diff --git a/inference/code-llama/code_completion_example.py b/inference/code-llama/code_completion_example.py index 47e2dacf49d5264c08979630eb7a28cb526f0933..ce95302440ce3b613fb26e8b14db5df89beb3640 100644 --- a/inference/code-llama/code_completion_example.py +++ b/inference/code-llama/code_completion_example.py @@ -33,7 +33,6 @@ def main( enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5 - max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts. use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels **kwargs ): @@ -70,14 +69,6 @@ def main( print("Module 'optimum' not found. Please install 'optimum' it before proceeding.") tokenizer = AutoTokenizer.from_pretrained(model_name) - tokenizer.add_special_tokens( - { - - "pad_token": "<PAD>", - } - ) - model.resize_token_embeddings(model.config.vocab_size + 1) - safety_checker = get_safety_checker(enable_azure_content_safety, enable_sensitive_topics, enable_salesforce_content_safety, @@ -98,7 +89,7 @@ def main( print("Skipping the inference as the prompt is not safe.") sys.exit(1) # Exit the program with an error status - batch = tokenizer(user_prompt, padding='max_length', truncation=True, max_length=max_padding_length, return_tensors="pt") + batch = tokenizer(user_prompt, return_tensors="pt") batch = {k: v.to("cuda") for k, v in batch.items()} start = time.perf_counter() diff --git a/inference/code-llama/code_infilling_example.py b/inference/code-llama/code_infilling_example.py index f27c628ad4f31f11bc747231bb6dc507f7316348..a68e3f31995b444e180f6b1a8c55fa57ed96eef1 100644 --- a/inference/code-llama/code_infilling_example.py +++ b/inference/code-llama/code_infilling_example.py @@ -33,7 +33,6 @@ def main( enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs enable_salesforce_content_safety: bool=True, # Enable safety check with Salesforce safety flan t5 - max_padding_length: int=None, # the max padding length to be used with tokenizer padding the prompts. use_fast_kernels: bool = True, # Enable using SDPA from PyTroch Accelerated Transformers, make use Flash Attention and Xformer memory-efficient kernels **kwargs ): @@ -70,13 +69,6 @@ def main( print("Module 'optimum' not found. Please install 'optimum' it before proceeding.") tokenizer = AutoTokenizer.from_pretrained(model_name) - tokenizer.add_special_tokens( - { - - "pad_token": "<PAD>", - } - ) - model.resize_token_embeddings(model.config.vocab_size + 1) safety_checker = get_safety_checker(enable_azure_content_safety, enable_sensitive_topics, @@ -98,7 +90,7 @@ def main( print("Skipping the inference as the prompt is not safe.") sys.exit(1) # Exit the program with an error status - batch = tokenizer(user_prompt, padding='max_length', truncation=True, max_length=max_padding_length, return_tensors="pt") + batch = tokenizer(user_prompt, return_tensors="pt") batch = {k: v.to("cuda") for k, v in batch.items()} start = time.perf_counter()