diff --git a/STT/paraformer_handler.py b/STT/paraformer_handler.py index 0a2a9c002716b9acd1b3ddf1c52e847aa571ef2e..99fd6ac7912cc326472a31541a4ffdd9d8d79649 100644 --- a/STT/paraformer_handler.py +++ b/STT/paraformer_handler.py @@ -1,8 +1,6 @@ import logging from time import perf_counter -from tensorstore import dtype - from baseHandler import BaseHandler from funasr import AutoModel import numpy as np @@ -19,22 +17,22 @@ console = Console() class ParaformerSTTHandler(BaseHandler): """ - Handles the Speech To Text generation using a Whisper model. + Handles the Speech To Text generation using a Paraformer model. + The default for this model is set to Chinese. + This model was contributed by @wuhongsheng. """ def setup( self, model_name="paraformer-zh", device="cuda", - torch_dtype="float32", - compile_mode=None, gen_kwargs={}, ): print(model_name) if len(model_name.split("/")) > 1: model_name = model_name.split("/")[-1] self.device = device - self.model = AutoModel(model=model_name) + self.model = AutoModel(model=model_name, device=device) self.warmup() def warmup(self): @@ -42,9 +40,9 @@ class ParaformerSTTHandler(BaseHandler): # 2 warmup steps for no compile or compile mode with CUDA graphs capture n_steps = 1 - dummy_input = np.array([0] * 512,dtype=np.float32) + dummy_input = np.array([0] * 512, dtype=np.float32) for _ in range(n_steps): - _ = self.model.generate(dummy_input)[0]["text"].strip().replace(" ","") + _ = self.model.generate(dummy_input)[0]["text"].strip().replace(" ", "") def process(self, spoken_prompt): logger.debug("infering paraformer...") @@ -52,7 +50,9 @@ class ParaformerSTTHandler(BaseHandler): global pipeline_start pipeline_start = perf_counter() - pred_text = self.model.generate(spoken_prompt)[0]["text"].strip().replace(" ","") + pred_text = ( + self.model.generate(spoken_prompt)[0]["text"].strip().replace(" ", "") + ) torch.mps.empty_cache() logger.debug("finished paraformer inference") diff --git a/arguments_classes/module_arguments.py b/arguments_classes/module_arguments.py index 140559641dcb9d908e1e426c89eb0815af318241..df9d94286965d23a75e2f71d5594f99aeb9148fe 100644 --- a/arguments_classes/module_arguments.py +++ b/arguments_classes/module_arguments.py @@ -23,7 +23,7 @@ class ModuleArguments: stt: Optional[str] = field( default="whisper", metadata={ - "help": "The STT to use. Either 'whisper' or 'whisper-mlx'. Default is 'whisper'." + "help": "The STT to use. Either 'whisper', 'whisper-mlx', and 'paraformer'. Default is 'whisper'." }, ) llm: Optional[str] = field( diff --git a/arguments_classes/paraformer_stt_arguments.py b/arguments_classes/paraformer_stt_arguments.py new file mode 100644 index 0000000000000000000000000000000000000000..a57a66abfbc6eb1f95868364a69e106919299032 --- /dev/null +++ b/arguments_classes/paraformer_stt_arguments.py @@ -0,0 +1,17 @@ +from dataclasses import dataclass, field + + +@dataclass +class ParaformerSTTHandlerArguments: + paraformer_stt_model_name: str = field( + default="paraformer-zh", + metadata={ + "help": "The pretrained model to use. Default is 'paraformer-zh'. Can be choose from https://github.com/modelscope/FunASR" + }, + ) + paraformer_stt_device: str = field( + default="cuda", + metadata={ + "help": "The device type on which the model will run. Default is 'cuda' for GPU acceleration." + }, + ) diff --git a/requirements_mac.txt b/requirements_mac.txt index e1e864a7da83171ac47b73175c5317a9614493bc..4897c33f635ec4f176313577dc60a8b4455f006f 100644 --- a/requirements_mac.txt +++ b/requirements_mac.txt @@ -5,5 +5,5 @@ torch==2.4.0 sounddevice==0.5.0 lightning-whisper-mlx>=0.0.10 mlx-lm>=0.14.0 -funasr -modelscope \ No newline at end of file +funasr>=1.1.6 +modelscope>=1.17.1 \ No newline at end of file diff --git a/s2s_pipeline.py b/s2s_pipeline.py index a5e6aaa8cc3c142ca4838203ce417a2ffac90c41..1231abd824efe190d8036d78c7a508f058f6edb3 100644 --- a/s2s_pipeline.py +++ b/s2s_pipeline.py @@ -13,6 +13,7 @@ from arguments_classes.mlx_language_model_arguments import ( MLXLanguageModelHandlerArguments, ) from arguments_classes.module_arguments import ModuleArguments +from arguments_classes.paraformer_stt_arguments import ParaformerSTTHandlerArguments from arguments_classes.parler_tts_arguments import ParlerTTSHandlerArguments from arguments_classes.socket_receiver_arguments import SocketReceiverArguments from arguments_classes.socket_sender_arguments import SocketSenderArguments @@ -73,6 +74,7 @@ def main(): SocketSenderArguments, VADHandlerArguments, WhisperSTTHandlerArguments, + ParaformerSTTHandlerArguments, LanguageModelHandlerArguments, MLXLanguageModelHandlerArguments, ParlerTTSHandlerArguments, @@ -89,6 +91,7 @@ def main(): socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, + paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, @@ -102,6 +105,7 @@ def main(): socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, + paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, @@ -163,6 +167,8 @@ def main(): kwargs.tts_device = common_device if hasattr(kwargs, "stt_device"): kwargs.stt_device = common_device + if hasattr(kwargs, "paraformer_stt_device"): + kwargs.paraformer_stt_device = common_device # Call this function with the common device and all the handlers overwrite_device_argument( @@ -171,9 +177,11 @@ def main(): mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, whisper_stt_handler_kwargs, + paraformer_stt_handler_kwargs, ) prepare_args(whisper_stt_handler_kwargs, "stt") + prepare_args(paraformer_stt_handler_kwargs, "paraformer_stt") prepare_args(language_model_handler_kwargs, "lm") prepare_args(mlx_language_model_handler_kwargs, "mlx_lm") prepare_args(parler_tts_handler_kwargs, "tts") @@ -245,14 +253,17 @@ def main(): ) elif module_kwargs.stt == "paraformer": from STT.paraformer_handler import ParaformerSTTHandler + stt = ParaformerSTTHandler( stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, - # setup_kwargs=vars(whisper_stt_handler_kwargs), + setup_kwargs=vars(paraformer_stt_handler_kwargs), ) else: - raise ValueError("The STT should be either whisper or whisper-mlx") + raise ValueError( + "The STT should be either whisper, whisper-mlx, or paraformer." + ) if module_kwargs.llm == "transformers": from LLM.language_model import LanguageModelHandler