diff --git a/habitat_baselines/rl/ddppo/README.md b/habitat_baselines/rl/ddppo/README.md index 5336ae67d968deab6528212565f2d30cace88164..99a7664361840cedabb7d3daa78d15bd553104f1 100644 --- a/habitat_baselines/rl/ddppo/README.md +++ b/habitat_baselines/rl/ddppo/README.md @@ -18,31 +18,30 @@ and [pytorch's distributed tutorial](https://pytorch.org/tutorials/intermediate/ ## Pretrained Models (PointGoal Navigation with GPS+Compass) -All weights available as a zip [here](https://drive.google.com/open?id=1ueXuIqP2HZ0oxhpDytpc3hpciXSd8H16). +All weights available as a zip [here](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models.zip). ### Depth models | Architecture | Training Data | Val SPL | Test SPL | URL | | ------------ | ------------- | ------- | -------- | --- | -| ResNet50 + LSTM512 | Gibson 4+ | 0.922 | 0.917 | | -| ResNet50 + LSTM512 | Gibson 4+ and MP3D(train/val/test)<br/> **Caution:** Trained on MP3D val and test | 0.956 | 0.941 | -| ResNet50 + LSTM512 | Gibson 2+ | 0.956 | 0.944 | | -| SE-ResNeXt50 + LSTM512 | Gibson 2+ | 0.959 | 0.943 | | -| SE-ResNeXt101 + LSTM1024 | Gibson 2+ | 0.969 | 0.948 | | +| ResNet50 + LSTM512 | Gibson 4+ | 0.922 | 0.917 | [gibson-4plus-resnet50.pth](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models/gibson-4plus-resnet50.pth) | +| ResNet50 + LSTM512 | Gibson 4+ and MP3D(train/val/test)<br/> **Caution:** Trained on MP3D val and test | 0.956 | 0.941 | [gibson-4plus-mp3d-train-val-test-resnet50.pth](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models/gibson-4plus-mp3d-train-val-test-resnet50.pth) | +| ResNet50 + LSTM512 | Gibson 2+ | 0.956 | 0.944 | [gibson-2plus-resnet50.pth](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models/gibson-2plus-resnet50.pth)| +| SE-ResNeXt50 + LSTM512 | Gibson 2+ | 0.959 | 0.943 | [gibson-2plus-se-resneXt101.pth](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models/gibson-2plus-se-resneXt101.pth)| +| SE-ResNeXt101 + LSTM1024 | Gibson 2+ | 0.969 | 0.948 | [gibson-2plus-se-resneXt101-lstm1024.pth](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models/gibson-2plus-se-resneXt101-lstm1024.pth)| ### RGB models | Architecture | Training Data | Val SPL | Test SPL | URL | | ------------ | ------------- | ------- | -------- | --- | -| ResNet50 + LSTM512 | Gibson 2+ and MP3D(train/val/test)<br/> **Caution:** Trained on MP3D val and test | | | -| SE-ResNeXt50 + LSTM512 | Gibson 2+ and MP3D(train/val/test)<br/> **Caution:** Trained on MP3D val and test | 0.933 | 0.920 | +| SE-ResNeXt50 + LSTM512 | Gibson 2+ and MP3D(train/val/test)<br/> **Caution:** Trained on MP3D val and test | 0.933 | 0.920 | [gibson-2plus-mp3d-train-val-test-se-resneXt50-rgb.pth](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models/gibson-2plus-mp3d-train-val-test-se-resneXt50-rgb.pth) | ### Blind Models | Architecture | Training Data | Val SPL | Test SPL | URL | | ------------ | ------------- | ------- | -------- | --- | -| LSTM512 | Gibson 0+ and MP3D(train/val/test)<br/> **Caution:** Trained on MP3D val and test | 0.729 | 0.676 | +| LSTM512 | Gibson 0+ and MP3D(train/val/test)<br/> **Caution:** Trained on MP3D val and test | 0.729 | 0.676 | [gibson-0plus-mp3d-train-val-test-blind.pth](https://dl.fbaipublicfiles.com/habitat/data/baselines/v1/ddppo/ddppo-models/gibson-0plus-mp3d-train-val-test-blind.pth) | @@ -57,7 +56,7 @@ All model weights are subject to [Matterport3D Terms-of-Use](http://dovahkiin.st If you use DD-PPO or the model-weights in your research, please cite the following [paper](https://arxiv.org/abs/1911.00357): @article{wijmans2020ddppo, - title = {{D}ecentralized {D}istributed {PPO}: {S}olving {P}oint{G}oal {N}avigation}, + title = {{DD-PPO}: {L}earning Near-Perfect PointGoal Navigators from 2.5 Billion Frames}, author = {Erik Wijmans and Abhishek Kadian and Ari Morcos and Stefan Lee and Irfan Essa and Devi Parikh and Manolis Savva and Dhruv Batra}, journal = {International Conference on Learning Representations (ICLR)}, year = {2020}