diff --git a/src/tests/test_finetuning.py b/src/tests/test_finetuning.py index 9d9e6faaced639b9a2589fec51d00bf8c85ff26e..d90859e0f75405c2b0664f7294e4042f898b1b9d 100644 --- a/src/tests/test_finetuning.py +++ b/src/tests/test_finetuning.py @@ -107,46 +107,6 @@ def test_finetuning( assert model.return_value.to.call_count == 0 -# @patch("llama_recipes.finetuning.torch.cuda.is_available") -# @patch("llama_recipes.finetuning.train") -# @patch("llama_recipes.finetuning.LlamaForCausalLM.from_pretrained") -# @patch("llama_recipes.finetuning.AutoTokenizer.from_pretrained") -# @patch("llama_recipes.finetuning.get_preprocessed_dataset") -# @patch("llama_recipes.finetuning.generate_peft_config") -# @patch("llama_recipes.finetuning.get_peft_model") -# @patch("llama_recipes.finetuning.optim.AdamW") -# @patch("llama_recipes.finetuning.StepLR") -# @pytest.mark.parametrize("cuda_is_available", [True, False]) -# def test_finetuning_peft_lora( -# step_lr, -# optimizer, -# get_peft_model, -# gen_peft_config, -# get_dataset, -# tokenizer, -# get_model, -# train, -# cuda, -# cuda_is_available, -# ): -# kwargs = {"use_peft": True} - -# get_dataset.return_value = get_fake_dataset() -# cuda.return_value = cuda_is_available - -# get_model.return_value.get_input_embeddings.return_value.weight.shape = [0] - -# main(**kwargs) - -# if cuda_is_available: -# assert get_peft_model.return_value.to.call_count == 1 -# assert get_peft_model.return_value.to.call_args.args[0] == "cuda" -# else: -# assert get_peft_model.return_value.to.call_count == 0 - - - - @patch("llama_recipes.finetuning.get_peft_model") @patch("llama_recipes.finetuning.setup") @patch("llama_recipes.finetuning.train")