuAG3/0/6E/rb+Uf/m/00AwQBdAawBfAHsAGcAEgCy/y3/hf5Q/uv+zv9ZAKcA7QAvASsBsgD8/0b/zP6X/qj+Cf+T/wMASgBrAFQARABRAB4A1/+s/63/2f/r/zQAdwCJAJ4AtwDbAP8ABAG5AFAA+//H/7P/p/+e/3z/O/9U/6X//v8zAP//xv+f/4r/fP9M/xn/C/88/8X/OgBlAGUAYAAsAOv/2P/0/zQATgBOAFEAhAC9ALwAdQAPAMr/zv8mAIwA0QD1AOkAxwCRAGcALADV/6v/jv+m/7j/q/99/1P/e/+y/7//rv/c/xgA+v+h/3v/mv+2/73/2f8YAFIAPAAPABkAOgBdAG4AZQAsAPH/0v/c//T/BgAzAGUAqwDyABMB6wB0APj/j/8+/xL//f4o/2z/p/8CAIkA5gDHAFUAs/8q/8H+iP6g/sz+Rv/0/54ADwEzAQgBlwAlANX/nv9o/yT/7P7X/jv/AwC/AFQBhQFlARUBtwA9AIz/Gf/N/rP+6v6b/2oA8gBaAWsBYQFUATQBpgDm/0X/sv5f/m7+1P5R/+j/gQD/AD4BLwHAAAwAU/+k/h7+5/0J/nX+Rv9HAFcBKwKdAosC/AEXAf3/9P5C/ir+of5Q/x8ACwGjAbcBXAECAYsA8f9s/xP/z/5+/oH++f6d/xsAYwC6AB0BSwEjAZwA8P9q/zz/Kf/u/uj+Yf8bAKcACgF3AacBbQHqAF4A4P9u/yr/If87/2j/rf8tAMMAFwEhAdsAcgABAJb/Qv8L//D+B/9N/67/HwB/AIoAZABGACYAHAAIAOH/q/+L/5D/lP+j/73/2P8BAEQAiQCQAF8ALADd/4H/MP8p/3L/xv8aADIARwBrAEwACACp/4L/ev+2/ysAewC2AMYAwwBpAOT/bP8L/wT/Nv+N/97/QwDIADQBRgEPAaIAKwDW/5r/cv8y/xf/Rf/V/1EAugD5AAcB2QBaANX/VP8i//f+x/6r/vn+sv91ANYA2gDIALoApgB1ACoA3v+e/3v/hf+u//b/OQCDAMMA/gATAckAOwCA/+7+k/6L/un+Zf/w/4QADAFcATEBpgAYAKz/fv99/4n/kv+n/9b/DwA/AFgAbwB3AHYAbwBNAAAAqf90/2D/cf+a/8f/8f88AJwA8wAiARIBqwAHAHj/F//6/h3/dP/n/00ArwDhANAAgQAXAMD/kP+U/43/f/9v/2f/bv+G/6X/y//t/w0AQgB3AKMAmgBTANr/Vv8a/17/3f9IAIIAowDDAM8AngAFAEr/3v7a/hz/ef/z/3EAtgC6AHYAPwAKAMf/gP80/z3/cv+k/9//GABFAFkAeACVAJgASADb/6D/qv/Q//L/JABsAJoAoQB8AFMAJADi/7n/p//I//j/KwA6ADIAIQD7/7b/bP8q/w7/N/+X/x8AhACxAKcAfgBOADYAKQDr/4D/M/9K/7P/DQAaAO7/xP/X/y0AiQDIANYAsQBpAAsAsf9j/xP/CP9q/xoA7QCXAeQBqQHvAAEAN//M/qn+rv70/ob/OQClALAAhgBfADYA+//P/7//tv96/yH/9v4b/33/9f9rAOAARgF/AVgB6wBcAMb/Tf/0/t7+/P5J/7T/MQCpAOsA9wDQAIgAHQCg/0X/If8l/yj/Pv+C//n/gwDkAP8ABwEHAfIArwAvAIr/7f6V/nL+kv72/ov/RQD1AI4BpwFIAbwAFQCB/+D+g/5//tj+jf9JALUA0QDpABABDQHCAGIADQDC/2//K//2/vX+Hf9z//j/iAD7ACIBCAGpACYAif8I/73+wv4V/6//XQDeABIBCgHLAGQAHwDE/2P/Df/d/gz/TP+d/wIAXQC6APwAAgHLAFkAtf8j/9b+2f41/6b/HACEANEAKgFAAQEBhADb/yz/sv5x/sD+Y//a/1UAeACHAI4AfwBmABYA3P+1/9H/CAA6ADkAEgAJACkAcwCuANAAqwBWAPr/xv/A/7f/qv+K/4z/tP8EADgATQCEAJ8AdQAUAL3/i/9Z/zH/Mf9V/5//DgBBACEA6P/D/9j/7P/2/wUAMgB+AJ4AiwBNABkAEAAKAP//5//t/wwAIQAyAC8AOQBIAEcAIgDu/9T/xP/E/6n/h/+L/7T/CABnAKEA1QDlAMwAqwBBAOf/eP/x/rD+5P5t/wYAdgCsAOoADwH9AJUA/P9r/wH/2v76/lr/xP8zAJYAAwFHATIB5gB/ACQA0v+j/5f/pf+c/5f/tP/1/0gAhACgAJwAcwAzANX/O//R/nz+j/72/sf/3ACnARwC6QFoAXoAhP+8/lX+hP7y/rH/dgAHAT4BHgHDAE4A7P+2/57/fP9S/zT/Ov+C/97/FgAnACsAUQCIAKsAcQD//57/g/+Y/67/sv+2/9v/DwA/ADkABgDF/4n/YP9i/57/6/8sAFcAcwBmADoA9f+1/5L/lf++////QABgAGgATgBNAFAAEwDD/4H/h/+s/9v/IQB6AMEA2wCeAD0A8//B/6b/c/9V/2r/sv/2/y8AdwCwAN0A5ADwAMUAcAD5/1v/1v6P/sb+TP/l/4EAFAF9AXgBDgFfAKb/Df/J/uP+Mf+U//D/SACqAAQBKgEPAcsAgwAxAL//T/8J//b+Gv9g/8f/RwClAMgApwBpACoA7v/F/5f/Yv84/zj/Xv+l//z/QACBAJcAqgCfAHgARgDz/7T/hv98/5j/wf/+/0MApgAHAUIBPQHXACwAf/8H/+T+EP9s/9P/HwBcAIYAhgB3AEwAHAD9/+H/zP+5/5n/oP+3/+H/MQBuAK4AsgCUAIkAcABKAO//n/9+/2H/SP8k/zn/lv8GAG8AsQDkAOMAkAAUAKr/av9e/3X/kv/L/xAAUQBlAEcAMgA5AEUARgAyABgA1/+N/0H/E/8y/4z/EgB+AM8A9QDuAKgASgDo/4b/SP8f/zT/a//E/yYAXwCKAKQApAB8AEAA4P9j/w//AP8k/1X/if/c/0oArQADARsB8QCsADgAyv9h/zP/Tf+S//r/UACTALsAnwBoADgAGgAJAPX/5P/G/5H/cv9p/3v/oP/Z/ygAYQB/AJIAiQBcABAAvf90/07/Wf95/6T/7/87AIcAwQDVAJkAJQDF/4v/bf99/8n/HQByAKEAhwBDAAQA5v/C/63/y/8BACMAIwAXAAcA//8WABoAFwAUAAAAAQDz/97/zP/B/7n/0/8DAEwAiwCHAHEAJQDu/6P/U/8k/x7/cf/X/0QAggB3AFYALgAWAAsA+v/R/57/kf+y/+P/FgA0AGwAjQB6AEUA/P/T/6n/ev9y/4v/0v8IAC0ASwBhAHoAWgApAOX/pf+G/3H/mP/G/xYAYwCCAIsAYABNADEAIAATAPn////n/+H/wv+3/9j/7/8nAEwAaAB4AHAARwD2/67/d/9q/2H/a/+9/x4AhADDANIAuwB4ACcAxf9n/yr/O/99/+j/UACKAIYAUQAYAPf/6v/z/xkANABEAEIANQAZAPD/yf+r/6//4P83AGsAdgB2AF0APAD+/7n/oP+h/7r/0v/o//b/8v/U/7f/tv/P//L/DgA+AGwAhABpAAQAo/9U/zD/Q/+M/wAAWgCeALwAogCJAFYAEAC6/2b/Of9D/43/6P9NAIcAtwCxAIoATQDs/8//l/95/43/1P89AIcAsAC5AKgAkwBsACUA8f/A/7n/vP/I//z/HQBIAF0AdgCBAG4ASAAJAN3/s/+d/4P/eP+a/7T/6P8QAFsAtgDrAAABwwBqAM7/E/9u/hH+Pf7S/rf/qwCDAewB2AFVAZIAsP8B/4v+Uv6F/vf+vP9fABABkwGMAT0BnwAhAMv/iP8e//f+0v7l/kv/yv+tAAMBKAEBAZ4AKgCM/xr/sv6Q/sD+Pv/0/4cAzgDhALgAhAA7APr/zf+m/53/n/+3/9P/AAA9AFkAfQCjALcAtwB9ABYAvf9Z/y3/LP9G/6L/4/9WAKAAqACjAFYAEAC2/47/k/++/+X/9v/3//j/HAA4AD0AIwAfACMAMQA6ABgA4v+a/27/a/+X//r/TgBnAEUAHAAOACMAHAAJAP3/8f8AAAwAKAA8ADMADADx/+H/5//g/9r/7v8IADMATwBBACAA///K/5v/lv++/wAAMQBSAEEAMQAZAOb/tv+D/3b/d/+c/87/JQBwAIsAhQBAAP//rv+H/3//j//Q/yQAdQCdAJMAZwAwAA4A/f/v/+z/5v/f/8n/yP/U//b/IQAsAG4AjgCCAFkA3P+T/3H/Wv+E/7//HwBvAJMAlwByAEIABgDt/+H/zv/o//v/EQAeABgAOABGAEMAMgALAPz/AAACAOv/1P+p/5D/ff91/5r/z/80AJIAyADJAI8AKACg/0j/H/9T/6P/9P9VAIIAsACgAGsAIADd/77/mf+Z/6T/0/8PADsAaQBlAFoAOgAAAM//q//B//z/JAA3ACEAEAD5/+L/6v/e//v//v/s/8r/ov+Y/6j/wf/e/xUAMwBjAGAAMAAGAMr/xv/V//L/FgA+AGoAfgCTAH4AWgD5/5T/Zf9K/4n/2/8yAGcAjQCgAHYANQDi/5r/af9y/7D/4P/2/xEAJgA6AFoAcABrAC0A9f/V/9D/y/+8/7L/s//j/yoAfQC0AMkAxACpAHsANgDm/4r/TP9F/23/wf8ZAGkAngCWAGIAFwDJ/4L/XP9h/4z/yf8NAEcAZgBEAC0AHQAGAAIA7//d/9f/4//r//X/BwApAEcAEADY/7D/lv+U/5v/1P8GAD8AZQBpAEAAAQDq/9b/1//i/+v///8XADgAZwCiANcA+ADaAJAAIQCb/yL/4v78/mX/CQCYAA8BPgEfAcMAMgCn/zj/D/8I/y3/W/+o/wEATACXAL0A4ADQAJIAIgCc/yL/1v7X/v7+a//b/0sApgC9ANYApwB+ADsA3v+E/xr/6v72/ib/b//8/6MANAFdARgBpAACAHr/DP/W/vf+Tf+y/xMAegDKANEAngBFAOT/nP9T/y3/Mf9Q/6z/EgBdAJQAqQCcAJEAawAxAAQAx/+e/4H/iv+n/9P/GgBZAJ0AugDFAJUANwDM/2v/Qf9B/2b/rf8eAIMAtACyAGQAEADL/5H/fv94/4X/kP+g/63/yP/X/+v/FAA3AHIAgwCJAFUABgDC/5H/l//E/xcAcgDQABQBJwH/AJgAJwCv/0//KP9E/4z/7P9VAJMAlgB4AEwABgC7/4P/bP9p/3r/ov/k/ysAYACLAHUATwATANT/mv9r/2r/e/+m/9r/AwAjACYAJwAaAA8AAADm/83/w//b/wAAKgBKAF8AYABZAEUAKAAVAAgAGQAdADMAQQA8ADEAEwD2/93/1P/Q/+j/+/8LACIAJQAsACQAGQD//93/tv+V/57/u//k/wkAJABAAGIAbgBjADkA8f+z/3n/av+M/7j/8v8YAC0ASQBVAEgAMAAGAOT/y/+2/6v/pv+7/+D/EwBGAG8AlwCoAJUAbgAnANb/mf9p/1z/df+w/wgAUQCAAIwAcwBDAAMAuP+L/2P/Tv9R/3L/u/8oAJUA2gDvALAAWwDL/0///f7c/jr/sP9MAMwAIAEzAeEAXgDj/6//uP/b/woAPgBnAHUAVgAvAB0ACQAGAAsAEwAPAAMA+//W/6z/iP99/4//kf+Q/5v/x//j//v/FAAkAEMAVABSAEUAGADr/9H/0f/h/wMAIQBaAKEAugDDAKsAbwAHALT/Z/9A/2n/ov8HAJ8A+gATAeoAhQAuAMb/cP9T/2r/j//R/ykAYwCZAJQAfwBaABIA3v+b/2L/Lv8X/z//e//U/wYAJwBWAGIAYgA4AN7/i/9d/03/Xv9r/53/9f9CAIEAmgC6ALsAqwB+ABYA1v+P/1f/Of9O/9H/VwDUAPcA8gCxADwA3v+U/4r/n//V/w0APwBYAF8APwAjABQAAgAIAPP/5//s//3/AgD1/+f/1P/c//D/BAAaABwAMQBdAFQANQD//7r/e/9b/27/kP/E/+//GAAcAAMA+f/X/73/o/+p/7//2P/3////5v/Y/wcAPwBqAGMAVABKAE0AQgAAALL/Z/+L/9n/LgB+AJwAuACpAHQAHwCw/03/Jv9D/4r/5v8fAEMAXwB6AIYAXwA3AAgA7v/f/6v/hv9v/3v/xv8RAHsAwQC3AJAALwDi/6D/bv9T/0P/Uv9//8j/CwBcAHUAewBcABYA4P+D/1z/Sv9Z/4v/8f9nAK0AygCxAJEAdQBhAC8A7P+t/5r/vf/w/zMAWwB/AKMAyQDMAJgANwDU/6j/iv+q/9L//v8/AHoAsACyAI0AZwBNACsA+v/E/4r/bP9v/47/tv/r/y0AfwC2AL4AhwAXALf/Vf8m/yP/Uf+m/wUAeAClAL0ArQBgAAcAnv9P/07/cv+p//T/7v/s//v/KgBoAE8AFgDN/6H/jf+H/4H/bP+G/9H/MwCQALIAcwAXALr/kf+M/5P/tv/u/1gArwDiAMgAewBGABYABQDr/8L/ov+g/8v/EgBNAG0AagBcAEYA+/+7/17/N/9d/5D/4////xAAKQA9AEsANgDs/6T/Zf9X/2P/df+t/9//HwBRAHIAcQBCAAAAqf9k/0z/Yf+C/53/y/8ZAJAA8wAgAfkAiQAZAMP/l/+H/4f/if+1/wIAaQCqAKkAmQB9AHAAVgAUALn/b/9S/13/n//4/1YAkgC5AKgAagAIAJv/XP82/1b/dP+d/63/y/8OADgAYgBPADEA+P/T/9P/2f/p/+3/DgA5AGcAgwB4AGkAWABRAE4APAAQANf/pf+E/6D/3v8bAGoAvADgANwAkAAaAMr/Zv9I/1f/k/8WAIsA4QD9AAEBvQBwAB4Aqf94/2X/gP+7/+b/EQA+AGYAfQB9AEEA7v+7/4D/Wv9U/1z/if/l/0UAjACnAJIAawBAAA4A5v+//5v/qv/Z/wIALAAxADYAIgAZACoAKgAYAOz/xP+3/7z/yv/X/+D/5v8BADAAXgBuAGkAOgD//7L/bf9l/23/lf/E//n/KQBFAE4APwAuAP3/xf+b/4//nv+7//f/SwCuAOQA4wC7AGgAJgDo/7T/mf+f/8n/9/8rAEkAWQBYAEkAOAAhAPL/uP+B/2f/gP+r/+r/JwBXAGwAbgBQABEAvP96/1f/Wf+E/8P/GgBiAJcAswCiAIQAUgAaAOb/yv/E/97/GQBUAJgAugDSAMYAigBBAOz/sv9r/1f/bP+S//H/GQBNAIAAagBRAAYAuP9s/xr/CP8Q/0z/q/8IAIUAvwDXALcAWAANAKr/Y/9E/1v/q/8dAIEAtgDFALMAlQBWAAEAqf9w/1j/Yf+M/8H/AQA5AFgAUwAqAAAA0v+o/4r/iv+u/93/FAA6AFEAVQBJACkA/f/R/6r/pP+1/97/9v8VACoAPwBCADAAHgD9//T/7//8/woAFAAkAC0ARQBWAGcAYQBBAA4A0v+k/4v/h/+X/7//7f8aADkAUABDAA4A0v+S/3H/Yv9x/5H/vP/9/0EAfACcAJ8AjQBYAB8A6P+//6f/sf/r/ycAUwBsAG8AXgBRADEADgDm/7P/o/+R/53/v//d/wkAOwBUAGUAUwAkAPj/x/+f/4f/hv+M/7L/6f8cAFQAYgBaAEEAFgDt/87/tf+3/8X/2/8EAEQAdACKAI8AbAArAO//vP+e/4L/bP+j/+X/MwBrAHYAggBgAEkAFgDe/6r/cv9u/5b/3P8xAHIArgDNALsAiwA5AMf/df9G/zf/df+x/wkAQABTAFwAPgAfAO7/0P+0/7P/xP/c/+z/+P8OAB8AMwA3AD0ANgAlABoADAAQAA8ADgAZABwAFAASAA8AKwBAAEwARwAvABUA7f/W/8b/xP/I/+b/EAA5AFIATQA4ABgA/P/4/wAA9P/+//v/+f8EAA8AOgA/ADkAJgAAAOD/yP+5/7D/w//X//T/DgAVAA4A9v/e/+T/CAA4AEEAKQD+/9L/xP/E/9f/+P8ZADwASQBbAE8ANgAdAPj/7f/U/9T/2v/O/9T/4v/y/wIAHQAqADwALgAgAA8A9//l/9n/3P/m/wMAGAA4ADsAQQBWAEYAMwALAO7/0f+//73/xP/h//3/IgBLAGkAbwB0AGcAPQABAML/mf+I/5//4f8pAGcAoADIAMcAmQBMAPT/ov9s/1H/Yf+Z/+7/RAB5AIkAhQBwADkA6v+U/1r/Vf97/7v/+P8gAE4AZQBkAEYACADP/6L/lf+m/8X/6P8LAEEAdgCTAI8AcQA/AAwA7P/Y/9z/6P/5/xEAKQA7AEQATgBBACAAAgDj/87/wP/D/8X/0f/s/wIAHwA1AEMASQA9AC0AEQDf/6//jf+M/6v/5f8nAFYAbgBdACcA9//F/7n/zP/k//f//v8DAPn/7//x/wAACwAHAAAADQAmADEAMgAiAAoA+f/w/+H/5P/s//D/DQAdAEEAWQBHADUAAQDi/8r/yf/m/+r/+v8OABkAJQAZABAA+//0//b/6P/v/+D/2v/d//X/EgAmAD4ASQBUAD4AJgAAANz/zv/I/+X/8f8AAAAABQACABcAEgAAABAAAwAJAOn/1v/a/83/vP+2/9j/EgBZAHwAfgBsADwA/P+o/2f/UP9q/8H/LACMAMwA1wC4AGoACQCn/2D/N/87/3//z/84AI0AvADDAKMAegAuAOL/h/9K/z3/aP+7//3/NABWAGgAcgBrAEQADwDG/4P/av9f/3L/mv/X/ycAcACyAOAAxwCJACMArv9s/y//JP9U/7D/JgCcAOAA5ADUAH4AGwDM/4b/YP9U/3n/wf8ZAHkArACyAJQASQDm/4f/Uf9J/3r/yf8lAHYAoQCrAHsAOQD0/8T/o/+P/5n/rv/f/xoAQABCAB8A7//M/7f/v//O/93/AAAKABEA/P/i/8n/xP/q/wUAKwBCAFMAWQBIADQABgDj/8D/tv+9/9L/AAAqAEoAXABcAEUAFQDr/8T/q/+t/9H/FgA8AF0AcABcAEAACADn/93/2//l//D/AAAMAP3/9//x//P/EQAkADMANwAsABkA8//e/9L/0f/l//7/GwA2AEIAPAAzACAACgDi/6//k/+K/7P/3f8CAB8ANABPAFgASwAiAPn/0//D/7//zf/q//T/8P/f/+r/DgA9AFQATgAuABAABADy/9n/v/+h/6j/vv/k/xcANwBWAGIAYgBiAEIAIADw/8b/uv/G//D/HQBEAGwAdAB9AG4APAAGAMD/h/9s/3P/oP/k/ygAaACPAJIAbQAhAMn/f/9X/1L/gP/R/ywAdACjAKwAigBGAPb/s/+P/4L/kf+w/9P//v8yAFAAUABGACoAAQDh/8v/wv/G/9b/6/8CACAAMgBQAFsASQBKADYAGQAGANv/0//P/8b/8v8AABoAOQA4AEwAOAAdAAAA2P/W/+//GAA8AEAAMAAfAP3/2f+0/6P/sv/j/y4AdQCrALgAlgBWAAkAqP9t/13/bv+i/+7/RwCKAJMAZwAqANj/p/+I/4b/ov++/+v/FwA6AFgAWAA7AB4A/P/7/wEA/P/3/+X/5f/l/9z/4P/g//b/HwA8AFgAUAA7AAAA0/+n/37/ff94/67/5P8+AH8AngCkAG0APQDm/6z/jv+E/6P/yP8CADwAZwCEAIYAdwBZADsAJQAOAPr/0v+y/6f/s//P//v/KABGAFwASQAWANL/jP9o/3X/nv/U/wsAMAA5ACkACADz/+D/2//s////JABEAFkAYABXAF0AawBmAEwAJQD9/+P/0f/V/9b/5/8AABoAQwBiAGgAWAAwAPH/vP+I/4D/iP+e/9D/AAA2AFgAaQBlADkAEADY/6f/kf+F/5T/mP/D/97/AAAVAAEAAADn/+f/9P/+/yQAQABeAFoALQDm/6D/jf+Q/9r/PwCRAOkADwEcAeIAhgANAJ7/Yf9X/6f/+f9VAI4AqgCiAGEAGwDP/4n/YP9u/4//s//o/wMACQD4/9v/yv+//9D/2v/g/+j/8/8AAP//9v/v//3/IABFAEwARQAyAB0ADgD4/87/qf+q/8n/AQAvAFMAZgBuAF0ANgAVAPT/1P+8/7j/0P/9/ygANAAlAAsA8f/p/+n/7v/0//7/DAAUAB8ACQDh/7D/kv+d/77/9/8xAFIAYQBkAFoAUQA6ABkA+//r/+X/6v/x//v/EQAlADgATQBPAEwAQQApABkABADz/+T/2v/Y/+H//P8HABsALAA/AFIAVABlAGoAVgAyAPr/wf+E/2z/dP+T/9P/IAB6AKwAwwClAHcAOgDX/4L/M/8c/17/z/89AJIAywDnAMsAbAD9/43/Ov8h/yv/cP/T/xoAUQBhADwABADQ/47/fP+C/5//6/8ZAFYAagBWADkA///Z/7z/uf/P/+v/EwBAAFoAWAA9ABoA5f/N/8r/0f/z/wAAGwAsADQAMwAZAA0ADgARACIAKgAlAAsA6f/N/7X/tv/Y/wsAOwBwAI8AlABxACkAxv9z/1L/Xv+n/wEAXwCqAL4ArwBmABQAv/98/3r/hv/E////KgBAADUALQAGANz/tP+u/73/zf/s/xUARwBgAGYAYwA/ABsA6v/J/8H/vv/T//j/HwAxAEMAQgA3ABkA8P/Z/8D/vP/G/+H/AwASABYACQDr/9H/uf+//83/3f8GAD0AYABoAGYAQgAaAPT/yP/G/8P/3f8SAD8AbgCLAJgAmgB8AFcAKADr/6v/e/9j/3H/q//l/y4AXwB4AIYAbABGAPj/t/92/1b/Tv9y/7z/8/87AGIAfAB6AGoAPgABAND/l/90/2n/e/+b/8X/+v8xAF8AgQB8AGIALADp/6D/Zv9W/2r/u/8aAIoA5gAUARABvgBRANP/aP83/z3/iv/t/1IAswDTAMkAdgAqANb/iv9o/17/g/+e/8//CgAvAEkAQQBAAEcASABHADAAGgACAOT/w/+b/5T/tf/1/ywAYgCPAKIAjwBYABEA0f+Y/3b/ev+W/9b/DQBHAHQAbQBiADYAAQDf/7//tv/N/+b/DgA3AEYAQwA8ABIA8//w/+X/BgAhADEAVQBPAEUAKgACAO7/4P/t/xEAOgBNAFIATwA1ABwA9//o/+//8v8cAC8APwBNADAAFADt/93/1P/c//3/GQA9AEcARgAjAPf/xf+G/23/Yf95/6b/3/8dAFEAXABWADQAAwDc/6v/l/+L/5//yv8SAEYAdwCQAJIAgQBMAB4A6v/a/8X/uv/E/+j/HQBKAFoASgA0ABgA+v/T/63/lP+C/33/iP+f/7//0v/w/wMAEAAWAOj/vf+D/23/c/+L/9H/DABKAIEAlgCcAHoARgAoABcAGwAyAE4AaAB7AIgAlQCTAIAAbgBTADMAFQD3/93/0P/d/+7/AQASABUADQABAPX/7v/j/9T/s/+T/4f/if+n/8n/+P8kAEMAWgBVADsAEQDw/9b/y//l//n/GAAxADkAPQA5ADEAJAAPAP3//P/8/wkADQADAPL/4P/P/+f/8////wAA9P/w/9T/v/+V/2//bf9//6r/3P8LADAANQAzAAwA7//I/6X/o/+e/83/CABBAHoAoQC3AKUAggBIAAsA1P+z/73/6P8rAGsApQDLALwAlwBRAAwAy/+R/4L/hP+r/9b/BgAjACcAIAAAANT/p/98/2j/dP+U/8D/5/8JABgAKgAtACwAHwAFAPL/4//t/wQAGwAmACoAKgA3AEkAUwBWAEwAOAAdAAAA4P/F/7T/uP/V/wAANwBbAGEASgATAM3/kv9z/27/hv+0/+3/HgAyADEAJAAOAAAA9P/w/+z/7v/v//D/+/8NACgARgBfAHAAeAB3AF4AQgAoAA4ABAD0//P/9P/7/wYADwAeACUAKAAgABEAAwDs/9z/0f/L/8P/xv/S/+D/9P///wUAFAAoADgAPQArAAwA5//N/67/nv+n/7//+P8xAHsAnQCcAIkATwAWAMj/mP+B/4f/uP/1/y0AWgBzAH4AagA5AAgA3/+9/5//nf+n/7v/zf/n/wwAMQBJAFQAUwAzAAwA1f+o/4H/fv+b/9n/JABiAIcAmgCCAEkAFQDQ/6T/iP+H/7f/5P8eAFQAdwCJAHwASwARANT/lv+D/4r/qv/g/wQAKwBBAEMAUABAACYABADO/6P/jv+B/7T/7v8ZAFYAWgBhAFAAMQAYAO//5//h//f/EQAnADAALQAsACIAKQAoACgAHgAZAAsAAwAEAPr/7v/W/83/zP/n/wQAKwBVAGAAWQAuAAAA1/+y/6H/r//R//b/LgBOAFoAUAAuABkA+P/j/+D/7P8OACYAQgBSAFIAVgBLADoAFAD0/93/zP/R/9v/6v/z/wYACwAZACsAHwAcAAQA4f/S/8X/uf/P/9f/8f8dADYAYwBUAD4AEgDW/6L/gv+G/5n/wv/j/xwASABbAFQAMwAFANX/tP+s/7f/zP/r/wgAMgBNAFYAXQBWAE4AQAA2ACYAEgD0/+L/2v/f/wAAJABMAGsAcgBlADwA8/+y/3b/bP+C/8b/HwBkAJYAjgBuABwAzP+G/1z/cv+f/+f/LABTAFoAQAAVAOr/yP+8/8P/zf/h//7/DQAdABgABQD3/+D/4//x/wcAGAAfACYAMwA0ACsAGwAGAPz/9v/4//b/8v/y//T/+P8KACIANwBCAD8AMgAPAOz/zf+3/7j/z//x/yAARwBXAGAARgAmAAYA0f+r/5P/nf/A/+7/IQBSAGwAcwBiADcACwDp/9D/v/+9/8n/5v/+/xAALABBAFYAVwBPADQACwDj/6//hf9w/3//qv/h/yIAWgB/AH8AYQArAOr/qv+D/37/lv+///n/MwBrAJYAnwCMAF4AIwDs/7L/kP+K/5v/zv8FAEAAeACMAIgAYAAvAP7/1P++/6//tv/I/+//FgA1AFAATgBGACIAAADf/8H/t/+u/7T/wv/g/wQAJAA8AEMARAA2AB4A/f/T/6z/lv+U/67/4v8aAFAAagBuAF4ANAAPAOP/wv+3/7f/x//0/xwAVAB5AIsAlAB3AF0AMAD9/9X/wv/E/9v//v8vAFQAXQBMACkACADc/8L/q/+s/8H/1f/5/xcANgA9ADIADgDe/7f/mP+K/4j/mP/D//v/LwBWAG0AXgAsAOn/p/+J/4P/nv/M/w0ASQCFAKsArwCTAE4ACADB/5L/jP+f/9D/CABFAIIAqgCsAIcARADs/53/Z/9X/2n/l//Z/yYAXACEAIgAWwAqAN3/of9w/2D/ef+g/9r/DAA5AFUAVQBCACgACQDx/+P/0v/Q/9L/3f/x/wQAIgA7AFMAYwBeAF0ATwA1AA8A5//L/7v/xv/Y//j/IwBBAF4AZgBgADsA///K/5//if+O/7f/6f8oAFkAYwBgAEUAJgD4/8f/rP+r/7v/0v/0/yAARwBpAHIAawBWACwAAgDd/7//tf/D/9//BwA4AGMAhwCDAHAARQATAOX/tv+e/5X/rP/U/wYAOQBVAGAAVAA6ABIA6/+8/5j/jP+R/6v/0/8EADYAXQBfAEsAKwAEAOv/yP+9/7z/2f/1/xoAQQBWAHQAYgBWADYAEAD3/9n/1//O/+H/+/8UADUAQABQAEoAOQAlAAMA8v/N/7f/qP+l/83/6P8fAEYAWABeAEcAIwDu/7z/ev9t/2f/fP/H/w0AaQCaAK4AlABTAAMArP9o/0H/Tv99/9b/MQB1AJQAjgBpADYAAADU/8D/tP+8/9H/8v8VADUAUwBbAFcARAAyABAA5v/I/7D/sf+9/9r/CAAwAFIAXQBPACUA9v/C/6D/mv+k/87/9/8lAFIAZABpAEwAJAD1/8f/ov+T/6n/wf/o/xYANgBXAGQAXwA+ABQA5f/B/77/x//2/xkAOwBdAFgAWwBCAC4AGgD8//L/9f8AABYAKAA0AD4AQwBDADMAJgAHAO3/1//F/8r/1v/w/wcAHQAlAB4ACgDv/9r/w//A/7v/tv/E/8D/0//g//j/HQA0AEwARgAvAAMAx/+N/2r/bf+V/+T/NwCBAKkAtACXAGwALwDv/7//nv+f/7b/5/8VAE8AdAB2AGIAOQARAOL/uf+V/47/nP/C//T/HgA6ADYAKwAVAPf/4P/L/8z/1f/j//f/AwAIAAgABAACAP3//v8IAA8AHAApADQAPQA7ADYAIwAbAAkABQARABkAKgAzAEgAUABOAEQAHQD+/9T/uv+2/7f/0f/r/wgAKwBAAFAAPwAWAOX/q/+E/3T/e/+N/7L/4/8XAEEASwA7AAkAzv+M/3b/h/+r/+f/GQA9AFkAawBpAF8APAAZAAMA7v/x//n/EQAwAEsAXwBvAGgAXwA5AAYA5P/I/83/3f/1/xAAHQAgACIAJAAlACEAEAADAOL/2f/P/7f/sv+s/8T/5P8eAEAAZABtAFMALwDs/77/jf+G/5r/wv8AAD0AbQCBAHcAVQArAPz/1P+0/6f/rP+6/9L/BAA0AFwAdgBmAE0AHwDj/8D/n/+d/8H/4f8YAEUAXgBgAE0AJwD//9r/wf+8/8b/4f8KAC4ASgBQAEgAPQAhAAAA5//Z/9z/6v8AABQAIAAdABAA/P/l/+H/4f/w/wMAEQAhACQAHgASAAQA6//i/9f/0f/k//T/FgApADIAKgAVAP//4f/N/8D/yP/f/wIAKAA+AEcAPgAfAAEA6P/f/+X/6v/1/wEAFwAmADMANwAmABoA/v/l/9D/xv+//9L/6f8CAC8ARwBhAFQAOQAdAPL/3P/V/9//+f8XADYATgBdAFcAPwAbAPD/1f/B/8L/0//m/wMAIAA8AEYAOwArAAwA7//U/8z/1f/g//f/EQAlADAAMAAoAA4A9v/l/+P/5f/r////DQAfADEAQgBOAFEATQA9ACYACwD3/+v/5v/s//b/DgAmADkARAA6ACIA///c/8D/sf+z/8D/1//4/xQAMAA0ADIAIAAAAOT/xf+1/7H/vv/T//P/EgAmADsALwAbAAAA4//N/8D/yf/Y//T/EgAwAEUASABHADgAIQAIAPX/7v/w//3/DgAnAD4ATwBOAD8AJAAAAN//x//D/83/5v/6/xEAJAAuACwAGgABAOf/2P/J/8v/zv/b/+z/+f8OACEAMwAzACgACQDw/9L/vP+7/73/3P/5/x0AOgBHAEkAKwASAOP/wv+s/6T/t//R//v/GAA9AFMAVQBEAB0A+f/Q/73/u//F/+P/BgAnAEIAUABOADkAGgD2/9f/xv/A/9L/9P8SADEATQBTAEsAQAAgAA0A+f/j/+f/7f8BABYAJQAuAC4ALAAdABUAAQDz//L/7v/0/wEACgAXABoADgASABIABwAEAPj/+v8KAA8AEgAQAAUA8f/j/9D/2P/g//b/GgAqAE8ATQBMADEABgDg/77/uv/M//z/HwBOAHAAdwBqADAA/v/F/4//df9+/6b/2/8SAD8AUQBRAEQAHgDr/77/oP+T/6P/x/8EAEQAaACEAHQAXQAtAPr/zv+q/6f/tf/b/w8AQQBmAG8AaABMACoABADj/8r/xP/U//P/IABAAF4AXwBTADoAEwD5/9j/zf/F/9D/7P8GACQANQArAB8ACgDv/+X/1f/T/9z/4f/3/wQAFgAkABoADwD7//D/6//l/+X/6P/3/xIALABBAFAASAA5ABkA9v/k/9H/0P/Y/9//+v8aADMASwBNAD0AIgD3/9D/rv+g/6b/t//b/wkANgBiAGsAWAAvAPL/v/+X/4L/hf+i/9r/FQBKAHAAdwBfADYA+v/R/7X/qf+2/9T//v86AHEAiQCLAF8ANwD//9H/uP+l/8f/7P8WADYASgBQADkAFADu/9X/0v/X/+j//v8PABoAGAAJAPn/4v/R/8v/zf/Y/+7/CQAbABoADgD7/+T/xf+z/6D/rf/E/+b/HQA+AGEAZgBXAD4ACwDf/7f/qv+v/9P/AgA8AHQAjQCNAHYASAALANb/o/+J/5r/xv/3/0cAfACSAJcAagA+AAAAw/+S/4n/jv+w/+7/HABdAG4AcgBkAC8ABwDX/7f/pv+i/8L/6/8gAEgAWgBlAE8AMgALAOL/wP+p/6b/tf/U//b/IgBCAE8ASwA/ACwADQDr/8H/uP+0/8H/3//7/yUAOgBKAEIAMQAUAO3/0v+9/77/0P/v/xEAMABDAE0APgAuABMA9f/U/7L/tf/A/+b/CQAnAEoATABIAC4ADgDx/8//tv/B/8f/5/8NACcAPwA7ADYAHgAHAOn/y/+2/6b/t//L//T/HQA6AEgAPwAsABIA7P/S/8L/vf/N//D/GQA8AFQAXABVAD0AGQAFAOX/zf/I/8n/5P/8/xgAOQBGAEwAPgAoAAwA9P/Y/8n/zf/l/wsAJAA8AEoARAA1AA8A8//X/8H/sv+w/8n/4f8AACMAMAA+ADsAKwASAPH/1v++/7//zP/x/xEAMABNAEgARAAoABAAAADm/9n/3P/k//3/FQAtAEUAVwBeAFMAPwAcAPv/3//I/8L/zf/p/wgAJwA/AEcAPgAkAAgA5f/R/8X/uv/P/93///8bACcAQAA4AC0AEwD1/9r/v/+w/67/v//f/wcAMQBVAF8AWQA7ACAAAADj/9H/x//T/+b/CgAeAD0ATwBCAC4ABwDo/87/vv+s/8H/0P/y/yAAPQBgAE8AQQAkAP3/4v/F/8X/zf/d//z/EgAmADEAJgAYAPv/4v/V/9L/2v/p/wIAHAAzAEIAPgA8ACMADgAAAPH/8f/u//r/DwAeADAAKgAkAA8A9f/v/9z/4P/m/+//DQAgADsASgBEADIAFQD0/+P/1//U/9j/5v8AABoAMQA8ADIAGQDy/9P/wf+4/8b/3P/w/woALgBOAG4AbQBXADoABwDj/8b/wv/R/+j/AwAmAEIAXwBjAEcAJQD7/9n/w/+7/8X/3P/2/xUAOQBWAGsAYwBQAB4A9f/P/7H/qv+r/8n/6/8cADwAUwBZADsAHQDm/8D/of+c/6//yv/2/xsAQwBaAFsARwAgAPn/zP+l/5X/l/+r/8z///8pAEcAXQBGACoADQDe/8n/tf+0/9z/8f8WAD8ATQBUAEwALgATAPT/0v/U/9H/3/8EABsAPgBFAD0AOwAfAAMA8f/i/+X/7f///xEAGwAdABUABwD+//f/8f/3/wAABQATABcAEgAOAAYA+f/3/+v/6f/z//D/BgAOABkAHAAXABEA/f/q/9b/0//Z//D/CgAkAD4ARwA/ADAAFAD9/+v/1f/P/9b/7f/+/xoAKwAwADcAIwARAPb/5P/E/8b/xv/Z/wcAHgBWAFsAXwBPACEABQDj/9P/y//Y/+r/CAAqADoAQwA8ACUAFAD2/+D/z/+//8P/0f/6/xcAOQBXAFUASQAfAAAA3f+8/7L/uv/X//T/HQA8AEQAPwArABcA+f/b/87/yv/V/+r/DAAuAE4AZQBjAFgAMQAKAOr/y//A/8X/3f/5/x8APwBLAEcAKgALAOb/x/+8/73/x//o/wcALgBFAEwASQAsABQA6//M/7r/tP/E/+D/AQAiAEQARwA9ACIA/v/b/7//tf/A/9j/9f8bADsATQBUAEkAMQAUAPf/2//O/87/3v/7/xsAQwBVAGMAXAA2ABAA5f/J/7n/v//R//X/GwA7AFQAUQBBACQAAwDi/8f/tP+0/8f/3/8CACYARwBQAEwAKwAHANr/sv+h/5j/tv/a/wsANwBQAF4ARAAqAPf/0f+1/6X/s//K//L/EgA8AFUAXwBWADIAEQDk/8f/uv+7/9H/9P8aADsAUwBXAEkAKQABAN3/xP+6/8b/5v8DACYASQBXAFYATQAqABIA9f/W/9P/1P/p/wIAGgAsADcAPgAwACQABwDt/+P/2v/h//X/BAAcACsAKwAyAC8AHgASAP7/9P/2//P/+P8AAAYACwASABMAGQAXABQAFwAOABUADQANAA8ADAAKAAgACgATACAAHwAiACMAHQAQAPf/6P/c/9D/zf/Y/+//BQAUAB8AFgANAP7/6//Z/8r/y//U/+f//P8UACsAKwAlAA8A/P/k/9L/yv/L/9n/7/8IACQAOQBAADMAJAAOAPz/8f/t//D//P8NACUAOwBIAEgAOQAjAAwA9f/m/+D/4v/v/wEAHAA0AD8AQgAzACIACQDz/+n/4v/o//T/AAASABsAJAAnAB0ADgD6/+7/5P/f/+T/7f/9/wwAHQArADUALwAjAA4A+f/s/+H/4v/p//L/AAAQABwAIwAjABoACgD0/+P/1v/U/9v/6P/8/xMAJgA2ADYAJwAQAPH/2P/J/8j/0//o/wMAHAAwAD4APQAqABIA9//i/9f/1v/i//f/DQArAEUATQBHADAAEwD3/9//1f/P/+D//f8WACsAOQA5AC0AFwD9/+f/3P/b/+L/8/8GABkAJQAlAB8AEQAAAPH/5f/d/97/5//1/wIACwAUABYAEAAFAPP/7v/m/+T/9P///xAAGQAeAB0AFAAEAO//5P/d/+X/7f/8/xIAIAAmACYAHwARAAYA9//n/+f/9P/+/xgALAAzADgAKwAeAAwA+//m/+P/3v/i//P//f8VABsAIgAiABUADgABAPr/7//n/+f/9v8FABIAHgAkAB0AFgAIAPn/7v/k/93/3v/p//X/DQAfACcAKwAqACoAHQARAPr/+f/x//D//v8FACQALAA6ADkAMAAjAA8AAwDx/+3/7P/8/xEAJAA4AEIAPgA3ACgAFQAAAOr/4v/g//P/AgAbADUAPQA/AC4AHQAFAO7/2P/W/9r/5f/+/w8AJgAxADMAKQAVAAAA6v/Y/8//zv/W/+j/AAAUACEAJAAcAAwA+v/o/93/1//Y/+L/8v8CABEAHwAiACAAFQALAP7/8P/n/+X/7P/3/wQAEwAfACgAKwAnABsADQD///b/8//2/wAACQASABsAHgAdABUACwABAPf/7P/q/+7/9P/9/wYACwATABIADwAJAAEA+v/w/+7/8f/5/wAABwAOAA0ADgAMAAoACgAFAAIABAAEAAgADAASABUAGAAZABgAGAAUABAADAAKAAoADAAOABIAFAATABIADgALAAoABgAIAAsACwAOAA4AEAANAAgABgAAAPz/+P/2//f/+v/7//7/AQACAAYABgAFAAIA/v/6//z///8CAAcACwAMAAwACwAGAAUAAwD9//n/+f/7/wAABQAIAA8AEAATABQAFQAUAA4ADAAJAAkADAAPABcAGwAcABwAGQAUAA0ABQAAAPr/9//8/wIACgATABkAHQAaABYADQAGAP3/+P/4//n///8DAAwAFAATABEABQD7/+z/4P/d/9z/5f/u//v/CQARABkAFwANAAAA9P/p/+X/6P/t//j/BgAVACAAIwAiABUABQDz/+f/5//s//n/CAAWACUANAA6ADkALgAfABEAAgD8//r/AAALABcAHwApACsALQAmABYACQD6//H/7//z//r/AwANABUAHgAkACUAHQARAAIA+v/z//D/9P/5/wEADQAbACMAJgAiABYACQD5//D/6v/u//r/BgAXACQALAAwACsAHwAPAP7/8P/m/+X/6v/0/wAADQAaACAAIQAYAA0AAAD0/+7/6//t//f/AAAMABcAHAAbABUADAABAPn/8f/u//H/+v8FAA0AFgAXABgAFAANAAUA///7//n//P8AAAYACgALAA4ADgANAAkABgADAAEAAAABAAMABQAIAA0ADgARAA8ADAAJAAQAAQD+//3//f/+/wAAAQADAAMABAAFAAcABwAHAAgABwAGAAYABgAIAAgACQAMAA4AEgASABIAEgANAAoABgADAAIAAwADAAsADgAUABcAGQAaABYAEwAOAAoABwAHAAgACwAQABEAFQAWABYAEgALAAQA///8//r/+//+/wIACAAOABAAEQAQAAsABgAAAP3//P/8////BAALABAAEgATABAADQAIAAUAAwABAAMABwANABIAFgAaABsAHAAYABQADwAKAAkACAAKAA4AEgAVABcAFwAVABEACgAEAAAA/f/+/wAAAQAHAAkADAALAAgABAD///z/9v/0//P/9f/4//z///8AAAIAAAAAAP3/+v/4//f/+f/7////AwAIAAsADQANAAwACgAGAAMAAgADAAYADAARABcAGwAcABoAGAATAA0ACQAHAAcACgANABIAFgAZABgAFQASAAsABQAAAP7//P/9/wEABQALABAAEwARAAwABQAAAPn/9P/y//P/+P///wYADAAOAA0ACAACAPv/9P/w//D/9f/7/wEACgASABYAFgAUAA4ACAADAAAAAAAAAAUACwASABoAHQAeABwAFwARAAsABgAEAAUACQANABQAGgAeAB8AHQAXABEACwADAAAA//8AAAMABwAKAAsADAAKAAcAAgD+//v/9//1//b/+P/8////AQAFAAgABwAHAAMAAAD+//v/+P/5//3/AAAFAAoADwARABEADwAKAAcAAwACAAQABgAIAAwAEAAUABYAFAAUABEACwAGAAAA//8AAAAAAQAGAAsADgANAAwACQAEAAAA/P/6//j/+v/+/wEABQAIAAsACQAGAAEA/f/6//j/9//5//z/AAACAAcACgALAAoACAAHAAQAAwADAAQABwALABIAFgAaABsAGwAZABcAEgAOAA0ADQAPABEAFgAaABwAHQAbABkAEwAOAAsACQAIAAgACgAMAAwADgAPAA4ADAAKAAYAAgAAAP7//////wAAAgAEAAcABwAGAAQAAAD+//z/+f/5//r//f8AAAQACAAJAAkABwAFAAIAAQAAAAAAAQAEAAgACwAPABAAEQAQAA8ADAAJAAgABwAIAAoACwAPABEAEwAUABMAEQAPAAwACgAIAAcABgAHAAgACwALAAwACgAIAAYABAABAAAAAAD///7//v/9//3//v8AAAAAAgADAAQAAwACAAEAAAD9//3//v///wEABAAIAAwADQANAAsABwAFAAIAAAACAAQACQANABEAFgAXABgAFgASAAsABwADAAEAAgAEAAkADgAUABYAFwAUAA8ACQABAP7//P/9/wAABgALABEAFgAVABIACwADAP3/9//0//b/+/8AAAUACwAOAA8ADQAJAAMA/v/6//n/+v/9/wIACQANABEAEgAQAAsABgABAPz/+//8////AwAJAA4AEgAVABMAEAALAAYAAQD///7/AgAGAAsADwASABUAFAASAAwABwABAAAA/v///wEABQALAA4AEQARAA8ACgAFAAEA/f/9////AAAFAAkADgARABMAEAAOAAsACAAEAAEAAgAFAAcACgAOABAAEQARABAADQAKAAUAAgAAAAAAAQACAAUABwAKAAoACgAJAAYABAABAAAAAAAAAAMABgAJAAsADQAOAAwACgAJAAYAAwAEAAUABgAIAAoADAAOABAAEAAQAA8ADgANAA0ADAALAAoACwAMAA0ADgAPAA4ADQAMAAkACAAIAAcABgAGAAYABwAIAAcABwAGAAUABAADAAMAAgABAAAAAAAAAAEAAgACAAIAAgACAAMAAwADAAQABAAFAAYABwAHAAoACwAMAA4ADwAOAA8ADwAQABAAEAAQABEAEgASABMAEwAUABUAFQAUABMAEgAQAA4ADgAMAAwADAAMAAwADAALAAoACAAHAAUAAwACAAEAAQACAAMABAAEAAUABQAFAAQAAwABAAAAAAABAAEAAgADAAQABwAIAAoACgAJAAgABwAIAAkACgALAA0ADwAQABEAEgARAA8ADQANAAsACQAJAAkACgALAAwADAANAA0ADAAKAAkABwAGAAUABQAFAAYABQAGAAcABQADAAEAAAD+//z/+//7//z//f///wAAAAAAAAAAAAD+/////v/+//7///8AAAMABgAHAAkACgALAAoACQAHAAcACAAIAAkACwAOABEAFAAVABQAEgAQAA4ADAALAAoACwAMAA4ADgAQAA8ADwANAAsACgAHAAUABAAEAAQABgAJAAoACwANAA0ACwAJAAcABwAFAAUABQAFAAcACQAMAA4ADgAOAA0ACwAKAAcABwAIAAkACwANABAAEAASABIAEAAPAA0ACwAJAAgACAAJAAoADAAOAA8AEAAOAAwACgAIAAUABAAEAAQABAAFAAYABgAGAAUABAADAAEAAAAAAAAAAAAAAAEAAQACAAIAAgACAAEAAgABAAEAAgACAAMAAwADAAQABQAHAAcACAAIAAkABwAIAAkACQAIAAgACAAKAAoACwALAAoACgAIAAgACAAIAAgACAAJAAkACgAKAAoACgAKAAoACgAKAAkACQAIAAkACgAKAAsADAALAAsACgAJAAkACQAIAAgABwAJAAsACwANAA0ADQAOAA0ADQANAA0ADAANAA0ADgAOAA4ADgAOAA4ADQAMAAwACwALAAoACgAKAAsADQANAAwADAALAAsACwAKAAgACAAIAAgACQAJAAkACQAIAAgACAAIAAcABgAFAAUABgAGAAcACAAHAAgACAAIAAgACAAHAAgABwAGAAYABwAHAAgABwAHAAcABwAGAAYABQAFAAUABQAGAAYABgAFAAUABQAEAAQAAwACAAEAAAAAAAAAAAAAAAAAAAABAAEAAQABAAAAAQAAAAAAAAABAAIAAwADAAUABgAFAAYABgAFAAUABgAHAAkACgALAAwADAANAAwADQANAA0ADAAMAA0ADgANAA4ADgAPAA8ADgAPAA4ADQANAAsACwAMAA0ADQANAA0ADAALAAoACAAHAAYABgAFAAYABwAHAAcABgAGAAQABAAEAAQAAwACAAMABAAFAAUABgAGAAYABwAHAAYABwAHAAcABwAIAAkACgAKAAsACwALAAoACAAIAAgACAAHAAcACAAKAAoACgAJAAgACAAGAAYABAADAAMAAgACAAEAAQAAAAAAAAAAAP///v/+//3//v/+//3//f/+////AAAAAAAAAAAAAP//AAAAAAAAAAABAAMABAAFAAYABwAIAAkACgALAAwADAAMAA0ADwAPAA8ADwAPABEAEQARABEAEAAQAA8ADwAQABAAEAAPABAADwAOAA0ADQAMAAsACgAKAAoACQAKAAoACQAJAAgACQAIAAcACAAIAAkACQAJAAkACQAJAAoACwALAAsADAAMAA0ADQAOAA4ADwAPABAAEQAQABAAEAAPABAAEAAQAA8ADwAPAA8AEAAPAA8ADQANAAwACwAKAAkACQAIAAcABgAFAAMAAwACAAEAAQAAAAAAAQAAAP///////////v/9//3//P/9//z//P/8//3//v//////AAAAAAAAAAAAAAAAAQACAAIAAgADAAUABgAHAAgACQAJAAoACwAMAAwADAANAA4ADQANAA4ADgAPAA4ADgAOAA4ADgANAAsACwALAAwADAAMAAwACwALAAsACgAKAAkACQAJAAkACQAIAAgACQAJAAkACgAKAAsACwAKAAsACwAMAAwADAAOAA8ADwAPAA8ADwAPAA8ADwAPAA8AEAAQABAAEAAPABAAEAAPAA8ADgAOAAwADAALAAoACQAIAAgACAAIAAgABwAHAAcABgAEAAMAAwACAAIAAgABAAEAAAAAAAAAAAAAAAAA//////7////+//7/////////AAAAAAAAAAAAAP//AAABAAEAAQABAAEAAwADAAMAAwADAAMABQAFAAUABQAGAAYABwAHAAcACAAIAAgACAAJAAkACwALAAsACwALAAwADAAMAA0ADQAMAAwADQANAA0ADgAOAA8AEAAQABAAEAAQABEAEQARABIAEgASABIAEwATABMAEwASABIAEgASABEAEgATABMAEwASABIAEQARABEAEAAQAA8ADgAOAA0ADAALAAsACwALAAsACgAKAAkACQAIAAcABwAHAAcABwAHAAYABgAFAAUABQAEAAQABAAEAAQABQAFAAUABAAFAAUABAAEAAQABAAEAAQABAAEAAMABAAEAAMAAwADAAMAAwADAAIAAgACAAIAAgACAAEAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQABAAAAAQABAAEAAQAAAAEAAgADAAQABQAFAAYABwAHAAgACAAJAAsACwAMAA0ADQAPABAAEAARABMAEwATABQAEwATABQAFAAVABQAFAAUABQAFAATABIAEgASABEAEAAQAA8ADgAOAA4ADgANAA0ADAANAA0ADAALAAsACwALAAsACwAKAAkACQAIAAcABwAHAAcACAAIAAcACAAIAAgACAAIAAgACAAIAAgACAAIAAkACAAIAAkACQAIAAcABgAGAAUABQAFAAQABAAFAAUABQAEAAQABAADAAIAAgACAAIAAQABAAEAAQAAAAAAAAAAAP////////////////////8AAAAAAAD//wAAAAAAAAEAAQACAAMAAwAEAAQABQAHAAcABwAIAAkACgAKAAsACwAMAA0ADgAOAA8ADwAPABAAEAAQAA8AEAAQABAAEQARABEAEQAQABAAEAAQABAADwAPAA8ADgAOAA4ADgAOAA4ADgAOAA4ADgANAA4ADQANAA0ADQANAA0ADgAOAA4ADgAOAA4ADgAPAA4ADgANAA0ADQANAA0ADQAMAAwADAALAAsACwAKAAkACgAKAAoACgAJAAkACAAHAAYABQAFAAUABAAEAAMAAgACAAIAAQABAAAAAAAAAAAAAAAAAAAAAAAAAP//////////AAAAAAAAAAAAAAAAAAAAAAAAAAACAAIAAgACAAMAAwADAAUABAAFAAUABQAGAAcACAAHAAgACAAJAAkACQAJAAkACAAJAAoACgAKAAoACgAKAAsACwALAAsACwALAAsACwAMAA0ADQANAA0ADQANAA0ADAAMAA0ADQANAA4ADgAPAA8ADwAPAA8ADwAQABAAEQARABAAEQASABEAEQARABEAEQAQABAAEAAPAA8ADwAPAA4ADgAOAA4ADQAMAA0ADAAMAAsACgAKAAoACQAJAAgACAAIAAcABgAGAAUABQAEAAQABAADAAQAAwADAAMAAwADAAMAAwADAAMAAwACAAIAAgABAAIAAQABAAEAAQACAAIAAgABAAIAAgACAAMAAgACAAEAAgACAAMAAgACAAIAAgABAAIAAgACAAIAAgACAAMAAwADAAMAAwADAAQABAAEAAQABQAGAAcABwAHAAgACQAJAAkACgAKAAsACwAMAAwADQANAA0ADgAOAA8ADwAPAA8ADwAQABAAEAAQABAAEAARABEAEAAQABAAEAARABEAEQARABAAEAAQABAADwAQAA8ADwAOAA4ADgANAA0ADAAMAAsACwALAAoACgAJAAoACQAJAAgACQAIAAkACQAJAAkACQAJAAgACAAHAAcABwAHAAcABgAGAAUABQAEAAUABQAFAAQABQAFAAQABAAEAAQABAAEAAQAAwADAAIAAgABAAEAAQAAAAAAAAD//wAAAAAAAAAAAAAAAP///////wAAAAAAAAAAAAAAAAAAAAABAAEAAgACAAMAAwAEAAQABAAFAAYABgAGAAgACQAJAAkACwALAAsACwALAAwADQAOAA4ADgAOAA8ADwAQABAAEAAQABEAEAARABAADwAQABAAEAAQABAAEAAQABEAEAAQAA8AEAAQABAAEAAQABAAEAAPAA8ADwAOAA8ADwAPAA8ADgAPAA4ADwAPAA4ADgAPAA4ADgANAA4ADQAMAAwADAAMAAsADAAKAAsACgAKAAoACQAKAAkACAAHAAYABgAFAAQABQAEAAQAAwADAAIAAgACAAIAAgABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAgACAAEAAQACAAIAAwAEAAQABAAFAAYABwAHAAcACAAJAAkACQAJAAkACgAKAAoACgALAAsACwAMAAsADAANAA0ADgAOAA8ADwAPAA8ADwAPAA8ADwAPAA4ADwAPAA8AEAAPABAAEAAQABAAEAAQABEAEQARABAAEAARABEAEAAQABEAEAAQABAAEAAPAA8ADwAPAA8ADwAOAA0ADQANAAwADAALAAoACgAJAAkACQAHAAcABgAGAAYABQAFAAQABAADAAMAAwADAAIAAgACAAIAAQABAAEAAQAAAAAAAAAAAP//AAAAAP///////wAAAAD/////AAD///7//////wAAAAAAAAAAAAABAAAAAQABAAAAAQABAAEAAQACAAMABAAEAAQABQAGAAYABgAGAAcACAAIAAgACAAJAAoACgALAAsADAAMAA0ADQANAA4ADgAOAA4ADwAQABAAEQARABIAEgARABEAEQARABIAEwARABEAEQARABEAEQARAA8AEAAQABEAEQAQABAAEAAQAA8ADwAPAA8ADgANAA0ADQAMAAsADAAMAAwADAALAAsACwAKAAoACQAJAAkACQAIAAgACAAHAAcABwAGAAUABQAFAAQABQAEAAQABAAEAAMAAwADAAIAAgACAAEAAQACAAIAAgABAAEAAQAAAAAAAAAAAAAAAAAAAAAAAAABAAEAAQAAAAAAAAAAAAAAAQABAAIAAgACAAIAAgADAAMAAwADAAMABAAEAAUABQAFAAYABgAHAAcABwAHAAgACAAIAAkACQAKAAoACwALAAsADAAMAA0ADQANAA4ADgAPAA8ADwAPAA8AEAAPAA8AEAAQABAADwAQAA8ADwAPAA8ADwAPAA8ADwAPABAAEAAPABAAEAAPAA8ADwAOAA4ADgANAA0ADQAMAAsACwALAAoACgAKAAoACwAKAAkACQAIAAgACAAIAAgABwAIAAgABwAHAAYABQAFAAUABAADAAMABAADAAMAAgACAAIAAgADAAMAAwADAAIAAgACAAIAAgABAAEAAQABAAEAAQABAAEAAAABAAEAAAAAAAAAAAAAAAEAAQACAAEAAQACAAIAAgACAAMAAwADAAMABAAFAAUABQAFAAYABwAHAAcABwAIAAgACAAJAAoACQAKAAsADAAMAAwADAANAA0ADQANAA0ADgAOAA0ADgAOAA8ADwAPAA8ADwAQABAADwAPAA8ADwAPAA8ADwAPAA8ADwAPAA4ADgAOAA4ADgAPAA8ADgAOAA4ADgAOAA4ADgANAA4ADgANAAwACwALAAsACgAJAAkACQAJAAkACQAIAAkACAAIAAkACAAIAAcABgAHAAYABQAFAAQABAAEAAQAAwADAAIAAgADAAMAAwACAAIAAgACAAEAAgABAAEAAQACAAIAAgACAAIAAgACAAEAAgABAAEAAQACAAIAAgACAAMAAwAEAAQABAAEAAUABQAFAAYABgAGAAYABwAHAAcABwAIAAgACQAKAAkACQAKAAoACgALAAsACgALAAwADAAMAA0ADgAOAA0ADgANAA0ADgAOAA4ADQAOAA8ADwAPAA4ADgAPAA8ADwAQABAADwAPABAAEAAQAA8ADwAOABAADwAPAA8ADwAPAA4ADgAOAA4ADgAOAA4ADQANAA0ADQAMAAwACwALAAsACwALAAoACgAJAAgACAAIAAgABwAGAAYABgAGAAcABwAGAAUABQAGAAUABAAEAAQABAACAAIAAwACAAIAAgACAAEAAQABAAEAAQABAAEAAgACAAMAAgABAAEAAgABAAIAAgABAAIAAgADAAIAAgACAAIAAwADAAMABAAEAAQABAAEAAUABQAGAAUABgAHAAgACAAIAAgACQAJAAkACQAKAAsACwALAAsACwALAAsACwAMAAwADQANAA0ADgANAA0ADAAMAA0ADgAOAA4ADgAOAA4ADwAPAA8AEAAQABAAEAAQAA8ADwAQAA8AEAAQAA8ADwAPAA4ADgAOAA4ADQANAA0ADgANAA0ADAAMAAsACwAMAAsADAAMAAsACwALAAsACgAJAAgACAAHAAcABwAHAAYABQAFAAYABgAGAAUABQAEAAQABAAEAAQAAwAEAAQAAwACAAIAAgACAAEAAQABAAAAAAAAAAAAAAAAAAAAAQABAAAAAAABAAIAAQABAAIAAgABAAEAAgACAAIAAQACAAIAAwADAAMABAAEAAQABQAFAAUABgAGAAcACAAIAAgACAAJAAoACwALAAsACwAMAAwADAANAA0ADgAOAA8ADwAQABAADwAPABAADwAQABAAEAAQABEAEAAQABAAEQARABEAEQARABEAEQAQABAAEAAQABAADwAPAA8ADgAOAA4ADgAOAA0ADQAMAA0ADQAMAAwACwALAAsACwAKAAoACgAJAAkACQAIAAgABwAHAAcABgAFAAUABQAFAAQABAADAAMAAgACAAIAAwADAAIAAgACAAEAAAACAAEAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAABAAEAAQABAAEAAQABAAEAAQACAAMABAADAAQABQAFAAUABgAHAAcABwAIAAcACAAJAAgACAAJAAkACQAKAAsACwALAA0ADgAOAA4ADgAOAA8ADgAPAA8ADwAPAA8AEAAPABAAEAAQABAAEAARABEAEQARABEAEQAQABAAEAAQABAAEAAPAA8ADwAPAA8ADwAPAA8ADgANAA0ADgANAAwACwALAAsACgAKAAkACQAIAAgACAAHAAYABgAGAAUABAAEAAQABAADAAMAAwADAAMAAwADAAMAAgABAAEAAgABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP//AAAAAAAAAQAAAAAAAQABAAEAAgACAAEAAgABAAEAAgADAAMABAAFAAQABQAFAAYABgAGAAcACAAIAAgACAAJAAsACwAMAAwADAALAAwADgANAA0ADQAOAA4ADwAPAA8AEAAQABEAEgARABEAEQARABEAEgARABIAEQARABEAEQARABAAEQARABEAEQAQABEAEAAQABAAEAAQAA8ADwAOAA8ADgAOAA0ADAANAA0ADAAMAAwADAAMAAwACwAKAAoACQAJAAgACAAHAAcACAAHAAYABgAFAAQABQAFAAQABAAEAAMAAwACAAMAAgACAAIAAQACAAEAAQABAAEAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQABAAEAAgACAAIAAgACAAMAAwADAAMABAAEAAQABAAEAAUABgAGAAcABwAHAAgACAAIAAkACQAJAAkACgAKAAoACwAMAAwADAANAA4ADgAOAA8ADwAPABAAEAAQABAAEQAQABAAEAAQABEAEQARABEAEQAQABEAEQAQABAAEAAQABEAEgARABEAEQARABEAEAAPAA8ADwAPAA4ADQANAAwADAALAAsACwALAAsACwALAAoACgAKAAkACQAJAAgACAAIAAgACAAIAAcABgAFAAUABQAEAAMAAwAEAAQAAwADAAMAAwADAAMAAwACAAIAAgACAAMAAgACAAMAAgADAAIAAgACAAIAAQABAAEAAQABAAIAAQACAAIAAgACAAIAAwADAAMABAAEAAQABAAEAAQABQAGAAUABgAFAAYABwAHAAgACAAJAAkACgAKAAoACgAKAAsADAAMAAwADQANAA0ADgAOAA8ADgAOAA8ADwAPABAAEQAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQAA8ADwAQABAADwAOAA4ADQANAAwADAAMAAsACwAKAAkACQAJAAgACQAJAAgACAAIAAgABwAGAAUABQAGAAYABQAFAAUABAAEAAMAAwADAAMAAgADAAIAAgACAAIAAQABAAIAAQABAAEAAQABAAEAAQABAAIAAgACAAIAAgACAAMAAgADAAMAAgADAAQABAAEAAQABAAEAAQABQAFAAUABgAGAAYABwAHAAcABwAHAAgACQAIAAkACQAKAAoACwALAAwACwALAAwADQANAA0ADgAOAA0ADQAMAAwADQAOAA0ADQANAA4ADgAPAA8ADgAOAA4ADwAPAA8ADwAPAA8AEAAQAA8ADwAOAA4ADgAOAA4ADgAOAA0ADQAOAA0ADQANAA0ADQAMAAwADAAMAAwADAALAAsACgAKAAkACQAIAAgABwAHAAcABwAGAAYABwAGAAYABgAGAAUABQAFAAUABQAFAAQABAADAAMAAwACAAIAAgACAAIAAgACAAIAAgABAAEAAgACAAIAAgACAAIAAgACAAIAAwACAAIAAQACAAIAAgACAAMAAwAEAAQABAAEAAQABQAFAAYABQAGAAYABwAGAAcABwAHAAcACAAJAAkACgAKAAoACgAKAAoACgAKAAsACwALAAwACwALAAsACwAMAAsACwAMAAwADAAMAAwADQANAA0ADgAOAA4ADgAOAA4ADgANAA4ADgAOAA4ADgAOAA4ADgAOAA4ADQAOAA0ADQANAAwADAAMAAwACwALAAsACwALAAsACwALAAoACgAKAAkACQAJAAgACAAIAAgABwAHAAYABQAFAAYABgAFAAUABQAEAAUABQAEAAQABAAEAAQABAADAAQAAwADAAIAAgACAAEAAQABAAEAAgACAAIAAgACAAEAAgACAAIAAgADAAMAAwACAAIAAwADAAMAAwADAAMAAwADAAMABAAEAAUABQAGAAYABwAHAAcACAAJAAgACAAJAAoACwALAAsACwAMAAwADAAMAAwADQAOAA4ADgAPAA8ADwAPAA8ADwAPABAAEAAQABAAEAARABEAEQARABEAEAAQABEAEQAQABAAEAAQABAAEQAQAA8ADwAOAA4ADgAPAA4ADQANAA4ADgANAA0ADAAMAAwACwALAAsACwAKAAoACQAJAAkACAAIAAgABwAHAAcABwAGAAUABgAFAAQABAAEAAQABAADAAMABAAEAAMAAgACAAIAAgACAAIAAQACAAEAAgABAAEAAQABAAEAAgACAAIAAgABAAIAAgACAAIAAgACAAIAAwADAAQABAAEAAUABgAGAAYABgAHAAcABwAIAAgACAAIAAgACAAJAAoACgAKAAoACgALAAwADQANAA4ADgAOAA4ADgAOAA4ADwAOAA8ADwAPABAADwAQABEAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAADwAPAA8AEAAQAA8ADwAOAA4ADgAOAA0ADQAMAAwACwALAAsACgAKAAoACQAIAAgABwAHAAcABwAGAAYABgAFAAUABQAFAAUABQAEAAQAAwACAAMAAwADAAIAAQABAAEAAQABAAAAAAAAAAAAAQABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAEAAAABAAEAAQABAAEAAQACAAIAAwADAAMABQAFAAUABQAFAAYABwAHAAcABwAHAAgACQAJAAoACwAKAAoACwAMAAwADAAMAA0ADQAOAA4ADgAPAA8AEAAPABAAEAAQABAAEQAPABAAEAAQAA8ADwAQABAAEAAPABAAEAAQABAADwAPABAAEAAPAA8ADgAOAA4ADgANAA0ADQAOAA0ADQAMAAwADQAMAAwACwALAAsACwAKAAkACQAIAAcABwAHAAYABgAGAAUABgAFAAUABQAEAAQABAADAAMAAgADAAIAAgADAAMAAgACAAIAAgABAAIAAQABAAEAAAAAAAAAAQABAAEAAQABAAAAAQABAAIAAgACAAIAAgACAAIAAgADAAMAAwAEAAQABAAEAAQABQAFAAUABQAGAAYABgAHAAcABwAHAAgACAAIAAgACQAJAAoACgAKAAwADAALAAwADAAMAA0ADQANAA0ADgAOAA4ADgAOAA4ADwAPAA4ADgAPAA8AEAAPAA8ADwAQAA8ADwAQABAAEAAQABAADwAPAA8ADwAOAA4ADQAMAAwADAAMAAsACwALAAsACwALAAsACgAKAAoACQAJAAkACQAJAAkACQAIAAcABgAGAAYABgAGAAUABAAFAAQABAAEAAQABAAEAAQABAAEAAMAAwADAAQAAwADAAMAAwADAAIAAgABAAEAAQABAAEAAgABAAEAAQABAAEAAQABAAEAAQABAAIAAgACAAIAAgADAAIAAwAEAAMABAAFAAUABQAGAAYABgAHAAgACAAIAAgACAAIAAkACgAKAAoACwALAAsADAAMAAwADAAMAA0ADQANAA4ADgAOAA8ADwAPAA8AEAAPAA8AEAAPAA8ADwAPABAAEAAPABAAEAAQAA8AEAAQABAADwAPABAAEAAPAA8ADwAPAA8ADgAOAA0ADQAMAAwACwALAAsACwALAAoACgAKAAoACQAJAAkACAAIAAcABgAHAAcABQAFAAUABAAFAAQAAwAEAAMAAwADAAMAAgACAAIAAQABAAEAAgACAAEAAQABAAEAAQABAAEAAQAAAAAAAQABAAEAAQABAAEAAQACAAMAAwADAAMAAwAEAAUABAAEAAUABQAGAAYABgAHAAcABwAHAAgACAAIAAgACQAKAAoACgAKAAsACwAMAAwADAANAA0ADQAOAA4ADgAOAA4ADgAPAA4ADgAPAA8AEAAQABAAEAAQABAAEAAQABAAEAARABEAEQARABEAEAAQABAAEAAQABAAEAAQABAAEAAPAA8ADgAOAA4ADQAOAA4ADgANAA0ADQANAAwACwALAAoACgAJAAkACAAIAAgACAAHAAcABwAHAAYABgAGAAUABQAFAAUABQAFAAQABAACAAIAAgACAAIAAQABAAEAAQABAAEAAQABAAIAAgAAAAEAAQABAAAAAQAAAAEAAQABAAAAAQABAAEAAgACAAIAAgADAAQAAwADAAMABAADAAQABQAFAAUABQAGAAcABwAHAAcACAAIAAkACgAKAAoACgAKAAoACwAMAAwADAAMAAwADAAMAAwADQAOAA4ADgAOAA4ADgAOAA4ADwAPABAAEAAQABAAEAAQABEAEAAQABAAEAAQABAAEAAQABAADwAQABAADwAPAA4ADgAOAA0ADQANAAwADAAMAAsACwAKAAsACwALAAoACQAKAAkACAAIAAgABwAGAAYABgAGAAUABQAFAAUABQAEAAQABAADAAMAAwADAAIAAgADAAIAAgACAAIAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAEAAQACAAIAAgACAAIAAgACAAIAAgADAAMAAwADAAQABAAEAAQABQAGAAYABgAHAAgACQAJAAkACgAKAAsACwALAAsADAAMAA0ADQANAA4ADgAPAA8ADwAPAA8ADwAQABAAEAARABAAEAAQABEAEAARABAAEQARABEAEQARABEAEQAQABAAEAAPABAAEAAPAA4ADgAOAA0ADQANAA0ADAAMAA0ADQAMAAsACwAKAAsACgAKAAoACQAJAAkACAAIAAcABwAGAAYABgAFAAUABAAEAAQABAADAAMAAgADAAIAAgACAAIAAgACAAIAAgABAAEAAQABAAEAAAAAAAEAAQAAAAAAAAAAAAAAAQABAAAAAQAAAAAAAQABAAIAAQABAAIAAgADAAMABAAEAAUABQAFAAYABgAHAAgABwAHAAgACAAJAAkACQAKAAoACgALAAsACwAMAA0ADQANAA4ADgAPAA8AEAAPABAADwAPABAAEAAQABAAEAAQABEAEgARABEAEQARABEAEQARABEAEQAQABAAEQAQAA8ADwAPAA8ADwAPAA4ADgAOAA4ADQAMAAwACwALAAsACwAKAAoACQAIAAgACAAGAAYABQAFAAUABQAEAAQABAADAAQABAADAAMAAwACAAIAAgACAAIAAgACAAEAAQABAAAAAAAAAAAAAAAAAAAAAQABAAAAAAAAAAAAAAABAAEAAQABAAAAAQACAAIAAgACAAIAAgACAAMAAwAEAAQABAAFAAUABgAHAAcABwAHAAgACQAJAAkACQAKAAsADAAMAAwADAAMAA0ADgAOAA4ADgAOAA4ADwAQABAAEAARABEAEgARABEAEQARABEAEQARABEAEQARABEAEQARABEAEAAQABEAEAAQABAAEAAQABAAEAAQAA8ADgAOAA4ADQAOAA0ADQANAAwADAAMAAsACwALAAsACgAKAAoACQAIAAgACAAHAAcABwAHAAYABQAFAAQABQAFAAQABAADAAIAAgACAAIAAgACAAIAAgACAAIAAgABAAEAAQABAAEAAQAAAAEAAQABAAEAAQACAAEAAQABAAEAAgACAAIAAwADAAMAAwADAAMABAAEAAQABQAFAAUABgAFAAYABwAHAAgACAAIAAgACQAJAAoACQAJAAkACgAKAAsACwAMAA0ADQANAA4ADwAOAA8ADwAPAA8ADwAQABAAEQAQABAAEAAQABAAEAAQABEAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAADwAOAA4ADgAOAA0ADAALAAsACwALAAsACgAKAAoACgAJAAkACQAIAAgACAAIAAcABwAGAAcABwAGAAUABQAFAAUABAADAAMAAwADAAMAAwACAAIAAwADAAIAAwACAAIAAgADAAMAAgADAAMAAgACAAIAAgACAAIAAgADAAIAAgABAAEAAQACAAMAAwACAAIAAwADAAIAAwAEAAQABAAFAAUABQAGAAYABgAGAAYABwAIAAgACAAJAAkACgALAAoACgAKAAsACwAMAAwADAANAA0ADQAOAA4ADgAOAA4ADgAPAA8ADwAPAA8ADwAQABAADgAPAA8ADwAPAA8ADwAOAA8ADwAOAA4ADgAOAA4ADwAOAA4ADgAOAA0ADgAOAA4ADQANAA0ADAAMAAsACwALAAoACQAJAAgACAAIAAgACQAIAAgACAAHAAgABwAGAAUABgAGAAYABQAFAAQAAwADAAMAAwADAAMAAwACAAIAAgABAAIAAQABAAEAAQABAAAAAgACAAIAAgACAAIAAgACAAIAAQACAAIAAgACAAMAAgACAAMAAwAEAAQABAAEAAUABQAFAAUABgAGAAcABwAHAAcABwAIAAgACQAJAAkACgAKAAsACgAKAAsADAALAAwADAAMAAwADQANAA0ADgANAA0ADQANAA0ADQAOAA4ADgAPAA4ADwAOAA4ADgAPAA8ADgAPAA8ADwAPAA8ADgAOAA8ADgAOAA4ADgANAA4ADQANAA0ADQANAAwADAAMAAwADAALAAsACwAKAAoACQAJAAkACQAIAAcABwAIAAcABwAGAAYABgAGAAYABQAFAAUABQAFAAUABAAEAAQAAwADAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAQABAAIAAgACAAIAAgACAAIAAgACAAIAAgACAAMAAwADAAMABAAEAAQABQAFAAUABQAFAAUABgAGAAYABwAHAAgACAAIAAkACQAKAAoACgAKAAoACwALAAsACwALAAsACwALAAwADAAMAA0ADQANAA0ADQAMAAwADQANAA0ADgAOAA4ADgAPAA8ADwAPAA8ADwAPAA8ADwAPAA8ADgAOAA4ADgAOAA0ADQANAA4ADgANAA0ADQAMAAsACwALAAsACwAKAAsACwAKAAoACgAKAAkACQAIAAcABwAHAAcABwAHAAYABQAGAAYABQAFAAUABAAEAAQABAADAAMABAAEAAQABAADAAMAAwADAAIAAgACAAIAAQABAAIAAQACAAIAAgACAAEAAgACAAMAAgADAAMAAwACAAIAAwADAAMAAwADAAMABAAEAAQABAAFAAUABQAGAAYABwAHAAcACAAJAAgACQAJAAoACwALAAoACwALAAwADQANAA0ADgAOAA4ADgAPAA8ADwAOAA4ADwAQABAAEAAQABAAEAAQABEAEAAQABAAEAAQABEAEQAQABAADwAPAA8ADwAPAA8ADQANAA4ADgANAA0ADQANAA4ADQAMAAsACwALAAsACwAKAAoACgAJAAkACQAIAAgABwAHAAcABwAHAAYABgAFAAUABQAEAAMAAwAEAAMAAwADAAMAAwADAAIAAgACAAIAAgABAAEAAQABAAIAAQAAAAAAAQABAAIAAgABAAEAAQABAAEAAgABAAIAAgABAAIAAgADAAQABAAEAAQABQAGAAYABgAGAAcABwAHAAgACAAIAAgACAAJAAkACgAKAAoACwAMAA0ADQANAA0ADgAOAA4ADgAOAA4ADgAOAA4ADwAOAA8ADwAPABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAPAA8ADwAPAA8ADwAPAA4ADwAOAA4ADgAMAAwACwALAAsACgAKAAkACQAJAAgACQAIAAcABgAGAAYABQAFAAQABQAFAAQABAAEAAQABAADAAMAAgACAAMAAgACAAIAAgABAAAAAQABAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAQABAAEAAQACAAIAAgACAAIAAgADAAIABAAEAAQABAAFAAUABQAGAAYABwAIAAcABwAHAAgACQAKAAsACgAKAAsADAALAAwADAAMAA0ADQAOAA4ADgAPAA8AEAARABAAEgAQABIADgARABIAFAAQABAAEAARABEAEwARABEAEQASABQAFQAVABUAFQAXABYAFgAVABQAEgARABIAEgARABAAEQAPAA0ADQAMAA0ACgAKAAcACgAJAAkABwALAAsADAALAAsACAAKAAoADAANABEAEAAOAAsADAALAAsACQAJAAoACwANABAAEQARABIAFQAVABMAEwAVABQAFgAWABUAEgAPAAoACwANABAAEAARABIAFgAWABYAGAAbABkAHQAhACYAKAAoACsALwAyADkAPwBDAEEAQgBEAEQAQgA/ADwAOgA3ADUAMgAxAC8ALAAqAC4AKwAoACcAJgAhAB0AFQANAAcA/v/6//L/5//e/9f/1v/S/8//wP+4/7D/p/+i/5j/kv+L/43/kf+N/4n/gf93/3D/b/9v/27/Zf9e/1n/Vf9K/0L/Pf89/zr/O/8//z3/OP82/zr/O/87/0L/Rv9F/0X/SP9P/1D/VP9Z/1//ZP9o/27/d/98/4X/kP+Y/6D/p/+x/7//zP/b/+r/+f8GABAAGgAmADQAQwBRAF4AaAB1AHgAhQCQAKQAtAC/AM8A4wDzAPsADQEdASoBNAFDAVQBYgFuAXcBfAGBAYQBjAGRAZYBlgGbAZQBkgGQAY8BigGBAXkBfAF5AXcBcQFoAVoBTAE+ATMBJwETAQUB8gDlANEAwACtAJUAfABeAEcAMgAbAAQA8f/e/9T/xf+3/6j/mf+O/4D/dP9w/2b/XP9S/0L/Mf8o/x7/GP8L/wP/+v7w/uj+4v7f/tv+1P7N/sr+xv7A/rr+tv6x/qz+rP6r/qb+n/6W/pH+jf6L/ov+iv6N/o/+XP49/ib+Ev4D/vn97/3k/eb92v3e/d/96P32/QX+DP4h/jn+W/59/qX+y/72/iX/V/+G/63/1//+/yEARABlAIIAnAC6ANUA6QD0APoA+QD/AAUBAQH0AOgA4QDbANUA1QDMALkAqACiAKEAmgCPAIgAgQCEAIoAjACFAIEAhQCLAJYAnQCdAJ8AowCnAKgApgCpAK4AtAC8AL8AvwC+AMIAyADPANsA6QD2AAABEgEoAUUBZAGHAbEB4gEWAlACkALQAhoDaQPAAwwEVASUBOMEPAWLBdQFFQZdBqkG8AYwB2YHlwfKB/sHLQhUCGsIhQiaCKsIowiTCHcIVggiCOcHqgdOB9YGSwasBfEELARLA1sCZgFQABf/4P2M/Ef7+vmy+HP3FPbP9InzcvJk8XTwje/O7gzubu3g7GnsGuzS66frg+uY67zrDuxd7MfsVu397bDueO9T8CTxEfIG8wH0+PT49fP29/f2+Oj5vfqG+1H8Gv3j/aD+Tv/6/5YAJgGpASACiwL5AmIDzAMlBGoEowTWBAcFNQVfBY0FwAXsBREGKAY6BkYGTAZRBmEGagZmBloGSAYrBg0G5gXEBaQFfAVPBSEF8AS5BIEESwQbBOoDwQObA3IDRgMaA/MC2ALCArcCvQLFAssC3ALzAhADPQNyA7cDBgReBLsEIAWTBQ8GkgYdB7IHTQj1CJkJRAr2Cp0LTQwADZ4NOA7WDlwP1Q8nEGMQnRDFEMgQrBB5EB4Qqg8iD4QOyw3kDN4Ltgp7CScIsgYgBYgD6wFOAJr+4/we+2X5vvcz9rT0MfPa8Zvwh+957ortsuwC7HrrDOu+6nvqbOqE6rfq/epb6+rrlOxE7f3txe6T727wV/FQ8kzzTvRR9U32Q/c2+Bz5Avrm+sj7ovx1/S/+5v6S/zQAxQBIAcUBPAKmAgYDVwOhA9gDBwQyBFAEXgRjBF4EVAREBCwEEATwA8YDkQNWAxIDxwJwAh0CygFvAREBsABXAAAApf9O//n+s/55/kr+KP4P/v79+P0C/h3+R/6B/sb+EP9f/7T/EABxANMALwGIAdwBKAJsAqoC2gL8AhADHQMZAwcD8QLXArUCgAJAAvsBsgFiAQ8BtwBmABgA1v+T/0//CP/J/pX+a/5N/jn+Mf4u/jX+Qf5d/n/+p/7U/gX/NP9p/6H/2P///x8AOABQAGwAiwCxANgA+AAUAS8BVQF+Aa4B8AE9ApQC+AJiA9wDWgTaBGQF9gWTBjoH5wedCFAJAgqnCkkL7AuDDBUNng0aDocOzQ4EDygPMQ8cD/EOpg4sDp4N6wwuDFELWApYCTMI8waVBSEEqwI7Adv/eP4p/dL7gPou+er3tvaT9Yv0jPOx8unxRfGh8BDwje8X77zudu5A7iTuJO4n7kbuc+6q7vDuTu+y7yjwsfBC8e/xrvJ08z/0EvXg9bT2j/du+Ev5JfoJ++X7sfxx/R/+xv5b//L/egABAXwB7QFQAqcC7wIoA2EDlQPEA/QDIgRIBGcEgASeBL4E3gT7BBgFLQU/BUkFTwVMBT0FKwUaBQEF4gS3BIAEOwTzA60DZQMaA8oCcwIfAtIBhwE2AecAngBZABkA5f+7/5b/e/9m/1//Yv9s/4b/sP/h/xAARgCDAMkAFwFjAbEB8gEpAlgCfwKjArkCxALFArsCpgKDAlYCHALSAYEBOAH1ALUAdwC3ABkBbwG7ASICjQIeA98D0ATsBTkHqAgYCp0LOQ3fDpQQXhIfFMgVUheyGNwZqhpgG68boxtIG54apRlXGLsWuhSDEhgQdg28CvsHNgWLAgcAr/2C+3f5mff39YP0NPMR8hjxQ/B779HuJ+6D7eDsTuy/6zHrk+rv6ULpj+jl50jnyOZV5gbm3OXV5fTlMOae5jXnAej56CbqYevB7Ebu8e+d8Trz3fR89iX4v/lC+6v8+f0+/2MAfwGDAngDUwQZBcoFeAYfB8AHUwjYCFAJtAn/CS4KSwpYClQKOgoPCscJZAnxCGgIxwcOB04GigXFBP8DMQNtAq0B9ABDAJz/8v5V/r79KP2a/B38o/sm+7L6Q/ra+XD5Dfm0+GD4FPjQ95X3ZPdM90v3W/d196T36PdO+NL4aPkj+vP64vvn/PT9Bf8bAEYBhAK8A+4EEgYgBwkIywhhCbwJ1wnHCZAJIQluCJsHnAaABVkEPgMoAhMBNgCF/wf/yf7V/h//rv+DAIUBlAKxA+cEFwY8B1EIOAnUCToKWwpRCgYKkwnsCAkIBQcBBhQFTgTNA5oDvQM+BCIFhwZTCJgKGw29D2ESKhUCGKQaIR1DHwQhNCLLIvAicCI1IWgfIR1hGjEXoxPVD/AL+AcABCIAZvzZ+I71pfIi8APuP+zE6pfpt+ju5zvnnub05UTliOTS4/3i/uHn4MTfv96u3Zfcktuy2g7ardmO2dHZado921rcxt2B35fh8ONt5gnpxeuI7kvxEPSi9g35Tvtf/UL/4gB1AuoDQQWEBtAHGglqCrQLCQ1vDucPXBHOEkEUvBUZF0sYYhlJGu0aVBuEG4QbKRuMGqsZvRd8FfYSMBBhDWkKZQdRBE4BXf6q+zn5Evcu9XTz4/Gk8Knv/+657rzu8+4774Tvqe/Q7xbwffD88IvxIPLH8mfzCvSu9EX12PVi9vf2qfeP+IL5bPpU+zP8DP3s/b3+av/2/24A3ABTAdABRAKZAr0CkQI1ArwBQQHrALAAlgByAEgAEwDk/8T/n/+O/5j/ov+7//3/bAAQAc4BngJmAyEEwARTBQEG6AYNCHIJEAucDOwN3w59D9IPEhBFEK8QVhFAEqATTBWPF/oZdxylHuYgPyN/JV0owSuMLwIzqTUJNxU3tjVXM0IwWSxrJ0chNxqYEhwLAQQ8/YL2me+M6M7hEdwK2MnVJtWT1UnW+dZ+11/YiNnu2n/cut2P3svej94V3k3dHtxQ2hDYydWz003SztEd0ijTy9QL19fZd92L4eLleOpF72D0svk8/6EEfwlnDRIQ0xHhEo4TOxTVFBsVvRT7EwUTGBJlEeMQnRBnEEUQZxD7EA8SYxOiFIIV7xXdFUkVXBQ2E8MR5w/CDVQLnwiUBUYCyf41+7P3dPSg8VHvbu3h677qB+q56bDp7+ls6vHqm+ty7H3tvO4l8GrxePJY8wL0d/TG9Cj1nfUS9pP2Lvf39/v4J/pj+5T8nP16/kb/HwAOASACNwM0BOkERgVxBVcFDQW+BGIEDASxA0sD+QKkAmgCJwLxAdUBswG4AfgBnQJgA1QEYwVSBjMH5AdRCIgInQhzCBIImgfoBhIGIQUiBBADrgFeABH/cf6M/qz/mAGNBCcIDwzXEKUWuR1CJQ8tkjSkOpI/LEMERktIYkklSd9GmkJZPMM0oSxcJC4cBBTsC9EDLvxh9Z3v4uqp59Hku+Jb4SvguN9L3zLf5N7l3Z3cXdpO1/zTxM/ny03Iy8QXwm+/fr3tu8q67rrtu5W+/sKJyNzPr9f23vTlWOsE8H30vvhl/bgBNAXgB0cJXQrbC5QNYxByE6gWyRmPHNsf0CMhKIksJDBwMiYzMzJ/MEouCiyNKYom5CJKHiYZ6RMKDw4LqQe0BB8Ccv8F/eH6Nfka+Mf2K/XH8tPvo+xO6WfmIeRH4qXgIN+63ZfcGNxg3Jzdgd+84Rvkeebb6C7rfe3W7+zxsPMS9Tz2ePfk+Jb6kvym/sAApwJMBOIFdQckCakKCgzrDAANbgwcCwMJLwYnA9n/rfx6+ZT2V/Rp8j/xZfAi8JjwYfG98lz0fPbt+CD7Mv2N/jn/lP9Q/17/vv4I/rb9HP1S/bT9mv7q/ur+jf5W/Xf9Xf5MAVEG1QunEoIYpR4AJeUrtzTePIBEbUo5TfpOKVDSUVVU/1RJVMhP6kdhP1M2eDCoLHkqGSnsJYIiUB5tGqoX9xQYEnAN+QbH/h/1lesp4jPZq9BaxwO+k7XArqCqWKmsqs2tHrHFtDu47burwOPEiMl4zR/QF9JG0+nUc9by17/ZVduE3W7g4+Ql65PyufqFAsAJYxCZFqgcLiLxJmcq/isiLJ0ryCoMKlwpPyjNJmgk0iGYH+8dPx3wHMwcOhzCGqYY4xUCE/wPbgyFCM8Dnv6W+cT0w/B07VDqWueC5Dvi5+B04AzhO+JY413kxOQ+5c/lnua75/DoFOrW6rnrx+xb7oDw3PJx9ej3MPqG/M7+YAEOBKwGQQk5C8kM1w1dDsEOuA5jDpsNLgyZCqkIrAbKBNYCAwEP/zD9avtC+Vr3qPX888ryrPHD8Enw3O+N7zvvju637YvsTOuZ6ibqxOr17NjwqPY5/dkDTQmTDAsOOA78DbgOlxA0FPsY3R3FIo8nGy0NNH08f0V0TsxW3V1nZNpqWnAMdM50u3DpZxFbFkysPboxgSlQJOYgXR4vG74W6RCFCa4AzvZI7IXhmNbbywzBbrZ5rHejsZu4la+SKJN6ltScUKXArke4YsBbxnDJDsoPyeDH+MeIyRfNbNKo2O/f1ucl8An5JAIfC6ATihsII4Epqy6hMs80PDWgM5cw0iwlKdkm5iU1JncnsiiZKdUpMimDJ7EkBCG6HL0XBhKxCyMFvf59+FDyyesl5dfegtnQ1SHUIdQy1c7WR9gh2VjZatnX2cTaBdxH3aHeXOCo4s/lo+nJ7d3xF/aL+kX/NQQQCa0NABKLFecX3RhqGBAXABWtEicQuQ3JCzIKFwlCCI8H2QYlBjEFtwOcAfz+3vsL+MXzEe9T6s/lC+JX36jdCt0W3cbd/N7t4EzjDOar6HvqT+su66Lqv+kz6Sfpuenx6qzsAfB99Hv7uQTBDvsYUiL6KSgxUTg8QG5JlVEfWd1dz15vXYBZ2lXEU+lSblTxVtVZoVzdXVddTloZVM5Ktz4XMB4g7Q8cAWb0v+mG4FPY9ND3yADBgrlNs4Kvta0urrKvvbClsMCuq6tNqI2lUqTvpASoF632s5e8T8al0Enb1eUZ8D75+wAnCJ8OmhWuHCAjXSgjK/4rOytJKrwq9izHMJ01Kjq4PYY/9D6VPKY4ezNkLYom8x+fGRwUbg/KCuIFcwC9+tj0Ee/v6YflBeKm35Dd+tqK1yjTXs58yeLF/MMJxLDGxMqyz13ULth620beJOHG45LmyOkT7UXxA/ZB+xsBKQafCuAN2A+3EW8ToRXXGPIb+h5ZISciuSJwIi8h7R+UHdsaVxg2FcsSARHfDqsMDAnPA//9GPee8A7sYOfq43nh2tyI2cLWQNME0wXSz9Av0mHR8dLT12DcaeQo6xrvGvLY8OLv7/ER9gcABQ5FHeMtBDwbR5hPblQvVsxWClYZVABUDFTnVNZYZlvQXXlffVzWWMRT8EwCSEZC9ztINe0qTiAwFQEJxv1i8qnnp94R14XROs5Xyu/EQb34stOo9Z8UmkeYm5mknD6gCaRxqGytu7J3uAO+FsPsx3jNiNTa3G3mMfDp+BABeQiqD88XfyBcKYoxszffOw0+bz4+Pqw90T0BPrg9Dz1+O4A5wDY+MysvSSqGJCwecReFELAJuwJx+/bzmuyf5bLfT9vf11bV39LWz2DMrsiNxWvDhMLNwi3EmMa5yS/NPNGT1QjaUt414jfmkOqg72L1VvsfASsGbAr8DeMQzRPcFo0ZcRwGH8EgqCEvIYwf6hwYGoYXghVZFGkTSRLLEHsOMQvYB1QE7AA6/Sf5HvUJ8aLtzeo06I3lu+JX35Hcjdpk2W/a/9uc3W/f6N/o35Lg8uHo5fzrQPTZ/ooJzBQqIBMpfTGPNxE7qz7zP2tBXETfRs1LBFEwVRJailuWW7xaCVf0U9ZODkhIQJ01tiq2HzAV3gywBWH/JPpZ9JDtPeau3brTJ8n3vUu0za2gqrerLa/4sgy257aStm62z7Y6uRG95sE2x2DMTdKo2Bngu+fR7uD1zvtAAhoKhhIoHIYkfyrpLYgt+CtDKiUpWypfLJ8uizD4MGwwUC7tKq4m/iCSGosTbgwlBl0AZPuU9m3xdex452vjMeBr3QDbo9eD0/zOPspzxuTDbML+wqfDmcUbyc3NutNq2d3e6+KN5SvoCevw7rv0EfzlA2AKMBB6FIkX5xrMHB8fNiDyIEwiCCOxJHIm5SZNJrgjMR/tGr8VjRHmDZkJIAUP/8z4yPMp73ftfe2Q7SDvIO/57oftxOrT517jw+C53tzf0eQC7CX1S/x1AigE4gRsBj8Iag1HFEgbNCL2J2QthjTsOtZDkEvfUFRVVFWFVQxUiVFzTwxK4kPrO5MzMy12KIQmsSQKIRgaxw4kARjzWudF38vZbtV/0WLLUcTgvMK20rN+sie0MbbMuB+7l7yhvum/VcFswoLEu8eRzNLTVNwM5k7v5/cN/4wFpgt+EZIXWRy7IIEjSCUJJ3YoOytpLsYx8zTZNoM3bDboMwswZyqgI64csBUMEHUL8wfiBNMAivyE973yxe7x6rvnlePl3ezXw9DQyh3HvcWYxqLIYssVzsrPl9Hx0nbUL9c/2WzcRd+o4mfmjeo38GT1GPvG/7YDbwdJCjwNORBhEjEUnBRZFOwTYRLfEZYRqBHlESkR2w9pDlMMYwrUCFkHswU8A70ATf3D+qr4UfdA9zb2c/b+9fb0uPSY8zfzfvKF8TPxbfFT8tj1NfoQ/wEGcwoVEKEV6BnOIM4l2ir7LR8vizA1Mc80fjviQxVNJFW9WXJbXFnnVKVOZEcMP5E1oC3JJCwekhomFi4SZQt2AKTz6OVv2qTRScs2x+bBN7sEs9yqsqXYo72m26vgsVS3XbrIvEy+xL/lwtbFe8po0MjWaOCK6qD1BAHzCZMRKBdgG70fsiPwJ7UrLC7/L68wNTHGMcYxfTH/Lw8t3SisIwIeiRfgENQJVAJz+0j1lfA17ZnqbuiN5bbhU93S2JTUztHQzznPIM+sz/TQzdIY1nbZut3U4Y3l3uj56y/vJvKu9e/4VPz2/8ADHAgSDc0RrxZhGuQcRB6BHkQedh13HJ4aLRgPFQYSAQ9rDKEKMAmVB4YFHwOW/7/7nvfC827wE+066w7qvOmW6gzryet96zHr1uqf6uvqeOwy75rxYfZL+oUACgl2EjwgHCwuN948bz4cPGo3kjRuNF04fD3hRFVKBk+uUVhSZFJzT2JJF0DnNC0oPx1tFS4P1QpeBaX+ZPfT7/vpDeWf4NvbGdXny//Bd7jtsUWvdq+7ss+2ULu4v3bE68jny2vN2c12zqbPHNM/2U7h6OoO9BX8IwMMCaIOEBQgGVgdWiAhIpoj7SSQJlEomSnIKikrtiqZKXEn7yNvHkMXxw7+BTP+4vfP88Dw9O0x60jnEOMC32HbldhJ1sDTf9HwzjvNwszxzVvRt9V628ngeuWC6d3s3+9+8lb1F/ge+6z+qQLuBqkLtA8OE/8VJxhzGqIcjR42ILUgZiBvHt8bexnfFgkVfhPGEbAP/QzlCRIGcgJh/lL68fZJ8x7xpu+m7zfwpPC58a7w++8k7uDsQuzE7BXuoO9K8i30gPnX/6oJ6RXyIGwr+DANNJ40MTSRNbI4oTzNQI1DH0ThRBJFrkZLSHBHskPrO5YxwSZSHS4XtBFkDaQHVP8P9gLsJ+R+3czY3dSr0CXLUMWsv9a6wbdjtd206bRVtlK5D752xDHLMNGN1czYe9oK3TDhL+eK7+j3FgCVBkgLDBB3FPUYTB0KIZojbSVTJhAniSePJ2QnoyV1I+Agnx6JHOIZUBbLEEMJugB4+C/yD+7862rrROoo6L7kw+Aw3HfYONVM08jR1dDD0DbRutN/1p/aUt4F4oflKumu7b/xc/YB+qn9jAC6A7EHXAxlEbsWKRvFHe4edR6IHeUb4RpiGcYXyBXWExgScxBZDwUOOwy5CecG9gKH/yn8xvnx98D1zPTf8xf0ffV19935A/sP/MX64ve19Xj0XvUr9z77i/57A90IEA8eGsojdC9INdY48DeTM5cw9C4QMaAzgDnqPF5CD0eaTcVS6lGQSwE+aywbGGsLegbHBhcK+AtiCGoAKvV960TlAOGV3vvZBtHXxOa3bK1ZqHOnqqyJs1y7wcJMyVHPwdKC1AjUUtPg0erTxdko42DvovqyBHULPQ8SEnYVvRksHq4hAiNAIr0frR39HPsd1CBjI7EkHySQIbMdiBikEukLUgTd/Jf1uvCc7dvrHOt86QXnUuNv30jcgdpM2brYndfo1dLTBdJm0svUDtrE377kKulL7A7vbfFP9H33zvpU/oYBxwSLCNgMLRAUE8YUpxWUFZIUOxS1E/MSRxGMD9ENUAxrC/wLEg05DUcMxQmCBRgBDv3U+cj3nfWu9K3zlvIF9PD0vfYK+AL6Nvz9/Bn+Gv+dATwBiwI8As0CLgcuDKwYWyVLM/c7YT9KPjg5qzRlMUszzzR0OYg9nUB3QXdBFkENPtY40jEvK4sgdhh1EwwQ4QzACLMCVPub8z7tOOrT51vmC+L92LfLWb2ksTCskK3FtCi+dcWtyejK6MoxyzvNoM+P07XXQ9tc4GfmYe4j93f/KweeDegRXhWDFzMYURjKFgsWahUvFjYYnxk2G+Ea3RjIFc0Rlw1hCX4FngFd/fL4CfXO8fvvWu//7qjt0uuX6TvnaOXR5HbkAuQI5Hzkq+Vb5lTpb+y177TyQ/RN9Uj1lPZy+FH7Gv7mAEADDwW5BvkHlggsCeMJ5gllCawIKAg6BwQHegbaBbAEugO8AssBgwHyAHYADv+Q/hb9y/ye/Pv85v0A/jn/+P5E/2r/agAjAZUCiQTxBScHzAfeCLkJoQrPDGUMzAx/DXwNvxDIED8T/hArD70LFgdABvAG5gt2ECEYChx2HWAbfxqvG0ccvh5AInsjNSHEHkIbgRbfEQwS2xLjFeIWChcnFfwP7QuSB2kDhQC4/Qf7WvnW9Cbya+3r6tHpw+gJ6SXocufJ5frlw+U95ozmhOfW5/XnBOoH7Zvwy/N/9hr3fPXx8t3xvfI+9RT4yfpz/Ob8UvxV/Fv9if5rAF8BCwLNAFH+MPyM+pz5kvhZ+O338fYX9kz2D/Zh9ZX0BvPB8unxHfIV8yv0gvU19br1J/QK8nTwE/Dw8AfyIPR39Rv3uPc9+Lj4Lfnd+Tj7zvw+/k7/y//E/53/KwA6AN0B+QN9BqUIignTCcUI7Qc8B1YHDAhTCIIIfQgiCFYILgh8COEIcglhCjcKyAo+CkkKmQrOCk4LKwywDQgO/w8tEBIQ4g45DZ8MjApDChsJ4wdCB2MG3gX0BCoEvwMyBMUELwZ7BTwE2ALXAcUB5gKpBrkI8QmlCRsK0gdUBhkHmAaQCDwHYQZWAyQAPv9X/74AHQMlBaoEswOaAB//uPui+en5ifn++fj5cPlG+O33z/iM+8X9V/80APX/BP+4/iv/cv+pAKYAgQFOAb0A3gCZADEBagH6/+T+8vyP+n34HPhd91L3lfeA94z3TfUk9eXyn/IY8aHw3+8k7tfs9Oq26djobOr16dvr0Owv7//uuvA18lnynvOl8qT0p/Oc9vP3hfp8/Bz/rAEMAh8EsAOgBe8EAgdBBtsGXAczB1EIPAcMCX8INQnpCOYHWAbYBFkDoQKbAooCcgIwAggC+gFUARYBCQE5AEAAyv5k/l392PzJ/an+ggAFAlEEpQQGBpYG0gZZCFMH0ghNCE4IJwm1CK0KPAuxDKQNpA0ADbQM2ArOCtsK2AjJB40FxwWbA04E4QPgA5ID6wNKA7AB3gFs/lj+R/vZ+qv5fflw+fr5Zvp2+kv7Sfo8+2j6+frU+kv6Lfr0+m37E/2d/TL/KgAgAC0C3AIVBOsFIgc1CR4J9gq0CxIMqg2BDuQPKw+jEKkOEA+eDfoM+gzDC94L7gn3BtsEugGe/nD8f/lM+h34n/nx92f3Efbi87ry++8f8NLt2O0o64zrCetk6x3sHO2m71DwL/Lx8oP0R/XA9Sj3YPe3+J/5dfp5/IT+1wA+ApMExQRsBbAEAQWOBR4FzgXKBXUGAgbNBokGMgYaBaoEuAMGA4MC0wAFAHf+XP6U/HL9Wv34/Qn+Zv7X/jb8bfyJ+Sb6EvlE+Zz5qvrv+1X88P6m/sQBrQAEAqEBvACGAW8AIgETAQ0C4wEYAwkCHQPDAtYCjwRJA/kDRgIgAg4B9AH5AeMCTQPXAx8FDgSWBTYDIgQkA4wDYgMAAjsC7wCrAGv/sQD0/5AAh/8DAAAAg/7Q/1X/VACoAPMBuQH9AS0CdALJA0wD7wSHBJ0EiwPaAgsDIgP6AuoCZQNBAp4C7QBsADj/N/8R/wb/SABl/qz/eP6Z/rr9Zv1Y/en82/zy+1/8v/rv+0T73vuf+8f7uvxU/MX9wv0e/nX+Sv4X/0T+Tf9//2oAFAHbAQgCxgLgA8sCQQZJA0sGAgb0BOoGUQStBO0DZgJRAnYCAQLzApUC9AHBAZIAhf5x/Rz8l/xp+8X7Cfsk+cX52PeG+M34bvgS+yT5dvrz+l/5O/0c+sb9nvyI/bv/GP5nAZj/dQKBAMoC9gGQAZMDSwAFBe8B0gK3BAUDtQNGA30DVwJPAzgChgJpAYUB/gB6AKMBvv/RAZ//7ADDAE8AhwCp/5v/KP4hAcP97gDw/wABYQHq/2EBi/5TAVcApwBqABsAbQAn/8r/uP4i//n/LQDXAI4CMAOrA2wEtgTBBa4C1QQmAl4CPwT3AvsE7gPOBVADrwEpBMD/wgLlAST/7gAq/078Ev1X+0r8ifu6+Er8pfn/+rX4bfpg+Pf5qPm9+Q/7z/oe/Cf6EP6B+uL+fP1p/9r/0f+DA/f/xQPLAAgEiwP7AMgEqgCSAz8CmQJBA/YDkQNPA4QCjgJLA0X/zQX0/SkENwEd/0ED1fuJAoL/pwDjAEP/BP6JAK7+Uf+P/vj/6QBW/+cAI//v/kr/Hf+6/n8A8fy6AHL+Bf+D/zP/OwGJAuT/CgLfAVYATAPu/loCswCu/q7/4gEl/4sDs/5bARQDHv6/BDkAVQKIANv/GwCD+5kASfxC/wP/NP2A/8H61v7S+t39NfyS/sz7vfxm/Vn8G/7Q/O///Pz4APz9DALtAGgCvQJaAsoEiQBCA6cAHAF+AgAB/AKcARYCWwKSACAD3QBrA1wCtAIjBTYD5gTPBGgB6AJIAjj+XwJT/nkBNgLW/98ABf6H/yr6ofyU+qP4dfwl+Rv8Q/rA+AL5dfoo+dn7t/sR+gD+QftI+1T72fsN+9b+pP4rA8EDgwZ+B8YFXweOAc0D0QDvAMACFwJvA0YFWwFfBTEB6QLlAwoAYQSd/00DJwAmAT//I/8t/v3+iv/v/zED2/89A2H+UwAS/UP7Hv7h+lb+Sf1A/p79nv5L/u3+sgDU/vj/DP8UAFn+3P60AHQArATLAcsCzwPUAGwFnwCCA6ADggOCBdECjAVkAhYEWQLqAn0BkAFA/zT/Jf+y/NT/Nvpa/nb8BPua/Lr8hfyM+2D7gPne+ZD5mflo+pX8c/0F/2gArgEzAbsDugApBUwFzQJhCYoEAwmBCUMGDgpzCPAFBAfQBkoFoAXTBq4E1QU7BmIBTgVbAhMB7wFA/lT/0P36+mf7H/ps+Pv5w/gw/On4T/yl+cr4qPwp9pD7J/lH+xn9sfw9/bH9eP3c/lUAEv7k/0z+jwDN/q4Acv9IAH8C2AErBGECSwQDBGQDDQQ6AnsDdQM3ApsDRQGdAhEBdAHBAEj/3ACt/rAA4P/U/mT9uf08/K37PvsH+Yv7F/pK/Uj7nPym/Uj8OP4K++79lP2W/Tn/ov4L/3IASP+8AHMB9AB/ArECewP7AvkCLwKbAbEBoAEiAWkC3QLwAboBqQM7Ag4DiAM5AbgDsv+2ADf/XP77/f/8tP4z/N/9ivv8/F/9nf2X/MD9b/zY/PH+wPqA/8X9Df46APf+Jv/oAZkAmAFEAxkC1QNnAjAEegKABAcE/gTlBcAE8wY2BR8HMQYYBiYFhwXyBecDBAU+BkcDJgQeBLMAcAE5/nD/wP40/Rf9CP7o+7v8rPt2+ef8Dfod/Y36n/yJ/ML6qf4G/Sf/sv/YAN8CLgNSA08DPANIAk4CKQEaAFQDOQFfBEMD5gJABIf/DwIB/i3+7Pxw/UL9XPyu+vb6a/mZ+b/5Xfdy/D34N/35+tD8ev3c+m7+cvyu/qv+5P/v/oYCAwCbA7ACGQIABWsA+QTgAW0DPQOLAogDnALEASz/kgFX/hQBCwGu//3+GwA+/tj9kP/s/JIBa/4MATcAsv5LAc3/GwCIAR8Bov8BAH7/zf7T/iD+xv14/mD/1P1W/RD9gfy9/Z38Fv2e/Gb90P2A/x3+5f9Q/8L+vgBQ/fwA1f2SAB8CcP9BA0MBOgEoAtoBxAIKBcoBTwa9AwEDIAXoAEgEtwIhBUkD8QUdBIgEBAVOAtsEdf+dAuwApf9KAGr/Bv+6/uT/pf5m/pX9TP6D/ef9T/1A/bn9FP4i/6P+kQGa/1QCyQN9AuMDMgL6AdgCnQHuACcCYgHiAnIDYgPQAvkD+QMyArMDNgEGAG0BVP+/Aan/n/3Y/3H9Vf4U/mj8vP0B+1r8uvzF+Vj8V/ow+4b9ifyQ/DD8E/wu/Ir8jvwn/SP++/3d/h7/Xv46/bT/QP4S/p0AxP3VAFIAogCCAQUBCgK1AC0BBwEjABkBkgDYAQIAvP+3/lT9jv5t/fr/VABXAAUBMQCB/sr/9/yN/2YA2P5LAXb/9wDgAKEAqAHjAdECJwJPAnsBtwJWAcoBJgJ2AHkBZQDf//YA2wBAAPgCTf9sArAB0f7HAHr+Ov4Q/rz+TADy/qn/fACQ/84Bmf6BAND/HwC7AZ//fgIAAK4BUgHTAbACJwLKAxsC2ARRAX0DgQBZAo8CVv8cBCMAlgLi/9oB1f9HAY3/Bv/HATr+OQK5/bAAQAHU/tEAgf43ATb/iAEFAc3/9AIu/2AB/P+bAIAAmgBXAs8BcQHvAQ0AUgCR/nn+tP3c/Yn+4/zW/yP91/+Y/v39w/8+/bv+Uv4m/m39Df7n/Uf9Qv87/Sz+xP0SAMb+b/8J/y3+YP4Y/av+B/y4/mL8b/7a/tr+d//w/8X/UP/z/mD9/v+Q/Pf9w/7t/Rz/Jf9v/839yQGC/4v/OQL7/wEB7f/tALoArwD6AQgCGAEfAwoCaAHkANcBTQIdAUoCMwH7AHcAJwJN/n7/8AAs/2n/fv9n/sX9kf+W/nf+hf4L/p7+SP+z/w0Bif9XAGQCBf9EAm0BJwHEAvkBrAQqAiEEKwPNA5YDmwPaA6UBHwT4ANIBGALQ/80BYwCP/+4BIwDVABMA4v8H/7j+I//M/kQBPv52AZkAtP/+ACT/dgBWALgAbv+VAG0AFAHy/koBTwAuAJYD7gDHAl8CYgLTASsB8wAtAfT+UgA9/xAAcQC0/ycAsf7rAM3+fP4K/gT+3/wX/5v8Gv1C/gT9Pv8O/Qv/Yf3i/jH+Zf4p/3L9j/8O/Vn+zvxR/rj+jf6AAPr+SQCh/6z/Af9Q/rL+Zv32/bD9XP0u//r9IgEA/13/cQFX/nUAUP/4/s7+oP9n/qb/3P1s/+/+4f4/AYH+wgAD/xz/1P6i/nz+ef9P/tn/6QBb/0wBQAAXALcA5ABM/wYBAQGbAZEALgLUARQAQQLF/5IB0AD+AM4AAgHy/50AOwHw/64B0ACVATEADQImAGoBvwEiAK8BUQBiASYAJwPeASEBxwOgAbICCgNmATsCXgK4AFUCAgJ/AZQDZgEUA6ECFAKLAgwAMgEhAc3/SQDE/9H+kv8r/tb+k/7Q/cH+6/8H/1oADgGP/qoAyv7A/tr8jvwF/cL8Jf4n/af+1v7y/jL9av4N/gH+uv1S/m//fP0//zz/8P4M/5QAR/+7AKL/eADRAHL/jgEg/yoBxgCKAB0BCAEiAZkBTwHaAawBtABxATQAlwAMAFgAu/41AR8ANQFKAtQAMALx/08BZv4H/8f+4/1c/1L+h/9p/5j/NwAz/wABMgDi/0EBFgCBAZf/9v4k/yv/Vf72/rr/s/6lAHn+tv42/mf9GP1n/Tf+f/1O/1X+cv5r/zb99/6J/qX+WgCz/pQAhv/AABABkv8lAS8CYgGfAMYBtgChAQsBiAGxAEIBpwHMAOABMwGIAfkAfwBfAC0AEP8KAeX/ZACOAYMAiQFkASkBXgFpAOsAagCz/nQABf+x/ln+HwDD/vz/ZwHa/uMBPf/ZANQAcv/+AWD/MAJfAJMALQE7/uEA+f7t/4AAgP9eAY0AyQAU/zP/8v1l/Tj9yPxD/2r+6v9M/ykA3f/7/lT/+v6U/pX98v8k/tT+8P+L/yYAGgBpAKEAWwHtAUoBiAJWArQBswKuAawCpwFfAtECbgMEAngDxgJQAcUCkgFbARMAtwAZALABiABtAFQB+wA1AX3/mwCC/x//Pf88/mL+P/6I/t79fv1P/ib9Cv4m/gn+ev4//jn/x/1y/7P9Mv6B/Yb9Zf81/dD/8P/m/tz/9//j/okAnwARAJMAsQD0AEcA2f+FAIwAQwAsAVYBNgHTAfMBOwG9Aj0BOQFiAXgA6QBgAL4BawAhAdUAVwHsAPoA0AFeAf0BugBtACIAff8U/5//U/+///3+zAB/AAoAHADR/yUAEP/i/9P90/3y/sz+ov1U/zP/Q//OAPb/dwC4/5wAOQDR/5QA0gCS/+4AuADx/wAAzwGi/zEBYAL4/3UDpgCXAu0BKgFXAnAA/wEbAdQAAQHd/28Acf/6/gv/F/4x/lb8mv7Q/BL9DP+Y/OH+Kf6b/qX+k/53/9L+sv+mAAAACgGqAAICqQGKAWUCiAHiAk0BtAL1ANAB5gG+/zQAXwDn/oL/XQCn/ycALwB1/8P+Mv/K/Uj9nf2q/VX82v35/Eb9Ev04/Ar+aPwX/qT8Gv6o/p79Wv6H/pn/gv8zAEUB+AAvAkQBlgAJAlYAkwFeAKwBGAEOAsABsgFpArcA4gIdAYkB8QFPAWsBTwBdAf7/qP83AKD+KgBB/7T+sf/8/vL/dv79/zL/Sv/1/0T+IAFL/1YAeAB8AJAAAQAVAaYArQC3AUgBYQD1AKYACgAHAWgBIQBPAfAAsQD7AM4A9QADAPQAswApAM7/kQFRAAcAgwHp/+4ACwGEASsA/gBjAZj/MABOAJn/u/+s/9b/dP+D/7z/Pv47//79kP45/iD+p//l/ez/tv9CAE8APAEzAbD/lwGJ/z7/MgFf//AAlwBmAFkB2P9LAXP+RwG3/7H/OwDB/mwAyP3//1X+Df+I//791//s/l3/lf+B/hr/wv5F/hD/AP1s/lH+j/8a/nb+MwAN/mIAqf4mALD/3/9fAN7/ZgAyAAoAlQAdAYsAsAELAboBTQFEASIBOQGOAGcBUQFAAPsAsQAFAHv/9ADg/qoAi/9S/4YA0f6WAMj+Rf9m/zP/pv+b/0MB+v8fANAAM//IAK79AgCo/oz+ZgF//fwBqQDXAKQB2v8jAnQADAEDAlkAxwGDAAABjv84/10A4P2/AHv/cADfAPoA3wHqABsAAQDJ/+f+k/9D/jr/bP2c/oP+Zv/V/pn/7//u/9MA+/4yAM/9X/87/j3+Nv6n/18AKgGkAfQAsgIUAeIB5QEhAVABmAFTACIBLACOAJoAHAAMAQoBEQGZ/2ABnv4kAGn+YP7EAOr94wB1ANsApwFuAGcAkQERAO0AxgCl/zwAnv/h//L+CwCY/r8AtP9e/yUBM/8sAFP/7v/N/zj/sf/Q/3X/DACWAIsA2QBsAaYApf8kAff+LgB7/xsApgAt/2cBtP9OAKkABAB4/9T/4f+5/dv+rf5o/fL9IP5//fD+UP7o/sn/QwA1AE4AfABSAE8AEv9qAhYA3AGDARUBhgJPAXgCAwGWAK4B5gCIAPUADgBUAT8AwQA4/2kALgAQ/x4A+f21//v9Q/7e/Rf+nP5W/un+tP4RAIP9V/+2/k//cf+y/vj/7/+Z/xwAlv88AIcBx//0AcoA0QFMAVoBjQFtAPAAlQC5/44AIAD2//gA4v+WAfv/KwHkABMB9ACUAFEBV/8/AAr/UABlAET/UgCV/87/+/9DAD3/pf95/+P++f+x/e7+v/5S/AH/hP60/r7/2/6o/7b/1v4U/x7/t/4eAG7/7//JABUBQwCCAOMA6QBMAQkASgFmAMIAagDb/soA+f8fAM4APQByAVQAQAGo/2MAsf/C/rr/dv3o/r/9n/6x/bT+CP9k/sv/rf5IADf/H//d/2v/o/8t/47/X//h/+wABQDtAOMAfwFgAX8BvQE2AIQB/ACIACkBHAEmAHIC/wDpAXkCsgC5AVIARAEc/0EA6v/e/ikARADz/7/+uf81/wX/9f59/hX/Kf+g/vL+u/7w/jf+sP4U/xP/ff9k/3MA2f8NAPv/sAC2/1MBJAEBAaMCYgHIAQwCewFgABQCcwBFAToBVQASAub/SwHDAF8ALwHtAI0A+P+2AHr+Xv/h/+j9TwAK/3b/7P9t/joAJf+u/jH/ff5y/pL/Dv5T/24AY/6OAPb+Zf/P/xv/YwDC/6AAsP+4AE4A7ACsAFcAEAEcAEkB6P+SAE8AqP8AAPr/KgBu/wsA4/7b/m7+6v68/sr9kP8p/yL/7/6P/pr+H/7l/Vr+Uv69/fD+i/7E/m//eP4oAL//u/94AGQAcwGzACAB8ACqALIBNwHSAWYBUgKDAnwB4gJ0AcQBYALMAcsBBgJ/AUUBqwGlALMAmwCWAHEAiwF2AOQA4QBy/6sATv57/7X+TP69/iH+0v5u/gj/rv2Y/7f+Dv+U/1j+p//s/gX/TP8UAFL/YABgAAwBWwFrAGkBlwCGARYBOQFKARYCNAFbAcABygBpAdMABAF1AU8A2AAdAQT/gwAy/8T/t/+T/wAB1v/8AM3/FQAO/wH/X/5P/sz/AP66/6v/2P4y/9z+pf4Z/xL/Gv+P/zz/Z/8y/7D+/P9j/3T/eADE/3oATACdABoAYwBKAOwABwGMADkBxv/LANr/nv/X/2D/0/+d/y0AWf/X/9//Uf97/zn/0/7O/jn+r/5W/nj+m/41/s3+Nv4A/yb+Kf8o/wb+Pf+f/lr/r/+F/zwApQBtAPYAlwA9ACQBhQD6AJEASwH0AMUBtwFdAaoCjAHZAsUBDwKxAjYBfwEtAecAdQD5AEEBjAB2ASABKQESAWUATABdAMb/7P/g//v/uP87/wEAtP/U/9n/tv+Z/4r/gv/t/sL+4f6W/vT+8P4q/4//k//a/7H/CQAQALP/+v+f/wAAOv+w/6b/MP/Y/+3+6/8n/5r/uP8T/xYABf9//23/yf5x/+n+Nv8h/1v/WP/s/pj/vP6P/uX+ff52/zL/GQCBAND/mgAgAHoAqAAsAKMAmABlAKgAIgEpAPUApwEEAXgCegEEAgwCzQD8AHwAVADy/1L/BwDr/9b/mv9v/y8Auv9GAN7/RQA8ALr/cf+V/y3/3f6e//X+if+C/4P/xP9d/0z/P/86AJv/cf93AI3/DAD//47/MgDh/40ArACuANsA+QBFAD4ANAC8/1gAf/8JAPD/w/8bAMv/mv+1/9D/PP9v/4b/0v5l/pj+kv6I/vL+9v7y/zIAWQAlAYkAggG8AA4BgQHJAMcBTAEFAuABvQFzAt0BgwLUAr4CIgPiAmwCUAKYAWUBZwH6AHMBRAFqAVkByAAbAcEAegA9AND/9/9o/2v/F/9x/uz+Zf58/gX/Iv8G/7n+7f7Q/nr+OP6J/gr+ef6L/gr+jP4X/mH+hf5a/t3+K/+B/5L/rv/x/6r/HwCr/wAAOQCW/ysA3f/N/6z/sf+R/9D/ev+T/6X/pv7B/qr9uP0G/Xj8f/wT/Jf89fuB/DX8qfsX/Mf79/sS/AP8GvxW/F783/xV/aT9K/7C/lj/x/99AKAAhgE6AnAClwMrBDIF+wXKBkYHjwdwCOMHiAhzCEgInwgbCJwI3gfPB3oH1gaqBpwFiQWMBB8EaQNQAgkC6ADoAAQAtf/R///+/P6W/jv+3/2t/Tn9/Pw+/Z78GP39/Kj8NP0O/Vv9ZP1s/Z79f/14/Zf9XP1L/Zr9lf3h/Q/+Pv5d/p7+of7E/un+1/46/wH/Hv8W//L+yv6r/s3+iP6//sz+8v4W/+H+FP/k/tD+4P6o/uT+2v7U/vX+2v7J/gr/FP8w/9D/xP9HAF0AUQCzAHcA0ACmAMkA/QANAUkBPAGXAXYBfAHQAZkByAHSAbcBtQGoAXIBVwGLATsBowEoAWYBWgHtAF8BmgAdARAB4wAOARkBHQHUAOoAmgCtAIYAegA7AFIABwDj/xEAjP/s/57/qP+x/4//mv9x/2L/Iv8s/wf/CP8H/+/+HP/2/jr/D//c/hr/6f7n/sf+zP6W/pX+gP5a/qb+nf7Y/hD/Mv9H/1P/P/9O/yD/Cv81/wP/OP85/4v/W/+M/9n/iP8PAOz/+P9KADcAIwBtAGYAUgB6AH4AAQECAScBZQGZAbkBuwHwAQMCFAIgAjICYgJyAl0ChgJ9AqkCrwLIAvsC7wIXA/cCDQPUApkCkQI4AiEC6gG8AYwBhwE6AUQBGAHVANYAcACHADYAMgAPAMn/vv+c/4H/ZP9//1r/j/9w/37/af8s/yT/Cv/c/sf+zP6O/pH+a/5c/k/+LP42/jj+KP4c/iD+EP7V/eT90P31/en96/0d/gT+Hf4X/iX+Gv4x/hv+Qv47/j7+Y/5R/m7+f/6a/q7+5f7g/gT/OP8Z/0X/RP9c/2f/dv+S/4z/qP+d/7j/jP/I/6v/qf+2/7P/0/+p/93/tv/k/8r/t//l//L/AQD9/ykAIwAfADQAHwAtAD0AMwBeAFUAbABmAKkAywDxAEkBTAG/Af8BFAJ1AmoCggLmAqYCCgNCA1oD0AP1AwMEEgRBBPQDCQTaA5QDlANQA0AD3wKnAkwCHwLFAV4BSAGrAGgAMwCo/27/If/L/qv+f/5p/kX+Jf4G/tf9wP23/Yb9of2C/Xv9xv2J/cr9wv3D/Qn++v1B/lz+gv6Q/q7+xf7m/gL/Jf9Y/1T/gv90/5f/lf+Z/6b/rv+6/5j/u/+t/8H/jv+W/5//av99/0f/SP9P/zX/DP9H/zr/L/+E/2D/2P/X/7D/5P+F/5D/hf90/3H/Zf9d/1D/Xf8+/1H/Uf9v/3b/if+S/43/u/+j/9T/DgAJAFoAlADAADwBcwHNAR4CTQK0AvACSwOLA90DLwRUBKsE2gQEBVoFWgWKBccFmwWvBX4FNQUVBakEUQQKBGgDCAOOAvEBnQEVAdAAQgDW/3j/wP6P/vz9lf1q/dr8zfx7/D/8SvwL/DT8Gvwx/EH8Nfxr/EL8Zfxa/HH8kfyn/M788/ww/SP9T/1a/V39if17/X39oP2G/ZL9k/2R/Zf9lP2y/aP9sv27/cn91v3Z/eH9+v0W/iv+Mf5m/nj+pf61/sL+Ev8M/3H/jf/6/y4AZwC+AOwAWAGSARkCYQLmAikDgAPHA80DIgQDBDsETgRYBH0EagRkBEQEFwT6A7QDkQNiAwoD3gJqAhcCqQEaAdwAfABKACQABwAPAL3/yv+z/43/t/9//7P/oP+K/57/lv+Q/5X/uv/E/wUA6/8vACgAVAB4AGYAtAB8AMgAswC9APgA6gD5AAcB+wDjABsB0wDRALIAYgBBABkA6f+//7j/Zv9//zz///4K/77+uP6w/oP+mP5s/jD+Hf4Y/hf+6v32/Qj+9P0B/hP+HP5R/kb+df7O/uT+O/9a/5//4P8LAE0AYwCtAKAA0QANASQBTwFSAVMBSQFIATMBUQEXAQgB6wCmALIAdwB4AFQAHgAhAPb/7f/R/7j/rf+T/6b/of+l/6H/ov/J/9r/8P/w//P/+f8AACUAOgBRAGMAdQCjALAA0wDXAPEA9wDkAPMAywDBAJwAjgCHAHYAYwBPADYAGAAGAMn/rP9u/zX/Hv/9/tD+5P65/sD+vv6V/tX+m/6w/qr+pv7G/sj+4v76/jb/YP/F/wQAXACVALUA+gAcAWIBpQHXAQ8CNQJ4As8C3QItA1UDeQOxA5gDwwOWA4sDhQNeA2wDJwMXA/sC1wLGApkCegI/AhICxAGeATsB8QChAEAABgCk/4L/N/8G/9r+lv6C/jr+D/7d/aH9c/1E/S79Hv0V/QT9Ef0M/RP9EP0L/Qj9/Pzv/Nn8yfyv/Kn8pvy0/Lf80Pzj/Ov89/zq/OL84PzK/Mr83fzm/BT9Q/2T/db9Av4//nP+q/7R/vz+LP9U/3r/rP/o/x8AXgCTANUABQEZATUBPAE+ATgBOAE1AS8BNgE0AVABVQFjAV0BTgFCARkBCQHXALkAnwCJAHUAXwBJAEQAQQA8AEMAKwAdAAgA/v/1//P/7//3/wwAIwBWAF0AkgCrAMwAEgEXAVEBYwGSAccB/QEvAk0CggKgAt4C+AIpAzQDPQNCA00DTwM6A0MDGgMiAwkD2wKxAn0CTQIQAswBhQFFAd8AsgBcAD0A//+e/3j/Hf8K/8n+i/5c/iP+7P3R/bH9kv2U/Xr9p/2i/aj9rf2q/br9vf3W/ef96f33/Q/+Hv5d/lv+i/7B/sP+9/78/gn/Gv8b/x3/SP9K/z//av9a/3//h/+O/6D/fP+H/2f/bv9p/13/af9Y/2D/Wf90/3b/lP+o/6f/z//p/w0ANgBnAKgA7AA4AX0B0AEbAmsCzwIWA1sDvwPxA2EEtQT2BGIFdQW1BcUFxQXYBcgFyQW3BYwFSQXwBHwEEgSrA0YD0wJPAs0BNQGgAAgAhP8o/6P+If7V/Tf99/yX/DP8EPyj+4n7Q/sl+wD78/r++tn6+/ro+g/7I/tO+437q/vx+xL8XPyP/Nr8GP0+/Y39qf3u/Rv+Pf5v/oX+nf6n/tD+5v4M/w7/O/88/yz/Nf/9/hP/+P78/vX+Af/x/vX+Ef/1/kf/JP8x/zf/E/8y/zD/Sv9f/5P/uP/y/xsAVgCIAJ4A1QD0ABABKQFDAUoBZAGEAY4BigGpAbEBsgHEAacBsAGaAYwBdAFSAUcBGwEKAQkB8wD0AO0AxADHAJkAiQCOAGwAaQBTAEkARwBEADsAQQArAB8AGAAHAAcA9//v/9f/w/+3/57/rv+a/5v/q/+c/7n/of+1/7H/mf+p/4//qv+t/7n/xv+8/8T/t/+1/8L/vP/B/6//jP+C/1r/Xv9F/0b/OP8d/yT/+P4U/wT/BP8L/wT/G/8S/zf/Uf91/7T/3v8RAFMAYwDAAOoAIgGDAZUB8wEaAkgCkQLFAvMCPQNdA4EDpQOVA7IDsAPDA90DzQPUA8kDqwOjA4ADaQNKAw8D/wK8AmcCSQIBAskBpwFpAVUBNQHwAOcAxwCpAJoAWQBRABsAEAANAPX/9//W/8r/s/+a/4X/Xv9V/zT/Dv/7/tT+xP6s/r3+1P7L/tj+2/7F/tz+0f7K/uX+0v7g/uH+8v71/iD/FP8V/z7/Bf8//xv/Hv9F/yX/O/88/0P/M/81/yH/If8S//T+4/7P/rD+jv56/k7+Pf4M/vf94v3Z/an9lv2U/XL9g/1n/WL9af1v/XT9qf2t/br98v30/VT+bf62/uz+Cv9S/3f/xP/y/ykAYwClAOIAKAFXAZcBzgEFAkYCeALBAvMCNANwA7QD1gMMBEYEZASsBLwE4QTwBOYE7QTQBL8EewRBBBQEswNuA/gChAIaApgBIwGpAB4Amf8W/4j+Hf6P/S79xvxX/B38wPuw+4b7cPt6+2/7hfuL+7H75fsU/En8h/zD/Aj9O/2O/bX99P0g/jT+av5Z/n3+gf6Q/qj+lf6c/pn+h/6B/nb+XP5H/i/+GP79/ff92v3b/c39uP3D/bD9rf2i/aL9ov2b/Zv9kf2R/ZP9mv2e/bD9wP2//eT95f37/RP+CP47/jr+YP6D/qD+5P4C/0n/gf/k/xoAeQDVAAMBfAGyAQ8CXAKPAt4CEwNfA7ED2gM+BFkEjQTSBMQE/QT7BD4FWQWbBe8FGAaQBsEGVgepBxwIiAjCCFYJbQnaCQUKRwptCnsKhwpECiAKwAleCe4IVAiUB7sGtgW6BLMDiwJ2ASoA5f6m/WD8TvsY+h/5Xfhe9+L2FPaA9ST1qfTD9JH0u/TP9AL1U/XG9T720fZp9/H3tPgi+dT5Q/rb+mb79/uI/O/8ev3M/U7+nv4O/z3/g/+//9z/LQBCAIcAsADRAA4BNQFeAYcBqgHuAS0CXAKpAtgCEgNLA3YDtAPjAxUEQgRdBHkEgQSUBJ8EkgSZBHsEZwS7AyEDpgL+AVcBrAD3/0n/vf4P/pH9CP2m/EX8+fvN+6n7qPuy+/X7Fvxj/Kv89PxZ/Zn98P0t/mn+kf6+/s3+4v7x/t3+6P6n/nP+Nv7k/b39e/1J/fv8u/yX/Hb8b/xb/FP8TPxP/F78X/x7/Hn8mPyq/Kr8vfyh/J/8lfyd/KL8kvyI/HT8a/xe/F/8XPxs/JX8wPz2/Fb9tf1H/uP+f/8+AOcAugGVAooDnASbBcUG7QcECR0KNwsuDDYNLA76DtsPVxD+EHIRqxEhEhsSOhIbEsMRohETEbgQMxB9D74O4w30DBwMJQs3Ck8JFgjoBoUFIwS2AlgB6P9t/tP8Ivui+ff3hPYh9cXzkPJ/8XHweO+k7tvtbu0B7d3syuzE7PXsL+2T7Tbuzu6s77Twl/Go8qHzw/Tp9Tf3lPjy+Vb7ovz6/Tn/gQCnAeMC9gP7BNoFgQYRB28HpwfhB+AH3QexB1wHBAdkBtAFJwWZBA8EigP7AnUCAQKEATAB8wDeAOQACwE9AYUB5wFkAgwDygOQBEsF+wWbBiUHjAfWB/wHCgjgB4wH7QY9BmIFawRuA08CJQHg/57+Yv0y/Bb7KvpK+Zv4EPiq95P3gPfY9xr4iPgb+aP5b/oi+/v7w/xh/fb9U/6v/t/+8f4D/9L+mf4r/qL9Hv11/Nv7Nfud+hj6i/ko+db4qfiX+K34/vhR+dr5YfoG+8n7gfxz/UT+K//0/5QAQAG3ATcCoALpAjEDVANlA3UDewOEA6kDzQMgBIAECgWpBW0GVgdiCJwJ8wqDDAUOmw8gEW0SxxPSFNcVzRZDF70XsBdMF40WTxX1EzQSThA7DuELbwnfBkUEegHj/oL8SPpD+HD2uPQx8+DxyfDu7z7v2u6V7mfuXu5A7kzuau6I7rDuoe6q7pvufO5n7k/uFe7i7bHtkO3S7Q/uVe7L7kjvBPAb8V/y0vNO9c32dfhx+or8dP5tABgCngM9Bb4GOAhiCREKgArWCjcLbAt3CyoLhAr2CWIJDQmlCAoIXQezBkEG+gXoBdIFtgWnBbkFCwZkBrsG9AYOBxwHIwdCB0MHFwe1BgkGRQV6BKoDyQK/AakAk/+S/pz9svzS++r6F/p0+Sj5+/gS+S75RPmR+eb5dfoJ+5/7NPy0/En9yv1B/oX+nv6r/qn+lf5k/hv+pP0e/Yj85PtH+5H64/lF+dP4jPhv+Ff4T/hA+FH4nvgC+az5MPrS+n37L/wK/cz9oP5J/+D/mwBXAQ8CjwLHAuwC6AInA4kDEASiBAcFmAUvBlQHXwiqCf8KXww7DloQqhIzFVgXExnbGl8cIB6qH+YgdyFHIdQgnh+fHhsd4RonGNUUmRFvDokLOAixBNwAIP3h+Uv32/Sf8mvwZO4E7TDs0uut64nrcevF63/spe2S7mDvqe/f7xzwaPC98N7wtPAl8L7vRe/w7qHuMO697YPtU+2T7Rjuqu5j7yvwSPGc8mn0UPZj+Gv6P/wn/ur/2AGbAzUFgwZxB0cI4whlCa0JlgknCaYIKwjQB2sH4gYpBlMFugRvBJ0E3wQiBXMF5AWnBogHjgh4CTgK+grMC70MlA0dDiMO1w08DYYMygvbCpwJOAiYBtgEKANQAZz/xf0r/M36w/nt+Cv4kPf29pP2ZfaL9sT2Qfe29zf40vhR+eD5SPqx+vP6LPtK+0r7MPve+n36EPqu+V/5Avmk+E/4FPj69//3IPhF+IX45/h6+Un6Ivsd/Cb9R/5n/3QAewFeAg4DtAMgBHcEpwSEBFQE4wNfA+kCTwLDASEBeQAHALf/wP8aANwAGwK0A6QFtAcMCpAMaw9qErwVGRkcHNYeECHdIjckMCXyJS8mtiW9JOQieSCnHVsaKBe4E1cQ5AxHCf4FrwK2//n8n/qv+OX2ZfXl837ySPFA8JbvCO+n7j3uve0Z7STsJesd6i3pTehs54zmmeWU5H3jeOLU4XPhheHO4VniHOPe4/XkW+Yu6G/q4OyW71byxvQ+94n51vsi/koAXwIBBD0FDAZ6BrYGxwayBpgGTgbnBUsFqgQNBIcDKgMDAykDeQPgA2cEAwXABZ4GrgfeCAMKIgsBDNUMiw0gDp8O4g4KD/0OuA5HDpsNvQymC2QKJAm3B0gGxAQ4A7gBPQDx/qT9cvxb+1j6ffnV+E/43/eK91r3TPdm96z3Gvid+Cr5svlE+t36b/sI/I789vw//WH9Yf1P/TX9Gv31/MX8i/wt/Lb7K/uz+lv6K/o2+mv6qPr8+nr7B/zW/Lj9yf4CAD0BegKRA5wEdwUSBrgGCAdRB2sH/waeBtEF/gQ8BEwDgwKSAcgAAgCT/3T/rv96ALcBeAN4BbsHQwrkDOQPCBOEFhIaUh1aIOQiACWKJqcnjigBKYIoWCdIJXYiNx9gG6QXoxOVD2IL4QaIAhz+DvpG9g/zcfAP7gjsGupN6M7mh+XE5FfkM+QO5PDjv+NG4+vinOKK4n7iqOLT4gnjWOOb4w7k4+To5U7nw+hT6hfstO2j753xz/Mb9kP4avpZ/A/+of/vADQCTgM7BBcFnQXKBZ0FVgUVBcoEUwTdAyEDGQIHAfn/Fv9h/t39df0l/cP8ZfxG/Er8yvya/ZT+t/+wAKQBkAJ/A5gEuwXoBgwIGAkvCh0LEAz0DLwNLA5KDloOIw7jDXkN5AwlDPkKewmXB38FfgOvARUAt/5T/cv7VfoS+SD4hPc69zr3UfeW97P3xPfN99D37ffl99j3wfeW93f3Z/dt93r3lvfc9zP4oPhN+R36//rS+5j8MP27/TD+gv7q/ln/z/8qAJUA9QAlAScBOwGBAcABCQKPAusCOgOYA70DIARgBMUEagXVBV0G+wZcB18H+wYYBsIEngMmA4QDwwQyBiQINglbCq0LEQ4lEpwWchtgIB8kiia4KE8qgyxKLowvFzDjLT0qlyUpIdgcYxi1E34ODQm2A8P/pfwY+mb3B/Qo8PzrE+hK5WTj7OFc4CfeJdsE2ErV9tPS0yfU79TW1TbXD9nV21ffweIM5kvpr+z472Hz+fYa+pH8Lv5T/2YAOgF/AhkEXgVeBtsGTgfeB3cIFwmrCdQJUwloCCAHtQX3A04C0wBO/8v9Pfzg+nf5Nvha9//2Cfcu94D3p/ec94/3off094j4Ivmr+UH63/oB/K39sf+0AaIDkQWCB9oJrgySD+gRexNcFJwUVhQTFMQTYBOVEikROg/PDG8KPghkBtYEZQPZAT8Ap/4p/bf7OfrJ+Cz3rPUU9IHyRfEc8DjvWO7G7YPtnO0b7gLvNPCp8UnzCfUX99j44Pp7/Av+Fv/E/y4AMgB2AGYAkQB6ACYA2f+u/8f/9/9EANMAqwF/AiEDzwNSBLIERQXEBYkGAQdJB7EHugfVB7oHlQdZBz0HNgdMB6EHqgcbCJMIwAjzCZsKOAxmDqkQlxPdFbYX7hmdG0wdcyCBI4Mn4CogLgQx3jHGMQAvoysoJw8idR4LG3YYZxUKEb4L8gTf/+b64PaD8+bujer75NbfHtyz2ULXh9XZ0ojPwM07zTnPItOK1w3bot1R32Hh1+TI6dPvBvUM+Yr6a/pD+u/5VPsr/Zj+IQCcACAA3P8dAPMARwJaAzUEuQTVBDIF9wQUBP4B8f5z+7z3dfQ48r3wge/m7tXtyuyL7FPtDu9w8Vb04vZs+Cf52/ge+dH53fpd/Fj9gf6h//IAvAIMBgUK+Q3uEcwUIhdiGTYbrhwnHfAcLhwpGx4aoBiAF6oVYBMmESkOcQvECYYI5AYjBRwCi/45+2j4LfZC9JjzvPH072fuf+wL7Pnr2uyQ7YvuBPDL8eXzHfZO+J76kfwK/gkA9wApAjMDiAMFA8sBlwD7/tL9I/2n/H78uvwK/ZL84fyJ/bX+WwBDAWQCCgI/Adn/u/2v/Df7Hfqy+Sr5U/ki+gr7DPyH/OT8Qvx0/JL+DQH2BFAIpwrmCGsHyAQiAxAGWQl5DQ8S2BRWFA4WlBi+HnIm6S3yNSA4RTjbNK8wRizYJxglXyHvHQAaTxdTFNcQwg3QCSwFsQAl/Af5QPb08gTwV+yj58bj79873bbbH9uj3APe2+Cc4kvkgeW35Vrno+mT7R7x8PQR+OD46Pmn+lj7F/0+/jn/w//f/u79FPzT+qv52PcV9xj3vvcw+Bv5cfmP+AP3P/UZ9KLygvEK8Ojt5OtY6a/nr+cN6OzpF+yH7dzvVvIu9Tn4b/sJ/tT/KgE7AggEcQUfBxwIKQk3CiILWA2DDzcSkhQdFp4XjhgyGRga8xq1G+UbeRqsGBIV9BFDD94MHAyAC8wLjwuDCtEIxwXMAhwAFf31+2X6qfif9vHyLvBE7b/rvOuT7efwN/Ta9jH4Tvhs+Fb5/vme+n76OPr7+ez60vsj/Ub+6/4dANb/wv/R/w4Arf+P/qf8mPr591b1m/O88TnxcfDb8KzxQfIl8y300fVZ9oz3hfhh+aX5Ufny+GD4Fvjq+P76T/yi/s//ogC8AYkBHwROBgoJzAyMD7sQzREsE9UUDBoxH2sn7i4CM0c2DTSKMSwuQCyBLpcwWDLFMngwBSsXJmMjiSKJIlMhfRy8FdgM5gOk/mP67/WK8o3tIuhj5CPid+Or5SPn5+Y+5bTi4eB/4Yjk4ufp6Ybrx+rg6W/qbOwt8Sz2HvkP+9r6YPj69fPzRvM385zyb/Is8mTx4fAk8R3yrvLx8g/zq/Kp8TrwyO4N7Vjr6uhI52bnMejK6m3uIPIw9T73sfgF+qj77Pz8/c3+sv7p/UD9A/3T/P/97v/2AeYENgf9CKELNQ6IEGcSxRJqEhcRIRBfD+4OiQ+eDw8QpA/oDgoP7Q8vEVISZxIsEegOHwzCCfQGDAXkAogAc/5O+xv5jfds9uz1R/X19Mf0b/Tg9Iz02/Td9AL1yfVh9b/1cPYF+Nr5sPvT/Kn9cf61/h//Uf8CAPb/Mf+V/WX7qPms96X2/fUk9f/zjfJ28Rnwne+H78zwbPIr88LztvN3817zvPP79CL3iPlL/SYACgPpBYkGxwfiBsgGFgf7BosHpgfFBqADJgJxACYCPQeBDtEYKSG5J+cq3izuLosweTX6ORw8WTwTOcQz4y2ZKY8nWCfTJgAlriHYHP0WsBLQDu8JmQT//D/0MevG4xPgFd5x3fHdd92u3bTdgODv5ADp+Owq7lbt3eln5oLk7+Ti5YboPOwj79zyt/Wd+Mv55vlF+dX4b/gO+Lj44ffP9fHyeO8h7Nnqg+sH7Zbv5/A58eTw0e667d3smuxo7cjukvCK8jX1H/hG+7P9EwBhATACSwOjBOkFWAbVBmcGJwXeBHsFiwdVCtQNShG1E/QUrRUyFgUWhxbvFfQUBRNXEEEOAw2rDIgNBw+qD8wPpg7ADIYKAQkzB2MFHANX/4n7/fY083bxq/DM8NrxhvM29c71efaI9ZX08PO28/fzZPMl8+jylfNJ9NL1Sfes+IH69PvA/NX8Bf0g/CL78Pjs9qn1X/SY9Lj0XvU59Yv1HvZT9hT3pvdU+Sb6TvqX+rH6YvqD+vH6oPvA/N799AC6A/0FUAlGC4sNnA5DD0sQghDjEIgQexG9D48P/w/1ECoV2BfvHd0idydEKR0rjyz5Kkkq1yg/KMIlWSY5KAAq3ysbLV8sRSiwH+kVdg09A5L9aPp89X7vI+cj3UrVXNDN0g7a2eLT6lrvV/Fg71ntA+sE6nTo7ebt5sLmHOgw6YPrNu5D8ErypPYq+1D+1AFkA+ACSv/u+rv3X/Ss8a7wsfC38DbxYvIn9LX1tPbN97739vZ29ZXze/LS8JDvpO4D7q7t6O3N7wPzWPfX+3IAqwNiBXsGAgcZB3sGlgbSBjMHSwiwCcQLeQ1xD00RrRIQFHwVIhdjGMsY8xdKFgITgw9xDPQJBgmTCG4I7AfYBicFJwPaAfAAMQDa/8L+Af2x+tL3n/XS84fyoPFn8ZHxAfJ+8lvzofNm9G71y/WN9in2UPZV9oH2wPYD94P3d/e494H3YfeP9xr4WvjD+MP4ofho+Jb36/b+9br1kfUR9uj2Ovgd+uH7xP3K/pH/BQBCAOkAigE9Ag4DmwMABIgEFQWOBT0GegZ3B3QH5wcnCVUJxwmBCQIHRATuAWoAXAMVCD8QjBpwIvQpsy2vMHwyrTKGNLc0YzMDMr8tFCgCI+8dpBq9F6gUgRH6DoYMKguwCrwJpgeIBM3/Nfof9Q3wGuy96DDmV+Rr44njE+WW55bqWuzj7DLtlOys7N3sPu207Yrt1Oxs7PDrIuv36lvreOxJ7t7w6PPo9l/4kvhz92T1yvKb8Lvve+/W7xbw6+9j7wjvgu6z7rLv9vCN8vzz8PRr9Y31G/Wv9ID0oPRH9XD2+vfx+QH8l/0b/6MA/QFTA+cEfQYtCO4J/wrmC3QM1QwnDdoNHw+LEGcSyhOfFAwV9xR6FMoT8xLNEeMQpw9RDtsMZgsOCqYIwQdbBlIFigTzA7oDCQM/At8AjP8b/sv8kfuV+s75nfm/+br5Dvr3+SX6M/pp+nX6Z/pf+vT5X/mG+Fj3MPaX9TD1MvVk9d31ofZO9yX4sfg/+an5Gfp4+sr6Mfty++T7Nfwm/E38X/y3/Kz9l/77/xMBTAIHA/AD1QM1BMoDSAPSAlsBTwFKAVsBjwIXBB0EsgWnBkQJFQ2yEMoW8xrvHSAemh2DHEgbKRt9HAge1h6FIMcg1CCYH4EeoB1fHIwafBjoFv4TfRIHEcQOjAxyCXsGfQPHALv+R/0f/Bj7r/l998H0yPHE7wzuQuzJ63TrVeuV67/r2+t664Hq3emL6efomOg36MHn4Oal5fXkxOQ45QDmVOeu6J3p7+ng6SbqTeqf6jfrxetF7NjrIuvH6k3qQepV63ftX/A68871GvhK+Zb5WvnK+Iz4vvjk+fD7uP1k/6cA+AAIASgBsgF4Aw4GzgiIC44N1g5lDwIQOBHeEvoUExcBGU8a2xoRG+EaNxpEGdsXCBYHFD0S2hDAD/oOKQ5JDRAMaQqvCMcGrAS4AgcBc//g/W/8Nvsj+kr5sfgZ+Lb3Y/cI9+j2qPY79tL1O/VX9J7zBvON8mnyfvK38hXzxfOR9In1qva896D4X/nu+Wr6/Ppz++v7cvz2/Pf8K/13/ev9pP57/5wAFwK2A3cFKgdZCHgJ4gk4CmEKtgrvCzYNIg8HEe0S/RQ9FxkZ1BocHOocyx2UHYgdah0zHYIdlB3pHT4eXh0iHKoa0RjeF24XMxgHGd0YrRcSFaIRkQ1DCnMI7wdICGwJEQpHCdgGGQPs/t362/d79p/2Ovds97z2LfTN72/qSuUA4SHeO9133Uzeod4b3i/d+dvW2hTaINrc2s/b1NzA3Xze9t4U313f79/n4GziXeS85qXoHeo367PrM+yC7GjtUe+L8eXz8fXI9/L4aPm1+Ub6KfsN/Dn9EP5O/vP9gf1b/XH9if6VAJIDPAccC4oOShFaE6sUghUjFusW5BfvGI0ZmRkgGQsY7hb8FVgViBU+FhYXzxetF8EWBhXYEqMQdQ7VDJoLpArLCZQIEAc5BTQDSAGd/1z+c/3L/Dv8U/sB+oP49vbF9en0H/SY8z3z3PKN8iby9fEO8lPyovLH8hjznvMO9L70hfVf9hj3YPdP9832Ofaj9Zn1LfZp91/5/fvU/mwByQOxBXgHEAl1CvYLag1IEGMTRBbjGLwauxtNHKIcjh3EHvkfcSFYIpsi3yGLIL4eRR1THGUcZB2ZHhggoyBCIL4eBBzFGJcVFxMdEYkP/w3eCzUJPgY2A6gAj/5y/e/8o/x9/NP7R/oL+Cf1yPED7krq7ebw487hn+Dv36bfoN/Q31zg7eBz4dTh8uGq4QzhQ+C+36bfyt9K4DzhEeKi4hbjv+PE5D3mSujl6n3thO8V8dTxAfKU8SHxCfEk8eDxDPPE9NH2//jW+of8wv3p/kkAtwGuA7MF+Qc6ClAMHQ40D8AP8A8kEHwQChGoEXASJhPKEysU7BMzEw8SAREwEMAPpw+JD1IP3A4UDusMhgvcCQoIQwahBEUD6wGlAJD/kv64/db82/vv+vj5R/mY+Pz3gffw9lL2f/WM9H3zZfKC8erwifBf8EbwUPBu8GLwZfBZ8FbwcfC68FHxPvJV86z0EvY994z4rPnA+gP8EP1Z/pn//ADbAmEENQa9BzsJigrQC84NahDyE/kXrhz+IIAktCYCKLIoyij7KDIp6Cl5Kgsr/ivMLMYsHCx5KlcokSU6Ip4fLR2RGz0a1xhoFxsVQxIxDzEMgQkrB4UFNwQtA7YBx/8w/ej5m/ZJ85XwYe7j7NjrDOt16lTp/udD5rLkleOu4hfiyOGX4UjhmOCs363e0t1T3ZDdfN6m38ngquFm4t/iIuNM48bjjuR65c7mRuiR6YTqVesk7PXsBu5L7+fwzfK39Jn2P/iX+ar6svvK/AP+ZP//ANMCpQRnBsQHyAiTCSYKqgpZCwwMAw3mDZMOGQ8fDxkP7g4BDzoPVQ+MD48PaA/9Dk4OcA2MDJcLxQrsCRIJHAgNBxgGEgUlBDwDZwKwAS0BtQA4AKL/tf6c/VH8Avvh+eH4K/jH97L34vcw+H74rPij+ID4KPjC92r3Eveu9jb2n/Xd9AX0PfOf8j7yLPJc8s3ygPOO9Mb15vbo94/4uvi4+Ib4YPi7+Fb5Ffpb+5H88P3w/2wCVwYtC6YQhBY8G+4e2iCoIS4icCKsI7YlGiiqKuQsvi4kMOwwcTF9MaMw7i4uLMooGCW6IQ0fXxy3GdYWjhNtEKQNVgtqCd0HiQbsBNcCfgD9/Z37o/n+98D2mfVX9Bjz4/G38I3vku7o7Vztsuy56zjqPegM5vzjhOK24ZfhF+L94t7jReRd5Cfk2ON94/3iZuLg4aPhzuF+4q3jB+VP5mDnSuge6QfqMeus7GruAfA88fjxTfJ18tDyqvP79Nr2Afk3+2P9T//6AIIC6QMrBUMGMQcSCP4IAwo0C1wMYQ0FDmMOnw6yDtwO+g7WDpAO5g0DDfwL9gpDCrYJnAmUCaEJwAmwCZMJFQlECCUHBgb2BBwEZAPHAjACmwEdAVwAtP/5/lX+xf1Z/dz8LvxK+wT6hvjp9lz1I/R382Tz6PPy9Ef2g/dR+KP4a/jE9+b2JPaQ9U71H/XY9HT0z/MJ82LyDvId8tbyCvTU9Tb4Hvsk/ncAwwEfAp0BfQEZAmkEiAh/DcIS8xdTHCQg+yOVJ7srVS9MMpI0MTTdMuEvRixdKJIkoiGYH7IedR49H+EfWiCSH3YdEhqnFdcQWQyUCJAFkQMqAgYBLwDt/nz9Bvx1+lT5iPhC+A34y/cR97z10vOj8VrvLO3C6+LqxOox6yTsR+0M7iruw+2R7KXqpeht5qDkOuMX4mHh1eBu4OLfh99X34HfVuDC4bnjeuXz5gro3ujF6aXq8Ou37bXvEfKb9FX3Hfqp/L/+hAAPAjIDTgSIBcIGBwgYCdMJ/wlHCtIKbAtNDO4MAA1rDHsLiQqxCQ0JcwjWBy4HcAapBSAFzATRBPwEJAUGBW0EUwMUAt8AIQDm/xIAqQBVAUMCBgPDA3QEHAWABT4FTwTeAhcBaP8d/uj8svuB+lP5H/jI9sL1HPWs9IL0lPSR9I70ePRf9ED0J/T084PzMfMx82HzMfSp9XP3RPnK+vb7ovwj/Uf9+fwz/AT75vl3+U/6J/w///ACngbtChsQnxbQHvUo3TJyOzBAqEFhP5Y7LTi3NN0yEDFJL1YuJS+WMTs21DpwPSg8hTWEK28e1BDcA2j4uu0n5IDbXNVr04fVC9yV4xHqHO057MPo0eTI4Vzg1t8y39Held573zTji+nR8Z764AF6Bj8IkwhoCEoIYgc0BR0BWfz+9830NvRo9Tf3zfd+9m3zje9e6yXoz+VA4w3gQtw/2ZHXx9dX2sXeoeOd55/q++xs72XyOfaR+qz+AAKCBNkG6QlkDcIQxxOLFeMVQhU0FD8TvBJDEpkRcBAED14N9gsiC5YK6wkBCMUE2wAR/fv5pvfx9YD0IvMB8ovx7/EY8/b0FPcV+XH6HPt/+8z7mvyN/Zf+rv/GABgCvAOqBaQHgQnhCpQLXQtaCoYINAbDA0IBpf4E/JH5yver9lv2rvYf94z3kPeG90T33PZN9lT1IPTx8i/yLPIV82z0Dfb691H5uPqZ+w78I/xE+3H5Z/Zn83Hwye027GTr8+vI7kL1UABzEPYiwjV/RX9Pq1MbUnROn0kHRJM+mjgnMgUrBSaSJOYlbSodMMQzPTS8L6ImGBpRCgf9nu7T4uTYss8wzBzIucmFzELR/tcP3vrlXutD7mTuKO0z7G/sX+2d74XxffMp9xf8iwKrCa8QaxfNGwkdnhp0FJ8MfgQs/bf2RvAS607nyeVn5jvnJeja5qXlUeSo4sngot2r2n7X9dQ6083SXdSo2ErgM+kR8g354/3+AYcETAd+CX4Lgg39DtEQtxFzEloTcxX5F+EaWRzlG4wapBfbFEERKg3VCMcDEf8j+8r4rPj6+aL8Tf+x/1T+Jvv+99T1ifQo9CP0ifRV9j/46vr+/Bn/HAE1A0EGMAj0Cf8J6AksCeEHcgZeBPwCYgI7ApwCZwPCAngBrf6y+7v4FvXQ8snweO+A7ajqfejz5nnmHOhG6wvvHfKY9B/37vc1+TH6RvuL/Kb8rf6rACsCYQTVBFAEgwITAgQDoATgB3cK/w3MDBYMkAn5B+YNExf0Kfo5okaESwJIskNZPH473jxTQR5Fr0VDRN48zzSHLlUqOSgAJZ4f6hdMDZQD7Pn86wvcoclRuiizorMRvWbHt9Ag1cXU/9HWz4TS5Ngu48Tqoe6N7b3oT+ap53nuWvkzBdcQzhoqINIh4R/BG0AXahJfD6QNjgtYCYoFaQBa+Szype3Y673tIO8R75XrlOSL3BPVpdBRz+/PWtLi1X3YettB3Qfg9uOo6Jbv9PVe/JwC+wceDWoQAxLqEtsSdhXcGbIeKSEYINgcHhjsE9kRzRH2EvgT5BIFED4JJgHD+WD0CvIz8brwkvCK7+3uIO+j787xVPQ2+GH7mf0L/2H/cv8c/6b/yP+uAA8CbASkBv4IVQr/CTwJHAcaBg0FhAS2BDsEGgP3AA7+g/vb+Lr2j/SB8vvxNfLH8mHzKPTv9B324PbK9wP3U/SM8EPrVOcn5CLjgeV96IPt4/GC9nr75v66AToDSASFBXcImAuqD+sRMRIWFMoWJCDLLfY8qkrfUAZPJkjmQP5Az0mRVc1g8WA7VplDty7SIdgcmB+SJHQk9R21EJr/Ee8w4d/XbtDcyqTG5cIywKK9Nrymuqe5abq6vYLE5c1H2Ivh3+cS67/rCOwk7vTyQfsXBawOyxWxGTYb/htNHIIdjR7EHnwdDBqqFVIPYQgWAZf6cPXO8V3vru087OnpW+Yk4YzbC9em1FbVzde+2hDd39123qHemt8L4nPmKuxi8nf4Xv22AV4FTQkwDV8RSRWIGGYbgh30HhkfAh67G8MZRBncGXgbgh25HSEdzhrnF+QUPhEgDk8KHAcaA4b/Yvxt+S73kvRZ8nfwne+b7u7txOyD63XqZOnz6HjnPeZp5ITiwuFg4hnlX+iV69/t1O4m79bv1fC38gr1wfcE+4r9nABlAwsGMwmjC4sN/Q7VD+AQOxEjEf8Pbw77C74KHQotCQYKkAmfCbcIGQh6B54FxQJu/NXzG+kM4VjeEOOS7vX6pQMgBaH/Ovgg8sHysPzgC2gfQjBiPnVDtEFOO5MzijGTM4g9JUlkUnlVflDsRdQ6JzJELtctwipOJREbug8bBYn78fOP6ynifNkz1BbT29ZC3Cfe6dmUzxbDj7nQtSG5DMFlyDvN489N0mzXP99O6Rzz5Prb/8oBugKqAnICDwJrAQMBaQBNAUcEWggPDZ0QhBHeD4ML9wZgArz9VfoJ97j00/Ka8UjxmvFf8onzXfR/9EX0SfNZ8hLxne9A7sHs6usI7BDtXe/B8tP2y/r6/dn/cADs/1z/3f9TAQ4EjQbQB80H5QbrBjsIxQoRDiwRSxNNFMkU9xQ/FcsVaRY7FpwUABIrDwMNAQzgC7oLnwrACJYGewQcA+0BeACf/iD8Lvnj9dPytPD/7p/tFOxH6kLpqOgM6V/qz+uK7XzuLO/779XwVvL28731Kfej9773j/dP94z3Q/hx+Rr7XPyd/YL+0f5V/x7/DP8e/5/+xP77/jQAuQGbAq0DeANCAycDUwMKBaMGJwmjCy0N0w5iDzMQoxAHEVsS9hLSFNMWbhmgHZEgyyLGIeQc+RU7Dj4JSAhLClIPyBILE8oRSg7XDboPBBRtGgMdFR3jGKESOA56Ci4KwgoEC4wL6woxC6oLHAz1C84JpAZQAo3+LPye+gH6nfge9vTyE/DL7iDvRvA88STxxO8A7rjsV+wT7YrtSu3t63/p3Oej50LpY+xX73PxAfIP8T3w0O868EXx4/Fc8sjx8PCu8NvwDvJA82v0RfWJ9Sz21/a89zz47fdj93L2DPZB9gX3jvjF+aj6F/sm+8/7Ev30/iQB5wLdA+ADhwNiA8AD2wQgBgcHgwenBxsIGwleCoMLDwwBDJsLxwodCrQJhQmfCSQJWQg6BzoGDAZRBhQH4QdfCG0IDAhCB1gGjgXVBHUEtwPkAvABtQARADj/pP5i/sD9cv3C/D783/sb+3X6+/iH9172LvXT9KT0pvR79A70sPMu8yXzz/PT9Nf1FfZZ9Zf0z/Mu9Af2cvic+139Hf7p/YH8/vtn+xX84P2V/zkCSQQdBqcH1AhnCo4L2wz5DbIOaA95ELERYRKPElgS6xEGEvMSyRSlFucXRRibF2wWWBX0FDkVnRWLFcAUIBMsEW4PEQ4wDVYMQAsLCuEICQhGB2AGBAXXAkcA6f2R/Nj8k/4jAR0D2QPNAo4AdP5v/Qn+rv93AZMCmAKUATMACP9R/tX9Yv2H/Bj7O/le9wz2VvUo9ef0VvR98zLy1fB+7/ftbOzN6pTp9uj96IvpUOou68nrIeya7Ertc+7T7znxFPIp8qDx//DV8Gfxx/Jv9CH2PffS9w74KPjE+Ij5wPoz/HT9f/7n/nb/CgDXANIBZgLlAjADugOjBJwFhAazBnAG/wWOBd4FuQYYCH4JSwp4CtMJxQiSB2AGRgUhBOMC0wEtARwByAHBAucDYQQRBGkDbgLCAQQBHgC7/oL8XPrK+JH4fflk+6n9Cf9W/0T+Uvyo+qj5/flL+zL8XPwl+y35d/dP9nL25PeW+cL74/1Y/wsBbgF2Ae0AFwCRADwBawMjBigIMAntB8oFiwTuBZULVhRkHWMjgCQvIc0bVReaFSgXjBp8HeIemR6IHcYcLR2yHvkf5x/jHXkauBbKEy4SOBEYEJQNZAp7B9kFIwZjB2cIQwdhA2f9RPer8hXxNfIc9P/0APMj75nqQueq5u7ncurb66Hr3en/5oLkqOIv4rTioeMy5SnnqelO7Fvu2e+G8PbwHfJo9Nv3ZPv8/W//of9S/0P/u/8FAV4CtAPRBFoFggX6BFgEkAN/AqkBGQH6AL8ACQDG/rf8aPp1+LL3TPiO+RD7Gfxv/Pr7CftK+pH5SPkr+RD5PPlK+eb5Jfu0/Ez+G/9g/wv/p/7Y/kX/tv+a/+v+F/5w/YL9Nv6L//AAKQLuAtkCdgLHAXEBOgF7AGP/Yv1A+7/5HPm8+eP6zftD/Pf7RPvD+mn6lPqw+j36O/kg9zj1J/QF9Hf1hveG+Qj7yvtH/Jn8Av0w/Vz9Vv12/Uj+Sf8WAZ4CVQM/A4EBlwA8AW8DpgcoC58MvQs/CPYF1gahCwYVPh4GJf0mOCPRHSQYCxbLGN0dGSSOKCQqvSknKPcmKSbzJOoi1h7WGSQVyhFdEPwPaA/IDdgKSwcGBEABwv73+xb4dPNM7rnpsOay5I/jI+IT4C7ewdz43Hbew+Dr4o/jA+Pa4e3gKuGu4iXlAejE6m7tN/Be8+v2cPpw/an/IwFWAsEDZAX7BhMISAgMCOoHaAjmCd0LfA3jDXcM7glUB7oF0gUxBxAJ6wnjCGQGKgM8AD/+2fzj+5n74fsQ/Y/+sv+2/3P+X/wQ+oj4GvjE+K75e/pk+q/5Cvmp+GT5sfo3/Ij9/v1u/X78b/vT+uz6a/uL/Hj9j/5S/0n/Gv8r/t78evvg+Rj5rPgP+Rz6yPph+xX7sPpB+uj5FPrb+UX5+fd+9jz1pPT59PL1PvdX+Er5yfkh+oz6j/qt+sP64/rn+rP60Pp4+hP6PvnF9wP3iPat96r6iv72Au4GZwkrCt0IdAZbA8wAIgBTASYFPAlRDrgQCRJVEgITJBg9Hz8osC9NMV8sMiMmGXYVoBi/It4xiTx2QkhAUTgZL+Al+R9lHAEZcBUaEboL5QYiAsL9vfjF8wLv8+uT6gvqsOkj5x3iW9st1FHPa83wzvHSQtfo2qncFt3a3C/dGt/B4p3n0usp7xjxmvF78ij0Jfdk+3b/pwP2Bg8J0wp1C70LdQtwCq4JJAlYCYAKzQurDKIM6gvqCmEKdQq8CjgKhQivBRgC6/4v/Sb9Ev7r/sn+hP3G+336cvqm+zr9E/40/TD6Q/aT8hbwSO+D8EbzR/bK+PX5l/nZ+Jv4Xfmt+qL7Rfwb/Bz8GfxZ/Db9S/4AAHIB2gJFBG0FkgUmBeADkwJpAVwAtP+V/hP+Nv1x/Pn70vtu/Af9X/3m/G77Yfm290b2lPVH9UX1pfV09b31/vWk9sT3+fgA+pT6w/pM+nP5ZfhD9/H2m/Yf+Af6nPxhAKgCFAaiCMQLew4lD7YNXAjNAID4UvO08mj4lwJzDQIWnxncGfAX1hY+GW4f5SazLU0xKDEbLRkpKCemKIItfDJeN9Y4jzerNMcw9S3CKoslZB1ZEW0EDflF8fHtVu0Z7dzqbeal4PnbRdmu2LrYhNeV05zN7MePw0jCm8OLx8LMNdKu2LLfEeei7bTy6fXT9vD2D/ft96r6v/7PA1YIGAxGD64R1hNXFvsYPBtZHK8bmRn5FUMSPQ/9DP4LVgsaC+0KYQpMCYkHawXLAgEAOf2F+s33q/Ud9MTy0fEt8VTxv/Ea8pny6/LK8h3y8PBX79jtaO1V7lDwA/N69T73T/ig+D75P/q4+xv9+P1U/gn+mv1K/Qn9rP1M/8YBrwSBBoAHTAfxBjoG3QT7AjAArv2G+8b5svgm+NP3bff89vf2xPc++Qn7Gfzn+3L66veJ9WrzivJG82T1Gfhx+kr8JP5DAEMCYgNhBPsEegRZAxYB7/6e/Gr7OPxt/VwAkQO4BlQIPAi2BlEEXgGD/q79yP2VAPgD9wbhCLQIzwhgCkkPgRlZJg4zQDyTPkE7JTQyLnEs1i57MyI3OjedNcUycjDzLwwvDy0JJzMdWRHwBMT6g/Pu7VHpM+SU3/nb7tpa3Ardl9xf2HrQvMZNvYW3erZpukjC28uf1V/dl+EJ4wXipeDP4MbjJuqQ8sD6yAB2A4sD2gJ+A1QH+Q0gFgMdoyCFIF4d7xgbFRcTHRP7E/oUdhUJFfITdhLjEAQP2AwGCqoGAQNA/2r7jPfP82vwG+717P7swO287i/vp+5W7Ybry+nM6OHoi+l+6hLrYety7ObuN/P++Pr+eAO5BU8F3gIAAOb9vv1i/4cCngX5B58JRwrcCk4LlAtFC9kKPgp+CVwIVQagA6EA3/0P/I377/sA/ez9UP50/Wz7afgP9aLyl/Hv8XTzi/Uv9xf4Nvgm+CL4Mfj1+Cj6q/vU/FH9f/2v/QH+m/6h/+4AbAKWBEAHoQn/CpUKYghsBWwDNASyCDoPlxUbGGcVHQ5BBdz+ov1PAmsLcBVZHBEgQSFvI10ovC+PN687KTt4NpYxky7pLY4tqirhJOkd3BmwGkggtCasKF8hIRA2+PrgpNEvzZDS89vx4kbjtdzl0sXJ48SyxMjGM8lKytHJG8neyLnJPMwf0JPVztxE5ejtH/Wf+Zz63vgD9tX09PdV/5wJVBO3Gf4b4Rp2GHEXmhgdG9EdHx+ZHmUchxniFs8UFBNWEWgPgg2OC18JrwbXAiL9W/Yi8Gnsf+zo70v1Qvk4+ejzKOsR4n/cPNzn4KnnwO0V8cvxv/Ey8kn0uvZF+ev6qPu2+9b7cPyT/TT/1QAtAwUGvQnpDYcRhBPkEhkP0AmFBB0BzQC1AmEG7gllDMMMVwseCd8GBAViA54B9/6G+4n3LvQ88YrvfO587mzv5/Au83j09vSG83bxS+8G7rDuDPFk9eT5Xf6MAQsEmQWPBsEHkwjLCVQKTwptCZQHXQb5BSoHPgpaDqQS3RWyFmwWLhSfEb0PdQ4IDiMOkRC7E7gY3R3SIckkkSV8KEIrozB4No44Lza/LcYhnBYgEX4T7x12KEgwpC+LJeIWdAVa+EDuw+if5TTjneGH39TczNhw1GjQR80NywLKusi7xzjFj8Miw7/E3sjLzgzW7dvb4HfjE+Wq5kjpKO2s8eb2YvwgAt0HXg17ESgUCBYOGGAbnh8UI+ckrCMeIGcaNxTDD60NhA67EM4SzhJ5EHQLHwVZ/o74HfRk8XfwPfBf8BHvr+ya6RHn1eUw5vLn7OlG62rrL+pG6NTm5+YY6X3t2fJc+I79dQHhBDwHVghcCDMIhQiUCfkLuw7dEBISTBJwEvMSnROGFNUUdBRnElkPjAuUB6wEtAIJAjECDgMCA08CRQBv/Vf6Vfdo9ejzqvMu85PyCvKO8aDxyPGW8v7zYvXZ9oX4OPnG+Q36m/qj+6z8EP90AeMDFAaOB3QIzAhtCagJywi9B8QFVwWABWYHyAk+CiALWAmwCR8KVgwvDkQOzQs2BcX+vvhL+pkCIxMcJ7I44kOuRvxCrzvdMg0pLyGtFxoTHhV2HWQnMS8tLb8iLhTPBjEDRgVeDakQBAt9+3nm8NOfyqjNFti95cntOO/R6YDgTteaz6HJaMWpwlTCEsY7zWLVgNtS3pDdyNzG3S7jWOtp8rn2hfYf84rvs+7T8tX6swVtENIXLhzSHKMbbhlMF5EVoxMrEooRMRKpE8IVUBZhFboRwAx6B2IC6/61+5n5H/cN9K7wn+2w61bq7Olz6SXoBecG5vrltub159voYeks6mDsHPCG9V77gwBaBOQEZATPAvoCDQYLC5YRVxbRGL4Y+hZhFSUUPxMUEyATFxODEiYRmQ7sC1sJmAdeBkAFtwSeA/8CvwHk/039iPn+9QnzLfHG8CTxP/FU8brw+O9v7+PuVO+T78rvme817/TvjvF49Nv3NPvP/RX/jf/S/5AATwKZBBMH6QjDCIIHWwaOBUMHJQpMDQgQmRGAEvoRXxHVD74OwAlXBNb8JfXV9Rv7QQy9HxsyMj4bPV82pSlaIGUcGR/IJZYrvi7lK4omuiEkIAgjmyekKm0qsiPJGb4OoQPt+rnz/+5V7qnxrvbp+678W/cW7fDeAtR5zHDJ3ckCyrjKrclkyZ/KRs451N3ZLt723lnd19nO1n/WTdjy3EbjBuv+9JH+QwdGDUYPLA7+CosIvAgNDHURMRdaG5odlB1lHPIbQRyaHXwdZhs4FlQOmwUT/R/3ufMG81b0Uvbe9wX4+/UR8hztLuia5DvineEX4q3j4uUh6ebsU/Bh8931i/jd+h79Nv97AH8BiQL4A54GDwq2DTgRYxOWFOQUwxQJFf0UTxWAFL8SBBE9D3IOIw7FDTANpwvUCaoH2wQsAr7+EPxU+Uz3S/XH8tLwXu4i7bzrW+sD64HqZurX6SbqxOqj7HPuEvGh80z2Wfm8+43++v9bAM//+P1b/Bv80/xN/0cCwQSRBxQJsgpjC+sKwgkzCG4HSQbkBo8GHwZiBNkAvQB5ADkI0xO1IEAsHy8yKcwcixDiCkASdB8yM0ZCfEc1RnI7xjETKTEkdSMsI3wiaB9uGR0RiQhLAOT5hvVA8wTyI/Jl8m/y8/Ce6/bj+9kx0IjJpMbHx/TKCM+w0SPS7tB1z9nNOs7O0ZfXLN+95WzqD+s26dTmbuWK57TtRPfdAZ8KiQ+FEDsOgAwSDVwRiBiYH8ojpyIDHS0VjQ69C84N5xJdGE4bBhpFFcQOLgjBAqD+svtL+Jj08/Cr7SfsJOzS7UvvHPCy7/rtGuxf6ufoZuc95mjlGOYr6BHs//BE9qz6Xf1E/vf9zv04/lIAhQLVBGYGJwfyB0cJZguQDuURHxTDFAIT2A8lDO8IRgeqBpEHbgi1CKkIsQfhBvAFMgX/AycCgv+n/Gv5x/aO9PTyx/Ii8/D0hfb+9yr5d/k4+Qv4+vXS8+Dx//Ak8RHyrfPL9ZX3fPlj+9L8Qf8sAd4DLgXTBW8FXAPTAGj9GPvp+rD91gICCskPhBP9EZELRgIF+Qn1xPZG/v8HqBFuFxwcTx/DJBUtnjTsOnI7/TaSL3woHiWQJgcp0yvaKjUmxyBNHK8bAh7UIAQh7Bs1Eb0DR/Zm7KPno+eg6cnrJOzv6fTl2+DJ2x3Xj9NJ0frQpNFM08vUjdXJ1Y3VhtbG2EHdIuPw6HTtsu+W7xjuzeyN7dvwhPa1/VYEiwl0DH8NZA2xDJYMvQwnDe8NRw5aDgsOYQ3YDO8LHQuHChcKIwq5CZcI9QXdAUT9Ivm59mH2/vdh+pT8dP3T/CL7/PhH9zj2B/Ya9ln29PaS9wz5zvrW/Az+zf7z/pn+rf6T/oP+9P2q/Zv9If4p/8kAIAJKA9wDNAM9Al4A6f6E/XL86/u/+4/7+/uU/HH9zf7O/9oAtQA9ABv/zP35/J782fxn/TD+s/7Y/rn+0f7I/lX/ff9t//3+Wv2t++z5dfjn97z33vcO+L/33Pe59/D3/Pfr92r3/faH9lP2qvec+WT9oQB7AwQFagTqAyoDtANaBacHmQrbDO8Nzg2ZDMQLMQxBDr0RTxVXGOgZbRpDGu4ZRBn1GA0ZmRn/GjQcjh1vHo0e0R0cHE8aiBjTFn8VXBRvE2oSDRGeD9ENlwvgCNMFVgOIAaAANACc/5P+cvyA+Zv2XfRw857zdfRk9YL1o/QJ897w2u5Q7WDs/+v862PsGe307bDuIO9B7wLvcO7S7Wvtme1P7k7vcfBF8abx2vE18k/z5PSk9uj3afhA+HL3c/ar9ZP1JvZg9634tfmG+hv7yvtF/IH8X/wZ/AT8VfwY/TP+Qv8XAH4AZQB3AJwAagHGAmIErgUUBs0FFAWGBGgEtwQxBboFLAbwBsQHoggUCc8I+QebBkkFHQS1A6QD+APwA3sDmgJ/AfEA6QDCAdgCuwPDAyADEALBANT/D//W/vD+Mv9c/0j/IP+W/sv9xfyt+5n6lvnW+GD4IvgH+Of3x/fC95L3ivdj9xr3vPZW9hX2APYB9vT14/V29U71VPUh9lv3e/h5+cL5rvkb+ZL4iPgu+Vz6+Pul/T//1QA1ArsD+QRBBk4HTQhYCaoKKAy2DU8PYBBrEU8SnRNYFSsXyxiZGZ8Zvhh3F1oWCBa4Fv8XaBlVGk8aUBnMF3gWjhUqFfQUqxQBFOoSaBGnDwgOlgxcC1EKWwmsCDUIzQdABxIGFQRUAXD+/ftk+rH5uPnC+UL53PfD9YbzrPGu8HrwnvC68JLw9O8O7wnu7Oz561XrK+uA6zbsCu297SHuMO7r7XftIu0K7WvtFe7m7qbvK/CG8L3wG/Gj8ZPyhvOP9ET1kfWx9XD1X/Vu9ev14/Zp+MD5ifu0/Gb9TP6H/lz/8f8RAUUCJANtBNEFUweWCJgJ8wmTCkwLkww+Dn0PSxAtEHcPYA7pDZwORRBDEgEUaxQsE+kQFA6qCwAKWwlvCacJygmzCUoJOAj/BjcFZwN1AZX/Uv7d/Oj77PrX+Q/5Qvj39/H3YPjh+PP4lfip92X2LvVZ9B/0iPQ79Sr2ofYM9z33NPdG9yP3ZPdt94b3nPeq94/3ifez9/736fjh+XD7yfya/Ub+MP4U/sn9t/17/rf/kAGEA10FOgfICPkJ7QrVC/EMHQ5PD4UQYhHoEWES+RINFHAV9BY8GPsYOBkZGbIYcBgkGIYXnBZCFccTcBK3EagR0BG3EeAQNw/SDPwJJQfdBPkCbAH0/2j++PyW+476vfkW+VL4Xfcz9if1FvQ084ry1/Ez8ZXwK/Ac8HHw8PB58aPxTvGS8IHvre4w7kDuiO4C73jvk++v77vv4u8E8CXwSfBG8Cjw8e/K79nvK/C68JrxgfKP83f0O/Xa9SP2avaZ9hf3zfet+Lj51vo//IH96f4cADMBeAJFA0YEOwUlBkIHJQgMCbwJQArwCnsL8wuDDOEMMA1wDU8N6wxQDLQLJQvOCugKSAuRC8YLewubCmEJyQd1BkgFigQSBLsDbAMZA8YCZgJnAlsCXALzASIBPAA9/2/+2v2s/bL91P3k/cL9c/0g/eb8vfyL/FD85Pte++z6lPou+qX5Hvl++AX46PdS+Nn4cfnI+X/5Afnx90P3DveJ9+f4FfqE+2D83/xV/bT9qf7S/0YB6AJGBHsFUQYBB8YHiwiCCW8KVgtxDGoNdQ5oD3kQWRFJEiYT+BOlFOQUzBQlFCkT/RHjEPMPhg9iD2sPaw9ZD/cO/w2TDJMKPwjVBcEDQgJUAecAmgAxAHz/kf6I/ar86Pt7+zL75PqB+uz5IflX+LP3Rvfr9pH2MvaU9e/0P/Sh8wPzmfIj8qPxSPH28PbwG/GI8f7xmfJJ8+LzN/Qi9LPz3/Ij8mTxEvEP8Ujx1/Fl8hzzrfNf9An11fWr9pn3d/hH+Qr6tfpo+wb8yvyz/eb+MADeAXADxATWBV4GwQbzBl0H0wcwCJAIugioCHQIDAiAB/kGiQZRBhEG0wVvBQsFvgSTBKYEjARwBB0ErQMVA3QC+wGAATMBCwEjAWoB6gGmAkIDugO/A1MDaAJKAUoAWP+g/vT9X/2q/CT8/fsp/Mr8jP1v/vP+K/8F/3r+x/3p/Ab8+fom+oX5RPlK+az5N/qR+tT64vq9+ob6U/o2+mH6pvpq+3L8rP0T//v/rAADATEBfQEzAlkDAQXYBtUInwr+Cx4Ntg07DqkOIg+3DzAQ0RBiEfERiRIgE34ToBNvE+ES/RG/EIYPNQ4eDTsMjgsOC5kKKQqYCfsIQQh9B4kGgAWHBI4DlgKKAYEASv///aX8Pvv0+Z74cPeI9sL1a/VU9Xb1rPWW9Uv1o/TV8xjzn/Js8nXyjfKf8rHyzfJM8yv0Z/W29uv3sfjK+F/4Sff09XT0KPNE8vvxYvJq8+f0ePbi9+34rPn4+Q36AvoL+iD6Yvra+nz7JvzW/J/9YP4w/9L/YACdAK0AiQCEAJwAIAHvAbkCngMHBEEEOAQtBDkETARzBIsEcAQpBMkDLQO5Aj4C/wGxAWwBJQHRAKEAqQDiAPkAJQH9AL8ALAA6/zb+Cf0a/Hr7OPtw++v7dvz5/Bz92fxR/Hb7pPry+YP5SPk7+Xb51flq+h77+vvA/GX9+v1S/oT+d/40/tP9Vf3b/Jb8ovwT/fr9FP9IADQBqwGkAR8BdwDk/2n/S/9W/2j/of/Q/0cA8QCbAYYCYANXBHAFnwZKCCsKIgwaDpUPvxCEERgS4RKsE5YUahXXFRQWYxYAF+0X3Rh0GXQZiBgQFyoV/BITEToPoQ3DC5EJRgf8BBcDowHbAHQANgDD//D+vf3t+475vfbw807x+e4H7VvrO+pt6QDpGOmR6bHqUexD7i7wo/FN8jLyv/En8cPwjPCh8AzxrPGf8sjzIvWZ9gX4ZPmi+oj7NvzN/F398f1E/kX+8f1s/RL9BP1P/QH+7v4dAFoBigJ1AygElATIBMwEhQQWBHYD3gJIAusBzgHuAXMCOQNkBKoF2QaOB9IHmgf0BigGMAVpBL4DZQMcA+cC5QL2Ak4DrgMYBGAEYQQsBLQD/QIPAvIAzP+1/qj94vxD/L/7WvsG+6r6Ufrx+az5c/kz+fL4p/iF+Gj4Rvgg+O73s/dy9zX3APe29kb21/WR9ZH19fXQ9jH42Pld+6H8P/1x/Xf9WP16/bP9+f0w/qX+Mf8YAOsA0QGTAuUCTANyA3cDiQNYA8UCAAK3AOD/hf8pAG0C+gTtB0wKHgzXDYYP7hEtFY4Y+BulHjAgcyAfHzMd4RqsGM0WcBUDFTkVRBbhF4cZpBrIGtwZHhiCFUASog6mCqcGegJX/qH6XfcM9aTzD/M9823zQPOH8hXx9u427CfpVebe49rhYuBd3xTfXd894M7h9uOM5mHpJOxw7ivwG/Fh8W3xQvFk8bbxYvKS8xP17vYh+aT7O/6hALUCXgRIBbQFzQWmBVkF1wQ6BIID0wJ9AooC1gKjA6MEvgXHBoYH4AfVB5oHKwekBvUFOQWfBFYEXgStBBEFcwXgBT0GswYgB18HOgeyBskFZATAAgkBiv9h/rH9Of3d/KD8a/xG/CP8/PvC+2f7+fqA+vH5YfnQ+G/4K/gE+Cr4ePgC+cL5qPqJ+0r8wPzu/PT87/zl/NP8yvy6/LH8nfyu/Nz8G/1y/dn9Vf6z/v/+S/+o/wIAQQBzAIgAeABnAFUAUwCDAMYALgGHAeQBUwL7AlMDsANjA4ICKgE4/339pvsN+jv5Ifk8+U/67/vj/hMDjgdPDTQSRxaOGEoZ+xjMF0oWGxWPFGgUJBVmFjYY4hmXGxUdCB44Hq0dwBznGuMYuxYHFDIR7A21CgYIpwXOAzMCngAi/y79tvri94L0BvHY7fHq1egv59XluOS54/3iU+K84X/h2uGu4r/j++Qk5v/mluc06ELpsepv7KfuEvGJ8+D15ffY+W37vvzV/Yr+OP/P/3IAdAGpAuQD5QTLBZsGTgcECNoIxAl+Ct8KwQogChsJLQh+B+IGgwYdBscFegVABSEF8gTeBPAEHgVGBUoFOgUGBagEKwRqA2kCPgEkAD//pv5K/g3+2f2w/Z79nf2O/Xz9ff1i/Q/9e/y8+7/6vPnv+Fr4Cvjx9/n3K/iM+DP54/me+m37B/yW/Nj85fyh/Cb8qvso+6/6ZPp4+qP6LPvY+6j8Yf0T/rD+Cv94/77/tv96//f+OP56/fD87fxc/SX+YP+iAL4BvAJwA8YD+APjA8ADagO0AgkCsAGGAegBTALFAlsDzwOFBBYFgQU0BugGygdGCU4Lig6zEncXuhxNISolpycZKb0pHynSJ7YlAiPtH8YcBhp9F1UVoxNtEtAReBFTEeAQ7Q9dDgUM6AhWBVQBGP3P+F30JfAF7FPodOVG4+bhPOE84ebhFuOa5GfmDegG6TPpfehg5/rlaeQ643jiTeKW4nfjVuUH6MLrPfAn9RT6TP7fAWEE3QWQBmwG1AWrBE0D/wHgAGsAigA7AYcCBgSpBRcHSwgdCU8J7wj5B7UGPwW2A0wCDgEpAKj/df+K//P/jgBlAV4CSAMOBLQENgV9BYEFNgWgBOsDNQOCAtUBBQEZAB7/MP5p/dP8b/wt/Av8/fvo+8L7i/tO+xz77/qf+jD6qPkM+X34Cvis93r3hvfk95T4gPmZ+rb70vzL/Yz+6/7b/ov+7/09/Z78Ofwb/E/84Pyn/af+u//YAOwB6AKRA+AD2gNfA40CiwFtAEP/MP5T/cP8bvxQ/Gf8sPww/eP9vv6D/1AA/ACeAU0C8wK7A4YEIAXABSkGlgYnBzAI0QnTCwgOvxCaE68WVRpEHmQioyUCKDIpxCiVJx4ldiK9Hw8dQhvcGVwZPhmHGSQafxpnGoEZmBfDFNoQCgyPBq0Awvr19HLvh+oA5h3iOd873YXcr9y63WnfW+Fr4zLl/+aA6JfpKerm6QbpcufD5XzkxuPq47jkZ+b96EjsIvA09Db4uPtK/vX/tgC3AAsA8f6v/UP8Dfsx+hX62fpl/Kf+MwH5A6MG/QgKC24MCQ29DJ0L6AnPB7EF1QN1Ap0BIAEAAS8BqwF7An8DdgQ/BY4FbAXvBC8EYgOOAssB7QD7/+7+qv2B/Hj7kvrS+QT5XPjb97P3Bfi3+K/5hfoO+yP7wPr3+Qz5Fvga9zv2S/WU9DT0Q/QK9Un26/e0+WX7DP1k/nf/QQCKAH4AIQBy/8T+O/77/Un+2P6o/40AMQHhAYkCMwPWA0QErQTeBMIEUQRqA0UC2gAx/2T9VPtT+Z/3XPbO9bf1L/Yr92P4GPrh+8r9tf9EAYQCOAOOA4IDaQO3A3cE0wX4B+IKeA5OE8UYUB6HI78npCpZLOosFS3GLForbimKJg4jBSAnHQocHByDHFgdZB33HM0b7hm2F5IUoBCIC5oFZf9Z+VP0p/Ae7oLsD+uw6YDoQudh5m7lUeQD40jhh98b3jvdFt1x3UzeMt/Q33rgEuHU4ZbiIuP24/vkjObG6LPrWu8J84r2l/nD+179Tv6N/kv+VP0W/Of6Mfpm+p37wf2/ACUEvgclCwgOYBD0Ea0SjBKlESoQTg5uDLkKSQlUCPIHIgi6CIEJRAq/Ct4KjQqkCTMITgYABIUB8P5//FL6i/hH9zn2bfXj9ID0YvSV9BL1tPVf9vD2T/eD93j3YPc09+L2hPb79Xn1IvUh9Z31gfbY91T56Ppy/MD93P6p/zMAeABHAMH/Ef9V/rj9Qf0t/XH9+f3A/oD/PgDzAKwBSQKhAqACTQLXAT8BhgDI/x3/gv7u/TT9WPxp+4P6uPn++Fr40/d994H36Ped+Kj5Ffu3/Gf+AQB/AeICaQQGBsYHygn1C5AOgRG9FHYYQRwYILIjECcMKuUriSwiLGcq/CeFJV0jOiK6IfEhvyI/I9Yj6CPcI9AjsyLOIHAd1xhjE1UNcQeSAQ38ofaC8fLst+iH5f3iSOFo4Jrf6t4P3lPd7Ny13Mjc/tzy3Nrcr9xC3O3b+duL3ITdAt/h4OviSuXZ57TqzO3e8O7zqvYZ+S774Pw8/kz/QQBJAYMC2wNlBQUHvwhSCsELDA1UDpIPyBDlEacS8xLUEoMSFRJ+EcgQvQ9dDskMMAvACa4IAQikB3oHPAfWBjQGXwVtBFMD8QExAB7+2/u4+eH3f/ag9Sj1/vQY9U31mvX+9WL2vfbi9qj2CfY19Vn0p/M98x/zN/Nt89jzY/Qe9Qr2L/eC+N35QPtz/IT9f/5p/zYA3wBgAa4BrwFqAfUAXgDE/zH/v/5v/hv+4P25/bH9v/3Z/QT+Gf7o/X/92fwT/Eb7i/r++br5v/nj+Sr6Yvqb+rX60Pq9+l/67Plk+fb44/hK+XL6IvxH/soAbANLBnsJKg1BEacVbRr0HjIj3yZPKjkt4S/rMUsz0DO5MuAwOC6dK1wpvyfTJjsmnSXDJLgjJyIYIFIdtxkSFSgPXQgqATb6IvQ+75jr8Oja5u/kOuPa4Zjgh99w3indmNut2bXXDNYy1T7VK9aX1znZ7tq73OTeeeFR5Bfn1+mC7AjvdvHi83X2/Phg+4D9Ff83AO8AlAF9AqcDGgWhBkUIBgrsC9QNrQ9HEZISPBMjE08S8hBZD9cNnwyjC9MKJQqYCT4JIAk8CXsJpQmoCYEJFAliCIYHhwZwBTIE0AIzAVf/T/00+x75HfdZ9fPz/fJv8jXyJvIp8jLyNfIy8iPyBPLF8XPxG/HM8K7w4fB/8YHyyPMt9Z72Afhk+cT6I/xy/Z7+nf9jAAsBeAHKAQwCNgI/AhgCwQE9AY4Ayf///jL+df3E/DD8svts+1P7UPtq+3v7avtH+//6gPrM+eD4xfe09uD1c/Ws9Vb2bPfG+BT6ZPtb/B79Z/0H/Vz8ovsq+8z7t/0UAZ0F5Qq7EFoWChy0IRAnHCwwMOkySTSSNG40YjRWNDE0JjNBMasuVCszKIsldSPZIZEgaB9pHnAddxw2GwcZwhX1EPAKFQTR/Jb1s+6b6Inj1t/Z3RzdZd0P3r/eXd+H30vfs97Z3Yvc7to/2ebXHdcF15fXrtga2vnbId564DTj7uWV6GHrW+6R8dX0/Pfm+lD9cP88AbsC7QOkBBoFZgXBBYcGoAc8CRoL8QyQDrAPcxC/EIsQzA9UDlYMCwreB0kGgwVzBekFmAZaB/8HiQgECTsJGwl5CD0HcgVYAz4BXP/I/VX84/pN+a/3Nvb+9Bz0j/Nh84DzwvMo9Jv0GfWZ9eD1y/U/9Uv0GPMK8mHxP/Hg8SjzAfVV9935dfzk/vIAmgKuA0MEYAQjBMkDdgNBAx4DDQMKAw4DDwP7AsQCdwL+AWsBxwAQAFD/g/7H/R39P/xH+y36/vjk9//2dfZP9mX21PaB90n4U/le+mf7RPy4/Mb8b/wH/Mf7v/s6/O38//1U/zAB1gM5B1ELvQ80FGoYiRyLIJgk1yioLKovTTGuMewwJS/wLJgqRSgjJiskvyIhInAiyiN/JfEmWCcpJlEj1h4HGUwSLgv5A//8rvaj8cDtFutb6RzoO+c35gflceOj4dzfId6d3HTbsto42ibaRNp12nvaXdpX2nva9NrP21/dmt9y4rHlG+mO7ITv1/GD82z01vTK9Jr0pPQr9Zj22fjn+4D/MAO/BsUJBQx5DQIO1w0DDboLWwobCUsIOQiRCCoJ0QltCsUKygp7CrQJrAiSB7AGNwY3BpYGDgdcBz0HtQbJBZoEUwPXAToAg/7i/Lz7Jfsr+4n71/vb+4X79vpt+vf5f/np+B34NPc89oX1VvWu9Wr2b/dl+DH57Pm5+uf7Ov2b/tX/dwCsAIsALwD8/9X/2//4////EQAHAB8AaADoAIMB+QElAgsCpAEMAWUArv/m/g7+MP1m/I37//rY+gD7WvvF+yH8M/zv+0H7Hfqy+DT3+/Ur9Sf18fVq96P55fs//uX/9wA2AZMAZ//r/QX9X/24/wkEFQpQEb4YSR+GJIgoHSuuLBUtqCwjKzgpiSfZJnEnXCnTK7ktVi7ALKspbSUWIQ8dRBmtFfcRWg6pCkgHgQTyAX7/fPzB+FH0me8668fnpeWI5BvkrePf4pHhDeDF3sDdCt2v3K/c5txH3Sfeyt8L4pTk5+Zi6M/ooegu6Afonujv6ZvrVu0a79vwtPLK9Pz2CvnD+hn8Cv20/U/+Bf/z/+MAxAF7AiMD4gPZBPkFQgeLCMoJrQomCzoL6wpkCrkJIQnICKYIwwgaCaEJOwrQClELoQuYCy4LbwpqCUUIHAcNBh4FUQShA+wCJQJcAYEArv/l/jD+ff2t/MH7s/qR+XL4jPfs9oL2YfZz9s72Zvco+P74vflV+rn68/oH+wz7GPtE+4f78fuN/Er9H/7Y/lb/d/82/7r+Of7O/YX9c/2c/c79C/5k/sX+Nv+T/9//+P+t/0r/3/6P/nj+gv6//sL+VP6a/Z38ePur+lT6QPrA+mn7Ufxc/Tb+N/+X/3v/VP44/Kb5cPeo9iD4GvwYAlgJyBDDF1gdxiEeJRAnxif3Jjckzx/4GxgaHRsNHyolSCvhL3wy6zF0L2ArWSapID0aOxRdDikKcwi3CJwKsQyRDSgMYgh7Aqf7tPR/7pHpeuWK4nrggd+H38ng5eKm5LflLOUQ4/vfWtw52WDXyNZC19LYGdvr3Vvh0eTW5xfqLuvQ6svpyehD6APpGesn7sLxn/UV+d37EP6R/3gA2gDMAMAA+ACrASADRwWvBwMK2wvSDNgMPgxiC7IKZwp+CugKbwvJC/sLQQylDB4Njg2zDWENmQyUC4cK2QmhCaEJwgmzCTAJXQhTB3AGygUjBWcEZwM0AtwAdv8u/hL9PPym+zj7wvox+qL5DPmO+Cb4ufcg92/2yPVI9R71XPXh9Yv2NfeQ97D3m/dz93X3m/fn9zz4ifjd+Ej54fma+m37S/wX/bT9Tv7s/q7/iwB8AUoCogJxAswBEgHFAAYB/wFsA9YE8gUlBiUFVQMCAUv+Svzb+lT6avt5/ZYAPATyB7wKZQueCQwFsf5l+Ovz0/Jr9cb6ZAHeB3ANgBJrF2scECErJJgkGyIOHtYZQxebFwYa0R26IVYkBSYDJ7MnFChkJzAliyDuGaES8At1B/MFswb0CEsLKwx4C9QIpwSs/9X5lfNQ7ZDnKOOr4GjgL+LE5Pnmzefa5urj4t/P2yjYbtUV1A7UGdVI1zLaWd2G4DTjB+VD5gXnO+c751TniudQ6B3q1Oxo8Kr07/jS/Pj/BgI5A7UDzgPiAy8ErwSIBccGgAiNCtIMDQ/gEP0RDBI4EcYPFw6lDMYLmAvvC4MMLQ3mDWMOkA5jDsINtAxGC8QJawhaB+UG3wY/B7cHtAcZB68FxAOZAXH/s/1Q/F/7xPpT+uz5YfnW+Eb40vdY97P29PU89cr0vfQG9Yv1+PX79Z/15PQa9J7zqvND9C71UPZB9/73sfhO+Rf68PrA+0n8nvzQ/Bn9v/2i/q//5wAsAloDKQRtBI0EhQTNBDwF2wV0BpIGfgbtBYIFXwUdBksH2AgOCocKUgowCaYHqgWhA7gBGwAD/7v+Vv+6AM8CxQQ6Bs0GcAY3BfMDQwOIA0QF6QdlC/0OABLPFPoWgRnBG0QeGCAFICAeyBo6F+EUghVjGJQdUiJzJcEmKiVqIggeVhlcFO4Ocwq4Bv0E4ATsBTwHSQe5Bd8BlPxV9sTvsOnE5H/h4t8Z4FvhFuPk44/jKeIr4MXeA9603Tvd29uU2RfXk9VD1hvZd91N4pjmxekR7K7tpO4I7yTuUewa6kDo8ufa6QDus/Oj+Z7+3QEeA/oCsgEIAFX+C/2//ML9awBTBOwIXg3vEBoTtRNFE0kSLxEwEIAPHA/uDhwPww8gESMTXhUrF/8XmxfaFQUTsA+lDDsKcwg0B0MGgwUZBQcF7ASTBIgDfwGP/hL7g/eM9JDyoPGX8R3y0/J98+jzy/Nb843ynfHP8EzwK/BT8NjwfPFf8pXzCfWW9u73vfjd+Gb4nvcI98v2Gvfc9xb5dPq6++f82v2v/nf/PADbAFsBtgG9AaEBmQG5AQYCmQJGA9cDNQRhBHcEhgSZBI0EUgTBA70CnQHZANUAzQGvA+EFngfOCPIIiAg4CGsIfAn2ClwMJw0UDtYOkRB9EgAVxBYWF4EWOxRKEUEOHAxeCn4KZQz7EIMX1h6jJZoofSfxITcavBKRDboLag0BEcMUGxg9Gp0bEByvG/QZgRb+EBsKswJZ/E752vkd/VkBvQPCAlP+y/ck8afr0Ocy5cfiJeCW3VTcKd2m3xbjmeXV5VLj9t5K2rzWPtXW1QTYMduP3sjhrOTC5jTo+ehR6WTpgunX6WPqZ+ss7cHv6/KQ9gr6m/zz/TH+zf1M/Sn90/02//oA7QL3BOQGlAj/CQsLngvWC8oLlAtxC3sLxws7DMwMlA1jDhAPZQ9SD8QOxQ2ADCILxQmOCJUH5wZ0BhIGvAU5BWcEWgMwAvYA4v8C/0r+wf1T/fH8pfxj/Cz89Pu4+2r7Hvvm+r36uvrm+ij7e/vo+0P8dfxt/A/8iPs5+0f7u/tk/AH9hf3j/UT+pv4U/2z/j/+G/0j//v7V/uf+LP+b//L/JQAlAO//k/8c/7L+Sv74/dP97v1J/rH+Hf9r/47/hv+C/6H/BgC0AKcBvgLMA7gEZgX5BY0GHAfWB58IVgn6CT4KHwrcCbkJywl1CloLgAz5DTQPVBA7EdwRwxEEETEPJQwfCC0E6gFAApQFywqOEFYU6hQ9EnYNnQhCBbAE9gWyCOkLLg/WESgU2hWZFi8W/hO/EMYMVQkfB4wGXwfrCEAKjAphCdAGXwOY/xb8Avk19qfzP/Ep78btFu0Z7Xrt0u1l7fnrlOmk5rPjTuHQ313fxN/t4M3iyuSF5t/nmOiD6AHocucp537nYuiw6WrrZe1775HxgPNO9db2C/j5+Kb5KfqX+kj7WvzZ/cf/4QHyA6cFzwZMBy0Hnwb1BVwFEgUhBYgFMgYKB+cHfAirCHQI0wfeBtAF7ARMBBwEOQRqBH0ERATBAwYDTwKqATUB+ADfANIAuACEADEAzP89/53++P1c/eP8vPzh/CT9gP1w/bj9dP2I/Rf9Xfw4/Ev7hvuQ+1f8EP3j/mn/WQCtALsAcgHUAKICGQNGBcoF/QTbBHoEMQZlCBUK3QmCCR4IpQhPCe8JxAmxBxAH7gQXBusGVglFC6MLQgvjBUADg/+7AFwDbAUzBc8C+QFrABsDYgNkBUYDdgEQAWoAwgKgAJb//vwz/Wj+gf+8/77/8QBZAt8DCgNxAQr/s/29/goBGAR0BYAEeQJZAdcBLAMmBIYD7QM0AyQEqQQ4BQAFxQP6Ac8A3wCeAfkDJwMZBJgBFv9e/kf9RAGmAf0BPwBo/IH8qvxY/lX/Mv8w/7z+PP8PAFwACP9U/iP8wfvp+7v7Jf2W/Lj99P08/g3+n/10/fP9y/0a/Rf8Sfsf+9v7nfzQ/fn+wv4S/tr8qfw4/M78IPwc/Bj7ePqc+vP6IPuc+y37FvuW+0T77Pse/Kv8LfxH+6T4B/mu+R78ZP4t/gj9vvvp+MH4i/oK/Mv+ufvk+5f6wPuP/Zr93Pwd/H/8M/wP/UX9s/79/aD9YfuB+xX77/qP/F3+QwCE/7f99PuR+2D9L/6i/qb+QP7v/YH/lgCAAKkBJP/3AQoCcQRVBOkClQS3A3AG1QY+BroEuAQ+BkAHtQj+B08FFQZSBfMGEgY2B0UHNAcLC60GsgZ4BXQD5wZ3BRcD5AOAA4UF/wOgBX8DdwTFA+X/swOvAb8GrwSFAH/+Z/yw/zUCAgKIAZL9Pvx2/twBhwO9/xz9wPg4/hT+QAE3AFQBzgJq/qcAJfuYALv/ngApAhQA+gCs/sf/yAD7ASUBOgJ3AXMBkwANABQDkwKHAPgBFAHPAXACfQFsA5wCGAKZAYH/8v+p/0H/5gCuAr8BRQE+/nf98v+IAAYDnf7C/Rr9QgGPAJ772QCu/wEANP0a/Q7+N//HAugBLf75+q3+Qf8wACj/kP0+/ID+HgPeAOb+k/4iAqADEALeAOj9cgFyA2oEeAA2/3b/vv+8A/UAyQPP/rb/0QCq/8QCWgG1/QX79PosABMBCv0u/aX+PQDL/+v7ifkM+0f9qgBn+5P5j/hO+FP6BPuy/VX+4PmG+o/4wPll/vv51vuw9yv7GvzC+5X9HvuG/br79f8s/fP8uPxq/b8BJ/vl/e8B8gFGAcwBowAs/w8CPQOJBLIA3QDHANoALgR5A5QDLQHHA98BdAMKA1wBkgGJAiUGAgCjAZH/nQLvBAIE6wJL/VUAOAIIA5MBAwJLAMf+3v1fABoCN/+h/6D+VAJfAV4BEQGy/vkAZACXAoT9HP4q/u79JgHP/3ICVAEU/8UAZ/uH/coBoP95BWcC0fn1+sj8/Ab2Btz+pP0D+4ABFQGRAiUC5gF1/wH/0wBQBEEGawH2AYD97gGQBKcCDADc/2IFSgVjA4gAHgBtAnUCpgZcAkP+0P8KAfEC5gVRAroADgBhApYGPv/2A+f7uP/rA1IB1wOR+9/+EALdBSsFYv90+A4AFQWPBR4AJPqA/aD+zgTJAn79XP4gAOIAyv29/J8C7QI4AUr+Nfz+/UQCEgMiBqECj/7I+7z8PwRBBt7/r/kp/rP/pAML/1UBE/9i/N0BNgDH/hn9jQHY/wT8T//F+hv9BP/aAC8BsPs5/Qf5t/z7/DMCbP1j/Sv9Fvvk+xf8tQFS/GT9HvmM/53+Wf3s/IT8pQFv/8wBIPwk+rv+5f7PAZv/jf4E/nT7NwCe/n0CKP/N/WQAZ/4TAQUCR/0LAIsClPx2AN77hwLMAnkAG/8a/5ECUP8HBX7+fPo0/j0AYQUPA2D9rPqo/sMAdwRFAO/5pf/y/ioBg/+t/vr68P6yAQoDoAEG/t7+Mf3GAo0A4ACn/dv7iQAbAP4EmQMm/EgAmfuuAVkCuwCfBFT+7/6i/vkBnwKHBMf/cgEu/wUAkQIYAOIFNQEEArP+5v57AlEBUQMXAJAAgAExATP+j/8EA9gAZgBJAOAA+v5X/Oj+HQFuBWMCyP27/Vj/MQbe/0D/cP8g/+IAKv9AA9r/w/0C/ub/QwIlBqEA2Pwf+6v+sAWv/8ABpv3c+3v/BANzAeD/u/+5/oL+M/4nAmn/E/+NAbUBOQIx/y//oQFE/fEFwgGb+tMCrf79Ak4Cc/5HA8X/Av/KATEBlQPo+9b8jv9RA+IJ7fhw/r/9ugBCCIL9d//s/ML7tQTo/9/7+f6W+7wGNwADAmL8EveOB5f/KgVo+mr2Uf7XAQ4KFQPq+Mn4hgAoAVwH7f1Y/AX7cv9lAlv/PAKI/H4AQv+0A1YDEvt+/T//ggQ9Bkb/C/2r+ZwCNweAAxf/Mvri/PH9pwWCBaj/0/j9+7kAlgRFBJ37Gvww/JUEHwCx/0sAX/4BAXD8BQGj/Yz9+ABSAsUC+v41+gL+Xf6SA4MHafy1+Uf7kQKVBXcBr/xF+ZT8HQWIBab8KftF//IAbQQyA7D7V/1p/LUGbgW5/vv5GvcEBDMF4whv++33q/x/ABIERAV2/YT6oQEr+5gF1wAk/pP/6/swAaoGWv4n/FsAy/3lBCkBef8l+hX/WgGkAikCGv1xAbL9nQIAAbz+PP/rAvMAHf1nADUB9f/p/z4DY/5O+47/kgH3Acr9/vjj/8cA6gQ9Acz5aP4N/k0Bxf9FAqv9+frc/WH/1wGLADUBTQBu/67+qQCAApgBzf+e+5j71wOG/+UC5f5//1oF6f4RA+D9+f1MADgE3gOwAcL+FwB2AbQCKgM4AZIDwf62Ac7+ZQUIBEb/ogHr/zgCZgArAXj9WgW2AG0BfAFt/C8DevtoBYgBeQC1/AT8egFDA6ADK/vK/jP8aQIaAr3+mP2+A7H+Gv9c/+T8Ugbt/n4Bl/4p/PgBrwCt/soBUP7X+wwAnAJ1BfMChfpH+jf//wUHBnb+0Pyz+vn/aQBGAb0AhP8w//v+EP7jAgUAU/9oAPj4TQNi/TQA4P3p+VkFVQHj/aT8kv0dAOkCSfxqAbr9VAFIAdX4WP+wANEFAfzCAaD6IQDXBJP8mQIO+iIDLgGo/EL/jADW/nUCSQOk/vz8gv17AxICeAME/kr+ffxv/tECkgGIAwT8lgGAASsByAHM/n//kALy/4T8sP7c/WwDdwQOAcH6UP8MAoECBwai+ev3YgGtAAsHof3C+R4CJv63Az0ABf5l/yb6vgJjA1z9ZgEz+qn+/wNMAlsBvP2R/TH+SgNNAPz/pf+L/Z4CEgGeAFb+WwSM/o39+gF/+pMEDAFvAZ79nv0zAWIArATPAKL+Mf58/7kBggCFAVwA0f7o/sb9LwLs/6UA0gNBAY/+1P6a+REE5QN6/jkBJfxTA1oAuf42//wAlAM5/37/Sf78ApIBhQNHAbX+ugDH/kEAZwP9Anv/KwH3+YAG3wQ+AGsDzv1f/9n+EgRJA0P+wP3NALQC7QNj/T0ALf+8AEcEqf4xAjH7NAEOAqwAtwFG/oX/y/6pBFr+KgMl/Zj/dgDV+R0G3wHP/1P8kv8BAAoDLPuU/z4GHv2IAPr2uv4CB5IAXP6d+c79fwF+BCT+TACIACn8tALJ/TEBif8C/YcAuQA3AH0Cv/62Adf+Y/3IARwBsv50/WkApv2LBGAAQP1kABz9sgKLA90Ayv3H+1T8vQHiBlIAt/zC+T8AUwMjA/MANP+0+pz9/QEN/rEDFf1J/wf/q/4zAjACI//x/8D9SP4JBkb8Nv2d/soApwSVAev9dv1cA1z8NAA9A2UAkgFg+wL/FwDrAQ4EOP3A/EkE7ABz/7n8Cf8tAyP/wv/N/YX/BwXwA2b4CP3gAOgCSwXA/dH6hftCAWID+QEd/tz7Uf6sAAwC1gAb+9n+5wBE/ioEm/yK/DX/tgCZBWj/G/6H/YIASf/QAnQAU/8kAmb74QBVAIb/IgSo/hv9SwJ3//X/QQK7AKP+sv/u/RkBcQI2/CYF/AD3/oj/AfzIBPUEC/71/G7+3gH/BVT96/7D/Un/fgbr/YAA2QHq/6EAvv8fAmcDZf4E/yn+JgLBBCwAGP1S/dUD5gT0AEz8pv3I/+4G0wA//kn9nf5LAnv/qQN1AE4CH/1j/u//ogCyBub/Ff5X+Wr95gH5A3ID9P5D/Br//AJsAPkBr/sV/iYBD/3Q/9X/fgCDBOj7xP9TA+7/BQW//vH63f7qArUBvQGi/HAALP+sAOQE9P+3AWL9yvyUANQBJgC9/k/68AEDBSUA5v9M/Cn9qQO3AYT89f7x/XAAr/zhA6EBqP7YAKz5YgAK/3UCxwGR/UT7af76/1n+gAFkAln/qPwsAS385gJgALv++QCC/JP/pv+qBSr+o/1nAsX9MAEkAvn9WAAr/lf9UwU5ALH/ggCA+nUEcgL7A4z+ePi0AdsABgLcApT8hv1hADEAqAVo/NX97/6VAfQCsQLs/tb6AgT2/7ID4/7PAPf/DP6i/177cgORA9oDE/wH/U39wf+LAZ0D3gKu++wAK/zv/qkAuwWu/7z/mfuj/icDmACMA1z4rQDh/uIB3gE+/0n+mfxNALgEeQE//g/+CvxCA0UBxQEO+vUBQ/zpAbwBV//KBF39OQPx9y8C4v43AEgEjvqJAgj+v/2CBC/9+gWy/mj7QwNP/XUH0vmh/y0B7gBMAsn7Ev8W/+MFsAP8ABj9bPwe+ngBTgKlAYkClfyy/5QB9ft4B/X+hv7XAAD2wAf+AeEGHvsG810AQwb+CO8CzvwY9vwA/f83BTD/wgD5APH6V/9H/moCHwSvA6r8JPx2+5QEHgCNAzgCNforAGr+6QEtBSYB9P7f+1/7OwaRAY0CZv2Y/9f7XwLKBOL6fgbR+kEF6/3L++IC9PkyClIBRQPo/H73kwNn/fIHrwEK/5UAoPmDAsP/IAUCAm3+Ifqp/C0B3QI/BcD+IwN9+IkAqgBp/yQDpv6uA/P3ZP0+AAcC7QPyAGL+tPzM/noBv/8vAkT//f0UAv3+SwP9+Yb/tQHNBVIAYgJc9nn5iQeCBKoFCfeJ+mX8mwW5ARACwv5p/QP+P/wOBEL/DQSg/rL5kP+3/ggEWQNj/9YANfc2AP8BggMGBH76Pv1r+qYG9AAIBWP+gvty/r74mwnDBDEA7f8V+q/57QajABH/o/7Z/UMDv/4I/48AXfsS/SYCTf77A///G/sk+04Chf+fA9MAOfrK/rD8hASK/+AC6v8S//T7evsEAy4CfQUBAUr/Sf4n/MD/2QMv/+0AIf+MAVMBQQAl//UBgARbAOgAd/kU/ZcCMwQ0AeMC7/xQ/u0BEQBhBPv+iwD7/Ar+5gB3AQ4AiwKw/Wf8Nv8/Apr/ggS5AEr8vQKE95kFIP/q/3sCB/yLAZkCBwF0AX7+vf2//ToA4gT//zUCFvtaAVX8OwCsArP7XAWh/2wCFwP9/Ur+vP0K/lACSgBvAAcB+gFG/3wA8gCY/z0D2fxZAH78wwI/BI4AwQB0+8v5dfzSAXgDCgXwAgYAf/wn/hf9n/5EAckA1P7nAMD+PAG1ADH/FwOo+6H+F/zrAlMD5gFwAAH8Nf3Q+sj/yQLKBH0Ezf3e+ygB7/yZA979LAAm/lj/QQGrAYgFS//rAxP79f2B/jkAOgXdAmYEJf7G+4L+lvzzA9cC/P4lAgv/a//v/o4BnP8/AdH9yvxFAFz6mwJMAeUEEQMT//f7yfle/TkBBwXUBMIAEPyU+Pr7dQEzAOoGiv+3/7H95vsAAgP/MAOF/n37IPpuAG0B9ALVBYz97P23/Uz/bP8dA1wDFQBQ/iT+QP2BAFIChgKQATsAAQCv/lwC4f8lAbL9UP33/ur8JgRGAAoD3f0F/6EBxv4pBhD/Wv36/q34Ef8SAfsDKAfRAMz/EPhy/z79dwTLBCb/CAPU+ZAAdf1MAmQCk//IAfb+QQBqAKgAdADpAYgBFwBv+sn+QQCeBcYB+wE9AFT7ugFK/eAD4P9yAYYAggAKArkAagA0/ygBFP0LAVn/CQLXAZIBDAA0/l/97P9IAYQA9gOhAQX/8/uS/4n96QO2AA0A9QBZ/IgDNP8zAT8Acf30/Qn+hALLAJ8BsQJe/+QAfvoK/kX+6v4fA7L7twExAAoApAEH/vsAUf6P/rEAXP72AA0BGQIv/zH9gf7++tABagE0AZMB1QAuA4YCLwBp/yL+E/5bAVABJAND/7H+Mf8YABYAMgGCAGsBcAB9/iUA7P0XAqf/Ev7s+t78tP+KAkwDev9dAOf8ff/7/1YAaAEGAor/jf8e/1f+MP91/V8AugFQAYIASQLN/tEAsv52/T4BOPwqANIBcQNsBXwBJ/5l/mX9bQCPA8EB6wHZAFsAz/8jAQ3/TAFW/5H+/gE8ACQBcP+Z/8f+7P45/7/+4/6l/YD/of90AN0BaADu/vL/W/0i/ij9lv4EAb//BwMfAPH/KADt/mT+rABAAkIA7QAGAD/+Pv86AA7/MwGj/or+9f8tATgCCQOCAjcAuv7P+xgB7gC6AZsA3/5i/5P/fgHg/3j+tf+//9n/+QAKAMEBcQBGAMH9f/6Z/mT+vgDl/l0Bzv+j/+/+l/6r/xEAeQEDAvQCE//t/xX/3v9GAJr//ABHAWcBxAEPANYAswF7AGACiABUAW3/TAADAMH/lAD7/8z+0f6C/lb+y/9h/1UBgv/k/47+y/7//oj/vACZ/Zb9cfxz/6EBkwHnAc7/vP6x/gMAdP9mAFUAWQC3AdX/gQHVACD+nP8t/70AIQIZAuMC0gE8ACP/t/4A/nz/Hv/o/3gB8AEMAfL/bv88/0j/Ev6A/xwA9wBBAP/95f6K/gH/0v9m/9EAEQDUANr/RQAAAEf/EgBW/vr+mv6D/xT/NADpAJ8ADAGn/0sAXv92//0AEQF9AWEAb/8B/8X/JwHEAL4BewAHAbMAhABgAV7/5P8i/9z+EP9H/6P+nwDjADsB+AFdACYBMAGMAkkBJQHLAEIAngG0AokCLQBtAHgAjwCEAEAAtwD4AJkAWwBsAHsAhP+h/+n/9P+9/+r+Gv8d/nv+BP7e/SH9YPxy/OX7j/x8/M37Vfwk/JD6nPup+5n7k/vj+uL7P/tx++b7xPrS+2j8lPt0/Or8/Pud/Gf90v3h/zkAUgB/AKz/WgH7AaABFQIEAhgCnQJvAioDWQTQAqwCFALLAS8CTQH4AQcCIAFzAE0BlQGDAvcByQBYANf/KgBf/7P/pf/v/o3+kv7H/tb+bv8W/6f+Pv7z/nb/Pv+NAPkAAAHnAFsBfAEiAYkB2AFdApMC7QK2AzwEYAT4A2QEsgREBMoDRgSMBFkDVgPCAq8C7QM7BC4ElQMJA8kC5QE/ATYAAf8I/sX98vyE/Fn8E/yr/Nn8rvwW/RL+RP7K/9P/PgBhAKP+dP+k/ff9GfxY++r62vyuANUCugfgCS8RnxYuHDEf5x9lISMhZCK1INUfMRr3FCYRMA1BCl0GUwIW/rT6L/cM9tb0//Rc8rvv5e017YLs2Out66bpI+cC5EHimOA84crfpt9R3+3gP+Tz5n3rt+0n8UbzNfZh+Vb8zf/UAI4CeQNrBHIFOgYLB9gHCglMCREKOwqZCiILMwu0DPYLpAoQCU8HHwasBFADpgDh/V77APuM+hn6OfnN9hv2bvSe87nzd/Ob8/fyFfOl8vHy6PMG9Wr2u/cT+az5hfpM/Fb+XgCyAYQCkQOABPMFpAZ0CM0JNArqCloL6wwCDrIOpw9CEPYPRg/CDXoMkwwbDGkLtAm1CJQHGgc9BmgFMwXoA9AD0gLAAnECrACM/1n9uftT+hz5SfhL99T2Q/Ze9vH1nfV39Z31LPYr9xb4Ifm1+W36gPv3+2/8O/xM/Pb7wfsa/Hb7ifsS/Nr8kP3s/Zv+S/+2/6oAeAEYAvQCXAMuBPMDSARUBIoE1wN7A8kCyQFbAVwAQwAu//n+Mv4y/ZT8U/wV/Kf7+vsm++j7yPvU+1n8UfuE+iH5kveu9W/0APNl8tTxEvFZ8uXyofbX+qn/cQXbC9MRCxgGH70k0iwEMV82mTnLNzo3oDMcMdIsbyjwInwdoBj0FE8Sbw6SC3EHYQSQAHz9n/lG9rfyO+/C6yLoB+Xa4TLfkdyH2vjXpNax1UnWctdk2bDbWN7g4W7lqel07aPxKvXD+AP8Cv8/AX8D/wRqBg4HsAYxB2QGvgb/BowHYQhDCe4JbwqVCqcKuQrvCboJdwjKBscEuwKmAIf+Gfys+Zn3KvXw867y4/G28ULxpvHF8VPyDPOh84D0TvUb9kr2UPbM9Ur2qvaK9+D4RfmZ+hn8fP6pAPICmAX7B3AKKg3kD1sSiRSXFe4W6xbxFhkXkxY7FsUV6hRuFKAT5BLNEQwQhg+eDYMMPAvRCUUIuQXQAw0B4P4b/On5evcE9avyM/E68MLule597brtg+0V7unume9e8b/xm/O49CD2ife3+F36V/vl/Er+gQAlAXoC/wLwA94E2gTcBfoFkAbEBnEHBQf/BocG/gX2Be8E3AOYAuYBywBbAG7/zv6O/bf80/w+/KL8iPzx/Df9i/23/VT+cP6a/p/+5v3v/dz8U/xZ+wD7gfrY+ff5xfmU+uD6Xvyy/RX/YgEqA2AFoAdBCQoLRAzSDEwNng2kDZ8OYw73DokPqg8KEZwRLBM2FYMXhxneHNAetCFQJMkk8SZnJdAjryDlG4IYshN+Dj4IigIV/fX5WvcZ9PLx6+2h6zfru+rz69zqYeml6EDoc+ny6ZTp3+cM5nbkxuNG44TiDOFD4DfgneEI5LflUOil6jbuQfID9gj6KP18AFoEHAhQDAEPfBCQEe4RwhLCEgwS9RB6D3MN7QtHCjUJBgifBi8FfQONAvwAvP88/tD8VPul+W749vax9dLz1/Eu8NTu8e0v7QHt4OyA7druBvGb80P2rPje+tD9QQAkA14FYAc7CZAK/wsCDFAMMQyOC/4KJQoNCeQH9gZkBi4HkgcWCJMIgQn/CkQM7gy/DbMNfw0YDUQMHwx7Cv0IxQa3BPICUABZ/Wj6YPhi9sz0TPMp8mrxjvHp8V/ymPNJ9JD1jvbh90L5QPoP+1v7Qfxv/Dn9e/1O/ST9svxu/Jn85vyN/Tb+xf5RAJ4A6gEqA+YDHQXEBUEGWgZjBpUGgAbzBQ4F1wMnA0AChQFjAPv+Jf4j/fn8aPw5/F/8l/wd/UP97P2A/n3/5f9QAHoAlAD8ALEAsAAoABcA3P+W/43/O/9p/5T/RAAVAfwBGgPjA88E9gUFBw0IpgjrCKUIsggfCEUIiAfrBpYGjAVzBbwE7wTWBfYH4gnoDKEP/BJrF3Makh8DIlwk+iTKI9wjDyKRII8cdBflEZkMDQjfAqX9fvda8ensEunt5iXl6+Id4kLhO+Jr4xvkvuSg5Erlt+US5ujlH+XR5KDkjeUq5vnmBOhI6dvryO5v8uD1R/mn/O0ATAWbCUMNRg8vESsS0RIFExUSARGbD20NMQz9CSQIpAbGBOMDLwIbAbX/2P5l/nP+Yv62/ZT9svyw/Hz8mvvG+mr56ve09pT1X/Qc85Tx2e9F76Tu/+477zLvkvDL8Yv0ffcB+nz8q//EArUFnQiqCs8Mig5zEEQRKBJSEnASfRI+EcsQlQ+cDu8NRwxrCyIKuQl4Cc8I7Ag+CM8HKgehBloF5gPYAR0Ae/6i/Mj6NvgA9+b0lfM78h7xEvH28P/wqfFi8r/z9fQ+9s/3EvkF+yT8j/2x/lf/Zf/B/5H/iP8c/6r+Y/4w/i3+c/2S/QT9aP3Q/SP+Hv5G/pD+EP/V/9n/4/+g/yQA1v+Y/+j+D/4//b/86Pvz+qv6Nvrw+qX6HvvQ+7v8Zv2E/mv/vADeAUECsAMHBMEFqgUIBk4GMgYSBjQF8QSHAwID/QGuAQcBUAFLAe4BkgLtAooEUQWYBlkH7AeDCH0IZQiuB1oGAQVPA58BVAAj/x7+bf3S/I/98/2g/4YBdQMdB7wJfw0mETMVpRlFHWEfryBfIRYhCiGTHtkbaxdqEh0ORAlWBa8A1/v29zH0l/FX7xPt3ut+6qLqAepE6prpBulA6PnmjOYl5Y7kQOPT4mDiouJY45rkJOYx6KXqTe3D8AH0Jvjy+xkARQRXCCsMNw9+EXgTpRRkFUUVKxQFE0oRvQ9RDr0M9gqxCWQImAfPBpEF8QTKAzMDXQKQAQUB9//9/mj9RPzy+jb5Hfdi9MTy//A68Gnvc+5b7sXuXPCv8fvzIPaq+F37If7AAFwD9gWUB8cJogouDPcMPw3aDW0NUg0zDd4MDw0JDdUMWw3DDDMNRg20DKIMCQxIC0sKKgkWCK0GjwQzArf/sv2i+zP5y/bt9JLzovJs8nvyn/KP84v08fWs9+34RvrC++b8tf19/pb+8f73/uT+fv6Q/rL+n/7y/t7+if8yAEkBqwFcAg4DcwMfBCEEHwTjA34D1wIIArgA1P9D/q/8R/vm+Qr5Q/jl94H31fdD+P74IPrT+iT88fzm/Qr/m/89APf/9v8QAEoAHQAQAKf/FgAWAeUAsgHaAcQC1wNHBBQFkQWpBhcHDwguCDAJqglQCagJwAiNCE4H/wWvBKsDvQKmAtUCzAIMBGkERgZsB8AIGwmDCNcIGAhFB6IF3ANjArYBzgBvAMn/e/8NAJMAtAH+As8EiQbaCd4MLxGAFL0XWhuuHGkeah3lG6YYxhSnD/QJYATs/WX5pPPZ7xbtyur56Frn+eYR58Hn7ucf6EDoo+m36k/rEuvL6c/oAei85jLlleMd4lnia+MM5nPpxu2u8kb49/40BU4LVxDKE8cWJhnCGnIb8xqZGckXHRY7FEkS5A8JDToK/wehBfADJAJYAF//g/6//nP+Qv6f/b38qPvV+cj37/Qg8tfuHeyd6dnnHeee5rvncOmX7A3w2PPo94L7xP8KA3IGFAkaCw8NRw6SD2AQ4BDdEK8QMBC3DyUP9g3uDPILYgv8CncK9wmhCdEJvwmYCbEIrAdyBrQE5QJ8ACX+1fvL+bn3/vXw9Cf0ofMY89nyEvOP8yD0ffTk9Ij1gfZn97D3GvhJ+A35svkc+pv62foj/JX9Kv/DAJICWQQPBsYH+gjTCXoKngo0CqoJpQijB9EFzQPJAcr/vf3e+/v5iPiZ9+n2x/ae9oD3IPgn+UT6cfvD/IT9Q/5y/pn+k/5f/q39I/2K/FD8Bfys+7376vum/G39cP61/zEBpAIcBIsFQweCCJ4Jogo6C+cL9guqCyULcgq3CaUIjAe+BhIGaAXkBIAExgQNBbUE0AROBFsE/wP5AvsB3ABcAFv/uP4A/mP90/z3+3r7XPpv+kz6avs4/T3/mwFkBFEIiw2gE10YzBw3H18h/SHHIEkfbBtJFzoSGA1iCR0G6wKx/wj9gfsY+lL4Jvbb89Hxte+c7dPqYugM5tjjHeIA4UPgvt9d32nfB+Dt4LvilOQX5yzqd+358Eb0C/gr+wz+hQAnAuMD7QQPBk8HHgg7CT4KYwsnDbsOSxCKEVIS2xLOEgYS9RAxD54NyQutCeAHxgUDBDkCjAAD/3f9Fvxw+sH4Avcb9UPzo/EH8PPuMO417dDssuw47QPuwu6y76vwPvLw89f1AfgZ+mP8sP6+AKwChgQ9BqwH7ggmCgsL7Qu3DE8NIw61DkAPzA/tD+oPqg9oDxMPFA7bDLULqgoFCpEILgflBYYEkAMBAnwAz/5U/fL7svpX+R34sfas9TD1rvT19Mr0KvV39d71f/bj9ob3Lvgi+Sv6Mvv6+x/9NP47/0UA3ADsAZICRwPaAxwEiASDBNUE2QRnBBUE7gPtA5QD6wJrAicCAAJUAVgAlf8C/3r+gP1s/J/7Bvtg+sb5SPkf+Tb5P/lo+bz5bvo6+/f7kPwm/fX9mv4p/5H/6v9cAOAAVQG4ARMCZgLSAicDZQO7AwIEFQRFBFYEkATIBLkEnARtBDoEGgRyA6AC4QHvADEAG/8d/jT9yvz6++77NPw7/Cn90/yL/Yj9g/1r/Db6b/gD9zj2kPXR9fP2bfrQ/n8EAwpuD64UDRlwHRgglSLkIswh+R+zHecawxc7FHMQQw0VCvwH+wWfBDgDrQHD/5X9H/ve90P0E/Cz6+fmL+Kb3v/be9pv2rLasNvf3SvgIuPo5Z3nCenI6Tvq8eqS68Hsue5z8S310vnQ/rcDsQgtDaMQMxNiFBYUMBPNEXAQNA9BDqoNXg2XDfwNWg5HDlIN4wtLCmgImwbIBOgCcgE6AHL/pv57/Rv8N/oO+L/1QPP88ObuZe3B7Nrsk+2z7ivw8vEc9F72cfhE+tv7of3O/wcCRwRMBgwIzglaC5kMWA2zDcsNtg3FDcINvw3yDU4O6w6YD/wP5A9iD28OCQ1aC0kJAgf7BDwD8AEvAcoAnwCvAOsAIwEsAQgBjQDv/1H/jP7g/Xj9PP1w/d79L/55/qj+qv6G/hv+X/2G/Mj7//pI+uP51/kd+q76S/vk+5T8KP2e/b39kv0r/bv8Uvzo+7/7sfvb+z/8j/zj/Gn91f1G/p7+8v5B/2j/t//n/zEAnQAPAZ4BGQKUAvACCAMNA/cC0AKVAjYC+wHfAc8B6wEDAkYCwgJHA50DwAPRA6MDIANJAisBAgAD/yb+df3j/Kj8vfzw/EP9sf0k/rP+Wf/l/20ACAGlAVYC/wKrA0YEgASFBGcECQRsA6cC8AFWAfsA6AA7AWIBAwK2AigDEQRoBE4EzAT3BDcFPQYTB/0IeAsaDkQRixMVFU8VhhThEiEQkAw8COcDXADT/c/7iPoA+g/6uvpU+zH7W/q1+Ar20PLF7jXq4uXs4UXf392i3Vjest/44abknecd6vDrQe0e7hTv7u//8GXyHfSh9pr59/y4ADIEdQcxChkMjg01DpMOog47DuMNZA33DLoMaAw4DMoLSAusCscJzwh3B/8FggQDA5YBEwCl/k79O/xT+4z63fkh+Zj4LfgB+P73DvhP+KP4Mfn0+df60Pvv/Cj+a/+xANsB5wLEA3oE9gRSBYYFlgWjBbwF9gVIBsUGUwfqB6AILwmwCRcKRApHCg4KpwkUCU4IfQeWBsAF2wTeA/sCDgJHAaUABgCP/xz/uf5d/uH9cv3Q/Bf8RPs5+ij5Gvgj91z2ufVO9Tz1c/Xj9ZD2b/di+EX5GvrE+ln71vtO/M38Sf3V/XH+NP8AANoAvgGGAjMDuwMABPoD2QODAxUDmQIPApMBNQESAQIBCQEdAUYBgAHIAfQBIgJfAosCywLPArwCsQKJAkEC9wGSAUwBEgHxAOUA0gAUAU8BswERAmECwgLqAgYDBgPyAuMC1ALBAroCtwLJAusCFANSA3YDrQPIA88DywOcA1ED/AKQAg4CpAE6AeMAxgDJAOwA6QDJAJUA8/81/xH+3fzR+876H/rj+Rb66Pon/Jf9bv8kAeUCoAQvBrIH4AgjClELOAzVDDANJw30DC4MAgukCQ0InAZyBaMEGQTGA1wD2QLeAQ4AYf2u+Tv1PfBn6wvnoeNV4W7g8+C04pnl0ug57DXvcPH38p7zv/NM843y+PGa8dfxrvI09Ez2pvhU+xH+1QB+A64FVwecCFYJvAnaCc0JvQmICXYJiwm8CVEK/ArdC/EM7A3rDpUPzA+bD8QOXg1aC6MImAUmArT+u/s5+Zv3rvah9kT3aPjp+WL7qvxj/X791Pxz+6P5jfeJ9ejz9PLl8r/zkPVC+JP7P//zAlQGIQkqC2UM2AyGDMoLwQqzCcMI8geYB48HygcYCFAIdghLCMYH8wbKBWoE1QItAcP/mP6+/S798fzp/Aj9Mf05/Rr9xfxM/LL7Ifuj+jH62vma+Zn53fk6+p76EPt7++j7YvzC/Az9Wf26/ST+mf4Q/5v/DQCOAAcBWQGsAccB3QG8AWkBHAHKAG8AOQAGABIAWgC2AFABxgF0AvkCZwO9A94D+QPWA5sDRgP/AtcC0gLYAusCDAM3A1cDYQNeAz0DFgPmAqQCXQIqAugBvgGYAYABjQGjAdAB+wEZAjwCRAJNAkMCHgINAsEBkQFlAS4BHwH3APAAEgExAWMBpgHeASoCYgJyAnUCSwIzAvUBXgGfAOj/HP+x/qT+9/4jAMABwANSBqII0wqfDGoN4w1kDWIMFgtDCcoHLAYTBV4ExgNiA64C4gGkAAv/FP2v+k745fXo84HyiPE58ULxl/Fc8ujycPOJ8xXzb/J/8czwTPAc8IzwSPG68pj0k/as+Fr64fvN/D39ef0t/ef8c/wN/AX8MPzb/Nz9Bv9DAHABjAKDAzwEsATaBLwEgwQ/BBME9gPtA/8DHgRRBHEEbQQ5BLUD2wLIAYUAJP/D/Wj8cPvf+rz6Evu0+7P8zP3o/uv/pQAdATcB/ACTACwA5//u/zgA3gDMAegCHAQqBQkGpAbrBugGswZbBvkFiQUnBegErwRvBEEE2gNBA3kCVgEvANr+mv13/G/75fqB+n/6vfoR+5L77vs2/Fb8WfxB/CX8E/wc/FP8w/xt/TP+BP+p/y0AZQBrADMAvP9e//r+1/7y/kb/9P/HALQBpAJlA/cDQQQrBMcDBgMwAlcBigD8/5f/if/I/0EA2QBtAfYBUAJyAlwCCQKTAQoBpABbAAsA+f8/AJ8AMwHQAVUCxwLvAg0DOAMJAw8DXwM3A6AD0gNOBPcE9QRlBf8E/gTMBMAEcwQKBMkDpAO0A0ADnAJkAd0ASQB8AGUAcgCNAEYAqgDgAFEBgwGQAfIAkwBDAG0AcQAqANH/lv/g/08A4wDnAP0AwADpACABdQGWAYUBTwE+AYUBlgGgATYB0ABYAM4A4ACVAdUB+AH7AbQB0QG1AaQB2gBGACD/sf7m/SX9kfzV++/7uPv8+0D82Pul++/6yfrs+sT6t/od+iP6cvrk+qL7Rvyq/E/9pf3L/ef9oP0l/cz8l/zn/Jf9sf0B/vT9Lv50/uz+1P8RAK0AJgHZAU0CBgJgAesAqADiAAEBnwApADz/Jf8I/37/9f/I/1j/rf7W/jX/5f/E/7X/hP9j/5D/Jf/B/vn9Ov2B/G/8r/zw/PX8+fwH/U399f1H/s7+qP6A/qz+Rv/h/78A2QCdAHAAuP/k/y7/1/4o/sb9RP5i/sX+E/9W/+n+1f4P/0T/Lf9g/u79z/3//Y/+3v4x//b+Af9O/1n/wf/4/9//4v++/9X/NQBjABQA1/+0/9//DQDt/yQApv/1/9r/SQBFAdsBkwI2AigCbQFgASoB4gAEAaMAjQBxANYABQFyAaABBQJzAvkC3wPNA7QDdgPLA2EEhwTFAyIDjALCAZsCbwLQA6wEJASDBMYDWATtA+gCaQHaACwBGAKPAr8BQwGKAO4AvAEjAj8C6AF2ADIAlgDjAOIAuQATAKD/pf8e/87+Ev6o/cj9NP7b/tn/CQBtAFwARgCKADUA2f/i/qH+9v5S/4//xP+K/6v/9P9WANwA/ADuAO8AzACzAKIAngBfAWUBqgFjAcv/VP/y/n4A5P8J//r+2P16/+/9r//C/m7+Rf+//fYBDAGfAlwCfv/+/+3+vQDrAfj/9P5l/br8IP8E/0MA5/43/q3+t/24/y7/DgEPAK7/Vv6F/R3/tf6jACX/PP86/ur9rf/i/6IADQDJ/aL+NP5CAOcB5v/kAPL/Yv/f/1/+9v7T/7D/dwA5/1L/Lf9+/93+3f8jAFIAFQFU/qT/df7J/z8AQv+N/z3+ov+bADoBBwGqAAMBuf9lAFb/lv+jAY7/xwJ2/kb+Y/+k/ecBzgEMAEgAT/6q/mgABP/aAYMAHgF8AH//FQA0/3sCiAF/Aq/9V/zU/XP9mgF+/kb+xvxG/dH8Tv85/73+zP78+sn+P/7hAuwBAf/O/n799P+mARYDjQF3At7/6wAiAZ0ARgNpAJABEv/p/gAAjQAWAyoC9gBx/+r/sf+IAkICWAGFADj/0f9QAOYACgMQAnf9HwCl/roDSgJ1//0AP/0rAIMBIgFwAYYAUP8QAE39AQB5AdUBGQHNAOAA9f9EAVsASAP+AQoCcQAJ/oz+v/4fAH8AFgFv/n//fgG+//ACnv6LAe0BkAExBQoAHwLP/jUBvwLCAM0CXv5c/ln/o/+7ApT+8QCz/bT9Mf9+/tsEiwKDBPH7kvrx/Gn+QgiXAa0ATPw//AkAKwG3AlwCZAC++3IAG/+zA/QBmf72/m7+JQA/AR0CNP8xAb/9sP6oABEAtAHh/7D9TP6Q/M79yf8+/+EAqv6o/0n9BP6LAD//MQEI/0AAOQBT/z3/9/8S/t//Nv+g/Wn+aPvIAGoBhwJOAaD/Dv56/tr/3gC2AqEAYwAk//b9t/9w/03/rQBs/esA4wJa/ff9Jf6ZAEcEiv+I/4P+t/7LAS8CQgFB/9L+j/5kAWcAIwHw/8wAiAOKAr4APAASA00CmwJG/439ev/EAbYBZ/1R/5z8aP7vAEb/VgJb/iT/KP7Z/6gBZf/q/uj7YP4Z/ZsBiP6e/W3+GP41BKwAAv8i+zH/rwIpA4gBy/mY/IH/1QFlA7z+BP/5/W4BmwIhAv8C7QAxAVgB5gIwAkACDwCi/cz9+gGHAQkAqf2+/kH/EgKCAX79wQCK/dUB0QF3AGb/+fwgAX79iwBWARv/SQGa/k0A2P8wAlP/VAA0AKX9kgKw/6gBMv+XAHMAnP4kAkgBEAFo/psA6ABoAaAC0wALAB/+tv+5AdcD/P/M/Wv8Nv4pArYCzAGX/Pf96P1YAfADVwM3APf8Tv8QALQD6wEb/nD97/yX/vv+CQGdADL/pv68/hYCTwEyAaoA6/70AEwCugHTAhv+kABeAZP/cgDJ/QoBQQDhAEoAZ/3J/1QB/ALT/UH93v/4/UMCG/+4/pv7K/1SASUAy/+t+1L/i//kAMgCbABfADX/Jf5BAYwBGQGk/7r+YABiAFoBE/7v/WkAEAE1BL4A2f4HAO0A7wPGAIv9vfzm/34AiwK0/mr8af84/vYALv77/lj/j/8mAef/M/6s/JQAFf9SADz+Av5UAd/9bwHF/TAAIAPGANMAI/zS/gwDLwSA/6r9dPwbAUcDogFvA3f8Yv9FAJUB8gXEAlD/V/xSABMEmwHNAED8ff0uALj/JwH6/WH9Sv9EATYBuwF4/nb+ywAY/6IAw//5/tH/uvyc/8//Hf+sAOP9XwBm/+8AHgGFAMP/S//oAKoB6ALj/YgAiP/hAXQFVf9G/oj8qf/hA80C1gFy/S/9UP8UA0IC7QCj/pr8UAAyAZwEE/9B/jT+0v6/AYkAmgD3/CT/FQDc/z0A5/4i/6z/5P6I/qT/DwCk/+QAhv2W/ukAAwEI//P71QDdA1oB3AAA/aL+SwTaAhoFi/zM/wEAUwGmBTz+4gBE+4T/vgR8AUQAv/rd/tr/eAMSA2z8nP7H/RgBUQF/ALj+ff7//aH/DQAX/64AeP58AKb9DgJvAdb+FADYANgBlwBcAIz+yAL2/+8BxgI2/zEBvP7/AVcDIwLC/1z8cv+7AQMFhQHp/pX+J/xaAWIFIgKG/bj+qfnS/wkEgABhALf4UvwRAqYAlAAL/tv7Dv+1/iUAGP8+/lX/JgBn/iz+PADwAv8Acf5wAK/9bwIcBKr/hP7//WIAnAS1AGcAnP3O/mUDHwAvAMH/EAHE/04A1v/r/qT/fwBCAq3+8/3PACD89v91/7f+MAM//Jf90/+rAkQCZgBk/M77tgDOA68CyP2D//T9mQCo/zECugND/rIAMP9wAVYDYAAyAnoAFgB2/qYBBgZm/lP+5PynAlwD/QCkALv7U/8/A3UAiAMUAD77hf/2/4QBQwB//tn+k/21/A4D+/87/7v8DP6/ABEB0QO4+S39OAMOAkYDbP+G/Nb/gwA2ASUEBAJ3/SL+YAAwA2QGDAEr/pj9Uv1IBqMEkgFr/tb4sv8/AmIHCQFK+SP8Z/2IBBwFPv9R+Qf8df4gAkQBV/9P/SX79P+z/ysCWP9D/678HvuFAvkDXAL/+Yn5+v4tAwEFEP0Z/7T8Wv5pBCgBOgBR/nb/TwHQA3wB4QEE/S4ALQNsAFwFqABl/oT+6f8IBgkDp/9f/MH9rAM2BP0Ac/0B/mICgwLN/mP/FADO/4UB8vx9/SP/CQCdA7H7uPxa//8AiwFD/i/+0/1kAhoDiAC1/Kn8AQS6AxoDZfwZ/i4AIgTWBDD+rP/2+yYFiQK2ABP/pP1eBKsBgP6h/wz/kgB+AMn9sAECANH9+/+AAFMBJP4//cP/2P5KAU7/0v14AXH/Av2P/iL9LgQUAYP+uQB/+9sBcf/YALf/nv5KAOL/1wD3/SEBfPyXAeT/r/80AK77XwTw/yz+3P55AogB0v7pAnb+Fv+2/04CeAKQ/kz/zP18AUYBAgKV/Xv94AGNAIAAFwHM/HX+uQOd/gkB6P4R/swAYgLeAPT8XP3lAVwBLwARALP+tf+g/sD/RQJ9ABj+Pv3rAeQBAAF9AFj+6ACh/moDCAA9/zH/9/4tAqMA8QBx/17/ZQJM/7f9YwGy/U8DLAVw+wf8Z/3+BBIEkfvF/XT+/AG3/2EAbf+O/pP/o//WAC8CU/9V/lYD+v5qAPr/0QDKAMP/4gJxAO7/pv5HAG8D1f5cACz/ZgDgAvf/mP3O/gACpgHQ/+f83ACi/bEDwP2i+xgA+v2IBYX/pfo8/Nv/KARGBSr6pvp4AHYE3AJy/Ar+zf3zA5YD+v2Y/Nn9oQQ6Ak/+v/2P/3EDSAIIAQj9LgFrAa0D7AO6/7D9IfywAkwHZwGD+R7+nQEnBW7+ff6k/1L9EgJgAPb/uPyC/2sBwv2gAST8Pv41AgUBUAHF+wgATP9eAVL+sgEu/5r/rf9T//L/ZP0IBKf/AAL/+4b/wgLGAxgB5fwuAer/9gIaAkj9VgCJ/zQAfAE+AM4Acv1aAB3+gwEIABz9igBu/37+JwMB/IH9jQSZ/TcD2/k//loEAgM4Aof62wDo/M8FFQWe+qb9cvzJBQ8Fb/9S+mr+wwJtA7kCCPpaAAwCLgFw/8sACf7s/2EAfwBmAoP/awGW/QMA3v8CAMUBWP26/xb/J/7pAqH9lQFD+7z99wGCAeoCnvrM/er+4wMZAFD/Lf1iAG0A7v5nAqL9yAJf/goCrf45/scBY/9gAwH+BP+dAacBlv7F/ocCsgBM/k//pQKhAur9nP2a/9oFxQOV/Sv+j/6IBaT/I/8IAPb+JQDe/TQCz/8M/1T9Wf9JAMQDtf9M/R7+3/6BA5v9JAH+/lj89v0oAjYBif1H/gH/Q/+zAJsACv8kASf/DgEKAMkAbACHALb99gEpAor9dATZ/UQBEQFU/zsFiP9f/mL/zwLmA0/7sACxAAQC5QQJ+l8BEACKABgE3/3Y/cH/O/4eAiwBM/y+/4b8lQMI//oAiP6Q+6IFLvzaAfz7nP2lAtkA4AKD+2j8UQDwBH4C0/23+ncBWgGUA739EPypAhABHAKu/Z3/7wH9AYb/mf39/4gDYwL+APb9yf+yAU0DdgEK/2r+LP2BA/kCWgBP+//9kv9KA8MAQfuf/jr+igST/j7+Nv/tAOABcvx0/3z+IwGBANn+HP67/0QAlAD//jL/DQE9/5z/wv9iApX/Bf9v/oD+VACkAioBQP3C/u0A7gDmANABk/2+AuP+zgLnAZP91v34/i4FXAHyAEz6df8sAccD2/4oACj+gf4QBRL7sgOE/nb+xAHO/TQBsAPF/mf+2P/d/9ACCACuAKf7/wCBAHcBgAKK/G0ACP9YAboB1v5a/k4BEgIa/0gAhAC9/ykBzQBBAgn97f1lAjMDhgGn+nL/agEmBIsCcvs9/sr//gIVAef+Xf98/YgBewL4/gD/3P7JApABEP5x/nsAwQLIABj9E/v+ATEBpgHC/cr8zwHw/tgB/P0//mP/+gH8AfH+Lf7v/zcCVgBo/0v9YgHfAL8AwP73/qgAmgD0ACX/cP9K/zcCvv8AAHL+DAHSAeT+f//p/J0ByAF2ADn+Of3fAJsBjQBt/hP/5v+YAHYBfQDO/ZcBFQGlAPr/l/09AosAmwHO/9b8/f8xAbkAwv8e/4v+lwBWAiwAn/+f/qT/4f8JAeQAHf7nAD0AFv/1/sP+ygF1Alf+i/4O/2wCcAKM/mH/NP3SAbQCyf+7/lz8ewEaBL//0v2v/YsBSwR//rL/rv0+AaYDNv8H/6j8RQKWAWUB3/2k/KIBCAHbAT/9x/3RAOX/JAF7ANf8Qv7zADACLf+a/SL/ZP9MAi0AZf9g/r3+rgEaAoYBb/2j/5sBvAEeAWj+P/6aAPUBuQCq/mH9+P+ZAusBsP79/QQAPQHUAkAA9/uq/5AAWwM8Aen6QP9F/58B2QD9/Tr/1PxwAY0CMv8F/5399/92AaEBZP8x/7//CQA9AnH/bf8lALAAGgLv/0X/+/10Aq8BYP8QAJD9PwGNAWoB9/6s/r4AOwBkAcwAvP5d/30AJgEKAGX+kP/3/yUA9P6r/lYA2P/CABoAmP58AE/+kwCNALD+0v+q/24Bsv/H/pP+TADGAeH/Ff8p/5wBswBJADoAZ/9+AHwAVf97/+YAYgBTAc79sv9bAZkAkgH5/gr/tf75AHkCff8E/lr/LQFLAnf+fP46/5AAzAEe//b/5P6TAJgAFQD+/+z/DwF3//4AcP/kADAARwD4AAL+AwEyAdAATP+Z/0cA0wF9/yT/tgGQAHkB3/1x/7YBWgGPABb+Wf/M/9cByQBv/43/Ef/KAJEALAAB/4X+8f+RAFv/Kf9O/jT/ff97/qz+5P70/hz/Zf8t/tP/HwCr/8n/wv6P/64AmQFuAEv/2/60/4ICNgIYAHz+LABfAWwCcQFSAK//CgAxAnwAPgEjAOoAdgEEAHgAtQC2ALcBuP8P/hYB1//J/5P/CP+C/7v/yv/V/pYA7/5f/nMAAADY/9P+If9z/4b/cgBU/3b+NQC7AFUA2v4i/6wAHAH+AAUAO/9PAAADqQAS/7L/mgC/AVQBMwCT/ur/IgFBAfwA7/6v/goA6ACPAWf/dP40AMz/7ADX//z+Pf+l/48B2v+E/yf/dwDNADUATADu/uMAjQApAKf/K//LAJkALv91/9H/xP8JAJsAdf8R/3//CwCLAQb/iv/c/wAArgB7/h3/8f86AG//8P4n/xAAU/+f/0b/Pv51ANb/2v/E/8P/PwCC/xsAtgDv/xEApP88ADUBnQDv/+X+iwB1AbcA7v+C/9//jgFYATcA0v/5/xsBggB/APD/iABgAEEA/f8//+0A5gBeAJT+t/4cAHYAqABp/8X+uf6w/zkAc//5/in+TP/R/yn/Wv/4/uMAyf8N/woAif+GAL4A6f9N/yMAgQBiAfv/XwAmADkA1AG3AAMBNgDl/6sA4gDzAN4Aef/X//kA8wCSAJX/e/9eAMYAjf+a//b/ggCp/83/ZABk/9H/SP9M/yz/ff/g/6j/of7N/sj/hf+c/5n/1P9w/ywAsv/D/xoA6f+VANv/y/+M/9gALAGl/zEAQwASANwArACSAIQAe/9bAOYAhgCdAEb/vf9XAKsAhQCb/vD+uv+1/wgA6v4R/nP+ov7X/2L/4/0K/uv+Mf+V/1//Hv68/q7//P/X/ov++P6N/6X/0f7t/r//bgBW/yn/Tf/Q//3/XQDTAOD/DwCLAGoABwCVAHYAVQCj/1AApQBOAGEAS/+Q/9z/LABTAG8A1v+j/6T/VwDoAC4A7/8cAJ8ARAGCAer/UgCUAA0BmQG7APUA3gBmAZQA/f8SANT/aAAxAAgAHQAuABoAUf/o/97/Zf/O/8D/tQBgAIL/sv+ZAFkAMwCYAHQAbgHwAIIApACYAK0AAAGQAYsB0QHqAeABDgKmAeABEwKWAtcCRgKLAkICDQMXA5ABYwGXAnEDAgNXAooB9gFFAnMCuQFXAZEBhwH9AXABGwHzALIAnQDEAEgAtwCtAGEAzABqABgAAgD//yoA+//m/5H//v6E/43/+f4V/lv+/f0l/lP+Kf1O/YD85vz6/Gv8V/yi+2L8Nvwd/P77HvtE+2j7jPtp+/f6APsI+wH7i/qR+qj6kfp7+nL6Ifs2+0T7CPsj+4P7lvvx+xf8EPwg/N780fxO/Jj8Gv2J/Zv9cP2T/fL9gf6C/o7+d/5j/gj/jP+9/1P/DP+j/3QAUwA/AM//q/9RADIBXQF2ADMAuwDLAcYBNAEjAaUBGALaAeUB0wHyAQUCjgGQAc8BWQJZAu4BJwL2ARcCLgJZAoUCjQLNAnQCPAPwAgoDQAOrAkoD3wKuA7UErgNDAy8D1AIOBIoEZASNA9wDMgW5BSUG3gb+B8wI7QpqDZsP+BDoEcISUBTFFe4WfxV7Ey4SHRF8EJ4NXwsKCbgH2wQaApIAzv3o+x/4MvWT8ijwk+9V7mDs7On56EvpBOgR5/rln+W85k7n5eeE50jn0uio6knrmuzi7QfwH/NL9P71QPct+Dn6nfu2/eT/DgHgAnoE3wUEBwkIrAgACo8Lsgt0DMELdAzDDBYLTAoGCVIJYglQCAQHzAVMBZQE4wNtApwBZgEsAM7/N/6Z/fz90/xv/H37qfs5/O378ftl+3/7F/zg/G79Rf0E/qT+Nf+x/0z/LwDpACIBrQGPAXoC4AIvA+QClwLKAlkDnASFBAcFTwTDA9MDfQP9An4BSwH/ACoBsQBm/+b+7/2B/jr+wP2J/Zr9dP6q/Yf8yvs3/Jj8rPt0+0X7O/yO/L/7XfsJ+yL8wPxG/Yf8df3y/bT9iP2k/FT9WP2m/af9T/6K/u3+ef93/woAeQAoATACKQPmAlsDzANVBDIEhgTBBHMFlwVJBbUFdQV6Bn0GMQZOBQQFoQQfBJwCOgFqAZoAxQCr/4P/DAAAAGD/Lf+v/5j/3gBwANcAhgDk/xMBkwC1AS4D7QRFB6oJPQu3DHgOfBAIE2wTYRWsFigXEhgHF0IYSxhWGdYZDRlWGcUYlBgmFgEUhBFGD4MMtAhsBQ4C4v+g/Fb5I/Zl8gfwhewb6QDmfePx4sjh8+BX3+XdFd5r3Qnecd0b3hng+uDT4pbiLuOa5KTmyeh46rHtCvKt9ov5jPv7/Fj/RgJ0BNoFcgeoCbQL1QweDZQNEQ5GD/MPghD+EBoROxH/D9QNfgtwCZwIbgfuBVME4QLLAcMAw/8+/k79O/zU+237G/oS+b/3iPaW9Tz1AvW09Rv2m/av9173Rfiv+Ob4DfpM+gD7gvtB/Aj9Sv0V/vr+4P+rAZID9QRvBmMHrAjACTsKpAoIC9kLWQxlDFAM0gwzDTkN5AwkDeQMwwyZDNMLKgvmCRIJTgd+BsAFdwQnAyEClwGlAPr/2P4S/pD8GPza+zD73fmp+MT3Sfc39/D2jvb39f/2/PYd90z3/PfM+Az5wPnM+U76RPty/Fv98v2R/hQAEwHKASECOgJWAy4E/wTtBOsEaQW5BeAF1wWYBQAG0wayBksGjgWKBcoFSQX0BE4EowQUBTYFKgXuBDMF/gTuBH0E4gPEAy4DtwIhAoMAO//E/eL8Rvy9+9n6ZvrV+Uv59fhJ97T2fvb/9g34d/i+92b42PjC+Rj7I/o4/CL+gACBAUEB9AHFAzEGDwhzCkoMGxBFE3YVSRXuFC0VjhUCFtgUbhQmE78S9BHADyQNgAtgCj4JSwfFBP0CEgE9/zL8uPgd9ln06PK28SLwAu8k7jLtyesO6sDoTehu6DroU+iD6PnoF+o66wvsa+0y75Hx6PNk9TL3rfj7+fv6nPvT/ET+1/9NAVgCwQMKBYgFBAY+BnUGagYsBs0FJwW3BFYE2gNtA0YDZgOFA7MDAAQkBOYDgAMeA4wCFAKLAckATwASAHoAvgCJAF8AkwDSAK4ApABTABMA0v+U/xX/aP5m/lX+M/41/mX+Vf9FAAMBgQF+AbIB5QH4AdEBpgGLAQoCbQKFAiwChQKfA3UEsAQaBQwGhgYOB48G/gV3BdEFrgU/BUUFUwUUBtUFngVrBW8FMwXjBAEEgQMOA0MCMQF7//D+/f2a/RP9cfxA/Oj71/vF+q75z/hg+IH3tva09WX1Z/X/9DD1vvRQ9Qf2CPcg+Bj5UPp9+4/8cv0r/tj+HQDsAKABWgLxAvkDhwQnBd8FhwZdBxYIpQjrCOwItwifCCUIuwePBysHBQc2BycHHAcZB10H2wcwCGIIvQhWCOkHNAcEBjkFBwRWAwYDoQLrAdUBMgEFAbIAH/8V/4b+Nf78/OL6yvgU92f1ofTA9FD1d/e9+C76b/qL+v/6ovsd/dL+/AAwAqUDKQVyBjQHxgivCn8N5w8+EXMSfRJGEnsRYxB3D98OWg6yDi8OeQ2MDF8LxAq6CZQIWQeYBbQDmQGh/rz7bPjr9Y/ziPE98CDvdu7V7Vntpuzq6/HqPurF6ZrpWOkh6Q/pW+mO6fLpOuu77ODuyfCi8nX02vVm9074dPmt+tb7PP1H/rT/XgHhAhoEVgV4Bq8HvwiZCW8KxAqcCiYKfwkNCQQIPQfHBkMGTwbxBbYFgAVDBUQF6wSXBOQDIwORAt0BRwFgAGH/V/6c/fX8TPz2+3z7cvtw+4P7L/uK+ib6pvms+ZD5U/lc+Yj5tPn9+Qn6Jvqh+qz79vza/dX+i/8YALEA6AAmAbkBHgLlAkoD3wNhBLUEbQW6Bd8GVwe9B1oIpggDCeAIkwg7CPUHugeRB+4GsAYLBtMFVwWBBOsD+wKNAr4B9QC1/5f+gf2r/CL8lvt6+yT7Xvtc+zf7QfvT+v/6KPtl+3j7VvuS+9b7VPyb/Ej90/27/n//AACqAAMBxgFOArcCbAMyBK0EIwWCBQIGaQamBvMGDgeSB+MH7wfKB3gHNgcdB58GRgbJBY4FiAURBbwE6gNwAwgDygKKAiEC2gF6AVMByABQAAMA5//k/8P/Vf8X//3+Vf7p/Xf9GP34/Fb87vsS+wT6c/mP+Dn4mvj1+Pr5Lfs8/CP+v/9bAu4F9QgBDJsNkA4rD80OxA7iDkkPkRDoEXYSJRJKEaMQThBFEGcQYxDSD3UOmQyzCYsFkgEl/m77aPms9yT2nvT08lTxxO8D7sHsoeu76sXpQ+i85srk5eLI4U7h1OEJ42/kZ+Zo6PXpauvE7Ebu/u/g8ejzovUj90z4i/nr+n38tP5SARIEdAZTCGwJDwpkCkQK/Qm5CXIJJwnACEcIugdAB9MGnwakBpIGgQYoBncFqgSFAzQCJgEmAGX/4f5l/vb9dP0f/dP8kvxw/B782Puq+zL7kPrm+Ur57/jK+Oz4Ofm6+Uz6zPpw+xL8tfxu/Sz+7v7J/4AAFAG7AXgCRQM/BDsFMgY0ByEItwgsCZgJwAngCfcJ4gmcCVYJ5Qh5CAwIkQcLB5gGHwaDBfYETgSsA/MCFAIfAUEAdf/G/hv+c/3K/Gn8P/zF+3T7OPsI++D6nvp1+nb6pvre+hT7ZPu4+xf8kPz7/Gb90P1J/uD+bf8EAHsA7QCQAScCsQI4A6QDGAR1BIYElgSCBJAEoASTBJYEawR9BHEEWgRHBBgEGgQJBAEE9APdA9wD3APzAyMEVAShBOgEQwWnBfUFGAZdBnIGYwZRBrgFeQXtBCsEEgQQBIQDSAMxA1QD5gM/A0ADJwPVAtQB/f8D/rX71PnT+BX5Zfnc+u38/f65AIQBkQImBBIG8gcjClwLJgv6CpwKNQpBCrMKLgz2Dc0OHA+yDosN7QvTCXwIHAc2BU8D9gBo/vH74Plp+GT3sfaH9k32cPU99IrylfAR7/ftHO1X7KTrPesD62/qNeqZ6jfrZuy07d3uwe/W78fvlu9+79bvEPDn8PvxK/Ph9Gf2afi6+vz8af8eAaYC1QNnBOAE6wQlBZQFqQW9BbYFFAbcBsoH8gj9Cd8KHQvVCgwKwwhvB1oG0QV8BRgFmQQLBJYDHgOVAgwCmAFBAd4AXQC2/+/+Fv5d/fb83fwG/f/84PzE/IL8A/xE+5H6Lfol+kz6fvq6+ir7w/t4/E39Kf4L/97/mgAyAZ8B3AHwATkCwgKBA10EbAVhBioHtAf5BzAIKgjsB2YH7gZhBqsF1QT0A3sDSwM5AwoD8gLSApgCKgJEAUAAUP9p/lL9Y/yU+//6u/qj+p/6p/rK+vL6Qftt+4j7dvtg+yv7//rm+hH7hvsp/Nv8gf2O/nT/XAAoAcoBcQLTAgQDEAMvA3gD2gMwBKwENgXsBXQG6AZLB4IHzAfwB/kHzQeUB2kHNwcHB+gGywbQBuoG1gbKBpYGZAY4BtgFcgXkBHMEDATBA6MDfwNkA14DewOWA3sDYgMzA/AClALPAfoANwBw/+b+qv5O/n/+YP4l/uP9fv2y/fz9gv5T/7//yv9FANQATgJKBHQGqAl6DNwOtA90D5kOiA2GDGULVwpoCQEJiAgBCFEH0wZ0Bh0GWQUOBGsCJwCo/dn6j/c09Bjxnu7d7Jjr/er36nrrJOx17DzsmOul6rPpAOlG6NzntecH6NjoAeq569jtQ/DZ8mj1h/dE+XL6S/vl+y/8v/yO/aP+2P9HAQ4DzwSwBmoI9AkmC+MLHwzqC2wLkwqeCaAIugcOB4oGQAYSBgYGBgbpBcAFYAW5BNYDsgKHAVMAIv8J/iH9e/wp/A78Gvww/Fn8pfwB/U79Zv1n/XD9dv1u/U/9M/0u/V39yv1q/jv/HQDrAKEBSQLaAkkDmwPwA1gE3wRPBaAF3gURBlUGoQbrBkIHpgf2ByIIFgjEB0kHuQYlBnoF6wRfBLkDDAN4AvMBagHUADsAtf8w/6P+9v09/WL8nPvm+kb62/mX+Wj5UPl9+bf58fkt+oP6Avt9+9j7D/xR/K/8LP2W/dn9Iv6e/jf/0v9AAH4A1wBiAfcBRgJKAlYCfAKcApwCeAJqAqEC/gJCA1sDdQOsA/ADFwQiBA8E7QPBA4UDJwOyAlECHQIVAhACIAJTAqIC8QIcA08DjAPtAwsE4AOpA6QDigN1A3oDVAOYA9gDRQTrBG4FugUSBoEGkwYfBqQEgwO/AowC+AESAYEANgBlAJIAIwH1AaEDdQXxBjMHVAY5BXwEowQqBQ8G2wbNB7wINQnMCAoItwf8B2cIEAj+BlMFogP4AYAAS/97/in+Lf5D/gH+L/3E+wr6KvhE9mX0dfK68HLvoe7r7TLtpuxp7KzsR+3x7YLu4+4R7+3uW+567b7sxOyc7fbuaPDa8Vvz6fRn9tj3JPmH+vn7TP0+/qP+v/7i/jz/3P+6ANUBGgN6BNMF9wa0ByIIRwg/CBUIsQc9B74GLwaxBTYF4QSpBKEEywQUBYUF0AXlBb0FZwXxBFgEwQMnA5wCKAK5AVgBBAHCAJ8ApQDFAOYA5QC4AHMAIwDd/5//cP9S/0L/Wv9//67/7v9NANwAhgEbAn8CywIgA3ADpAPJA+EDCQQ7BGYEiQSiBJwElASQBJYEkwR2BDcE5gO0A1YD6gJyAvsBpAE8AbsAHQCa/xr/nv4E/m/93/yO/D/8/fu/+3D7aftn+2/7VPs2+zb7RftT+2z7gPuz+zD8fvzi/EP9qv1J/tj+a//Q/x0AgwD4AGYBygEfAooCHAOIAwMEOARTBKQEwAT6BBMFAwUEBSMFTAVMBQ0FCwU6BWcFeAUhBd4EiwRSBBMEsQNLA2UDsQPwA/kDpwNjAyUDPQM2AwgD6wLtAukCowIYAmUBFQEHARwB/wChAEAACgDN/5D/hP9y/93/VQAGAZsB+QGlAngDcgR1BTsGvwZdB8YHPAijCJYI9wg8CZAJ5QmQCYEJFQm5CMUIRAjKB+cGxAXWBM0DugJiAeX/n/6c/Z38h/t3+pr56fgq+ND26vSK8mXwzu5c7Q7s7uoO6ojpiOl26dHpVuph6xbtVe4j7xrv1+4F71Tvr+8T8IbwufE383/0evX+9Q/3qfhu+tX7nPwf/aT9N/5y/hn+zv1C/lH/hQA9AaYBEALkAtQDewSYBLIEDQWZBfQFeAXABCUENwSpBO4E8QTbBAoFXAV9BTsFzAR9BHUEZwQMBHgD6gKjArECvQKeAnsCcgKsAssCtwJ5AjoCGQIWAtIBeQEaAcYArwCQAIcAhQCiAPIAMgGNAdMBGwJ4AskCUAORA54DdgM+Az0DOwM6AyoDIwNJA4YDiQNUAwQD3gIDAwYDzQI9AmEBvAAPAHr/1f4y/ub91f3B/Yj9Hv2n/LD88vwg/fL8oPyf/Mb8wPy6/JX8wPxd/ez9df6y/g3/n/9FAAsBqAEsAqcCGQOZA8EDqgO7A+8DZwShBMEE5wQVBWkFjgVrBVIFUgVnBXwFRgX7BLwEjwRrBE4EPAQ8BF4EdASDBFwELwQZBAkE3QOYAycD0wKTAlkCEQKtAXoBjQGvAakBjwFOAVQBdQGyAQECCQIJAkYCoQIJAxwD4wI8A+cDqAR2BOwDmQO5A8UDngOSA/EDCgXsBWEGEQYIBiYGSQZPBnIGIAepBz8IawhfCO8H0wfWB/IH0AdvBwEH9QWPBGcCSABW/uf8v/u7+u75f/nV+I33CvZ/9EbzCvID8fHvKe+C7n3tMOzT6unpvOkj6r7qletd7ETt2+0M7vft7u1S7g7v9O/M8LzxuvLL86H0i/V/9uH3d/ns+oH8uP27/lD/k//n/zsAtABMAeIBqwJ6A80DzQNpA0wDbQObA9kD9gMyBFgEXAQcBJsDSgNeA6oD+QMDBNsDsQN6AxsDgwIHAtcBCQIzAhACzQFvARMBkAAYALX/bv9G/x3/+f68/nf+TP5d/pP+2/5E/97/iQAJAVYBbwGdAdsBAgIxAnIC1AI8A5UDswPSA/kDPgSRBMUEswR7BDEEvQMSAxkCEwFFAAoAy/91/xH/yf7K/rD+ff4h/gH+HP48/h3+v/1k/VH9X/1W/Wn9j/0M/rP+V/+5/+7/OgCaAPYALQE+AV4BrQHSAc0BqQGrAewBQAKMAqoC/gJwA+YDOgRGBFgEUQRtBDcE7wOdA5EDugO0A5MDggPXAx0ETgQJBM0DuwPEA6QDLwPRArMC7AIBA/AC8QJeA+YDVASGBKAE6AQXBScFuQQ0BM8DogN/AykDuwJlAlcCLwLpAXsBTQFmAXoBgwGOAccB8AEKAu4B5gH0ATICfgK3AjwDtwM9BG4EogTlBEYFewXMBfoFBAY9Bv0FrAX2BJ4EsQToBAwF+gTnBNMErwT9AyIDNgKXAekA3/+Q/kr9Vfz8+uH58Pgc+HX3vfb39eT0pPOi8qzx3vAl8Dvvbe7D7S/tL+1K7Z/tvO7u70XxDvJp8tnyA/NM84zzs/Nu9EX17vWU9gv37fct+bP6o/yX/pAARwKIA0EEOgTJA4kDiQPMAxIERgSsBCEFiwXfBRgGjwYgB5UH5gfTB2kHuAa0BcUE5gM2A8ECZAJjApcC3gIAA9wCqwJpAhsCsQH6AB8ANv9t/tD9Qv3T/H78Wfx2/Mr8M/2X/f39gP4N/3v/pP+e/4r/jv+4/+b/GQBiAPUArgFKApsCqgKjAq4CnAJjAhoCvgFoAeQALwBu/6n+Hf7U/eH9Gf47/lj+c/6I/nj+Q/4v/lb+sf4O/1z/uf/n//T/+f8RAF0AoADXAP8AQwGMAaUBmQFuAYABoQHCAcUB2AEYAkgCUgInAgAC6wHXAacBmAGzAQQCZAKqAvICNQOBA7oD1wP3AzQEZwR9BGsEVQRNBEQEZASvBCUFmwXaBfwFHQZIBkYG5gV1BUsFOgXyBFkE5APQA+ADvANsA1kDjQPNA8cDiwNlA04DEgN5AtcBcAEnAecAnABpAG0AjgCdAJYAuADyAFEBtAH8ATsCUQJ0ApACuQLtAhUDUgO1A0QEywQyBX4FvQXlBewFwQWDBRYFrAQ6BHwDcgIXAbD/X/4u/Vz8wvt9+1T7yfpX+qj5/vgu+Dv3sPZA9v31OfUo9A/zPvK88VHxJ/Fq8SDyvfIS8xLz3PKo8oHyh/K08ujyDPM083Tzz/Mo9Kb0dvWx9kX4pfnB+on7K/zQ/DP9eP2g/fj9qv5c/+n/TQC4AFoBHQLmArQDlASIBYAGHAdUBzEH8wa/BnQGLAbmBbwFlgVfBSEFvwRWBPsDowNAA7kCIQKMAf0AXgDB/0//9/67/ov+d/6q/vv+QP9a/4X/6f9FAG8AWwBYAI8A1QDsANUAzwAKAXYBuwHYAdAB8gEUAjACKALUAaUBhQFuAS8BygBrABYAzP+I/1H/L//f/nz+G/7h/cn9jv0f/b78zPzW/LH8Xfwd/D38dfyF/IP8nPwH/YT90P0C/ib+ov4K/2r/of+1/wEAUACoANQA3gAAAVcBuAEgAlYCkQIHA3UDxwPbA/ADOASUBOMEAwUUBTMFfAXRBeUF8gUlBpUG9wYUByIHNgdjB3UHOgcNB98G3wbIBpYGSwYNBtwFwQXGBVcF6wRyBFEEXgTvAwoDewJqAsoCzQLiAbEBUgJvA4IDqQL9AVMCygK1AgcCjQEnAtYCIANmAtUBwgFOAsACywIDA38DjAR1BaEFKgUYBYUFQAZmBhwGFQZhBrMGJgYlBXMEMQScA4ICDQH3/y3/Mv7I/C/79/n5+P/3A/f99Sf1b/S58xzzGvI58W7w5e+W72zvde+W79zvKPCr8Ejx/vGZ8jTzBPQE9dj1MPaI9hj32feF+OT4dPlr+of7gfwX/av9fP5i/w8ARwB0AO0AUwGPAXwBUgF8Ab0B/wEEAhACVQLFAjUDTANGA1sDqgPRA6gDUAMKA/ACvgJyAjQCEQIAAuMByAHFAbQBpAF/AXUBhwF9ATsB1ACGAEMAEQDj/8H/rf/P/xsAVgByAHMAjgCuAOYA8wC2AHgAfgB7AC0AvP9q/4n/rf+f/4L/gP+Z/5P/UP8U//7++P7c/oD+XP4r/gz+B/7J/cD9vf3g/en9zP3G/dD9zv2v/Wr9YP1o/Vz9W/0p/Wz9nP3T/ff9Sf5X/of+Cf8P/8n/qf9OAOUAGgEuArUBdwKUA3UEWgVfBJgELgUfBp4GyAS8BPEF8AbfBioF/gRhBoYHDgdcBaMF1QaaBzcH6AUWBaUFqgbHBQsFwASTBVUG1wU+BUcFkAXEBT4FqAQ/BaQEIgQkA2YCrwL9AaABBwHgALEBvAGuAVoBSQHaAeEBHwImAiACagJkAv8COQPxAioDkQNOBK0EwgQPBTcFMAXVBHQEKgSkAxkDVQIBAoEB0gAhAFX/P//P/ln+sv3s/PH8m/za+/v69fnF+Xn5+fiA+NX30/eP94z3dffa9nv2UvZi9i32qPVQ9ST1E/Xa9Hv0ZfSp9PD0JfVO9aD1Rvau9uL2Ive/92X45Pgx+az5kfp2++n7M/zv/Lv9e/4W/1f/4P+HANIA9QAhAUYBdQG4Ae4BDAJNAp4CpQKYAowCmAK7AsUClQJjAmYCoAKKAjgC8QHiAVQCIgLdAb8BmQHSAZEBGAHNAKEAqABuABIAw/+S/7f/nv9G/w7/4f7j/uz+5P6t/o7+oP7G/s7+wP6s/sb+Of8o/wb/6/4W/4//Uf9L/yX/gv/P/3j/l/+L/97/+P/I//X//f8tADYA9f9RAE4AkgDNAJ4A2QARAUIBRwHzABIBrgGOAREBLgCHAIIBdwEAAKn/UACXAb4BUP/O/wYBpwLMAZX/uv++AHIC9ACN/zwA+gH5Aj4CggFcApwD/AOrAxsERgXZBGcEkwTmBQ0F4ARLBHMEPgbcBKIEkAT3BEQFpQRhBN4EqQReBJcECATCBBcERgOOA58DZgT/A3MD8wODBMkEHgSIA/0DXwSKBNYDLwN5A3UDmAMwA1ACJgIUA+0CJQLxAdAByQI1AkkBPQFBARwBSQG5AKX/qgDUAF0BqQBX/2gAhABBAW0Arf5P/2AAzQAz/xX+Qf5Z//H/8f2v/RD+gf7L/n398fwh/W/99fz++y/7g/vR+1v7yfo8+Z/6Kft8+hH6UvgT+gn7A/qx+Ev4lPnx+Zz5ifhU+Bz5+/mL+s/5r/kl+q363vo3+tH6svsx+zj7fvt4/P/8+vzB/Bv8Xf7m/in+2/0f/rH/aACk/wb/4f/0/9gASgE5Aa0AUgAZAh8CnQFWASoBzwESAogBlgHaAWoAYgEcAv4AngBeAL8AlQB9AEgAxf8k/5H/rf+w/m//zf4g/ob+Zf+X/8b9Qf0F/oH/KP7//FL96/1C/wn/Ev5S/UX/zv8r/6L/av9aAJgA5/+GAGUB/ACDAB0BIwGeAdcBCAEDAooCLQLUAuUBMwGbArgDKANsATYBwgLJBRICBwAwA+QD6wSyAfT/6wE6BUIFUgBB/zUCewaXA+f/ggAJAtAExgJlAe7/SQISBDMCngEZAL0CvAK3AEIB6gEZArEANgBIAdsCPQKp/0j/fwHSAlMB4f8aAH4BGgJrAlgBawDZAVkCZQPhAucAKwHgAtwDcgNkAe0ARQLsAiADagK8AV8BUALAAlECYf/p/zwD9QHfAML+fgBeAuIBIwC3/GQA7gH1ANX+ffxwALcCdv85/Ef+dgDtAAH+r/xn/4z+Zv/x/dj8ff8T/xj9PPz0/g0A2P0j/MT75v5E/wr9Qvyu+/X9QQAF/lz7evxu/rf/zf0B/Db9Uf5c/tn9AP2u/Xf9uP0C/x7+NP3b/B7+5f4k/0D9XPwm/oT/Mv80/Rn+0/1E/wUATf2T/n7+p/8f/xf+l/8m/pP/5v7P/nz+yv87/9r9rf/g/vcAHv50/pz/V/9AALH+mv45/rb/9v97/ij+Qf5U/z8Avf7A/Rr/LP/A/6P/f/1M/g7/PQDq/l/9qv6yAGP/9f6Y/jf/rQHY/lwAJv44AI4AiP74AM3+rQCq/m3/PAEIAAIAt/0HAbAA6QD8/03+AQHGAFYBuP7l/6IAaQELAJ3/2AAmAAsCk/8bASEAwgErAr7/zgAyAQkCJgEjAYMAWgOiAUgBLQKRASUELwE7AloC4gIKBKkAVAIwAyEELQKkAfYDgwL6ApMDMgMuAVoE4wFyAS8DmwEzAwcAHgAVA08C7gDuAOr/oAG9AfsAtv8AAIsAOAGdABv/EgCNALMA+P/bAMv+Z//tARAAAgCN/5L+MwKEABIA4P92/jsCQgFI/8T/3gAJATEBHAAMAMEAgwE5AoL/Wf+AAoUAIgFl/8P/GATl/7v/2/+tAV0BdwA+/73+RgGGAbj/9fwVABcAIADr/VT+xwAG/lj/FP8s/v3+Uf4G/0D+hP5r/WX+wf9n/TH+a/16/8D+/v0u/mf9Ef8bAP39Mf8b/ov9tACx/kD+PP48/rgAzf4L/SAAIv+x/0L+wP7V/kQA3AAy/Kn/uwBi/5n/9/0k/wABOP+w/of/zv9p/0gAN//J/vwAIv8OAPH/F/4XAej+w/9fALD9+f/j/icBUP/V/ej/S/+sAC4A1v61/bEA3P9VAEb+bP5eAHj/7gCr/SL/8/8uAXf/Jv0BABgBigDp/D7+sABNAcn/zfy0AMn/WwB8APX9uP9wAdQAWv/a/3b/LwJX/2MAZwD2/k0CxP+E/9T/dAA2ArP/Sv/Y/0oA+QFjAFH/nP9cALoCQAAK/5r/3ABaAdQAOP+8/4YB1gARAkL/Vf+RAQMBcgFOABsAsAAfAQ8C3QGO/6D/JwLPAYICJ//hAHAAmwK/Ai//BQGT/hMEUwFvAH0A5v/YApYAuf+/AEgAoADGAH//uQHmANX+AACbAAsBW/8a/2EAaP+WAdT/O/7NAJv/BgAlAMT9agG3/+r/3ADP/PsAiP/+AFb/a/7m/7j/lwFw/jsAl/14Ac0AAf/V//38uwOxABP+AP8/AcQBA/+vAE7/CACRAA4B2/++/wYAi/9yAVL/MgEe/2T/1gDy//j/dwAU/3L++AH7/nsAm/9t/owAbwAwAJz+o/4UAQQAJ/9+/3//3/8E/3L/DwDk/yT/Sv6FAC0A5P+D/6P+pwB4/hgBbv8P/zYAC/84AWH/CQCq/6z+tAHa/9T+wADM/mABCgIK/sX+2v59An8ByP0z/53/JAKu/4f+S//i/7gAUf/z/koAKwBV/3gAZf4WAAAANQB2/4L+IQGQ/yoAm/63/mABH//U/wD/Uf/OAOP/lv4//1cAVQDB/9T91QC9/lwC5P7A/aMAdf5QA4D/8f0P/0kA+QEJAlj9CP4mAXgCBQEN/tX/5v/4AdgA8v5Q/2f/awIpAD7/lv/s/xEByf/kABD/lACU/6gAqwHT/z3/D/7tAPwCjQD//I//oQCzApP/AP9lAP7++AGHAPj/oP4cAO8B7f4KAfT+LABwAQQAywCl/t8ADQCpAAD/GQG2/wQA9v/W/48AmP6kAVj/agEX/tD/EgHdAJsA+f07Afn/uACkACH+QAH7/yUAPgCQ/4cBLv+jALH+7QDgALD+TQBe/wkAPgLD/j3+awEV/yUCf/6d/kUBtgANAW7++ABB/qkAnwLN/ZL/uf60ABcCD//h/RoArgBCALcAm/0FALABm//i/jAAHgD8/xgAl/9MAC8AdgBP/9X/FAAFACkBgf6OALUA9/4KAQn+7AG3/5r+4wDN/wYCFv+H/uD/lgFEAAwA7P5KAMYA1P/iALf+tgCZ/yoB3/+C/l8Bzv/2AFb/Of4nAbMAuv6l/hsBAwHJ/lX+QACtAUz/uP52/uABbgGv/uD+uv7oAhIAWP6J/0QALQHl/pP/AgBGAHkAtv8E/6QBZwB4ACL/u/6DAiz/z/8xANn+fP9PAZkAgP4U/yEBGwAAALP/gv9eAV7/JADp/5f/QgC9AGv+SgAVAQH+5QEu/3D/tAA1/uEBqgA7/rn+bACVAnP9d/9rABEAugLt+yoAkQHX/lYBf/7V/roB3P6v//r/4P4ZAZf+UAGT/iMBdwB9/RQD2f3RAJ0ALv51AGsAeAHb//39ff/vAZUBkf9S/eoATQAxAVT/Jv6rAUsAKwAZ/5//PQFmAIL/Kf8RAJIBIwAPAFH/fgBwAL0A8f+m/1YAjv66AFYBcQDj/br/yP9sAZUA6/32/5//mwIP/9z+QQDKAF0B7/3T//kAjABJAEL/Qv+aAVEA9P9R/wsAlgEZACr/kP/GASkAS/+e/+z/WwAiAbEAi/5y/yoC1/+1/14Abf9kAo7+CgA3AToADf9a/20BhwDFAAf+rP/PAIoBvv4iAAL/8//TAtX80wA9AF7/FwFW/lv/GwKM/yn/xf+s/woBJgAKANv9sACxADkAowCn/XsAtQCf/8oAPf8S/98ADgHj/sD/7gBY/w0A1f+UAZP+g/44AW8ByADQ/DwAuADWAc8AG/2b/0UAUwGj/7b/yP+f/sEAFAHb/yb/HP/CAe0AmP4w/6AA0wDiAI3+Rv0rAgQA8wCe/jL+8wGT/tMAPP8J/6n/sQDLACv/mP5KAMwAEACe/9D+ZAHr/1cAsf6FALYAY/8nAP3/fwCE/+wAqf5GAYH/EAD8AL/+VQHM/eEA0wAzAFT/Tv7v/2IB5wD0/eD/Jf+rAFEBuv+4/ewAswAGAOr/Af6KAdX/DQAKAKn+DACxAM3+cwAXAar+a/9FALEABwEr/4H+oP/cAR0Bm/5V/9H/JgFOADT/2/9GATYA9/8L/wMBOAGu/6cA3v1wAUoBWgDF/wH9egGGAmb/2P76/qEAnAKO/sf/9P6ZAFsCHv+q/gj/hAKO/xUBG/4V//wBY/9bAbT9CAAvAXj/9P+2AGf/v/4IAQMBNf9E/0sApf/eANL/UwCS/yH/fwCJASwBsP0cAFsB0QB0AF7/sP41AWgBvf+F/8X+AgDxAToB/f1D/0EAqADeAVr/5vyMAJkADAILAE/80wAKAHYAAABO/00Aef2nANQBTv/p/2T+B/9QARYBbP+y/0j/AADcAcb/Ov8hAKj/lgFFAO/+Qv74AcMA2P4mAZ/99gBVAaYA6/5X/7wA1P8oATAAPv/b/38AcADS/43/WgAaAPj/dv+HAFIA6/4FAcIAUP+XAKr9KwFwAcv+p/8B//8BNgCO/nX+vQDIAUH//f7m/rYB8v/4/8n/+v4vAWcA1v6y/8sAVABuAf38mwByAa//8wAK/3T/Cf8OAfsBIv88/ksAKwGtARj+W//4/48AcQG//psApf7JAKgAff/Z/5D/yABq//QA3P7eAGb/+AC8ACf9RQK1AB8AAv5Q/9gALALZ/Yv9/gGSAHYBfvzf/h4CDQGG/6n9BwAXAOUBgf/h/okAjv/8ANr/+/+n/4z/5AB9AET/hAB6/9IAOAA4/x0AQQB2AGf/3wAC/4QAnQBU/6MAg/+q/+L/eQFpAF7/Bv9C/zwCWgHn/sv9ugDqAP0Aa/9U/7H/4f9sAez+RwD7/vYAlADm/ksAYAApAGUBsv4b/vgCVf8//8b/vP/bAF8AVf++/pICNP+q/oMBFgCgAA7/LP8aAOYACAHI/mf+3wCaAXMAB/4b/y0BJwF/AMf+Uf6MAFIDhv4D/mAANABOAT8Atf5i/qMA3QA0AF8ALv7l/qUAjABqAU3+hP4BARL/vAGf/8b+a//z/3wC3/6L/9/+uQD4AOX/4P9d/qMB6f/s/93/wf5DAXwA7v7p//P/hf9nAG4BTv7+/jgAtwAUAiX9DADIAGUAngCj/aX/RgFOAXH+tv4/ANkBkf+z/zz/kv7wAlj/J/8aAC4AkwDP/ub/fwFsAK3/j/7U/yAC0QAf/2n9lADdAQUAT//S/mf/OgJXAL/+Zv/7/5UBev9x/+/+2wC1AMT/X//e/l4BywA8AE7+d/9cAMgAHQES/9n+0f9vAYEA/v5P/1T/KwFRALv+5v/U/6QCA/+Q/jUBhP/vAJgA//7J/+4Ajv/7ACX/4QCV/2H/iAFb/2IBOf/X/h0A5AADAd7/+v2c/+gBiACL//b+7/5QATcBIP7S/3MAIQGs/icA1AAx//AA1/7i/+H/bAB3ALT/vv4zABQB/f6X/3MAiAAr/9EA+/4oAPkAWP+9AIr/ef9E/7gB3QCr/RQB4P92/3EB6v4lAYAA5v2HAIoArgC9APr9AwDkAFkBowCe/cv/nACmACEBxv43//D/rf/bASgAj/4p/6MAmgDXAAgA6/2BAP8A1wCb/sD+gQACAU0AJ/40/wYBFAG8/mr/pv+hAA0A3/9+AFr/XACSAGX/Yf8VAT8AlgCe/on/3QBzAMsAK/5g/7gATABOAAsAHf/h/8b/qQCNAHD/l/+4//z/sQC7ADX+QACx/6wA9wDF/rD/1/9IAS7/hf8XAIz/9wCS/9//EgD8/08AJv9EAeP/Hf96AK//BwJy/3j+BwDsAKkAsP8+/2D/UAE2APb/bv97/8L/jQDWAEf/xf/U/04A1gAi/zj/7/+eAeUAif6i/9b/VwIaAWT9v/5dAa0BKwBp/6z+hAAHAeAABf9N/5EAKQDAAGz/rv9IACoAJQDP/x7/KgFCAG7/XAB0/0kARgCG/xIAnf9lANL/0f6WAH0A8v8D/3AA4P7LAP0Acv6hAKj+BwFwAH3/ZAAN/jkBRgCJAGoA9f3ZAEYAhQA9AOf+fwCLAEMAQP99AIAAEQC6/5n/iABRAGMAYf8YALb///9SAEUAWf8f/yUBXP93/wwAxP9rAKz/h/+3/woAbgCl/1cApP8m/1UAeQDIADT/vP4FADwBPwCvAIH+Bf5MAdUBVQD//cb+OAAfAhUAU/46/9MANgEp/7P/n/+JANAASP9K/6b/yQAkAMX/ZwDi/j8AhAB3ADMA/f4EAE7/TgHM/wQA6v+w/xYBjP68AIMBLf+N/9P/WP92AfUATP/c/hwA+ADk/3P/RAAuAIP/MADp/0cAuAC0/+H+sgALAHsAhAAS/wYADQBfAZD/XP8iAAwBewDZ/lIAugD0AEkAXv+i/3n/ogBVAcr/qv7M/nIBlAFOAF/+lf4bAW8BFgGD/uf9pQDgAScAgP+o/gQAhQHm//r/Xf/2/zwAjf/4/x4Apf/5/58AUP9W/6oABv+FAHUAYv+kAEH+kwBfAXn/JAA5/3P/yADuANT/W//I/8r/ZABAADUAUQDJ/lwAvP8FALcBCP+Q/0r/TABkAdr/wv/9/pb/OwHGAFr/RP9zADYAVwBz/2T/gwAJAJwA4P5C/8IAiwBcAKn/G/85/8EA3AD4/0YAcf9P/5wA/QAzAFr/if+P/yIBpQDX/1j/8/4BAZ8ABgAP//P/RAFvAGL/OP+4AM0AFwCT/1X/QgH6AGT/y/9I/y4A0AB+AID/hf/c/+cAnQAr//r/n/9UAGcA2//o/7T/6gANAD3/NAB4/5oABAEM/z7/IQDyAA4A1f9S/xEAewB2/7AAmf/S/14A4//M/xwAwABvAHf/Mv///8cAswAbALr+R/9CASsASQB5/yD/RwAPACIAc//r/3EA4P+x/jAAwwDZ/20ATv/+/jYAQgEAAFT/FgDF/+b/agDW/9b/EQBnANj/tf+FANj/NQBt/87/NABYALIAIv98/zQA6wDv/+r/6v8Z/98AjQAW/wMABABuAEAAmf/o/wMAnQBU/ywATv+P/8AAAgBZAMr+U/84AOQA8wC1/tb+7v/0ADsBR/+I/kP/HAF5AUf/fv5U/0sBbgCo/4H/P/+JAEoAPQBy/5H/GQBbAEgA3f82/8X/9ABAAEsAbP+T/44AUQAlANX/sP9SAFwA2f/K//EA8P+W/6YAS//HAE0A9/+DAAz/OQCKAAwAQADQ/5n/9//5AEcANv/R/yIApgBF/4z/JAAvADQB3P4j/50AjgCbABD/Vv/4/4EAAgFW/wH/sf8vAe4AVP8C/+j+EwF+AdH/x/4j/9UAgQFhAD7/xv7G/1QBLgFFAK3+8v7LAPcBdwDm/nz+ggC7AYoAcP8x/ggAeQH4ACH/e/6f/14BJwGu/0L/j/9JAGAAOwDy/wwANv/7/38AegDJ/wz/1f/TAHkAB//9/7P/NQCk/3L/CAHl/4b/R//a/x8BaQA0/5H/tP+xAAoBpv83/+z/YgBbAFwARf8MAE8A3/9lABAA5P/R/woAUQAJAAcALwAuAOD/yf8RACEAhQD6/2b/LwBHAF0Aov/m/wIAm/+EACUAx//0/wUAjP9GAJoAev+N/x8AGQDv/zkAf//R/ysAWAAkAHn/ov/u/+oA8gCH/+/9rv8qAUgBIAA7/tv+aACyAXcAS/78/kgAxgB/AFT/Yv8uAKwAzP/R//7/uP98ABYALADX/7n/FgBeAGIAu/+S/0IA9wDQ/33/0f9zAKgA0v9d//L/hQC4ANb/X/8sAAEAbQAtAN7/7P/T/yEABQAWAEwAnP/6/xwA+v///0P/5v8VAGsAAgBI/0D/tP8GAY8Adf+1/k7/rQCmABYAe/8t/+T/egAZAPz/zf/W/10AuP8YAJkAx//p//P/DQBiAB4APwBVAMz/z/8NADwAegDW/0z/FwDqABAAOP9T/1cA5ADW/zT/U/+AAMUAev9s/6f/EABSAOD/9v/c/zwA3v/Z//v/4P9FAL//3//T/wAABwAIADsAnP+k/wkAsgBjAG3/bP8JAN0AfgC5/yH/wf8jAd0AHgBe/2b/NADXAKQAev9O/+D/RgC5AAEAK/+3/ykA7gCPAG//HP+k/+IAgQDs/0z///5QACcBdgAN/wz/OgDGAGgAjv9p/+//QQAuAPD/7//M////JgAVALP/pP8VAC8AJgDf/wAA3/8EADkA4P/5//H/6f9KAP7/ef8OAD4ARwDC/2D/LwA+ACgACADA/xYAOgDd/yEAfwD9/+7/0f+w/3sAagADALD/g/9WAIQA/f+s/7T/MwCkAN//iv8RAB4AmwAiAJH/j//C/2IAYQAZAKH/vv8HAG0AewAJAN3/rv/2/ygAiQBXAKj/jf/p/3EAbAAKAI7/sP8pAKAALQBn/9r/YgBxABUAtP/L/zcATQArALb/hP9JAHAAGQCF/4b/iADPABYAXf+r/5cAxQBHAJP/kv9sAMwAYgCM/5n/KABlAHwAyv+Q//r/agA3AMz/uf/l/1sAMgDo/9X/1P/x/xEA6v8kACwAnf+E/5L/cwCMAMb/G/9J/20AxQA3ABP/TP8DAGgAWACx/6H/qf/c/zEAMQDd/8D/tf8gAFoAEADx/+X/IQApAAAAAABKAB4A8f/1//n/NwD2/8z/AQAEAC4A+v+K//z/JgAtALP/f/8NADwAWAC4/4//vf8oADYAxf/V/67/DQA2AOT/2v/q/xIAGQDQ/6X//f85ADUA0P9c/+T/YwCDACgAeP90/x4AsAB3AL7/O//q/58AkwAeAGP/tf80AF4ALgDP/8b/+f9CAAoAAQABAPr/FgD8//b/BwAOAC4AFQDa/8v/AABnAE4A3P9X/7z/lQBbALn/Yf/W/5EAOQCM/5n/EACFACwAhP+X/yAAdQAQAK7/lP8hAEoA//8BAN3/MQAXAAUALQDt//v/MQAMAMX/8f9MADYACgDw//D/FQAKABQAJgDt/9f/CwBiAEUA1f+//wAAQwBAAPD/tf/x/0QAIADh/8z/2v8dABUA6//z/wAAEQDp/+b/AAD8//D/8P8QAOz/8P/5/wEACgDt/wcA7P///wAA7P8SAPP//f/6/+z/AwD6/wwABgAIAPD/3v8kABEA/P/9/+n/AAD4/xYANgAJAPP/3//t/yYANQAQAPD/0v8VAFsA/P/z//D/+/9CABgAHwAKANf/+/80AE4A/P+i/93/NwBEAOf/sP/8/yMAEwDl/+r/IQAbANv/8/8MABcAFgDx/+f/8v8ZABwA7P++/+z/RgAOAOD//P/v/xsAFgDj/9r/+P8oAA0A4//4/yYA/v/y//j/CAAVAPD/FAAAAOL/AAAjAB8ACAD2/9f/CQBqACIAsP/U/xcAPAAYANz/7/8BACwAKgDu/wIA7P8OAC0A9//6//v/FwAUAAQAEwDy/wYAFQD8/woAFwAjABIA7P/9/x4AIQAAAPL/FQAhAAgAAAD7/w0AJwAiAAAA4P8KACEAGQAoAPz/2f8NAGUAMwDH/9z/MAAzAAYAAQDf/woAQQANAOj/8f8tADAA+f/1//7/DwAbABcA///g/xQAFQARAA8A9P8HAP///v8AAAcA/P/4/+X/BwAyAAMA9f/P/wkAMwAVAOr/0f8LAAkAKgAfAOb/9f/z/wsAJwATAP7/9P/3/xQAIgADAOH/AAAWABAA+P/X/wIAJAAIAO//6/8NACcAHgD7//j/JAAZABYADgAAAAoACgAdAPn/8P8BABUAIQDx//r///8hABEA6/8AAAkANgD//+j/EQAZAC0A+v/g//r/LQAjAPP/3f/l/0kAPADU/8L/8v86AC0A8v/Q/+P/EAApAPn/xv/Y//P/GQARAPj/4f/g/wsAHQD2/8L/8v8yACgA6f/L//D/JwAmANf/tv/y/0IAJQDH/7//+f8rAAkAyP/p/x8AIwDp/8L/AAA6AAoAy//b/xoAPQADAMz/5P8qADgA8f/d//7/FwAKAO//AwD7/wQAFADr//P/BAATABsACQDx/wUAIgAWAAsA7v8rADcADAD1/93/QwBPAAAA4v8MAEkAOAAbAPD/+f8rADEAEgASAAUAHwAnAP//HwAaAA4A7//u/x0AKwAMAN7/4f8EABoAAADn//b/DwAWAO3/6P8KABkAAADm//v/CQABAOn/9P8OAAYA8P/6/yMAIgD8/+3//f8NABwA+//k/wAAEQANAOL/8v8TAAwACgDu//H/FAAFAPf/FAAIAOn/1P8HADYACADc/9f/DQAZAAAA+v/5//n/9f8AABAAEAD4/+v/9v8HABYAEAD2/+z/CQAcAA4A8v/5/x4AHAACAP3/BQAoABUA6f///w0AMQAMANb/+P8JAC4A/f/S//L/GQArAPn/1P/V/wcAJwAcANb/uv/9/ycADwDS/9T/9f8QAAgA1v/d//z/DgD9/9T/8P8bABsA///r//7/FwAQAA4AGAAZAAYA8/8CACcALQADAOr/+P8iADAABQDl//D/EwAtABUA7P/9/yEAGwAAAPT/EQAcABMA/f/1/wcAEAAAAOr/AwANAAEA4P/q/wgABAAIAPb/AQD4//f/EgAVAAIA7f8CABAADQAEAPD/AgAKAPz/AAALABgABgD2//T/EwAjAPn/8f8KABwAIwD2/+j/DQAOAA4A8f/t/xEAJgAQAOb/8P/3/yoAKwDl/9z//v85ACwA2//L//z/IAAfAPb/0//u/xYAGAD7/+b/8//8/wkADQACAAIA///0//7/DgAOAAgA9f/5/xEADAANAAAA+P/+////AQAAABAADQD7//j/AgAOABIAFQAHAAcAFwAZABUACQAAABMAFwAGAAsACgAQAAgAAAAMAAQACwACAAQAEAD9//X/FgAZAAcA8P/w/yoALwAZAPL/6f8UACYAHQAFAPf/+P8PABcAGQAJAOP/+f8LAAsADwAEAP7/7//+/wsABAAIAAEA9f8AABEAGQALAP3/CwAYAA0ACQAZAB4ADAD8/wEAGQApABUABwAPACAAJQAVABAAEwAgACMAGAAaABcAGgAXABAADwAPABQAFQABAAQAFwANAAAA+//9/w8ABQD3//P/9v8IAPb/7v/0/wcADgDk/+D/8P8RAA4A3f/C/+7/KwASAOL/zf/t/x0ADwDw//D/AAAMAAcA/v/7/xEAGQAEAPz/BQARABEACAADAAoADQAVABcAEwAPAA0ADQAOAAUA/P8DAA8AEgD3/+v/+/8OAAQA8//1//v/FgAGAPf/9f8CAAoA8f/w//j/BwAJAP3/8f/2/wcAAgD8//P//v8CAPv/+f/y//z/+v/8//T/5//9/xIADQD0//H/+/8TABwAAwD8//r/DQAeABAA/P///wwADgANAAgABwALABAABwAQABMAFgAaAAIACQAaABIAFgARAAQAGwAaABIAEAAAAAkAFAAWAAQA/P8AAAoAFQD7//j/AgABAAUA+f/6/wkABwDz/+7/AgAFAAoA+v/8/wMA/P8DAAYACgADAAcA/v8VABcACgAHAAIAIQAFAAcAHwASAA4AAAAKACAAKAAKAPz/CAAcACQAAAD7////AwALAAcAAwDy//T/BgD8//D/9v////7/+P/5/wsABADy//j/AAAKAAcA/v/7/+//AgARAAIA+f/6/wgADgAOAAIA8v8LAA4ABwAKAAEABgAJAAMABwAVAA8ABgAAABkAJAAXAA8AAAARACkADwAIABgACQANAAEACgATAP7/BwD//wQABAABAAAA6//r/+z/AgAOAAIA7P/d/wYADAAGAP//4f/1/wgAEAD3/+P/AAAKAAMA/f8AAA0ADAABAAAAAgD//wQAAAAAAAEA/f8GAAIAAQADAAUAAwD7/wkADQAOAAsAAAD9/w0AIQAaAAwACQAKABMAHgARAP7/DAAWABQADQAOABgADwADABAAFAATABIACwAYAAIABQAAAPT/EAAPAAMA+P8EABkADAABAPb/9/8NAA4ABQD7/wMADgAIAAIAAQACAP//AQAKAP3/+f8CAAEAAAD5//z/DAAMAPj/+P8LAA0ACgAFAAwACAAFABEAFQATAAgABAAJAB4AHAAGAAYADAAYABkACgAFAAwAEQAQAAkACwAMAA8AFAAIAAgACgAHAAgAAAAAAAkADAAEAAMABgAJAAkAAQD5//j/AgAOAAoA//8AAAAAAQAJAAYACAABAPb///8OAAwA/P/y//P/CQARAP7/9P8EAAsACQAEAAMADQAOAAcABQATABQAEAAAAAIAEwATAA4A/f8GAAsADwAQAAQAAgACAAwACgAJAAQAAAAAAAIACAAIAAIA+P/5/wQADQAHAAAABwAGAAsADQALAAoABQAEAA8ADQAJAAIA//8LABIAEgABAAAABwAPAA4AAgD+/wAACwALAAcAAgAFAA4ADAAEAAMACwANAAYABAAGAA0AEAAOAAQABgAOABEADAAEAAQABwALAAoAAwADAAMABwAGAAIABQAFAAIAAAAFAAgABwACAAAABAAHAAcAAgD//wIABQACAAMABgAFAAQACQAEAAUACQAJAAkACQAIAAwADwALAAoABwANAA0ACQAIAAIADQAUAA4ACgALABAAEAARAAwABgAOABAAEgAQAAwACgAMAA8ADQALAAoACwAMAA0ADAAKAAwACgAKAAoADQAMAAsACwAMAAoACgAOAA0ACgAHAAsACwALAAkACAAJAAkADAAMAA4ACgAFAAoADwAPAAsABAAGAA0AEQAJAAMABwAMAA0ACwAFAAQACAAJAAcABgACAAMABQAJAAcABAAGAAcACQAFAAUABgAFAAYABgAIAAcABQAFAAYACAAHAAgABwAGAAYACQAMAAoACgAKAA4ACwAMAA4ADAANAAgACQAKAA0ADQAGAAcACAAJAAkABQAHAAYAAwAAAAAAAgABAAAAAAAAAP//AQADAP7//P/8//7/AAD///3/+/8CAAMAAgAEAAQABgAGAAQACAAJAAoADQAMAA8ACgAMAAsACQAQABEADwALAA0AEQARAA0ACQAIAA4ADwAQAAsACAAKAA0ADgAKAAcABgAJAA0ABwAEAAcACAAFAAQABgAKAAkABAADAAUACQAGAAIAAgAAAAUABgAEAAIAAAACAAIAAwADAAAAAwAEAAMABQAEAAQAAgAEAAYACAAKAAYABQAJAAwACgAJAAUACAAJAAwACgAJAAcACAAJAAUABgAFAAgABAAEAAUABgAHAAIAAAADAAYABgAFAAIAAwAFAAYABQABAAIABAADAAQAAwACAAMABAACAAQABQACAAIAAgACAAYABAAFAAQAAwAGAAUABQAEAAUABQAHAAgABwAJAAoADQALAAoADAAMAAwACwALAA0ADgAOAA4ADgAQAA8ADgAPAA0ADwAOAAsADAALAAoADwALAAoACQAIAAsACAAIAAYABgAHAAgABwAGAAcABAAHAAUABgAGAAIABAADAAQABgAEAAIAAgAFAAYABwAHAAYABwAIAAgACgAJAAkACwAMAA0ADAANAA0ADAANAA4AEAARAA4ADAAOABAAEAAOAA0ADgARABIAEAAPAA4ADgANAA4ADQANAAsACgALAAoACgAIAAgABwAGAAcABwAFAAMAAgACAAAAAAD///7////9//3//P/+//7/+//6//v//v/8//z//f/+/wAA/////wAAAAABAAEAAgAEAAQABgAGAAUACAAIAAgACAAJAAkACwALAAsACgAJAAsACgAKAAgACQAIAAcACAAGAAYABgAGAAUABQAGAAUABgAFAAUABAADAAMAAQACAAEAAQABAAEAAAABAAIAAAAAAP//AAAAAAAA//////////8AAAAAAAABAAEAAAABAAMAAwAEAAUABQAHAAkACgAMAAsACgALAAwADQANAAwADgAPAA4ADgANAA4ADwAPAAsACgALAAsADAAKAAgACQAKAAgACAAGAAYABgAFAAQAAwADAAEAAgAAAAEAAQAAAAAAAAAAAAEAAAAAAAAAAQABAAMAAgABAAMABAAEAAMABAAFAAcABwAJAAkACQAKAAoADAALAAwADwAOAAwADQAOAA8ADwANAA4ADwAPAA8ADQANAAwACwAMAAwACgALAAkACgAJAAkACAAHAAYABgAGAAcABgAEAAQABQAEAAQAAwAEAAMAAwADAAMAAwADAAMABAAEAAQABAAGAAcABwAHAAcACAAIAAoADAANAA4ADgAPABAAEgARABEAEQASABQAEwASABMAEQASABEAEgARABEAEAAQABAADgAOAA0ACwALAAoACgAJAAgACAAHAAcABgAGAAUABAAFAAQABAADAAIAAgACAAIAAgADAAMAAgADAAMAAwAEAAUABAAFAAYABgAGAAYABwAHAAcACAAJAAoACgALAAwADQAOAA4ADwAPAA8AEAAQAA8ADwAPAA8ADwAPAA4ADQANAAwADAALAAsACgAKAAkABwAGAAYABAAEAAMAAwADAAEAAAAAAAEAAQABAAEAAQACAAMAAgABAAAAAQACAAIABAAFAAQABgAHAAYABwAHAAgACQAJAAoACgAKAAsACwAMAAwADAANAAsADQAMAAwACwAMAAwACwALAAoACwAJAAkACQAJAAkACAAJAAcABwAIAAYABgAGAAUABQAFAAQABAAEAAMAAwADAAMAAwADAAMAAgABAAIAAQADAAMAAwADAAMAAwAEAAQABAAFAAUABgAGAAYABgAHAAcABwAIAAcACAAJAAkACgALAAsACwAMAAwADQAMAA0ADAANAA0ADAALAAsADQAMAAwADAANAAwACwALAAoACwAJAAoACQAJAAkABwAHAAcABwAGAAYABwAHAAgABwAIAAgACQAIAAgACQAIAAgABwAHAAgACAAHAAgABwAIAAcACAAHAAcABwAGAAYABgAGAAUABgAGAAcABgAGAAYABgAHAAYABgAGAAYABwAHAAcABgAHAAYABwAHAAYABQAGAAYABgAHAAcABgAGAAcABwAHAAYABwAHAAYABwAHAAgACAAHAAcACAAHAAcABwAHAAcACAAIAAcACAAIAAcABwAHAAcABgAGAAcABwAHAAYABgAGAAUABQAFAAUABAAFAAUABQAFAAQABQAGAAYABgAGAAcACAAIAAgACAAJAAkACgAKAAoACgALAAwADAAMAA0ADgAOAA4ADwAPAA8ADwAOAA4ADgAOAA4ADgAOAA0ADgANAA0ADAALAAsACgAKAAkACQAJAAgACQAIAAgACAAJAAgABwAHAAgABwAGAAYABQAGAAYABQAFAAUABQAGAAYABgAHAAcABwAGAAYABwAIAAgACAAHAAgACQAIAAkACQAIAAkACQAJAAgABwAHAAgACAAJAAgACAAJAAkACQAIAAgABwAIAAcABwAGAAUABgAGAAUABAAEAAMAAwADAAMAAwACAAEAAgABAAEAAQAAAAAAAAABAAIAAgADAAMAAwAEAAQABQAEAAYABgAGAAYABgAIAAkACQAKAAoACwALAAsADAAMAAwADQANAA0ADQANAA0ADQAMAA0ADAAMAAwADAANAAwADAAMAAsACwALAAsACwALAAsACgALAAoACQAKAAoACwAKAAoACgAKAAoACgAKAAoACQAJAAkACQAJAAkACgAJAAgACQAJAAgACAAIAAgACAAIAAgACAAIAAgACAAJAAkACgAKAAkACgAJAAkABwAIAAgACAAHAAcABwAGAAYABwAGAAYABgAFAAUABQAFAAQABAAEAAMAAwADAAIAAgADAAIAAgACAAIAAwADAAIAAgADAAMAAwAEAAMABAADAAQABQAFAAUABQAFAAYABgAHAAYABQAHAAYACAAIAAgACAAIAAkACQAKAAoACgAKAAsACwALAAwADAAMAAwADQANAA0ADQAOAA0ADAAMAAwADAAMAAsADAAMAAsADAALAAwADAAMAAwACwAKAAsACwALAAsADAAMAAwACwALAAoACwAKAAoACgAKAAsACgALAAsACwAMAAwACwALAAsADAAMAAwADAALAAsACwALAAsACwAKAAoACgAKAAoACgAKAAkACQAJAAkACAAIAAgACAAIAAcABwAHAAYABwAGAAUABQAGAAUABAAEAAQABAADAAQABAAEAAQABAADAAMAAwADAAIAAgACAAIAAwACAAIAAgACAAIAAgACAAIAAgACAAMAAwAEAAQAAwAEAAQABQAGAAYABgAHAAcACAAJAAkACgAKAAoACwALAAsADAAMAAwACwAMAA0ACwAMAAwADQANAAwADAAMAAwADAALAAsADAAMAAwADAALAAwACwALAAsACwAMAAsACgAKAAoACQAJAAoACgAJAAkACQAIAAgACAAIAAgACAAIAAgABwAIAAcABwAIAAgABwAHAAgACQAJAAkACQAJAAkACQAJAAkACQAJAAkACgAJAAkACQAIAAgACQAJAAgABwAIAAcACAAIAAcABwAHAAYABwAGAAYABQAEAAQAAgACAAIAAQAAAAEAAgABAAEAAQABAAEAAAAAAAEAAQABAAIAAgACAAEAAgACAAMAAwADAAQABAAFAAYABgAHAAcACAAJAAkACgAKAAkACgALAAsACwAKAAwADQANAA0ADAAMAAwADQANAA0ADQANAAwADAAMAAwACwALAAsACwALAAoACgAKAAoACgAKAAoACgAKAAkACQAJAAkACgAKAAoACgAKAAoACgALAAsACwALAAsADAAMAA0ADQANAA0ADgAOAA0ADgAOAA4ADgAOAA4ADQAOAA4ADgAOAA4ADQANAAwADAAMAAsACQAJAAkACAAIAAcABgAGAAYABQAFAAQAAwADAAIAAQACAAEAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAACAAIAAgACAAMAAwADAAQABQAFAAYABwAIAAkACQAKAAsACwALAAsADAAMAA0ADAAMAAwADAANAA0ADQAMAAwADAANAA0ADQAMAAwADAALAAsACwALAAoACgALAAoACgAKAAoACgAKAAoACgAKAAoACwALAAsACwALAAwADAAMAAwADAAMAA0ADQANAA0ADQANAA4ADgAOAA0ADQANAA0ADQANAA0ADAAMAAwACwALAAoACQAJAAkACQAJAAgACAAIAAcABwAGAAYABgAFAAQABAAEAAMAAwADAAMAAgABAAEAAQAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAIAAQACAAIAAwADAAQABAAFAAUABgAHAAcABwAIAAgACQAKAAoACgAKAAsADAALAAwADAAMAAwADQANAA0ADQANAA0ADQANAA0ADgANAA0ADQANAA0ADgAOAA4ADgAPAA4ADQANAA0ADQANAA0ADAANAA4ADgANAA0ADQANAA0ADgANAA0ADQAMAAwADAAMAAwACwALAAwACwALAAsADAALAAsACwALAAsACwALAAsACgAKAAkACAAJAAkACAAIAAgABwAIAAcABwAGAAYABQAFAAUABQAEAAQABAADAAMAAwACAAIAAgACAAIAAgABAAEAAQAAAAEAAQAAAAAAAAAAAAAAAAAAAAEAAQABAAEAAQACAAIAAgACAAIAAgACAAMAAwAEAAQABAAFAAUABgAHAAcACAAJAAgACAAJAAkACgALAAsACwANAA0ADQAOAA0ADgAPAA8AEAAQABAAEAAQABAAEAAQAA8ADwAQAA8ADwAPAA8ADgAPAA8ADwAPAA4ADgAOAA8ADwAOAA4ADgAPAA8ADgAOAA0ADQANAA4ADQAMAAwADAAMAAsACwAMAAwACwALAAwACwALAAsACwAKAAoACwAKAAoACwAKAAoACQAIAAkACAAIAAgABwAGAAYABgAGAAUABgAFAAUABQAFAAQAAwAEAAQABAADAAMAAgACAAIAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQACAAIAAgADAAMAAwADAAQABQAGAAcABwAHAAgACAAJAAkACgAKAAoACgAMAAwADAAMAA0ADQAMAA0ADQAOAA0ADQAOAA4ADgAOAA4ADgAOAA4ADgAPAA4ADgAOAA4ADgAOAA0ADQAOAA4ADgANAA4ADgAOAA4ADQAOAA4ADgAOAA0ADQANAA0ADQANAA0ADAAMAAwADAAMAAsACwALAAsACwALAAsACgAKAAoACgAJAAgABwAHAAcABwAGAAYABgAFAAUABQAFAAQAAwAEAAQAAwADAAMAAgABAAEAAQAAAAAAAAABAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAgABAAIAAgACAAMAAwADAAMABAAEAAQABQAFAAUABgAGAAcABwAIAAgACQAIAAkACgAKAAsACwAMAAwADQANAA0ADgAPAA8ADgAOAA4ADgAPAA8ADwAPAA8AEAAQABAAEAAQAA8AEAAQABAADwAPAA8AEAAQABAADwAOAA8ADwAOAA4ADgAOAA4ADgAOAA4ADgANAA4ADQANAA0ADQAMAAwADQAMAAsACwALAAsACgAJAAoACQAIAAgACAAIAAgACAAHAAcABwAGAAYABgAGAAUABQAEAAUABQAEAAMAAgADAAIAAgACAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAAABAAAAAAAAAAAAAAAAAAEAAQABAAEAAgACAAIAAgADAAMAAwAEAAQABAAFAAUABgAGAAcABwAIAAcACAAJAAkACgALAAsACwAMAAwADAANAA0ADAAMAA0ADgAOAA4ADwAOAA4ADgAOAA4ADgAOAA8ADwAOAA8ADwAPABAADwAQABAAEAAPAA8AEAAPABAAEAAPAA8ADwAOAA4ADgANAA4ADQANAA0ADAAMAAsADAALAAsACwAKAAoACgAKAAoACgAJAAkACQAJAAgABwAHAAcABwAHAAYABQAFAAUABQAFAAQAAwADAAMABAADAAMAAwACAAMAAwACAAIAAQABAAEAAAAAAAAAAAD/////AAAAAP////8AAAAAAAAAAAAAAAAAAAAAAQABAAAAAQABAAIAAgACAAIAAgADAAMABAAEAAQABAAGAAYABgAHAAcABwAJAAkACQAIAAkACwALAAwACwALAAwADQANAA0ADgAOAA4AEAAPAA8ADwAQAA8ADwAQABEAEAARABEAEQARABEAEAAQABAAEAARABEAEAARABAAEAAQAA8ADwAQAA8ADwAPAA4ADgAOAA4ADQANAA0ADgANAAwADAAMAAsACwAKAAoACgAKAAkACQAKAAkACQAIAAcABwAGAAYABQAFAAUABAAEAAQAAwADAAIAAgADAAIAAgACAAIAAQABAAEAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAABAAAAAQABAAEAAgACAAIAAwAEAAMABQAGAAYABgAGAAcACAAIAAcACAAJAAkACQAKAAoACwALAAwADAAMAA0ADQAOAA4ADwAOAA8ADwAPAA8ADwAPAA8ADwAQABAAEAAQABAAEQASABEAEAAQABAAEAAQABEAEQAQABEAEQAQAA8AEAAPAA8ADwAPAA8ADwAOAA4ADgAOAA0ADAAMAAwADAALAAsACgAKAAkACAAIAAcABwAHAAYABQAGAAUABAAEAAMAAwAEAAMAAwADAAIAAgABAAEAAQABAAIAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAEAAAAAAAEAAAABAAEAAQACAAMAAgAEAAUABQAFAAYABgAGAAcACAAJAAkACQAJAAoACwAMAAwADQANAAwADAAOAA4ADgAOAA4ADgAQABAAEAAQABEAEQARABEAEQARABEAEQASABIAEQARABEAEQARABAAEAAQABAAEQARABEAEQAQABAAEAAQABAADwAPAA4ADgANAA0ADQANAA0ADQAMAAwACwALAAsACwAKAAoACgAJAAkACAAHAAcABwAHAAcABgAGAAUABAAFAAQABAADAAMAAwACAAIAAgACAAIAAgABAAIAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAEAAQABAAEAAgACAAIAAgADAAMABAADAAQABQAFAAUABQAGAAYABwAHAAgACAAJAAkACQAJAAkACgALAAsADAAMAAwADQAOAA0ADgAOAA8AEAAQABAAEAAQABAAEAARABAAEQARABEAEAARABEAEQAQABAAEAARABAAEAAQABAAEAAQABAAEAAQABAADwAPAA4ADgAOAA4ADQANAAwADAAMAAsACwAKAAoACgAKAAoACgAJAAkACAAIAAgACAAHAAcABwAHAAYABgAGAAUABQAEAAQAAwADAAMAAwAEAAMAAwADAAMAAgADAAIAAQACAAIAAwACAAIAAgACAAMAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAgACAAIAAgACAAIAAwADAAMAAwAEAAQABAAFAAUABQAGAAYABgAHAAgACAAIAAkACQAKAAoACwALAAsACwAMAA0ADQANAA4ADgAOAA8ADgAPAA8ADwAPAA8ADwAPABAAEAAQAA8ADwAQABAAEAAPAA8ADwAPAA4ADwAPAA8ADgAPAA4ADgAOAA4ADQANAA4ADgAOAA0ADQANAA0ADAAMAAsACgAKAAoACgAKAAkACQAIAAgABwAIAAcABgAHAAcABwAHAAcABgAFAAUABQAFAAUABAAEAAQAAwADAAMAAgACAAIAAgACAAIAAQABAAIAAQABAAEAAQABAAEAAQAAAAEAAQABAAEAAQACAAIAAgACAAIAAgACAAMAAwADAAMAAwAEAAUABQAFAAUABQAFAAUABgAGAAcABwAHAAgACAAIAAkACQAJAAoACgAKAAsACwALAAsADAAMAAwADQANAA0ADQANAA0ADQANAA0ADgAOAA4ADgAOAA8ADwAPAA8ADgAOAA8ADwAQABAADwAQABAADwAPAA8ADgAOAA4ADgAOAA4ADgAOAA0ADQANAA0ADQANAAwADAAMAAsACwALAAoACwAKAAoACgAJAAgACAAHAAgABwAHAAYABgAHAAYABgAFAAUABQAFAAUABAAEAAQABAADAAMAAgADAAMAAwACAAIAAgACAAIAAgABAAEAAgACAAIAAgACAAIAAgACAAEAAgACAAIAAgACAAIAAgADAAMAAwADAAQABAAEAAQABAAFAAUABQAGAAYABgAHAAcABwAHAAcACAAIAAkACQAJAAkACwALAAsACgALAAsACwAMAAsADAALAAwADAAMAA0ADAALAAwADQANAA0ADQAOAA0ADQAOAA4ADgAOAA4ADgAOAA8ADwAPAA8ADwAPAA4ADgAOAA4ADQANAA0ADQANAA0ADAANAAwADAALAAsACwAKAAsACwALAAsACwAKAAoACgAKAAkACAAIAAgACAAHAAcABgAGAAYABgAGAAUABQAFAAUABAAFAAUABAAEAAQABAADAAMAAwADAAIAAgACAAEAAQABAAEAAgABAAEAAQACAAIAAwACAAQAAAAAAP7//P/9//b/8v/x/+7/7v/r/+z/6//q/+r/7P/y//P/9f/6//v///8CAAMABgAIAAsAEAATABMAFQAVABgAFQAVABYAEgASABIAEQASAA8AEAARAA8AEQASABUAEwAUABYAGQAbABsAHwAjACUAIQAjACMAIwAkACMAJQAlACIAIwAlACAAGwAZABgAGAAWABUAEgARAA8ADgATABAADwAMAA0ADAALAAoACQAJAAkABwAHAAkAAgABAAIAAQAGAAMAAQAAAP7/+v/6//j/8f/t/+//9f/2//X/9f/4//v//f8CAAQABgAFAAYACAAKAAcABgAHAAQABQAFAAMAAwAAAP7/AgD///r/+v/4//3/+P/3//L/8f/0//b//f/7//r//P8AAAIABAACAAAAAAD//wIABQADAAAAAAAAAP3/+v/4//T/8v/x//L/9P/1//P/9P/7//z//v8AAAEA/v/7//j/+f/8////AgAKABAAFAAcACIAKQAuADIAOQA8AD4AQQA/ADwAOgA9AD8AQABAAD8AQAA9AD0AOwA0ADcANgAtADIAJgAlACUAIwA0ADIAOgA1AC8ALgAlACcAFwASAA0AEgATAAsABwD///7//P/+/wEAAAD5//X/+P/2//L/9P/0//L/7//x//P/8//u/+z/8f/x/+3/7f/s/+T/3v/c/9r/2v/a/9f/1v/T/9L/1f/V/9P/1P/W/9j/2f/b/+D/4//n/+v/9P/8/wEABgAHAAkACgAQABIAFgAVABAADgAPABEAEQASABAADAAKAAkACwANAA4AEQAWABcAGgAZABQADgAGAAIAAAD+//z/+f/3/+7/6//u/+z/8v/3//7/CgANABQAGgAZACIAIAAgACMAHgAiABsAIgArACkALQAaABgAFwAKAAQA8//w//X/9P/t/+v/7v/3/wMACAAKABIAEgAOAA4ADwAQABcAEwANAA4ADQANAAcAAQACAAgABQAEAP//+v/x/+f/5//d/9v/1//a/93/4v/k/+z/7v/n/+7/+P/9//7/AAADAAAA+//y/+//9f/z//H/8v/s/+v/9P/0//b//P/9////CAAHAAoACQALAA0ACQANAAYAEAAXABQAHQAnADEAOAA6ADQAMAAvACgAIgAdABMABgD9//f/9P/z/+//8P/w//b/9//1//X/8P/w/+z/6f/k/+7/6v/q//D/8P8EAAIAAQD7//n/+P/x//L/7v/1//n/CwAPAA8AEwAZACYAMgA5AEAASgA/AD0ARABFADwAQwBIAEMAPwAyADIANQAxACIALgAmABsAHAAiACEAEQASAA4ADAAFAP3/AAD8//H/8v/6//3//v8DAAsAEAARABoAKQArACwAMAA6ADMAMQAtACQAGAARABIADQALAAEAAwADAAMABgADAAMA/v8BAAIAAAAHAAgACwAUABwAJQAtACoALQAvAC8ALwAtACMAGQAQAAUABAABAP3//f8FAAcACAARABcAHgAdABMAEgAXABYAGQASABcAHgAfACgAIwAjACYAJgAhAB4AFwASAAgA+//0//H/9//3//f/+v/+/wIABQAHAAkACQAHAA8ACAD//wYABQAIABEAGAAmADoANgA4AEIARQBHADoANgA0AC0ALwApACkAKQAlACoALAArACIAHgAcABcAFAAMAAgAAAD7//3/AAAAAAIABAAMAA4ADgAMAAoADgANAA0AEAAOAA4ADAANAA8AEAAWABwAHQAgACMAIgAgABwAFAAUABcAEQAPAA4ADAALAAkABQABAAAAAAABAP//AAD+/wAAAwABAAMABgAIAAsACwAJAA0ACwAFAAMAAgAGAAcABQAEAAcACAAPABMAEwAVABwAIwAlACMAJwAnACcAJgAkACYAKQArACIAGgAZABYAEAAHAPj/8v/q/+L/5v/l/+D/7//0//b/AQAOACAAJgAtAC4ALwAyADQAMgAvACkAKAAqACgAJwAkAB4AFwASAA4ADwALAAIA/P/4//P/8f/x//D/9P/6//3//f/+//z//v8AAAMAAQAEAAYABQAIAA0AFQAeACMAKQAuADEANQAyACsAKQAmACEAGgAUAAsABQD///X/8//y//D/8v/2//D/8f/z//P/+P/5//j/+v/3//X/+v/6//X/8P/t/+7/7v/n/+H/4f/f/9z/2f/T/9n/3v/b/9//5v/q/+7/8P/y//n//v8CAAkAEAAVACMAKQAqAC0ALwAuAC0AKgAkACEAHQAYABEADQAJAAYABgADAAEABAADAP3/+v/1//T/8f/q/+r/7v/z//b/+f/6//7/BAAGAAYABAAEAAIAAQD7//j/+v/6//v/+P/3//n/AAACAAEA/v/6//j/9f/z/+7/7v/y//T/+P8AAAkAEQAZABoAHAAgACMAJQAjABsADgAFAP7/+f/y/+3/7f/r/+j/6f/u//H/9P/2//X/+f8AAAUACwARABQAGgAaABkAGwAaABsAGgATAA4ACQADAAAAAAD7//r//v///wAAAQAAAAMAAwADAAUACAAHAAgACAAEAAMAAQAAAAAAAAAAAAAAAQACAAgACwAOABAAFgAbACAAKAAsACsAKgApACwAKwAlACIAHwAcABsAFgAUABEADwAKAAkABgAAAP3/+//5//f/+P/6//v//f8BAAYACQAMAA8AEwASABQAFAATABIADwANAA0ADQAPABEAFQAXABkAHQAfAB8AHQAcABoAGQAXABYAGAAYABkAFwAaAB8AIQAjACMAIQAhAB8AHAAaABcAEwAPAA8ADwANABMAFAAVABQAEgASABMAEQASABEADQAPABAAEwAWABcAGAAbAB0AHAAcABcAFAASABAADAAGAAEAAAAEAAUABAAGAAkACwAMAAwADQAOABAADwAOAA0ADgAQABEAEgAVABgAGwAaABsAHQAdABsAGQAXABYAFgATABEADAAKAAoADAALAAwADgANAA0ADQAMAA8AEgARAA8ADQAOAA0ACgAIAAYACwANAAwABwAHAAcABwAHAAUABAAGAAUABAADAAIAAAD///7//v///wEAAwAEAAAA/v/8//v/+f/4//j/+f/6//3//f8BAAMAAgAFAAYABwAIAAgABAACAAAA/f/7//r//P/7//3///8BAAUACQANABIAFwAbAB0AHgAfAB4AIAAfABkAGAAVABIADwAMAAYABgAEAAAA/P/2//P/8P/y/+//8P/w//L/9f/4//n//P8CAAQABQAGAAcABgAGAAQAAQABAAIAAwAEAAYABQAIAAoABwAHAAcABwAFAAIAAAABAAAAAAABAAUACgALABEAEwAUABMAFQAWABQAFAASABQAEwASABIADwAMAAwACgAJAAcABgADAAAA//////7/AAD+//7/AAD//////f/9/wAA/v/9//3///8AAAAAAQABAAIAAAAAAAAAAQACAAAA//////7//v8AAP7//v/+/wAAAQABAAIAAQACAAMAAwAEAAQABQAGAAYABwAJAAoACgAMAA0ADQALAAoADAAIAAcABAAEAAIAAQAAAAAAAAD+////AAAAAP///f/8//z/+//4//n/+v/7//z//f/9////AQABAAIAAwADAAIABAABAP///v////7//P////7/AwAFAAQABQAHAAgACgAMAAwADQAPABAAEQATABMAFAAUABUAFwAWABYAFAAUABIADwALAAoABwAGAAMAAwABAAIAAQACAAIAAAAAAP7//P/5//n/9//3//f/9v/2//f/+//8////AAADAAQABwAIAAcABwAHAAYABAAFAAUABQAHAAYACAAIAAcABwAHAAcABwAEAAMAAgADAAMAAQACAAIABAAGAAcACgALAAwACgAJAAgACQAJAAgABgAEAAMABAAEAAMAAwADAAMAAwADAAYABQAEAAMAAgAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAP///v////7////7//r/+v/6//r/+//8//v/+//7//r/+v/5//n/+f/6//n/+f/6//v///8AAAAAAgAFAAgACQAKAAsACgAJAAgABwAHAAUABQADAAMAAwADAAMAAwAEAAUAAwABAP/////+/////v/8//z//P///wAAAAAAAAEAAQAAAAAA/v/8//v/+f/4//n/+f/5//j/+v/5//r/+//6//r/+f/3//j/9//2//X/9//5//f/9//2//f/9//6//v/+v/6//n/+v/6//z/+//6//r//P/8////AAD///7//P/8//z//P/7//r/+//9//v/+//9//z//P///wAA//8AAP//AAAAAAAA///+//7////+//7//v///wAAAAD+///////+//7/AAD//wIAAQAAAAIAAgAFAAIABAACAAIABQAGAAcABwAIAAcADAAMAA0ADgAPABAAEQARABEAEgATABEAEgAUABIAEgATABAAEgARAA4ADgAOAAwAEQAQAA4ADgARABIAEAAPAA0ADgANAA0ADAAMAAsACAAJAAkACQAJAAYABgAFAAUABgAFAAMAAgAFAAYABwAHAAgACgALAAwADgAOAA0ADwAQABEADwAPAA4ADgAQABEAFQAYABgAGQAcAB4AHwAfAB0AHQAeAB4AHQAcABsAGwAbABoAGgAZABcAFgAWABUAFAASABIADgAMAA0ADQAKAAkABwAIAAYAAwADAAAAAQD///7//P/8//v/+P/4//j//P/6//r//P/8//3///8AAAEAAgACAAQABQAHAAoADQAQABAAEwAUABQAFAAWABYAGAAZABgAGAAaABoAGQAZABkAGQAZABgAGQAXABUAFQAUABMAEgARABAADwANAAsACgAJAAgABgAFAAMAAQAAAP///v/8//3//P/7//v/+//7//n/9//2//X/9P/0//T/9f/2//b/+P/6//3//////wAAAAAAAAEAAQACAAIAAQABAAIAAwAGAAYACAALAAsADAAKAAsACgAIAAUABAADAAQABAAFAAUABgAGAAUABQACAAEAAQAAAP///P/7//r/+//5//r/+//7//z/+//6//r/+v/6//n/+f/4//r/+f/5//r/+v/7//3//f/+/wAAAAABAAEAAQABAAIABAADAAQABgAHAAYACAAKAAsADAAKAAsACgAJAAkABwAHAAYABgAGAAcABgAFAAIABAADAAMAAgACAAIAAgABAAIAAQAAAAAA/////////v/+//3//f/8//z//f/+//3//v////7//f///wAAAAAAAAAAAQABAAMABAAHAAgABwAIAAoADAAKAAsADAAMAA0ACwAMAA0ACgANAAwADAAMAAsADQALAAgACAAIAAkABQAFAAQAAwACAAIAAQABAAIAAAAAAAAAAAAAAAAAAAD///7////+//7//////wAA/////wAAAQABAAEAAAAAAAEAAQACAAIABAAEAAQABgAHAAoACwALAA0ADgAOAA4ADwAPAA8AEAAQABAAEQARAA8AEAARAA8ADwAOAA0ADQAMAAwACwAJAAkABwAFAAQAAwADAAIAAgACAAAAAQABAAAAAAABAAEAAQACAAIAAQABAAAAAAAAAAEAAQABAAEAAgAEAAQABgAFAAcACAAIAAgACAAJAAoACwAMAAwADQAOAA0ADwAOAA8ADwAOAA4ADgAPAA8ADwAOAA8ADwAPAA8AEAAPAA4ADgAOAA0ADAALAAgACAAIAAcABgAGAAUABAAEAAQABAAEAAQAAwADAAIAAQACAAIAAwACAAEAAgACAAMAAwADAAQABAAEAAMABAAEAAQAAwAFAAUABQAGAAcACAAJAAkACgALAAsADAALAAwADAANAA4ADgAOAA4AEAAPABAAEAAQAA8ADgAOAA4ADQAMAAwADAAMAAwACwALAAoACgAKAAkACwAJAAoACQAKAAkACQAIAAgACAAHAAYABQAFAAUABgAGAAUABQAFAAUABQAEAAQABAADAAMAAwADAAIAAgACAAMAAwADAAMABAAEAAUABAAFAAQABgAFAAYABwAHAAYABwAHAAgABwAHAAgACQAJAAoACgAKAAsACgAKAAoACgAKAAoACwALAAoACgAKAAoACgAKAAkACAAIAAgACAAHAAcABwAHAAYABgAFAAUABAADAAMAAwACAAIAAgABAAEAAQABAAEAAAABAAEAAQACAAMABAAEAAQABQAGAAYABwAIAAkACQAJAAoACwAMAA0ADAAMAA8ADwAPABAAEAAQABAAEAAQAA8ADwAOAA8ADwAPAA4ADgANAA0ADAALAAoACQAJAAkACAAIAAcABgAGAAYABgAGAAUABgAGAAUABAAEAAUABQAFAAUABQAEAAQABQAFAAYABQAGAAgACAAJAAkACQAKAAoACwALAAwADQANAA0ADgAPAA8ADwAOAA8ADgANAA0ADAALAAwACwALAAsACgAJAAkACAAIAAgABwAHAAYABgAEAAQABQAEAAQAAwACAAIAAgABAAEAAQABAAAAAAAAAAAAAQAAAAEAAQACAAMAAwADAAQABQAGAAYABwAHAAgACAAJAAoACwALAAwADAANAA4ADgAPAA8ADwAPAA8ADwAPAA8ADgAOAA0ADQAMAA0ADAAMAAwACwALAAoACgAJAAkACgAJAAgACAAIAAgACQAIAAcACAAIAAgACQAJAAkACAAJAAkACQAKAAoACQAKAAoACgALAAoACgAKAAoACgALAAsACwALAAsACwALAAsACgAKAAoACwA=\" type=\"audio/wav\" />\n",
+       "                    Your browser does not support the audio element.\n",
+       "                </audio>\n",
+       "              "
+      ],
+      "text/plain": [
+       "<IPython.lib.display.Audio object>"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "text_prompt = \"\"\"\n",
+    "Exactly! [sigh] And the distillation part is where you take a LARGE-model,and compress-it down into a smaller, more efficient model that can run on devices with limited resources.\n",
+    "\"\"\"\n",
+    "inputs = processor(text_prompt, voice_preset=voice_preset).to(device)\n",
+    "\n",
+    "speech_output = model.generate(**inputs, temperature = 0.9, semantic_temperature = 0.8)\n",
+    "Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "dd650176-ab17-47a7-8e02-10dc9ca9e852",
+   "metadata": {},
+   "source": [
+    "## Bringing it together: Making the Podcast\n",
+    "\n",
+    "Okay now that we understand everything-we can now use the complete pipeline to generate the entire podcast\n",
+    "\n",
+    "Let's load in our pickle file from earlier and proceed:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "b1dca30f-1226-4002-8e02-fd97e78ecc83",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pickle\n",
+    "\n",
+    "with open('./resources/podcast_ready_data.pkl', 'rb') as file:\n",
+    "    PODCAST_TEXT = pickle.load(file)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c10a3d50-08a7-4786-8e28-8fb6b8b048ab",
+   "metadata": {},
+   "source": [
+    "Let's define load in the bark model and set it's hyper-parameters for discussions"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "8db78921-36c7-4388-b1d9-78dff4f972c2",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/sanyambhutani/.conda/envs/final-checking-meta/lib/python3.11/site-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
+      "  WeightNorm.apply(module, name, dim)\n",
+      "/home/sanyambhutani/.conda/envs/final-checking-meta/lib/python3.11/site-packages/transformers/models/encodec/modeling_encodec.py:120: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
+      "  self.register_buffer(\"padding_total\", torch.tensor(kernel_size - stride, dtype=torch.int64), persistent=False)\n"
+     ]
+    }
+   ],
+   "source": [
+    "bark_processor = AutoProcessor.from_pretrained(\"suno/bark\")\n",
+    "bark_model = BarkModel.from_pretrained(\"suno/bark\", torch_dtype=torch.float16).to(\"cuda:3\")\n",
+    "bark_sampling_rate = 24000"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "e03e313a-c727-4489-876b-db71920d49cd",
+   "metadata": {},
+   "source": [
+    "Now for the Parler model:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "6c04a04d-3686-4932-bd45-72d7f518c602",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "parler_model = ParlerTTSForConditionalGeneration.from_pretrained(\"parler-tts/parler-tts-mini-v1\").to(\"cuda:3\")\n",
+    "parler_tokenizer = AutoTokenizer.from_pretrained(\"parler-tts/parler-tts-mini-v1\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "efbe1434-37f3-4f77-a5fb-b39625f5e676",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "speaker1_description = \"\"\"\n",
+    "Laura's voice is expressive and dramatic in delivery, speaking at a moderately fast pace with a very close recording that almost has no background noise.\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "56f6fa24-fe07-4702-850f-0428bfadd2dc",
+   "metadata": {},
+   "source": [
+    "We will concatenate the generated segments of audio and also their respective sampling rates since we will require this to generate the final audio"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "cebfd0f9-8703-4fce-b207-014c6e16cc8a",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "generated_segments = []\n",
+    "sampling_rates = []  # We'll need to keep track of sampling rates for each segment"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "9b333e36-9579-4237-b329-e2911229be42",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "device=\"cuda:3\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "d7b2490c-012f-4e35-8890-cd6a5eaf4cc4",
+   "metadata": {},
+   "source": [
+    "Function generate text for speaker 1"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "50323f9e-09ed-4c8c-9020-1511ab775969",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def generate_speaker1_audio(text):\n",
+    "    \"\"\"Generate audio using ParlerTTS for Speaker 1\"\"\"\n",
+    "    input_ids = parler_tokenizer(speaker1_description, return_tensors=\"pt\").input_ids.to(device)\n",
+    "    prompt_input_ids = parler_tokenizer(text, return_tensors=\"pt\").input_ids.to(device)\n",
+    "    generation = parler_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)\n",
+    "    audio_arr = generation.cpu().numpy().squeeze()\n",
+    "    return audio_arr, parler_model.config.sampling_rate"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "3fb5dac8-30a6-4aa2-a983-b5f1df3d56af",
+   "metadata": {},
+   "source": [
+    "Function to generate text for speaker 2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "0e6120ba-5190-4739-97ca-4e8b44dddc5e",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def generate_speaker2_audio(text):\n",
+    "    \"\"\"Generate audio using Bark for Speaker 2\"\"\"\n",
+    "    inputs = bark_processor(text, voice_preset=\"v2/en_speaker_6\").to(device)\n",
+    "    speech_output = bark_model.generate(**inputs, temperature=0.9, semantic_temperature=0.8)\n",
+    "    audio_arr = speech_output[0].cpu().numpy()\n",
+    "    return audio_arr, bark_sampling_rate\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "7ea67fd1-9405-4fce-b08b-df5e11d0bf37",
+   "metadata": {},
+   "source": [
+    "Helper function to convert the numpy output from the models into audio"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "id": "4482d864-2806-4410-b239-da4b2d0d1340",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def numpy_to_audio_segment(audio_arr, sampling_rate):\n",
+    "    \"\"\"Convert numpy array to AudioSegment\"\"\"\n",
+    "    # Convert to 16-bit PCM\n",
+    "    audio_int16 = (audio_arr * 32767).astype(np.int16)\n",
+    "    \n",
+    "    # Create WAV file in memory\n",
+    "    byte_io = io.BytesIO()\n",
+    "    wavfile.write(byte_io, sampling_rate, audio_int16)\n",
+    "    byte_io.seek(0)\n",
+    "    \n",
+    "    # Convert to AudioSegment\n",
+    "    return AudioSegment.from_wav(byte_io)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "id": "c4dbb3b3-cdd3-4a1f-a60a-661e64a67f53",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'[\\n    (\"Speaker 1\", \"Welcome to this week\\'s episode of AI Insights, where we explore the latest developments in the field of artificial intelligence. Today, we\\'re going to dive into the fascinating world of knowledge distillation, a methodology that transfers advanced capabilities from leading proprietary Large Language Models, or LLMs, to their open-source counterparts. Joining me on this journey is my co-host, who\\'s new to the topic, and I\\'ll be guiding them through the ins and outs of knowledge distillation. So, let\\'s get started!\"),\\n    (\"Speaker 2\", \"Sounds exciting! I\\'ve heard of knowledge distillation, but I\\'m not entirely sure what it\\'s all about. Can you give me a brief overview?\"),\\n    (\"Speaker 1\", \"Of course! Knowledge distillation is a technique that enables the transfer of knowledge from a large, complex model, like GPT-4 or Gemini, to a smaller, more efficient model, like LLaMA or Mistral. This process allows the smaller model to learn from the teacher model\\'s output, enabling it to acquire similar capabilities. Think of it like a master chef teaching their apprentice the art of cooking – the apprentice doesn\\'t need to start from scratch.\"),\\n    (\"Speaker 2\", \"Hmm, that sounds interesting. So, it\\'s like a teacher-student relationship, where the teacher model guides the student model to learn from its output... Umm, can you explain this process in more detail?\"),\\n    (\"Speaker 1\", \"The distillation process involves several stages, including knowledge elicitation, knowledge storage, knowledge inference, and knowledge application. The teacher model shares its knowledge with the student model, which then learns to emulate the teacher\\'s output behavior.\"),\\n    (\"Speaker 2\", \"That makes sense, I think. So, it\\'s like the teacher model is saying, \\'Hey, student model, learn from my output, and try to produce similar results.\\' But what about the different approaches to knowledge distillation? I\\'ve heard of supervised fine-tuning, divergence and similarity, reinforcement learning, and rank optimization.\"),\\n    (\"Speaker 1\", \"Ah, yes! Those are all valid approaches to knowledge distillation. Supervised fine-tuning involves training the student model on a smaller dataset, while divergence and similarity focus on aligning the hidden states or features of the student model with those of the teacher model. Reinforcement learning and rank optimization are more advanced methods that involve feedback from the teacher model to train the student model. Imagine you\\'re trying to tune a piano – you need to adjust the keys to produce the perfect sound.\"),\\n    (\"Speaker 2\", \"[laughs] Okay, I think I\\'m starting to get it. But can you give me some examples of how these approaches are used in real-world applications? I\\'m thinking of something like a language model that can generate human-like text...\"),\\n    (\"Speaker 1\", \"Of course! For instance, the Vicuna model uses supervised fine-tuning to distill knowledge from the teacher model, while the UltraChat model employs a combination of knowledge distillation and reinforcement learning to create a powerful chat model.\"),\\n    (\"Speaker 2\", \"Wow, that\\'s fascinating! I\\'m starting to see how knowledge distillation can be applied to various domains, like natural language processing, computer vision, and even multimodal tasks... Umm, can we talk more about multimodal tasks? That sounds really interesting.\"),\\n    (\"Speaker 1\", \"Exactly! Knowledge distillation has far-reaching implications for AI research and applications. It enables the transfer of knowledge across different models, architectures, and domains, making it a powerful tool for building more efficient and effective AI systems.\"),\\n    (\"Speaker 2\", \"[sigh] I\\'m starting to see the bigger picture now. Knowledge distillation is not just a technique; it\\'s a way to democratize access to advanced AI capabilities and foster innovation across a broader spectrum of applications and users... Hmm, that\\'s a pretty big deal.\"),\\n    (\"Speaker 1\", \"That\\'s right! And as we continue to explore the frontiers of AI, knowledge distillation will play an increasingly important role in shaping the future of artificial intelligence.\"),\\n    (\"Speaker 2\", \"Well, I\\'m excited to learn more about knowledge distillation and its applications. Thanks for guiding me through this journey, and I\\'m looking forward to our next episode!\"),\\n    (\"Speaker 1\", \"Thank you for joining me on this episode of AI Insights! If you want to learn more about knowledge distillation and its applications, be sure to check out our resources section, where we\\'ve curated a list of papers, articles, and tutorials to help you get started.\"),\\n    (\"Speaker 2\", \"And if you\\'re interested in building your own AI model using knowledge distillation, maybe we can even do a follow-up episode on how to get started... Umm, let\\'s discuss that further next time.\"),\\n]'"
+      ]
+     },
+     "execution_count": 16,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "PODCAST_TEXT"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "485b4c9e-379f-4004-bdd0-93a53f3f7ee0",
+   "metadata": {},
+   "source": [
+    "Most of the times we argue in life that Data Structures isn't very useful. However, this time the knowledge comes in handy. \n",
+    "\n",
+    "We will take the string from the pickle file and load it in as a Tuple with the help of `ast.literal_eval()`"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "id": "9946e46c-3457-4bf9-9042-b89fa8f5b47a",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[('Speaker 1',\n",
+       "  \"Welcome to this week's episode of AI Insights, where we explore the latest developments in the field of artificial intelligence. Today, we're going to dive into the fascinating world of knowledge distillation, a methodology that transfers advanced capabilities from leading proprietary Large Language Models, or LLMs, to their open-source counterparts. Joining me on this journey is my co-host, who's new to the topic, and I'll be guiding them through the ins and outs of knowledge distillation. So, let's get started!\"),\n",
+       " ('Speaker 2',\n",
+       "  \"Sounds exciting! I've heard of knowledge distillation, but I'm not entirely sure what it's all about. Can you give me a brief overview?\"),\n",
+       " ('Speaker 1',\n",
+       "  \"Of course! Knowledge distillation is a technique that enables the transfer of knowledge from a large, complex model, like GPT-4 or Gemini, to a smaller, more efficient model, like LLaMA or Mistral. This process allows the smaller model to learn from the teacher model's output, enabling it to acquire similar capabilities. Think of it like a master chef teaching their apprentice the art of cooking – the apprentice doesn't need to start from scratch.\"),\n",
+       " ('Speaker 2',\n",
+       "  \"Hmm, that sounds interesting. So, it's like a teacher-student relationship, where the teacher model guides the student model to learn from its output... Umm, can you explain this process in more detail?\"),\n",
+       " ('Speaker 1',\n",
+       "  \"The distillation process involves several stages, including knowledge elicitation, knowledge storage, knowledge inference, and knowledge application. The teacher model shares its knowledge with the student model, which then learns to emulate the teacher's output behavior.\"),\n",
+       " ('Speaker 2',\n",
+       "  \"That makes sense, I think. So, it's like the teacher model is saying, 'Hey, student model, learn from my output, and try to produce similar results.' But what about the different approaches to knowledge distillation? I've heard of supervised fine-tuning, divergence and similarity, reinforcement learning, and rank optimization.\"),\n",
+       " ('Speaker 1',\n",
+       "  \"Ah, yes! Those are all valid approaches to knowledge distillation. Supervised fine-tuning involves training the student model on a smaller dataset, while divergence and similarity focus on aligning the hidden states or features of the student model with those of the teacher model. Reinforcement learning and rank optimization are more advanced methods that involve feedback from the teacher model to train the student model. Imagine you're trying to tune a piano – you need to adjust the keys to produce the perfect sound.\"),\n",
+       " ('Speaker 2',\n",
+       "  \"[laughs] Okay, I think I'm starting to get it. But can you give me some examples of how these approaches are used in real-world applications? I'm thinking of something like a language model that can generate human-like text...\"),\n",
+       " ('Speaker 1',\n",
+       "  'Of course! For instance, the Vicuna model uses supervised fine-tuning to distill knowledge from the teacher model, while the UltraChat model employs a combination of knowledge distillation and reinforcement learning to create a powerful chat model.'),\n",
+       " ('Speaker 2',\n",
+       "  \"Wow, that's fascinating! I'm starting to see how knowledge distillation can be applied to various domains, like natural language processing, computer vision, and even multimodal tasks... Umm, can we talk more about multimodal tasks? That sounds really interesting.\"),\n",
+       " ('Speaker 1',\n",
+       "  'Exactly! Knowledge distillation has far-reaching implications for AI research and applications. It enables the transfer of knowledge across different models, architectures, and domains, making it a powerful tool for building more efficient and effective AI systems.'),\n",
+       " ('Speaker 2',\n",
+       "  \"[sigh] I'm starting to see the bigger picture now. Knowledge distillation is not just a technique; it's a way to democratize access to advanced AI capabilities and foster innovation across a broader spectrum of applications and users... Hmm, that's a pretty big deal.\"),\n",
+       " ('Speaker 1',\n",
+       "  \"That's right! And as we continue to explore the frontiers of AI, knowledge distillation will play an increasingly important role in shaping the future of artificial intelligence.\"),\n",
+       " ('Speaker 2',\n",
+       "  \"Well, I'm excited to learn more about knowledge distillation and its applications. Thanks for guiding me through this journey, and I'm looking forward to our next episode!\"),\n",
+       " ('Speaker 1',\n",
+       "  \"Thank you for joining me on this episode of AI Insights! If you want to learn more about knowledge distillation and its applications, be sure to check out our resources section, where we've curated a list of papers, articles, and tutorials to help you get started.\"),\n",
+       " ('Speaker 2',\n",
+       "  \"And if you're interested in building your own AI model using knowledge distillation, maybe we can even do a follow-up episode on how to get started... Umm, let's discuss that further next time.\")]"
+      ]
+     },
+     "execution_count": 18,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import ast\n",
+    "ast.literal_eval(PODCAST_TEXT)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "5c7b4c11-5526-4b13-b0a2-8ca541c475aa",
+   "metadata": {},
+   "source": [
+    "#### Generating the Final Podcast\n",
+    "\n",
+    "Finally, we can loop over the Tuple and use our helper functions to generate the audio"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "id": "c640fead-2017-478f-a7b6-1b96105d45d6",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Generating podcast segments:   6%|███▉                                                          | 1/16 [00:20<05:02, 20.16s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments:  19%|███████████▋                                                  | 3/16 [01:02<04:33, 21.06s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments:  31%|███████████████████▍                                          | 5/16 [01:41<03:30, 19.18s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments:  44%|███████████████████████████▏                                  | 7/16 [02:26<03:05, 20.57s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments:  56%|██████████████████████████████████▉                           | 9/16 [03:04<02:13, 19.10s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments:  69%|█████████████████████████████████████████▉                   | 11/16 [03:42<01:31, 18.27s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments:  81%|█████████████████████████████████████████████████▌           | 13/16 [04:17<00:50, 16.99s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments:  94%|█████████████████████████████████████████████████████████▏   | 15/16 [04:49<00:15, 15.83s/segment]The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n",
+      "Setting `pad_token_id` to `eos_token_id`:10000 for open-end generation.\n",
+      "Generating podcast segments: 100%|█████████████████████████████████████████████████████████████| 16/16 [05:13<00:00, 19.57s/segment]\n"
+     ]
+    }
+   ],
+   "source": [
+    "final_audio = None\n",
+    "\n",
+    "for speaker, text in tqdm(ast.literal_eval(PODCAST_TEXT), desc=\"Generating podcast segments\", unit=\"segment\"):\n",
+    "    if speaker == \"Speaker 1\":\n",
+    "        audio_arr, rate = generate_speaker1_audio(text)\n",
+    "    else:  # Speaker 2\n",
+    "        audio_arr, rate = generate_speaker2_audio(text)\n",
+    "    \n",
+    "    # Convert to AudioSegment (pydub will handle sample rate conversion automatically)\n",
+    "    audio_segment = numpy_to_audio_segment(audio_arr, rate)\n",
+    "    \n",
+    "    # Add to final audio\n",
+    "    if final_audio is None:\n",
+    "        final_audio = audio_segment\n",
+    "    else:\n",
+    "        final_audio += audio_segment"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "4fbb2228-8023-44c4-aafe-d6e1d22ff8e4",
+   "metadata": {},
+   "source": [
+    "### Output the Podcast\n",
+    "\n",
+    "We can now save this as a mp3 file"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "id": "2eeffdb7-875a-45ec-bdd8-c8c5b34f5a7b",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<_io.BufferedRandom name='_podcast.mp3'>"
+      ]
+     },
+     "execution_count": 40,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "final_audio.export(\"./resources/_podcast.mp3\", \n",
+    "                  format=\"mp3\", \n",
+    "                  bitrate=\"192k\",\n",
+    "                  parameters=[\"-q:a\", \"0\"])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "c7ce5836",
+   "metadata": {},
+   "source": [
+    "### Suggested Next Steps:\n",
+    "\n",
+    "- Experiment with the prompts: Please feel free to experiment with the SYSTEM_PROMPT in the notebooks\n",
+    "- Extend workflow beyond two speakers\n",
+    "- Test other TTS Models\n",
+    "- Experiment with Speech Enhancer models as a step 5."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "26cc56c5-b9c9-47c2-b860-0ea9f05c79af",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#fin"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/recipes/quickstart/NotebookLlama/TTS_Notes.md b/recipes/quickstart/NotebookLlama/TTS_Notes.md
new file mode 100644
index 0000000000000000000000000000000000000000..dc496c3056d647ddd14d93eff5479a820ba5acab
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/TTS_Notes.md
@@ -0,0 +1,116 @@
+### Notes from TTS Experimentation
+
+For the TTS Pipeline, *all* of the top models from HuggingFace and Reddit were tried. 
+
+The goal was to use the models that were easy to setup and sounded less robotic with ability to include sound effects like laughter, etc.
+
+#### Parler-TTS
+
+Minimal code to run their models:
+
+```
+model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
+tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")
+
+# Define text and description
+text_prompt = "This is where the actual words to be spoken go"
+description = """
+Laura's voice is expressive and dramatic in delivery, speaking at a fast pace with a very close recording that almost has no background noise.
+"""
+
+input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
+prompt_input_ids = tokenizer(text_prompt, return_tensors="pt").input_ids.to(device)
+
+generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
+audio_arr = generation.cpu().numpy().squeeze()
+
+ipd.Audio(audio_arr, rate=model.config.sampling_rate)
+```
+
+The really cool aspect of these models are the ability to prompt the `description` which can change the speaker profile and pacing of the outputs.
+
+Surprisingly, Parler's mini model sounded more natural.
+
+In their [repo](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md#speaker-consistency) they share names of speakers that we can use in prompt.
+
+#### Suno/Bark
+
+Minimal code to run bark:
+
+```
+voice_preset = "v2/en_speaker_6"
+sampling_rate = 24000
+
+text_prompt = """
+Exactly! [sigh] And the distillation part is where you take a LARGE-model,and compress-it down into a smaller, more efficient model that can run on devices with limited resources.
+"""
+inputs = processor(text_prompt, voice_preset=voice_preset).to(device)
+
+speech_output = model.generate(**inputs, temperature = 0.9, semantic_temperature = 0.8)
+Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)
+```
+
+Similar to parler models, suno has a [library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) of speakers.
+
+v9 from their library sounded robotic so we use Parler for our first speaker and the best one from bark.
+
+The incredible thing about Bark model is being able to add sound effects: `[Laugh]`, `[Gasps]`, `[Sigh]`, `[clears throat]`, making words capital causes the model to emphasize them. 
+
+Adding `-` gives a break in the text. We utilize this knowledge when we re-write the transcript using the 8B model to add effects to our transcript.
+
+Note: Authors suggest using `...`. However, this didn't work as effectively as adding a hyphen during trails.
+
+#### Hyper-parameters: 
+
+Bark models have two parameters we can tweak: `temperature` and `semantic_temperature`
+
+Below are the notes from a sweep, prompt and speaker were fixed and this was a vibe test to see which gives best results. `temperature` and `semantic_temperature` respectively below:
+
+First, fix `temperature` and sweep `semantic_temperature`
+- `0.7`, `0.2`: Quite bland and boring
+- `0.7`, `0.3`: An improvement over the previous one
+- `0.7`, `0.4`: Further improvement 
+- `0.7`, `0.5`: This one didn't work
+- `0.7`, `0.6`: So-So, didn't stand out
+- `0.7`, `0.7`: The best so far
+- `0.7`, `0.8`: Further improvement 
+- `0.7`, `0.9`: Mix feelings on this one
+
+Now sweeping the `temperature`
+- `0.1`, `0.9`: Very Robotic
+- `0.2`, `0.9`: Less Robotic but not convincing
+- `0.3`, `0.9`: Slight improvement still not fun
+- `0.4`, `0.9`: Still has a robotic tinge
+- `0.5`, `0.9`: The laugh was weird on this one but the voice modulates so much it feels speaker is changing
+- `0.6`, `0.9`: Most consistent voice but has a robotic after-taste
+- `0.7`, `0.9`: Very robotic and laugh was weird
+- `0.8`, `0.9`: Completely ignore the laughter but it was more natural
+- `0.9`, `0.9`: We have a winner probably
+
+After this about ~30 more sweeps were done with the promising combinations:
+
+Best results are at ```speech_output = model.generate(**inputs, temperature = 0.9, semantic_temperature = 0.8)
+Audio(speech_output[0].cpu().numpy(), rate=sampling_rate)```
+
+
+### Notes from other models that were tested:
+
+Promising directions to explore in future:
+
+- [MeloTTS](https://huggingface.co/myshell-ai/MeloTTS-English) This is most popular (ever) on HuggingFace
+- [WhisperSpeech](https://huggingface.co/WhisperSpeech/WhisperSpeech) sounded quite natural as well
+- [F5-TTS](https://github.com/SWivid/F5-TTS) was the latest release at this time, however, it felt a bit robotic
+- E2-TTS: r/locallama claims this to be a little better, however, it didn't pass the vibe test
+- [xTTS](https://coqui.ai/blog/tts/open_xtts) It has great documentation and also seems promising
+
+#### Some more models that weren't tested:
+
+In other words, we leave this as an exercise to readers :D
+
+- [Fish-Speech](https://huggingface.co/fishaudio/fish-speech-1.4)
+- [MMS-TTS-Eng](https://huggingface.co/facebook/mms-tts-eng)
+- [Metavoice](https://huggingface.co/metavoiceio/metavoice-1B-v0.1)
+- [Hifigan](https://huggingface.co/nvidia/tts_hifigan)
+- [TTS-Tacotron2](https://huggingface.co/speechbrain/tts-tacotron2-ljspeech) 
+- [MMS-TTS-Eng](https://huggingface.co/facebook/mms-tts-eng)
+- [VALL-E X](https://github.com/Plachtaa/VALL-E-X)
diff --git a/recipes/quickstart/NotebookLlama/requirements.txt b/recipes/quickstart/NotebookLlama/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..34a27dc8185f426dba0e0e41583b7dc6a00b89dd
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/requirements.txt
@@ -0,0 +1,15 @@
+# Core dependencies
+PyPDF2>=3.0.0
+torch>=2.0.0
+transformers>=4.46.0
+accelerate>=0.27.0
+rich>=13.0.0
+ipywidgets>=8.0.0
+tqdm>=4.66.0
+
+# Optional but recommended
+jupyter>=1.0.0
+ipykernel>=6.0.0
+
+# Warning handling
+warnings>=0.1.0
\ No newline at end of file
diff --git a/recipes/quickstart/NotebookLlama/resources/2402.13116v4.pdf b/recipes/quickstart/NotebookLlama/resources/2402.13116v4.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..bf6ab0cc0fcdf0b3ec78f8da53c4cc302faf253e
Binary files /dev/null and b/recipes/quickstart/NotebookLlama/resources/2402.13116v4.pdf differ
diff --git a/recipes/quickstart/NotebookLlama/resources/Outline.jpg b/recipes/quickstart/NotebookLlama/resources/Outline.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..bdb3d9b817efdc0eb17209df0ff86201c9859706
Binary files /dev/null and b/recipes/quickstart/NotebookLlama/resources/Outline.jpg differ
diff --git a/recipes/quickstart/NotebookLlama/resources/_podcast.mp3 b/recipes/quickstart/NotebookLlama/resources/_podcast.mp3
new file mode 100644
index 0000000000000000000000000000000000000000..ba34381b83a1e762a68c1d452c5ad1660e27db18
Binary files /dev/null and b/recipes/quickstart/NotebookLlama/resources/_podcast.mp3 differ
diff --git a/recipes/quickstart/NotebookLlama/resources/clean_extracted_text.txt b/recipes/quickstart/NotebookLlama/resources/clean_extracted_text.txt
new file mode 100644
index 0000000000000000000000000000000000000000..fccc6b2ae9c666a75c83a11b0e411881c96e9382
--- /dev/null
+++ b/recipes/quickstart/NotebookLlama/resources/clean_extracted_text.txt
@@ -0,0 +1,74 @@
+===============
+
+Knowledge Distillation is a methodology that transfers advanced capabilities from leading proprietary Large Language Models (LLMs) to their open-source counterparts, such as LLaMA and Mistral. This paper presents a comprehensive survey of KD's role in imparting advanced knowledge.
+
+Abstract —In the era of Large Language Models, Knowledge Distillation emerges as a pivotal methodology for transferring advanced capabilities from proprietary LLMs to open-source counterparts, facilitating their self-improvement by employing themselves as teachers.
+xamined through a meticulous survey that delves into the foundational pillars of algorithm, skill, and verticalization, which form the backbone of knowledge distillation and deep learning models. The survey provides a comprehensive examination of key mechanisms within the knowledge distillation framework, specifically focusing on the enhancement of cognitive abilities and their practical implications across various fields, with a particular emphasis on the interplay between data augmentation (DA) and knowledge distillation.
+en-source LLMs, this survey highlights the potential for more accessible, efficient, and powerful AI solutions.
+
+Most importantly, we advocate for compliance with legal terms that regulate the use of LLMs, ensuring ethical and lawful application of knowledge distillation.
+
+An associated Github repository is available at https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs. Index Terms - Large language models, knowledge distillation, data augmentation, skill distillation, supervised fine-tuning
+sophisticated problem-solving capabilities, the core significance of these large language models (LLMs) lies in their emergent abilities, enabling them to tackle a diverse array of tasks with remarkable proficiency.
+their remarkable capabilities, have some notable limitations, particularly when considering the advantages offered by open-source models, such as GPT-4 and Gemini. These models are often expensive, with substantial usage fees and restricted access, making them inaccessible to individuals and smaller organizations.
+ng restrictions and costs. In contrast, open-source LLMs like LLaMA and Mistral bring several advantages. Accessibility and adaptability are key benefits, as they are more readily available to a broader range of users, including researchers and organizations.
+ts. One of the most significant limitations is the smaller model scale, resulting in lower performance on real-world tasks with multiple instructions (Zheng et al., 2023a). Models with fewer parameters struggle to capture the depth and breadth of knowledge embodied in larger models like GPT-4. Additionally, the pre-training investment in these open-source models is typically less substantial. This reduced investment can lead to a narrower range of pre-training data, potentially limiting their understanding and handling of diverse or specialized topics (Liang et al., 2022; Sun et al., 2024a). Fine-tuning steps are often fewer due to resource constraints, hindering model optimization for specific tasks or industries.
+ary models becomes apparent when compared to highly fine-tuned proprietary LLMs. Primarily, the disparity between proprietary and open-source LLMs becomes evident, with proprietary models excelling in complex scenarios, while open-source models excel in a wide range of scenarios. Knowledge distillation, a technique that leverages the advanced capabilities of proprietary models, is used to enhance the competencies of open-source models. This process is similar to transferring the performance of a skilled teacher to a student.
+tillation of LLMs, where a small seed of knowledge is used to prompt the LLM to generate more data with respect to a specific skill or domain (Taori et al., 2023). Furthermore, KD retains its fundamental role in compressing LLMs, making them more efficient without significant loss in performance.
+advanced context following and instruction following**
+
+**key aspects of knowledge distillation**
+
+* **contextual understanding**: in-context learning and instruction following
+* **alignment with user intents**: human values/principles and thinking patterns like chain-of-thought
+* **NLP task specialization**: semantic understanding and code generation
+
+**critical skills for various applications**
+
+* **healthcare**: accuracy and contextual knowledge
+* **law**: contextual knowledge and precision
+* **science**: contextual knowledge and precision
+ned in the era of LLMs, the benefits of knowledge distillation in the era of LLMs are multifaceted and transformative. Through a suite of distillation techniques, the gap between proprietary and open-source models narrows and is filled. This process streamlines computational requirements and enhances environmental sustainability of AI operations, as open-source models become more proficient with lower overhead.
+ch domains. The escalating need for a comprehensive survey on the knowledge distillation of LLMs stems from the rapidly evolving landscape of AI and the increasing complexity of these models. The ability to efficiently and effectively distill knowledge from proprietary LLMs to open-source ones becomes a practical necessity. This is driven by the need to bridge the knowledge gap between the proprietary and open-source LLMs.
+
+This need is driven by the 3 models mentioned, including Student, Vicuna, Opt, GPT, and others. These models are being used in various sectors such as law, healthcare, finance, and science, and the ability to distill knowledge from them is becoming increasingly important.
+synthesizefeedbackFeedback input outputSelf-Knowledge outputinputinput YlabelLabelingExpansion X,Y demonstrationsexpandFeature featureinput,outputextractSec.4Sec.5 Sec.3.1Sec.3.2 Fig. 2: An overview of this survey on knowledge distillation of large language models
+es emerging, but there is still much to be learned from the era of Large Language Models (LLMs). In this section, we provide a foundational overview of knowledge distillation, highlighting the role of data augmentation (DA) in this context.
+
+Traditional techniques, such as supervised fine-tuning, have shown promise in distilling knowledge from LLMs. However, the increasing complexity of these models requires careful consideration of the trade-offs between accuracy and computational resources. To further explore the possibilities of knowledge distillation, we examine methods involving supervised fine-tuning, such as incremental learning and transfer learning.
+
+Supervised fine-tuning involves training a model on a smaller dataset with the goal of adapting to a specific task or domain. This approach has shown significant improvement in various NLP tasks, but may not be scalable to large-scale applications. In contrast, transfer learning offers a more flexible approach, where a model is trained on a smaller dataset and then fine-tuned on a larger dataset. This can lead to improved performance on a variety of tasks, but requires careful selection of the target dataset.
+
+Another approach is divergence and similarity, which involve exploring the differences and similarities between the knowledge distillation process and traditional machine learning. Reinforcement learning and ranking optimization are also gaining attention, particularly in the context of knowledge distillation, where the goal is to optimize the distillation process itself. These methods can improve the efficiency and effectiveness of knowledge distillation, but require careful consideration of the trade-offs between exploration and exploitation.
+
+Skill distillation focuses on enhancing student models to improve their understanding of the task and their ability to perform well on NLP tasks. This can be achieved through various methods, including data augmentation, feature learning, and attention mechanisms. By incorporating these techniques, student models can better understand the context and intentions of the user, leading to improved performance across a variety of tasks.
+
+We propose several strategies for skill distillation, including:
+mmendation systems, and the evaluation of text generation. In §5, we delve into domain-specific vertical distillation, demonstrating how knowledge distillation techniques are applied in specialized fields such as law, healthcare, finance, and science, highlighting their practical implications and transformative impact. The survey reveals open problems in §6, highlighting current challenges and gaps in knowledge distillation research that present opportunities for future work.
+large, complex model to a smaller, more efficient model, mitigating the challenges of computational demands and resource constraints in deploying large-scale models in practical applications. This process, prior to the era of Large Language Models (LLMs), focused on compacting complex neural networks for deployment in resource-constrained environments, such as mobile devices or edge computing platforms, where computational efficiency was paramount.
+al., 2022a), Alpaca (Taori et al., 2023), Code Alpaca (Chaudhary, 2023) Self-Align (Sun et al., 2024b), WizardLM (Xu et al., 2023a), WizardCoder (Luo et al., 2023a), WizardMath (Luo et al., 2023b), AugGPT (Dai et al., 2023a), TDG (He et al., 2023b), CurationUltraChat (Ding et al., 2023b), Phi-1 (Gunasekar et al., 2023), Phi-1.5 (Li et al., 2023a), Phi-2 (Mar, 2023), Magicoder (Wei et al., 2023), WaveCoder (Yu et al., 2024), ZeroGen (Ye et al., 2022), InPars (Bonifacio et al., 2022)
+Self-Align (Sun et al., 2024b), RLCD (Yang et al., 2024a), ImpDistill (Jung et al., 2023), LMSI (Huang et al., 2023a), ReST (Gulcehre et al., 2023), Self-Rewarding (Yuan et al., 2024a), Baize (Xu et al., 2023b), STaR (Zelikman et al., 2022) DistillationSupervised Fine-TuningAlpaca (Taori et al., 2023), Vicuna (Chiang et al., 2023), WizardLM (Xu et al., 2023a), Self-Instruct (Wang et al., 2022a), Baize (Xu et al., 2023b), STaR (Zelikman et al., 2022), Divergence and SimilarityDistilGPT (Sanh et al., 2019), f-Distill (Wen et al., 2023), MiniLLM (Gu et al., 2024) TED (Liang et al., 2023a), GKD (Agarwal et al., 2024), BabyLlama (Timiryasov and Tastet, 2023) Reinforcement LearningCAI (Bai et al., 2022a), UltraFeedback (Cui et al., 2023a), WizardMath (Luo et al., 2023b), MiniLLM (Gu et al., 2024), GKD (Agarwal et al., 2024), GPT3 Reward (Kwon et al., 2023) Rank Optimization
+ollowingInstruction FollowingSelf-Instruct Wang et al., 2022a, Alpaca Taori et al., 2023, Vicuna Chiang et al., 2023, WizardLM Xu et al., 2023a, Orca Mukherjee et al., 2023, Orca2 Mitra et al., 2023, WizardMath Luo et al., 2023b, Llama-GPT4 Peng et al., 2023a, Multi-turn Dialogue Chiang et al., 2023, Baize Xu et al., 2023b, UltraLLaMA Ding et al., 2023b, CAMEL Li et al., 2023b, OpenChat Wang et al., 2023c, Zephyr Tunstall et al., 2023, RAG Kang et al., 2023a, SAIL Luo et al., 2023c, Self-RAG Asai et al., 2023, AlignmentThinking PatternYe et al., 2023, Orca Mukherjee et al., 2023, Orca2 Wang et al., 2023d, AFT Cheng et al., 2023, KnowPAT Zhang et al., 2023a, PreferenceCAI Bai et al., 2022a, GPT-3 Reward Kwon et al., 2023, ILF Scheurer et al., 2023, ALMoST Kim et al., 2023a, RLEF Roit et al., 2023
+i et al., 2022a), Align Honesty (Yang et al., 2023a), SANDBOX (Liu et al., 2023b), Self-Align (Sun et al., 2024b), UltraFeedback (Cui et al., 2023a), RLCD (Yang et al., 2024a), AgentToolformer (Schick et al., 2023), Graph-ToolFormer (Zhang, 2023), Gorilla (Patil et al., 2023), ToolAlpaca (Tang et al., 2023a), ToolLLM (Qin et al., 2023a), CRAFT (Yuan et al., 2023a), Confucius (Gao et al., 2023b), MLLM-Tool (Wang et al., 2024), α-UMi (Shen et al., 2024), PlanningFireAct (Chen et al., 2023b), AgentTuning (Zeng et al., 2023a), Lumos (Yin et al., 2023a), AUTOACT (Qiao et al., 2024), TPTU-v2 (Kong et al., 2023), NLP Task SpecializationNLUAugGPT (Dai et al., 2023a), GPT Annotation (Gilardi et al., 2023), (Ding et al., 2023a), TDG (He et al., 2023b), SunGen (Gao et al., 2023a), Mix Distill (Chenglin et al., 2023), Annollm (He et al., 2023a), UDG (Wang et al., 2021a), ZeroGen (Ye et al., 2024)
+al., 2023 GPT-3 Labeling Wang et al., 2021b BioGPT Guo et al., 2023a ChatGPT NMT Yang and Nicolai, 2023 Information RetrievalQUILL Srinivasan et al., 2022 Promptgator Dai et al., 2023b InPars Bonifacio et al., 2022 AugTriever Meng et al., 2023 Sun et al., 2023a RankVicuna Pradeep et al., 2023a RankZephyr Pradeep et al., 2023b ExaRanker Ferraretto et al., 2023 Recommendation NDR Mysore et al., 2023 InstrcutRec Zhang et al., 2023b ONCE Liu et al., 2023c Text Generation Evaluation PandaLM Wang et al., 2023b Prometheus Kim et al., 2024 InstructScore Xu et al., 2023d TigerScore Jiang et al., 2023c Auto-J Li et al., 2024a CodeCodeAlpaca Chaudhary, 2023 CodeLlama Rozi `ere et al., 2023 Magicoder Wei et al., 2023 Phi-1 Gunasekar et al., 2023 PERsD Chen et al., 2023 MFTCoder Liu et al., 2023d WaveCoder Yu et al., 2023
+et al., 2023e), SVIT (Zhao et al., 2023b), LVIS-Instruct4V (Wang et al., 2023e), Shikra (Chen et al., 2023c), LSKD (Park et al., 2023), DetGPT (Pi et al., 2023; Zhao et al., 2023c), LRV (Liu et al., 2023f), NExT-GPT (Wu et al., 2023b), Valley (Luo et al., 2023d), ILuvUI (Jiang et al., 2023d), StableLLaVA (Li et al., 2023c), PointLLM (Xu et al., 2023e), Verticalization DistillationLaw (Huang et al., 2023b; Cui et al., 2023b); Medical & Healthcare (Zhang et al., 2023c; Chen et al., 2023d); Finance (Zhang and Yang, 2023); Science (Xie et al., 2023a; Zhang et al., 2024) and Misc. (Dan et al., 2023; Guo et al., 2023b) Fig. 3: Taxonomy of Knowledge Distillation of Large Language Models"
+r network, often through techniques like soft target training, where the student learns from the softened softmax output of the teacher.
+
+The distillation of knowledge from larger models to smaller ones is a technique used to improve the performance of AI models. In this context, distillation refers to the process of distilling the knowledge from a larger model into a smaller model, allowing it to learn from the teacher model's output.
+
+The current era of knowledge distillation in large language models (LLMs) has shifted the focus from mere architecture compression to a more nuanced process of knowledge elicitation and transfer. This paradigm change is largely due to the immense knowledge that LLMs like GPT-4 and Gemini possess. The parameters of LLMs make it challenging to compress them using pruning or quantization techniques.
+size, the current focus in llm-based knowledge distillation is to extract and transfer the rich, nuanced understanding that these models have developed the key to this modern approach lies in carefully designed prompts that elicit specific knowledge or capabilities from the llms, tapping into their understanding and capabilities in various domains ranging from natural language understanding to more complex cognitive tasks like reasoning and problem-solving
+explicit training objectives. This era of knowledge distillation also emphasizes the transfer of abstract qualities such as reasoning patterns and preference alignment. This is in stark contrast to the earlier focus on output replication, indicating a shift towards a more holistic and comprehensive transfer of cognitive capabilities. The current techniques involve not just the replication of outputs, but also the emulation of thought processes and decision-making patterns of the teacher model. This involves complex strategies like chain-of-thought prompting, where the student model learns the reasoning process of the teacher, enhancing its problem-solving and decision-making capabilities. 2.2 Relation to Data Augmentation (DA)
+llation, Unlike traditional techniques such as paraphrasing, or back-translation, which primarily aim at expanding the training dataset in a somewhat mechanical manner. DA within the context of LLMs focuses on the generation of novel, context-rich training data tailored to specific domains and skills. This innovation is driven by the unique capabilities of LLMs to generate coherent, diverse, and intricate data samples that closely mimic the nuanced understanding and cognitive abilities of human experts in various fields.
+ource models, through Deep Learning Models (LLMs) are prompted to create targeted, high-quality datasets that are not merely larger in volume but also rich in diversity and specificity. This approach enables the distillation process to be more effective, ensuring that the distilled models replicate the teacher model's output behavior and embody its deep-seated understanding and cognitive strategies. The significance and necessity of Data Augmentation (DA) for achieving Knowledge Domains (KD) in the LLM era cannot be overstated. DA acts as a force multiplier, enabling the distilled models to acquire and refine capabilities that would otherwise require exponentially larger datasets and computational resources. It facilitates a more nuanced and effective transfer of knowledge, focusing on the qualitative aspects of learning rather than quantitative expansion.
+er of LLMs empowers open-source models with the ability to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts thereby democratizing access to advanced AI capabilities and fostering innovation across a broader spectrum of applications and users 2 3 Survey Scope Building on the discussions introduced earlier this survey aims to comprehensively explore the landscape of knowledge distillation within the context of LLMs following a meticulously structured taxonomy as in Figure 3 the survey’s scope is delineated through three primary facets each encapsulating a range of subtopics and methodologies
+undations and methodologies of knowledge distillation. It includes an in-depth exploration of processes involved in constructing knowledge from teacher models (e.g., proprietary LLMs) and integrating this knowledge into student models (e.g., open-source LLMs). Under the umbrella of 'knowledge', we delve into strategies such as labeling, expansion, curation, feature understanding, and feedback mechanisms. The exploration seeks to uncover the various ways in which knowledge can be identified, expanded, and curated for effective distillation. This subsection examines learning approaches like supervised fine-tuning, divergence minimization, and reinforcement learning techniques.
+ow algorithms enable knowledge transfer, allowing open-source models to replicate and sometimes surpass proprietary capabilities. Skill Distillation examines specific competencies and capabilities enhanced through Knowledge Distillation. Contextual discussions follow (Taori et al., 2023; Luo et al., 2023c), including instruction following and retrieval-augmented generation (RAG) capabilities. Alignment research investigates thinking patterns, persona/preference modeling, and value alignment. The 'agent' category focuses on skills like tool usage and planning. NLP task specialization (Dai et al., 2023a; Jung et al., 2023; Chaudhary, 2023) is examined through lenses like natural language understanding (NLU), natural language processing (NLP).
+tion, and Code Generation**
+
+Finally, the survey explores how Knowledge Distillation (KD) enhances Large Language Models (LLMs) in interpreting and integrating multiple forms of input, enriching their utility and applicability across various contexts. Verticalization Distillation
+This section examines the application of KD across diverse domains, providing insights into how distilled LLMs can be tailored for specialized fields such as Law, Medical & Healthcare (Wang et al., 2023a), Finance (Zhang and Yang, 2023), Science (Zhang et al., 2024), among others. This exploration showcases the practical implications of KD techniques and highlights their transformative impact on domain-specific AI solutions. Through detailed analysis and examples, this part aims to demonstrate the versatility and efficacy of KD in adapting LLMs to diverse domains.
+stem. by navigating through these facets, this survey endeavors to provide an extensive and nuanced analysis of knowledge distillation in the era of LLMs. it serves as a guide for researchers, practitioners, and enthusiasts in the field, shedding light on current methodologies, challenges, and opportunities for innovation in this rapidly evolving domain.
+across a range of applications.
+
+Distillation Pipeline in LLM Era
diff --git a/recipes/quickstart/NotebookLlama/resources/data.pkl b/recipes/quickstart/NotebookLlama/resources/data.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..03b2674a7595bb8bee4f1a784086597a03a29a02
Binary files /dev/null and b/recipes/quickstart/NotebookLlama/resources/data.pkl differ
diff --git a/recipes/quickstart/NotebookLlama/resources/podcast_ready_data.pkl b/recipes/quickstart/NotebookLlama/resources/podcast_ready_data.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..086162b9582af57c2c01849af7c904395ce83364
Binary files /dev/null and b/recipes/quickstart/NotebookLlama/resources/podcast_ready_data.pkl differ
diff --git a/recipes/quickstart/agents/Agents_Tutorial/Tool_Calling_101.ipynb b/recipes/quickstart/agents/Agents_Tutorial/Tool_Calling_101.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ee6d89e97b4fad89bcf9d9fc9e00425ca6926804
--- /dev/null
+++ b/recipes/quickstart/agents/Agents_Tutorial/Tool_Calling_101.ipynb
@@ -0,0 +1,989 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Tool Calling 101:\n",
+    "\n",
+    "Note: If you are looking for `3.2` Featherlight Model (1B and 3B) instructions, please see the respective notebook, this one covers 3.1 models.\n",
+    "\n",
+    "We are briefly introduction the `3.2` models at the end. \n",
+    "\n",
+    "Note: The new vision models behave same as `3.1` models when you are talking to the models without an image\n",
+    "\n",
+    "This is part (1/2) in the tool calling series, this notebook will cover the basics of what tool calling is and how to perform it with `Llama 3.1 models`\n",
+    "\n",
+    "Here's what you will learn in this notebook:\n",
+    "\n",
+    "- Setup Groq to access Llama 3.1 70B model\n",
+    "- Avoid common mistakes when performing tool-calling with Llama\n",
+    "- Understand Prompt templates for Tool Calling\n",
+    "- Understand how the tool calls are handled under the hood\n",
+    "- 3.2 Model Tool Calling Format and Behaviour\n",
+    "\n",
+    "In Part 2, we will learn how to build system that can get us comparision between 2 papers"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## What is Tool Calling?\n",
+    "\n",
+    "This approach was popularised by the [Gorilla](https://gorilla.cs.berkeley.edu) paper-which showed that Large Language Model(s) can be fine-tuned on API examples to teach them calling an external API. \n",
+    "\n",
+    "This is really cool because we can now use a LLM as a \"brain\" of a system and connect it to external systems to perform actions. \n",
+    "\n",
+    "In simpler words, \"Llama can order your pizza for you\" :) \n",
+    "\n",
+    "With the Llama 3.1 release, the models excel at tool calling and support out of box `brave_search`, `wolfram_api` and `code_interpreter`. \n",
+    "\n",
+    "However, first let's take a look at a common mistake"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Install and setup groq dependencies\n",
+    "\n",
+    "- Install `groq` api to access Llama model(s)\n",
+    "- Configure our client and authenticate with API Key(s), Note: PLEASE UPDATE YOUR KEY BELOW"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#!pip3 install groq\n",
+    "%set_env GROQ_API_KEY=''"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import os\n",
+    "from groq import Groq\n",
+    "# Create the Groq client\n",
+    "client = Groq(api_key='gsk_PDfGP611i_HAHAHAHA_THIS_IS_NOT_MY_REAL_KEY_PLEASE_REPLACE')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Common Mistake of Tool-Calling: Incorrect Prompt Template\n",
+    "\n",
+    "While Llama 3.1 works with tool-calling out of box, a wrong prompt template can cause issues with unexpected behaviour. \n",
+    "\n",
+    "Sometimes, even superheroes need to be reminded of their powers. \n",
+    "\n",
+    "Let's first try \"forcing a prompt response from the model\""
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Note: Remember this is the WRONG template, please scroll to next section to see the right approach if you are in a rushed copy-pasta sprint\n",
+    "\n",
+    "This section will show you that the model will not use `brave_search` and `wolfram_api` out of the box unless the prompt template is set correctly. \n",
+    "Even if the model is asked to do so!"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "SYSTEM_PROMPT = \"\"\"\n",
+    "Cutting Knowledge Date: December 2023\n",
+    "Today Date: 20 August 2024\n",
+    "\n",
+    "You are a helpful assistant\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "system_prompt = {}\n",
+    "chat_history = []\n",
+    "\n",
+    "def model_chat(user_input: str, sys_prompt = SYSTEM_PROMPT, temperature: int = 0.7, max_tokens=2048):\n",
+    "    \n",
+    "    chat_history = [\n",
+    "        {\n",
+    "            \"role\": \"system\",\n",
+    "            \"content\": sys_prompt\n",
+    "        }\n",
+    "    ]\n",
+    "    \n",
+    "    chat_history.append({\"role\": \"user\", \"content\": user_input})\n",
+    "    \n",
+    "    response = client.chat.completions.create(model=\"llama-3.1-70b-versatile\",\n",
+    "                                          messages=chat_history,\n",
+    "                                          max_tokens=max_tokens,\n",
+    "                                          temperature=temperature)\n",
+    "    \n",
+    "    chat_history.append({\n",
+    "    \"role\": \"assistant\",\n",
+    "    \"content\": response.choices[0].message.content\n",
+    "    })\n",
+    "    \n",
+    "    \n",
+    "    #print(\"Assistant:\", response.choices[0].message.content)\n",
+    "    \n",
+    "    return response.choices[0].message.content"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Asking the model about a recent news\n",
+    "\n",
+    "Since the prompt template is incorrect, it will answer using cutoff memory"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 85,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: Unfortunately, I don't have information on a specific release date for the next Elden Ring game. However, I can tell you that there have been rumors and speculations about a potential sequel or DLC (Downloadable Content) for Elden Ring.\n",
+      "\n",
+      "In June 2022, the game's director, Hidetaka Miyazaki, mentioned that FromSoftware, the developer of Elden Ring, was working on \"multiple\" new projects, but no official announcements have been made since then.\n",
+      "\n",
+      "It's also worth noting that FromSoftware has a history of taking their time to develop new games, and the studio is known for its attention to detail and commitment to quality. So, even if there is a new Elden Ring game in development, it's likely that we won't see it anytime soon.\n",
+      "\n",
+      "Keep an eye on official announcements from FromSoftware and Bandai Namco, the publisher of Elden Ring, for any updates on a potential sequel or new game in the series.\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"\"\"\n",
+    "When is the next elden ring game coming out?\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Asking the model about a Math problem\n",
+    "\n",
+    "Again, the model answer(s) based on memory and not tool-calling"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 86,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: To find the square root of 23131231, I'll calculate it for you.\n",
+      "\n",
+      "√23131231 ≈ 4813.61\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"\"\"\n",
+    "When is the square root of 23131231?\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Can we solve this using a reminder prompt?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 87,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: I can use a mathematical tool to solve the question.\n",
+      "\n",
+      "The square root of 23131231 is:\n",
+      "\n",
+      "√23131231 ≈ 4810.51\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"\"\"\n",
+    "When is the square root of 23131231?\n",
+    "\n",
+    "Can you use a tool to solve the question?\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Looks like we didn't get the wolfram_api call, let's try one more time with a stronger prompt:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 88,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: I can use Wolfram Alpha to calculate the square root of 23131231.\n",
+      "\n",
+      "According to Wolfram Alpha, the square root of 23131231 is:\n",
+      "\n",
+      "√23131231 ≈ 4809.07\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"\"\"\n",
+    "When is the square root of 23131231?\n",
+    "\n",
+    "Can you use a tool to solve the question?\n",
+    "\n",
+    "Remember you have been trained on wolfram_alpha\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Official Prompt Template \n",
+    "\n",
+    "As you can see, the model doesn't perform tool-calling in an expected fashion above. This is because we are not following the recommended prompting format.\n",
+    "\n",
+    "The Llama Stack is the go to approach to use the Llama model family and build applications. \n",
+    "\n",
+    "Let's first install the `llama_toolchain` Python package to have the Llama CLI available."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#!pip3 install llama-toolchain"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Now we can learn about the various prompt formats available \n",
+    "\n",
+    "When you run the cell below-you will see models available and then we can check details for model specific prompts"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Traceback (most recent call last):\n",
+      "  File \"/opt/miniconda3/bin/llama\", line 8, in <module>\n",
+      "    sys.exit(main())\n",
+      "             ^^^^^^\n",
+      "  File \"/opt/miniconda3/lib/python3.12/site-packages/llama_toolchain/cli/llama.py\", line 44, in main\n",
+      "    parser.run(args)\n",
+      "  File \"/opt/miniconda3/lib/python3.12/site-packages/llama_toolchain/cli/llama.py\", line 38, in run\n",
+      "    args.func(args)\n",
+      "  File \"/opt/miniconda3/lib/python3.12/site-packages/llama_toolchain/cli/model/prompt_format.py\", line 59, in _run_model_template_cmd\n",
+      "    raise argparse.ArgumentTypeError(\n",
+      "argparse.ArgumentTypeError: llama3_1 is not a valid Model. Choose one from --\n",
+      "Llama3.1-8B\n",
+      "Llama3.1-70B\n",
+      "Llama3.1-405B\n",
+      "Llama3.1-8B-Instruct\n",
+      "Llama3.1-70B-Instruct\n",
+      "Llama3.1-405B-Instruct\n",
+      "Llama3.2-1B\n",
+      "Llama3.2-3B\n",
+      "Llama3.2-1B-Instruct\n",
+      "Llama3.2-3B-Instruct\n",
+      "Llama3.2-11B-Vision\n",
+      "Llama3.2-90B-Vision\n",
+      "Llama3.2-11B-Vision-Instruct\n",
+      "Llama3.2-90B-Vision-Instruct\n"
+     ]
+    }
+   ],
+   "source": [
+    "!llama model prompt-format "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[m━━━━━━━━━━━━━━━━━━━┓\u001b[m\n",
+      "┃                                    \u001b[1mLlama 3.1 - Prompt Formats\u001b[0m                 \u001b[m\u001b[1m\u001b[0m                   ┃\u001b[m\n",
+      "┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[m━━━━━━━━━━━━━━━━━━━┛\u001b[m\n",
+      "\u001b[m\n",
+      "\u001b[m\n",
+      "                                               \u001b[1;4mTokens\u001b[0m                           \u001b[m\u001b[1;4m\u001b[0m                    \u001b[m\n",
+      "\u001b[m\n",
+      "Here is a list of special tokens that are supported by Llama 3.1:               \u001b[m                    \u001b[m\n",
+      "\u001b[m\n",
+      "\u001b[1;33m • \u001b[0m\u001b[1;36;40m<|begin_of_text|>\u001b[0m: Specifies the start of the prompt                         \u001b[m\u001b[1;33m\u001b[0m\u001b[1;36;40m\u001b[0m                    \u001b[m\n",
+      "\u001b[1;33m • \u001b[0m\u001b[1;36;40m<|end_of_text|>\u001b[0m: Model will cease to generate more tokens. This token is gene\u001b[m\u001b[1;33m\u001b[0m\u001b[1;36;40m\u001b[0mrated only by the   \u001b[m\n",
+      "\u001b[1;33m   \u001b[0mbase models.                                                                 \u001b[m\u001b[1;33m\u001b[0m                    \u001b[m\n",
+      "\u001b[1;33m • \u001b[0m\u001b[1;36;40m<|finetune_right_pad_id|>\u001b[0m: This token is used for padding text sequences to t\u001b[m\u001b[1;33m\u001b[0m\u001b[1;36;40m\u001b[0mhe same length in a \u001b[m\n",
+      "\u001b[1;33m   \u001b[0mbatch.                                                                       \u001b[m:\u001b[K"
+     ]
+    }
+   ],
+   "source": [
+    "!llama model prompt-format -m Llama3.1-8B"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Tool Calling: Using the correct Prompt Template\n",
+    "\n",
+    "With `llama-cli` we have already learned the right behaviour of the model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "If everything is setup correctly-the model should now wrap function calls  with the `|<python_tag>|` following the actualy function call. \n",
+    "\n",
+    "This can allow you to manage your function calling logic accordingly. \n",
+    "\n",
+    "Time to test the theory"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 95,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: <|python_tag|>brave_search.call(query=\"Elden Ring sequel release date\")\n"
+     ]
+    }
+   ],
+   "source": [
+    "SYSTEM_PROMPT = \"\"\"\n",
+    "Environment: iPython\n",
+    "Tools: brave_search, wolfram_alpha\n",
+    "Cutting Knowledge Date: December 2023\n",
+    "Today Date: 15 September 2024\n",
+    "\"\"\"\n",
+    "\n",
+    "user_input = \"\"\"\n",
+    "When is the next Elden ring game coming out?\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 96,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: <|python_tag|>wolfram_alpha.call(query=\"square root of 23131231\")\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"\"\"\n",
+    "What is the square root of 23131231?\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Using this knowledge in practise\n",
+    "\n",
+    "A common misconception about tool calling is: the model can handle the tool call and get your output. \n",
+    "\n",
+    "This is NOT TRUE, the actual tool call is something that you have to implement. With this knowledge, let's see how we can utilise brave search to answer our original question"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 97,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#!pip3 install brave-search"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 98,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: <|python_tag|>wolfram_alpha.call(query=\"square root of 23131231\")\n"
+     ]
+    }
+   ],
+   "source": [
+    "SYSTEM_PROMPT = \"\"\"\n",
+    "Environment: iPython\n",
+    "Tools: brave_search, wolfram_alpha\n",
+    "Cutting Knowledge Date: December 2023\n",
+    "Today Date: 15 September 2024\n",
+    "\"\"\"\n",
+    "\n",
+    "user_input = \"\"\"\n",
+    "What is the square root of 23131231?\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 99,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<|python_tag|>wolfram_alpha.call(query=\"square root of 23131231\")\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(model_chat(user_input, sys_prompt=SYSTEM_PROMPT))\n",
+    "\n",
+    "output = model_chat(user_input, sys_prompt=SYSTEM_PROMPT)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 102,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Function name: wolfram_alpha\n",
+      "Method: call\n",
+      "Args: \"square root of 23131231\"\n"
+     ]
+    }
+   ],
+   "source": [
+    "import re\n",
+    "\n",
+    "# Extract the function name\n",
+    "fn_name = re.search(r'<\\|python_tag\\|>(\\w+)\\.', output).group(1)\n",
+    "\n",
+    "# Extract the method\n",
+    "fn_call_method = re.search(r'\\.(\\w+)\\(', output).group(1)\n",
+    "\n",
+    "# Extract the arguments\n",
+    "fn_call_args = re.search(r'=\\s*([^)]+)', output).group(1)\n",
+    "\n",
+    "print(f\"Function name: {fn_name}\")\n",
+    "print(f\"Method: {fn_call_method}\")\n",
+    "print(f\"Args: {fn_call_args}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "You can implement this in different ways but the idea is the same, the LLM gives an output with the `<|python_tag|>`, which should call a tool-calling mechanism. \n",
+    "\n",
+    "This logic gets handled in the program and then the output is passed back to the model to answer the user"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Code interpreter\n",
+    "\n",
+    "With the correct prompt template, Llama model can output Python (as well as code in any-language that the model has been trained on)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 54,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: <|python_tag|>import math\n",
+      "\n",
+      "# Define the variables\n",
+      "monthly_investment = 400\n",
+      "interest_rate = 0.05\n",
+      "target_amount = 100000\n",
+      "\n",
+      "# Calculate the number of months it would take to reach the target amount\n",
+      "months = 0\n",
+      "current_amount = 0\n",
+      "while current_amount < target_amount:\n",
+      "    current_amount += monthly_investment\n",
+      "    current_amount *= 1 + interest_rate / 12  # Compound interest\n",
+      "    months += 1\n",
+      "\n",
+      "# Print the result\n",
+      "print(f\"It would take {months} months, approximately {months / 12:.2f} years, to reach the target amount of ${target_amount:.2f}.\")\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"\"\"\n",
+    "\n",
+    "If I can invest 400$ every month at 5% interest rate, how long would it take me to make a 100k$ in investments?\n",
+    "\"\"\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=SYSTEM_PROMPT))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Let's validate the output by running the output from the model:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 55,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "It would take 172 months, approximately 14.33 years, to reach the target amount of $100000.00.\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Define the variables\n",
+    "monthly_investment = 400\n",
+    "interest_rate = 0.05\n",
+    "target_amount = 100000\n",
+    "\n",
+    "# Calculate the number of months it would take to reach the target amount\n",
+    "months = 0\n",
+    "current_amount = 0\n",
+    "while current_amount < target_amount:\n",
+    "    current_amount += monthly_investment\n",
+    "    current_amount *= 1 + interest_rate / 12  # Compound interest\n",
+    "    months += 1\n",
+    "\n",
+    "# Print the result\n",
+    "print(f\"It would take {months} months, approximately {months / 12:.2f} years, to reach the target amount of ${target_amount:.2f}.\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3.2 Models Custom Tool Prompt Format"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Life is great because Llama Team writes great docs for us, so we can conviently copy-pasta examples from there :)\n",
+    "\n",
+    "[Here](https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_2#-tool-calling-(1b/3b)-) are the docs for your reference that we will be using. \n",
+    "\n",
+    "Excercise for viewer: Use `llama-toolchain` again to verify like we did earlier and then start the prompt engineering for the small Llamas."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "function_definitions = \"\"\"[\n",
+    "    {\n",
+    "        \"name\": \"get_user_info\",\n",
+    "        \"description\": \"Retrieve details for a specific user by their unique identifier. Note that the provided function is in Python 3 syntax.\",\n",
+    "        \"parameters\": {\n",
+    "            \"type\": \"dict\",\n",
+    "            \"required\": [\n",
+    "                \"user_id\"\n",
+    "            ],\n",
+    "            \"properties\": {\n",
+    "                \"user_id\": {\n",
+    "                \"type\": \"integer\",\n",
+    "                \"description\": \"The unique identifier of the user. It is used to fetch the specific user details from the database.\"\n",
+    "            },\n",
+    "            \"special\": {\n",
+    "                \"type\": \"string\",\n",
+    "                \"description\": \"Any special information or parameters that need to be considered while fetching user details.\",\n",
+    "                \"default\": \"none\"\n",
+    "                }\n",
+    "            }\n",
+    "        }\n",
+    "    }\n",
+    "]\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "system_prompt = \"\"\"You are an expert in composing functions. You are given a question and a set of possible functions. \n",
+    "Based on the question, you will need to make one or more function/tool calls to achieve the purpose. \n",
+    "If none of the function can be used, point it out. If the given question lacks the parameters required by the function,\n",
+    "also point it out. You should only return the function call in tools call sections.\n",
+    "\n",
+    "If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]\\n\n",
+    "You SHOULD NOT include any other text in the response.\n",
+    "\n",
+    "Here is a list of functions in JSON format that you can invoke.\\n\\n{functions}\\n\"\"\".format(functions=function_definitions)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "chat_history = []\n",
+    "\n",
+    "def model_chat(user_input: str, sys_prompt = system_prompt, temperature: int = 0.7, max_tokens=2048):\n",
+    "    \n",
+    "    chat_history = [\n",
+    "        {\n",
+    "            \"role\": \"system\",\n",
+    "            \"content\": system_prompt\n",
+    "        }\n",
+    "    ]\n",
+    "    \n",
+    "    chat_history.append({\"role\": \"user\", \"content\": user_input})\n",
+    "    \n",
+    "    response = client.chat.completions.create(model=\"llama-3.2-3b-preview\",\n",
+    "                                          messages=chat_history,\n",
+    "                                          max_tokens=max_tokens,\n",
+    "                                          temperature=temperature)\n",
+    "    \n",
+    "    chat_history.append({\n",
+    "    \"role\": \"assistant\",\n",
+    "    \"content\": response.choices[0].message.content\n",
+    "    })\n",
+    "    \n",
+    "    \n",
+    "    #print(\"Assistant:\", response.choices[0].message.content)\n",
+    "    \n",
+    "    return response.choices[0].message.content"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Note: We are assuming a structure for dataset here:\n",
+    "\n",
+    "- Name\n",
+    "- Email\n",
+    "- Age \n",
+    "- Color request"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: [get_user_info(user_id=7890, special='black')]\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"Can you retrieve the details for the user with the ID 7890, who has black as their special request?\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=system_prompt))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Dummy dataset to make sure our model stays happy :) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def get_user_info(user_id: int, special: str = \"none\") -> dict:\n",
+    "    # This is a mock database of users\n",
+    "    user_database = {\n",
+    "        7890: {\"name\": \"Emma Davis\", \"email\": \"emma@example.com\", \"age\": 31},\n",
+    "        1234: {\"name\": \"Liam Wilson\", \"email\": \"liam@example.com\", \"age\": 28},\n",
+    "        2345: {\"name\": \"Olivia Chen\", \"email\": \"olivia@example.com\", \"age\": 35},\n",
+    "        3456: {\"name\": \"Noah Taylor\", \"email\": \"noah@example.com\", \"age\": 42},\n",
+    "        4567: {\"name\": \"Ava Martinez\", \"email\": \"ava@example.com\", \"age\": 39},\n",
+    "        5678: {\"name\": \"Ethan Brown\", \"email\": \"ethan@example.com\", \"age\": 45},\n",
+    "        6789: {\"name\": \"Sophia Kim\", \"email\": \"sophia@example.com\", \"age\": 33},\n",
+    "        8901: {\"name\": \"Mason Lee\", \"email\": \"mason@example.com\", \"age\": 29},\n",
+    "        9012: {\"name\": \"Isabella Garcia\", \"email\": \"isabella@example.com\", \"age\": 37},\n",
+    "        1357: {\"name\": \"James Johnson\", \"email\": \"james@example.com\", \"age\": 41}\n",
+    "    }\n",
+    "    \n",
+    "    # Check if the user exists in our mock database\n",
+    "    if user_id in user_database:\n",
+    "        user_data = user_database[user_id]\n",
+    "        \n",
+    "        # Handle the 'special' parameter\n",
+    "        if special != \"none\":\n",
+    "            user_data[\"special_info\"] = f\"Special request: {special}\"\n",
+    "        \n",
+    "        return user_data\n",
+    "    else:\n",
+    "        return {\"error\": \"User not found\"}"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[{'name': 'Emma Davis',\n",
+       "  'email': 'emma@example.com',\n",
+       "  'age': 31,\n",
+       "  'special_info': 'Special request: black'}]"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "[get_user_info(user_id=7890, special='black')]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Handling Tool-Calling logic for the model"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Hello Regex, my good old friend :) \n",
+    "\n",
+    "With Regex, we can write a simple way to handle tool_calling and return either the model or tool call response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import re\n",
+    "import json\n",
+    "\n",
+    "# Assuming you have defined get_user_info function and SYSTEM_PROMPT\n",
+    "\n",
+    "chat_history = []\n",
+    "\n",
+    "def process_response(response):\n",
+    "    function_call_pattern = r'\\[(.*?)\\((.*?)\\)\\]'\n",
+    "    function_calls = re.findall(function_call_pattern, response)\n",
+    "    \n",
+    "    if function_calls:\n",
+    "        processed_response = []\n",
+    "        for func_name, args_str in function_calls:\n",
+    "            args_dict = {}\n",
+    "            for arg in args_str.split(','):\n",
+    "                key, value = arg.split('=')\n",
+    "                key = key.strip()\n",
+    "                value = value.strip().strip(\"'\")\n",
+    "                if value.isdigit():\n",
+    "                    value = int(value)\n",
+    "                args_dict[key] = value\n",
+    "            \n",
+    "            if func_name == 'get_user_info':\n",
+    "                result = get_user_info(**args_dict)\n",
+    "                processed_response.append(f\"Function call result: {json.dumps(result, indent=2)}\")\n",
+    "            else:\n",
+    "                processed_response.append(f\"Unknown function: {func_name}\")\n",
+    "        return \"\\n\".join(processed_response)\n",
+    "    else:\n",
+    "        return response\n",
+    "\n",
+    "def model_chat(user_input: str, sys_prompt=system_prompt, temperature: float = 0.7, max_tokens: int = 2048):\n",
+    "    global chat_history\n",
+    "    \n",
+    "    if not chat_history:\n",
+    "        chat_history = [\n",
+    "            {\n",
+    "                \"role\": \"system\",\n",
+    "                \"content\": sys_prompt\n",
+    "            }\n",
+    "        ]\n",
+    "    \n",
+    "    chat_history.append({\"role\": \"user\", \"content\": user_input})\n",
+    "    \n",
+    "    response = client.chat.completions.create(\n",
+    "        model=\"llama-3.2-3b-preview\",\n",
+    "        messages=chat_history,\n",
+    "        max_tokens=max_tokens,\n",
+    "        temperature=temperature\n",
+    "    )\n",
+    "    \n",
+    "    assistant_response = response.choices[0].message.content\n",
+    "    processed_response = process_response(assistant_response)\n",
+    "    \n",
+    "    chat_history.append({\n",
+    "        \"role\": \"assistant\",\n",
+    "        \"content\": assistant_response\n",
+    "    })\n",
+    "    \n",
+    "    return processed_response"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Assistant: Function call result: {\n",
+      "  \"name\": \"Emma Davis\",\n",
+      "  \"email\": \"emma@example.com\",\n",
+      "  \"age\": 31,\n",
+      "  \"special_info\": \"Special request: black\"\n",
+      "}\n"
+     ]
+    }
+   ],
+   "source": [
+    "user_input = \"Can you retrieve the details for the user with the ID 7890, who has black as their special request?\"\n",
+    "\n",
+    "print(\"Assistant:\", model_chat(user_input, sys_prompt=system_prompt))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 56,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#fin"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.12.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/recipes/quickstart/agents/Agents_Tutorial/Tool_Calling_201.ipynb b/recipes/quickstart/agents/Agents_Tutorial/Tool_Calling_201.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..eb54362f7e5394a948ffc767ea8b60a1c96eb852
--- /dev/null
+++ b/recipes/quickstart/agents/Agents_Tutorial/Tool_Calling_201.ipynb
@@ -0,0 +1,776 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Tool Calling 201: Llama to find Differences between two papers\n",
+    "\n",
+    "The image below illustrates the demo in this notebook. \n",
+    "\n",
+    "**Goal:** Use `Meta-Llama-3.1-70b` model to find the differences between two papers\n",
+    "\n",
+    "- Step 1: Take the user input query \n",
+    "\n",
+    "- Step 2: Perform an internet search using `tavily` API to fetch the arxiv ID(s) based on the user query\n",
+    "\n",
+    "Note: `3.1` models support `brave_search` but this notebook is also aimed at showcasing custom tools. \n",
+    "\n",
+    "The above is important because many-times the user-query is different from the paper name and arxiv ID-this will help us with the next step\n",
+    "\n",
+    "- Step 3: Use the web results to extract the arxiv ID(s) of the papers\n",
+    "\n",
+    "We will use an 8b model here because who wants to deal with complex regex, that's the main-use case of LLM(s), isn't it? :D\n",
+    "\n",
+    "- Step 4: Use `arxiv` API to download the PDF(s) of the papers in user query\n",
+    "\n",
+    "- Step 5: For ease, we will extract first 80k words from the PDF and write these to a `.txt` file that we can summarise\n",
+    "\n",
+    "- Step 6: Use instances of `Meta-Llama-3.1-8b` instances to summaries the two PDF(s)\n",
+    "\n",
+    "- Step 7: Prompt the `70b` model to get the differences between the two papers being discussed"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Part 1: Defining the pieces\n",
+    "\n",
+    "We will start by describing all the modules from the image above, to make sure our logic works.\n",
+    "\n",
+    "In second half of the notebook, we will write a simple function to take care of the function calling logic"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Install necessary libraries"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 37,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#!pip3 install groq\n",
+    "#!pip3 install arxiv\n",
+    "#!pip3 install tavily-python\n",
+    "#!pip3 install llama-toolchain\n",
+    "#!pip3 install PyPDF2"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Necessary imports"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##### Note: PLEASE REPLACE API KEYS BELOW WITH YOUR REAL ONES"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import os, arxiv, PyPDF2\n",
+    "from tavily import TavilyClient\n",
+    "from groq import Groq\n",
+    "\n",
+    "# Create the Groq client\n",
+    "client = Groq(api_key='gsk_PDfGP611i_HAHAHAHA_THIS_IS_NOT_MY_REAL_KEY_PLEASE_REPLACE')\n",
+    "\n",
+    "tavily_client = TavilyClient(api_key='fake_key_HAHAHAHA_THIS_IS_NOT_MY_REAL_KEY_PLEASE_REPLACE')\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Main LLM thread: \n",
+    "\n",
+    "We will use a `MAIN_SYSTEM_PROMPT` and a `main_model_chat_history` to keep track of the discussion, since we are using 4 instances of LLM(s) along with this. \n",
+    "\n",
+    "Note, if you paid attention and notice that the SYSTEM_PROMPT here is different-thanks for reading closely! It's always a great idea to follow the official recommendations. \n",
+    "\n",
+    "However, when it's a matter of writing complex regex, we can bend the rules slightly :D\n",
+    "\n",
+    "Note, we will outline the functions here and define them as we go"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 50,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "MAIN_SYSTEM_PROMPT = \"\"\"\n",
+    "Environment: iPython\n",
+    "Cutting Knowledge Date: December 2023\n",
+    "Today Date: 15 September 2024\n",
+    "\n",
+    "# Tool Instructions\n",
+    "- Always execute python code in messages that you share.\n",
+    "- When looking for real time information use relevant functions if available\n",
+    "\n",
+    "You have access to the following functions:\n",
+    "\n",
+    "Use the function 'query_for_two_papers' to: Get the internet query results for the arxiv ID of the two papers user wants to compare\n",
+    "{\n",
+    "  \"name\": \"query_for_two_papers\",\n",
+    "  \"description\": \"Internet search the arxiv ID of two papers that user wants to look up\",\n",
+    "  \"parameters\": {\n",
+    "    \"paper_1\": {\n",
+    "      \"param_type\": \"string\",\n",
+    "      \"description\": \"arxiv id of paper_name_1 from user query\",\n",
+    "      \"required\": true\n",
+    "    },\n",
+    "    \"paper_2\": {\n",
+    "      \"param_type\": \"string\",\n",
+    "      \"description\": \"arxiv id of paper_name_2 from user query\",\n",
+    "      \"required\": true\n",
+    "    },\n",
+    "  }\n",
+    "}\n",
+    "\n",
+    "Use the function 'get_arxiv_ids' to: Given a dict of websearch queries, use a LLM to return JUST the arxiv ID, which is otherwise harder to extract\n",
+    "{\n",
+    "  \"name\": \"get_arxiv_ids\",\n",
+    "  \"description\": \"Use the dictionary returned from query_for_two_papers to ask a LLM to extract the arxiv IDs\",\n",
+    "  \"parameters\": {\n",
+    "    \"web_results\": {\n",
+    "      \"param_type\": \"dictionary\",\n",
+    "      \"description\": \"dictionary of search result for a query from the previous function\",\n",
+    "      \"required\": true\n",
+    "    },\n",
+    "  }\n",
+    "}\n",
+    "\n",
+    "Use the function 'process_arxiv_paper' to: Given the arxiv ID from get_arxiv_ids function, return a download txt file of the paper that we can then use for summarising\n",
+    "{\n",
+    "  \"name\": \"process_arxiv_paper\",\n",
+    "  \"description\": \"Use arxiv IDs extracted from earlier to be downloaded and saved to txt files\",\n",
+    "  \"parameters\": {\n",
+    "    \"arxiv_id\": {\n",
+    "      \"param_type\": \"string\",\n",
+    "      \"description\": \"arxiv ID of the paper that we want to download and save a txt file of\",\n",
+    "      \"required\": true\n",
+    "    },\n",
+    "  }\n",
+    "}\n",
+    "\n",
+    "Use the function 'summarize_text_file' to: Given the txt file name based on the arxiv IDs we are working with from earlier, get a summary of the paper being discussed\n",
+    "{\n",
+    "  \"name\": \"summarize_text_file\",\n",
+    "  \"description\": \"Summarise the arxiv paper saved in the txt file\",\n",
+    "  \"parameters\": {\n",
+    "    \"file_name\": {\n",
+    "      \"param_type\": \"string\",\n",
+    "      \"description\": \"Filename to be used to get a summary of\",\n",
+    "      \"required\": true\n",
+    "    },\n",
+    "  }\n",
+    "}\n",
+    "\n",
+    "If a you choose to call a function ONLY reply in the following format:\n",
+    "<{start_tag}={function_name}>{parameters}{end_tag}\n",
+    "where\n",
+    "\n",
+    "start_tag => `<function`\n",
+    "parameters => a JSON dict with the function argument name as key and function argument value as value.\n",
+    "end_tag => `</function>`\n",
+    "\n",
+    "Here is an example,\n",
+    "<function=example_function_name>{\"example_name\": \"example_value\"}</function>\n",
+    "\n",
+    "Reminder:\n",
+    "- When user is asking for a question that requires your reasoning, DO NOT USE OR FORCE a function call\n",
+    "- Even if you remember the arxiv ID of papers from input, do not put that in the query_two_papers function call, pass the internet look up query\n",
+    "- Function calls MUST follow the specified format\n",
+    "- Required parameters MUST be specified\n",
+    "- Only call one function at a time\n",
+    "- Put the entire function call reply on one line\n",
+    "- When returning a function call, don't add anything else to your response\n",
+    "\n",
+    "\"\"\""
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 51,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "main_model_chat_history = [\n",
+    "    {\n",
+    "        \"role\" : \"system\",\n",
+    "        \"content\" : MAIN_SYSTEM_PROMPT\n",
+    "    }\n",
+    "]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Define the `model_chat` instance\n",
+    "\n",
+    "We will be using this to handle all user input(s)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 52,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "def model_chat(user_input: str, temperature: int = 0, max_tokens=2048):\n",
+    "    \n",
+    "    main_model_chat_history.append({\"role\": \"user\", \"content\": user_input})\n",
+    "    \n",
+    "    #print(chat_history)\n",
+    "    \n",
+    "    #print(\"User: \", user_input)\n",
+    "    \n",
+    "    response = client.chat.completions.create(model=\"llama-3.1-70b-versatile\",\n",
+    "                                          messages=main_model_chat_history,\n",
+    "                                          max_tokens=max_tokens,\n",
+    "                                          temperature=temperature)\n",
+    "    \n",
+    "    main_model_chat_history.append({\n",
+    "    \"role\": \"assistant\",\n",
+    "    \"content\": response.choices[0].message.content\n",
+    "    })\n",
+    "    \n",
+    "    \n",
+    "    #print(\"Assistant:\", response.choices[0].message.content)\n",
+    "    \n",
+    "    return response.choices[0].message.content"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 42,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "user_input = \"\"\"\n",
+    "What are the differences between llama 3.1 and BERT?\n",
+    "\"\"\"\n",
+    "\n",
+    "output = model_chat(user_input, temperature=1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<function=query_for_two_papers>{\"paper_1\": \"Llama\", \"paper_2\": \"BERT\"}</function>\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(output)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "If you remember from `Tool_Calling_101.ipynb`, we need a way to extract and manage tool calling based on the response, the system prompt from earlier makes our lives easier to answer do this later :)\n",
+    "\n",
+    "First, let's validate the logic and define all the functions as we go:"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Tavily API: \n",
+    "\n",
+    "We will use the Tavily API to do a web query for the papers based on the model outputs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def query_for_two_papers(paper_1:str , paper_2: str) -> None :\n",
+    "     return [tavily_client.search(f\"arxiv id of {paper_1}\"), tavily_client.search(f\"arxiv id of {paper_2}\")]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "search_results = query_for_two_papers(\"llama 3.1\", \"BERT\")\n",
+    "#search_results"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "user_input = f\"\"\"\n",
+    "Here are the search results for the first paper, extract the arxiv ID {search_results[0]}\n",
+    "\"\"\"\n",
+    "\n",
+    "output = model_chat(user_input, temperature=1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<function=get_arxiv_id>{\"web_results\": \"{'query': 'arxiv id of llama 3.1', 'follow_up_questions': None, 'answer': None, 'images': [], 'results': [{'title': 'TheLlama3HerdofModels - arXiv.org', 'url': 'https://arxiv.org/pdf/2407.21783', 'content': 'arXiv:2407.21783v2 [cs.AI] 15 Aug 2024. Finetuned Multilingual Longcontext Tooluse Release ... The model architecture of Llama 3 is illustrated in Figure1. The development of our Llama 3 language modelscomprisestwomainstages:', 'score': 0.9955835, 'raw_content': None}, {'title': 'NousResearch/Meta-Llama-3.1-8B - Hugging Face', 'url': 'https://huggingface.co/NousResearch/Meta-Llama-3.1-8B', 'content': 'The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available ...', 'score': 0.95379424, 'raw_content': None}, {'title': 'Introducing Llama 3.1: Our most capable models to date - Meta AI', 'url': 'https://ai.meta.com/blog/meta-llama-3-1/', 'content': 'Bringing open intelligence to all, our latest models expand context length to 128K, add support across eight languages, and include Llama 3.1 405B—the first frontier-level open source AI model. Llama 3.1 405B is in a class of its own, with unmatched flexibility, control, and state-of-the-art capabilities that rival the best closed source models.', 'score': 0.9003547, 'raw_content': None}, {'title': 'The Llama 3 Herd of Models | Research - AI at Meta', 'url': 'https://ai.meta.com/research/publications/the-llama-3-herd-of-models/', 'content': 'This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety.', 'score': 0.89460546, 'raw_content': None}, {'title': '[2407.21783] The Llama 3 Herd of Models - arXiv.org', 'url': 'https://arxiv.org/abs/2407.21783', 'content': 'Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive ...', 'score': 0.6841585, 'raw_content': None}], 'response_time': 2.09}\"}</function>\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(output)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "user_input = f\"\"\"\n",
+    "Here are the search results for the second paper now, extract the arxiv ID {search_results[1]}\n",
+    "\"\"\"\n",
+    "\n",
+    "output = model_chat(user_input, temperature=1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<function=get_arxiv_id>{\"web_results\": \"{'query': 'arxiv id of BERT', 'follow_up_questions': None, 'answer': None, 'images': [], 'results': [{'title': '[2103.11943] BERT: A Review of Applications in Natural Language ...', 'url': 'https://arxiv.org/abs/2103.11943', 'content': 'arXiv:2103.11943 (cs) [Submitted on 22 Mar 2021] BERT: A Review of Applications in Natural Language Processing and Understanding. M. V. Koroteev. In this review, we describe the application of one of the most popular deep learning-based language models - BERT. The paper describes the mechanism of operation of this model, the main areas of its ...', 'score': 0.99411184, 'raw_content': None}, {'title': 'BERT: Pre-training of Deep Bidirectional Transformers for Language ...', 'url': 'https://aclanthology.org/N19-1423/', 'content': 'Abstract. We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning ...', 'score': 0.9222025, 'raw_content': None}, {'title': 'BERT: Pre-training of Deep Bidirectional Transformers for Language ...', 'url': 'https://research.google/pubs/bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding/', 'content': 'Abstract. We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers.', 'score': 0.87652874, 'raw_content': None}, {'title': 'BERT: Pre-training of Deep Bidirectional Transformers for Language ...', 'url': 'https://arxiv.org/abs/1810.04805', 'content': 'We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned ...', 'score': 0.66115755, 'raw_content': None}, {'title': 'A Primer in BERTology: What We Know About How BERT Works', 'url': 'https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-in-BERTology-What-We-Know-About-How-BERT', 'content': 'The issue of model depth must be related to the information flow from the most task-specific layers closer to the classifier (Liu et al., 2019a), to the initial layers which appear to be the most task-invariant (Hao et al., 2019), and where the tokens resemble the input tokens the most (Brunner et al., 2020) For BERT, this has been achieved through experiments with loss functions (Sanh et al., 2019; Jiao et al., 2019), mimicking the activation patterns of individual portions of the teacher network (Sun et al., 2019a), and knowledge transfer at the pre-training (Turc et al., 2019; Jiao et al., 2019; Sun et al., 2020) or fine-tuning stage (Jiao et al., 2019). In particular, they were shown to rely on shallow heuristics in natural language inference (McCoy et al., 2019b; Zellers et al., 2019; Jin et al., 2020), reading comprehension (Si et al., 2019; Rogers et al., 2020; Sugawara et al., 2020; Yogatama et al., 2019), argument reasoning comprehension (Niven and Kao, 2019), and text classification (Jin et al., 2020). Several studies explored the possibilities of improving the fine-tuning of BERT:\\\\nTaking more layers into account: learning a complementary representation of the information in deep and output layers (Yang and Zhao, 2019), using a weighted combination of all layers instead of the final one (Su and Cheng, 2019; Kondratyuk and Straka, 2019), and layer dropout (Kondratyuk and Straka, 2019).\\\\n For BERT, Clark et al. (2019) observe that most heads in the same layer show similar self-attention patterns (perhaps related to the fact that the output of all self-attention heads in a layer is passed through the same MLP), which explains why Michel et al. (2019) were able to reduce most layers to a single head.\\\\n', 'score': 0.4248892, 'raw_content': None}], 'response_time': 2.16}\"}</function>\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(output)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Extracting Arxiv IDs: \n",
+    "\n",
+    "At this point, you would know the author is allergic to writing regex. To deal with this, we will simply use an `8b` instance to extract the `arxiv id` from the paper:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def get_arxiv_ids(web_results: dict, temperature: int = 0, max_tokens=512):\n",
+    "    # Initialize chat history with a specific prompt to extract arXiv IDs\n",
+    "    arxiv_id_chat_history = [{\"role\": \"system\", \"content\": \"Given this input, give me the arXiv ID of the papers. The input has the query and web results. DO NOT WRITE ANYTHING ELSE IN YOUR RESPONSE: ONLY THE ARXIV ID ONCE, the web search will have it repeated mutliple times, just return the it once and where its actually the arxiv ID\"}, {\"role\": \"user\", \"content\": f\"Here is the query and results{web_results}\"}]\n",
+    "\n",
+    "    # Call the model to process the input and extract arXiv IDs\n",
+    "    response = client.chat.completions.create(\n",
+    "        model=\"llama-3.1-8b-instant\",  # Adjust the model as necessary\n",
+    "        messages=arxiv_id_chat_history,\n",
+    "        max_tokens=max_tokens,\n",
+    "        temperature=temperature\n",
+    "    )\n",
+    "    \n",
+    "    # Append the assistant's response to the chat history\n",
+    "    arxiv_id_chat_history.append({\n",
+    "        \"role\": \"assistant\",\n",
+    "        \"content\": response.choices[0].message.content\n",
+    "    })\n",
+    "    \n",
+    "    # Return the extracted arXiv IDs\n",
+    "    return response.choices[0].message.content"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "2407.21783\n",
+      "2103.11943\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(get_arxiv_ids(search_results[0]))\n",
+    "print(get_arxiv_ids(search_results[1]))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Downloading the papers and extracting details: \n",
+    "\n",
+    "Llama 3.1 family LLM(s) are great enough to use raw outputs extracted from a PDF and summarise them. However, we are still bound by their (great) 128k context length-to live with this, we will extract just the first 80k words. \n",
+    "\n",
+    "The functions below handle the logic of downloading the PDF(s) and extracting their outputs"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Processed text saved to 2407.21783.txt\n",
+      "Processed text saved to 2103.11943.txt\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Function to download PDF using arxiv library\n",
+    "def download_pdf(arxiv_id, filename):\n",
+    "    paper = next(arxiv.Client().results(arxiv.Search(id_list=[arxiv_id])))\n",
+    "    paper.download_pdf(filename=filename)\n",
+    "\n",
+    "# Function to convert PDF to text\n",
+    "def pdf_to_text(filename):\n",
+    "    with open(filename, \"rb\") as file:\n",
+    "        reader = PyPDF2.PdfReader(file)\n",
+    "        text = \"\"\n",
+    "        for page in reader.pages:\n",
+    "            if page.extract_text():\n",
+    "                text += page.extract_text() + \" \"\n",
+    "    return text\n",
+    "\n",
+    "# Function to truncate text after 80k words\n",
+    "def truncate_text(text, limit=20000):\n",
+    "    words = text.split()\n",
+    "    truncated = ' '.join(words[:limit])\n",
+    "    return truncated\n",
+    "\n",
+    "# Main function to process an arXiv ID\n",
+    "def process_arxiv_paper(arxiv_id):\n",
+    "    pdf_filename = f\"{arxiv_id}.pdf\"\n",
+    "    txt_filename = f\"{arxiv_id}.txt\"\n",
+    "    \n",
+    "    # Download PDF\n",
+    "    download_pdf(arxiv_id, pdf_filename)\n",
+    "    \n",
+    "    # Convert PDF to text\n",
+    "    text = pdf_to_text(pdf_filename)\n",
+    "    \n",
+    "    # Truncate text\n",
+    "    truncated_text = truncate_text(text)\n",
+    "    \n",
+    "    # Save to txt file\n",
+    "    with open(txt_filename, \"w\", encoding=\"utf-8\") as file:\n",
+    "        file.write(truncated_text)\n",
+    "    print(f\"Processed text saved to {txt_filename}\")\n",
+    "\n",
+    "# Example usage\n",
+    "arxiv_id = \"2407.21783\"\n",
+    "process_arxiv_paper(arxiv_id)\n",
+    "\n",
+    "arxiv_id = \"2103.11943\"\n",
+    "process_arxiv_paper(arxiv_id)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Summarising logic: \n",
+    "\n",
+    "We can use a `8b` model instance to summarise our papers:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "\n",
+    "SUMMARISER_PROMPT = \"\"\"\n",
+    "Cutting Knowledge Date: December 2023\n",
+    "Today Date: 15 September 2024\n",
+    "You are an expert summariser of research papers, below you will get an input of the text from an arxiv paper and your job is to read it carefully and return a concise summary with some bullet points at the end of some key-takeways from it\n",
+    "\"\"\"\n",
+    "\n",
+    "def summarize_text_file(file_name: str, temperature: int = 0, max_tokens=2048):\n",
+    "    # Read the content of the file\n",
+    "    with open(file_name, 'r') as file:\n",
+    "        file_content = file.read()\n",
+    "    \n",
+    "    # Initialize chat history\n",
+    "    chat_history = [{\"role\": \"system\", \"content\": f\"{SUMMARISER_PROMPT}\"}, {\"role\": \"user\", \"content\": f\"Text of the paper: {file_content}\"}]\n",
+    "    \n",
+    "    # Generate a summary using the model\n",
+    "    response = client.chat.completions.create(\n",
+    "        model=\"llama-3.1-8b-instant\",  # You can change the model as needed\n",
+    "        messages=chat_history,\n",
+    "        max_tokens=max_tokens,\n",
+    "        temperature=temperature\n",
+    "    )\n",
+    "    \n",
+    "    # Append the assistant's response to the chat history\n",
+    "    chat_history.append({\n",
+    "        \"role\": \"assistant\",\n",
+    "        \"content\": response.choices[0].message.content\n",
+    "    })\n",
+    "    \n",
+    "    # Return the summary\n",
+    "    return response.choices[0].message.content"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "Summary:\n",
+      "This paper introduces Llama 3, a new set of foundation models developed by Meta AI. The Llama 3 family consists of models with 8B, 70B, and 405B parameters, capable of handling tasks in multiple languages and modalities. The paper details the pre-training and post-training processes, infrastructure improvements, and evaluations across various benchmarks. Llama 3 demonstrates competitive performance compared to other leading language models, including GPT-4 and Claude 3.5 Sonnet, on a wide range of tasks. The paper also explores multimodal capabilities by integrating vision and speech components, although these are still under development and not ready for release.\n",
+      "Key takeaways:\n",
+      "\n",
+      "Llama 3 includes models with 8B, 70B, and 405B parameters, with the flagship 405B model trained on 15.6T tokens.\n",
+      "The models excel in multilingual capabilities, coding, reasoning, and tool usage.\n",
+      "Llama 3 uses a dense Transformer architecture with minimal modifications, focusing on high-quality data and increased training scale.\n",
+      "The training process involved significant infrastructure improvements to handle large-scale distributed training.\n",
+      "Post-training includes supervised fine-tuning, rejection sampling, and direct preference optimization to align the model with human preferences.\n",
+      "Llama 3 demonstrates competitive performance on various benchmarks, including MMLU, coding tasks, and math reasoning.\n",
+      "The paper presents experiments on integrating vision and speech capabilities using a compositional approach.\n",
+      "Extensive safety measures were implemented, including pre-training data filtering, safety fine-tuning, and system-level protections.\n",
+      "The authors are releasing the Llama 3 language models publicly to accelerate research and development in AI.\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "paper_1_summary = summarize_text_file(\"2407.21783.txt\")\n",
+    "print(paper_1_summary)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "\n",
+      "BERT is a novel language representation model developed by researchers at Google AI. It stands for Bidirectional Encoder Representations from Transformers and introduces a new approach to pre-training deep bidirectional representations from unlabeled text. Unlike previous models that looked at text sequences either from left-to-right or combined left-to-right and right-to-left training, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers.\n",
+      "The key innovation is the application of bidirectional training of Transformer, a popular attention model, to language modeling. This is achieved through two pre-training tasks: Masked Language Model (MLM) and Next Sentence Prediction (NSP). In MLM, the model attempts to predict masked words in a sentence, allowing it to incorporate context from both directions. NSP trains the model to understand relationships between sentences.\n",
+      "BERT significantly outperformed previous state-of-the-art models on a wide range of NLP tasks, including question answering, natural language inference, and others, without substantial task-specific architecture modifications. The researchers demonstrated the effectiveness of BERT by obtaining new state-of-the-art results on eleven natural language processing tasks.\n",
+      "Key Takeaways:\n",
+      "\n",
+      "BERT introduces deep bidirectional representations, overcoming limitations of previous unidirectional or shallowly bidirectional models.\n",
+      "The model uses \"masked language modeling\" (MLM) for bidirectional training of Transformer.\n",
+      "BERT is pre-trained on two tasks: masked language modeling and next sentence prediction.\n",
+      "It achieves state-of-the-art performance on 11 NLP tasks, including an improvement of 7.7% on the GLUE benchmark.\n",
+      "BERT's architecture allows for fine-tuning with just one additional output layer, making it versatile for various NLP tasks.\n",
+      "The model demonstrates that deep bidirectional language representation improves language understanding compared to left-to-right or shallow bidirectional approaches.\n",
+      "BERT's performance improves with larger model sizes, even on small-scale tasks.\n",
+      "The pre-training of BERT is computationally expensive but fine-tuning is relatively inexpensive.\n",
+      "BERT can be used for both fine-tuning and as a feature-based approach, with competitive results in both scenarios.\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "paper_2_summary = summarize_text_file(\"2103.11943.txt\")\n",
+    "print(paper_2_summary)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 56,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "user_input = f\"\"\"\n",
+    "Here are the summaries of the two papers, look at them closely and tell me the differences of the papers: Paper 1 Summary {paper_1_summary} and Paper 2 Summary {paper_2_summary}\n",
+    "\"\"\"\n",
+    "\n",
+    "output = model_chat(user_input, temperature=1)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 57,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The two paper summaries are about different language models: Llama 3 and BERT.\n",
+      "\n",
+      "The main differences are:\n",
+      "\n",
+      "1. Model Type: Llama 3 is a set of foundation models developed by Meta AI, while BERT is a language representation model developed by researchers at Google AI.\n",
+      "2. Model Architecture: Llama 3 uses a dense Transformer architecture, while BERT uses a bidirectional Transformer architecture.\n",
+      "3. Training Process: Llama 3 involves significant infrastructure improvements to handle large-scale distributed training, while BERT uses pre-training tasks such as Masked Language Model (MLM) and Next Sentence Prediction (NSP).\n",
+      "4. Multimodal Capabilities: Llama 3 explores multimodal capabilities by integrating vision and speech components, while BERT focuses on text-based language understanding.\n",
+      "5. Performance: Both models demonstrate competitive performance on various benchmarks, but Llama 3 shows performance on tasks such as multilingual capabilities, coding, reasoning, and tool usage, while BERT excels on NLP tasks such as question answering and natural language inference.\n",
+      "6. Release: Llama 3 is released publicly to accelerate research and development in AI, while BERT is released as a state-of-the-art model for NLP tasks.\n",
+      "7. Model Size: Llama 3 has models with 8B, 70B, and 405B parameters, while BERT's model size is not specified in the summary.\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(output)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Part 2: Handle the function calling logic: \n",
+    "\n",
+    "Now that we have validated a MVP, we can write a simple function to handle tool-calling:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[{'query': 'arxiv id of Llama 3.1', 'follow_up_questions': None, 'answer': None, 'images': [], 'results': [{'title': 'TheLlama3HerdofModels - arXiv.org', 'url': 'https://arxiv.org/pdf/2407.21783', 'content': 'arXiv:2407.21783v2 [cs.AI] 15 Aug 2024. Finetuned Multilingual Longcontext Tooluse Release ... The model architecture of Llama 3 is illustrated in Figure1. The development of our Llama 3 language modelscomprisestwomainstages:', 'score': 0.9961004, 'raw_content': None}, {'title': '[PDF] The Llama 3 Herd of Models - Semantic Scholar', 'url': 'https://www.semanticscholar.org/paper/The-Llama-3-Herd-of-Models-Dubey-Jauhri/6520557cc3bfd198f960cc8cb6151c3474321bd8', 'content': 'DOI: 10.48550/arXiv.2407.21783 Corpus ID: 271571434; The Llama 3 Herd of Models @article{Dubey2024TheL3, title={The Llama 3 Herd of Models}, author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan and Anirudh Goyal and Anthony Hartshorn and Aobo Yang and Archi Mitra and ...', 'score': 0.9943581, 'raw_content': None}, {'title': 'The Llama 3 Herd of Models | Research - AI at Meta', 'url': 'https://ai.meta.com/research/publications/the-llama-3-herd-of-models/', 'content': 'This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety.', 'score': 0.9320833, 'raw_content': None}, {'title': 'Introducing Llama 3.1: Our most capable models to date - Meta AI', 'url': 'https://ai.meta.com/blog/meta-llama-3-1/', 'content': 'Bringing open intelligence to all, our latest models expand context length to 128K, add support across eight languages, and include Llama 3.1 405B—the first frontier-level open source AI model. Llama 3.1 405B is in a class of its own, with unmatched flexibility, control, and state-of-the-art capabilities that rival the best closed source models.', 'score': 0.8467045, 'raw_content': None}, {'title': '[2407.21783] The Llama 3 Herd of Models - arXiv.org', 'url': 'https://arxiv.org/abs/2407.21783', 'content': 'Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive ...', 'score': 0.68257374, 'raw_content': None}], 'response_time': 1.7}, {'query': 'arxiv id of BERT', 'follow_up_questions': None, 'answer': None, 'images': [], 'results': [{'title': '[2103.11943] BERT: A Review of Applications in Natural Language ...', 'url': 'https://arxiv.org/abs/2103.11943', 'content': 'arXiv:2103.11943 (cs) [Submitted on 22 Mar 2021] BERT: A Review of Applications in Natural Language Processing and Understanding. M. V. Koroteev. In this review, we describe the application of one of the most popular deep learning-based language models - BERT. The paper describes the mechanism of operation of this model, the main areas of its ...', 'score': 0.99411184, 'raw_content': None}, {'title': 'BERT: Pre-training of Deep Bidirectional Transformers for Language ...', 'url': 'https://aclanthology.org/N19-1423/', 'content': 'Abstract. We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning ...', 'score': 0.9222025, 'raw_content': None}, {'title': 'BERT: Pre-training of Deep Bidirectional Transformers for Language ...', 'url': 'https://research.google/pubs/bert-pre-training-of-deep-bidirectional-transformers-for-language-understanding/', 'content': 'Abstract. We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers.', 'score': 0.87652874, 'raw_content': None}, {'title': 'BERT: Pre-training of Deep Bidirectional Transformers for Language ...', 'url': 'https://arxiv.org/abs/1810.04805', 'content': 'We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned ...', 'score': 0.66115755, 'raw_content': None}, {'title': 'A Primer in BERTology: What We Know About How BERT Works', 'url': 'https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00349/96482/A-Primer-in-BERTology-What-We-Know-About-How-BERT', 'content': 'The issue of model depth must be related to the information flow from the most task-specific layers closer to the classifier (Liu et al., 2019a), to the initial layers which appear to be the most task-invariant (Hao et al., 2019), and where the tokens resemble the input tokens the most (Brunner et al., 2020) For BERT, this has been achieved through experiments with loss functions (Sanh et al., 2019; Jiao et al., 2019), mimicking the activation patterns of individual portions of the teacher network (Sun et al., 2019a), and knowledge transfer at the pre-training (Turc et al., 2019; Jiao et al., 2019; Sun et al., 2020) or fine-tuning stage (Jiao et al., 2019). In particular, they were shown to rely on shallow heuristics in natural language inference (McCoy et al., 2019b; Zellers et al., 2019; Jin et al., 2020), reading comprehension (Si et al., 2019; Rogers et al., 2020; Sugawara et al., 2020; Yogatama et al., 2019), argument reasoning comprehension (Niven and Kao, 2019), and text classification (Jin et al., 2020). Several studies explored the possibilities of improving the fine-tuning of BERT:\\nTaking more layers into account: learning a complementary representation of the information in deep and output layers (Yang and Zhao, 2019), using a weighted combination of all layers instead of the final one (Su and Cheng, 2019; Kondratyuk and Straka, 2019), and layer dropout (Kondratyuk and Straka, 2019).\\n For BERT, Clark et al. (2019) observe that most heads in the same layer show similar self-attention patterns (perhaps related to the fact that the output of all self-attention heads in a layer is passed through the same MLP), which explains why Michel et al. (2019) were able to reduce most layers to a single head.\\n', 'score': 0.4250085, 'raw_content': None}], 'response_time': 2.2}]\n",
+      "This is a regular output without function call.\n"
+     ]
+    }
+   ],
+   "source": [
+    "def handle_llm_output(llm_output):\n",
+    "    # Check if the output starts with \"<function=\"\n",
+    "    if llm_output.startswith(\"<function=\"):\n",
+    "        return extract_details_and_call_function(llm_output)\n",
+    "    else:\n",
+    "        # Output does not start with \"<function=\", return as is\n",
+    "        return llm_output\n",
+    "\n",
+    "def extract_details_and_call_function(input_string):\n",
+    "    # Extract the function name and parameters\n",
+    "    prefix = \"<function=\"\n",
+    "    suffix = \"</function>\"\n",
+    "    start = input_string.find(prefix) + len(prefix)\n",
+    "    end = input_string.find(suffix)\n",
+    "    function_and_params = input_string[start:end]\n",
+    "    \n",
+    "    # Split to get function name and parameters\n",
+    "    function_name, params_json = function_and_params.split(\">{\")\n",
+    "    function_name = function_name.strip()\n",
+    "    params_json = \"{\" + params_json\n",
+    "    \n",
+    "    # Convert parameters to dictionary\n",
+    "    params = json.loads(params_json)\n",
+    "    \n",
+    "    # Call the function dynamically\n",
+    "    function_map = {\n",
+    "        \"query_for_two_papers\": query_for_two_papers,\n",
+    "        \"get_arxiv_id\": get_arxiv_ids,\n",
+    "        \"process_arxiv_paper\": process_arxiv_paper,\n",
+    "        \"summarise_text_file\": summarize_text_file\n",
+    "    }\n",
+    "    \n",
+    "    if function_name in function_map:\n",
+    "        result = function_map[function_name](**params)\n",
+    "        return result\n",
+    "    else:\n",
+    "        return \"Function not found\"\n",
+    "\n",
+    "# Testing usage\n",
+    "llm_outputs = [\n",
+    "    \"<function=query_for_two_papers>{\\\"paper_1\\\": \\\"Llama 3.1\\\", \\\"paper_2\\\": \\\"BERT\\\"}</function>\",\n",
+    "    \"Llama 3.2 models are here too btw!\"\n",
+    "]\n",
+    "\n",
+    "for output in llm_outputs:\n",
+    "    result = handle_llm_output(output)\n",
+    "    print(result)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#fin"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.14"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/recipes/quickstart/agents/dlai/AI_Agentic_Design_Patterns_with_AutoGen_L4_Tool_Use_and_Conversational_Chess.ipynb b/recipes/quickstart/agents/DeepLearningai_Course_Notebooks/AI_Agentic_Design_Patterns_with_AutoGen_L4_Tool_Use_and_Conversational_Chess.ipynb
similarity index 100%
rename from recipes/quickstart/agents/dlai/AI_Agentic_Design_Patterns_with_AutoGen_L4_Tool_Use_and_Conversational_Chess.ipynb
rename to recipes/quickstart/agents/DeepLearningai_Course_Notebooks/AI_Agentic_Design_Patterns_with_AutoGen_L4_Tool_Use_and_Conversational_Chess.ipynb
diff --git a/recipes/quickstart/agents/dlai/AI_Agents_in_LangGraph_L1_Build_an_Agent_from_Scratch.ipynb b/recipes/quickstart/agents/DeepLearningai_Course_Notebooks/AI_Agents_in_LangGraph_L1_Build_an_Agent_from_Scratch.ipynb
similarity index 100%
rename from recipes/quickstart/agents/dlai/AI_Agents_in_LangGraph_L1_Build_an_Agent_from_Scratch.ipynb
rename to recipes/quickstart/agents/DeepLearningai_Course_Notebooks/AI_Agents_in_LangGraph_L1_Build_an_Agent_from_Scratch.ipynb
diff --git a/recipes/quickstart/agents/dlai/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb b/recipes/quickstart/agents/DeepLearningai_Course_Notebooks/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb
similarity index 97%
rename from recipes/quickstart/agents/dlai/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb
rename to recipes/quickstart/agents/DeepLearningai_Course_Notebooks/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb
index 433c6906cf0e8f3e5063fc691d9cb0dc62a64f6d..67eda87f7e680bff16a3119676b585224e16e898 100644
--- a/recipes/quickstart/agents/dlai/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb
+++ b/recipes/quickstart/agents/DeepLearningai_Course_Notebooks/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb
@@ -4,7 +4,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "<a href=\"https://colab.research.google.com/github/meta-llama/llama-recipes/blob/main/recipes/quickstart/agents/dlai/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
+    "<a href=\"https://colab.research.google.com/github/meta-llama/llama-recipes/blob/main/recipes/quickstart/agents/DeepLearningai_Course_Notebooks/Building_Agentic_RAG_with_Llamaindex_L1_Router_Engine.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
    ]
   },
   {
diff --git a/recipes/quickstart/agents/dlai/Functions_Tools_and_Agents_with_LangChain_L1_Function_Calling.ipynb b/recipes/quickstart/agents/DeepLearningai_Course_Notebooks/Functions_Tools_and_Agents_with_LangChain_L1_Function_Calling.ipynb
similarity index 100%
rename from recipes/quickstart/agents/dlai/Functions_Tools_and_Agents_with_LangChain_L1_Function_Calling.ipynb
rename to recipes/quickstart/agents/DeepLearningai_Course_Notebooks/Functions_Tools_and_Agents_with_LangChain_L1_Function_Calling.ipynb
diff --git a/recipes/quickstart/agents/dlai/README.md b/recipes/quickstart/agents/DeepLearningai_Course_Notebooks/README.md
similarity index 100%
rename from recipes/quickstart/agents/dlai/README.md
rename to recipes/quickstart/agents/DeepLearningai_Course_Notebooks/README.md
diff --git a/recipes/quickstart/agents/README.md b/recipes/quickstart/agents/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..9ae617d2532d542495cc0734f4d433f531aeda7b
--- /dev/null
+++ b/recipes/quickstart/agents/README.md
@@ -0,0 +1,6 @@
+## Agents and Tool Calling
+
+Structure:
+
+- Agents_Tutorial: Showcases 101 and 201 notebooks guidance for using tool calling with Llama models
+- DeepLearning_Course_Notebooks: Notebooks from the DL.ai course teaching Agents
\ No newline at end of file
diff --git a/recipes/quickstart/finetuning/README.md b/recipes/quickstart/finetuning/README.md
index aea8cbc497efe84dd7bb2dde0310aae3e86a751f..bee4db7f565c45e5a9066e748c5089c686093c7c 100644
--- a/recipes/quickstart/finetuning/README.md
+++ b/recipes/quickstart/finetuning/README.md
@@ -8,7 +8,7 @@ This folder contains instructions to fine-tune Meta Llama 3 on a
 
 using the canonical [finetuning script](../../../src/llama_recipes/finetuning.py) in the llama-recipes package.
 
-If you are new to fine-tuning techniques, check out an overview: [](./LLM_finetuning_overview.md)
+If you are new to fine-tuning techniques, check out [an overview](./LLM_finetuning_overview.md).
 
 > [!TIP]
 > If you want to try finetuning Meta Llama 3 in a Jupyter notebook you can find a quickstart notebook [here](./quickstart_peft_finetuning.ipynb)
diff --git a/recipes/quickstart/finetuning/finetune_vision_model.md b/recipes/quickstart/finetuning/finetune_vision_model.md
index e73e27a87db0ed2ce218916f3de4ae1124602492..6f7d64f64c1b2f2183c0478f7c212db8bf48cdf1 100644
--- a/recipes/quickstart/finetuning/finetune_vision_model.md
+++ b/recipes/quickstart/finetuning/finetune_vision_model.md
@@ -22,12 +22,14 @@ For **LoRA finetuning with FSDP**, we can run the following code:
 
 For more details about the finetuning configurations, please read the [finetuning readme](./README.md).
 
+For more details about local inference with the fine-tuned checkpoint, please read [Inference with FSDP checkpoints section](https://github.com/meta-llama/llama-recipes/tree/main/recipes/quickstart/inference/local_inference#inference-with-fsdp-checkpoints) to learn how to convert the FSDP weights into a consolidated Hugging Face formatted model for local inference.
+
 ### How to use a custom dataset to fine-tune vision model
 
 In order to use a custom dataset, please follow the steps below:
 
 1. Create a new dataset python file under `recipes/quickstart/finetuning/dataset` folder.
 2. In this python file, you need to define a `get_custom_dataset(dataset_config, processor, split, split_ratio=0.9)` function that handles the data loading.
-3. In this python file, you need to define a `get_data_collator(processor)` class that returns a custom data collator that can be used by the Pytorch Data Loader.
+3. In this python file, you need to define a `get_data_collator(processor)` function that returns a custom data collator that can be used by the Pytorch Data Loader.
 4. This custom data collator class must have a `__call__(self, samples)` function that converts the image and text samples into the actual inputs that vision model expects.
 5. Run the `torchrun` command from above section, please change the `--custom_dataset.file` to the new dataset python file, adjust the learning rate accordingly.
diff --git a/recipes/quickstart/finetuning/quickstart_peft_finetuning.ipynb b/recipes/quickstart/finetuning/quickstart_peft_finetuning.ipynb
index e26a10bd5ddfe1b677fc3b957cdf2cea0ec464b7..df2674d53ef7ca052b1ff13e64a0de180540e6f2 100644
--- a/recipes/quickstart/finetuning/quickstart_peft_finetuning.ipynb
+++ b/recipes/quickstart/finetuning/quickstart_peft_finetuning.ipynb
@@ -8,7 +8,7 @@
     "Copyright (c) Meta Platforms, Inc. and affiliates.\n",
     "This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.\n",
     "\n",
-    "<a href=\"https://colab.research.google.com/github/meta-llama/llama-recipes/blob/main/recipes/finetuning/quickstart_peft_finetuning.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
+    "<a href=\"https://colab.research.google.com/github/meta-llama/llama-recipes/blob/main/recipes/quickstart/finetuning/quickstart_peft_finetuning.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
    ]
   },
   {
diff --git a/recipes/quickstart/inference/local_inference/README.md b/recipes/quickstart/inference/local_inference/README.md
index 73b83b929c4e7011c70e21f5c22af2c930cce295..cb073fd35430849d623f97b25f16216a02e9ccc0 100644
--- a/recipes/quickstart/inference/local_inference/README.md
+++ b/recipes/quickstart/inference/local_inference/README.md
@@ -1,11 +1,14 @@
 # Local Inference
 
+## Hugging face setup
+**Important Note**: Before running the inference, you'll need your Hugging Face access token, which you can get at your Settings page [here](https://huggingface.co/settings/tokens). Then run `huggingface-cli login` and copy and paste your Hugging Face access token to complete the login to make sure the scripts can download Hugging Face models if needed.
+
 ## Multimodal Inference
-For Multi-Modal inference we have added [multi_modal_infer.py](multi_modal_infer.py) which uses the transformers library
+For Multi-Modal inference we have added [multi_modal_infer.py](multi_modal_infer.py) which uses the transformers library.
 
-The way to run this would be
+The way to run this would be:
 ```
-python multi_modal_infer.py --image_path "./resources/image.jpg" --prompt_text "Describe this image" --temperature 0.5 --top_p 0.8 --model_name "meta-llama/Llama-3.2-11B-Vision-Instruct"
+python multi_modal_infer.py --image_path PATH_TO_IMAGE --prompt_text "Describe this image" --temperature 0.5 --top_p 0.8 --model_name "meta-llama/Llama-3.2-11B-Vision-Instruct"
 ```
 ---
 ## Multi-modal Inferencing Using gradio UI for inferencing
diff --git a/recipes/quickstart/inference/local_inference/multi_modal_infer.py b/recipes/quickstart/inference/local_inference/multi_modal_infer.py
index 8c11de8ee8c4b603fd77228f915957c748ce8b90..27d45b5f13a6f44fe8c7ee34b4b88a97f0f5a2fb 100644
--- a/recipes/quickstart/inference/local_inference/multi_modal_infer.py
+++ b/recipes/quickstart/inference/local_inference/multi_modal_infer.py
@@ -1,10 +1,11 @@
+import argparse
 import os
 import sys
-import argparse
-from PIL import Image as PIL_Image
+
 import torch
+from accelerate import Accelerator
+from PIL import Image as PIL_Image
 from transformers import MllamaForConditionalGeneration, MllamaProcessor
-from accelerate import  Accelerator
 
 accelerator = Accelerator()
 
@@ -14,15 +15,19 @@ device = accelerator.device
 DEFAULT_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct"
 
 
-def load_model_and_processor(model_name: str, hf_token: str):
+def load_model_and_processor(model_name: str):
     """
     Load the model and processor based on the 11B or 90B model.
     """
-    model = MllamaForConditionalGeneration.from_pretrained(model_name, torch_dtype=torch.bfloat16,use_safetensors=True, device_map=device,
-                                                            token=hf_token)
-    processor = MllamaProcessor.from_pretrained(model_name, token=hf_token,use_safetensors=True)
+    model = MllamaForConditionalGeneration.from_pretrained(
+        model_name,
+        torch_dtype=torch.bfloat16,
+        use_safetensors=True,
+        device_map=device,
+    )
+    processor = MllamaProcessor.from_pretrained(model_name, use_safetensors=True)
 
-    model, processor=accelerator.prepare(model, processor)
+    model, processor = accelerator.prepare(model, processor)
     return model, processor
 
 
@@ -37,37 +42,67 @@ def process_image(image_path: str) -> PIL_Image.Image:
         return PIL_Image.open(f).convert("RGB")
 
 
-def generate_text_from_image(model, processor, image, prompt_text: str, temperature: float, top_p: float):
+def generate_text_from_image(
+    model, processor, image, prompt_text: str, temperature: float, top_p: float
+):
     """
     Generate text from an image using the model and processor.
     """
     conversation = [
-        {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
+        {
+            "role": "user",
+            "content": [{"type": "image"}, {"type": "text", "text": prompt_text}],
+        }
     ]
-    prompt = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
+    prompt = processor.apply_chat_template(
+        conversation, add_generation_prompt=True, tokenize=False
+    )
     inputs = processor(image, prompt, return_tensors="pt").to(device)
-    output = model.generate(**inputs, temperature=temperature, top_p=top_p, max_new_tokens=512)
-    return processor.decode(output[0])[len(prompt):]
+    output = model.generate(
+        **inputs, temperature=temperature, top_p=top_p, max_new_tokens=512
+    )
+    return processor.decode(output[0])[len(prompt) :]
 
 
-def main(image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str, hf_token: str):
+def main(
+    image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str
+):
     """
-    Call all the functions. 
+    Call all the functions.
     """
-    model, processor = load_model_and_processor(model_name, hf_token)
+    model, processor = load_model_and_processor(model_name)
     image = process_image(image_path)
-    result = generate_text_from_image(model, processor, image, prompt_text, temperature, top_p)
+    result = generate_text_from_image(
+        model, processor, image, prompt_text, temperature, top_p
+    )
     print("Generated Text: " + result)
 
 
 if __name__ == "__main__":
-    parser = argparse.ArgumentParser(description="Generate text from an image and prompt using the 3.2 MM Llama model.")
+    parser = argparse.ArgumentParser(
+        description="Generate text from an image and prompt using the 3.2 MM Llama model."
+    )
     parser.add_argument("--image_path", type=str, help="Path to the image file")
-    parser.add_argument("--prompt_text", type=str, help="Prompt text to describe the image")
-    parser.add_argument("--temperature", type=float, default=0.7, help="Temperature for generation (default: 0.7)")
-    parser.add_argument("--top_p", type=float, default=0.9, help="Top p for generation (default: 0.9)")
-    parser.add_argument("--model_name", type=str, default=DEFAULT_MODEL, help=f"Model name (default: '{DEFAULT_MODEL}')")
-    parser.add_argument("--hf_token", type=str, required=True, help="Hugging Face token for authentication")
+    parser.add_argument(
+        "--prompt_text", type=str, help="Prompt text to describe the image"
+    )
+    parser.add_argument(
+        "--temperature",
+        type=float,
+        default=0.7,
+        help="Temperature for generation (default: 0.7)",
+    )
+    parser.add_argument(
+        "--top_p", type=float, default=0.9, help="Top p for generation (default: 0.9)"
+    )
+    parser.add_argument(
+        "--model_name",
+        type=str,
+        default=DEFAULT_MODEL,
+        help=f"Model name (default: '{DEFAULT_MODEL}')",
+    )
 
     args = parser.parse_args()
-    main(args.image_path, args.prompt_text, args.temperature, args.top_p, args.model_name, args.hf_token)
\ No newline at end of file
+    main(
+        args.image_path, args.prompt_text, args.temperature, args.top_p, args.model_name
+    )
diff --git a/recipes/use_cases/multilingual/README.md b/recipes/use_cases/multilingual/README.md
index 899c73fdb00596e5e65b795f2283d51d141a6c19..159db54b36f2ed8905f3444a697bd6fa4e43d724 100644
--- a/recipes/use_cases/multilingual/README.md
+++ b/recipes/use_cases/multilingual/README.md
@@ -1,7 +1,7 @@
 # Extending Llama to a new language
 Authored by : Sarvam team
 In this recipe, we will see how to add a new language to the Llama family of models. The steps are quite general and can be easily adapted to other models as well. Using this recipe, you should be able to replicate the findings of [OpenHathi](https://huggingface.co/sarvamai/OpenHathi-7B-Hi-v0.1-Base).
-Please read more about OpenHathi [here](https://web.archive.org/web/20240418103408/https://www.sarvam.ai/blog/announcing-openhathi-series)
+Please read more about OpenHathi [here](https://x.com/SarvamAI/status/1734645628288831557)
 
 ## Data
 The original OpenHathi model uses a combination of [Sangraha](https://huggingface.co/datasets/ai4bharat/sangraha) and Wikipedia as its primary data sources. If the reader is interested in using these sources, they would also have to preprocess the data: clean, filter, and deduplicate. See [Setu](https://github.com/AI4Bharat/setu) for an easy way to do this at scale.
diff --git a/src/llama_recipes/configs/datasets.py b/src/llama_recipes/configs/datasets.py
index 549a53935fb66101fcb0fa368791b7f9f1d05937..89e86de3b38d93d8769650ff078c024e7c43772e 100644
--- a/src/llama_recipes/configs/datasets.py
+++ b/src/llama_recipes/configs/datasets.py
@@ -9,7 +9,6 @@ class samsum_dataset:
     dataset: str =  "samsum_dataset"
     train_split: str = "train"
     test_split: str = "validation"
-    trust_remote_code: bool = False
 
 
 @dataclass
diff --git a/src/llama_recipes/datasets/samsum_dataset.py b/src/llama_recipes/datasets/samsum_dataset.py
index c0f11f97655f68bc60debd397ff3eba9ad2dcfd5..1edd701f21e1e577f3f8e7c30bdf6f2839f9507d 100644
--- a/src/llama_recipes/datasets/samsum_dataset.py
+++ b/src/llama_recipes/datasets/samsum_dataset.py
@@ -6,11 +6,22 @@
 import copy
 import datasets
 
+from unittest.mock import patch
+
+@patch('builtins.input', return_value="N")
+def load_samsum(split, _):
+    try:
+        ds = datasets.load_dataset("Samsung/samsum", split=split)
+    except ValueError as e:
+        if "trust_remote_code" in str(e):
+          raise ValueError("Loading Samsung/samsum requires you to execute the dataset script in that repo on your local machine. Make sure you have read the code there to avoid malicious use, then set HF_DATASETS_TRUST_REMOTE_CODE env variable to True.") from e
+        else:
+          raise e
+    return ds
+
 
 def get_preprocessed_samsum(dataset_config, tokenizer, split):
-    if not hasattr(dataset_config, "trust_remote_code") or not dataset_config.trust_remote_code:
-        raise ValueError("The repository for samsum contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/samsum. To activate `trust_remote_code` option use this config: --samsum_dataset.trust_remote_code=True")
-    dataset = datasets.load_dataset("samsum", split=split, trust_remote_code=dataset_config.trust_remote_code)
+    dataset = load_samsum(split)
 
     prompt = (
         f"Summarize this dialog:\n{{dialog}}\n---\nSummary:\n"
diff --git a/src/llama_recipes/finetuning.py b/src/llama_recipes/finetuning.py
index 0e140a7971115b77000ced3cd7d04cdecd5c0e64..548184e6ab85be6d473defd4d401afb9c9f1a093 100644
--- a/src/llama_recipes/finetuning.py
+++ b/src/llama_recipes/finetuning.py
@@ -1,60 +1,68 @@
 # Copyright (c) Meta Platforms, Inc. and affiliates.
 # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
-from collections import Counter
+import dataclasses
 import os
+import random
+from collections import Counter
+from warnings import warn
 
-import dataclasses
 import fire
-import random
+import numpy as np
 import torch
 import torch.optim as optim
-from peft import get_peft_model, PeftModel
-from torch.distributed.fsdp import (
-    FullyShardedDataParallel as FSDP,
-    ShardingStrategy
-)
-from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
-from torch.optim.lr_scheduler import StepLR
-from transformers import (
-    AutoConfig,
-    AutoTokenizer,
-    BitsAndBytesConfig,
-    AutoProcessor, 
-    LlamaForCausalLM,
-    MllamaForConditionalGeneration,
-)
-from transformers.models.llama.modeling_llama import LlamaDecoderLayer
-from transformers.models.mllama.modeling_mllama import  MllamaSelfAttentionDecoderLayer,MllamaCrossAttentionDecoderLayer,MllamaVisionEncoderLayer
+from accelerate.utils import is_xpu_available
 
-from llama_recipes.configs import fsdp_config as FSDP_CONFIG
-from llama_recipes.configs import train_config as TRAIN_CONFIG
-from llama_recipes.configs import quantization_config  as QUANTIZATION_CONFIG
+from llama_recipes.configs import (
+    fsdp_config as FSDP_CONFIG,
+    quantization_config as QUANTIZATION_CONFIG,
+    train_config as TRAIN_CONFIG,
+)
 from llama_recipes.data.concatenator import ConcatDataset
 from llama_recipes.policies import AnyPrecisionAdamW, apply_fsdp_checkpointing
 
 from llama_recipes.utils import fsdp_auto_wrap_policy
 from llama_recipes.utils.config_utils import (
-    update_config,
-    generate_peft_config,
+    check_fsdp_config,
     generate_dataset_config,
+    generate_peft_config,
     get_dataloader_kwargs,
-    check_fsdp_config,
+    update_config,
+)
+from llama_recipes.utils.dataset_utils import (
+    get_custom_data_collator,
+    get_preprocessed_dataset,
 )
-from llama_recipes.utils.dataset_utils import get_preprocessed_dataset,get_custom_data_collator
 
 from llama_recipes.utils.fsdp_utils import hsdp_device_mesh
 from llama_recipes.utils.train_utils import (
-    train,
+    clear_gpu_cache,
     freeze_transformer_layers,
+    get_policies,
+    print_model_size,
     setup,
     setup_environ_flags,
-    clear_gpu_cache,
-    print_model_size,
-    get_policies,
+    train,
+)
+from peft import get_peft_model, PeftModel
+from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
+from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
+from torch.optim.lr_scheduler import StepLR
+from transformers import (
+    AutoConfig,
+    AutoProcessor,
+    AutoTokenizer,
+    BitsAndBytesConfig,
+    LlamaForCausalLM,
+    MllamaForConditionalGeneration,
+)
+from transformers.models.llama.modeling_llama import LlamaDecoderLayer
+from transformers.models.mllama.modeling_mllama import (
+    MllamaCrossAttentionDecoderLayer,
+    MllamaSelfAttentionDecoderLayer,
+    MllamaVisionEncoderLayer,
 )
-from accelerate.utils import is_xpu_available
-from warnings import warn
+
 
 def setup_wandb(train_config, fsdp_config, **kwargs):
     try:
@@ -65,6 +73,7 @@ def setup_wandb(train_config, fsdp_config, **kwargs):
             "Please install it using pip install wandb"
         )
     from llama_recipes.configs import wandb_config as WANDB_CONFIG
+
     wandb_config = WANDB_CONFIG()
     update_config(wandb_config, **kwargs)
     init_dict = dataclasses.asdict(wandb_config)
@@ -73,6 +82,7 @@ def setup_wandb(train_config, fsdp_config, **kwargs):
     run.config.update(fsdp_config, allow_val_change=True)
     return run
 
+
 def main(**kwargs):
     # Update the configuration for the training and sharding process
     train_config, fsdp_config = TRAIN_CONFIG(), FSDP_CONFIG()
@@ -82,6 +92,7 @@ def main(**kwargs):
         torch.xpu.manual_seed(train_config.seed)
     torch.manual_seed(train_config.seed)
     random.seed(train_config.seed)
+    np.random.seed(train_config.seed)
 
     if train_config.enable_fsdp:
         setup()
@@ -101,18 +112,23 @@ def main(**kwargs):
     wandb_run = None
 
     if train_config.use_wandb:
-        if not train_config.enable_fsdp or rank==0:
+        if not train_config.enable_fsdp or rank == 0:
             wandb_run = setup_wandb(train_config, fsdp_config, **kwargs)
-    
-    #setting quantization configs
+
+    # setting quantization configs
     bnb_config = None
     if train_config.quantization:
         if type(train_config.quantization) == type(True):
-            warn("Quantization (--quantization) is a boolean, please specify quantization as '4bit' or '8bit'. Defaulting to '8bit' but this might change in the future.", FutureWarning)
+            warn(
+                "Quantization (--quantization) is a boolean, please specify quantization as '4bit' or '8bit'. Defaulting to '8bit' but this might change in the future.",
+                FutureWarning,
+            )
             train_config.quantization = "8bit"
 
         if train_config.quantization == "8bit" and train_config.enable_fsdp:
-            raise ValueError("8bit quantization is not supported with FSDP, please use 4bit quantization")
+            raise ValueError(
+                "8bit quantization is not supported with FSDP, please use 4bit quantization"
+            )
 
         quant_config = QUANTIZATION_CONFIG()
         update_config(quant_config, **kwargs)
@@ -124,14 +140,22 @@ def main(**kwargs):
     if config.model_type == "mllama":
         is_vision = True
         model = MllamaForConditionalGeneration.from_pretrained(
-        train_config.model_name,
-        quantization_config=bnb_config,
-        attn_implementation="sdpa" if train_config.use_fast_kernels else None,
-        device_map="auto" if train_config.quantization and not train_config.enable_fsdp else None,
-        torch_dtype=torch.float16 if train_config.use_fp16 else torch.bfloat16,
-    )
-        processor = AutoProcessor.from_pretrained(train_config.model_name if train_config.tokenizer_name is None else train_config.tokenizer_name)
-        processor.tokenizer.padding_side='right'
+            train_config.model_name,
+            quantization_config=bnb_config,
+            attn_implementation="sdpa" if train_config.use_fast_kernels else None,
+            device_map=(
+                "auto"
+                if train_config.quantization and not train_config.enable_fsdp
+                else None
+            ),
+            torch_dtype=torch.float16 if train_config.use_fp16 else torch.bfloat16,
+        )
+        processor = AutoProcessor.from_pretrained(
+            train_config.model_name
+            if train_config.tokenizer_name is None
+            else train_config.tokenizer_name
+        )
+        processor.tokenizer.padding_side = "right"
         model.supports_gradient_checkpointing = True
         model.language_model.supports_gradient_checkpointing = True
     elif config.model_type == "llama":
@@ -141,32 +165,50 @@ def main(**kwargs):
             quantization_config=bnb_config,
             use_cache=use_cache,
             attn_implementation="sdpa" if train_config.use_fast_kernels else None,
-            device_map="auto" if train_config.quantization and not train_config.enable_fsdp else None,
+            device_map=(
+                "auto"
+                if train_config.quantization and not train_config.enable_fsdp
+                else None
+            ),
             torch_dtype=torch.float16 if train_config.use_fp16 else torch.bfloat16,
         )
     else:
-        raise ValueError(f"Model type {config.model_type} is not supported. Please use llama or mllama model.")
+        raise ValueError(
+            f"Model type {config.model_type} is not supported. Please use llama or mllama model."
+        )
     # Load the tokenizer and add special tokens
-    tokenizer = AutoTokenizer.from_pretrained(train_config.model_name if train_config.tokenizer_name is None else train_config.tokenizer_name)
-    if not tokenizer.pad_token_id: 
+    tokenizer = AutoTokenizer.from_pretrained(
+        train_config.model_name
+        if train_config.tokenizer_name is None
+        else train_config.tokenizer_name
+    )
+    if not tokenizer.pad_token_id:
         tokenizer.pad_token_id = tokenizer.eos_token_id
-        
+
     # If there is a mismatch between tokenizer vocab size and embedding matrix,
     # throw a warning and then expand the embedding matrix
     if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
-        print("WARNING: Resizing the embedding matrix to match the tokenizer vocab size.")
+        print(
+            "WARNING: Resizing the embedding matrix to match the tokenizer vocab size."
+        )
         model.resize_token_embeddings(len(tokenizer))
 
     print_model_size(model, train_config, rank if train_config.enable_fsdp else 0)
 
     # Convert the model to bfloat16 if fsdp and pure_bf16 is enabled
-    if train_config.enable_fsdp and fsdp_config.pure_bf16 and not train_config.quantization:
+    if (
+        train_config.enable_fsdp
+        and fsdp_config.pure_bf16
+        and not train_config.quantization
+    ):
         model.to(torch.bfloat16)
-        
+
     if train_config.use_peft:
         # Load the pre-trained peft model checkpoint and setup its configuration
         if train_config.from_peft_checkpoint:
-            model = PeftModel.from_pretrained(model, train_config.from_peft_checkpoint, is_trainable=True)
+            model = PeftModel.from_pretrained(
+                model, train_config.from_peft_checkpoint, is_trainable=True
+            )
             peft_config = model.peft_config
         # Generate the peft config and start fine-tuning from original model
         else:
@@ -177,23 +219,36 @@ def main(**kwargs):
         model.print_trainable_parameters()
 
     hsdp_device_mesh_plan = None
-    if fsdp_config.hsdp and fsdp_config.sharding_strategy == ShardingStrategy.HYBRID_SHARD:
-        hsdp_device_mesh_plan = hsdp_device_mesh(replica_group_size=fsdp_config.replica_group_size, sharding_group_size=fsdp_config.sharding_group_size)
+    if (
+        fsdp_config.hsdp
+        and fsdp_config.sharding_strategy == ShardingStrategy.HYBRID_SHARD
+    ):
+        hsdp_device_mesh_plan = hsdp_device_mesh(
+            replica_group_size=fsdp_config.replica_group_size,
+            sharding_group_size=fsdp_config.sharding_group_size,
+        )
         print("HSDP device mesh is ready")
 
-    #setting up FSDP if enable_fsdp is enabled
+    # setting up FSDP if enable_fsdp is enabled
     if train_config.enable_fsdp:
         check_fsdp_config(fsdp_config)
-        
+
         if not train_config.use_peft and train_config.freeze_layers:
             freeze_transformer_layers(model, train_config.num_freeze_layers)
 
         mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank)
         # Create the FSDP wrapper for MllamaSelfAttentionDecoderLayer,MllamaSelfAttentionDecoderLayer,MllamaVisionEncoderLayer in vision models
         if is_vision:
-            my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, [MllamaSelfAttentionDecoderLayer,MllamaSelfAttentionDecoderLayer,MllamaVisionEncoderLayer])
+            my_auto_wrapping_policy = fsdp_auto_wrap_policy(
+                model,
+                [
+                    MllamaSelfAttentionDecoderLayer,
+                    MllamaSelfAttentionDecoderLayer,
+                    MllamaVisionEncoderLayer,
+                ],
+            )
         else:
-        # Create the FSDP wrapper for LlamaDecoderLayer in text models
+            # Create the FSDP wrapper for LlamaDecoderLayer in text models
             my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, [LlamaDecoderLayer])
         device_id = 0
         if is_xpu_available():
@@ -202,21 +257,36 @@ def main(**kwargs):
             device_id = torch.cuda.current_device()
         model = FSDP(
             model,
-            auto_wrap_policy= my_auto_wrapping_policy if train_config.use_peft else wrapping_policy,
-            cpu_offload=CPUOffload(offload_params=True) if fsdp_config.fsdp_cpu_offload else None,
-            mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None,
+            auto_wrap_policy=(
+                my_auto_wrapping_policy if train_config.use_peft else wrapping_policy
+            ),
+            cpu_offload=(
+                CPUOffload(offload_params=True)
+                if fsdp_config.fsdp_cpu_offload
+                else None
+            ),
+            mixed_precision=(
+                mixed_precision_policy if not fsdp_config.pure_bf16 else None
+            ),
             sharding_strategy=fsdp_config.sharding_strategy,
             device_mesh=hsdp_device_mesh_plan,
             device_id=device_id,
             limit_all_gathers=True,
             sync_module_states=train_config.low_cpu_fsdp,
-            param_init_fn=(lambda module: module.to_empty(device=torch.device("cuda"), recurse=False))
-            if train_config.low_cpu_fsdp and rank != 0 else None,
+            param_init_fn=(
+                (
+                    lambda module: module.to_empty(
+                        device=torch.device("cuda"), recurse=False
+                    )
+                )
+                if train_config.low_cpu_fsdp and rank != 0
+                else None
+            ),
         )
-        if fsdp_config.fsdp_activation_checkpointing:            
+        if fsdp_config.fsdp_activation_checkpointing:
             model.enable_input_require_grads()
             model.gradient_checkpointing_enable()
-            apply_fsdp_checkpointing(model)                      
+            apply_fsdp_checkpointing(model)
     elif not train_config.quantization and not train_config.enable_fsdp:
         if is_xpu_available():
             model.to("xpu:0")
@@ -250,11 +320,15 @@ def main(**kwargs):
         if is_vision:
             raise ValueError("Packing is not supported for vision datasets")
         else:
-            dataset_train = ConcatDataset(dataset_train, chunk_size=train_config.context_length)
+            dataset_train = ConcatDataset(
+                dataset_train, chunk_size=train_config.context_length
+            )
 
-    train_dl_kwargs = get_dataloader_kwargs(train_config, dataset_train, dataset_processer, "train")
+    train_dl_kwargs = get_dataloader_kwargs(
+        train_config, dataset_train, dataset_processer, "train"
+    )
     print("length of dataset_train", len(dataset_train))
-    custom_data_collator = get_custom_data_collator(dataset_processer,dataset_config)
+    custom_data_collator = get_custom_data_collator(dataset_processer, dataset_config)
     if custom_data_collator:
         print("custom_data_collator is used")
         train_dl_kwargs["collate_fn"] = custom_data_collator
@@ -273,9 +347,13 @@ def main(**kwargs):
             if is_vision:
                 raise ValueError("Packing is not supported for vision datasets")
             else:
-                dataset_val = ConcatDataset(dataset_val, chunk_size=train_config.context_length)
+                dataset_val = ConcatDataset(
+                    dataset_val, chunk_size=train_config.context_length
+                )
 
-        val_dl_kwargs = get_dataloader_kwargs(train_config, dataset_val, dataset_processer, "val")
+        val_dl_kwargs = get_dataloader_kwargs(
+            train_config, dataset_val, dataset_processer, "val"
+        )
         if custom_data_collator:
             val_dl_kwargs["collate_fn"] = custom_data_collator
 
@@ -287,7 +365,9 @@ def main(**kwargs):
         )
         print(f"--> Num of Validation Set Batches loaded = {len(eval_dataloader)}")
         if len(eval_dataloader) == 0:
-            raise ValueError("The eval set size is too small for dataloader to load even one batch. Please increase the size of eval set.")
+            raise ValueError(
+                f"The eval set size is too small for dataloader to load even one batch. Please increase the size of eval set. ({len(eval_dataloader)=})"
+            )
         else:
             print(f"--> Num of Validation Set Batches loaded = {len(eval_dataloader)}")
 
@@ -322,11 +402,12 @@ def main(**kwargs):
         rank if train_config.enable_fsdp else None,
         wandb_run,
     )
-    if not train_config.enable_fsdp or rank==0:
-        [print(f'Key: {k}, Value: {v}') for k, v in results.items()]
+    if not train_config.enable_fsdp or rank == 0:
+        [print(f"Key: {k}, Value: {v}") for k, v in results.items()]
         if train_config.use_wandb:
-            for k,v in results.items():
+            for k, v in results.items():
                 wandb_run.summary[k] = v
 
+
 if __name__ == "__main__":
     fire.Fire(main)
diff --git a/src/llama_recipes/inference/checkpoint_converter_fsdp_hf.py b/src/llama_recipes/inference/checkpoint_converter_fsdp_hf.py
index a8c5e646f7f64f248e2ad47a6fcfabe446e27a46..642459edda3f14f6a175912531492d5e87696f98 100644
--- a/src/llama_recipes/inference/checkpoint_converter_fsdp_hf.py
+++ b/src/llama_recipes/inference/checkpoint_converter_fsdp_hf.py
@@ -3,14 +3,15 @@
 
 # from accelerate import init_empty_weights, load_checkpoint_and_dispatch
 
-import fire
 import os
 import sys
+
+import fire
 import yaml
 
-from transformers import AutoTokenizer
+from llama_recipes.inference.model_utils import load_llama_from_config
 
-from llama_recipes.inference.model_utils import  load_llama_from_config
+from transformers import AutoConfig, AutoTokenizer, MllamaProcessor
 
 # Get the current file's directory
 current_directory = os.path.dirname(os.path.abspath(__file__))
@@ -22,23 +23,24 @@ parent_directory = os.path.dirname(current_directory)
 sys.path.append(parent_directory)
 from model_checkpointing import load_sharded_model_single_gpu
 
+
 def main(
-    fsdp_checkpoint_path="", # Path to FSDP Sharded model checkpoints
-    consolidated_model_path="", # Path to save the HF converted model checkpoints
-    HF_model_path_or_name="" # Path/ name of the HF model that include config.json and tokenizer_config.json (e.g. meta-llama/Llama-2-7b-chat-hf)
-    ):
-    
+    fsdp_checkpoint_path="",  # Path to FSDP Sharded model checkpoints
+    consolidated_model_path="",  # Path to save the HF converted model checkpoints
+    HF_model_path_or_name="",  # Path/ name of the HF model that include config.json and tokenizer_config.json (e.g. meta-llama/Llama-2-7b-chat-hf)
+):
+
     try:
-        file_name = 'train_params.yaml'
+        file_name = "train_params.yaml"
         # Combine the directory and file name to create the full path
         train_params_path = os.path.join(fsdp_checkpoint_path, file_name)
         # Open the file
-        with open(train_params_path, 'r') as file:
+        with open(train_params_path, "r") as file:
             # Load the YAML data
             data = yaml.safe_load(file)
 
             # Access the 'model_name' field
-            HF_model_path_or_name = data.get('model_name')
+            HF_model_path_or_name = data.get("model_name")
 
             print(f"Model name: {HF_model_path_or_name}")
     except FileNotFoundError:
@@ -47,19 +49,33 @@ def main(
         print(f"Model name: {HF_model_path_or_name}")
     except Exception as e:
         print(f"An error occurred: {e}")
-        
-        
-    #load the HF model definition from config
+
+    # load the HF model definition from config
     model_def = load_llama_from_config(HF_model_path_or_name)
     print("model is loaded from config")
-    #load the FSDP sharded checkpoints into the model
+    # load the FSDP sharded checkpoints into the model
     model = load_sharded_model_single_gpu(model_def, fsdp_checkpoint_path)
     print("model is loaded from FSDP checkpoints")
-    #loading the tokenizer form the  model_path
-    tokenizer = AutoTokenizer.from_pretrained(HF_model_path_or_name)
-    tokenizer.save_pretrained(consolidated_model_path)
-    #save the FSDP sharded checkpoints in HF format
+    # loading the tokenizer form the  model_path
+    config = AutoConfig.from_pretrained(HF_model_path_or_name)
+    # save the processor and config for mllama models
+    if config.model_type == "mllama":
+        processor = MllamaProcessor.from_pretrained(HF_model_path_or_name)
+        processor.save_pretrained(consolidated_model_path)
+        print(
+            f"HuggingFace mllama processor has been saved in {consolidated_model_path}"
+        )
+    else:
+        # save the tokenizer for llama models
+        tokenizer = AutoTokenizer.from_pretrained(HF_model_path_or_name)
+        tokenizer.save_pretrained(consolidated_model_path)
+        print(
+            f"HuggingFace llama tokenizer has been saved in {consolidated_model_path}"
+        )
+    # save the FSDP sharded checkpoints in HF format
     model.save_pretrained(consolidated_model_path)
     print(f"HuggingFace model checkpoints has been saved in {consolidated_model_path}")
+
+
 if __name__ == "__main__":
     fire.Fire(main)
diff --git a/src/llama_recipes/inference/model_utils.py b/src/llama_recipes/inference/model_utils.py
index 2b150eea3a5fb87277c9c3e321bed7c92c5b5737..99f191005fc0c6bf7830058cc8a614cc72953862 100644
--- a/src/llama_recipes/inference/model_utils.py
+++ b/src/llama_recipes/inference/model_utils.py
@@ -1,17 +1,29 @@
 # Copyright (c) Meta Platforms, Inc. and affiliates.
 # This software may be used and distributed according to the terms of the GNU General Public License version 3.
 
+from warnings import warn
+
+from llama_recipes.configs import quantization_config as QUANT_CONFIG
 from llama_recipes.utils.config_utils import update_config
-from llama_recipes.configs import quantization_config  as QUANT_CONFIG
 from peft import PeftModel
-from transformers import AutoModelForCausalLM, LlamaForCausalLM, LlamaConfig
-from warnings import warn
+from transformers import (
+    AutoConfig,
+    AutoModelForCausalLM,
+    LlamaConfig,
+    LlamaForCausalLM,
+    MllamaConfig,
+    MllamaForConditionalGeneration,
+)
+
 
 # Function to load the main model for text generation
 def load_model(model_name, quantization, use_fast_kernels, **kwargs):
     if type(quantization) == type(True):
-            warn("Quantization (--quantization) is a boolean, please specify quantization as '4bit' or '8bit'. Defaulting to '8bit' but this might change in the future.", FutureWarning)
-            quantization = "8bit"
+        warn(
+            "Quantization (--quantization) is a boolean, please specify quantization as '4bit' or '8bit'. Defaulting to '8bit' but this might change in the future.",
+            FutureWarning,
+        )
+        quantization = "8bit"
 
     bnb_config = None
     if quantization:
@@ -23,10 +35,10 @@ def load_model(model_name, quantization, use_fast_kernels, **kwargs):
 
     kwargs = {}
     if bnb_config:
-        kwargs["quantization_config"]=bnb_config
-    kwargs["device_map"]="auto"
-    kwargs["low_cpu_mem_usage"]=True
-    kwargs["attn_implementation"]="sdpa" if use_fast_kernels else None
+        kwargs["quantization_config"] = bnb_config
+    kwargs["device_map"] = "auto"
+    kwargs["low_cpu_mem_usage"] = True
+    kwargs["attn_implementation"] = "sdpa" if use_fast_kernels else None
     model = AutoModelForCausalLM.from_pretrained(
         model_name,
         return_dict=True,
@@ -40,10 +52,16 @@ def load_peft_model(model, peft_model):
     peft_model = PeftModel.from_pretrained(model, peft_model)
     return peft_model
 
+
 # Loading the model from config to load FSDP checkpoints into that
 def load_llama_from_config(config_path):
-    model_config = LlamaConfig.from_pretrained(config_path) 
-    model = LlamaForCausalLM(config=model_config)
+    config = AutoConfig.from_pretrained(config_path)
+    if config.model_type == "mllama":
+        model = MllamaForConditionalGeneration(config=config)
+    elif config.model_type == "llama":
+        model = LlamaForCausalLM(config=config)
+    else:
+        raise ValueError(
+            f"Unsupported model type: {config.model_type}, Please use llama or mllama model."
+        )
     return model
-    
-    
\ No newline at end of file
diff --git a/src/llama_recipes/utils/train_utils.py b/src/llama_recipes/utils/train_utils.py
index 9ce2eb7b8d1536a8b5983997f7d07219447971c3..d3b42ae1254ec308548e0bb89e381e8b42a6fee8 100644
--- a/src/llama_recipes/utils/train_utils.py
+++ b/src/llama_recipes/utils/train_utils.py
@@ -151,11 +151,11 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
                                 batch[key] = batch[key].to('cuda:0')
                     with autocast():
                         loss = model(**batch).loss
+                    total_loss += loss.detach().float()
                     loss = loss / gradient_accumulation_steps
                     if train_config.save_metrics:
                         train_step_loss.append(loss.detach().float().item())
                         train_step_perplexity.append(float(torch.exp(loss.detach().float())))
-                    total_loss += loss.detach().float()
                     if train_config.use_fp16:
                         # if fp16 is enabled, use gradient scaler to handle gradient update
                         scaler.scale(loss).backward()
@@ -288,7 +288,7 @@ def train(model, train_dataloader,eval_dataloader, tokenizer, optimizer, lr_sche
                         print(f"best eval loss on epoch {epoch+1} is {best_val_loss}")
                 else:
                         print(f"best eval loss on epoch {epoch+1} is {best_val_loss}")
-            val_loss.append(float(best_val_loss))
+            val_loss.append(float(eval_epoch_loss))
             val_prep.append(float(eval_ppl))
         if train_config.enable_fsdp:
             if rank==0:
diff --git a/src/tests/conftest.py b/src/tests/conftest.py
index 710ed74042ffdddc95f5ac328af980976c4d7c55..1476bf3c1e2d4fb2c492b32a88af9a4f7ddab0c0 100644
--- a/src/tests/conftest.py
+++ b/src/tests/conftest.py
@@ -3,19 +3,27 @@
 
 import pytest
 
-from transformers import AutoTokenizer
+from utils import maybe_tokenizer
 
-ACCESS_ERROR_MSG = "Could not access tokenizer at 'meta-llama/Llama-2-7b-hf'. Did you log into huggingface hub and provided the correct token?"
-LLAMA_VERSIONS = ["meta-llama/Llama-2-7b-hf", "meta-llama/Meta-Llama-3.1-8B-Instruct"]
+ACCESS_ERROR_MSG = "Could not access tokenizer. Did you log into huggingface hub and provided the correct token?"
+
+LLAMA_VERSIONS = ["meta-llama/Llama-2-7b-hf", "meta-llama/Meta-Llama-3.1-8B-Instruct", "fake_llama"]
+
+LLAMA_TOKENIZERS = {k: maybe_tokenizer(k) for k in LLAMA_VERSIONS}
 
 @pytest.fixture(params=LLAMA_VERSIONS)
 def llama_version(request):
     return request.param
 
 
+@pytest.fixture(params=["mllama", "llama"])
+def model_type(request):
+    return request.param
+
+
 @pytest.fixture(scope="module")
 def llama_tokenizer(request):
-    return {k: AutoTokenizer.from_pretrained(k) for k in LLAMA_VERSIONS}
+    return LLAMA_TOKENIZERS
 
 
 @pytest.fixture
@@ -26,6 +34,13 @@ def setup_tokenizer(llama_tokenizer, llama_version):
 
     return _helper
 
+@pytest.fixture
+def setup_processor(llama_tokenizer, llama_version):
+    def _helper(processor_mock):
+        processor_mock.from_pretrained.return_value.tokenizer = llama_tokenizer[llama_version]
+
+    return _helper
+
 
 def pytest_addoption(parser):
     parser.addoption(
@@ -38,16 +53,18 @@ def pytest_configure(config):
 
 
 def pytest_collection_modifyitems(config, items):
+    #skip tests marked with skip_missing_tokenizer if tokenizer is unavailable unless --unskip-missing-tokenizer is passed
     if config.getoption("--unskip-missing-tokenizer"):
         return
 
-    try:
-        AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
-        tokenizer_available = True
-    except OSError:
-        tokenizer_available = False
-
     skip_missing_tokenizer = pytest.mark.skip(reason=ACCESS_ERROR_MSG)
     for item in items:
-        if "skip_missing_tokenizer" in item.keywords and not tokenizer_available:
+        # get the tokenizer for the test
+        version = [v for v in LLAMA_VERSIONS for i in item.keywords if v in i]
+        if len(version) == 0:
+            # no tokenizer used in this test
+            continue
+        version = version.pop()
+        assert version in LLAMA_TOKENIZERS
+        if "skip_missing_tokenizer" in item.keywords and LLAMA_TOKENIZERS[version] is None:
             item.add_marker(skip_missing_tokenizer)
diff --git a/src/tests/datasets/test_custom_dataset.py b/src/tests/datasets/test_custom_dataset.py
index 7cf8abe3e553095459ce4d5797241d106f066ccb..f842733b7d038de11e0ddcf130ed4c41d05be946 100644
--- a/src/tests/datasets/test_custom_dataset.py
+++ b/src/tests/datasets/test_custom_dataset.py
@@ -2,6 +2,7 @@
 # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
 import pytest
+from contextlib import nullcontext
 from unittest.mock import patch
 
 from transformers import LlamaTokenizer
@@ -96,15 +97,17 @@ def test_custom_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker,
 
 
 @patch('llama_recipes.finetuning.train')
+@patch('llama_recipes.finetuning.AutoConfig.from_pretrained')
 @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 @patch('llama_recipes.finetuning.AutoTokenizer.from_pretrained')
 @patch('llama_recipes.finetuning.optim.AdamW')
 @patch('llama_recipes.finetuning.StepLR')
-def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, train, mocker, llama_version):
+def test_unknown_dataset_error(step_lr, optimizer, tokenizer, get_model, get_config, train, mocker, llama_version):
     from llama_recipes.finetuning import main
 
     tokenizer.return_value = mocker.MagicMock(side_effect=lambda x: {"input_ids":[len(x)*[0,]], "attention_mask": [len(x)*[0,]]})
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
+    get_config.return_value.model_type = "llama"
 
     kwargs = {
         "dataset": "custom_dataset",
@@ -131,13 +134,16 @@ def test_tokenize_dialog(tokenizer, monkeypatch, setup_tokenizer, llama_version)
         {"role":"assistant", "content":"Romans"},
     ]
 
-    result = tokenize_dialog(dialog, tokenizer)
+    c = pytest.raises(AttributeError) if llama_version == "fake_llama" else nullcontext()
+
+    with c:
+        result = tokenize_dialog(dialog, tokenizer)
     
     if "Llama-2" in llama_version:
         assert result["labels"][:12] == [-100] * 12
         assert result["labels"][17:28] == [-100] * 11
         assert result["labels"].count(-100) == 11 + 12
-    else:
+    elif "Llama-3" in llama_version:
         assert result["labels"][:38] == [-100] * 38
         assert result["labels"][43:54] == [-100] * 11
         assert result["labels"].count(-100) == 38 + 11
diff --git a/src/tests/datasets/test_grammar_datasets.py b/src/tests/datasets/test_grammar_datasets.py
index e05e51ca9ee9237f9c0fcf06d9c0222f46ab4635..f61d149884d055cb0c50a6822701e83d606455d2 100644
--- a/src/tests/datasets/test_grammar_datasets.py
+++ b/src/tests/datasets/test_grammar_datasets.py
@@ -1,32 +1,27 @@
 # Copyright (c) Meta Platforms, Inc. and affiliates.
 # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
+from pathlib import Path
 import pytest
 from unittest.mock import patch
 
-
-EXPECTED_RESULTS = {
-    "meta-llama/Llama-2-7b-hf":{
-        "label": 1152,
-        "pos": 31,
-    },
-    "meta-llama/Meta-Llama-3.1-8B":{
-        "label": 40,
-        "pos": 26,
-    },
-}
+DATA_DIR = Path(__file__).parents[2] / "llama_recipes/datasets/grammar_dataset/"
 
 @pytest.mark.skip_missing_tokenizer
+@pytest.mark.skipif(not Path(DATA_DIR / "grammar_validation.csv").exists(), reason="grammar_validation.csv not found")
+@pytest.mark.skipif(not Path(DATA_DIR / "gtrain_10k.csv").exists(), reason="gtrain_10k.csv not found")
 @patch('llama_recipes.finetuning.train')
 @patch('llama_recipes.finetuning.AutoTokenizer')
+@patch('llama_recipes.finetuning.AutoConfig.from_pretrained')
 @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 @patch('llama_recipes.finetuning.optim.AdamW')
 @patch('llama_recipes.finetuning.StepLR')
-def test_grammar_dataset(step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer, llama_version):
+def test_grammar_dataset(step_lr, optimizer, get_model, get_config, tokenizer, train, setup_tokenizer, llama_version):
     from llama_recipes.finetuning import main
 
     setup_tokenizer(tokenizer)
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
+    get_config.return_value.model_type = "llama"
 
     BATCH_SIZE = 8
     kwargs = {
@@ -58,9 +53,6 @@ def test_grammar_dataset(step_lr, optimizer, get_model, tokenizer, train, setup_
     assert "input_ids" in batch.keys()
     assert "attention_mask" in batch.keys()
 
-    assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]-1] == -100
-    assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]] == EXPECTED_RESULTS[llama_version]["label"]
-
     token = args[3]
     assert batch["input_ids"][0][0] == token.bos_token_id
     assert batch["labels"][0][-1] == token.eos_token_id
diff --git a/src/tests/datasets/test_samsum_datasets.py b/src/tests/datasets/test_samsum_datasets.py
index 4b6668b25cd75ebae4e0cd4995d49d8a3f0dcf4e..3a71059daa68bf89920714eb67b6f08b0c5c0e51 100644
--- a/src/tests/datasets/test_samsum_datasets.py
+++ b/src/tests/datasets/test_samsum_datasets.py
@@ -2,31 +2,50 @@
 # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
 import pytest
+from dataclasses import dataclass
 from functools import partial
 from unittest.mock import patch
+from datasets import load_dataset
 
-EXPECTED_RESULTS = {
-    "meta-llama/Llama-2-7b-hf":{
-        "label": 8432,
-        "pos": 242,
-    },
-    "meta-llama/Meta-Llama-3.1-8B":{
-        "label": 2250,
-        "pos": 211,
-    },
-}
+@dataclass
+class Config:
+    model_type: str = "llama"
 
+try:
+    load_dataset("Samsung/samsum")
+    SAMSUM_UNAVAILABLE = False
+except ValueError:
+    SAMSUM_UNAVAILABLE = True
+
+@pytest.mark.skipif(SAMSUM_UNAVAILABLE, reason="Samsum dataset is unavailable")
 @pytest.mark.skip_missing_tokenizer
 @patch('llama_recipes.finetuning.train')
 @patch('llama_recipes.finetuning.AutoTokenizer')
+@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
+@patch("llama_recipes.finetuning.AutoProcessor")
+@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
 @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 @patch('llama_recipes.finetuning.optim.AdamW')
 @patch('llama_recipes.finetuning.StepLR')
-def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker, setup_tokenizer, llama_version):
+def test_samsum_dataset(
+    step_lr,
+    optimizer,
+    get_model,
+    get_mmodel,
+    processor,
+    get_config,
+    tokenizer,
+    train,
+    mocker,
+    setup_tokenizer,
+    llama_version,
+    ):
     from llama_recipes.finetuning import main
 
     setup_tokenizer(tokenizer)
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
+    get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    get_config.return_value = Config()
 
     BATCH_SIZE = 8
     kwargs = {
@@ -59,9 +78,6 @@ def test_samsum_dataset(step_lr, optimizer, get_model, tokenizer, train, mocker,
     assert "input_ids" in batch.keys()
     assert "attention_mask" in batch.keys()
 
-    assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]-1] == -100
-    assert batch["labels"][0][EXPECTED_RESULTS[llama_version]["pos"]] == EXPECTED_RESULTS[llama_version]["label"]
-
     assert batch["input_ids"][0][0] == token.bos_token_id
     assert batch["labels"][0][-1] == token.eos_token_id
     assert batch["input_ids"][0][-1] == token.eos_token_id
diff --git a/src/tests/test_batching.py b/src/tests/test_batching.py
index c450c18ac4667d3a9a986ff3a5d265754965176a..5aed0a4c4c2f987c04aef038256fc7b1d5b2e021 100644
--- a/src/tests/test_batching.py
+++ b/src/tests/test_batching.py
@@ -2,30 +2,68 @@
 # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
 import pytest
+from contextlib import nullcontext
+from dataclasses import dataclass
+from datasets import Dataset
 from unittest.mock import patch
 
+@dataclass
+class Config:
+    model_type: str = "llama"
+
 EXPECTED_SAMPLE_NUMBER ={
     "meta-llama/Llama-2-7b-hf": {
-        "train": 96,
-        "eval": 42,
+        "train": 4,
+        "eval": 37,
+    },
+    "meta-llama/Meta-Llama-3.1-8B-Instruct": {
+        "train": 3,
+        "eval": 30,
     },
-    "meta-llama/Meta-Llama-3.1-8B": {
-        "train": 79,
-        "eval": 34,
+    "fake_llama": {
+        "train": 2,
+        "eval": 17,
     }
 }
 
+fake_samsum_dataset = 2048*[{'id': '420',
+ 'dialogue': "Mario: It's a me, Mario!\nLuigi: It's a me, your brother!\nMario: I'm going to save the princess.\nLuigi: I'm going to help Mario.",
+ 'summary': 'Mario and Luigi are going to save the princess.'}]
+
 @pytest.mark.skip_missing_tokenizer
 @patch('llama_recipes.finetuning.train')
 @patch('llama_recipes.finetuning.AutoTokenizer')
+@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
+@patch("llama_recipes.finetuning.AutoProcessor")
+@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
 @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 @patch('llama_recipes.finetuning.optim.AdamW')
 @patch('llama_recipes.finetuning.StepLR')
-def test_packing(step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer, llama_version):
+@patch('llama_recipes.datasets.samsum_dataset.datasets')
+def test_packing(
+    datasets,
+    step_lr,
+    optimizer,
+    get_model,
+    get_mmodel,
+    processor,
+    get_config,
+    tokenizer,
+    train,
+    setup_tokenizer,
+    setup_processor,
+    llama_version,
+    model_type,
+    ):
     from llama_recipes.finetuning import main
 
     setup_tokenizer(tokenizer)
+    setup_processor(processor)
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
+    get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    get_config.return_value = Config(model_type=model_type)
+
+    datasets.load_dataset.return_value = Dataset.from_list(fake_samsum_dataset)
     
     kwargs = {
         "model_name": llama_version,
@@ -36,31 +74,40 @@ def test_packing(step_lr, optimizer, get_model, tokenizer, train, setup_tokenize
         "batching_strategy": "packing",
         }
 
-    main(**kwargs)
+    c = nullcontext() if model_type == "llama" else  pytest.raises(ValueError)
 
-    assert train.call_count == 1
+    with c:
+        main(**kwargs)
+    
+    if model_type == "llama":
+        assert train.call_count == 1
 
-    args, kwargs = train.call_args
-    train_dataloader = args[1]
-    eval_dataloader = args[2]
+        args, kwargs = train.call_args
+        train_dataloader = args[1]
+        eval_dataloader = args[2]
 
-    assert len(train_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["train"]
-    assert len(eval_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["eval"]
+        assert len(train_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["train"]
+        assert len(eval_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["eval"]
 
-    batch = next(iter(train_dataloader))
+        batch = next(iter(train_dataloader))
 
-    assert "labels" in batch.keys()
-    assert "input_ids" in batch.keys()
-    assert "attention_mask" in batch.keys()
+        assert "labels" in batch.keys()
+        assert "input_ids" in batch.keys()
+        assert "attention_mask" in batch.keys()
 
-    assert batch["labels"][0].size(0) == 4096
-    assert batch["input_ids"][0].size(0) == 4096
-    assert batch["attention_mask"][0].size(0) == 4096
+        assert batch["labels"][0].size(0) == 4096
+        assert batch["input_ids"][0].size(0) == 4096
+        assert batch["attention_mask"][0].size(0) == 4096
 
 
 @pytest.mark.skip_missing_tokenizer
+@patch("llama_recipes.utils.train_utils.torch.cuda.is_bf16_supported")
+@patch("llama_recipes.finetuning.torch.cuda.is_available")
 @patch('llama_recipes.finetuning.train')
 @patch('llama_recipes.finetuning.AutoTokenizer')
+@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
+@patch("llama_recipes.finetuning.AutoProcessor")
+@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
 @patch('llama_recipes.finetuning.LlamaForCausalLM.from_pretrained')
 @patch('llama_recipes.finetuning.optim.AdamW')
 @patch('llama_recipes.finetuning.StepLR')
@@ -68,12 +115,40 @@ def test_packing(step_lr, optimizer, get_model, tokenizer, train, setup_tokenize
 @patch('llama_recipes.finetuning.FSDP')
 @patch('llama_recipes.finetuning.torch.distributed.is_initialized')
 @patch('llama_recipes.utils.config_utils.dist')
-def test_distributed_packing(dist, is_initialized, fsdp, setup, step_lr, optimizer, get_model, tokenizer, train, setup_tokenizer, llama_version):
+@patch('llama_recipes.datasets.samsum_dataset.datasets')
+def test_distributed_packing(
+    datasets,
+    dist,
+    is_initialized,
+    fsdp,
+    setup,
+    step_lr,
+    optimizer,
+    get_model,
+    get_mmodel,
+    processor,
+    get_config,
+    tokenizer,
+    train,
+    cuda_is_available,
+    cuda_is_bf16_supported,
+    setup_tokenizer,
+    setup_processor,
+    llama_version,
+    model_type,
+    ):
     import os
     from llama_recipes.finetuning import main
 
     setup_tokenizer(tokenizer)
+    setup_processor(processor)
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
+    get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    get_config.return_value = Config(model_type=model_type)
+    cuda_is_available.return_value = False
+    cuda_is_bf16_supported.return_value = False
+
+    datasets.load_dataset.return_value = Dataset.from_list(fake_samsum_dataset)
 
     rank = 1
     os.environ['LOCAL_RANK'] = f'{rank}'
@@ -96,13 +171,17 @@ def test_distributed_packing(dist, is_initialized, fsdp, setup, step_lr, optimiz
     dist.get_rank.return_value = rank
     dist.get_world_size.return_value = 2
 
-    main(**kwargs)
+    c = nullcontext() if model_type == "llama" else  pytest.raises(ValueError)
+
+    with c:
+        main(**kwargs)
 
-    assert train.call_count == 1
+    if model_type == "llama":
+        assert train.call_count == 1
 
-    args, kwargs = train.call_args
-    train_dataloader = args[1]
-    eval_dataloader = args[2]
+        args, kwargs = train.call_args
+        train_dataloader = args[1]
+        eval_dataloader = args[2]
 
-    assert len(train_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["train"] //2
-    assert len(eval_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["eval"] //2
+        assert len(train_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["train"] //2
+        assert len(eval_dataloader) == EXPECTED_SAMPLE_NUMBER[llama_version]["eval"] //2
diff --git a/src/tests/test_chat_completion.py b/src/tests/test_chat_completion.py
index fb3efc0cb49ec67c67cf3916eba764cd50e198fc..266252317819bded34f76fdcbcea75c192327e14 100644
--- a/src/tests/test_chat_completion.py
+++ b/src/tests/test_chat_completion.py
@@ -1,6 +1,6 @@
 import sys
 from pathlib import Path
-from typing import List, Literal, TypedDict
+from typing import List, TypedDict
 from unittest.mock import patch
 
 import pytest
@@ -8,46 +8,37 @@ import torch
 from llama_recipes.inference.chat_utils import read_dialogs_from_file
 
 ROOT_DIR = Path(__file__).parents[2]
-CHAT_COMPLETION_DIR = ROOT_DIR / "recipes/inference/local_inference/chat_completion/"
+CHAT_COMPLETION_DIR = ROOT_DIR / "recipes/quickstart/inference/local_inference/chat_completion/"
 
 sys.path = [CHAT_COMPLETION_DIR.as_posix()] + sys.path
 
-Role = Literal["user", "assistant"]
-
-
-class Message(TypedDict):
-    role: Role
-    content: str
-
-
-Dialog = List[Message]
-
-B_INST, E_INST = "[INST]", "[/INST]"
-B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
-
+default_system_prompt = [{"role": "system", "content": "Cutting Knowledge Date: December 2023\nToday Date: 26 Jul 2024\n\n"}]
 
 def _encode_header(message, tokenizer):
     tokens = []
-    tokens.extend(tokenizer.encode("<|start_header_id|>"))
-    tokens.extend(tokenizer.encode(message["role"]))
-    tokens.extend(tokenizer.encode("<|end_header_id|>"))
-    tokens.extend(tokenizer.encode("\n\n"))
+    tokens.extend(tokenizer.encode("<|start_header_id|>", add_special_tokens=False))
+    tokens.extend(tokenizer.encode(message["role"], add_special_tokens=False))
+    tokens.extend(tokenizer.encode("<|end_header_id|>", add_special_tokens=False))
+    tokens.extend(tokenizer.encode("\n\n", add_special_tokens=False))
     return tokens
 
 
 def _encode_message(message, tokenizer):
     tokens = _encode_header(message, tokenizer)
-    tokens.extend(tokenizer.encode(message["content"].strip()))
-    tokens.extend(tokenizer.encode("<|eot_id|>"))
+    tokens.extend(tokenizer.encode(message["content"], add_special_tokens=False))
+    tokens.extend(tokenizer.encode("<|eot_id|>", add_special_tokens=False))
     return tokens
 
 
 def _format_dialog(dialog, tokenizer):
     tokens = []
-    tokens.extend(tokenizer.encode("<|begin_of_text|>"))
+    tokens.extend(tokenizer.encode("<|begin_of_text|>", add_special_tokens=False))
+    if dialog[0]["role"] == "system":
+        dialog[0]["content"] = default_system_prompt[0]["content"] + dialog[0]["content"]
+    else:
+        dialog = default_system_prompt + dialog
     for msg in dialog:
         tokens.extend(_encode_message(msg, tokenizer))
-    tokens.extend(_encode_header({"role": "assistant", "content": ""}, tokenizer))
     return tokens
 
 
@@ -55,59 +46,19 @@ def _format_tokens_llama3(dialogs, tokenizer):
     return [_format_dialog(dialog, tokenizer) for dialog in dialogs]
 
 
-def _format_tokens_llama2(dialogs, tokenizer):
-    prompt_tokens = []
-    for dialog in dialogs:
-        if dialog[0]["role"] == "system":
-            dialog = [
-                {
-                    "role": dialog[1]["role"],
-                    "content": B_SYS
-                    + dialog[0]["content"]
-                    + E_SYS
-                    + dialog[1]["content"],
-                }
-            ] + dialog[2:]
-        assert all([msg["role"] == "user" for msg in dialog[::2]]) and all(
-            [msg["role"] == "assistant" for msg in dialog[1::2]]
-        ), (
-            "model only supports 'system','user' and 'assistant' roles, "
-            "starting with user and alternating (u/a/u/a/u...)"
-        )
-        """
-        Please verify that your tokenizer support adding "[INST]", "[/INST]" to your inputs.
-        Here, we are adding it manually.
-        """
-        dialog_tokens: List[int] = sum(
-            [
-                tokenizer.encode(
-                    f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",
-                )
-                + [tokenizer.eos_token_id]
-                for prompt, answer in zip(dialog[::2], dialog[1::2])
-            ],
-            [],
-        )
-        assert (
-            dialog[-1]["role"] == "user"
-        ), f"Last message must be from user, got {dialog[-1]['role']}"
-        dialog_tokens += tokenizer.encode(
-            f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",
-        )
-        prompt_tokens.append(dialog_tokens)
-    return prompt_tokens
-
-
 @pytest.mark.skip_missing_tokenizer
 @patch("chat_completion.AutoTokenizer")
 @patch("chat_completion.load_model")
 def test_chat_completion(
     load_model, tokenizer, setup_tokenizer, llama_tokenizer, llama_version
 ):
+    if "Llama-2" in llama_version or llama_version == "fake_llama":
+        pytest.skip(f"skipping test for {llama_version}")
+
     from chat_completion import main
 
     setup_tokenizer(tokenizer)
-    load_model.return_value.get_input_embeddings.return_value.weight.shape = [32000 if "Llama-2" in llama_version else 128256]
+    load_model.return_value.get_input_embeddings.return_value.weight.shape = [128256]
 
     kwargs = {
         "prompt_file": (CHAT_COMPLETION_DIR / "chats.json").as_posix(),
@@ -116,13 +67,8 @@ def test_chat_completion(
     main(llama_version, **kwargs)
 
     dialogs = read_dialogs_from_file(kwargs["prompt_file"])
-    format_tokens = (
-        _format_tokens_llama2
-        if llama_version == "meta-llama/Llama-2-7b-hf"
-        else _format_tokens_llama3
-    )
 
-    REF_RESULT = format_tokens(dialogs, llama_tokenizer[llama_version])
+    REF_RESULT = _format_tokens_llama3(dialogs, llama_tokenizer[llama_version])
 
     assert all(
         (
diff --git a/src/tests/test_finetuning.py b/src/tests/test_finetuning.py
index 749f8614f706ac1cd13492c34d2aa68089490a35..d90859e0f75405c2b0664f7294e4042f898b1b9d 100644
--- a/src/tests/test_finetuning.py
+++ b/src/tests/test_finetuning.py
@@ -2,6 +2,8 @@
 # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
 
 import os
+from contextlib import nullcontext
+from dataclasses import dataclass
 from unittest.mock import patch
 
 import pytest
@@ -16,8 +18,12 @@ from torch.utils.data.dataloader import DataLoader
 from torch.utils.data.sampler import BatchSampler
 
 
+@dataclass
+class Config:
+    model_type: str = "llama"
+
 def get_fake_dataset():
-    return [
+    return 8192*[
         {
             "input_ids": [1],
             "attention_mask": [1],
@@ -28,28 +34,49 @@ def get_fake_dataset():
 
 @patch("llama_recipes.finetuning.torch.cuda.is_available")
 @patch("llama_recipes.finetuning.train")
+@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
+@patch("llama_recipes.finetuning.AutoProcessor.from_pretrained")
 @patch("llama_recipes.finetuning.LlamaForCausalLM.from_pretrained")
+@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
 @patch("llama_recipes.finetuning.AutoTokenizer.from_pretrained")
 @patch("llama_recipes.finetuning.get_preprocessed_dataset")
+@patch("llama_recipes.finetuning.generate_peft_config")
+@patch("llama_recipes.finetuning.get_peft_model")
 @patch("llama_recipes.finetuning.optim.AdamW")
 @patch("llama_recipes.finetuning.StepLR")
 @pytest.mark.parametrize("cuda_is_available", [True, False])
-def test_finetuning_no_validation(
+@pytest.mark.parametrize("run_validation", [True, False])
+@pytest.mark.parametrize("use_peft", [True, False])
+def test_finetuning(
     step_lr,
     optimizer,
+    get_peft_model,
+    gen_peft_config,
     get_dataset,
     tokenizer,
+    get_config,
     get_model,
+    get_processor,
+    get_mmodel,
     train,
     cuda,
     cuda_is_available,
+    run_validation,
+    use_peft,
+    model_type,
 ):
-    kwargs = {"run_validation": False}
+    kwargs = {
+        "run_validation": run_validation,
+        "use_peft": use_peft,
+        "batching_strategy": "packing" if model_type == "llama" else "padding",
+        }
 
     get_dataset.return_value = get_fake_dataset()
     cuda.return_value = cuda_is_available
 
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    get_config.return_value = Config(model_type=model_type)
 
     main(**kwargs)
 
@@ -60,115 +87,59 @@ def test_finetuning_no_validation(
     eval_dataloader = args[2]
 
     assert isinstance(train_dataloader, DataLoader)
-    assert eval_dataloader is None
-
-    if cuda_is_available:
-        assert get_model.return_value.to.call_count == 1
-        assert get_model.return_value.to.call_args.args[0] == "cuda"
+    if run_validation:
+        assert isinstance(eval_dataloader, DataLoader)
     else:
-        assert get_model.return_value.to.call_count == 0
-
-
-@patch("llama_recipes.finetuning.torch.cuda.is_available")
-@patch("llama_recipes.finetuning.train")
-@patch("llama_recipes.finetuning.LlamaForCausalLM.from_pretrained")
-@patch("llama_recipes.finetuning.AutoTokenizer.from_pretrained")
-@patch("llama_recipes.finetuning.get_preprocessed_dataset")
-@patch("llama_recipes.finetuning.optim.AdamW")
-@patch("llama_recipes.finetuning.StepLR")
-@pytest.mark.parametrize("cuda_is_available", [True, False])
-def test_finetuning_with_validation(
-    step_lr,
-    optimizer,
-    get_dataset,
-    tokenizer,
-    get_model,
-    train,
-    cuda,
-    cuda_is_available,
-):
-    kwargs = {"run_validation": True}
-
-    get_dataset.return_value = get_fake_dataset()
-    cuda.return_value = cuda_is_available
-
-    get_model.return_value.get_input_embeddings.return_value.weight.shape = [0]
-
-    main(**kwargs)
-
-    assert train.call_count == 1
-
-    args, kwargs = train.call_args
-    train_dataloader = args[1]
-    eval_dataloader = args[2]
-    assert isinstance(train_dataloader, DataLoader)
-    assert isinstance(eval_dataloader, DataLoader)
+        assert eval_dataloader is None
 
-    if cuda_is_available:
-        assert get_model.return_value.to.call_count == 1
-        assert get_model.return_value.to.call_args.args[0] == "cuda"
+    if use_peft:
+        assert get_peft_model.return_value.print_trainable_parameters.call_count == 1
+        model = get_peft_model
+    elif model_type == "llama":
+        model = get_model
     else:
-        assert get_model.return_value.to.call_count == 0
-
-
-@patch("llama_recipes.finetuning.torch.cuda.is_available")
-@patch("llama_recipes.finetuning.train")
-@patch("llama_recipes.finetuning.LlamaForCausalLM.from_pretrained")
-@patch("llama_recipes.finetuning.AutoTokenizer.from_pretrained")
-@patch("llama_recipes.finetuning.get_preprocessed_dataset")
-@patch("llama_recipes.finetuning.generate_peft_config")
-@patch("llama_recipes.finetuning.get_peft_model")
-@patch("llama_recipes.finetuning.optim.AdamW")
-@patch("llama_recipes.finetuning.StepLR")
-@pytest.mark.parametrize("cuda_is_available", [True, False])
-def test_finetuning_peft_lora(
-    step_lr,
-    optimizer,
-    get_peft_model,
-    gen_peft_config,
-    get_dataset,
-    tokenizer,
-    get_model,
-    train,
-    cuda,
-    cuda_is_available,
-):
-    kwargs = {"use_peft": True}
-
-    get_dataset.return_value = get_fake_dataset()
-    cuda.return_value = cuda_is_available
-
-    get_model.return_value.get_input_embeddings.return_value.weight.shape = [0]
-
-    main(**kwargs)
+        model = get_mmodel
 
     if cuda_is_available:
-        assert get_peft_model.return_value.to.call_count == 1
-        assert get_peft_model.return_value.to.call_args.args[0] == "cuda"
+        assert model.return_value.to.call_count == 1
+        assert model.return_value.to.call_args.args[0] == "cuda"
     else:
-        assert get_peft_model.return_value.to.call_count == 0
-
-    assert get_peft_model.return_value.print_trainable_parameters.call_count == 1
+        assert model.return_value.to.call_count == 0
 
 
 @patch("llama_recipes.finetuning.get_peft_model")
 @patch("llama_recipes.finetuning.setup")
 @patch("llama_recipes.finetuning.train")
+@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
+@patch("llama_recipes.finetuning.AutoProcessor.from_pretrained")
 @patch("llama_recipes.finetuning.LlamaForCausalLM.from_pretrained")
+@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
 @patch("llama_recipes.finetuning.AutoTokenizer.from_pretrained")
 @patch("llama_recipes.finetuning.get_preprocessed_dataset")
 def test_finetuning_peft_llama_adapter(
-    get_dataset, tokenizer, get_model, train, setup, get_peft_model
+    get_dataset,
+    tokenizer,
+    get_config,
+    get_model,
+    get_processor,
+    get_mmodel,
+    train,
+    setup,
+    get_peft_model,
+    model_type,
 ):
     kwargs = {
         "use_peft": True,
         "peft_method": "llama_adapter",
         "enable_fsdp": True,
+        "batching_strategy": "packing" if model_type == "llama" else "padding",
     }
 
     get_dataset.return_value = get_fake_dataset()
 
     get_model.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    get_mmodel.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    get_config.return_value = Config(model_type=model_type)
 
     os.environ["RANK"] = "0"
     os.environ["LOCAL_RANK"] = "0"
@@ -195,20 +166,38 @@ def test_finetuning_peft_llama_adapter(
 
 
 @patch("llama_recipes.finetuning.train")
+@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
+@patch("llama_recipes.finetuning.AutoProcessor.from_pretrained")
 @patch("llama_recipes.finetuning.LlamaForCausalLM.from_pretrained")
+@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
 @patch("llama_recipes.finetuning.AutoTokenizer.from_pretrained")
 @patch("llama_recipes.finetuning.get_preprocessed_dataset")
 @patch("llama_recipes.finetuning.get_peft_model")
 @patch("llama_recipes.finetuning.StepLR")
 def test_finetuning_weight_decay(
-    step_lr, get_peft_model, get_dataset, tokenizer, get_model, train
+    step_lr,
+    get_peft_model,
+    get_dataset,
+    tokenizer,
+    get_config,
+    get_model,
+    get_processor,
+    get_mmodel,
+    train,
+    model_type,
 ):
-    kwargs = {"weight_decay": 0.01}
+    kwargs = {
+        "weight_decay": 0.01,
+        "batching_strategy": "packing" if model_type == "llama" else "padding",
+        }
 
     get_dataset.return_value = get_fake_dataset()
 
-    get_model.return_value.parameters.return_value = [torch.ones(1, 1)]
-    get_model.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    model = get_model if model_type == "llama" else get_mmodel
+    model.return_value.parameters.return_value = [torch.ones(1, 1)]
+    model.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    
+    get_config.return_value = Config(model_type=model_type)
 
     main(**kwargs)
 
@@ -217,35 +206,54 @@ def test_finetuning_weight_decay(
     args, kwargs = train.call_args
     optimizer = args[4]
 
-    print(optimizer.state_dict())
-
     assert isinstance(optimizer, AdamW)
     assert optimizer.state_dict()["param_groups"][0]["weight_decay"] == approx(0.01)
 
 
 @patch("llama_recipes.finetuning.train")
+@patch("llama_recipes.finetuning.MllamaForConditionalGeneration.from_pretrained")
+@patch("llama_recipes.finetuning.AutoProcessor.from_pretrained")
 @patch("llama_recipes.finetuning.LlamaForCausalLM.from_pretrained")
+@patch("llama_recipes.finetuning.AutoConfig.from_pretrained")
 @patch("llama_recipes.finetuning.AutoTokenizer.from_pretrained")
 @patch("llama_recipes.finetuning.get_preprocessed_dataset")
 @patch("llama_recipes.finetuning.optim.AdamW")
 @patch("llama_recipes.finetuning.StepLR")
 def test_batching_strategy(
-    step_lr, optimizer, get_dataset, tokenizer, get_model, train
+    step_lr,
+    optimizer,
+    get_dataset,
+    tokenizer,
+    get_config,
+    get_model,
+    get_processor,
+    get_mmodel,
+    train,
+    model_type,
 ):
-    kwargs = {"batching_strategy": "packing"}
+    kwargs = {
+        "batching_strategy": "packing",
+        }
 
     get_dataset.return_value = get_fake_dataset()
 
-    get_model.return_value.get_input_embeddings.return_value.weight.shape = [0]
+    model = get_model if model_type == "llama" else get_mmodel
+    model.return_value.get_input_embeddings.return_value.weight.shape = [0]
 
-    main(**kwargs)
+    get_config.return_value = Config(model_type=model_type)
 
-    assert train.call_count == 1
+    c = nullcontext() if model_type == "llama" else  pytest.raises(ValueError)
+    
+    with c:
+        main(**kwargs)
 
-    args, kwargs = train.call_args
-    train_dataloader, eval_dataloader = args[1:3]
-    assert isinstance(train_dataloader.batch_sampler, BatchSampler)
-    assert isinstance(eval_dataloader.batch_sampler, BatchSampler)
+    assert train.call_count == (1 if model_type == "llama" else 0)
+
+    if model_type == "llama":
+        args, kwargs = train.call_args
+        train_dataloader, eval_dataloader = args[1:3]
+        assert isinstance(train_dataloader.batch_sampler, BatchSampler)
+        assert isinstance(eval_dataloader.batch_sampler, BatchSampler)
 
     kwargs["batching_strategy"] = "padding"
     train.reset_mock()
diff --git a/src/tests/test_train_utils.py b/src/tests/test_train_utils.py
index ca92c21ed44e2eac73c5c0cd9d1c02834db3f27e..66e3e9f0790d29cc9b6e1253fcf8f9ec0c47a41f 100644
--- a/src/tests/test_train_utils.py
+++ b/src/tests/test_train_utils.py
@@ -27,10 +27,16 @@ def temp_output_dir():
 @patch("llama_recipes.utils.train_utils.nullcontext")
 @patch("llama_recipes.utils.train_utils.torch.cuda.amp.GradScaler")
 @patch("llama_recipes.utils.train_utils.torch.cuda.amp.autocast")
-def test_gradient_accumulation(autocast, scaler, nullcontext, mem_trace, mocker):
+def test_gradient_accumulation(
+    autocast,
+    scaler,
+    nullcontext,
+    mem_trace,
+    mocker):
 
     model = mocker.MagicMock(name="model")
     model().loss.__truediv__().detach.return_value = torch.tensor(1)
+    model().loss.detach.return_value = torch.tensor(1)
     mock_tensor = mocker.MagicMock(name="tensor")
     batch = {"input": mock_tensor}
     train_dataloader = [batch, batch, batch, batch, batch]
@@ -47,6 +53,9 @@ def test_gradient_accumulation(autocast, scaler, nullcontext, mem_trace, mocker)
     train_config.max_train_step = 0
     train_config.max_eval_step = 0
     train_config.save_metrics = False
+    train_config.flop_counter_start = 0
+    train_config.use_profiler = False
+    train_config.flop_counter = True
 
     train(
         model,
@@ -86,6 +95,7 @@ def test_gradient_accumulation(autocast, scaler, nullcontext, mem_trace, mocker)
 def test_save_to_json(temp_output_dir, mocker):
     model = mocker.MagicMock(name="model")
     model().loss.__truediv__().detach.return_value = torch.tensor(1)
+    model().loss.detach.return_value = torch.tensor(1)
     mock_tensor = mocker.MagicMock(name="tensor")
     batch = {"input": mock_tensor}
     train_dataloader = [batch, batch, batch, batch, batch]
@@ -103,6 +113,7 @@ def test_save_to_json(temp_output_dir, mocker):
     train_config.max_train_step = 0
     train_config.max_eval_step = 0
     train_config.output_dir = temp_output_dir
+    train_config.flop_counter_start = 0
     train_config.use_profiler = False
 
     results = train(
diff --git a/src/tests/utils.py b/src/tests/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..14b96a9a1fe46251462ca74768baa65f6f9d402e
--- /dev/null
+++ b/src/tests/utils.py
@@ -0,0 +1,50 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
+
+from transformers import AutoTokenizer
+
+
+class FakeTokenizer(object):
+    def __init__(self):
+        self.pad_token_id = 0
+        self.bos_token_id = 42
+        self.eos_token_id = 43
+        self.sep_token_id = 3
+        self.vocab_size = 128256
+
+        self.pad_token = "<|pad_id|>"
+        self.bos_token = "<|bos_id|>"
+        self.eos_token = "<|eos_id|>"
+        self.sep_token = "<|sep_id|>"
+        self.tokenizer = self
+        self.padding_side = "left"
+
+    def __call__(self, *args, **kwargs):
+        ids = self.encode(*args, **kwargs)
+        return {"input_ids": ids}
+
+    def encode(self, text, *args, **kwargs):
+        return [self.bos_token_id] + [len(c) for c in text.split(" ")] + [self.eos_token_id]
+    
+    def __len__(self):
+        return 128256
+    
+    def pad(self, *args, **kwargs):
+        args = args[0]
+        max_len = max([len(a["input_ids"]) for a in args])
+        for a in args:
+            for k in a.keys():
+                a[k] = a[k] + ([self.pad_token_id if k == "input_ids" else 0] * (max_len - len(a)))
+        out = {}
+        for k in args[0].keys():
+            out[k] = [a[k] for a in args]
+        return out
+
+
+def maybe_tokenizer(name):
+    if name == "fake_llama":
+        return FakeTokenizer()
+    try:
+        return AutoTokenizer.from_pretrained(name)
+    except OSError:
+        return None